Autonomous benthic algal cultivator under feedback control of ecosystem metabolism
USDA-ARS?s Scientific Manuscript database
An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...
Ferrari, Renata; Marzinelli, Ezequiel M; Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F; Byrne, Maria; Malcolm, Hamish A; Williams, Stefan B; Steinberg, Peter D
2018-01-01
Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate 'no-take' and 'general-use' (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5-10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and sampling design that once temporal sampling is incorporated will be useful to detect changes of marine benthic communities across multiple spatial and temporal scales.
Ayroza, Camila Rezende; Jordan, Alan; Figueira, Will F.; Byrne, Maria; Malcolm, Hamish A.; Williams, Stefan B.; Steinberg, Peter D.
2018-01-01
Marine protected areas (MPAs) are designed to reduce threats to biodiversity and ecosystem functioning from anthropogenic activities. Assessment of MPAs effectiveness requires synchronous sampling of protected and non-protected areas at multiple spatial and temporal scales. We used an autonomous underwater vehicle to map benthic communities in replicate ‘no-take’ and ‘general-use’ (fishing allowed) zones within three MPAs along 7o of latitude. We recorded 92 taxa and 38 morpho-groups across three large MPAs. We found that important habitat-forming biota (e.g. massive sponges) were more prevalent and abundant in no-take zones, while short ephemeral algae were more abundant in general-use zones, suggesting potential short-term effects of zoning (5–10 years). Yet, short-term effects of zoning were not detected at the community level (community structure or composition), while community structure varied significantly among MPAs. We conclude that by allowing rapid, simultaneous assessments at multiple spatial scales, autonomous underwater vehicles are useful to document changes in marine communities and identify adequate scales to manage them. This study advanced knowledge of marine benthic communities and their conservation in three ways. First, we quantified benthic biodiversity and abundance, generating the first baseline of these benthic communities against which the effectiveness of three large MPAs can be assessed. Second, we identified the taxonomic resolution necessary to assess both short and long-term effects of MPAs, concluding that coarse taxonomic resolution is sufficient given that analyses of community structure at different taxonomic levels were generally consistent. Yet, observed differences were taxa-specific and may have not been evident using our broader taxonomic classifications, a classification of mid to high taxonomic resolution may be necessary to determine zoning effects on key taxa. Third, we provide an example of statistical analyses and sampling design that once temporal sampling is incorporated will be useful to detect changes of marine benthic communities across multiple spatial and temporal scales. PMID:29547656
NASA Astrophysics Data System (ADS)
Lee, Jae Seong; An, Sung-Uk; Park, Young-Gyu; Kim, Eunsoo; Kim, Dongseon; Kwon, Jung No; Kang, Dong-Jin; Noh, Jae-Hoon
2015-09-01
We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) Belc II and Belp II. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge-slope-basin system in the East Sea.
NASA Astrophysics Data System (ADS)
Lee, J. S.; An, S. U.; Park, Y. G.; Kim, E.; Kim, D.; Kwon, J. N.; Kang, D. J.; Noh, J. H.
2016-02-01
We have developed a new autonomous benthic lander for deep-sea research, the Korea Institute of Ocean Science and Technology (KIOST) BelcII and BelpII. The benthic lander was successfully tested at 950 and 1450 m water depths on the slope off the southwestern part of the Ulleung Basin in the East Sea of Korea. The ex situ measurements of the total oxygen uptake (TOU) rates at all the stations exceeded the in situ measurement values, and may indicate artificial effects from onboard incubation. The TOU rates were estimated to be 5.80 mmol m-2 d-1 and 3.77 mmol m-2 d-1 at water depths of 950 m and 1450 m, respectively. The benthic nutrient fluxes were also higher at water depths of 950 m, which indicates a partitioning of organic degradation with water depth. In addition, the negative phosphate and nitrogen benthic flux ratios and the higher nitrate removal flux via the sediment-water interface at the slope imply that the nitrogen in the bottom water may be preferentially removed via microbial respiration processes in the sediments, and may be coupled with the low nitrogen-to-phosphate ratio found in the deep water. Although our measurements comprised just two experiments in the slope sediment, the robust in situ measurement of the benthic fluxes in the slope sediment is a forerunner for new research into the biogeochemical cycles across the shelf edge- slope-basin system in the East Sea.
Ziegler, Amanda F; Kremenetskaia, Antonina; Mah, Christopher L; Mooi, Rich; O'Hara, Tim; Pawson, David L; Roux, Michel; Smith, Craig R
2017-01-01
Abstract Background There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite being the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. In order to predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to these research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. New information Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle, the megafauna within the UKSRL exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal echinoderm megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 62 distinct morphospecies (13 Asteroidea, 5 Crinoidea, 9 Echinoidea, 29 Holothuroidea and 6 Ophiuroidea) identified mostly by imagery but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat. PMID:28765722
Amon, Diva J; Ziegler, Amanda F; Kremenetskaia, Antonina; Mah, Christopher L; Mooi, Rich; O'Hara, Tim; Pawson, David L; Roux, Michel; Smith, Craig R
2017-01-01
There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite being the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. In order to predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to these research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle, the megafauna within the UKSRL exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal echinoderm megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 62 distinct morphospecies (13 Asteroidea, 5 Crinoidea, 9 Echinoidea, 29 Holothuroidea and 6 Ophiuroidea) identified mostly by imagery but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.
NASA Astrophysics Data System (ADS)
Golikov, S. Yu; Dulepov, V. I.; Maiorov, I. S.
2017-11-01
The issues on the application of autonomous underwater vehicles for assessing the abundance, biomass, distribution and reserves of invertebrates in the marine benthic ecosystems and on the environmental monitoring are discussed. An example of the application of methodology to assess some of the quantitative characteristics of macrobenthos is provided based upon using the information obtained from the TSL AUV in the Peter the Great Gulf (the Sea of Japan) in the Bay of Paris and the Eastern Bosphorus Strait within the area of the bridge leading to the Russian island. For the quantitative determination of the benthic invertebrate reserves, the values of biomass density of specific species are determined. Based on the data of direct measurements and weightings, the equations of weight dependencies on the size of animals are estimated according to the studied species that are well described by the power law dependence.
Amon, Diva J; Ziegler, Amanda F; Drazen, Jeffrey C; Grischenko, Andrei V; Leitner, Astrid B; Lindsay, Dhugal J; Voight, Janet R; Wicksten, Mary K; Young, Craig M; Smith, Craig R
2017-01-01
There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite having been the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. To predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to ABYSSLINE research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle (as well as several other pieces of equipment), the megafauna within the UK Seabed Resources Ltd exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal annelid, arthropod, bryozoan, chordate, ctenophore and molluscan megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 55 distinct morphospecies (8 Annelida, 12 Arthropoda, 4 Bryozoa, 22 Chordata, 5 Ctenophora, and 4 Mollusca) identified mostly by morphology but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat.
Ziegler, Amanda F; Drazen, Jeffrey C; Grischenko, Andrei V; Leitner, Astrid B; Lindsay, Dhugal J; Voight, Janet R; Wicksten, Mary K; Young, Craig M; Smith, Craig R
2017-01-01
Abstract Background There is growing interest in mining polymetallic nodules from the abyssal Clarion-Clipperton Zone (CCZ) in the tropical Pacific Ocean. Despite having been the focus of environmental studies for decades, the benthic megafauna of the CCZ remain poorly known. To predict and manage the environmental impacts of mining in the CCZ, baseline knowledge of the megafauna is essential. The ABYSSLINE Project has conducted benthic biological baseline surveys in the UK Seabed Resources Ltd polymetallic-nodule exploration contract area (UK-1). Prior to ABYSSLINE research cruises in 2013 and 2015, no biological studies had been done in this area of the eastern CCZ. New information Using a Remotely Operated Vehicle and Autonomous Underwater Vehicle (as well as several other pieces of equipment), the megafauna within the UK Seabed Resources Ltd exploration contract area (UK-1) and at a site ~250 km east of the UK-1 area were surveyed, allowing us to make the first estimates of megafaunal morphospecies richness from the imagery collected. Here, we present an atlas of the abyssal annelid, arthropod, bryozoan, chordate, ctenophore and molluscan megafauna observed and collected during the ABYSSLINE cruises to the UK-1 polymetallic-nodule exploration contract area in the CCZ. There appear to be at least 55 distinct morphospecies (8 Annelida, 12 Arthropoda, 4 Bryozoa, 22 Chordata, 5 Ctenophora, and 4 Mollusca) identified mostly by morphology but also using molecular barcoding for a limited number of animals that were collected. This atlas will aid the synthesis of megafaunal presence/absence data collected by contractors, scientists and other stakeholders undertaking work in the CCZ, ultimately helping to decipher the biogeography of the megafauna in this threatened habitat. PMID:28874906
A new Concept for High Resolution Benthic Mapping and Data Aquisition: MANSIO-VIATOR
NASA Astrophysics Data System (ADS)
Flögel, S.
2015-12-01
Environmental conditions within sensitive seafloor ecosystems such as cold-seep provinces or cold-water coral reef communities vary temporally and spatially over a wide range of scales. Some of these are regularly monitored via short periods of intense shipborne activity or low resolution, fixed location studies by benthic lander systems. Long term measurements of larger areas and volumes are ususally coupled to costly infrastructure investments such as cabled observatories. In space exploration, a combination of fixed and mobile systems working together are commonly used, e.g. lander systems coupled to rovers, to tackle observational needs that are very similar to deep-sea data aquisition. The analogies between space and deep-sea research motivated the German Helmholtz Association to setup the joint research program ROBEX (Robotic Exploration under extreme conditions). The program objectives are to identify, develop and verify technological synergies between the robotic exploration of e.g. the moon and the deep-sea. Within ROBEX, the mobility of robots is a vital element for research missions due to valuable scientifice return potential from different sites as opposed to static landers. Within this context, we developed a new mobile crawler system (VIATOR, latin for traveller) and a fixed lander component for energy and data transfer (MANSIO, latin for housing/shelter). This innovative MANSIO-VIATOR system has been developed during the past 2.5 years. The caterpillar driven component is developed to conduct high resolution opitcal mapping and repeated monitoring of physical and biogeochemical parameters along transects. The system operates fully autonomously including navigational components such as camera and laser scanners, as well as marker based near-field navigation used in space technology. This new concept of data aquisition by a submarine crawler in combination with a fixed lander further opens up marine exploration possibilities.
Optical Delineation of Benthic Habitat Using an Autonomous Underwater Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moline, Mark A.; Woodruff, Dana L.; Evans, Nathan R.
To improve understanding and characterization of coastal regions, there has been an increasing emphasis on autonomous systems that can sample the ocean on relevant scales. Autonomous underwater vehicles (AUVs) with active propulsion are especially well suited for studies of the coastal ocean because they are able to provide systematic and near-synoptic spatial observations. With this capability, science users are beginning to integrate sensor suits for a broad range of specific and often novel applications. Here, the relatively mature Remote Environmental Monitoring Units (REMUS) AUV system is configured with multi-spectral radiometers to delineate benthic habitat in Sequim Bay, WA. The vehiclemore » was deployed in a grid pattern along 5 km of coastline in depths from 30 to less than 2 meters. Similar to satellite and/or aerial remote sensing, the bandwidth ratios from the downward looking radiance sensor and upward looking irradiance sensor were used to identify beds of eelgrass on sub-meter scales. Strong correlations were found between the optical reflectance signals and the geo-referenced in situ data collected with underwater video within the grid. Results demonstrate the ability of AUVs to map littoral habitats at high resolution and highlight the overall utility of the REMUS vehicle for nearshore oceanography.« less
Abyssal BEnthic Laboratory (ABEL): a novel approach for long-term investigation at abyssal depths
NASA Astrophysics Data System (ADS)
Berta, M.; Gasparoni, F.; Capobianco, M.
1995-03-01
This study assesses the feasibility of a configuration for a benthic underwater system, called ABEL (Abyssal BEnthic Laboratory), capable of operating both under controlled and autonomous modes for periods of several months to over one year at abyssal depths up to 6000 m. A network of stations, capable of different configurations, has been identified as satisfying the widest range of scientific expectations, and at the same time to address the technological challenge to increase the feasibility of scientific investigations, even when the need is not yet well specified. The overall system consists of a central Benthic Investigation Laboratory, devoted to the execution of the most complex scientific activities, with fixed Satellite Stations acting as nodes of a measuring network and a Mobile Station extending ABEL capabilities with the possibility to carry out surveys over the investigation area and interventions on the fixed stations. ABEL architecture also includes a dedicated deployment and recovery module, as well as sea-surface and land-based facilities. Such an installation constitutes the sea-floor equivalent of a meteorological or geophysical laboratory. Attention has been paid to selecting investigation tools supporting the ABEL system to carry out its mission with high operativity and minimal risk and environmental impact. This demands technologies to enable presence and operation at abyssal depths for the required period of time. Presence can be guaranteed by proper choice of power supply and communication systems. Operations require visual and manipulative capabilities, as well as deployment and retrieval capabilities. Advanced control system architectures must be considered, along with knowledge based approaches, to comply with the requirements for autonomous control. The results of this investigation demonstrate the feasibility of the ABEL concept and the pre-dimensioning of its main components.
Australian sea-floor survey data, with images and expert annotations.
Bewley, Michael; Friedman, Ariell; Ferrari, Renata; Hill, Nicole; Hovey, Renae; Barrett, Neville; Marzinelli, Ezequiel M; Pizarro, Oscar; Figueira, Will; Meyer, Lisa; Babcock, Russ; Bellchambers, Lynda; Byrne, Maria; Williams, Stefan B
2015-01-01
This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research.
Australian sea-floor survey data, with images and expert annotations
Bewley, Michael; Friedman, Ariell; Ferrari, Renata; Hill, Nicole; Hovey, Renae; Barrett, Neville; Pizarro, Oscar; Figueira, Will; Meyer, Lisa; Babcock, Russ; Bellchambers, Lynda; Byrne, Maria; Williams, Stefan B.
2015-01-01
This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research. PMID:26528396
Australian sea-floor survey data, with images and expert annotations
NASA Astrophysics Data System (ADS)
Bewley, Michael; Friedman, Ariell; Ferrari, Renata; Hill, Nicole; Hovey, Renae; Barrett, Neville; Pizarro, Oscar; Figueira, Will; Meyer, Lisa; Babcock, Russ; Bellchambers, Lynda; Byrne, Maria; Williams, Stefan B.
2015-10-01
This Australian benthic data set (BENTHOZ-2015) consists of an expert-annotated set of georeferenced benthic images and associated sensor data, captured by an autonomous underwater vehicle (AUV) around Australia. This type of data is of interest to marine scientists studying benthic habitats and organisms. AUVs collect georeferenced images over an area with consistent illumination and altitude, and make it possible to generate broad scale, photo-realistic 3D maps. Marine scientists then typically spend several minutes on each of thousands of images, labeling substratum type and biota at a subset of points. Labels from four Australian research groups were combined using the CATAMI classification scheme, a hierarchical classification scheme based on taxonomy and morphology for scoring marine imagery. This data set consists of 407,968 expert labeled points from around the Australian coast, with associated images, geolocation and other sensor data. The robotic surveys that collected this data form part of Australia's Integrated Marine Observing System (IMOS) ongoing benthic monitoring program. There is reuse potential in marine science, robotics, and computer vision research.
Best Practices for In-Situ Sediment-Water Incubations with Benthic Landers
NASA Astrophysics Data System (ADS)
Tengberg, Anders; Kononets, Mikhail; Hall, Per; Nilsson, Madeleine; Ekeroth, Nils
2017-04-01
Biological, chemical, physical and geological processes that take place at the seafloor are crucial in influencing and regulating many aquatic environments. One method to estimate exchange rates, fluxes, between the sediment and the overlying water is in-situ sediment-water incubations using autonomous chamber landers. As for all field sampling and measurements best practices methods are needed to obtain high quality data. With experiences form many years usage of the Gothenburg autonomous bottom lander systems this presentation will describe some of the experimental work that has been done with focus on quality control and data evaluation methods.
NASA Astrophysics Data System (ADS)
Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.
2014-12-01
Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.
NASA Astrophysics Data System (ADS)
Armstrong, Roy A.; Singh, Hanumant
2006-09-01
Optical imaging of coral reefs and other benthic communities present below one attenuation depth, the limit of effective airborne and satellite remote sensing, requires the use of in situ platforms such as autonomous underwater vehicles (AUVs). The Seabed AUV, which was designed for high-resolution underwater optical and acoustic imaging, was used to characterize several deep insular shelf reefs of Puerto Rico and the US Virgin Islands using digital imagery. The digital photo transects obtained by the Seabed AUV provided quantitative data on living coral, sponge, gorgonian, and macroalgal cover as well as coral species richness and diversity. Rugosity, an index of structural complexity, was derived from the pencil-beam acoustic data. The AUV benthic assessments could provide the required information for selecting unique areas of high coral cover, biodiversity and structural complexity for habitat protection and ecosystem-based management. Data from Seabed sensors and related imaging technologies are being used to conduct multi-beam sonar surveys, 3-D image reconstruction from a single camera, photo mosaicking, image based navigation, and multi-sensor fusion of acoustic and optical data.
Large-scale deep learning for robotically gathered imagery for science
NASA Astrophysics Data System (ADS)
Skinner, K.; Johnson-Roberson, M.; Li, J.; Iscar, E.
2016-12-01
With the explosion of computing power, the intelligence and capability of mobile robotics has dramatically increased over the last two decades. Today, we can deploy autonomous robots to achieve observations in a variety of environments ripe for scientific exploration. These platforms are capable of gathering a volume of data previously unimaginable. Additionally, optical cameras, driven by mobile phones and consumer photography, have rapidly improved in size, power consumption, and quality making their deployment cheaper and easier. Finally, in parallel we have seen the rise of large-scale machine learning approaches, particularly deep neural networks (DNNs), increasing the quality of the semantic understanding that can be automatically extracted from optical imagery. In concert this enables new science using a combination of machine learning and robotics. This work will discuss the application of new low-cost high-performance computing approaches and the associated software frameworks to enable scientists to rapidly extract useful science data from millions of robotically gathered images. The automated analysis of imagery on this scale opens up new avenues of inquiry unavailable using more traditional manual or semi-automated approaches. We will use a large archive of millions of benthic images gathered with an autonomous underwater vehicle to demonstrate how these tools enable new scientific questions to be posed.
NASA Astrophysics Data System (ADS)
Glickson, D.; Pomponi, S. A.
2016-02-01
The Cooperative Institute for Ocean Exploration, Research, and Technology (CIOERT) serves NOAA priorities in three theme areas: exploring the eastern U.S. continental shelf, improving the understanding of coral and sponge ecosystems, and developing advanced underwater technologies. CIOERT focuses on the exploration and research of ecosystems and habitats along frontier regions of the eastern U.S. continental shelf that are of economic, scientific, or cultural importance or of natural hazards concern. One particular focus is supporting ocean exploration and research through the use of advanced underwater technologies and techniques in order to improve the understanding of vulnerable deep and shallow coral and sponge ecosystems. CIOERT expands the scope and efficiency of exploration and research by developing, testing, and applying new and/or innovative uses of existing technologies to ocean exploration and research activities. In addition, CIOERT is dedicated to expanding ocean literacy and building NOAA's technical and scientific workforce through hands-on, at-sea experiences. A recent CIOERT cruise characterized Gulf of Mexico mesophotic and deepwater reef ecosystems off the west Florida shelf, targeting northern Pulley Ridge. This project created and ground-truthed new sonar maps made with an autonomous underwater vehicle; conducted video and photographic transects of benthic habitat and fish using a remotely operated vehicle; and examined the connectivity of fauna from shallow to deep reef ecosystems. CIOERT was established in 2009 by FAU-Harbor Branch Oceanographic Institute, with University of North Carolina, Wilmington, SRI International, and the University of Miami. The primary NOAA partner is the Office of Oceanic and Atmospheric Research's Office of Ocean Exploration and Research.
NASA Astrophysics Data System (ADS)
Glickson, D.; Pomponi, S.
2015-12-01
The Cooperative Institute for Ocean Exploration, Research, and Technology (CIOERT) serves NOAA priorities in three theme areas: exploring the eastern U.S. continental shelf, improving the understanding of coral and sponge ecosystems, and developing advanced underwater technologies. CIOERT focuses on the exploration and research of ecosystems and habitats along frontier regions of the eastern U.S. continental shelf that are of economic, scientific, or cultural importance or of natural hazards concern. One particular focus is supporting ocean exploration and research through the use of advanced underwater technologies and techniques in order to improve the understanding of vulnerable deep and shallow coral and sponge ecosystems. CIOERT expands the scope and efficiency of exploration and research by developing, testing, and applying new and/or innovative uses of existing technologies to ocean exploration and research activities. In addition, CIOERT is dedicated to expanding ocean literacy and building NOAA's technical and scientific workforce through hands-on, at-sea experiences. A recent CIOERT cruise characterized Gulf of Mexico mesophotic and deepwater reef ecosystems off the west Florida shelf, targeting northern Pulley Ridge. This project created and ground-truthed new sonar maps made with an autonomous underwater vehicle; conducted video and photographic transects of benthic habitat and fish using a remotely operated vehicle; and examined the connectivity of fauna from shallow to deep reef ecosystems. CIOERT was established in 2009 by FAU-Harbor Branch Oceanographic Institute, with University of North Carolina, Wilmington, SRI International, and the University of Miami. The primary NOAA partner is the Office of Oceanic and Atmospheric Research's Office of Ocean Exploration and Research.
NASA Astrophysics Data System (ADS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-03-01
Addressable Reconfigurable Technology (ART), conceived for future ANTS (Autonomous Nanotechnology Swarm) Architectures, is now implemented as Autonomous Lunar Investigator (ALI) rovers, a mission concept allowing autonomous exploration of the lunar farside and poles within 10 years.
Asteroid Exploration with Autonomic Systems
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike
2004-01-01
NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.
Sediment Profile Imagery as a Toll to Assist Benthic Assessment and Benthic Habitat Mapping
The U.S. EPA Atlantic Ecology Division and the Southern California Coastal Water Research Project (SCCWRP) collaborated in 2008 to explore the use of sediment profile imagery as a tool to assist environmental management, capturing multiple images at each of over 100 stations at a...
Environmental characteristics and benthic invertebrate assemblages in Colorado mountain lakes
LaFrancois, B.M.; Carlisle, D.M.; Nydick, K.R.; Johnson, B.M.; Baron, Jill S.
2003-01-01
Twenty-two high-elevation lakes (>3000 m) in Rocky Mountain National Park and Indian Peaks Wilderness Area, Colorado, were surveyed during summer 1998 to explore relationships among benthic invertebrates, water chemistry (particularly nitrate concentrations), and other environmental variables. Water samples were collected from the deepest portion of each lake and analyzed for ions and other water chemistry parameters. Benthic invertebrates were collected from the littoral zone using both a sweep net and Hess sampler. Physical and geographical measurements were derived from maps. Relationships among benthic invertebrate assemblages and environmental variables were examined using canonical correspondence analysis, and the importance of sampling methodology and taxonomie resolution on these relationships was evaluated. Choice of sampling methodology strongly influenced the outcome of statistical analyses, whereas taxonomie resolution did not. Presence/absence of benthic invertebrate taxa among the study lakes was best explained by elevation and presence of fish. Relative abundance and density of benthic invertebrate taxa were more strongly influenced by sampling date and water chemistry. Nitrate (NO₃⁻) concentration, potentially on the rise due to regional nitrogen deposition, was unrelated to benthic invertebrate distribution regardless of sampling method or taxonomie resolution.
Food and disturbance effects on Arctic benthic biomass and production size spectra
NASA Astrophysics Data System (ADS)
Górska, Barbara; Włodarska-Kowalczuk, Maria
2017-03-01
Body size is a fundamental biological unit that is closely coupled to key ecological properties and processes. At the community level, changes in size distributions may influence energy transfer pathways in benthic food webs and ecosystem carbon cycling; nevertheless they remain poorly explored in benthic systems, particularly in the polar regions. Here, we present the first assessment of the patterns of benthic biomass size spectra in Arctic coastal sediments and explore the effects of glacial disturbance and food availability on the partitioning of biomass and secondary productivity among size-defined components of benthic communities. The samples were collected in two Arctic fjords off west Spitsbergen (76 and 79°N), at 6 stations that represent three regimes of varying food availability (indicated by chlorophyll a concentration in the sediments) and glacial sedimentation disturbance intensity (indicated by sediment accumulation rates). The organisms were measured using image analysis to assess the biovolume, biomass and the annual production of each individual. The shape of benthic biomass size spectra at most stations was bimodal, with the location of a trough and peaks similar to those previously reported in lower latitudes. In undisturbed sediments macrofauna comprised 89% of the total benthic biomass and 56% of the total production. The lower availability of food resources seemed to suppress the biomass and secondary production across the whole size spectra (a 6-fold decrease in biomass and a 4-fold decrease in production in total) rather than reshape the spectrum. At locations where poor nutritional conditions were coupled with disturbance, the biomass was strongly reduced in selected macrofaunal size classes (class 10 and 11), while meiofaunal biomass and production were much higher, most likely due to a release from macrofaunal predation and competition pressure. As a result, the partitioning of benthic biomass and production shifted towards meiofauna (39% of biomass and 83% of production), which took over the benthic metazoan key-player role in terms of processing organic matter in sediments. Macrofaunal nematodes composed a considerable portion of the benthic community in terms of biomass (up to 9%) and production (up to 12%), but only in undisturbed sediments with high organic matter content. Our study indicates that food availability and disturbance controls the total bulk and partitioning of biomass and production among the size classes in Arctic benthic communities.
Simões, Nuno; Pech, Daniel
2018-01-01
Abstract Background Alacranes Reef was declared as a National Marine Park in 1994. Since then, many efforts have been made to inventory its biodiversity. However, groups such as amphipods have been underestimated or not considered when benthic invertebrates were inventoried. Here we present a dataset that contributes to the knowledge of benthic amphipods (Crustacea, Peracarida) from the inner lagoon habitats from the Alacranes Reef National Park, the largest coral reef ecosystem in the Gulf of Mexico. The dataset contains information on records collected from 2009 to 2011. Data are available through Global Biodiversity Information Facility (GBIF). New information A total of 110 amphipod species distributed in 93 nominal species and 17 generic species, belonging to 71 genera, 33 families and three suborders are presented here. This information represents the first online dataset of amphipods from the Alacranes Reef National Park. The biological material is currently deposited in the crustacean collection from the regional unit of the National Autonomous University of Mexico located at Sisal, Yucatan, Mexico (UAS-Sisal). The biological material includes 588 data records with a total abundance of 6,551 organisms. The species inventory represents, until now, the richest fauna of benthic amphipods registered from any discrete coral reef ecosystem in Mexico. PMID:29416428
Paz-Ríos, Carlos E; Simões, Nuno; Pech, Daniel
2018-01-01
Alacranes Reef was declared as a National Marine Park in 1994. Since then, many efforts have been made to inventory its biodiversity. However, groups such as amphipods have been underestimated or not considered when benthic invertebrates were inventoried. Here we present a dataset that contributes to the knowledge of benthic amphipods (Crustacea, Peracarida) from the inner lagoon habitats from the Alacranes Reef National Park, the largest coral reef ecosystem in the Gulf of Mexico. The dataset contains information on records collected from 2009 to 2011. Data are available through Global Biodiversity Information Facility (GBIF). A total of 110 amphipod species distributed in 93 nominal species and 17 generic species, belonging to 71 genera, 33 families and three suborders are presented here. This information represents the first online dataset of amphipods from the Alacranes Reef National Park. The biological material is currently deposited in the crustacean collection from the regional unit of the National Autonomous University of Mexico located at Sisal, Yucatan, Mexico (UAS-Sisal). The biological material includes 588 data records with a total abundance of 6,551 organisms. The species inventory represents, until now, the richest fauna of benthic amphipods registered from any discrete coral reef ecosystem in Mexico.
Simultaneous Deep-Ocean Operations With Autonomous and Remotely Operated Vehicles
NASA Astrophysics Data System (ADS)
Yoerger, D. R.; Bowen, A. D.; Bradley, A. M.
2005-12-01
The complimentary capabilities of autonomous and remotely vehicles can be obtained more efficiently if two or more vehicles can be deployed simultaneously from a single vessel. Simultaneous operations make better use of ship time and personnel. However, such operations require specific technical capabilities and careful scheduling. We recently demonstrated several key capabilities on the VISIONS05 cruise to the Juan de Fuca Ridge, where the Autonomous Benthic Explorer (ABE) and the ROV Jason 2 were operated simultaneously. The cruise featured complex ROV operations ranging from servicing seismic instruments, water sampling, drilling, and installation of in-situ experiments. The AUV provided detailed near-bottom bathymetry of the Endeavour segment while concurrently providing a cable route survey for a primary Canadian Neptune node. To meet these goals, we had to operate both vehicles at the same time. In previous efforts, we have operated ABE in a coordinated fashion with either the submersible Alvin or Jason 2. But the vehicles were either deployed sequentially or they were operated in separate acoustic transponder nets with the restriction that the vessel recover the AUV within a reasonable period after it reached the surface to avoid loss of the AUV. During the VISIONS05 cruise, we operated both vehicles at the same time and demonstrated several key capabilities to make simultaneous operations more efficient. These include the ability of the AUV to anchor to the seafloor after its batteries were expended or if a fault occurred, allowing complex ROV operations to run to completion without the constraint of retrieving the AUV at a specific time. The anchoring system allowed the vehicle to rest near the seafloor on a short mooring in a low power state. The AUV returned to the surface either through an acoustic command from the vessel or when a preassigned time was reached. We also tested an experimental acoustic beacon system that can allow multiple vehicles to determine their position without interfering with each other.
Sustainable and Autonomic Space Exploration Missions
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter
2006-01-01
Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.
Engineering Ultimate Self-Protection in Autonomic Agents for Space Exploration Missions
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2005-01-01
NASA's Exploration Initiative (EI) will push space exploration missions to the limit. Future missions will be required to be self-managing as well as self-directed, in order to meet the challenges of human and robotic space exploration. We discuss security and self protection in autonomic agent based-systems, and propose the ultimate self-protection mechanism for such systems-self-destruction. Like other metaphors in Autonomic Computing, this is inspired by biological systems, and is the analog of biological apoptosis. Finally, we discus the role it might play in future NASA space exploration missions.
Characterizing the role benthos plays in large coastal seas and estuaries: A modular approach
Tenore, K.R.; Zajac, R.N.; Terwin, J.; Andrade, F.; Blanton, J.; Boynton, W.; Carey, D.; Diaz, R.; Holland, Austin F.; Lopez-Jamar, E.; Montagna, P.; Nichols, F.; Rosenberg, R.; Queiroga, H.; Sprung, M.; Whitlatch, R.B.
2006-01-01
Ecologists studying coastal and estuarine benthic communities have long taken a macroecological view, by relating benthic community patterns to environmental factors across several spatial scales. Although many general ecological patterns have been established, often a significant amount of the spatial and temporal variation in soft-sediment communities within and among systems remains unexplained. Here we propose a framework that may aid in unraveling the complex influence of environmental factors associated with the different components of coastal systems (i.e. the terrestrial and benthic landscapes, and the hydrological seascape) on benthic communities, and use this information to assess the role played by benthos in coastal ecosystems. A primary component of the approach is the recognition of system modules (e.g. marshes, dendritic systems, tidal rivers, enclosed basins, open bays, lagoons). The modules may differentially interact with key forcing functions (e.g. temperature, salinity, currents) that influence system processes and in turn benthic responses and functions. Modules may also constrain benthic characteristics and related processes within certain ecological boundaries and help explain their overall spatio-temporal variation. We present an example of how benthic community characteristics are related to the modular structure of 14 coastal seas and estuaries, and show that benthic functional group composition is significantly related to the modular structure of these systems. We also propose a framework for exploring the role of benthic communities in coastal systems using this modular approach and offer predictions of how benthic communities may vary depending on the modular composition and characteristics of a coastal system. ?? 2006 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
National Oceanic and Atmospheric Administration (DOC), Rockville, MD.
This activity introduces students to major groups of invertebrates that have been found in other polar ocean expeditions and acquaints them with the feeding habits of these animals as a basis for making inferences about benthic communities and their connection to other components of the Artic Ocean ecosystem. The activity provides learning…
Challenges in verification and validation of autonomous systems for space exploration
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Jonsson, Ari
2005-01-01
Space exploration applications offer a unique opportunity for the development and deployment of autonomous systems, due to limited communications, large distances, and great expense of direct operation. At the same time, the risk and cost of space missions leads to reluctance to taking on new, complex and difficult-to-understand technology. A key issue in addressing these concerns is the validation of autonomous systems. In recent years, higher-level autonomous systems have been applied in space applications. In this presentation, we will highlight those autonomous systems, and discuss issues in validating these systems. We will then look to future demands on validating autonomous systems for space, identify promising technologies and open issues.
NASA Astrophysics Data System (ADS)
Qin, M.; Wan, X.; Shao, Y. Y.; Li, S. Y.
2018-04-01
Vision-based navigation has become an attractive solution for autonomous navigation for planetary exploration. This paper presents our work of designing and building an autonomous vision-based GPS-denied unmanned vehicle and developing an ARFM (Adaptive Robust Feature Matching) based VO (Visual Odometry) software for its autonomous navigation. The hardware system is mainly composed of binocular stereo camera, a pan-and tilt, a master machine, a tracked chassis. And the ARFM-based VO software system contains four modules: camera calibration, ARFM-based 3D reconstruction, position and attitude calculation, BA (Bundle Adjustment) modules. Two VO experiments were carried out using both outdoor images from open dataset and indoor images captured by our vehicle, the results demonstrate that our vision-based unmanned vehicle is able to achieve autonomous localization and has the potential for future planetary exploration.
ERIC Educational Resources Information Center
Smeekens, I.; Didden, R.; Verhoeven, E. W. M.
2015-01-01
Several studies indicate that autonomic and endocrine activity may be related to social functioning in individuals with autism spectrum disorder (ASD), although the number of studies in adults is limited. The present study explored the relationship of autonomic and endocrine activity with social functioning in young adult males with ASD compared…
Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie
2014-12-01
Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.
Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2014-01-01
Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.
Music and Autonomic Nervous System (Dys)function
Ellis, Robert J.; Thayer, Julian F.
2010-01-01
Despite a wealth of evidence for the involvement of the autonomic nervous system (ANS) in health and disease and the ability of music to affect ANS activity, few studies have systematically explored the therapeutic effects of music on ANS dysfunction. Furthermore, when ANS activity is quantified and analyzed, it is usually from a point of convenience rather than from an understanding of its physiological basis. After a review of the experimental and therapeutic literatures exploring music and the ANS, a “Neurovisceral Integration” perspective on the interplay between the central and autonomic nervous systems is introduced, and the associated implications for physiological, emotional, and cognitive health are explored. The construct of heart rate variability is discussed both as an example of this complex interplay and as a useful metric for exploring the sometimes subtle effect of music on autonomic response. Suggestions for future investigations using musical interventions are offered based on this integrative account. PMID:21197136
An Integrated Study of the Degadation of a Reefscape in the Florida Keys
NASA Astrophysics Data System (ADS)
Zawada, D. G.; Yates, K. K.
2016-02-01
Worldwide, many coral reefs are contending with a number of stressors driven by local-, regional-, and global-scale processes. Examples include bleaching, disease, overfishing, acidification, ocean warming, and sea level rise. Understanding the impact of these stressors requires a better understanding of the interplay between various reef processes over a range of spatial scales and from the perspective of different scientific disciplines. For an 18-month period, we applied a multidisciplinary, reefscape-characterization strategy to study a portion of the Florida Reef Tract. Our approach coupled biogeochemical, sedimentological, and geophysical observations over a continuum of spatial scales (from mm to km) through co-located, autonomous instrumentation and synchronized in situ sampling. Specifically, we measured carbonate system parameters; acquired current profiles at 4 reef locations; and characterized reef morphology, benthic cover, and sediment production. The synthesis of these data is enabling us to explore and explain linkages between geochemical and physical processes related to issues of reef accretion/erosion, habitat distributions, and environmental conditions. This presentation focuses on the impact of these processes on carbonate accretion and erosion at our study site and the associated coastal vulnerability due to the degradation of these natural, protective barriers.
The EO-1 autonomous sciencecraft and prospects for future autonomous space exploration
NASA Technical Reports Server (NTRS)
Chien, Steve A.
2005-01-01
This paper describes the revolutionary new science enabled by onboard autonomy as well as impact on extended missions such as the Mars Exploration Rovers and Mars Odyssey as well as future missions in development.
First Image from a Mars Rover Choosing a Target
2010-03-23
This true-color image is the result of the first observation of a target selected autonomously by NASA Mars Exploration Rover Opportunity using newly developed and uploaded software named Autonomous Exploration for Gathering Increased Science, or AEGIS.
Statham, P J; Connelly, D P; German, C R; Brand, T; Overnell, J O; Bulukin, E; Millard, N; McPhail, S; Pebody, M; Perrett, J; Squire, M; Stevenson, P; Webb, A
2005-12-15
Loch Etive is a fjordic system on the west coast of Scotland. The deep waters of the upper basin are periodically isolated, and during these periods oxygen is lost through benthic respiration and concentrations of dissolved manganese increase. In April 2000 the autonomous underwater vehicle (AUV) Autosub was fitted with an in situ dissolved manganese analyzer and was used to study the spatial variability of this element together with oxygen, salinity, and temperature throughout the basin. Six along-loch transects were completed at either constant height above the seafloor or at constant depth below the surface. The ca. 4000 in situ 10-s-average dissolved Mn (Mnd) data points obtained provide a new quasi-synoptic and highly detailed view of the distribution of manganese in this fjordic environment not possible using conventional (water bottle) sampling. There is substantial variability in concentrations (<25 to >600 nM) and distributions of Mnd. Surface waters are characteristically low in Mnd reflecting mixing of riverine and marine end-member waters, both of which are low in Mnd. The deeper waters are enriched in Mnd, and as the water column always contains some oxygen, this must reflect primarily benthic inputs of reduced dissolved Mn. However, this enrichment of Mnd is spatially very variable, presumably as a result of variability in release of Mn coupled with mixing of water in the loch and removal processes. This work demonstrates how AUVs coupled with chemical sensors can reveal substantial small-scale variability of distributions of chemical species in coastal environments that would not be resolved by conventional sampling approaches. Such information is essential if we are to improve our understanding of the nature and significance of the underlying processes leading to this variability.
Advances in Autonomous Systems for Missions of Space Exploration
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.
New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.
In Situ Boundary Layer Coral Metabolism in the Atlantic Ocean Acidification Test Bed
NASA Astrophysics Data System (ADS)
McGillis, Wade
2013-04-01
and Chris Langdon, Brice Loose, Dwight Gledhill, Diana Hsueh, Derek Manzello, Ian Enochs, Ryan Moyer We present net ecosystem productivity (nep) and net ecosystem calcification (nec) in coral and seagrass ecosystems using the boundary layer gradient flux technique (CROSS). Coastal anthropogenic inputs and changes in global ocean chemistry in response to rising levels of atmospheric carbon dioxide has emerged in recent years as a topic of considerable concern. Coral reefs are particularly vulnerable from eroded environmental conditions including ocean acidification and water pollution. The Atlantic Ocean Acidification Testbed (AOAT) project monitors metabolism to ascertain the continuing health of coral reef ecosystems. The CROSS boundary layer nep/nec approach is one component of this diagnostic program. Certification of CROSS as an operational monitoring tool is underway in the AOAT. CROSS inspects a benthic community and measures productivity/respiration and calcification/dissolution over an area of 10 square meters. Being a boundary layer tool, advection and complex mesoscale flows are not a factor or concern and CROSS is autonomous and can be used at deep benthic sites. The interrogation area is not enclosed therefore exposed to ambient light, flow, and nutrient levels. CROSS is easy to deploy, unambiguous, and affordable. Repeated measurements have been made from 2011-2012 in reefal systems in La Parguera Puerto Rico and the Florida Keys, USA. Diurnal, seasonal and regional metabolism will be compared and discussed. The ability to accurately probe benthic ecosystems provides a powerful management and research tool to policy makers and researchers.
Variability in daily pH scales with coral reef accretion and community structure
NASA Astrophysics Data System (ADS)
Price, N.; Martz, T.; Brainard, R. E.; Smith, J.
2011-12-01
Little is known about natural variability in pH in coastal waters and how resident organisms respond to current nearshore seawater conditions. We used autonomous sensors (SeaFETs) to record temperature and, for the first time, pH with high temporal (hourly observations; 7 months of sampling) resolution on the reef benthos (5-10m depth) at several islands (Kingman, Palmyra and Jarvis) within the newly designated Pacific Remote Island Areas Marine National Monument (PRIMNM) in the northern Line Islands; these islands are uninhabited and lack potentially confounding local impacts (e.g. pollution and overfishing). Recorded benthic pH values were compared with regional means and minimum thresholds based on seasonal amplitude estimated from surrounding open-ocean climatological data, which represent seawater chemistry values in the absence of feedback from the reef. Each SeaFET sensor was co-located with replicate Calcification/Acidification Units (CAUs) designed to quantify species abundances and net community calcification rates so we could determine which, if any, metrics of natural variability in benthic pH and temperature were related to community development and reef accretion rates. The observed range in daily pH encompassed maximums reported from the last century (8.104 in the early evening) to minimums approaching projected levels within the next 100 yrs (7.824 at dawn) for pelagic waters. Net reef calcification rates, measured as calcium carbonate accretion on CAUs, varied within and among islands and were comparable with rates measured from the Pacific and Caribbean using chemistry-based approaches. Benthic species assemblages on the CAUs were differentiated by the presence of calcifying and fleshy taxa (CAP analysis, mean allocation success 80%, δ2 = 0.886, P = <0.001). In general, accretion rates were higher at sites that had a greater number of hours at high pH values each day. Where daily pH failed to exceed climatological seasonal minimum thresholds, net accretion was slower and fleshy, non-calcifying benthic organisms dominated. Natural variation in benthic pH offers a unique opportunity to study ecological consequences of likely future ocean chemistry.
2012-01-01
Background The marine environment is comprised of numerous divergent organisms living under similar selective pressures, often resulting in the evolution of convergent structures such as the fusiform body shape of pelagic squids, fishes, and some marine mammals. However, little is known about the frequency of, and circumstances leading to, convergent evolution in the open ocean. Here, we present a comparative study of the molluscan class Cephalopoda, a marine group known to occupy habitats from the intertidal to the deep sea. Several lineages bear features that may coincide with a benthic or pelagic existence, making this a valuable group for testing hypotheses of correlated evolution. To test for convergence and correlation, we generate the most taxonomically comprehensive multi-gene phylogeny of cephalopods to date. We then create a character matrix of habitat type and morphological characters, which we use to infer ancestral character states and test for correlation between habitat and morphology. Results Our study utilizes a taxonomically well-sampled phylogeny to show convergent evolution in all six morphological characters we analyzed. Three of these characters also correlate with habitat. The presence of an autogenic photophore (those relying upon autonomous enzymatic light reactions) is correlated with a pelagic habitat, while the cornea and accessory nidamental gland correlate with a benthic lifestyle. Here, we present the first statistical tests for correlation between convergent traits and habitat in cephalopods to better understand the evolutionary history of characters that are adaptive in benthic or pelagic environments, respectively. Discussion Our study supports the hypothesis that habitat has influenced convergent evolution in the marine environment: benthic organisms tend to exhibit similar characteristics that confer protection from invasion by other benthic taxa, while pelagic organisms possess features that facilitate crypsis and communication in an environment lacking physical refuges. Features that have originated multiple times in distantly related lineages are likely adaptive for the organisms inhabiting a particular environment: studying the frequency and evolutionary history of such convergent characters can increase understanding of the underlying forces driving ecological and evolutionary transitions in the marine environment. PMID:22839506
Ascending Stairway Modeling: A First Step Toward Autonomous Multi-Floor Exploration
2012-10-01
Many robotics platforms are capable of ascending stairways, but all existing approaches for autonomous stair climbing use stairway detection as a...the rich potential of an autonomous ground robot that can climb stairs while exploring a multi-floor building. Our proposed solution to this problem is...over several steps. However, many ground robots are not capable of traversing tight spiral stairs , and so we do not focus on these types. The stairway is
Semi-autonomous exploration of multi-floor buildings with a legged robot
NASA Astrophysics Data System (ADS)
Wenger, Garrett J.; Johnson, Aaron M.; Taylor, Camillo J.; Koditschek, Daniel E.
2015-05-01
This paper presents preliminary results of a semi-autonomous building exploration behavior using the hexapedal robot RHex. Stairwells are used in virtually all multi-floor buildings, and so in order for a mobile robot to effectively explore, map, clear, monitor, or patrol such buildings it must be able to ascend and descend stairwells. However most conventional mobile robots based on a wheeled platform are unable to traverse stairwells, motivating use of the more mobile legged machine. This semi-autonomous behavior uses a human driver to provide steering input to the robot, as would be the case in, e.g., a tele-operated building exploration mission. The gait selection and transitions between the walking and stair climbing gaits are entirely autonomous. This implementation uses an RGBD camera for stair acquisition, which offers several advantages over a previously documented detector based on a laser range finder, including significantly reduced acquisition time. The sensor package used here also allows for considerable expansion of this behavior. For example, complete automation of the building exploration task driven by a mapping algorithm and higher level planner is presently under development.
Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James; Raitano, Paul; McNelis, Anne
2016-01-01
As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.
NASA Astrophysics Data System (ADS)
Sharuga, S. M.; Benfield, M. C.
2016-02-01
The Deepwater Horizon oil spill in 2010 created a need for more thorough studies of deep-sea benthic biota, especially in soft-sediment areas of the Northern Gulf of Mexico (GoM). These benthic environments are increasingly vulnerable as demand and exploitation of resources in these areas grow. A 15°, 250 m long radial transect survey design was developed for use with industrial remotely operated vehicles (ROVs) to quantify benthic megafaunal communities in the vicinity of the MC252 well. Further, a customized database system was developed to explore natural and anthropogenic factors potentially responsible for influencing benthic megafaunal characteristics in this area. Biotic and abiotic characteristics were extracted from ROV videos collected one year after the Deepwater Horizon spill at seven study sites ranging from 2-39 km away from MC252, and located at depths from 850-1500 m. Seafloor environments differed amongst the sites, with differences found to be related to location and depth. Benthic megafauna in ten taxonomic categories were evaluated in order to compare benthic community characteristics, including density and diversity. Overall, community composition was found to be primarily related to depth and, to a lesser degree, site location. Results from this study suggest that depth, location, and the abiotic environment (ex. seafloor features, including anthropogenic disturbance) play important roles in the abundances and diversity of deep-sea benthic megafauna in the Northern GoM and should be considered when conducting environmental studies. This study demonstrates the utility of industrial-based deep-sea imaging platforms as a readily accessible option for collecting valuable information on deep-sea environments. These platforms exhibit excellent potential for use in determining baseline data and evaluating ecosystem changes and/or recovery.
Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob
2008-09-01
Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.
Potential impact of global climate change on benthic deep-sea microbes.
Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio
2017-12-15
Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wu, Bin; Song, Jinming; Li, Xuegang
2014-10-15
The objective of the present study was to examine the relationships between benthic community structure and toxic metals using bivariate/multivariate techniques at 17 sediment locations in Laizhou Bay, North China. Sediment chemical data were evaluated against geochemical background values and sediment quality guidelines, which identified Cu and As as contaminants of concern with a moderate potential for adverse effects. Benthic community data were subjected to non-metric multidimensional scaling, which generated four groups of stations. Spearman rank correlation was then employed to explore the relationships between the major axes of heavy metals and benthic community structure. However, weak and insignificant correlations were found between these axes, indicating that contaminants of concern may not be the primary explanatory factors. Polychaeta were abundant in southern Laizhou Bay, serving as a warning regarding the health status of the ecosystem. Integrated sediment quality assessment showed sediments from northern central locations were impaired, displaying less diverse benthos and higher metal contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.
ANTS: Exploring the Solar System with an Autonomous Nanotechnology Swarm
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S.; Rilee, M.; Truszkowski, W.; Marr, G.
2002-01-01
ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, calls for a large (1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft to prospect the asteroid belt. Additional information is contained in the original extended abstract.
Expanded Perspectives on Autonomous Learners
ERIC Educational Resources Information Center
Oxford, Rebecca L.
2015-01-01
This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…
Autonomous flight control for a Titan exploration aerobot
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Montgomery, James F.; Hall, Jeffrey L.; Joshi, Sanjay S.; Payne, Jeffrey; Bergh, Charles F.
2005-01-01
Robotic lighter-than-air vehicles, or aerobots, provide strategic platform for the exploration of planets and moons with an atmosphere, such as Venus, Mars, Titan and the gas giants. In this paper, we discuss steps towards the development of an autonomy architecture, and concentrate on the autonomous fight control subsystem.
GOATS 2008 Autonomous, Adaptive Multistatic Acoustic Sensing
2008-09-30
To develop net-centric, autonomous underwater vehicle sensing concepts for littoral MCM and ASW, exploiting collaborative and environmentally...unlimited 13. SUPPLEMENTARY NOTES code 1 only 14. ABSTRACT To develop net-centric, autonomous underwater vehicle sensing concepts for littoral MCM and...of autonomous underwater vehicle networks as platforms for new sonar concepts exploring the full 3-D acoustic environment of shallow water (SW) and
NASA Astrophysics Data System (ADS)
Price, N.; Rohwer, F. L.; Stuart, S. A.; Andersson, A.; Smith, J.
2012-12-01
The metabolic activity of resident organisms can cause spatio-temporal variability in carbonate chemistry within the benthic boundary layer, and thus potentially buffer the global impacts of ocean acidification. But, little is known about the capacity for particular species assemblages to contribute to natural daily variability in carbonate chemistry. We encapsulated replicate areas (~3m2) of reef across six Northern Line Islands in the central Pacific for 24 hrs to quantify feedbacks to carbonate chemistry within the benthic boundary layer from community metabolism. Underneath each 'tent', we quantified relative abundance and biomass of each species of corals and algae. We coupled high temporal resolution time series data on the natural diurnal variability in pH, dissolved oxygen, salinity, and temperature (using autonomous sensors) with resident organisms' net community calcification and productivity rates (using change in total dissolved carbon and total alkalinity over time) to examine feedbacks from reef metabolism to boundary layer carbonate chemistry. These reefs experienced large ranges in pH (> 0.2 amplitude) each day, similar to the magnitude of 'acidification' expected over the next century. Daily benthic pH, pCO2, and aragonite saturation state (Ωaragonite) were contrasted with seasonal threshold values estimated from open ocean climatological data extrapolated at each island to determine relative inter-island feedbacks. Diurnal amplitude in pH, pCO2, and Ωaragonite at each island was dependent upon the resident species assemblage of the benthos and was particularly reliant upon the biomass, productivity, and calcification rate of Halimeda. Net primary productivity of fleshy algae (algal turfs and Lobophora spp.) predominated on degraded, inhabited islands where net community calcification was negligible. In contrast, the chemistry over reefs on 'pristine', uninhabited islands was driven largely by net calcification of calcareous algae and stony corals. Knowledge about species specific physiological rates and relative abundances of key taxa whose metabolism significantly alters carbonate chemistry may give insight to the ability for a reef to buffer against or exacerbate ocean acidification.
Intelligent systems for the autonomous exploration of Titan and Enceladus
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Kargel, Jeffrey S.; Fink, Wolfgang
2008-04-01
Future planetary exploration of the outer satellites of the Solar System will require higher levels of onboard automation, including autonomous determination of sites where the probability of significant scientific findings is highest. Generally, the level of needed automation is heavily influenced by the distance between Earth and the robotic explorer(s) (e.g. spacecraft(s), rover(s), and balloon(s)). Therefore, planning missions to the outer satellites mandates the analysis, design and integration within the mission architecture of semi- and/or completely autonomous intelligence systems. Such systems should (1) include software packages that enable fully automated and comprehensive identification, characterization, and quantification of feature information within an operational region with subsequent target prioritization and selection for close-up reexamination; and (2) integrate existing information with acquired, "in transit" spatial and temporal sensor data to automatically perform intelligent planetary reconnaissance, which includes identification of sites with the highest potential to yield significant geological and astrobiological information. In this paper we review and compare some of the available Artificial Intelligence (AI) schemes and their adaptation to the problem of designing expert systems for onboard-based, autonomous science to be performed in the course of outer satellites exploration. More specifically, the fuzzy-logic framework proposed is analyzed in some details to show the effectiveness of such a scheme when applied to the problem of designing expert systems capable of identifying and further exploring regions on Titan and/or Enceladus that have the highest potential to yield evidence for past or present life. Based on available information (e.g., Cassini data), the current knowledge and understanding of Titan and Enceladus environments is evaluated to define a path for the design of a fuzzy-based system capable of reasoning over collected data and capable of providing the inference required to autonomously optimize future outer satellites explorations.
NASA Astrophysics Data System (ADS)
Hart, Malcolm; Molina, Giulia; Smart, Christopher; Widdicombe, Claire
2017-04-01
The Western Channel Observatory was established by the Natural Environment Research Council (NERC), with Plymouth Marine Laboratory managing the two autonomous buoys that are located to the south of Plymouth in the English Channel (Stations L4 and E1): see Smyth et al. (2015). These two locations are now monitored continually and there is regular sampling of the water column and the sea floor at both locations. At Station L4, despite being in waters with a depth of 50 m, benthic foraminifera are regularly found in the surface water plankton samples. Some of these benthic foraminifera contain algal symbionts, indicating that they may be living at the time of capture. If benthic foraminifera can be entrained in the water column, while still living, then this provides a mechanism for 'migration' that is much more rapid and efficient than the rate at which protists could migrate within, or on, the sediment surface. Recolonization by foraminifera, following disturbance, could well be facilitated by this mechanism which has only rarely been reported in the literature (e.g., Murray, 1965). It is clearly limited to depths impacted by fair weather ( 30 m) or storm wave base (80 - 100 m). Data gathered during winter 2015-2016 certainly indicate that, following storm events, the larger the number of benthic foraminifera in the plankton tows and the greater their overall size. Some of the individuals being observed appear to contain sediment, indicating that they have been picked up from the sediment surface and, despite their greater weight, have still been transported into the plankton. Using data from the nearby sea area, off-shore and within Plymouth Sound, we are trying to ascertain if the recorded assemblage is from the L4 area, or whether they have been transported out from shallower-water environments, possibly assisted by increased run-off caused by heavy rainfall (associated with the storms). Clearly, re-distribution of foraminifera in the environment might make subsequent interpretations of ecology less accurate, but in the fossil record such changes could go completely undetected and lead to considerable inaccuracy in the interpretation of palaeoecology. Murray, J.W. 1965. Significance of benthic foraminiferids in plankton samples. Journal of Paleontology, 39, 156-157. Smyth, T., Atkinson, A., Widdicombe, S., Frost, M., Allen, I., Fishwick, J., Queiros, A., Sims, D. & Barange, M. 2015. The Western Channel Observatory. Progress in Oceanography, 137, 335-341.
Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations.
Yearsley, Jon M; Sigwart, Julia D
2011-01-01
Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.
Larval Transport Modeling of Deep-Sea Invertebrates Can Aid the Search for Undiscovered Populations
Yearsley, Jon M.; Sigwart, Julia D.
2011-01-01
Background Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered. Conclusions/Significance We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess. PMID:21857992
Formal Methods for Autonomic and Swarm-based Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Vanderbilt, Amy; Hinchey, Mike; Truszkowski, Walt; Rash, James
2004-01-01
Swarms of intelligent rovers and spacecraft are being considered for a number of future NASA missions. These missions will provide MSA scientist and explorers greater flexibility and the chance to gather more science than traditional single spacecraft missions. These swarms of spacecraft are intended to operate for large periods of time without contact with the Earth. To do this, they must be highly autonomous, have autonomic properties and utilize sophisticated artificial intelligence. The Autonomous Nano Technology Swarm (ANTS) mission is an example of one of the swarm type of missions NASA is considering. This mission will explore the asteroid belt using an insect colony analogy cataloging the mass, density, morphology, and chemical composition of the asteroids, including any anomalous concentrations of specific minerals. Verifying such a system would be a huge task. This paper discusses ongoing work to develop a formal method for verifying swarm and autonomic systems.
Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan
2011-10-01
Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates.
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Zornetzer, Steve; Gage, Douglas
2005-01-01
Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.
NASA Astrophysics Data System (ADS)
Kellogg, J. P.; McDuff, R. E.; Hautala, S. L.; Stahr, F.
2010-12-01
The Main Endeavour Field (MEF) has had a split personality since it was discovered. The southern half of the field is regularly observed to be hotter and fresher than the northern half. Differences lessened after the 1999 earthquake event, but the thermal and chemical gradient remains. We examine CTD and MAVS current meter data collected during surveys, designed to intersect the rising hydrothermal plume, conducted with the Autonomous Benthic Explorer (ABE) in 2000 and 2004. By taking subsets of the data over known clusters of structures within the field, we attribute fractional contributions to the whole field heat and salt fluxes. Preliminary findings indicate that North MEF contributes ~90% and ~100% of the heat from MEF in 2000 and 2004 respectively. It is clear from this that the majority of the MEF buoyancy flux is from North MEF even though the source fluids from South MEF are estimated to be initially more buoyant than those from North MEF. Within North MEF, ~2/3 of the heat comes from the Grotto, Dante, Lobo sulfide cluster and ~1/4 from the Hulk and Crypto cluster. These data, for the intra-field spatial scales of heat and salt flux, may allow us to infer mechanisms capable of altering the porous network of the hydrothermal system.
Control of autonomous ground vehicles: a brief technical review
NASA Astrophysics Data System (ADS)
Babak, Shahian-Jahromi; Hussain, Syed A.; Karakas, Burak; Cetin, Sabri
2017-07-01
This paper presents a brief review of the developments achieved in autonomous vehicle systems technology. A concise history of autonomous driver assistance systems is presented, followed by a review of current state of the art sensor technology used in autonomous vehicles. Standard sensor fusion method that has been recently explored is discussed. Finally, advances in embedded software methodologies that define the logic between sensory information and actuation decisions are reviewed.
Oudeyer, Pierre-Yves
2017-01-01
Autonomous lifelong development and learning are fundamental capabilities of humans, differentiating them from current deep learning systems. However, other branches of artificial intelligence have designed crucial ingredients towards autonomous learning: curiosity and intrinsic motivation, social learning and natural interaction with peers, and embodiment. These mechanisms guide exploration and autonomous choice of goals, and integrating them with deep learning opens stimulating perspectives.
Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change
Cardini, Ulisse; Bednarz, Vanessa N; Foster, Rachel A; Wild, Christian
2014-01-01
Tropical coral reefs are among the most productive and diverse ecosystems, despite being surrounded by ocean waters where nutrients are in short supply. Benthic dinitrogen (N2) fixation is a significant internal source of “new” nitrogen (N) in reef ecosystems, but related information appears to be sparse. Here, we review the current state (and gaps) of knowledge on N2 fixation associated with coral reef organisms and their ecosystems. By summarizing the existing literature, we show that benthic N2 fixation is an omnipresent process in tropical reef environments. Highest N2 fixation rates are detected in reef-associated cyanobacterial mats and sea grass meadows, clearly showing the significance of these functional groups, if present, to the input of new N in reef ecosystems. Nonetheless, key benthic organisms such as hard corals also importantly contribute to benthic N2 fixation in the reef. Given the usually high coral coverage of healthy reef systems, these results indicate that benthic symbiotic associations may be more important than previously thought. In fact, mutualisms between carbon (C) and N2 fixers have likely evolved that may enable reef communities to mitigate N limitation. We then explore the potential effects of the increasing human interferences on the process of benthic reef N2 fixation via changes in diazotrophic populations, enzymatic activities, or availability of benthic substrates favorable to these microorganisms. Current knowledge indicates positive effects of ocean acidification, warming, and deoxygenation and negative effects of increased ultraviolet radiation on the amount of N fixed in coral reefs. Eutrophication may either boost or suppress N2 fixation, depending on the nutrient becoming limiting. As N2 fixation appears to play a fundamental role in nutrient-limited reef ecosystems, these assumptions need to be expanded and confirmed by future research efforts addressing the knowledge gaps identified in this review. PMID:24967086
Advancing Autonomous Operations for Deep Space Vehicles
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard K.
2014-01-01
Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.
Toward Autonomous Multi-floor Exploration: Ascending Stairway Localization and Modeling
2013-03-01
robots have traditionally been restricted to single floors of a building or outdoor areas free of abrupt elevation changes such as curbs and stairs ...solution to this problem and is motivated by the rich potential of an autonomous ground robot that can climb stairs while exploring a multi-floor...parameters of the stairways, the robot could plan a path that traverses the stairs in order to explore the frontier at other elevations that were previously
The distribution and diversity of benthic macroinvertebrate fauna in Pondicherry mangroves, India
2013-01-01
Background Species distribution, abundance and diversity of mangrove benthic macroinvertebrate fauna and the relationships to environmental conditions are important parts of understanding the structure and function of mangrove ecosystems. In this study seasonal variation in the distribution of macrobenthos and related environmental parameters were explored at four mangrove stations along the Pondicherry coast of India, from September 2008 to July 2010. Multivariate statistical analyses, including cluster analysis, principal component analysis and non-multidimensional scales plot were employed to help define trophic status, water quality and benthic characteristic at the four monitoring stations. Results Among the 528 samples collected over 168 ha of mangrove forest 76 species of benthic macroinvertebrate fauna were identified. Macrofauna were mainly composed of deposit feeders, dominated numerically by molluscs and crustaceans. Statistical analyses yielded the following descriptors of benthic macroinvertebrate fauna species distribution: densities between 140–1113 ind. m-2, dominance 0.17-0.50, diversity 1.80-2.83 bits ind-1, richness 0.47-0.74 and evenness 0.45-0.72, equitability 0.38-0.77, berger parker 0.31-0.77 and fisher alpha 2.46-5.70. Increases of species diversity and abundance were recorded during the post monsoon season at station 1 and the lowest diversity was recorded at station 2 during the monsoon season. The pollution indicator organisms Cassidula nucleus, Melampus ceylonicus, Sphaerassiminea minuta were found only at the two most polluted regions, i.e. stations 3 and 4. Benthic macroinvertebrate fauna abundances were inversely related to salinity at the four stations, Based on Bray-Curtis similarity through hierarchical clustering implemented in PAST, it was possible to define three distinct benthic assemblages at the stations. Conclusions From a different multivariate statistical analysis of the different environmental parameters regarding species diversity and abundance of benthic macroinvertebrate fauna, it was found that benthic communities are highly affected by all the environmental parameters governing the distribution and diversity variation of the macrofaunal community in Pondicherry mangroves. Salinity, dissolved oxygen levels, organic matter content, sulphide concentration were the most significant parameters. PMID:23937801
Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments
NASA Technical Reports Server (NTRS)
Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette
2015-01-01
We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.
Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)
2002-01-01
Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.
Autonomous Exploration for Gathering Increased Science
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.;
2010-01-01
The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.
NASA Technical Reports Server (NTRS)
Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.
2013-01-01
Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and raise the amount of crew time available for scientific research. The next phase of autonomous procedure development is expected to include payload science and human research investigations. Additionally, ISS International Partners have expressed interest in participating in this effort. The recently approved one-year crew expedition starting in 2015, consisting of one Russian and one U.S. Operating Segment (USOS) crewmember, will be used not only for long duration human research investigations but also for the testing of exploration operations concepts, including crew autonomy.
Autonomic Management of Space Missions. Chapter 12
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Truszkowski, Walt; Rouff, Christopher A.; Sterritt, Roy
2006-01-01
With NASA s renewed commitment to outer space exploration, greater emphasis is being placed on both human and robotic exploration. Even when humans are involved in the exploration, human tending of assets becomes cost-prohibitive or in many cases is simply not feasible. In addition, certain exploration missions will require spacecraft that will be capable of venturing where humans cannot be sent. Early space missions were operated manually from ground control centers with little or no automated operations. In the mid-l980s, the high costs of satellite operations prompted NASA, and others, to begin automating as many functions as possible. In our context, a system is autonomous if it can achieve its goals without human intervention. A number of more-or-less automated ground systems exist today, but work continues with the goal being to reduce operations costs to even lower levels. Cost reductions can be achieved in a number of areas. Ground control and spacecraft operations are two such areas where greater autonomy can reduce costs. As a consequence, autonomy is increasingly seen as a critical approach for robotic missions and for some aspects of manned missions. Although autonomy will be critical for the success of future missions (and indeed will enable certain kinds of science data gathering approaches), missions imbued with autonomy must also exhibit autonomic properties. Exploitation of autonomy alone, without emphasis on autonomic properties, will leave spacecraft vulnerable to the dangerous environments in which they must operate. Without autonomic properties, a spacecraft may be unable to recognize negative environmental effects on its components and subsystems, or may be unable to take any action to ameliorate the effects. The spacecraft, though operating autonomously, may then sustain a degradation of performance of components or subsystems, and consequently may have a reduced potential for achieving mission objectives. In extreme cases, lack of autonomic properties could leave the spacecraft unable to recover from faults. Ensuring that exploration spacecraft have autonomic properties will increase the survivability and therefore the likelihood of success of these missions. In fact, over time, as mission requirements increased demands on spacecraft capabilities and longevity, designers have gradually built more autonomicity into spacecraft. For example, a spacecraft in low-earth orbit may experience an out-of-bounds perturbation of its attitude (orientation) due to increased drag caused by increased atmospheric density at its altitude as a result of a sufficiently large solar flare. If the spacecraft was designed to recognize the excessive attitude perturbation, it could decide to protect itself by going into a safe-hold mode where its internal configuration and operation are altered to conserve power and its coarse attitude is adjusted to point its solar panels toward the Sun to maximize power generation. This is an example of a simple type of autonomic behavior that has actually occurred. Future mission concepts will be increasingly dependent on space system survivability enabled by more advanced types of autonomic behaviors
ERIC Educational Resources Information Center
Chen, Su-Ru; Chiu, Hung-Wen; Lee, Yann-Jinn; Sheen, Tzong-Chi; Jeng, Chii
2012-01-01
Child obesity is frequently associated with dysfunction of autonomic nervous system. Children in pubertal development were suggested to be vulnerable to autonomic nervous system problems such as decrease of heart rate variability from dysregulation of metabolic control. This study explored the influence of pubertal development on autonomic nervous…
ANTS: Applying A New Paradigm for Lunar and Planetary Exploration
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.
2002-01-01
ANTS (Autonomous Nano- Technology Swarm), a mission architecture consisting of a large (1000 member) swarm of picoclass (1 kg) totally autonomous spacecraft with both adaptable and evolvable heuristic systems, is being developed as a NASA advanced mission concept, and is here examined as a paradigm for lunar surface exploration. As the capacity and complexity of hardware and software, demands for bandwidth, and the sophistication of goals for lunar and planetary exploration have increased, greater cost constraints have led to fewer resources and thus, the need to operate spacecraft with less frequent human contact. At present, autonomous operation of spacecraft systems allows great capability of spacecraft to 'safe' themselves and survive when conditions threaten spacecraft safety. To further develop spacecraft capability, NASA is at the forefront of development of new mission architectures which involve the use of Intelligent Software Agents (ISAs), performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. Selected missions in current planning stages require small groups of spacecraft weighing tens, instead of hundreds, of kilograms to cooperate at a tactical level to select and schedule measurements to be made by appropriate instruments onboard. Such missions will be characterizing rapidly unfolding real-time events on a routine basis. The next level of development, which we are considering here, is in the use of autonomous systems at the strategic level, to explore the remote terranes, potentially involving large surveys or detailed reconnaissance.
A Robust Compositional Architecture for Autonomous Systems
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara
2006-01-01
Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.
Bryson, Mitch; Hovey, Renae; Figueira, Will F.; Williams, Stefan B.; Pizarro, Oscar; Harborne, Alastair R.; Byrne, Maria
2014-01-01
High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes. PMID:25426718
Bridge, Tom C L; Ferrari, Renata; Bryson, Mitch; Hovey, Renae; Figueira, Will F; Williams, Stefan B; Pizarro, Oscar; Harborne, Alastair R; Byrne, Maria
2014-01-01
High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m(2) plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.
Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar
NASA Astrophysics Data System (ADS)
Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.
2013-12-01
Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms. ARTEMIS will be capable of conducting precision hovering proximity science in an unexplored environment, followed by high speed (1.5 m/s) return to the melt hole. The navigation system will significantly advance upon the successes of the prior DEPTHX and ENDURANCE systems and several novel pose-drift correction technologies will be developed and tested under ice during the project. The method of down-hole deployment and auto-docking return will be extended to a vertically-deployed, horizontally-recovered concept that is depth independent and highly relevant to an ice-water deployment on an icy moon. The presentation will discuss the mission down-select architecture for the ARTEMIS vehicle and its implications for the design of a Europa 'fast mover' carrier AUV, the onboard instrument suite, and the Antarctic mission CONOPS. The vehicle and crew will deploy to Antarctica in the 2015/2016 season.
Learning tactile skills through curious exploration
Pape, Leo; Oddo, Calogero M.; Controzzi, Marco; Cipriani, Christian; Förster, Alexander; Carrozza, Maria C.; Schmidhuber, Jürgen
2012-01-01
We present curiosity-driven, autonomous acquisition of tactile exploratory skills on a biomimetic robot finger equipped with an array of microelectromechanical touch sensors. Instead of building tailored algorithms for solving a specific tactile task, we employ a more general curiosity-driven reinforcement learning approach that autonomously learns a set of motor skills in absence of an explicit teacher signal. In this approach, the acquisition of skills is driven by the information content of the sensory input signals relative to a learner that aims at representing sensory inputs using fewer and fewer computational resources. We show that, from initially random exploration of its environment, the robotic system autonomously develops a small set of basic motor skills that lead to different kinds of tactile input. Next, the system learns how to exploit the learned motor skills to solve supervised texture classification tasks. Our approach demonstrates the feasibility of autonomous acquisition of tactile skills on physical robotic platforms through curiosity-driven reinforcement learning, overcomes typical difficulties of engineered solutions for active tactile exploration and underactuated control, and provides a basis for studying developmental learning through intrinsic motivation in robots. PMID:22837748
In Situ Surveying of Saturn's Rings
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C.
2004-01-01
The Saturn Autonomous Ring Array (SARA) mission concept is a new application for the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm being developed for exploration of high surface area and/or multibody targets to minimize costs and maximize effectiveness of survey operations. Systems designed with ANTS architecture are built from potentially very large numbers of highly autonomous, yet socially interactive, specialists, in approximately ten specialist classes. Here, we analyze requirements for such a mission as well as specialized autonomous operations which would support this application.
NASA Astrophysics Data System (ADS)
Skarke, A. D.
2017-12-01
A growing body of research indicates that points of seafloor gas emission, known as cold-seeps, are a common feature along many continental margins. Results from recent exploration efforts show that benthic environments at cold-seeps are characterized by extensive authigenic carbonate crusts and complex chemosynthetic communities. The seafloor morphology and geophysical properties of these locations are heterogeneous and relatively complex due to the three-dimensional structure created by carbonate buildups and dense bivalve beds. Seeps are often found clustered and the spatial extent of associated seafloor crusts and beds can reach multiple square kilometers. Here, the results of a 1.25 km2 autonomous underwater vehicle (AUV) survey of a deep-sea methane seep field with 13 vents, at a nominal depth of 1400 m, located near Veatch Canyon on the US Atlantic margin are presented. Multibeam sonar, sidescan sonar, and a sub bottom profiler on the AUV were used to make high-resolution observations of seafloor bathymetry (resolution 1m2) as well as water column, seafloor, and subsurface acoustic backscatter intensity. Additionally, a downward oriented camera was used to collect seafloor imagery coincident with acoustic observations at select locations. Acoustic results indicated the location of discrete gas plumes as well as a continuous area of elevated seafloor roughness and backscatter intensity consistent with the presence of large scale authigenic rock outcrops and extensive mussel beds, which were visually confirmed with camera imagery. Additionally, a linear area of particularly elevated seafloor roughness and acoustic backscatter intensity that lies sub-parallel to an adjacent ridge was interpreted to be controlled by underlying geologic processes such as soft sediment faulting. Automated analysis of camera imagery and coincident acoustic backscatter and bathymetry data as well as derivative metrics (e.g. slope and rugosity) was used to segment and classify bed type (carbonate rock, sediment, mussel bed), yielding insight into geologic and ecological processes within the seep field study area.
NASA Astrophysics Data System (ADS)
Roelfsema, C. M.; Phinn, S. R.; Lyons, M. B.; Kovacs, E.; Saunders, M. I.; Leon, J. X.
2013-12-01
Corals and Submerged Aquatic Vegetation (SAV) are typically found in highly dynamic environments where the magnitude and types of physical and biological processes controlling their distribution, diversity and function changes dramatically. Recent advances in the types of satellite image data and the length of their archives that are available globally, coupled with new techniques for extracting environmental information from these data sets has enabled significant advances to be made in our ability to map and monitor coral and SAV environments. Object Based Image Analysis techniques are one of the most significant advances in information extraction techniques for processing images to deliver environmental information at multiple spatial scales. This poster demonstrates OBIA applied to high spatial resolution satellite image data to map and monitor coral and SAV communities across a variety of environments in the Western Pacific that vary in their extent, biological composition, forcing physical factors and location. High spatial resolution satellite imagery (Quickbird, Ikonos and Worldview2) were acquired coincident with field surveys on each reef to collect georeferenced benthic photo transects, over various areas in the Western Pacific. Base line maps were created, from Roviana Lagoon Solomon island (600 km2), Bikini Atoll Marshall Island (800 Km2), Lizard Island, Australia (30 km2) and time series maps for geomorphic and benthic communities were collected for Heron Reef, Australia (24 km2) and Eastern Banks area of Moreton Bay, Australia (200 km2). The satellite image data were corrected for radiometric and atmospheric distortions to at-surface reflectance. Georeferenced benthic photos were acquired by divers or Autonomous Underwater Vehicles, analysed for benthic cover composition, and used for calibration and validation purposes. Hierarchical mapping from: reef/non-reef (1000's - 10000's m); reef type (100's - 1000's m); 'geomorphic zone' (10's - 100's m); to dominant components of benthic cover compositions (1 - 10's m); and individual benthic cover type scale (0.5-5.0's m), was completed using object based segmentation and semi-automated labelling through membership rules. Accuracy assessment of the satellite image based maps and field data sets scales maps produced with 90% maximum accuracy larger scales and less complex maps, versus 40 % at smaller scale and complex maps. The study showed that current data sets and object based analysis are able to reliable map at various scales and level of complexity covering a variety of extent and environments at various times; as a result science and management can use these tools to assess and understand the ecological processes taking place in coral and SAV environments.
NASA Astrophysics Data System (ADS)
Mincks, Sarah L.; Smith, Craig R.; Jeffreys, Rachel M.; Sumida, Paulo Y. G.
2008-11-01
Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment "food bank" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured δ 13C and δ 15N values in major megafaunal taxa ( n=26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in δ 13C values (>14‰) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of δ 13C values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian ( Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above.
NASA Astrophysics Data System (ADS)
Blanchet, Hugues; Gouillieux, Benoît; Alizier, Sandrine; Amouroux, Jean-Michel; Bachelet, Guy; Barillé, Anne-Laure; Dauvin, Jean-Claude; de Montaudouin, Xavier; Derolez, Valérie; Desroy, Nicolas; Grall, Jacques; Grémare, Antoine; Hacquebart, Pascal; Jourde, Jérôme; Labrune, Céline; Lavesque, Nicolas; Meirland, Alain; Nebout, Thiebaut; Olivier, Frédéric; Pelaprat, Corine; Ruellet, Thierry; Sauriau, Pierre-Guy; Thorin, Sébastien
2014-07-01
Based on a parallel sampling conducted during autumn 2008, a comparative study of the intertidal benthic macrofauna among 10 estuarine systems located along the Channel and Atlantic coasts of France was performed in order to assess the level of fauna similarity among these sites and to identify possible environmental factors involved in the observed pattern at both large (among sites) and smaller (benthic assemblages) scales. More precisely this study focused on unraveling the observed pattern of intertidal benthic fauna composition and diversity observed at among-site scale by exploring both biotic and abiotic factors acting at the among- and within-site scales. Results showed a limited level of similarity at the among-site level in terms of intertidal benthic fauna composition and diversity. The observed pattern did not fit with existing transitional water classification methods based on fish or benthic assemblages developed in the frame of the European Water Framework Directive (WFD). More particularly, the coastal plain estuaries displayed higher among-site similarity compared to ria systems. These coastal plain estuaries were characterized by higher influence of river discharge, lower communication with the ocean and high suspended particulate matter levels. On the other hand, the ria-type systems were more dissimilar and different from the coastal plain estuaries. The level of similarity among estuaries was mainly linked to the relative extent of the intertidal "Scrobicularia plana-Cerastoderma edule" and "Tellina tenuis" or "Venus" communities as a possible consequence of salinity regime, suspended matter concentrations and fine particles supply with consequences on the trophic functioning, structure and organization of benthic fauna. Despite biogeographical patterns, the results also suggest that, in the context of the WFD, these estuaries should only be compared on the basis of the most common intertidal habitat occurring throughout all estuarine systems and that the EUNIS biotope classification might be used for this purpose. In addition, an original inverse relation between γ-diversity and area was shown; however, its relevance might be questioned.
Verification of Autonomous Systems for Space Applications
NASA Technical Reports Server (NTRS)
Brat, G.; Denney, E.; Giannakopoulou, D.; Frank, J.; Jonsson, A.
2006-01-01
Autonomous software, especially if it is based on model, can play an important role in future space applications. For example, it can help streamline ground operations, or, assist in autonomous rendezvous and docking operations, or even, help recover from problems (e.g., planners can be used to explore the space of recovery actions for a power subsystem and implement a solution without (or with minimal) human intervention). In general, the exploration capabilities of model-based systems give them great flexibility. Unfortunately, it also makes them unpredictable to our human eyes, both in terms of their execution and their verification. The traditional verification techniques are inadequate for these systems since they are mostly based on testing, which implies a very limited exploration of their behavioral space. In our work, we explore how advanced V&V techniques, such as static analysis, model checking, and compositional verification, can be used to gain trust in model-based systems. We also describe how synthesis can be used in the context of system reconfiguration and in the context of verification.
Assessment of a visually guided autonomous exploration robot
NASA Astrophysics Data System (ADS)
Harris, C.; Evans, R.; Tidey, E.
2008-10-01
A system has been developed to enable a robot vehicle to autonomously explore and map an indoor environment using only visual sensors. The vehicle is equipped with a single camera, whose output is wirelessly transmitted to an off-board standard PC for processing. Visual features within the camera imagery are extracted and tracked, and their 3D positions are calculated using a Structure from Motion algorithm. As the vehicle travels, obstacles in its surroundings are identified and a map of the explored region is generated. This paper discusses suitable criteria for assessing the performance of the system by computer-based simulation and practical experiments with a real vehicle. Performance measures identified include the positional accuracy of the 3D map and the vehicle's location, the efficiency and completeness of the exploration and the system reliability. Selected results are presented and the effect of key system parameters and algorithms on performance is assessed. This work was funded by the Systems Engineering for Autonomous Systems (SEAS) Defence Technology Centre established by the UK Ministry of Defence.
Terrain discovery and navigation of a multi-articulated linear robot using map-seeking circuits
NASA Astrophysics Data System (ADS)
Snider, Ross K.; Arathorn, David W.
2006-05-01
A significant challenge in robotics is providing a robot with the ability to sense its environment and then autonomously move while accommodating obstacles. The DARPA Grand Challenge, one of the most visible examples, set the goal of driving a vehicle autonomously for over a hundred miles avoiding obstacles along a predetermined path. Map-Seeking Circuits have shown their biomimetic capability in both vision and inverse kinematics and here we demonstrate their potential usefulness for intelligent exploration of unknown terrain using a multi-articulated linear robot. A robot that could handle any degree of terrain complexity would be useful for exploring inaccessible crowded spaces such as rubble piles in emergency situations, patrolling/intelligence gathering in tough terrain, tunnel exploration, and possibly even planetary exploration. Here we simulate autonomous exploratory navigation by an interaction of terrain discovery using the multi-articulated linear robot to build a local terrain map and exploitation of that growing terrain map to solve the propulsion problem of the robot.
Image subsampling and point scoring approaches for large-scale marine benthic monitoring programs
NASA Astrophysics Data System (ADS)
Perkins, Nicholas R.; Foster, Scott D.; Hill, Nicole A.; Barrett, Neville S.
2016-07-01
Benthic imagery is an effective tool for quantitative description of ecologically and economically important benthic habitats and biota. The recent development of autonomous underwater vehicles (AUVs) allows surveying of spatial scales that were previously unfeasible. However, an AUV collects a large number of images, the scoring of which is time and labour intensive. There is a need to optimise the way that subsamples of imagery are chosen and scored to gain meaningful inferences for ecological monitoring studies. We examine the trade-off between the number of images selected within transects and the number of random points scored within images on the percent cover of target biota, the typical output of such monitoring programs. We also investigate the efficacy of various image selection approaches, such as systematic or random, on the bias and precision of cover estimates. We use simulated biotas that have varying size, abundance and distributional patterns. We find that a relatively small sampling effort is required to minimise bias. An increased precision for groups that are likely to be the focus of monitoring programs is best gained through increasing the number of images sampled rather than the number of points scored within images. For rare species, sampling using point count approaches is unlikely to provide sufficient precision, and alternative sampling approaches may need to be employed. The approach by which images are selected (simple random sampling, regularly spaced etc.) had no discernible effect on mean and variance estimates, regardless of the distributional pattern of biota. Field validation of our findings is provided through Monte Carlo resampling analysis of a previously scored benthic survey from temperate waters. We show that point count sampling approaches are capable of providing relatively precise cover estimates for candidate groups that are not overly rare. The amount of sampling required, in terms of both the number of images and number of points, varies with the abundance, size and distributional pattern of target biota. Therefore, we advocate either the incorporation of prior knowledge or the use of baseline surveys to establish key properties of intended target biota in the initial stages of monitoring programs.
Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.
2003-03-01
ANTS (Autonomous Nano Technology Swarm of hundreds of picoclass autonomous spacecraft) have many applications. A version designed for surveying and the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.
An intelligent algorithm for autonomous scientific sampling with the VALKYRIE cryobot
NASA Astrophysics Data System (ADS)
Clark, Evan B.; Bramall, Nathan E.; Christner, Brent; Flesher, Chris; Harman, John; Hogan, Bart; Lavender, Heather; Lelievre, Scott; Moor, Joshua; Siegel, Vickie
2018-07-01
The development of algorithms for agile science and autonomous exploration has been pursued in contexts ranging from spacecraft to planetary rovers to unmanned aerial vehicles to autonomous underwater vehicles. In situations where time, mission resources and communications are limited and the future state of the operating environment is unknown, the capability of a vehicle to dynamically respond to changing circumstances without human guidance can substantially improve science return. Such capabilities are difficult to achieve in practice, however, because they require intelligent reasoning to utilize limited resources in an inherently uncertain environment. Here we discuss the development, characterization and field performance of two algorithms for autonomously collecting water samples on VALKYRIE (Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer), a glacier-penetrating cryobot deployed to the Matanuska Glacier, Alaska (Mission Control location: 61°42'09.3''N 147°37'23.2''W). We show performance on par with human performance across a wide range of mission morphologies using simulated mission data, and demonstrate the effectiveness of the algorithms at autonomously collecting samples with high relative cell concentration during field operation. The development of such algorithms will help enable autonomous science operations in environments where constant real-time human supervision is impractical, such as penetration of ice sheets on Earth and high-priority planetary science targets like Europa.
Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?
NASA Astrophysics Data System (ADS)
Erker, Paul; Mitchison, Mark T.; Silva, Ralph; Woods, Mischa P.; Brunner, Nicolas; Huber, Marcus
2017-07-01
Time remains one of the least well-understood concepts in physics, most notably in quantum mechanics. A central goal is to find the fundamental limits of measuring time. One of the main obstacles is the fact that time is not an observable and thus has to be measured indirectly. Here, we explore these questions by introducing a model of time measurements that is complete and autonomous. Specifically, our autonomous quantum clock consists of a system out of thermal equilibrium—a prerequisite for any system to function as a clock—powered by minimal resources, namely, two thermal baths at different temperatures. Through a detailed analysis of this specific clock model, we find that the laws of thermodynamics dictate a trade-off between the amount of dissipated heat and the clock's performance in terms of its accuracy and resolution. Our results furthermore imply that a fundamental entropy production is associated with the operation of any autonomous quantum clock, assuming that quantum machines cannot achieve perfect efficiency at finite power. More generally, autonomous clocks provide a natural framework for the exploration of fundamental questions about time in quantum theory and beyond.
Modeling Biogeochemical Cycling of Heavy Metals in Lake Coeur d'Alene Sediments
NASA Astrophysics Data System (ADS)
Sengor, S. S.; Spycher, N.; Belding, E.; Curthoys, K.; Ginn, T. R.
2005-12-01
Mining of precious metals since the late 1800's have left Lake Coeur d'Alene (LCdA) sediments heavily enriched with toxic metals, including Cd, Cu, Pb, and Zn. Indigenous microbes however are capable of catalyzing reactions that detoxify the benthic and aqueous lake environments, and thus constitute an important driving component in the biogeochemical cycles of these metals. Here we report on the development of a quantitative model of transport, fate, exposure and effects of toxic compounds on benthic microbial communities at LCdA. First, chemical data from the LCdA area have been compiled from multiple sources to investigate trends in chemical occurrence, as well as to define model boundary conditions. The model is structured as 1-D diffusive reactive transport model to simulate spatial and temporal distribution of metals through the benthic sediments. Inorganic reaction processes included in the model are aqueous speciation, surface complexation, mineral precipitation/dissolution and abiotic redox reactions. Simulations with and without surface complexation are carried out to evaluate the effect of sorption and the conservative behaviour of metals within the benthic sediments under abiotic and purely diffusive transport. The 1-D inorganic diffusive transport model is then coupled to a biotic reaction network including consortium biodegradation kinetics with multiple electron acceptors, product toxicity, and energy partitioning. Multiyear simulations are performed, with water column chemistry established as a boundary condition from extant data, to explore the role of biogeochemical dynamics on benthic fluxes of metals in the long term.
NASA Astrophysics Data System (ADS)
de Juan, S.; Lo Iacono, C.; Demestre, M.
2013-01-01
Eleven sites were located on Mediterranean continental shelves to explore the link between the physical characteristics and epibenthic fauna from soft-sediment habitats. These sites, at 32-82 m in depth, were associated with fishing grounds and the trawling intensity was estimated at the site scale to assess the effects of trawling on benthic communities. Each site was surveyed with Multi-Beam (bathymetry and backscatter), side-scan sonar, benthic grabs and a surface dredge. The sites were clustered in three habitat types. Habitat 1, with moderate trawling disturbance, was characterised by homogeneous mud and associated epifauna that was also highly homogeneous across sites. Habitat 2, with sandy mud and scattered gravel and rocks, had a high abundance of sessile suspension feeders that probably attach to the coarser substratum and benefit from the low fishing disturbance in these sites. Habitat 3 included sites with heterogeneous sediments with maërl as the prevailing biocenosis and having the highest species richness, despite being subjected to variable trawling intensity. Statistical models were used to relate environmental parameters and the species abundance. More than 3 physical variables were necessary to explain the epifaunal patterns across sites, including the percentage of mud, sediment heterogeneity and fishing effort. These analyses are an essential step for extrapolating information from benthic samples to the larger scale of habitats, mapped through acoustic surveys. Despite this, a good integration is required between the mapping of physical habitat distribution and the ecological knowledge of communities.
Small Body Exploration Technologies as Precursors for Interstellar Robotics
NASA Astrophysics Data System (ADS)
Noble, R. J.; Sykes, M. V.
The scientific activities undertaken to explore our Solar System will be very similar to those required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution, as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.
Small Body Exploration Technologies as Precursors for Interstellar Robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert; /SLAC; Sykes, Mark V.
The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of themore » technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.« less
Autonomous Commanding of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They can be used as a design and implementation template by other small satellite missions interested in evolving toward autonomous and lower cost operations.
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Plice, Laura; Pisanich, Greg
2003-01-01
The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.
Information Foraging and Change Detection for Automated Science Exploration
NASA Technical Reports Server (NTRS)
Furlong, P. Michael; Dille, Michael
2016-01-01
This paper presents a new algorithm for autonomous on-line exploration in unknown environments. The objective is to free remote scientists from possibly-infeasible extensive preliminary site investigation prior to sending robotic agents. We simulate a common exploration task for an autonomous robot sampling the environment at various locations and compare performance against simpler control strategies. An extension is proposed and evaluated that further permits operation in the presence of environmental variability in which the robot encounters a change in the distribution underlying sampling targets. Experimental results indicate a strong improvement in performance across varied parameter choices for the scenario.
Autonomous Sample Acquisition for Planetary and Small Body Explorations
NASA Technical Reports Server (NTRS)
Ghavimi, Ali R.; Serricchio, Frederick; Dolgin, Ben; Hadaegh, Fred Y.
2000-01-01
Robotic drilling and autonomous sample acquisition are considered as the key technology requirements in future planetary or small body exploration missions. Core sampling or subsurface drilling operation is envisioned to be off rovers or landers. These supporting platforms are inherently flexible, light, and can withstand only limited amount of reaction forces and torques. This, together with unknown properties of sampled materials, makes the sampling operation a tedious task and quite challenging. This paper highlights the recent advancements in the sample acquisition control system design and development for the in situ scientific exploration of planetary and small interplanetary missions.
Advanced Autonomous Systems for Space Operations
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.
2002-01-01
New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.
A perception system for a planetary explorer
NASA Technical Reports Server (NTRS)
Hebert, M.; Krotkov, E.; Kanade, T.
1989-01-01
To perform planetary exploration without human supervision, a complete autonomous robot must be able to model its environment and to locate itself while exploring its surroundings. For that purpose, the authors propose a modular perception system for an autonomous explorer. The perception system maintains a consistent internal representation of the observed terrain from multiple sensor views. The representation can be accessed from other modules through queries. The perception system is intended to be used by the Ambler, a six-legged vehicle being built at CMU. A partial implementation of the system using a range scanner is presented as well as experimental results on a testbed that includes the sensor, one computer-controlled leg, and obstacles on a sandy surface.
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-04-09
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.
Advancing Autonomous Operations Technologies for NASA Missions
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Thompson, Jerry Todd
2013-01-01
This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.
Advancing Autonomous Operations Technologies for NASA Missions
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Thompson, Jerry T.
2013-01-01
This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies
Wen, Li
2016-01-01
Wuliangsuhai Lake provides important breeding and stopover habitats for shorebirds. The health of this wetland ecosystem is rapidly deteriorating due to eutrophication and water pollution and environmental management is urgently needed. To explore the connections among ecosystem health, prey density, and shorebird populations, we conducted surveys of both the benthic macroinvertebrates and shorebirds in the shorebird habitat of the wetland during the 2011 autumn migration season. The abundance of both shorebirds and benthic macroinvertebrates varied significantly in both space and time. Our data showed a clear association between shorebird populations and the density of benthic macroinvertebrates, which explained 53.63% of the variation in shorebird abundance. The prey density was strongly affected by environmental factors, including water and sediment quality. Chironomidae were mainly found at sites with higher total phosphorus, but with lower sediment concentrations of Cu. Lymnaeidae were mainly found at sites with a higher pH, lower salinity, and lower concentrations of total phosphorus and Cu. Habitats with very high concentrations of total phosphorus, heavy metals, or salinity were not suitable for benthic macroinvertebrates. Our findings suggest that the reductions of nutrient and heavy metal loadings are crucial in maintaining the ecological function of Wuliangsuhai as a stopover habitat for migratory shorebirds. PMID:28070447
Visual Odometry for Autonomous Deep-Space Navigation
NASA Technical Reports Server (NTRS)
Robinson, Shane; Pedrotty, Sam
2016-01-01
Visual Odometry fills two critical needs shared by all future exploration architectures considered by NASA: Autonomous Rendezvous and Docking (AR&D), and autonomous navigation during loss of comm. To do this, a camera is combined with cutting-edge algorithms (called Visual Odometry) into a unit that provides accurate relative pose between the camera and the object in the imagery. Recent simulation analyses have demonstrated the ability of this new technology to reliably, accurately, and quickly compute a relative pose. This project advances this technology by both preparing the system to process flight imagery and creating an activity to capture said imagery. This technology can provide a pioneering optical navigation platform capable of supporting a wide variety of future missions scenarios: deep space rendezvous, asteroid exploration, loss-of-comm.
Autonomous Instrument Placement for Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Leger, P. Chris; Maimone, Mark
2009-01-01
Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use.
Young Children's Explorations: Young Children's Research?
ERIC Educational Resources Information Center
Murray, Jane
2012-01-01
"Exploration" is recognised as research behaviour; anecdotally, as an early years' teacher, I witnessed many young children exploring. However, young children's self-initiated explorations are rarely regarded as research by adult researchers and policy-makers. The exclusion of young children's autonomous explorations from recognition as…
COMPARING RESPONSES OF MACROINVERTEBRATE METRICS TO INCREASING STRESS
Metrics characterizing the benthic macroinvertebrate assemblages in wadeable streams in the Mid-Atlantic region of the United States were analyzed to explore the relative responses of the metrics to different types of anthropogenic stress. The data used in our study were collecte...
Stating asymmetry in neural pathways: methodological trends in autonomic neuroscience.
Xavier, Carlos Henrique; Mendonça, Michelle Mendanha; Marins, Fernanda Ribeiro; da Silva, Elder Sales; Ianzer, Danielle; Colugnati, Diego Basile; Pedrino, Gustavo Rodrigues; Fontes, Marco Antonio Peliky
2018-05-22
Many particularities concerning interhemispheric differences still need to be explored and unveiled. Functional and anatomical differential features found between left and right brain sides are best known as asymmetries and are consequence of the unilateral neuronal recruitment or predominance that is set to organize some function. The outflow from different neural pathways involved in the autonomic control of the cardiovascular system may route through asymmetrically relayed efferences (ipsilateral/lateralized and/or contralateral). In spite of this, the literature reporting on the role of central nuclei involved in the autonomic control is not always dedicated on these interhemispheric comparisons. Considering the recent reports demonstrating that asymmetries may set differential functional responses, it is worth checking differences between right and left sides of central regions. This review aims to inspire neuroscientists with the idea that studying the interhemispheric differences may deepen the understanding on several centrally controlled responses, with special regard to the autonomic functions underlying the cardiovascular regulation. Thus, an avenue of knowledge may unfold from a field of research that requires further exploration.
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems robot "MXR - Mark's Exploration Robot" takes to the practice field and tries to capture the white object in the foreground on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Intrepid Systems' robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission
NASA Technical Reports Server (NTRS)
Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.
2004-01-01
In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pin, F.G.; de Saussure, G.; Spelt, P.F.
1988-01-01
This paper describes recent research activities at the Center for Engineering Systems Advanced Research (CESAR) in the area of sensor based reasoning, with emphasis being given to their application and implementation on our HERMIES-IIB autonomous mobile vehicle. These activities, including navigation and exploration in a-priori unknown and dynamic environments, goal recognition, vision-guided manipulation and sensor-driven machine learning, are discussed within the framework of a scenario in which an autonomous robot is asked to navigate through an unknown dynamic environment, explore, find and dock at the panel, read and understand the status of the panel's meters and dials, learn the functioningmore » of a process control panel, and successfully manipulate the control devices of the panel to solve a maintenance emergency problems. A demonstration of the successful implementation of the algorithms on our HERMIES-IIB autonomous robot for resolution of this scenario is presented. Conclusions are drawn concerning the applicability of the methodologies to more general classes of problems and implications for future work on sensor-driven reasoning for autonomous robots are discussed. 8 refs., 3 figs.« less
Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving
Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan
2016-01-01
This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203
Drivers' Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving.
Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan
2016-01-15
This paper describes a real-time motion planner based on the drivers' visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers' visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers' visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.
To Be or Not to Be in Thrall to the March of Smart Products
Van den Hende, Ellis A.
2016-01-01
ABSTRACT This article explores how perceived disempowerment impacts the intention to adopt smart autonomous products. Empirically, the paper builds on three studies to show this impact. Study 1 explores the relevance of the perceived disempowerment in respect of smart autonomous products. Study 2 manipulates autonomy of smart products and finds that perceived disempowerment mediates the link between smart products’ autonomy and adoption intention. Study 3 indicates that an intervention design―that is, a product design that allows consumers to intervene in the actions of an autonomous smart product―can reduce their perceived disempowerment in respect of autonomous smart products. Further, Study 3 reveals that personal innovativeness moderates the role that an intervention design plays in product adoption: an intervention design shows a positive effect on adoption intention for individuals with low personal innovativeness, but for those with high personal innovativeness no effect of an intervention design is present on adoption intention. The authors suggest that managers consider consumers’ perceived disempowerment when designing autonomous smart products, because (1) perceived disempowerment reduces adoption and (2) when targeted at consumers with low personal innovativeness, an intervention design reduces their perceived disempowerment. PMID:27980356
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-01-01
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549
Autonomous and Autonomic Swarms
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy
2005-01-01
A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.
NASA Astrophysics Data System (ADS)
Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.
2013-07-01
The long-held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and microbes, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean Basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity, irrespective of the benthic group or level of taxonomic analysis. A common decreasing bathymetric trend was detected for meiobenthic abundance, major taxa diversity and nematode genera richness, but no differences were found between the two habitats (basin vs slope). In contrast, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth. Multivariate analyses (β- and δ-diversity and ordination analysis) complemented these results and underlined the high within-habitat variability of benthic communities. Meiofaunal communities in particular were found to change gradually and vary more towards the abyss. On the other hand, microbial communities were highly variable, even among samples of the same area, habitat and bathymetry. A significant proportion of the variation of benthic communities and their descriptors was explained by depth and proxies of food availability (sedimentary pigments and organic content), but the combination of predictor variables and the strength of the relationship varied depending on the data set used (based on type of habitat, benthic component, taxonomic level). This, along with the observed high within-habitat variability suggests that other factors, which tend to vary at local scale (hydrodynamics, substrate structure, geochemistry, food quality, etc.), may also relate to the observed benthic patterns. Overall, the results presented here suggest that differences in small-size benthos between the basin and slope habitats are neither strong nor consistent; it appears that within-habitat variability is high, differences among depth ranges are important and further investigation of possible environmental drivers of benthic patterns is needed.
Distributed subterranean exploration and mapping with teams of UAVs
NASA Astrophysics Data System (ADS)
Rogers, John G.; Sherrill, Ryan E.; Schang, Arthur; Meadows, Shava L.; Cox, Eric P.; Byrne, Brendan; Baran, David G.; Curtis, J. Willard; Brink, Kevin M.
2017-05-01
Teams of small autonomous UAVs can be used to map and explore unknown environments which are inaccessible to teams of human operators in humanitarian assistance and disaster relief efforts (HA/DR). In addition to HA/DR applications, teams of small autonomous UAVs can enhance Warfighter capabilities and provide operational stand-off for military operations such as cordon and search, counter-WMD, and other intelligence, surveillance, and reconnaissance (ISR) operations. This paper will present a hardware platform and software architecture to enable distributed teams of heterogeneous UAVs to navigate, explore, and coordinate their activities to accomplish a search task in a previously unknown environment.
Aagaard-Sørensen, Steffen; Junttila, Juho; Dijkstra, Noortje
2018-04-01
The present multiproxy investigation of marine sediment cores aims at: 1) Identifying dispersion of petroleum exploration related drill cutting releases within the Goliat Field, Barents Sea in 2006/07 and 2) Assessing past and present influence of drill cuttings on the marine environment. The cores were recovered 5, 30, 60, 125 and 250m from the drill site in the eastward downstream direction. Downstream dispersion of drill cuttings is evaluated by examining sediment grain size distribution and barium (Ba), heavy metal, total organic carbon and sulphur concentrations. Dispersion of drill cuttings was limited to <125m east from the drill site. Influence of drill cutting releases on the marine environment is assessed via microfaunal analysis of primarily calcareous benthic foraminifera. The findings suggest contemporaneous physical smothering at ≤30m from the drill site, with a natural fauna reestablishing after drilling cessation indicating no long-term effect of drill cutting releases. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krotkov, Eric; Simmons, Reid; Whittaker, William
1992-02-01
This report describes progress in research on an autonomous robot for planetary exploration performed during 1991 at the Robotics Institute, Carnegie Mellon University. The report summarizes the achievements during calendar year 1991, and lists personnel and publications. In addition, it includes several papers resulting from the research. Research in 1991 focused on understanding the unique capabilities of the Ambler mechanism and on autonomous walking in rough, natural terrain. We also designed a sample acquisition system, and began to configure a successor to the Ambler.
Adaptive Behavior for Mobile Robots
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance
2009-01-01
The term "System for Mobility and Access to Rough Terrain" (SMART) denotes a theoretical framework, a control architecture, and an algorithm that implements the framework and architecture, for enabling a land-mobile robot to adapt to changing conditions. SMART is intended to enable the robot to recognize adverse terrain conditions beyond its optimal operational envelope, and, in response, to intelligently reconfigure itself (e.g., adjust suspension heights or baseline distances between suspension points) or adapt its driving techniques (e.g., engage in a crabbing motion as a switchback technique for ascending steep terrain). Conceived for original application aboard Mars rovers and similar autonomous or semi-autonomous mobile robots used in exploration of remote planets, SMART could also be applied to autonomous terrestrial vehicles to be used for search, rescue, and/or exploration on rough terrain.
Exploring violence against women and adverse health outcomes in middle age to promote women's health
USDA-ARS?s Scientific Manuscript database
A history of intimate partner violence (IPV) is linked to cardiovascular disorders among women. Static autonomic nervous system (ANS) imbalance may result from chronic stress associated with exposure to IPV. Autonomic nervous system imbalance is associated with an excessive proinflammatory response ...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-06
... Space Transportation; Waiver of Autonomous Reentry Restriction for a Reentry Vehicle AGENCY: Federal... concerns two petitions for waiver submitted to the Federal Aviation Administration (FAA) by Space Exploration Technologies Corp. (SpaceX): A petition to waive the requirement that a waiver petition be...
Critically Reflective Work Behaviour within Autonomous Professionals' Learning Communities
ERIC Educational Resources Information Center
de Groot, Esther; van den Berg, B. A. M.; Endedijk, M. D.; van Beukelen, P.; Simons, P. R. J.
2011-01-01
Informal learning communities in which participants show critically reflective work behaviour (CRWB) have the potential to support lifelong learning. In practice this behaviour does not always occur in groups of autonomous professionals. This study explores design principles (DPs) that could act as social affordances for CRWB, within the context…
NASA Technical Reports Server (NTRS)
Carsey, F.; Schenker, P.; Blamont, J.
2001-01-01
A workshop on Antartic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society in February to discuss scientific objectives and benefits of the use of rovers such as are being developed for use in planetary exploration.
Learning for autonomous navigation
NASA Technical Reports Server (NTRS)
Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric
2005-01-01
Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.
Autonomous exploration and mapping of unknown environments
NASA Astrophysics Data System (ADS)
Owens, Jason; Osteen, Phil; Fields, MaryAnne
2012-06-01
Autonomous exploration and mapping is a vital capability for future robotic systems expected to function in arbitrary complex environments. In this paper, we describe an end-to-end robotic solution for remotely mapping buildings. For a typical mapping system, an unmanned system is directed to enter an unknown building at a distance, sense the internal structure, and, barring additional tasks, while in situ, create a 2-D map of the building. This map provides a useful and intuitive representation of the environment for the remote operator. We have integrated a robust mapping and exploration system utilizing laser range scanners and RGB-D cameras, and we demonstrate an exploration and metacognition algorithm on a robotic platform. The algorithm allows the robot to safely navigate the building, explore the interior, report significant features to the operator, and generate a consistent map - all while maintaining localization.
NASA Astrophysics Data System (ADS)
Dijkstra, N.; Junttila, J.; Husum, K.; Carroll, J.; Hald, M.
2012-04-01
During the last decades petroleum industry and shipping activities have increased in the SW Barents Sea. Oil exploration wells were drilled in the 1980s with production starting in 2007. These activities are projected to expand in the coming years. As part of the Northern Environmental Waste Management (EWMA) project, a competence cluster for petroleum industry related waste handling, we investigate the impacts of enhanced anthropogenic activities on benthic foraminiferal assemblages in the SW Barents Sea. Sediment cores (0-20 cm) from sites in proximity to two oil- and gas fields are under investigation. These sediment cores, dated with the 210Pb method, represent the last 90 to 150 years. Both dead and living benthic foraminifera (100 µm-1 mm) were counted to elucidate differences in foraminiferal assemblages between pre-impact and recent conditions. In addition, the heavy metal concentrations, persistent organic pollutant (POP) concentrations, grain size and total organic content (TOC) of the sediment cores have been analyzed. Pollution levels of the surface sediments (0-1 cm) are of background to good level (level I-II) according to the definitions of the Water Framework Directorate (WFD). Patterns in living benthic foraminiferal assemblages identified in the sea floor surface sediments, are the result of natural environmental changes such as depth, water mass and sediment composition. Further downcore (1-20 cm) pollution levels are in general of background environmental status (WFD level I). However, at some depth intervals, especially in sediment cores from the near proximity of the oil- and gas- fields, pollution levels are slightly enhanced (WFD level II). Further work will include statistical comparison of dead and living foraminiferal assemblages with sediment pollution levels, sediment properties, and oceanographic conditions. This research contributes to the development of foraminifera as a useful bio-monitoring technique for the Arctic region as industrial activities increase in the coming years.
Multiple-Agent Air/Ground Autonomous Exploration Systems
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.
2007-01-01
Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.
Examining accident reports involving autonomous vehicles in California
Nader, Nazanin; Eurich, Sky O.; Tripp, Michelle; Varadaraju, Naresh
2017-01-01
Autonomous Vehicle technology is quickly expanding its market and has found in Silicon Valley, California, a strong foothold for preliminary testing on public roads. In an effort to promote safety and transparency to consumers, the California Department of Motor Vehicles has mandated that reports of accidents involving autonomous vehicles be drafted and made available to the public. The present work shows an in-depth analysis of the accident reports filed by different manufacturers that are testing autonomous vehicles in California (testing data from September 2014 to March 2017). The data provides important information on autonomous vehicles accidents’ dynamics, related to the most frequent types of collisions and impacts, accident frequencies, and other contributing factors. The study also explores important implications related to future testing and validation of semi-autonomous vehicles, tracing the investigation back to current literature as well as to the current regulatory panorama. PMID:28931022
Examining accident reports involving autonomous vehicles in California.
Favarò, Francesca M; Nader, Nazanin; Eurich, Sky O; Tripp, Michelle; Varadaraju, Naresh
2017-01-01
Autonomous Vehicle technology is quickly expanding its market and has found in Silicon Valley, California, a strong foothold for preliminary testing on public roads. In an effort to promote safety and transparency to consumers, the California Department of Motor Vehicles has mandated that reports of accidents involving autonomous vehicles be drafted and made available to the public. The present work shows an in-depth analysis of the accident reports filed by different manufacturers that are testing autonomous vehicles in California (testing data from September 2014 to March 2017). The data provides important information on autonomous vehicles accidents' dynamics, related to the most frequent types of collisions and impacts, accident frequencies, and other contributing factors. The study also explores important implications related to future testing and validation of semi-autonomous vehicles, tracing the investigation back to current literature as well as to the current regulatory panorama.
NASA Technical Reports Server (NTRS)
Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott
2010-01-01
Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for autonomous ultrasound image collection during exploration missions.
NASA Technical Reports Server (NTRS)
Whittaker, William; Dowling, Kevin
1994-01-01
Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.
NASA Astrophysics Data System (ADS)
Whittaker, William; Dowling, Kevin
1994-03-01
Carnegie Mellon University's Autonomous Planetary Exploration Program (APEX) is currently building the Daedalus robot; a system capable of performing extended autonomous planetary exploration missions. Extended autonomy is an important capability because the continued exploration of the Moon, Mars and other solid bodies within the solar system will probably be carried out by autonomous robotic systems. There are a number of reasons for this - the most important of which are the high cost of placing a man in space, the high risk associated with human exploration and communication delays that make teleoperation infeasible. The Daedalus robot represents an evolutionary approach to robot mechanism design and software system architecture. Daedalus incorporates key features from a number of predecessor systems. Using previously proven technologies, the Apex project endeavors to encompass all of the capabilities necessary for robust planetary exploration. The Ambler, a six-legged walking machine was developed by CMU for demonstration of technologies required for planetary exploration. In its five years of life, the Ambler project brought major breakthroughs in various areas of robotic technology. Significant progress was made in: mechanism and control, by introducing a novel gait pattern (circulating gait) and use of orthogonal legs; perception, by developing sophisticated algorithms for map building; and planning, by developing and implementing the Task Control Architecture to coordinate tasks and control complex system functions. The APEX project is the successor of the Ambler project.
NASA Astrophysics Data System (ADS)
Takeshita, Y.; McGillis, W. R.; Martz, T. R.; Price, N.; Smith, J.; Donham, E. M.
2016-02-01
Coral reefs are a highly dynamic system, where large variability in environmental conditions (e.g. pH) occurs on timescales of minutes to hours. Yet, techniques that are capable of monitoring reef calcification rates without artificial confinement on the same frequency are scarce. Here, we present a 2 week time series of sub-hourly, in situ benthic net community production (Pnet) and net community calcification (Gnet) rates from a reef terrace at Palmyra Atoll using the Benthic Ecosystem and Acidification Monitoring System (BEAMS). The net metabolism rates reported here are measured under natural conditions, without any alterations to the environment (e.g. light, flow, pH). The BEAMS measures the chemical gradient and the current velocity profile in the benthic boundary layer using autonomous sensors to calculate the chemical flux from the benthos. The O2 and total alkalinity (TA) fluxes were used to calculate Pnet and Gnet, respectively; TA gradients were calculated from pH and O2 measurements. Gnet can be constrained to better than 3 mmol CaCO3 m-2 hr-1 using this approach, based on three simultaneous BEAMS deployments. A clear diel cycle of Gnet was observed, where the peak day time Gnet and average nighttime Gnet were 14 and 1 mmol CaCO3 m-2 hr-1, respectively. Integrated daily Gnet ranged from 76 to 219 mmol CaCO3 m-2 d-1, with an average of 107 ± 14 mmol CaCO3 m-2 d-1. Light had the strongest control over Gnet, with current velocity having a smaller yet noticeable effect. During the deployment, pH varied by 0.16 (ranged between 7.92 and 8.08), and a significant positive relationship was observed between pH and Gnet. However, pH was also positively correlated with current velocity and Pnet, making it difficult to determine if natural variability in pH was significantly affecting Gnet on the timescale of days to weeks.
Sample Return Robot Centennial Challenge
2012-06-16
Intrepid Systems Team member Mark Curry, left, talks with NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck, right, about his robot named "MXR - Mark's Exploration Robot" on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems Team member Mark Curry, right, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "MXR - Mark's Exploration Robot" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Curry's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Potential for parasite-induced biases in aquatic invertebrate population studies
Fisher, Justin D.L.; Mushet, David M.; Stockwell, Craig A.
2014-01-01
Recent studies highlight the need to include estimates of detection/capture probability in population studies. This need is particularly important in studies where detection and/or capture probability is influenced by parasite-induced behavioral alterations. We assessed potential biases associated with sampling a population of the amphipod Gammarus lacustris in the presence of Polymorphus spp. acanthocephalan parasites shown to increase positive phototaxis in their amphipod hosts. We trapped G. lacustris at two water depths (benthic and surface) and compared number of captures and number of parasitized individuals at each depth. While we captured the greatest number of G. lacustris individuals in benthic traps, parasitized individuals were captured most often in surface traps. These results reflect the phototaxic movement of infected individuals from benthic locations to sunlit surface waters. We then explored the influence of varying infection rates on a simulated population held at a constant level of abundance. Simulations resulted in increasingly biased abundance estimates as infection rates increased. Our results highlight the need to consider parasite-induced biases when quantifying detection and/or capture probability in studies of aquatic invertebrate populations.
A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration
Cepeda, Jesus S.; Chaimowicz, Luiz; Soto, Rogelio; Gordillo, José L.; Alanís-Reyes, Edén A.; Carrillo-Arce, Luis C.
2012-01-01
In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.
There is a growing need to understand how marine species respond to projected climate changes at geographic scales relevant to individual species. One approach is to use widespread and publicly available fisheries data. These databases provide a cost-effective means to explore...
The Role of Unconditional Parental Regard in Autonomy-Supportive Parenting.
Roth, Guy; Kanat-Maymon, Yaniv; Assor, Avi
2016-12-01
Two studies explored the role of parents' unconditional positive regard (UCPR) as perceived by adolescents and young adults in promoting the effectiveness of specific parenting practices that may support offspring's academic autonomous motivation. Study 1 tested the hypothesis that UCPR predicts rationale-giving and choice-provision practices and, at the same time, moderates their relations with adolescents' autonomous motivation. Study 2 replicated the association between UCPR and the parental practices, and further explored the role of parents' authenticity as an antecedent of UCPR and parental autonomy support. Study 1 included 125 adolescents and Study 2 considered 128 college-students and their mothers. The offspring reported on their perceptions of their mothers and on their autonomous motivation, and the mothers reported on their sense of authenticity. Both studies found consistent associations between UCPR and parenting practices that may support autonomous motivation. Moreover, Study 1 demonstrated that the rationale giving and choice provision were more strongly related to adolescents' autonomous motivation when adolescents perceived mothers as high on UCPR. Finally, Study 2 demonstrated that mothers' authenticity predicted UCPR, which in turn was related to autonomy-supportive parenting. Findings support the assumption that parents' autonomy-supportive practices are more effective when accompanied by UCPR. © 2015 Wiley Periodicals, Inc.
Modeling and Classifying Six-Dimensional Trajectories for Teleoperation Under a Time Delay
NASA Technical Reports Server (NTRS)
SunSpiral, Vytas; Wheeler, Kevin R.; Allan, Mark B.; Martin, Rodney
2006-01-01
Within the context of teleoperating the JSC Robonaut humanoid robot under 2-10 second time delays, this paper explores the technical problem of modeling and classifying human motions represented as six-dimensional (position and orientation) trajectories. A dual path research agenda is reviewed which explored both deterministic approaches and stochastic approaches using Hidden Markov Models. Finally, recent results are shown from a new model which represents the fusion of these two research paths. Questions are also raised about the possibility of automatically generating autonomous actions by reusing the same predictive models of human behavior to be the source of autonomous control. This approach changes the role of teleoperation from being a stand-in for autonomy into the first data collection step for developing generative models capable of autonomous control of the robot.
Autonomous Command Operation of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.
Grammatical Accuracy and Learner Autonomy in Advanced Writing
ERIC Educational Resources Information Center
Vickers, Caroline H.; Ene, Estela
2006-01-01
This paper aims to explore advanced ESL learners' ability to make improvements in grammatical accuracy by autonomously noticing and correcting their own grammatical errors. In the recent literature in SLA, it is suggested that classroom tasks can be used to foster autonomous language learning habits (cf. Dam 2001). Therefore, it is important to…
Sample Return Robot Centennial Challenge
2012-06-16
A judge for the NASA-WPI Sample Return Robot Centennial Challenge follows a robot on the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Autonomous Student Experiences in Outdoor and Adventure Education
ERIC Educational Resources Information Center
Daniel, Brad; Bobilya, Andrew J.; Kalisch, Kenneth R.; McAvoy, Leo H.
2014-01-01
This article explores the current state of knowledge regarding the use of autonomous student experiences (ASE) in outdoor and adventure education (OAE) programs. ASE are defined as components (e.g., solo, final expedition) in which participants have a greater measure of choice and control over the planning, execution, and outcomes of their…
Sahl, Jason W; Fairfield, Nathaniel; Harris, J Kirk; Wettergreen, David; Stone, William C; Spear, John R
2010-03-01
The deep phreatic thermal explorer (DEPTHX) is an autonomous underwater vehicle designed to navigate an unexplored environment, generate high-resolution three-dimensional (3-D) maps, collect biological samples based on an autonomous sampling decision, and return to its origin. In the spring of 2007, DEPTHX was deployed in Zacatón, a deep (approximately 318 m), limestone, phreatic sinkhole (cenote) in northeastern Mexico. As DEPTHX descended, it generated a 3-D map based on the processing of range data from 54 onboard sonars. The vehicle collected water column samples and wall biomat samples throughout the depth profile of the cenote. Post-expedition sample analysis via comparative analysis of 16S rRNA gene sequences revealed a wealth of microbial diversity. Traditional Sanger gene sequencing combined with a barcoded-amplicon pyrosequencing approach revealed novel, phylum-level lineages from the domains Bacteria and Archaea; in addition, several novel subphylum lineages were also identified. Overall, DEPTHX successfully navigated and mapped Zacatón, and collected biological samples based on an autonomous decision, which revealed novel microbial diversity in a previously unexplored environment.
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation.
Scheff, Jeremy D; Griffel, Benjamin; Corbett, Siobhan A; Calvano, Steve E; Androulakis, Ioannis P
2014-06-01
Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. Copyright © 2014 Elsevier Inc. All rights reserved.
On heart rate variability and autonomic activity in homeostasis and in systemic inflammation
Scheff, Jeremy D.; Griffel, Benjamin; Corbett, Siobhan A.; Calvano, Steve E.; Androulakis, Ioannis P.
2014-01-01
Analysis of heart rate variability (HRV) is a promising diagnostic technique due to the noninvasive nature of the measurements involved and established correlations with disease severity, particularly in inflammation-linked disorders. However, the complexities underlying the interpretation of HRV complicate understanding the mechanisms that cause variability. Despite this, such interpretations are often found in literature. In this paper we explored mathematical modeling of the relationship between the autonomic nervous system and the heart, incorporating basic mechanisms such as perturbing mean values of oscillating autonomic activities and saturating signal transduction pathways to explore their impacts on HRV. We focused our analysis on human endotoxemia, a well-established, controlled experimental model of systemic inflammation that provokes changes in HRV representative of acute stress. By contrasting modeling results with published experimental data and analyses, we found that even a simple model linking the autonomic nervous system and the heart confound the interpretation of HRV changes in human endotoxemia. Multiple plausible alternative hypotheses, encoded in a model-based framework, equally reconciled experimental results. In total, our work illustrates how conventional assumptions about the relationships between autonomic activity and frequency-domain HRV metrics break down, even in a simple model. This underscores the need for further experimental work towards unraveling the underlying mechanisms of autonomic dysfunction and HRV changes in systemic inflammation. Understanding the extent of information encoded in HRV signals is critical in appropriately analyzing prior and future studies. PMID:24680646
Pineda, Jesús; Cho, Walter; Starczak, Victoria; Govindarajan, Annette F; Guzman, Héctor M; Girdhar, Yogesh; Holleman, Rusty C; Churchill, James; Singh, Hanumant; Ralston, David K
2016-01-01
A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount's elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4-10 m above the bottom. The high density aggregations were constrained to 355-385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m(2), and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.
Cho, Walter; Starczak, Victoria; Govindarajan, Annette F.; Guzman, Héctor M.; Girdhar, Yogesh; Holleman, Rusty C.; Churchill, James; Singh, Hanumant; Ralston, David K.
2016-01-01
A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects. PMID:27114859
Fuzzy logic path planning system for collision avoidance by an autonomous rover vehicle
NASA Technical Reports Server (NTRS)
Murphy, Michael G.
1993-01-01
The Space Exploration Initiative of the United States will make great demands upon NASA and its limited resources. One aspect of great importance will be providing for autonomous (unmanned) operation of vehicles and/or subsystems in space flight and surface exploration. An additional, complicating factor is that much of the need for autonomy of operation will take place under conditions of great uncertainty or ambiguity. Issues in developing an autonomous collision avoidance subsystem within a path planning system for application in a remote, hostile environment that does not lend itself well to remote manipulation by Earth-based telecommunications is addressed. A good focus is unmanned surface exploration of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. Four major issues addressed are (1) avoidance of a fuzzy moving obstacle; (2) backoff from a deadend in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system. Examples of the need for collision avoidance by an autonomous rover vehicle on the surface of Mars with a moving obstacle would be wind-blown debris, surface flow or anomalies due to subsurface disturbances, another vehicle, etc. The other issues of backoff, sensor fusion, and adaptive learning are important in the overall path planning system.
NASA Astrophysics Data System (ADS)
Oliveira, José J.
2017-10-01
In this paper, we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.
NASA Astrophysics Data System (ADS)
Williams, Mary-Anne
This paper uses robot experience to explore key concepts of autonomy, life and being. Unfortunately, there are no widely accepted definitions of autonomy, life or being. Using a new cognitive agent architecture we argue that autonomy is a key ingredient for both life and being, and set about exploring autonomy as a concept and a capability. Some schools of thought regard autonomy as the key characteristic that distinguishes a system from an agent; agents are systems with autonomy, but rarely is a definition of autonomy provided. Living entities are autonomous systems, and autonomy is vital to life. Intelligence presupposes autonomy too; what would it mean for a system to be intelligent but not exhibit any form of genuine autonomy. Our philosophical, scientific and legal understanding of autonomy and its implications is immature and as a result progress towards designing, building, managing, exploiting and regulating autonomous systems is retarded. In response we put forward a framework for exploring autonomy as a concept and capability based on a new cognitive architecture. Using this architecture tools and benchmarks can be developed to analyze and study autonomy in its own right as a means to further our understanding of autonomous systems, life and being. This endeavor would lead to important practical benefits for autonomous systems design and help determine the legal status of autonomous systems. It is only with a new enabling understanding of autonomy that the dream of Artificial Intelligence and Artificial Life can be realized. We argue that designing systems with genuine autonomy capabilities can be achieved by focusing on agent experiences of being rather than attempting to encode human experiences as symbolic knowledge and know-how in the artificial agents we build.
NASA Astrophysics Data System (ADS)
Zuschin, Martin; Riedel, Bettina; Stachowitsch, Michael; Cermelj, Branko
2010-05-01
One predicted effect of global climate change, specifically global warming, is the increase in the temperatures and stratification of shallow coastal and estuarine systems. This, coupled with ongoing anthropogenic eutrophication, will exacerbate hypoxia and benthic mortalities, significantly damaging these critical marine ecosystems. These phenomena are particularly severe on sublitoral soft-bottoms such as the poorly sorted silty sands at the study site in the northern Adriatic Sea. We deployed a specially developed underwater chamber to artificially induce anoxia in situ. Our Experimental Anoxia Generating Unit (EAGU) is a large plexiglass chamber that combines a digital camera with oxygen/hydrogen sulphide/pH sensors along with flashes and battery packs. The unit can be deployed for up to five days to autonomously generate oxygen crises and quantify both physico-chemical parameters and benthic responses. The system is initially positioned in an "open" configuration (open-sided aluminium frame) over the benthic fauna ("control" experiment). After 24 h the EAGU is switched to its "closed" configuration (plexiglass enclosure) and repositioned over the same assemblage. In this contribution, we focus on the natural oxygen content, temperature and pH of bottom waters during summer, the course of oxygen decrease during our experiments and the onset of H2S development. Oxygen content of the bottom water, a few centimetres above the sediment-water interface, ranges from ~3.5-8 but is mostly between 4-6 ml l-1 during July to September of the study periods (2005 and 2006) and decreases to zero within ~1-3 days after initiation of our experiments. In parallel, H2S starts to develop at the onset of anoxia. Water temperatures at the bottom were stable during experiments and ranged from 18.5°C to 21.4°C, but pH decreased from 8.3 to 8.1 at the beginning to 7.9 to 7.7 at the end of the experiments. Sediment profiling indicates that the diffusive benthic boundary layer is approximately 2.5 mm thick and that oxygen values decrease from ~2 ml l-1 3.5 mm above the sediment water interface to virtually zero at the interface. PH-values in 2 mm depth decrease from 8.15 to 7.6 within the first 10 h of the experiment. This indicates that the most reactive organic matter is decomposing in the uppermost few mm of the sediment. These data can be related to behavioural responses and mortality sequences of benthic faunas, including echinoids, crustaceans, molluscs and anemones. Beginning hypoxia (≤2.0 ml l-1 DO) elicited escape patterns such as increased horizontal and vertical locomotion of animals. Moderate hypoxia (≤1.0 ml l-1 DO) triggered species-specific sublethal effects such as arm-tipping in ophiuroids or extension from the sediment in sea anemones. At severe hypoxia (≤0.5 ml l-1 DO) infaunal organisms began to emerge and first mortalities occurred. Some crustaceans and echinoderms are among the first to die, but sea anemones and large gastropods can even survive the onset of hydrogen sulfide.
Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.
Stone Aerospace Testing of an Autonomous Underwater Vehicle
2008-06-21
View of the Autonomous Underwater Vehicle (AUV) known as Endurance designed by Stone Aerospace being lowered into the Neutral Buoyancy Laboratory (NBL) pool at the Sonny Carter Training Facility (SCTF) for testing. The AUV is being tested for potential exploration of Jupiter's moon Europa. This image was featured in the August 2008 JSC Roundup, Volume 47, Number 8.
NREL, EasyMile Collaboration to Usher in New Wave of Autonomous Vehicle R&D
technology such as wireless charging, connected and managed charging, and advanced energy storage. EasyMile International Airport. The NREL collaboration will explore opportunities for how wireless charging could enable wireless charging are a natural fit with autonomous and connected vehicles. We're excited this opportunity
Model-based Executive Control through Reactive Planning for Autonomous Rovers
NASA Technical Reports Server (NTRS)
Finzi, Alberto; Ingrand, Felix; Muscettola, Nicola
2004-01-01
This paper reports on the design and implementation of a real-time executive for a mobile rover that uses a model-based, declarative approach. The control system is based on the Intelligent Distributed Execution Architecture (IDEA), an approach to planning and execution that provides a unified representational and computational framework for an autonomous agent. The basic hypothesis of IDEA is that a large control system can be structured as a collection of interacting agents, each with the same fundamental structure. We show that planning and real-time response are compatible if the executive minimizes the size of the planning problem. We detail the implementation of this approach on an exploration rover (Gromit an RWI ATRV Junior at NASA Ames) presenting different IDEA controllers of the same domain and comparing them with more classical approaches. We demonstrate that the approach is scalable to complex coordination of functional modules needed for autonomous navigation and exploration.
Rendezvous and Docking for Space Exploration
NASA Technical Reports Server (NTRS)
Machula, M. F.; Crain, T.; Sandhoo, G. S.
2005-01-01
To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.
Productive Information Foraging
NASA Technical Reports Server (NTRS)
Furlong, P. Michael; Dille, Michael
2016-01-01
This paper presents a new algorithm for autonomous on-line exploration in unknown environments. The objective of the algorithm is to free robot scientists from extensive preliminary site investigation while still being able to collect meaningful data. We simulate a common form of exploration task for an autonomous robot involving sampling the environment at various locations and compare performance with a simpler existing algorithm that is also denied global information. The result of the experiment shows that the new algorithm has a statistically significant improvement in performance with a significant effect size for a range of costs for taking sampling actions.
Thaler, Lea; Israel, Mimi; Antunes, Juliana Mazanek; Sarin, Sabina; Zuroff, David C; Steiger, Howard
2016-06-01
We explored the effect of autonomous and controlled motivation on outcomes for patients undergoing inpatient treatment for Anorexia Nervosa (AN). Data on 80 patients with AN were available for the start of treatment, and for 49 at end of treatment. Patients completed measures of autonomous and controlled motivation, eating disorder symptoms and attitudes, and comorbid psychopathology at the start and end of treatment. Patients showed significant improvements on eating symptoms and comorbid psychopathology over the course of treatment. Autonomous motivation was a significant predictor of change in severity of eating symptoms and attitudes such that patients with higher pre-treatment levels of autonomous motivation showed larger post-treatment reductions on these indices. No such effects were associated with controlled motivation. This study highlights a relationship between autonomous motivation and outcome in an inpatient setting. © 2016 Wiley Periodicals, Inc. (Int J Eat Disord 2016; 49:626-629). © 2016 Wiley Periodicals, Inc.
An Astronaut Assistant Rover for Martian Surface Exploration
NASA Astrophysics Data System (ADS)
1999-01-01
Lunar exploration, recent field tests, and even on-orbit operations suggest the need for a robotic assistant for an astronaut during extravehicular activity (EVA) tasks. The focus of this paper is the design of a 300-kg, 2 cubic meter, semi-autonomous robotic rover to assist astronauts during Mars surface exploration. General uses of this rover include remote teleoperated control, local EVA astronaut control, and autonomous control. Rover size, speed, sample capacity, scientific payload and dexterous fidelity were based on known Martian environmental parameters,- established National Aeronautics and Space Administration (NASA) standards, the NASA Mars Exploration Reference Mission, and lessons learned from lunar and on-orbit sorties. An assumed protocol of a geological, two astronaut EVA performed during daylight hours with a maximum duration of tour hour dictated the following design requirements: (1) autonomously follow the EVA team over astronaut traversable Martian terrain for four hours; (2) retrieve, catalog, and carry 12 kg of samples; (3) carry tools and minimal in-field scientific equipment; (4) provide contingency life support; (5) compile and store a detailed map of surrounding terrain and estimate current position with respect to base camp; (6) provide supplemental communications systems; and (7) carry and support the use of a 7 degree - of- freedom dexterous manipulator.
NASA Astrophysics Data System (ADS)
Drury, A.; John, C. M.; Lee, G.; Shevenell, A.
2012-12-01
The late Miocene (11.61 - 5.33 Ma) was one of the more stable climatic periods of the Cenozoic. Superimposed on this stable background climate, a number of threshold events occurred, including the late Miocene Carbon Isotope Shift (CIS, 7.6-6.6 Ma) and the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma). The goal of our study is to constrain the background climate cyclicity during the late Miocene. A better knowledge of the background cyclicity in the Earth's climate system is required to advance understanding of, and to successfully model, climate variability. Improving understanding of how changes in background climate variability affect important parameters and fluxes, such as ice volume and the carbon pump, is crucial for explaining the occurrence of threshold events such as the CIS and MSC during an otherwise climatically stable period. The study site is located in the Eastern Equatorial Pacific (IODP Site U1338, Expedition 321). U1338 was chosen, as the equatorial Pacific is an important component of the global climate system, representing half of the total tropical ocean and a quarter of the global ocean. We present δ18O and δ13C records from 3.5 to 8.5 Ma using the benthic foraminiferal species Cibicidoides mundulus, with a resolution of 3-4 kyr, which resolves all Milankovitch scale cycles. We present a revised shipboard age model, generated from new biostratigraphic age constraints based on planktic foraminiferal datums. Benthic δ18O records at IODP Site U1338 reflect the stable nature of the late Miocene climate accurately, with long-term trends showing low-amplitude (0.2‰) variations. Superimposed on this are higher-amplitude short-term fluctuations (0.3-0.4‰). Deep-sea benthic foraminferal δ18O records both temperature and the δ18O composition of global deep seawater (δ18Odsw). δ18Odsw largely reflects glacio-eustatic change. Our benthic δ18O implies that long-term trends in ice volume were minimal during the late Miocene. However, the short-term variations imply that some significant sea level fluctuations occurred. The benthic δ13C long-term trend varies by ~0.75‰. The late Miocene CIS is visible as a ~1.25‰ excursion. Short-term fluctuations in δ13C record are slightly lower amplitude (~0.50‰). Preliminary spectral analysis highlights the strength of the eccentricity forcing (400 and 100-kyr cycles) in both the δ18O and δ13C records. The 41-kyr obliquity cycles are also visible in the δ18O records. The benthic δ13C records are combined with preliminary low-resolution δ13C records measured on the planktic foraminiferal species Globigerinoides sacculifer from the same samples. Co-varying benthic-planktic δ13C is driven by changes in the ocean reservoir δ13C, whereas con/diverging benthic-planktic δ13C is related to changes in surface productivity. This initial comparison may shed some light on the forcing of the CIS, and the implications for late Miocene climate. Future work will combine benthic δ18O with independent temperature proxies, such as Mg/Ca and clumped isotopes, to isolate the δ18Odsw signal and make more robust inferences about the background cryosphere dynamics during this time. We will also increase the resolution of the planktic foraminiferal records to enable comparison of the dominant forcing in the benthic and planktic records.
Symmetries and solutions of the non-autonomous von Bertalanffy equation
NASA Astrophysics Data System (ADS)
Edwards, Maureen P.; Anderssen, Robert S.
2015-05-01
For growth in a closed environment, which is indicative of the situation in laboratory experiments, autonomous ODE models do not necessarily capture the dynamics under investigation. The importance and impact of a closed environment arise when the question under examination relates, for example, to the number of the surviving microbes, such as in a study of the spoilage and contamination of food, the gene silencing activity of fungi or the production of a chemical compound by bacteria or fungi. Autonomous ODE models are inappropriate as they assume that only the current size of the population controls the growth-decay dynamics. This is reflected in the fact that, asymptotically, their solutions can only grow or decay monotonically or asymptote. Non-autonomous ODE models are not so constrained. A natural strategy for the choice of non-autonomous ODEs is to take appropriate autonomous ones and change them to be non-autonomous through the introduction of relevant non-autonomous terms. This is the approach in this paper with the focus being the von Bertalanffy equation. Since this equation has independent importance in relation to practical applications in growth modelling, it is natural to explore the deeper relationships between the introduced non-autonomous terms through a symmetry analysis, which is the purpose and goal of the current paper. Infinitesimals are derived which allow particular forms of the non-autonomous von Bertalanffy equation to be transformed into autonomous forms for which some new analytic solutions have been found.
An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1993-01-01
This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation.
Insect-Based Vision for Autonomous Vehicles: A Feasibility Study
NASA Technical Reports Server (NTRS)
Srinivasan, Mandyam V.
1999-01-01
The aims of the project were to use a high-speed digital video camera to pursue two questions: i) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; To study the fine structure of insect flight trajectories with in order to better understand the characteristics of flight control, orientation and navigation.
Early Synthetic Prototyping: Exploring Designs and Concepts Within Games
2014-12-01
UAS unmanned aircraft system UGV unmanned ground vehicle USD(AT&L) Under Secretary of Defense for Acquisition, Technology, and Logistics... unmanned aircraft system (UAS) realm for the wingman concept? The players were familiar with the Marine Corps’ unmanned tactical autonomous control and...UTACCS Unmanned Tactical Autonomous Control and Collaboration System VBIED vehicle borne improvised explosive device VBS2/3 Virtual Battlespace
Insect-Based Vision for Autonomous Vehicles: A Feasibility Study
NASA Technical Reports Server (NTRS)
Srinivasan, Mandyam V.
1999-01-01
The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
NASA Technical Reports Server (NTRS)
Gisser, D. G.; Frederick, D. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. W.
1976-01-01
Problems related to the design and control of an autonomous rover for the purpose of unmanned exploration of the planets were considered. Building on the basis of prior studies, a four wheeled rover of unusual mobility and maneuverability was further refined and tested under both laboratory and field conditions. A second major effort was made to develop autonomous guidance. Path selection systems capable of dealing with relatively formidable hazard and terrains involving various short range (1.0-3.0 meters), hazard detection systems using a triangulation detection concept were simulated and evaluated. The mechanical/electronic systems required to implement such a scheme were constructed and tested. These systems include: laser transmitter, photodetectors, the necessary data handling/controlling systems and a scanning mast. In addition, a telemetry system to interface the vehicle, the off-board computer and a remote control module for operator intervention were developed. Software for the autonomous control concept was written. All of the systems required for complete autonomous control were shown to be satisfactory except for that portion of the software relating to the handling of interrupt commands.
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.
Modeling Benthic Sediment Processes to Predict Water ...
The benthic sediment acts as a huge reservoir of particulate and dissolved material (within interstitial water) which can contribute to loading of contaminants and nutrients to the water column. A benthic sediment model is presented in this report to predict spatial and temporal benthic fluxes of nutrients and chemicals in Narragansett Bay. A benthic sediment model is presented in this report to identify benthic flux into the water column in Narragansett Bay. Benthic flux is essential to properly model water quality and ecology in estuarine and coastal systems.
Planning and Execution for an Autonomous Aerobot
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.
2010-01-01
The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.
Field studies have shown that mayflies (Ephemeroptera) tend to be more sensitive than other benthic macroinvertebrates to elevated levels of total dissolved solids in streams. While work with other species has shown that major ion toxicity is dependent on the ionic composition o...
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Floyd, S. R.
2005-01-01
Addressable Reconfigurable Technology (ART) based structures: Mission Concepts based on Addressable Reconfigurable Technology (ART), originally studied for future ANTS (Autonomous Nanotechnology Swarm) Space Architectures, are now being developed as rovers for nearer term use in lunar and planetary surface exploration. The architecture is based on the reconfigurable tetrahedron as a building block. Tetrahedra are combined to form space-filling networks, shaped for the required function. Basic structural components are highly modular, addressable arrays of robust nodes (tetrahedral apices) from which highly reconfigurable struts (tetrahedral edges), acting as supports or tethers, are efficiently reversibly deployed/stowed, transforming and reshaping the structures as required.
A six-legged rover for planetary exploration
NASA Technical Reports Server (NTRS)
Simmons, Reid; Krotkov, Eric; Bares, John
1991-01-01
To survive the rigors and isolation of planetary exploration, an autonomous rover must be competent, reliable, and efficient. This paper presents the Ambler, a six-legged robot featuring orthogonal legs and a novel circulating gait, which has been designed for traversal of rugged, unknown environments. An autonomous software system that integrates perception, planning, and real-time control has been developed to walk the Ambler through obstacle strewn terrain. The paper describes the information and control flow of the walking system, and how the design of the mechanism and software combine to achieve competent walking, reliable behavior in the face of unexpected failures, and efficient utilization of time and power.
NASA Astrophysics Data System (ADS)
Narayan Ray, Dip; Majumder, Somajyoti
2014-07-01
Several attempts have been made by the researchers around the world to develop a number of autonomous exploration techniques for robots. But it has been always an important issue for developing the algorithm for unstructured and unknown environments. Human-like gradual Multi-agent Q-leaming (HuMAQ) is a technique developed for autonomous robotic exploration in unknown (and even unimaginable) environments. It has been successfully implemented in multi-agent single robotic system. HuMAQ uses the concept of Subsumption architecture, a well-known Behaviour-based architecture for prioritizing the agents of the multi-agent system and executes only the most common action out of all the different actions recommended by different agents. Instead of using new state-action table (Q-table) each time, HuMAQ uses the immediate past table for efficient and faster exploration. The proof of learning has also been established both theoretically and practically. HuMAQ has the potential to be used in different and difficult situations as well as applications. The same architecture has been modified to use for multi-robot exploration in an environment. Apart from all other existing agents used in the single robotic system, agents for inter-robot communication and coordination/ co-operation with the other similar robots have been introduced in the present research. Current work uses a series of indigenously developed identical autonomous robotic systems, communicating with each other through ZigBee protocol.
A translational in vivo model of trigeminal autonomic cephalalgias: therapeutic characterization.
Akerman, Simon; Holland, Philip R; Summ, Oliver; Lasalandra, Michele P; Goadsby, Peter J
2012-12-01
Trigeminal autonomic cephalalgias are highly disabling primary headache disorders, characterized by severe unilateral head pain and associated ipsilateral cranial autonomic features. There is limited understanding of their pathophysiology and how and where treatments act to reduce symptoms; this is significantly hindered by a lack of animal models. We have developed the first animal model to explore trigeminal autonomic cephalalgias, using stimulation within the brainstem, at the level of the superior salivatory nucleus, to activate the trigeminal autonomic reflex arc. Using electrophysiological recording of neurons of the trigeminocervical complex and laser Doppler blood flow changes around the ipsilateral lacrimal duct, superior salivatory nucleus stimulation exhibited both neuronal trigeminovascular and cranial autonomic manifestations. These responses were specifically inhibited by the autonomic ganglion blocker hexamethonium bromide. These data demonstrate that brainstem activation may be the driver of both sensory and autonomic symptoms in these disorders, and part of this activation may be via the parasympathetic outflow to the cranial vasculature. Additionally, both sensory and autonomic manifestations were significantly inhibited by highly effective treatments for trigeminal autonomic cephalalgias, such as oxygen, indomethacin and triptans, and some part of their therapeutic action appears to be specifically on the parasympathetic outflow to the cranial vasculature. Treatments more used to migraine, such as naproxen and a calcitonin gene-related peptide receptor inhibitor, olcegepant, were less effective in this model. This is the first model to represent the phenotype of trigeminal autonomic cephalalgias and their response to therapies, and indicates the parasympathetic pathway may be uniquely involved in their pathophysiology and targeted to relieve symptoms.
Beltrán-Velasco, Ana Isabel; Bellido-Esteban, Alberto; Ruisoto-Palomera, Pablo; Clemente-Suárez, Vicente Javier
2018-01-12
The aim of the present study was to explore changes in the autonomic stress response of Psychology students in a Psychology Objective Structured Clinical Examination (OSCE) and their relationship with OSCE performance. Variables of autonomic modulation by the analysis of heart rate variability in temporal, frequency and non-linear domains, subjective perception of distress strait and academic performance were measured before and after the two different evaluations that composed the OSCE. A psychology objective structured clinical examination composed by two different evaluation scenarios produced a large anxiety anticipatory response, a habituation response in the first of the evaluation scenarios and a in the entire evaluation, and a no habituation response in the second evaluation scenario. Autonomic modulation parameters do not correlate with academic performance of students.
NASA Astrophysics Data System (ADS)
Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark
2008-01-01
Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.
Autonomous Underwater Vehicle Architecture Synthesis for Shipwreck Interior Exploration
2015-12-01
silt-out, strong and unpredictable currents, abrasion puncture and shock damage, temperature and pressure variations, toxic substances, corrosion...smooth to resist snagging on debris, and sufficiently lightweight to be portable by two men. 2. The vehicle shall be capable of autonomous...1989, the Komsomolets (K-278), a Russian nuclear attack submarine operating in the Norwegian Sea, went down after unsuccessfully fighting a fire in
Consortium for Robotics & Unmanned Systems Education & Research (CRUSER)
2012-09-30
as facilities at Camp Roberts, Calif. and frequent experimentation events, the Many vs. Many ( MvM ) Autonomous Systems Testbed provides the...and expediently translate theory to practice. The MvM Testbed is designed to integrate technological advances in hardware (inexpensive, expendable...designed to leverage the MvM Autonomous Systems Testbed to explore practical and operationally relevant avenues to counter these “swarm” opponents, and
Multiple Integrated Navigation Sensors for Improved Occupancy Grid FastSLAM
2011-03-01
to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air...autonomous vehicle exploration with applications to search and rescue. To current knowledge , this research presents the first SLAM solution to...solution is a key component of an autonomous vehicle, especially one whose mission involves gaining knowledge of unknown areas. It provides the ability
McMeans, Bailey C; Arts, Michael T; Fisk, Aaron T
2015-03-15
Benthic and pelagic food web components in Cumberland Sound, Canada were explored as sources of total mercury (THg) to Greenland Sharks (Somniosus microcephalus) via both bottom-up food web transfer and top-down shark feeding behavior. Log10THg increased significantly with δ(15)N and trophic position from invertebrates (0.01 ± 0.01 μg · g(-1) [113 ± 1 ng · g(-1)] dw in copepods) to Greenland Sharks (3.54 ± 1.02 μg · g(-1)). The slope of the log10THg vs. δ(15)N linear regression was higher for pelagic compared to benthic food web components (excluding Greenland Sharks, which could not be assigned to either food web), which resulted from THg concentrations being higher at the base of the benthic food web (i.e., in benthic than pelagic primary consumers). However, feeding habitat is unlikely to consistently influence shark THg exposure in Cumberland Sound because THg concentrations did not consistently differ between benthic and pelagic shark prey. Further, size, gender and feeding behavior (inferred from stable isotopes and fatty acids) were unable to significantly explain THg variability among individual Greenland Sharks. Possible reasons for this result include: 1) individual sharks feeding as generalists, 2) high overlap in THg among shark prey, and 3) differences in turnover time between ecological tracers and THg. This first assessment of Greenland Shark THg within an Arctic food web revealed high concentrations consistent with biomagnification, but low ability to explain intra-specific THg variability. Our findings of high THg levels and consumption of multiple prey types, however, suggest that Greenland Sharks acquire THg through a variety of trophic pathways and are a significant contributor to the total biotic THg pool in northern seas. Copyright © 2014 Elsevier B.V. All rights reserved.
New Sensor Technologies for Ocean Exploration and Observation
NASA Astrophysics Data System (ADS)
Manley, J. E.
2005-12-01
NOAA's Office of Ocean Exploration (OE) is an active supporter of new ocean technologies. Sensors, in particular, have been a focus of recent investments as have platforms that can support both dedicated voyages of discovery and Integrated Ocean Observing Systems (IOOS). Recent programs sponsored by OE have developed technical solutions that will be of use in sensor networks and in stand-alone ocean research programs. Particular projects include: 1) the Joint Environmental Science Initiative (JESI) a deployment of a highly flexible marine sensing system, in collaboration with NASA, that demonstrated a new paradigm for marine ecosystem monitoring. 2) the development and testing of an in situ marine mass spectrometer, via grant to the Woods Hole Oceanographic Institution (WHOI). This instrument has been designed to function at depths up to 5000 meters. 3) the evolution of glider AUVs for aerial deployment, through a grant to Webb Research Corporation. This program's goal is air certification for gliders, which will allow them to be operationally deployed from NAVOCEANO aircraft. 4) the development of new behaviors for the Autonomous Benthic Explorer (ABE) allowing it to anchor in place and await instructions, through a grant to WHOI. This will support the operational use of AUVs in observing system networks. 5) development of new sensors for AUVs through a National Ocean Partnership Program (NOPP) award to Rutgers Universty. This project will develop a Fluorescence Induction Relaxation (FIRe) System to measure biomass and integrate the instrument into an AUV glider. 6) an SBIR award for the development of anti-fouling technologies for solar panels and in situ sensors. This effort at Nanohmics Inc. is developing natural product antifoulants (NPA) in optical quality hard polymers. The technology and results of each of these projects are one component of OE's overall approach to technology research and development. OE's technology program represents the leading edge of NOAA investment in ocean sensors and tools that eventually will find application in mission areas such as IOOS. This "big picture" provides context for focused information on detailed results of OE investments. As NOAA increases its investments in IOOS, and related technologies, these projects are timely and should be beneficial to the entire environmental sensor network community.
Weinstein, Netta; Ryan, Richard M
2010-02-01
Self-determination theory posits that the degree to which a prosocial act is volitional or autonomous predicts its effect on well-being and that psychological need satisfaction mediates this relation. Four studies tested the impact of autonomous and controlled motivation for helping others on well-being and explored effects on other outcomes of helping for both helpers and recipients. Study 1 used a diary method to assess daily relations between prosocial behaviors and helper well-being and tested mediating effects of basic psychological need satisfaction. Study 2 examined the effect of choice on motivation and consequences of autonomous versus controlled helping using an experimental design. Study 3 examined the consequences of autonomous versus controlled helping for both helpers and recipients in a dyadic task. Finally, Study 4 manipulated motivation to predict helper and recipient outcomes. Findings support the idea that autonomous motivation for helping yields benefits for both helper and recipient through greater need satisfaction. Limitations and implications are discussed. Copyright 2009 APA, all rights reserved
Synthesis of benthic flux components in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil
NASA Astrophysics Data System (ADS)
King, J. N.
2012-12-01
The primary objective of this work is to synthesize components of benthic flux in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil. Specifically, the component of benthic discharge flux forced by the terrestrial hydraulic gradient is 0.8 m3 d-1; components of benthic discharge and recharge flux associated with the groundwater tidal prism are both 2.1 m3 d-1; components of benthic discharge and recharge flux forced by surface-gravity wave setup are both 6.3 m3 d-1; the component of benthic discharge flux that transports radium-228 is 350 m3 d-1; and components of benthic discharge and recharge flux forced by surface-gravity waves propagating over a porous medium are both 1400 m3 d-1. (All models are normalized per meter shoreline.) Benthic flux is a function of components forced by individual mechanisms and nonlinear interactions that exist between components. Constructive and destructive interference may enhance or diminish the contribution of benthic flux components. It may not be possible to model benthic flux by summing component magnitudes. Geochemical tracer techniques may not accurately model benthic discharge flux or submarine groundwater discharge (SGD). A conceptual model provides a framework on which to quantitatively characterize benthic discharge flux and SGD with a multifaceted approach.
Synthesis of benthic flux components in the Patos Lagooncoastal zone, Rio Grande do Sul, Brazil
King, Jeffrey N.
2012-01-01
The primary objective of this work is to synthesize components of benthic flux in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil. Specifically, the component of benthic discharge flux forced by the terrestrial hydraulic gradient is 0.8 m3 d-1; components of benthic discharge and recharge flux associated with the groundwater tidal prism are both 2.1 m3 d-1; components of benthic discharge and recharge flux forced by surface-gravity wave setup are both 6.3 m3 d-1; the component of benthic discharge flux that transports radium-228 is 350 m3 d-1; and components of benthic discharge and recharge flux forced by surface-gravity waves propagating over a porous medium are both 1400 m3 d-1. (All models are normalized per meter shoreline.) Benthic flux is a function of components forced by individual mechanisms and nonlinear interactions that exist between components. Constructive and destructive interference may enhance or diminish the contribution of benthic flux components. It may not be possible to model benthic flux by summing component magnitudes. Geochemical tracer techniques may not accurately model benthic discharge flux or submarine groundwater discharge (SGD). A conceptual model provides a framework on which to quantitatively characterize benthic discharge flux and SGD with a multifaceted approach.
NASA Astrophysics Data System (ADS)
Roma, Peter G.; Hursh, Steven R.; Hienz, Robert D.; Emurian, Henry H.; Gasior, Eric D.; Brinson, Zabecca S.; Brady, Joseph V.
2011-05-01
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3-4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.
2005-02-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
NASA Technical Reports Server (NTRS)
Carsey, Frank; Behar, Alberto
2004-01-01
We have continued to develop a concept for use of autonomous rovers, originally developed for use in planetary exploration, in polar science on Earth; the concept was the subject of a workshop, and this report summarizes and extends that workshop. The workshop on Antarctic Autonomous Scientific Vehicles and Traverses met at the National Geographic Society on February 14 and 15, 2001 to discuss scientific objectives and benefits of the use of autonomous rovers. The participants enthusiastically viewed rovers as being uniquely valuable for such tasks as data taking on tedious or repetitive routes, traverses in polar night, difficult or hazardous routes, extremely remote regions, routes requiring only simple instrumentation, traverses that must be conducted at low speed, augments of manned traverses, and scientific procedures not compatible with human presence or combustion engines. The workshop has concluded that instrumented autonomous vehicles, of the type being developed for planetary exploration, have the potential to contribute significantly to the way science in conducted in Antarctica while also aiding planetary technology development, and engaging the public's interest. Specific objectives can be supported in understanding ice sheet mass balance, sea ice heat and momentum exchange, and surface air chemistry processes. In the interval since the workshop, we have concluded that organized program to employ such rovers to perform scientific tasks in the Fourth International Polar Year would serve the objectives of that program well.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
Information-Driven Autonomous Exploration for a Vision-Based Mav
NASA Astrophysics Data System (ADS)
Palazzolo, E.; Stachniss, C.
2017-08-01
Most micro aerial vehicles (MAV) are flown manually by a pilot. When it comes to autonomous exploration for MAVs equipped with cameras, we need a good exploration strategy for covering an unknown 3D environment in order to build an accurate map of the scene. In particular, the robot must select appropriate viewpoints to acquire informative measurements. In this paper, we present an approach that computes in real-time a smooth flight path with the exploration of a 3D environment using a vision-based MAV. We assume to know a bounding box of the object or building to explore and our approach iteratively computes the next best viewpoints using a utility function that considers the expected information gain of new measurements, the distance between viewpoints, and the smoothness of the flight trajectories. In addition, the algorithm takes into account the elapsed time of the exploration run to safely land the MAV at its starting point after a user specified time. We implemented our algorithm and our experiments suggest that it allows for a precise reconstruction of the 3D environment while guiding the robot smoothly through the scene.
Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.
2001-01-01
The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.
NASA Astrophysics Data System (ADS)
Arndt, Sandra
2016-04-01
Marine sediments are key components in the Earth System. They host the largest carbon reservoir on Earth, provide the only long term sink for atmospheric CO2, recycle nutrients and represent the most important climate archive. Biogeochemical processes in marine sediments are thus essential for our understanding of the global biogeochemical cycles and climate. They are first and foremost, donor controlled and, thus, driven by the rain of particulate material from the euphotic zone and influenced by the overlying bottom water. Geochemical species may undergo several recycling loops (e.g. authigenic mineral precipitation/dissolution) before they are either buried or diffuse back to the water column. The tightly coupled and complex pelagic and benthic process interplay thus delays recycling flux, significantly modifies the depositional signal and controls the long-term removal of carbon from the ocean-atmosphere system. Despite the importance of this mutual interaction, coupled regional/global biogeochemical models and (paleo)climate models, which are designed to assess and quantify the transformations and fluxes of carbon and nutrients and evaluate their response to past and future perturbations of the climate system either completely neglect marine sediments or incorporate a highly simplified representation of benthic processes. On the other end of the spectrum, coupled, multi-component state-of-the-art early diagenetic models have been successfully developed and applied over the past decades to reproduce observations and quantify sediment-water exchange fluxes, but cannot easily be coupled to pelagic models. The primary constraint here is the high computation cost of simulating all of the essential redox and equilibrium reactions within marine sediments that control carbon burial and benthic recycling fluxes: a barrier that is easily exacerbated if a variety of benthic environments are to be spatially resolved. This presentation provides an integrative overview of the benthic-pelagic coupling that accounts for the complex process interplay from the euphotic ocean to the deep sediment. It explores the intensity of the benthic-pelagic coupling across different environments and from the seasonal to the geological timescale. Different modelling approaches of coupling sediment and water column dynamics in regional/global biogeochemical models and (paleo)climate models are critically evaluated and their most important limitations, as well as the implications for our ability to predict the response of the global carbon cycle to past or future perturbations is discussed. Finally, the presentation identifies major roadblocks to the development of new model approaches and highlights how new techniques, new observational and laboratory data, as well as a close interdisciplinary collaboration can overcome these roadblocks.
Muntadas, Alba; de Juan, Silvia; Demestre, Montserrat
2015-02-15
The species interaction and their biological traits (BT) determine the function of benthic communities and, hence, the delivery of ecosystem services. Therefore, disturbance of benthic communities by trawling may compromise ecosystem service delivery, including fisheries' catches. In this work, we explore 1) the impact of trawling activities on benthic functional components (after the BTA approach) and 2) how trawling impact may affect the ecosystem services delivered by benthic communities. To this aim, we assessed the provision of ecosystem services by adopting the concept of Ecosystem Service Providers (ESP), i.e. ecological units that perform ecosystem functions that will ultimately deliver ecosystem services. We studied thirteen sites subjected to different levels of fishing effort in the Mediterranean. From a range of environmental variables included in the study, we found ESPs to be mainly affected by fishing effort and grain size. Our results suggested that habitat type has significant effects on the distribution of ESPs and this natural variability influences ESP response to trawling at a specific site. In order to summarize the complex relationships between human uses, ecosystem components and the demand for ecosystem services in trawling grounds, we adapted a DPSIR (Drivers-Pressures-State Change-Impact-Response) framework to the study area, emphasizing the role of society as Drivers of change and actors demanding management Responses. This integrative framework aims to inform managers about the interactions between all the elements involved in the management of trawling grounds, highlighting the need for an integrated approach in order to ensure ecosystem service provision. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)
2010-01-01
A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.
Ambler - An autonomous rover for planetary exploration
NASA Technical Reports Server (NTRS)
Bares, John; Hebert, Martial; Kanade, Takeo; Krotkov, Eric; Mitchell, Tom
1989-01-01
The authors are building a prototype legged rover, called the Ambler (loosely an acronym for autonomous mobile exploration robot) and testing it on full-scale, rugged terrain of the sort that might be encountered on the Martian surface. They present an overview of their research program, focusing on locomotion, perception, planning, and control. They summarize some of the most important goals and requirements of a rover design and describe how locomotion, perception, and planning systems can satisfy these requirements. Since the program is relatively young (one year old at the time of writing) they identify issues and approaches and describe work in progress rather than report results. It is expected that many of the technologies developed will be applicable to other planetary bodies and to terrestrial concerns such as hazardous waste assessment and remediation, ocean floor exploration, and mining.
Vision-based mapping with cooperative robots
NASA Astrophysics Data System (ADS)
Little, James J.; Jennings, Cullen; Murray, Don
1998-10-01
Two stereo-vision-based mobile robots navigate and autonomously explore their environment safely while building occupancy grid maps of the environment. The robots maintain position estimates within a global coordinate frame using landmark recognition. This allows them to build a common map by sharing position information and stereo data. Stereo vision processing and map updates are done at 3 Hz and the robots move at speeds of 200 cm/s. Cooperative mapping is achieved through autonomous exploration of unstructured and dynamic environments. The map is constructed conservatively, so as to be useful for collision-free path planning. Each robot maintains a separate copy of a shared map, and then posts updates to the common map when it returns to observe a landmark at home base. Issues include synchronization, mutual localization, navigation, exploration, registration of maps, merging repeated views (fusion), centralized vs decentralized maps.
Autonomous Landing and Hazard Avoidance Technology (ALHAT)
NASA Technical Reports Server (NTRS)
Epp, Chirold
2007-01-01
This viewgraph presentation reviews the work towards technology that will result in an autonomous landing on the lunar surface, that will avoid the hazards of lunar landing. In October 2005, the Exploration Systems Mission Directorate at NASA Headquarters assigned the development of new technologies to support the return to the moon. One of these was Autonomous Precision Landing and Hazard Detection and Avoidance Technology now known as ALHAT ALHAT is a lunar descent and landing GNC technology development project led by Johnson Space Center (JSC) with team members from Langley Research Center (LaRC), Jet Propulsion Laboratory (JPL), Draper Laboratories (CSDL) and the Applied Physics Laboratory (APL)
Evolution of Autonomous Self-Righting Behaviors for Articulated Nanorovers
NASA Technical Reports Server (NTRS)
Tunstel, Edward
1999-01-01
Miniature rovers with articulated mobility mechanisms are being developed for planetary surface exploration on Mars and small solar system bodies. These vehicles are designed to be capable of autonomous recovery from overturning during surface operations. This paper describes a computational means of developing motion behaviors that achieve the autonomous recovery function. It proposes a control software design approach aimed at reducing the effort involved in developing self-righting behaviors. The approach is based on the integration of evolutionary computing with a dynamics simulation environment for evolving and evaluating motion behaviors. The automated behavior design approach is outlined and its underlying genetic programming infrastructure is described.
System Engineering of Autonomous Space Vehicles
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis
2014-01-01
Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.
Rutten, Cindy; Boen, Filip; Seghers, Jan
2013-05-01
Based on self-determination theory, the purpose of this study was to explore the mediating role of autonomous motivation in the relation between environmental factors and pedometer-determined PA among 10- to 12-year-old Flemish children. Data were collected from 787 6th grade pupils and one of their parents. Children completed self-report measures including autonomous motivation for PA and perceived autonomy support for PA by parents and friends. Parents completed a questionnaire concerning their PA related parenting practices (logistic support and explicit modeling) and the perceived home environment with respect to PA opportunities. The results confirmed that autonomous motivation mediated the relation between children's PA and their perceived autonomy support by friends and parents. Autonomous motivation also mediated the relation between parental logistic support and PA. In addition, a positive direct relation was found between parental explicit modeling and children's PA, and between perceived neighbor- hood safety and children's PA.
Sample Return Robot Centennial Challenge
2012-06-16
"Harry" a Goldendoodle is seen wearing a NASA backpack during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Team members of "Survey" drive their robot around the campus on Saturday, June 16, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Survey team was one of the final teams participating in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
University of Waterloo (Canada) Robotics Team members test their robot on the practice field one day prior to the NASA-WPI Sample Return Robot Centennial Challenge, Friday, June 15, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-14
A University of Waterloo Robotics Team member tests their robot on the practice field two days prior to the NASA-WPI Sample Return Robot Centennial Challenge, Thursday, June 14, 2012 at the Worcester Polytechnic Institute in Worcester, Mass. Teams will compete for a $1.5 million NASA prize to build an autonomous robot that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Towards a Warfighter’s Associate: Eliminating the Operator Control Unit
2004-10-01
ABSTRACT This paper introduces the long-term concept of a supervised autonomous Warfighter’s Associate, which uses a natural-language interface for...paper introduces the long-term concept of a supervised autonomous Warfighter’s Associate, which employs a natural-language interface for communication...results to date. The primary application discussed is military, but the concept also applies to law enforcement, space exploration, and search-and
Assured Human-Autonomy Interaction through Machine Self-Confidence
NASA Astrophysics Data System (ADS)
Aitken, Matthew
Autonomous systems employ many layers of approximations in order to operate in increasingly uncertain and unstructured environments. The complexity of these systems makes it hard for a user to understand the systems capabilities, especially if the user is not an expert. However, if autonomous systems are to be used efficiently, their users must trust them appropriately. This purpose of this work is to implement and assess an 'assurance' that an autonomous system can provide to the user to elicit appropriate trust. Specifically, the autonomous system's perception of its own capabilities is reported to the user as the self-confidence assurance. The self-confidence assurance should allow the user to more quickly and accurately assess the autonomous system's capabilities, generating appropriate trust in the autonomous system. First, this research defines self-confidence and discusses what the self-confidence assurance is attempting to communicate to the user. Then it provides a framework for computing the autonomous system's self-confidence as a function of self-confidence factors which correspond to individual elements in the autonomous system's process. In order to explore this idea, self-confidence is implemented on an autonomous system that uses a mixed observability Markov decision process model to solve a pursuit-evasion problem on a road network. The implementation of a factor assessing the goodness of the autonomy's expected performance is focused on in particular. This work highlights some of the issues and considerations in the design of appropriate metrics for the self-confidence factors, and provides the basis for future research for computing self-confidence in autonomous systems.
Limits of clinical tests to screen autonomic function in diabetes type 1.
Ducher, M; Bertram, D; Sagnol, I; Cerutti, C; Thivolet, C; Fauvel, J P
2001-11-01
A precocious detection of cardiac autonomic dysfunction is of major clinical interest that could lead to a more intensive supervision of diabetic patients. However, classical clinical exploration of cardiac autonomic function is not easy to undertake in a reproducible way. Thus, respective interests of autonomic nervous parameters provided by both clinical tests and computerized analysis of resting blood pressure were checked in type 1 diabetic patients without orthostatic hypotension and microalbuminuria. Thirteen diabetic subjects matched for age and gender to thirteen healthy subjects volunteered to participate to the study. From clinical tests (standing up, deep breathing, Valsalva maneuver, handgrip test), autonomic function was scored according to Ewing's methodology. Analysis of resting beat to beat blood pressure provided autonomic indices of the cardiac function (spectral analysis or Z analysis). 5 of the 13 diabetic patients exhibited a pathological score (more than one pathological response) suggesting the presence of cardiovascular autonomic dysfunction. The most discriminative test was the deep breathing test. However, spectral indices of BP recordings and baro-reflex sensitivity (BRS) of these 5 subjects were similar to those of healthy subjects and of remaining diabetic subjects. Alteration in Ewing's score given by clinical tests may not reflect an alteration of cardiac autonomic function in asymptomatic type 1 diabetic patients, because spectral indices of sympathetic and parasympathetic (including BRS) function were within normal range. Our results strongly suggest to confront results provided by both methodologies before concluding to an autonomic cardiac impairment in asymptomatic diabetic patients.
NASA Technical Reports Server (NTRS)
Ip, Felipe; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R.
2005-01-01
NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.
Benthic long-term Observatories based on Lander Technology
NASA Astrophysics Data System (ADS)
Linke, P.; Pfannkuche, O.; Sommer, S.; Gubsch, S.; Gust, G.
2003-04-01
Landers are autonomous carrier systems for a wide range of scientific applications. The GEOMAR Lander System is based on a tripod-shaped platform for various scientific payloads to monitor, measure and experiment at the deep sea floor. These landers can be deployed using hybrid fibre optical or coaxial cables with a special launching device or in the conventional free falling mode. The launcher enables accurate positioning on meter scale, soft deployment and rapid disconnection of lander and launcher by an electric release. The bi-directional video and data telemetry provides on line video transmission, power supply and surface control of various relay functions. Within the collaborative project LOTUS novel long-term observatories have been developed and integrated into the GEOMAR Lander System. An overview of the recent developments is presented. Two new observatories are presented in detail to study the temporal variability of physico-chemical and biogeochemical mechanisms, flux- and turnover rates related to the decomposition and formation of near surface gas hydrates embedded in their original sedimentary matrix. With the Biogeochemical Observatory, BIGO, the temporal variability of the biologically facilitated methane turnover in the sediment and fluxes across the sediment water interface is studied in two mesocosms. Inside the mesocosms the oxygen content can be maintained by a chemostat. The in situ flow regime is measured outside the mesocosms and is reproduced within the chamber with an intelligent stirring system. This approach represents a major step in the development of benthic chambers from stationary to dynamic systems. The Fluid-Flux Observatory (FLUFO) measures the different types of fluid fluxes at the benthic boundary layer of sediments overlying near surface gas hydrates and monitors relevant environmental parameters as temperature, pressure and near bottom currents. FLUFO consists of two chamber units. Both units separate the gas phase from the aqueous phase and measure their individual contribution to the total fluid flux. Whereas the first (reference) chamber measures the aqueous flux without obtaining information about their direction, the second (FLUFO) chamber measures the aqueous flux including the direction discriminating between outward flow, stagnation and inward flow.
NASA Astrophysics Data System (ADS)
Baker, Philip; Minzlaff, Ulrike; Schoenle, Alexandra; Schwabe, Enrico; Hohlfeld, Manon; Jeuck, Alexandra; Brenke, Nils; Prausse, Dennis; Rothenbeck, Marcel; Brix, Saskia; Frutos, Inmaculada; Jörger, Katharina M.; Neusser, Timea P.; Koppelmann, Rolf; Devey, Colin; Brandt, Angelika; Arndt, Hartmut
2018-02-01
Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07-3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024-0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link between surface and benthic production and has to be further considered in the future as a regular carbon input to the deep-sea floor in the North Atlantic.
Astrobiology Science and Technology: A Path to Future Discovery
NASA Technical Reports Server (NTRS)
Meyer, M. A.; Lavaery, D. B.
2001-01-01
The Astrobiology Program is described. However, science-driven robotic exploration of extreme environments is needed for a new era of planetary exploration requiring biologically relevant instrumentation and extensive, autonomous operations on planetary surfaces. Additional information is contained in the original extended abstract.
Aerial Explorers and Robotic Ecosystems
NASA Technical Reports Server (NTRS)
Young, Larry A.; Pisanich, Greg
2004-01-01
A unique bio-inspired approach to autonomous aerial vehicle, a.k.a. aerial explorer technology is discussed. The work is focused on defining and studying aerial explorer mission concepts, both as an individual robotic system and as a member of a small robotic "ecosystem." Members of this robotic ecosystem include the aerial explorer, air-deployed sensors and robotic symbiotes, and other assets such as rovers, landers, and orbiters.
Exploring Factors Influencing Smokers' Information Seeking for Smoking Cessation.
Noh, Ghee-Young; Lee, Sun Young; Choi, Jounghwa
2016-08-01
This study addressed the factors influencing smokers' information seeking pertaining to the health risks of smoking. In particular, this study aimed to extend the risk information seeking and processing model by taking into account the role of autonomous motivations used to stimulate smokers' information-seeking behavior. The results of a Web-based survey indicated that information insufficiency was positively associated with health information-seeking behavior and that negative affective responses were positively associated with information insufficiency and health information-seeking behavior. In addition, autonomous motivations were positively associated with information insufficiency and information-seeking behavior. The results indicated that risk perception was positively related to autonomous motivations and negative affective response. Finally, informational subjective norm was positively related to autonomous motivations and negative affective responses. The implications of this study for future research are discussed.
Autonomous Navigation Error Propagation Assessment for Lunar Surface Mobility Applications
NASA Technical Reports Server (NTRS)
Welch, Bryan W.; Connolly, Joseph W.
2006-01-01
The NASA Vision for Space Exploration is focused on the return of astronauts to the Moon. While navigation systems have already been proven in the Apollo missions to the moon, the current exploration campaign will involve more extensive and extended missions requiring new concepts for lunar navigation. In this document, the results of an autonomous navigation error propagation assessment are provided. The analysis is intended to be the baseline error propagation analysis for which Earth-based and Lunar-based radiometric data are added to compare these different architecture schemes, and quantify the benefits of an integrated approach, in how they can handle lunar surface mobility applications when near the Lunar South pole or on the Lunar Farside.
Spatial Coverage Planning for a Planetary Rover
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline
2008-01-01
We are developing onboard planning and execution technologies to support the exploration and characterization of geological features by autonomous rovers. In order to generate high quality mission plans, an autonomous rover must reason about the relative importance of the observations it can perform. In this paper we look at the scientific criteria of selecting observations that improve the quality of the area covered by samples. Our approach makes use of a priori information, if available, and allows scientists to mark sub-regions of the area with relative priorities for exploration. We use an efficient algorithm for prioritizing observations based on spatial coverage that allows the system to update observation rankings as new information is gained during execution.
Autonomous Circuitry for Substrate Exploration in Freely Moving Drosophila Larvae
Berni, Jimena; Pulver, Stefan R.; Griffith, Leslie C.; Bate, Michael
2014-01-01
Summary Background Many organisms, from bacteria to human hunter-gatherers, use specialized random walk strategies to explore their environment. Such behaviors are an efficient stratagem for sampling the environment and usually consist of an alternation between straight runs and turns that redirect these runs. Drosophila larvae execute an exploratory routine of this kind that consists of sequences of straight crawls, pauses, turns, and redirected crawls. Central pattern generating networks underlying rhythmic movements are distributed along the anteroposterior axis of the nervous system. The way in which the operation of these networks is incorporated into extended behavioral routines such as substrate exploration has not yet been explored. In particular, the part played by the brain in dictating the sequence of movements required is unknown. Results We report the use of a genetic method to block synaptic activity acutely in the brain and subesophageal ganglia (SOG) of larvae during active exploratory behavior. We show that the brain and SOG are not required for the normal performance of an exploratory routine. Alternation between crawls and turns is an intrinsic property of the abdominal and/or thoracic networks. The brain modifies this autonomous routine during goal-directed movements such as those of chemotaxis. Nonetheless, light avoidance behavior can be mediated in the absence of brain activity solely by the sensorimotor system of the abdomen and thorax. Conclusions The sequence of movements for substrate exploration is an autonomous capacity of the thoracic and abdominal nervous system. The brain modulates this exploratory routine in response to environmental cues. PMID:22940472
Biologically-inspired navigation and flight control for Mars flyer missions
NASA Technical Reports Server (NTRS)
Thakoor, S.; Chahl, J.; Hine, B.; Zornetzer, S.
2003-01-01
Bioinspired Engineering Exploration Systems (BEES), is enabling new bioinspired sensors for autonomous exploration of Mars. The steps towards autonomy in development of these BEES flyers are described. A future set of Mars mission that are uniquely enabled by surch flyers are finally described.
Uriarte, Iker; Hernández, Jorge; Dörner, Jessica; Paschke, Kurt; Farías, Ana; Crovetto, Enzo; Rosas, Carlos
2010-04-01
Globally, octopus larviculture is one of the challenges faced in the attempt to diversify aquaculture and achieve cephalopod farming. Currently, only juveniles of Octopus vulgaris, Octopus joubini, and Enteroctopus dofleini have been obtained at an experimental level. This is the first study to look at the characteristics of planktonic and benthic Robsonella fontaniana juveniles in an effort to analyze the morphometric changes occurring during their planktonic and benthic phases and to explore the feasibility of obtaining settlement under controlled conditions. The morphometric measurements varied exponentially over time and did not show different tendencies before and after settlement. Mantle growth in relation to total length fit a logarithmic regression, whereas arm length and eye diameter increased linearly with respect to total length throughout the entire paralarval and juvenile periods. This suggests that the size of the mantle decreases with age in proportion to the total octopus length, whereas the organs more directly involved in catching prey tend to increase in direct proportion to the total length. The present study shows that R. fontaniana can be reared from hatching through the final paralarval stage on a diet of Lithodes santolla (king crab) zoeae; after settlement, the juveniles can be reared on a diet of crab such as Petrolisthes.
Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments
NASA Astrophysics Data System (ADS)
Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.
2011-12-01
Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.
El-Kahawy, R; El-Shafeiy, M; Helal, S A; Aboul-Ela, N; El-Wahab, M Abd
2018-04-28
The Red Sea encompasses a wide range of tropical marine habitats that are stressed due to anthropogenic activities. The main anthropogenic activities are hydrocarbon exploration and important trading harbors. This work aims to assess the influence of the Red Sea coastal heavy metal contamination on the marine meiofauna along three sites (Ras Gharib, Safaga, and Quseir). Eight heavy metal (Cu, Cd, Zn, Pb, Cr, Co, Ni, and Mn) contents are considered in four benthic foraminiferal species (Elphidium striatopunctatum, Amphistegina lobifera, Amphisorus hemprichii, and Ammonia beccarii). Quseir Harbor showed the highest level of pollution followed by Safaga and Ras Gharib sites. The analyzed benthic foraminiferal tests displayed noteworthy high concentrations of Cd, Zn, and Pb in Quseir Harbor which could be attributed to the anthropogenic activities in the nearshore areas. Some foraminiferal tests exhibited abnormalities in their apertures, coiling, and shape of chambers. A comparison between normal and deformed foraminiferal tests revealed that the deformed ones are highly contaminated with elevated heavy metal contents such as Fe, Mn, Ni, and Cd. Statistics in addition to geo-accumulation and pollution load indices reveal a whistling alarm for the Quseir harbor. The present data are necessary to improve conservation and management of the Red Sea ecosystem in the near future.
Modelling temporal and spatial dynamics of benthic fauna in North-West-European shelf seas
NASA Astrophysics Data System (ADS)
Lessin, Gennadi; Bruggeman, Jorn; Artioli, Yuri; Butenschön, Momme; Blackford, Jerry
2017-04-01
Benthic zones of shallow shelf seas receive high amounts of organic material. Physical processes such as resuspension, as well as complex transformations mediated by diverse faunal and microbial communities, define fate of this material, which can be returned to the water column, reworked within sediments or ultimately buried. In recent years, numerical models of various complexity and serving different goals have been developed and applied in order to better understand and predict dynamics of benthic processes. ERSEM includes explicit parameterisations of several groups of benthic biota, which makes it particularly applicable for studies of benthic biodiversity, biological interactions within sediments and benthic-pelagic coupling. To assess model skill in reproducing temporal (inter-annual and seasonal) dynamics of major benthic macrofaunal groups, 1D model simulation results were compared with data from the Western Channel Observatory (WCO) benthic survey. The benthic model was forced with organic matter deposition rates inferred from observed phytoplankton abundance and model parameters were subsequently recalibrated. Based on model results and WCO data comparison, deposit-feeders exert clear seasonal variability, while for suspension-feeders inter-annual variability is more pronounced. Spatial distribution of benthic fauna was investigated using results of a full-scale NEMO-ERSEM hindcast simulation of the North-West European Shelf Seas area, covering the period of 1981-2014. Results suggest close relationship between spatial distribution of biomass of benthic faunal functional groups in relation to bathymetry, hydrodynamic conditions and organic matter supply. Our work highlights that it is feasible to construct, implement and validate models that explicitly include functional groups of benthic macrofauna. Moreover, the modelling approach delivers detailed information on benthic biogeochemistry and food-web at spatial and temporal scales that are unavailable through other sources but highly relevant to marine management, planning and policy.
Sample Return Robot Centennial Challenge
2012-06-16
NASA Deputy Administrator Lori Garver, left, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
NASA Deputy Administrator Lori Garver, right, listens as Worcester Polytechnic Institute (WPI) Robotics Resource Center Director and NASA-WPI Sample Return Robot Centennial Challenge Judge Ken Stafford points out how the robots navigate the playing field during the challenge on Saturday, June 16, 2012 in Worcester, Mass. Teams were challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Posters for the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event are seen posted around the campus on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Panoramic of some of the exhibits available on the campus of the Worcester Polytechnic Institute (WPI) during their "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Anthony Shrout)
Wyller, Vegard B; Helland, Ingrid B
2013-02-07
Chronic Fatigue Syndrome (CFS) is characterized by severe impairment and multiple symptoms. Autonomic dysregulation has been demonstrated in several studies. We aimed at exploring the relationship between indices of autonomic cardiovascular control, the case definition from Centers for Disease Control and Prevention (CDC criteria), important clinical symptoms, and disability in adolescent chronic fatigue syndrome. 38 CFS patients aged 12-18 years were recruited according to a wide case definition (ie. not requiring accompanying symptoms) and subjected to head-up tilt test (HUT) and a questionnaire. The relationships between variables were explored with multiple linear regression analyses. In the final models, disability was positively associated with symptoms of cognitive impairments (p<0.001), hypersensitivity (p<0.001), fatigue (p=0.003) and age (p=0.007). Symptoms of cognitive impairments were associated with age (p=0.002), heart rate (HR) at baseline (p=0.01), and HR response during HUT (p=0.02). Hypersensitivity was associated with HR response during HUT (p=0.001), high-frequency variability of heart rate (HF-RRI) at baseline (p=0.05), and adherence to the CDC criteria (p=0.005). Fatigue was associated with gender (p=0.007) and adherence to the CDC criteria (p=0.04). In conclusion, a) The disability of CFS patients is not only related to fatigue but to other symptoms as well; b) Altered cardiovascular autonomic control is associated with certain symptoms; c) The CDC criteria are poorly associated with disability, symptoms, and indices of altered autonomic nervous activity.
Early Miocene benthic foraminifera and biostratigraphy of the Qom Formation, Deh Namak, Central Iran
NASA Astrophysics Data System (ADS)
Daneshian, Jahanbakhsh; Dana, Leila Ramezani
2007-03-01
A total of 165 samples were collected from the Qom Formation investigated in a stratigraphic section north of Deh Namak, in Central Iran. From these, 35 genera and 47 species of benthic foraminifera were identified. The age of the studied section is Early Miocene (Aquitanian to Early Burdigalian) based on the occurrence of Borelis melo curdica, Meandropsina anahensis, Meandropsina iranica, Elphidium sp. 14, Peneroplis farsensis, and Triloculina tricarinata. The thickness of the Qom Formation is 401 m of which 161.2 m is early Burdigalian in age. Foraminiferal assemblages in the Deh Namak section are referable to the Borelis melo group- Meandropsina iranica Assemblage Zone and Miogypsinoides- Archaias-Valvulinid Assemblage Zone of [Adams, T.D., Bourgeois, F., 1967. Asmari biostratigraphy. Iranian Oil Operating Companies, Geological and Exploration Division, Report1074 (unpublished) 1-37.] described originally from the Asmari Formation.
Experiences applying Formal Approaches in the Development of Swarm-Based Space Exploration Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher A.; Hinchey, Michael G.; Truszkowski, Walter F.; Rash, James L.
2006-01-01
NASA is researching advanced technologies for future exploration missions using intelligent swarms of robotic vehicles. One of these missions is the Autonomous Nan0 Technology Swarm (ANTS) mission that will explore the asteroid belt using 1,000 cooperative autonomous spacecraft. The emergent properties of intelligent swarms make it a potentially powerful concept, but at the same time more difficult to design and ensure that the proper behaviors will emerge. NASA is investigating formal methods and techniques for verification of such missions. The advantage of using formal methods is the ability to mathematically verify the behavior of a swarm, emergent or otherwise. Using the ANTS mission as a case study, we have evaluated multiple formal methods to determine their effectiveness in modeling and ensuring desired swarm behavior. This paper discusses the results of this evaluation and proposes an integrated formal method for ensuring correct behavior of future NASA intelligent swarms.
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A forklift is used at the Kennedy Space Center in Florida to unload NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is inspected after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Wheels are assembled for transporting NASA's Morpheus lander, a vertical test bed vehicle after its arrival at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is uncrated after unloading at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - A crane supports unloading of NASA's Morpheus lander, a vertical test bed vehicle, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
Vertical Lift - Not Just For Terrestrial Flight
NASA Technical Reports Server (NTRS)
Young, Larry A
2000-01-01
Autonomous vertical lift vehicles hold considerable potential for supporting planetary science and exploration missions. This paper discusses several technical aspects of vertical lift planetary aerial vehicles in general, and specifically addresses technical challenges and work to date examining notional vertical lift vehicles for Mars, Titan, and Venus exploration.
Workshop on Assurance for Autonomous Systems for Aviation
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Davies, Misty; Giannakopoulou, Dimitra; Neogi, Natasha
2016-01-01
This report describes the workshop on Assurance for Autonomous Systems for Aviation that was held in January 2016 in conjunction with the SciTech 2016 conference held in San Diego, CA. The workshop explored issues related to assurance for autonomous systems and also the idea of trust in these systems. Specifically, we focused on discussing current practices for assurance of autonomy, identifying barriers specific to autonomy as related to assurance as well as operational scenarios demonstrating the need to address the barriers. Furthermore, attention was given to identifying verification techniques that may be applicable to autonomy, as well as discussing new research directions needed to address barriers, thereby involving potential shifts in current practices.
Neuromorphic vision sensors and preprocessors in system applications
NASA Astrophysics Data System (ADS)
Kramer, Joerg; Indiveri, Giacomo
1998-09-01
A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.
Development Of Autonomous Systems
NASA Astrophysics Data System (ADS)
Kanade, Takeo
1989-03-01
In the last several years at the Robotics Institute of Carnegie Mellon University, we have been working on two projects for developing autonomous systems: Nablab for Autonomous Land Vehicle and Ambler for Mars Rover. These two systems are for different purposes: the Navlab is a four-wheeled vehicle (van) for road and open terrain navigation, and the Ambler is a six-legged locomotor for Mars exploration. The two projects, however, share many common aspects. Both are large-scale integrated systems for navigation. In addition to the development of individual components (eg., construction and control of the vehicle, vision and perception, and planning), integration of those component technologies into a system by means of an appropriate architecture is a major issue.
Response of Benthic Foraminiferal Size to Oxygen Concentration in Antarctic Sediment Cores
NASA Astrophysics Data System (ADS)
Guo, D.; Keating-Bitonti, C.; Payne, J.
2014-12-01
Oxygen availability is important for biological reactions and the demand of oxygen is determined by the size of the organism. Few marine organisms can tolerate low oxygen conditions, but benthic foraminifera, a group of amoeboid protists that are highly sensitive to environmental factors, are known to live in these conditions. Benthic foraminifera may be able to live in oxygen stressed environments by changing the size and shape of their test. Low oxygen concentrations should favor smaller, thinner-shelled, flattened test morphologies. We hypothesize that the volume-to-surface area ratio of benthic foraminifera will decrease with decreasing dissolved oxygen concentrations. To test this hypothesis, we picked two calcareous species (Epistominella exigua and Cassulinoides porrectus) and one agglutinated species (Portatrochammina antarctica) from three sediment cores collected from Explorer's Cove, Antarctica. Starting at the sediment-water interface, each core spans approximately 5-8 cm of depth. Profiles of dissolved oxygen concentrations were measured at the time of collection. At specific depths within the cores, we measured the three dimensions of picked foraminiferal tests using NIS-Elements. We calculated the volume and surface area of the tests assuming the shape of the foraminifers was an ellipsoid. The size trends of E. exigua confirm our hypothesis that the test volume-to-surface area ratios correlate positively with dissolved oxygen concentrations (p-value < 0.001). However, the size trends of the other species refute our hypothesis: P. antarctica shows no correlation and C. porrectus shows a negative correlation (p-value < 0.001) to dissolved oxygen concentrations. Thus, our results show that the change in size in response to variations in dissolved oxygen concentrations is species dependent. Moreover, we find that calcareous species are more sensitive to oxygen fluctuations than agglutinated species.
Antarctic Porifera database from the Spanish benthic expeditions
Rios, Pilar; Cristobo, Javier
2014-01-01
Abstract The information about the sponges in this dataset is derived from the samples collected during five Spanish Antarctic expeditions: Bentart 94, Bentart 95, Gebrap 96, Ciemar 99/00 and Bentart 2003. Samples were collected in the Antarctic Peninsula and Bellingshausen Sea at depths ranging from 4 to 2044 m using various sampling gears. The Antarctic Porifera database from the Spanish benthic expeditions is unique as it provides information for an under-explored region of the Southern Ocean (Bellingshausen Sea). It fills an information gap on Antarctic deep-sea sponges, for which there were previously very few data. This phylum is an important part of the Antarctic biota and plays a key role in the structure of the Antarctic marine benthic community due to its considerable diversity and predominance in different areas. It is often a dominant component of Southern Ocean benthic communities. The quality of the data was controlled very thoroughly with GPS systems onboard the R/V Hesperides and by checking the data against the World Porifera Database (which is part of the World Register of Marine Species, WoRMS). The data are therefore fit for completing checklists, inclusion in biodiversity pattern analysis and niche modelling. The authors can be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies. The dataset currently contains 767 occurrence data items that have been checked for systematic reliability. This database is not yet complete and the collection is growing. Specimens are stored in the author’s collection at the Spanish Institute of Oceanography (IEO) in the city of Gijón (Spain). The data are available in GBIF. PMID:24843257
Vision guided landing of an an autonomous helicopter in hazardous terrain
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Montgomery, Jim
2005-01-01
Future robotic space missions will employ a precision soft-landing capability that will enable exploration of previously inaccessible sites that have strong scientific significance. To enable this capability, a fully autonomous onboard system that identifies and avoids hazardous features such as steep slopes and large rocks is required. Such a system will also provide greater functionality in unstructured terrain to unmanned aerial vehicles. This paper describes an algorithm for landing hazard avoidance based on images from a single moving camera. The core of the algorithm is an efficient application of structure from motion to generate a dense elevation map of the landing area. Hazards are then detected in this map and a safe landing site is selected. The algorithm has been implemented on an autonomous helicopter testbed and demonstrated four times resulting in the first autonomous landing of an unmanned helicopter in unknown and hazardous terrain.
Advanced avionics concepts: Autonomous spacecraft control
NASA Technical Reports Server (NTRS)
1990-01-01
A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.
Exploring with PAM: Prospecting ANTS Missions for Solar System Surveys
NASA Technical Reports Server (NTRS)
Clark, P. E.; Rilee, M. L.; Curtis, S. A.
2003-01-01
ANTS (Autonomous Nano-Technology Swarm), a large (1000 member) swarm of nano to picoclass (10 to 1 kg) totally autonomous spacecraft, are being developed as a NASA advanced mission concept. ANTS, based on a hierarchical insect social order, use an evolvable, self-similar, hierarchical neural system in which individual spacecraft represent the highest level nodes. ANTS uses swarm intelligence attained through collective, cooperative interactions of the nodes at all levels of the system. At the highest levels this can take the form of cooperative, collective behavior among the individual spacecraft in a very large constellation. The ANTS neural architecture is designed for totally autonomous operation of complex systems including spacecraft constellations. The ANTS (Autonomous Nano Technology Swarm) concept has a number of possible applications. A version of ANTS designed for surveying and determining the resource potential of the asteroid belt, called PAM (Prospecting ANTS Mission), is examined here.
Zhang, Xiufeng; Mei, Xueying; Gulati, Ramesh D; Liu, Zhengwen
2015-03-01
Competition for resources between coexisting phytoplankton and benthic algae, but with different habitats and roles in functioning of lake ecosystems, profoundly affects dynamics of shallow lakes in the process of eutrophication. An experiment was conducted to test the hypothesis that combined enrichment with nitrogen (N) and phosphorus (P) would be a greater benefit to phytoplankton than benthic algae. The growth of phytoplankton and benthic algae was measured as chlorophyll a (Chl a) in 12 shallow aquatic mesocosms supplemented with N, P, or both. We found that enrichment with N enhanced growth of benthic algae, but not phytoplankton. P enrichment had a negative effect on benthic algal growth, and no effect on the growth of phytoplankton. N+P enrichment had a negative effect on benthic algae, but enhanced the growth of phytoplankton, thus reducing the proportion of benthic algae contributing to the combined biomass of these two groups of primary producers. Thus, combined N+P enrichment is more favorable to phytoplankton in competition with benthic algae than enrichment with either N or P alone. Our study indicates that combined enrichment with N+P promotes the dominance of phytoplankton over benthic algae, with consequences for the trophic dynamics of shallow lake ecosystems.
Diachronous benthic δ18O responses during late Pleistocene terminations
NASA Astrophysics Data System (ADS)
Lisiecki, Lorraine E.; Raymo, Maureen E.
2009-09-01
Benthic δ18O is often used as a stratigraphic tool to place marine records on a common age model and as a proxy for the timing of ice volume/sea level change. However, Skinner and Shackleton (2005) found that the timing of benthic δ18O change at the last termination differed by 3900 years between one Atlantic site and one Pacific site. These results suggest that benthic δ18O change may not always accurately record the timing of deglaciation. We compare benthic δ18O records from 20 Atlantic sites and 14 Pacific sites to evaluate systematic differences in the timing of terminations in benthic δ18O. Analysis of sedimentation rates derived from the alignment of benthic δ18O suggests a statistically significant Atlantic lead over Pacific benthic δ18O change during the last six terminations. We estimate an average Pacific benthic δ18O lag of 1600 years for Terminations 1-5, slightly larger than the delay expected from ocean mixing rates given that most glacial meltwater probably enters the North Atlantic. We additionally find evidence of ˜4000-year Pacific δ18O lags at approximately 128 ka and 330 ka, suggesting that stratigraphic correlation of δ18O has the potential to generate age model errors of several thousand years during terminations. A simple model demonstrates that these lags can be generated by diachronous temperature changes and do not require slower circulation rates. Most importantly, diachronous benthic δ18O responses must be taken into account when comparing Atlantic and Pacific benthic δ18O records or when using benthic δ18O records as a proxy for the timing of ice volume change.
NASA Technical Reports Server (NTRS)
Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.
2011-01-01
The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Matthies, Larry H.
1998-01-01
Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.
NASA Astrophysics Data System (ADS)
Gardner, R. W.; Hanushevsky, A.; Vukotic, I.; Yang, W.
2017-10-01
As many LHC Tier-3 and some Tier-2 centers look toward streamlining operations, they are considering autonomously managed storage elements as part of the solution. These storage elements are essentially file caching servers. They can operate as whole file or data block level caches. Several implementations exist. In this paper we explore using XRootD caching servers that can operate in either mode. They can also operate autonomously (i.e. demand driven), be centrally managed (i.e. a Rucio managed cache), or operate in both modes. We explore the pros and cons of various configurations as well as practical requirements for caching to be effective. While we focus on XRootD caches, the analysis should apply to other kinds of caches as well.
Autonomous control of roving vehicles for unmanned exploration of the planets
NASA Technical Reports Server (NTRS)
Yerazunis, S. W.
1978-01-01
The guidance of an autonomous rover for unmanned planetary exploration using a short range (0.5 - 3.0 meter) hazard detection system was studied. Experimental data derived from a one laser/one detector system were used in the development of improved algorithms for the guidance of the rover. The new algorithms which account for the dynamic characteristics of the Rensselaer rover can be applied to other rover concepts provided that the rover dynamic parameters are modified appropriately. The new algorithms will also be applicable to the advanced scanning system. The design of an elevation scanning laser/multisensor hazard detection system was completed. All mechanical and electronic hardware components with the exception of the sensor optics and electronic components were constructed and tested.
Fenner, Ashley A; Howie, Erin K; Straker, Leon M; Hagger, Martin S
2016-02-01
The current study explored whether a multidisciplinary family-based intervention underpinned by self-determination theory could enhance perceptions of parent need support, autonomous motivation, and quality of life in overweight and obese adolescents. Using a staggered-entry waitlist-period control design, adolescents (n = 56) were assessed at baseline and preintervention (within-participant control), immediately following intervention, and at 3, 6, and 12 month follow-ups. Parents were trained in need-supportive behaviors within the broader context of an 8-week multidisciplinary intervention attended jointly with adolescents. Following intervention, significant improvements were demonstrated in adolescent perceptions of parent need support, autonomous motivation, and quality of life, and changes were maintained at the 1-year follow-up. Mediation analyses revealed changes in perceptions of parent need support predicted changes in quality of life indirectly via changes in autonomous motivation. Findings suggest overweight and obese adolescents are likely to benefit from multidisciplinary family-based interventions that aim to train parents in need-supportive behaviors.
Development and demonstration of autonomous behaviors for urban environment exploration
NASA Astrophysics Data System (ADS)
Ahuja, Gaurav; Fellars, Donald; Kogut, Gregory; Pacis Rius, Estrellina; Schoolov, Misha; Xydes, Alexander
2012-06-01
Under the Urban Environment Exploration project, the Space and Naval Warfare Systems Center Pacic (SSC- PAC) is maturing technologies and sensor payloads that enable man-portable robots to operate autonomously within the challenging conditions of urban environments. Previously, SSC-PAC has demonstrated robotic capabilities to navigate and localize without GPS and map the ground oors of various building sizes.1 SSC-PAC has since extended those capabilities to localize and map multiple multi-story buildings within a specied area. To facilitate these capabilities, SSC-PAC developed technologies that enable the robot to detect stairs/stairwells, maintain localization across multiple environments (e.g. in a 3D world, on stairs, with/without GPS), visualize data in 3D, plan paths between any two points within the specied area, and avoid 3D obstacles. These technologies have been developed as independent behaviors under the Autonomous Capabilities Suite, a behavior architecture, and demonstrated at a MOUT site at Camp Pendleton. This paper describes the perceptions and behaviors used to produce these capabilities, as well as an example demonstration scenario.
The MAP Autonomous Mission Control System
NASA Technical Reports Server (NTRS)
Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger
2000-01-01
The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.
Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.;
2007-01-01
Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.
An Exploration and Analysis of the Modes of Rural School Consolidation in China
ERIC Educational Resources Information Center
Hongyong, Jia; Fenfen, Zhou
2013-01-01
Based on research involving 177 primary and secondary schools spread over thirty-eight counties in six provinces (including one autonomous region), this article explores and analyzes four modes used in rural school consolidation in China. These four modes are: complete amalgamation, annexation, crossover, and centralization-decentralization.
SURGE: Smart Ultrasound Remote Guidance Experiment
NASA Technical Reports Server (NTRS)
Peterson, Sean
2009-01-01
Exploration-class missions lead to longer communication delays with mission control. May not always have communication capability to stream real-time ultrasound images. SURGE explores use of a "just-in-time" learning tool, called OPEL = On-Board Proficiency Enhancer Light as an aid to a hypothetical crew medical officer working autonomously.
NASA Astrophysics Data System (ADS)
Hülse, D.; Arndt, S.; Ridgwell, A.
2016-12-01
Oceanic Anoxic Events (OAEs) represent severe disturbances of the global carbon, oxygen and nutrient cycles of the ocean. The archetypal example is OAE2 ( 93.5 Ma), which is characterized by widespread bottom water anoxia and photic zone euxinia. One way to explain these conditions is via increased oxygen demand in the water column resulting from enhanced primary productivity (PP), itself fuelled by increased nutrient availability for instance from the sediments as the burial efficiency of phosphorus declines when bottom waters become anoxic. The recovery from OAE like conditions is thought to involve the permanent removal of excess CO2 from the atmosphere and ocean by burying carbon in the form of organic matter (OM) in marine sediments, which is consistent with the geological record of widespread black shale formation. A number of possible controls on enhanced OM burial have previously been proposed and assessed, such as elevated depositional fluxes, higher clay mineral availability, or reduced oxygenation. Here we explore a 4th possible mechanism - organic matter sulfurization. During sulfurization, reduced inorganic sulfur species (e.g. H2S) react with OM, resulting in the formation of organic sulfur compounds which are less prone to bacterial degradation. Although studies indicate the global significance of this process for OAE2, its implications on Cretaceous benthic-pelagic coupling and thus OAE2 evolution and recovery has not yet been quantified and tested with a 3D Earth system model. The major hurdle is the high computational cost of simulating the essential redox reactions in marine sediments, which are critical to quantify the burial of OM and benthic recycling fluxes of chemical compounds. In order to close this knowledge gap, we developed a new, mechanistic representation of OM preservation in marine sediments (OMEN-SED) and coupled it to a 3D Earth system model (cGENIE). Using this new model we explore the impact of organic matter sulfurization on benthic nutrient fluxes, ocean oxygenation and PP during OAE2 for the first time in a fully coupled 3D-ocean-sediment model. We investigate the role of sulfurization in Earth's recovery dynamics from OAE2 by comparing our results with multiple geochemical proxies for seafloor anoxia and photic zone euxinia.
NASA Astrophysics Data System (ADS)
Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami
2017-04-01
Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz respectively. Therefore we can use these sources simultaneously and distinguish the records of each source in the data processing stage. We have developed new marine seismic survey systems with autonomous recording for the exploration of the ocean floor resources. The applications are vertical cable seismic (VCS) and deep-tow seismic (ACS). These enable us the recording close to the seafloor and give the high resolution results with a simple, cost-effective configuration.
Springs are unique features in the landscape that provide important habitat for benthic invertebrates, yet there are few studies characterizing the distribution of benthic macro invertebrates in springs. Benthic macroinvertebrate and water quality data were collected at 35 spring...
Development of autonomous multirotor platform for exploration missions
NASA Astrophysics Data System (ADS)
Czyba, Roman; Janik, Marcin; Kurgan, Oliver; Niezabitowski, Michał; Nocoń, Marek
2016-06-01
This paper outlines development process of unmanned multirotor aerial vehicle HF-4X, which consists of design and manufacturing semi-autonomous UAV dedicated for indoor flight, which would be capable of stable and controllable mission flight. A micro air vehicle was designed to participate in the International Micro Air Vehicle Conference and Flight Competition. In this paper much attention was paid to the structure of flight control system, stabilization algorithms, analysis of IMU sensors, fusion algorithms.
Sample Return Robot Centennial Challenge
2012-06-16
Visitors, some with their dogs, line up to make their photo inside a space suit exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Development of autonomous multirotor platform for exploration missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czyba, Roman; Janik, Marcin; Kurgan, Oliver
This paper outlines development process of unmanned multirotor aerial vehicle HF-4X, which consists of design and manufacturing semi-autonomous UAV dedicated for indoor flight, which would be capable of stable and controllable mission flight. A micro air vehicle was designed to participate in the International Micro Air Vehicle Conference and Flight Competition. In this paper much attention was paid to the structure of flight control system, stabilization algorithms, analysis of IMU sensors, fusion algorithms.
Sample Return Robot Centennial Challenge
2012-06-16
The bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" is seen wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
CrossTalk. The Journal of Defense Software Engineering. Volume 26, Number 1
2013-02-01
ANTS) mission that may be used to explore the asteroid belt. Basically, the mission entails 1,000 two-pound autonomous space vehicles that will be...be used to collect data from asteroids that will be periodically transmitted back to earth. For autonomous operation, the ANTS will need to...priory information. In other words, these indicators are used to support any one of a number of situation assessments that have been predeter- mined
2012-12-01
selflessly working your own school and writing schedule around mine , supporting me throughout career paths that have been anything but traditional...observation, and other scientific research and exploration purposes. 4 A ground rover on a planet, moon, or other body such as an asteroid must...applied to autonomous craft that could eventually operate on the surface of planets, moons, and asteroids , as well as in Earth orbit or deep space
Sample Return Robot Centennial Challenge
2012-06-15
Intrepid Systems robot, foreground, and the University of Waterloo (Canada) robot, take to the practice field on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Robot teams will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie; Stetson, Howard K.
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
APPLICATION OF TWO INDICES OF BENTHIC COMMUNITY CONDITION IN CHESAPEAKE BAY
The Chesapeake Bay Benthic Index of Biotic Integrity (B-161) and the Environmental Monitoring and Assessment Program's Virginian Province Benthic Index (EMAP-VP BI) were applied to 294 sampling events in Chesapeake Bay and the results were compared. These benthic indices are inte...
NASA Astrophysics Data System (ADS)
Ferraro, Steven P.; Cole, Faith A.
2012-05-01
This study validates the ecological relevance of estuarine habitat types to the benthic macrofaunal community and, together with previous similar studies, suggests they can serve as elements in ecological periodic tables of benthic macrofaunal usage in the bioregion. We compared benthic macrofaunal Bray-Curtis similarity and the means of eight benthic macrofaunal community measures across seven habitat types in Tillamook Bay, Oregon, USA: intertidal eelgrass (Zostera marina), dwarf eelgrass (Zostera japonica), oyster (Crassostrea gigas) ground culture, burrowing mud shrimp (Upogebia pugettensis), burrowing ghost shrimp (Neotrypaea californiensis), sand and subtidal. Benthic macrofaunal Bray-Curtis similarity differed among all the habitats except ghost shrimp and sand. The habitat rank order on mean benthic macrofaunal species richness, abundance and biomass was dwarf eelgrass ≈ oyster ≥ mud shrimp ≈ eelgrass > sand ≈ ghost shrimp ≈ subtidal. The benthic macrofaunal habitat usage pattern in Tillamook Bay was, with a few exceptions, similar to that in two other US Pacific Northwest estuaries. The exceptions indicate variants of eelgrass and ghost shrimp habitat that differ in benthic macrofaunal usage perhaps due to differences in the coarseness of the sand fraction of the sediments in which they live. The similarities indicate periodic benthic macrofaunal usage patterns across the other habitat types extend over a wider geographic scale and range of environmental conditions than previously known.
NASA Astrophysics Data System (ADS)
Cohen, M. J.; Reijo, C. J.; Hensley, R. T.
2017-12-01
Riverine processing of nutrients and carbon is a local process, subject to heterogeneity in sediment, biotic, insolation, and flow velocity drivers. Measurements at the reach scale aggregate across riverscapes, limiting their utility for enumerating these drivers, and thus for scaling to river networks. Using a combination of in situ sensors that sample water chemistry at high temporal resolution and open benthic chambers that isolate the biogeochemical impacts of a small footprint of benthic surface area, we explored controls on metabolism and nutrient cycling. We specifically sought to answer two questions. First, what are the controls on primary production, with a particular emphasis on the relative roles of light vs. nutrient limitation? Second, what are the pathways of nutrient retention, and do the reaction kinetics of these different pathways differ? We demonstrate the considerable utility of these benthic chambers, reasoning that they provide experimental units for river processes that are not attainable at the reach or network scale. Specifically, in addition to their ability to sample the heterogeneity of the river bed as well as observe nutrient depletion to create concentrations well below ambient levels, they enable manipulative experiments (e.g., nutrient enrichment, light reduction, grazer adjustments) while retaining key elements of the natural system. Across several of Florida's spring-fed river sites, our results strongly support the primacy of light limitation of primary production, with very little evidence of any incremental effects of nutrient enrichment. Nutrient depletion assays further support the dominance of two N retention mechanisms (denitrification and assimilation), the kinetics of which differ markedly, with denitrification exhibiting nearly first-order reactions, and assimilation following zero-order or Michaelis-Menten kinetics over the range of observed concentrations. This latter result helps explain the absence of strong nutrient enrichment effects (i.e., zero-order kinetics imply nutrient saturation), and offers novel insights into the benthic conditions that control both rates and kinetics. The capacity to measure processes at the point scale, and effectively scale to the reach, opens new doors for understanding aquatic ecosystem biogeochemistry.
COMPARISON OF TWO INDICES OF BENTHIC COMMUNITY CONDITION IN CHESAPEAKE BAY
The Chesapeake Benthic Index of Biotic Integrity (B-IBI) and the EMAP-VP Benthic Index were applied to samples from 239 sites in Chesapeake Bay. The B-IBI weights several community measures equally and uses a simple scoring system while the EMAP-VP Benthic Index uses discriminant...
The biogeography of marine benthic macroinvertebrates of the U.S. Atlantic coast from Delaware Bay north to Passamaquoddy Bay, Maine, was studied to define physical-chemical factors affecting broad taxa distributions and provide information needed to calibrate benthic indices of ...
Autonomous Navigation Using Celestial Objects
NASA Technical Reports Server (NTRS)
Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne
1999-01-01
In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
Need satisfaction, motivational regulations and exercise: moderation and mediation effects.
Weman-Josefsson, Karin; Lindwall, Magnus; Ivarsson, Andreas
2015-05-20
Based on the Self-determination theory process model, this study aimed to explore relationships between the latent constructs of psychological need satisfaction, autonomous motivation and exercise behaviour; the mediational role of autonomous motivation in the association of psychological need satisfaction with exercise behaviour; as well as gender and age differences in the aforementioned associations. Adult active members of an Internet-based exercise program (n = 1091) between 18 and 78 years of age completed a test battery on motivational aspects based on Self-determination theory. The Basic Psychological Needs in Exercise Scale and the Behavioural Regulation in Exercise Questionnaire-2 were used to measure need satisfaction and type of motivation and the Leisure Time Exercise Questionnaire to measure self-reported exercise. Need satisfaction predicted autonomous motivation, which in turn predicted exercise, especially for women. Autonomous motivation was found to mediate the association between need satisfaction and exercise. Age and gender moderated several of the paths in the model linking need satisfaction with motivation and exercise. The results demonstrated gender and age differences in the proposed sequential mechanisms between autonomous motivation and exercise in the process model. This study thus highlights a potential value in considering moderating factors and the need to further examine the underlying mechanisms between needs, autonomous motivation, and exercise behaviour.
Brown, Larry R.; Short, Terry M.
1999-01-01
The general conclusion from these studies is that water quality in the upper Merced River was very good from 1993-1996, despite high levels of human activities in some areas. Fish communities did not appear to be a useful indicator of habitat and water quality because of low species richness and the apparent importance of physical barriers in determining species distributions. Measurements of fish densities and size-distributions might be useful, but would be logistically difficult. Benthic algae and benthic invertebrates do appear to be useful in monitoring environmental conditions. Benthic algae may be more sensitive than benthic invertebrates to small environmental differences within years. Benthic algae were also more responsive than benthic invertebrates to differences in discharge between years. Thus, benthic invertebrates may be more useful in comparing environmental conditions between years, independent of discharge conditions.
A New Simulation Framework for Autonomy in Robotic Missions
NASA Technical Reports Server (NTRS)
Flueckiger, Lorenzo; Neukom, Christian
2003-01-01
Autonomy is a key factor in remote robotic exploration and there is significant activity addressing the application of autonomy to remote robots. It has become increasingly important to have simulation tools available to test the autonomy algorithms. While indus1;rial robotics benefits from a variety of high quality simulation tools, researchers developing autonomous software are still dependent primarily on block-world simulations. The Mission Simulation Facility I(MSF) project addresses this shortcoming with a simulation toolkit that will enable developers of autonomous control systems to test their system s performance against a set of integrated, standardized simulations of NASA mission scenarios. MSF provides a distributed architecture that connects the autonomous system to a set of simulated components replacing the robot hardware and its environment.
NASA Astrophysics Data System (ADS)
Gorbunov, P. A.; Vorobyov, S. V.
2017-10-01
In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.
Autonomous Command Operations of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Walyus, Keith; Prior, Mike; Saylor, Richard
1999-01-01
This paper presents operational innovations which will be introduced on NASA's Wide Field Infrared Explorer (WIRE) mission. These innovations include an end-to-end design architecture for an autonomous commanding capability for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented all autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period. The key factors driving design and implementation of this capability were: 1) integration with already existing ground system autonomous capabilities and systems, 2) the desire to evolve autonomous operations capabilities based upon previous SMEX operations experience - specifically the TRACE mission, 3) integration with ground station operations - both autonomous and man-tended, 4) low cost and quick implementation, and 5) end-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed in addition to use of the TRACE mission as a testbed for autonomous commanding prior to implementation on WIRE. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They call be used as a design and implementation template by other missions interested in evolving toward autonomous and lower cost operations. Additionally, the WIRE spacecraft will be used as an operational testbed upon completion of its nominal mission later in 1999. One idea being studied is advanced on-board modeling. Advanced on-board modeling techniques will be used to more efficiently display the spacecraft state. This health and safety information could be used by engineers on the ground or could be used by tile spacecraft for its own assessments. Additionally, this same state information could also be input into the event-driven scheduling system, as the scheduling system will need to assess the spacecraft state before undertaking a new activity. Advanced modeling techniques are being evaluated for a number of NASA missions including The Next Generation Space Telescope (NGST), which is scheduled to launch in 2007.
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew Edie; Matthies, Larry H.
2000-01-01
We have developed and tested a software algorithm that enables onboard autonomous motion estimation near small bodies using descent camera imagery and laser altimetry. Through simulation and testing, we have shown that visual feature tracking can decrease uncertainty in spacecraft motion to a level that makes landing on small, irregularly shaped, bodies feasible. Possible future work will include qualification of the algorithm as a flight experiment for the Deep Space 4/Champollion comet lander mission currently under study at the Jet Propulsion Laboratory.
Sample Return Robot Centennial Challenge
2012-06-16
A visitor to the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event helps demonstrate how a NASA rover design enables the rover to climb over obstacles higher than it's own body on Saturday, June 16, 2012 at WPI in Worcester, Mass. The event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
Wunderkammer Laboratory Team leader Jim Rothrock, left, answers questions from 8th grade Sullivan Middle School (Mass.) students about his robot named "Cerberus" on Friday, June 15, 2012, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Rothrock's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
Children visiting the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event try to catch basketballs being thrown by a robot from FIRST Robotics at Burncoat High School (Mass.) on Saturday, June 16, 2012 at WPI in Worcester, Mass. The TouchTomorrow event was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Benthic protists: the under-charted majority.
Forster, Dominik; Dunthorn, Micah; Mahé, Fréderic; Dolan, John R; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Edvardsen, Bente; Egge, Elianne; Eikrem, Wenche; Gobet, Angélique; Kooistra, Wiebe H C F; Logares, Ramiro; Massana, Ramon; Montresor, Marina; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Richards, Thomas A; Santini, Sébastien; Sarno, Diana; Siano, Raffaele; Vaulot, Daniel; Wincker, Patrick; Zingone, Adriana; de Vargas, Colomban; Stoeck, Thorsten
2016-08-01
Marine protist diversity inventories have largely focused on planktonic environments, while benthic protists have received relatively little attention. We therefore hypothesize that current diversity surveys have only skimmed the surface of protist diversity in marine sediments, which may harbor greater diversity than planktonic environments. We tested this by analyzing sequences of the hypervariable V4 18S rRNA from benthic and planktonic protist communities sampled in European coastal regions. Despite a similar number of OTUs in both realms, richness estimations indicated that we recovered at least 70% of the diversity in planktonic protist communities, but only 33% in benthic communities. There was also little overlap of OTUs between planktonic and benthic communities, as well as between separate benthic communities. We argue that these patterns reflect the heterogeneity and diversity of benthic habitats. A comparison of all OTUs against the Protist Ribosomal Reference database showed that a higher proportion of benthic than planktonic protist diversity is missing from public databases; similar results were obtained by comparing all OTUs against environmental references from NCBI's Short Read Archive. We suggest that the benthic realm may therefore be the world's largest reservoir of marine protist diversity, with most taxa at present undescribed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Compound-Specific Amino Acid Isotopic Analysis of Benthic Food Webs in the Chukchi Sea
NASA Astrophysics Data System (ADS)
Zhang, M.; Cooper, L. W.; Biasatti, D. M.; Grebmeier, J. M.
2014-12-01
The Chukchi Sea is known for locally high standing stocks of benthic macrofauna and strong coupling between pelagic-benthic components of the ecosystem. However, benthic food structure is not fully understood, due to varied sources of particulate organic matter (POM) and the high diversity of benthic invertebrates. We provide the first demonstration of the application of compound-specific amino acid isotope analysis to study the dietary sources and trophic structure for this Arctic marginal sea. About 20 stations in Chukchi Sea were sampled during cruises in August of 2012 and 2013. At each station, phytoplankton, POM and benthic fauna were collected, processed and analyzed using GC-C-IRMS (gas chromatography-combustion-isotope ratio mass spectrometry). Among benthic fauna, dominant species included the following taxonomic groups: Ophiuroidea, Amphipoda, Polychaeta, Gastropoda, Bivalvia, and Cnidaria. The benthic fauna showed similar patterns of individual amino acid δ13C, with glycine the most enriched in 13C and leucine the most depleted in 13C. Specific amino acids including phenylalanine showed spatial variability in δ13C and δ15N values within the sampled area, indicating contributions of different dietary sources including phytoplankton, sea ice algae, benthic algae and terrestrial organic materials. δ15N values of individual amino acids such as the difference between glutamic acid and phenylalanine, i.e. Δ15Nglu-phe (δ15Nglu - δ15Nphe), were also used to identify trophic levels of benthic invertebrates relative to estimates available from bulk δ15N values. These data will ultimately be used to evaluate the spatial variability of organic carbon sources and trophic level interactions of dominant benthic species in the Chukchi Sea.
Mapping planetary caves with an autonomous, heterogeneous robot team
NASA Astrophysics Data System (ADS)
Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.
Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.
Schwing, Patrick T; Romero, Isabel C; Brooks, Gregg R; Hastings, David W; Larson, Rebekka A; Hollander, David J
2015-01-01
Sediment cores were collected from three sites (1000-1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (²¹⁰Pb, ²³⁴Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80-93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2-3 times background) in PAH's, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale.
Schwing, Patrick T.; Romero, Isabel C.; Brooks, Gregg R.; Hastings, David W.; Larson, Rebekka A.; Hollander, David J.
2015-01-01
Sediment cores were collected from three sites (1000–1200 m water depth) in the northeastern Gulf of Mexico from December 2010 to June 2011 to assess changes in benthic foraminiferal density related to the Deepwater Horizon (DWH) event (April-July 2010, 1500 m water depth). Short-lived radioisotope geochronologies (210Pb, 234Th), organic geochemical assessments, and redox metal concentrations were determined to relate changes in sediment accumulation rate, contamination, and redox conditions with benthic foraminiferal density. Cores collected in December 2010 indicated a decline in density (80–93%). This decline was characterized by a decrease in benthic foraminiferal density and benthic foraminiferal accumulation rate (BFAR) in the surface 10 mm relative to the down-core mean in all benthic foraminifera, including the dominant genera (Bulimina spp., Uvigerina spp., and Cibicidoides spp.). Cores collected in February 2011 documented a site-specific response. There was evidence of a recovery in the benthic foraminiferal density and BFAR at the site closest to the wellhead (45 NM, NE). However, the site farther afield (60 NM, NE) recorded a continued decline in benthic foraminiferal density and BFAR down to near-zero values. This decline in benthic foraminiferal density occurred simultaneously with abrupt increases in sedimentary accumulation rates, polycyclic aromatic hydrocarbon (PAH) concentrations, and changes in redox conditions. Persistent reducing conditions (as many as 10 months after the event) in the surface of these core records were a possible cause of the decline. Another possible cause was the increase (2–3 times background) in PAH’s, which are known to cause benthic foraminifera mortality and inhibit reproduction. Records of benthic foraminiferal density coupled with short-lived radionuclide geochronology and organic geochemistry were effective in quantifying the benthic response and will continue to be a valuable tool in determining the long-term effects of the DWH event on a larger spatial scale. PMID:25785988
Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments.
Bernhard, Joan M; Kormas, Konstantinos; Pachiadaki, Maria G; Rocke, Emma; Beaudoin, David J; Morrison, Colin; Visscher, Pieter T; Cobban, Alec; Starczak, Victoria R; Edgcomb, Virginia P
2014-01-01
Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.
Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments
Bernhard, Joan M.; Kormas, Konstantinos; Pachiadaki, Maria G.; Rocke, Emma; Beaudoin, David J.; Morrison, Colin; Visscher, Pieter T.; Cobban, Alec; Starczak, Victoria R.; Edgcomb, Virginia P.
2014-01-01
Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers. PMID:25452749
Shallow water processes govern system-wide phytoplankton bloom dynamics: A modeling study
Lucas, L.V.; Koseff, Jeffrey R.; Monismith, Stephen G.; Thompson, J.K.
2009-01-01
A pseudo-two-dimensional numerical model of estuarine phytoplankton growth and consumption, vertical turbulent mixing, and idealized cross-estuary transport was developed and applied to South San Francisco Bay. This estuary has two bathymetrically distinct habitat types (deep channel, shallow shoal) and associated differences in local net rates of phytoplankton growth and consumption, as well as differences in the water column's tendency to stratify. Because many physical and biological time scales relevant to algal population dynamics decrease with decreasing depth, process rates can be especially fast in the shallow water. We used the model to explore the potential significance of hydrodynamic connectivity between a channel and shoal and whether lateral transport can allow physical or biological processes (e.g. stratification, benthic grazing, light attenuation) in one sub-region to control phytoplankton biomass and bloom development in the adjacent sub-region. Model results for South San Francisco Bay suggest that lateral transport from a productive shoal can result in phytoplankton biomass accumulation in an adjacent deep, unproductive channel. The model further suggests that turbidity and benthic grazing in the shoal can control the occurrence of a bloom system-wide; whereas, turbidity, benthic grazing, and vertical density stratification in the channel are likely to only control local bloom occurrence or modify system-wide bloom magnitude. Measurements from a related field program are generally consistent with model-derived conclusions. ?? 2008 Elsevier B.V.
Influence of coral and algal exudates on microbially mediated reef metabolism.
Haas, Andreas F; Nelson, Craig E; Rohwer, Forest; Wegley-Kelly, Linda; Quistad, Steven D; Carlson, Craig A; Leichter, James J; Hatay, Mark; Smith, Jennifer E
2013-01-01
Benthic primary producers in tropical reef ecosystems can alter biogeochemical cycling and microbial processes in the surrounding seawater. In order to quantify these influences, we measured rates of photosynthesis, respiration, and dissolved organic carbon (DOC) exudate release by the dominant benthic primary producers (calcifying and non-calcifying macroalgae, turf-algae and corals) on reefs of Mo'orea French Polynesia. Subsequently, we examined planktonic and benthic microbial community response to these dissolved exudates by measuring bacterial growth rates and oxygen and DOC fluxes in dark and daylight incubation experiments. All benthic primary producers exuded significant quantities of DOC (roughly 10% of their daily fixed carbon) into the surrounding water over a diurnal cycle. The microbial community responses were dependent upon the source of the exudates and whether the inoculum of microbes included planktonic or planktonic plus benthic communities. The planktonic and benthic microbial communities in the unamended control treatments exhibited opposing influences on DO concentration where respiration dominated in treatments comprised solely of plankton and autotrophy dominated in treatments with benthic plus plankon microbial communities. Coral exudates (and associated inorganic nutrients) caused a shift towards a net autotrophic microbial metabolism by increasing the net production of oxygen by the benthic and decreasing the net consumption of oxygen by the planktonic microbial community. In contrast, the addition of algal exudates decreased the net primary production by the benthic communities and increased the net consumption of oxygen by the planktonic microbial community thereby resulting in a shift towards net heterotrophic community metabolism. When scaled up to the reef habitat, exudate-induced effects on microbial respiration did not outweigh the high oxygen production rates of benthic algae, such that reef areas dominated with benthic primary producers were always estimated to be net autotrophic. However, estimates of microbial consumption of DOC at the reef scale surpassed the DOC exudation rates suggesting net consumption of DOC at the reef-scale. In situ mesocosm experiments using custom-made benthic chambers placed over different types of benthic communities exhibited identical trends to those found in incubation experiments. Here we provide the first comprehensive dataset examining direct primary producer-induced, and indirect microbially mediated alterations of elemental cycling in both benthic and planktonic reef environments over diurnal cycles. Our results highlight the variability of the influence of different benthic primary producers on microbial metabolism in reef ecosystems and the potential implications for energy transfer to higher trophic levels during shifts from coral to algal dominance on reefs.
High-resolution ocean pH dynamics in four subtropical Atlantic benthic habitats
NASA Astrophysics Data System (ADS)
Hernández, C. A.; Clemente, S.; Sangil, C.; Hernández, J. C.
2015-12-01
Oscillations of ocean pH are largely unknown in coastal environments and ocean acidification studies often do not account for natural variability yet most of what is known about marine species and populations is found out via studies conducted in near shore environments. Most experiments designed to make predictions about future climate change scenarios are carried out in coastal environments with no research that takes into account the natural pH variability. In order to fill this knowledge gap and to provide reliable measures of pH oscillation, seawater pH was measured over time using moored pH sensors in four contrasting phytocenoses typical of the north Atlantic subtropical region. Each phytocenosis was characterized by its predominant engineer species: (1) Cystoseira abies-marina, (2) a mix of gelidiales and geniculate corallines, (3) Lobophora variegata, and (4) encrusting corallines. The autonomous pH measuring systems consisted of a pH sensor; a data logger and a battery encased in a waterproof container and allowed the acquisition of high-resolution continuous pH data at each of the study sites. The pH variation observed ranged by between 0.09 and 0.24 pHNBS units. A clear daily variation in seawater pH was detected at all the studied sites (0.04-0.12 pHNBS units). Significant differences in daily pH oscillations were also observed between phytocenoses, which shows that macroalgal communities influence the seawater pH in benthic habitats. Natural oscillations in pH must be taken into account in future ocean acidification studies to put findings in perspective and for any ecological recommendations to be realistic.
Distributed Cognition on the road: Using EAST to explore future road transportation systems.
Banks, Victoria A; Stanton, Neville A; Burnett, Gary; Hermawati, Setia
2018-04-01
Connected and Autonomous Vehicles (CAV) are set to revolutionise the way in which we use our transportation system. However, we do not fully understand how the integration of wireless and autonomous technology into the road transportation network affects overall network dynamism. This paper uses the theoretical principles underlying Distributed Cognition to explore the dependencies and interdependencies that exist between system agents located within the road environment, traffic management centres and other external agencies in both non-connected and connected transportation systems. This represents a significant step forward in modelling complex sociotechnical systems as it shows that the principles underlying Distributed Cognition can be applied to macro-level systems using the visual representations afforded by the Event Analysis of Systemic Teamwork (EAST) method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Attitude and position estimation on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Ali, Khaled S.; Vanelli, C. Anthony; Biesiadecki, Jeffrey J.; Maimone, Mark W.; Yang Cheng, A.; San Martin, Miguel; Alexander, James W.
2005-01-01
NASA/JPL 's Mars Exploration Rovers acquire their attitude upon command and autonomously propagate their attitude and position. The rovers use accelerometers and images of the sun to acquire attitude, autonomously searching the sky for the sun with a pointable camera. To propagate the attitude and position the rovers use either accelerometer and gyro readings or gyro readings and wheel odometiy, depending on the nature of the movement ground operators are commanding. Where necessary, visual odometry is performed on images to fine tune the position updates, particularly in high slip environments. The capability also exists for visual odometry attitude updates. This paper describes the techniques used by the rovers to acquire and maintain attitude and position knowledge, the accuracy which is obtainable, and lessons learned after more than one year in operation.
Michael K. Stone; J. Bruce Wallace
1998-01-01
Summary1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher,...
Real-time visual mosaicking and navigation on the seafloor
NASA Astrophysics Data System (ADS)
Richmond, Kristof
Remote robotic exploration holds vast potential for gaining knowledge about extreme environments accessible to humans only with great difficulty. Robotic explorers have been sent to other solar system bodies, and on this planet into inaccessible areas such as caves and volcanoes. In fact, the largest unexplored land area on earth lies hidden in the airless cold and intense pressure of the ocean depths. Exploration in the oceans is further hindered by water's high absorption of electromagnetic radiation, which both inhibits remote sensing from the surface, and limits communications with the bottom. The Earth's oceans thus provide an attractive target for developing remote exploration capabilities. As a result, numerous robotic vehicles now routinely survey this environment, from remotely operated vehicles piloted over tethers from the surface to torpedo-shaped autonomous underwater vehicles surveying the mid-waters. However, these vehicles are limited in their ability to navigate relative to their environment. This limits their ability to return to sites with precision without the use of external navigation aids, and to maneuver near and interact with objects autonomously in the water and on the sea floor. The enabling of environment-relative positioning on fully autonomous underwater vehicles will greatly extend their power and utility for remote exploration in the furthest reaches of the Earth's waters---even under ice and under ground---and eventually in extraterrestrial liquid environments such as Europa's oceans. This thesis presents an operational, fielded system for visual navigation of underwater robotic vehicles in unexplored areas of the seafloor. The system does not depend on external sensing systems, using only instruments on board the vehicle. As an area is explored, a camera is used to capture images and a composite view, or visual mosaic, of the ocean bottom is created in real time. Side-to-side visual registration of images is combined with dead-reckoned navigation information in a framework allowing the creation and updating of large, locally consistent mosaics. These mosaics are used as maps in which the vehicle can navigate and localize itself with respect to points in the environment. The system achieves real-time performance in several ways. First, wherever possible, direct sensing of motion parameters is used in place of extracting them from visual data. Second, trajectories are chosen to enable a hierarchical search for side-to-side links which limits the amount of searching performed without sacrificing robustness. Finally, the map estimation is formulated as a sparse, linear information filter allowing rapid updating of large maps. The visual navigation enabled by the work in this thesis represents a new capability for remotely operated vehicles, and an enabling capability for a new generation of autonomous vehicles which explore and interact with remote, unknown and unstructured underwater environments. The real-time mosaic can be used on current tethered vehicles to create pilot aids and provide a vehicle user with situational awareness of the local environment and the position of the vehicle within it. For autonomous vehicles, the visual navigation system enables precise environment-relative positioning and mapping, without requiring external navigation systems, opening the way for ever-expanding autonomous exploration capabilities. The utility of this system was demonstrated in the field at sites of scientific interest using the ROVs Ventana and Tiburon operated by the Monterey Bay Aquarium Research Institute. A number of sites in and around Monterey Bay, California were mosaicked using the system, culminating in a complete imaging of the wreck site of the USS Macon , where real-time visual mosaics containing thousands of images were generated while navigating using only sensor systems on board the vehicle.
Indicators: Benthic Macroinvertebrates
Benthic (meaning “bottom-dwelling”) macroinvertebrates are small aquatic animals and the aquatic larval stages of insects. Benthic macroinvertebrates are commonly used as indicators of the biological condition of waterbodies.
Classification of threespine stickleback along the benthic-limnetic axis.
Willacker, James J; von Hippel, Frank A; Wilton, Peter R; Walton, Kelly M
2010-11-01
Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher's linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology.
Classification of threespine stickleback along the benthic-limnetic axis
Willacker, James J.; von Hippel, Frank A.; Wilton, Peter R.; Walton, Kelly M.
2010-01-01
Many species of fish display morphological divergence between individuals feeding on macroinvertebrates associated with littoral habitats (benthic morphotypes) and individuals feeding on zooplankton in the limnetic zone (limnetic morphotypes). Threespine stickleback (Gasterosteus aculeatus L.) have diverged along the benthic-limnetic axis into allopatric morphotypes in thousands of populations and into sympatric species pairs in several lakes. However, only a few well known populations have been studied because identifying additional populations as either benthic or limnetic requires detailed dietary or observational studies. Here we develop a Fisher’s linear discriminant function based on the skull morphology of known benthic and limnetic stickleback populations from the Cook Inlet Basin of Alaska and test the feasibility of using this function to identify other morphologically divergent populations. Benthic and limnetic morphotypes were separable using this technique and of 45 populations classified, three were identified as morphologically extreme (two benthic and one limnetic), nine as moderately divergent (three benthic and six limnetic) and the remaining 33 populations as morphologically intermediate. Classification scores were found to correlate with eye size, the depth profile of lakes, and the presence of invasive northern pike (Esox lucius). This type of classification function provides a means of integrating the complex morphological differences between morphotypes into a single score that reflects the position of a population along the benthic-limnetic axis and can be used to relate that position to other aspects of stickleback biology. PMID:21221422
NO3 uptake in shallow, oligotrophic, mountain lakes: The influence of elevated NO3 concentrations
Nydick, K.R.; LaFrancois, B.M.; Baron, Jill S.
2004-01-01
Nutrient enrichment experiments were conducted in 1.2-m deep enclosures in 2 shallow, oligotrophic, mountain lakes. 15N-NO3 isotope tracer was used to compare the importance of phytoplankton and benthic compartments (epilithon, surface sediment [epipelon], and subsurface sediment) for NO3 uptake under high and low NO3 conditions. NO3 uptake approached saturation in the high-N lake, but not in the low-N lake. The capacity of phytoplankton and benthic compartments to take up NO3 differed among treatments and between lakes, and depended on water-column nutrient conditions and the history of NO3 availability. Phytoplankton productivity responded strongly to addition of limiting nutrients, and NO3 uptake was related to phytoplankton biomass and photosynthesis. However, more NO3 usually was taken up by benthic compartments (57–92% combined) than by phytoplankton, even though the response of benthic algal biomass to nutrient additions was less pronounced than that of phytoplankton and benthic NO3 uptake was unrelated to benthic algal biomass. In the low-N lake where NO3 uptake was unsaturated, C content or % was related to NO3 uptake in benthic substrates, suggesting that heterotrophic bacterial processes could be important in benthic NO3 uptake. These results suggest that phytoplankton are most sensitive to nutrient additions, but benthic processes are important for NO3 uptake in shallow, oligotrophic lakes.
Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms
NASA Technical Reports Server (NTRS)
Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.
2007-01-01
The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.
Oldham, Mark A.; Ciraulo, Domenic A.
2017-01-01
Bright light therapy (BLT) is considered among the first-line treatments for seasonal affective disorder (SAD), yet a growing body of literature supports its use in other neuropsychiatric conditions including non-seasonal depression. Despite evidence of its antidepressant efficacy, clinical use of BLT remains highly variable internationally. In this article, we explore the autonomic effects of BLT and suggest that such effects may play a role in its antidepressant and chronotherapeutic properties. After providing a brief introduction on the clinical application of BLT, we review the chronobiological effects of BLT on depression and on the autonomic nervous system in depressed and non-depressed individuals with an emphasis on non-seasonal depression. Such a theory of autonomic modulation via BLT could serve to integrate aspects of recent work centered on alleviating allostatic load, the polyvagal theory, the neurovisceral integration model and emerging evidence on the roles of glutamate and gamma-hydroxybutyric acid (GABA). PMID:24397276
Harrison, Tondi M
2013-01-01
Explore relationships among autonomic nervous system (ANS) function, child behavior, and maternal sensitivity in three-year-old children with surgically corrected transposition of the great arteries (TGA) and in children healthy at birth. Children surviving complex congenital heart defects are at risk for behavior problems. ANS function is associated with behavior and with maternal sensitivity. Child ANS function (heart rate variability) and maternal sensitivity (Parent-Child Early Relational Assessment) were measured during a challenging task. Mother completed the Child Behavior Checklist. Data were analyzed descriptively and graphically. Children with TGA had less responsive autonomic function and more behavior problems than healthy children. Autonomic function improved with more maternal sensitivity. Alterations in ANS function may continue years after surgical correction in children with TGA, potentially impacting behavioral regulation. Maternal sensitivity may be associated with ANS function in this population. Continued research on relationships among ANS function, child behavior, and maternal sensitivity is warranted. Copyright © 2013 Elsevier Inc. All rights reserved.
Oldham, Mark A; Ciraulo, Domenic A
2014-04-01
Bright light therapy (BLT) is considered among the first-line treatments for seasonal affective disorder (SAD), yet a growing body of literature supports its use in other neuropsychiatric conditions including non-seasonal depression. Despite evidence of its antidepressant efficacy, clinical use of BLT remains highly variable internationally. In this article, we explore the autonomic effects of BLT and suggest that such effects may play a role in its antidepressant and chronotherapeutic properties. After providing a brief introduction on the clinical application of BLT, we review the chronobiological effects of BLT on depression and on the autonomic nervous system in depressed and non-depressed individuals with an emphasis on non-seasonal depression. Such a theory of autonomic modulation via BLT could serve to integrate aspects of recent work centered on alleviating allostatic load, the polyvagal theory, the neurovisceral integration model and emerging evidence on the roles of glutamate and gamma-hydroxybutyric acid (GABA).
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians secure connections for a crane which will be used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, arrives at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, arrives at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - A truck transporting NASA's Morpheus lander, a vertical test bed vehicle, heads towards the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for unloading. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-27
CAPE CANAVERAL, Fla. - Support equipment for NASA's Morpheus lander, a vertical test bed vehicle, is unloaded at a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-27
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been moved into a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/ Charisse Nahser
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being checked out in a building at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
Bissoli, Lorena B; Bernardino, Angelo F
2018-01-01
Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil.
Bissoli, Lorena B.
2018-01-01
Tropical estuaries are highly productive and support diverse benthic assemblages within mangroves and tidal flats habitats. Determining differences and similarities of benthic assemblages within estuarine habitats and between regional ecosystems may provide scientific support for management of those ecosystems. Here we studied three tropical estuaries in the Eastern Marine Ecoregion of Brazil to assess the spatial variability of benthic assemblages from vegetated (mangroves) and unvegetated (tidal flats) habitats. A nested sampling design was used to determine spatial scales of variability in benthic macrofaunal density, biomass and secondary production. Habitat differences in benthic assemblage composition were evident, with mangrove forests being dominated by annelids (Oligochaeta and Capitellidae) whereas peracarid crustaceans were also abundant on tidal flats. Macrofaunal biomass, density and secondary production also differed between habitats and among estuaries. Those differences were related both to the composition of benthic assemblages and to random spatial variability, underscoring the importance of hierarchical sampling in estuarine ecological studies. Given variable levels of human impacts and predicted climate change effects on tropical estuarine assemblages in Eastern Brazil, our data support the use of benthic secondary production to address long-term changes and improved management of estuaries in Eastern Brazil. PMID:29507833
Alerting, orienting or executive attention networks: differential patters of pupil dilations
Geva, Ronny; Zivan, Michal; Warsha, Aviv; Olchik, Dov
2013-01-01
Attention capacities, alerting responses, orienting to sensory stimulation, and executive monitoring of performance are considered independent yet interrelated systems. These operations play integral roles in regulating the behavior of diverse species along the evolutionary ladder. Each of the primary attention constructs—alerting, orienting, and executive monitoring—involves salient autonomic correlates as evidenced by changes in reactive pupil dilation (PD), heart rate, and skin conductance. Recent technological advances that use remote high-resolution recording may allow the discernment of temporo-spatial attributes of autonomic responses that characterize the alerting, orienting, and executive monitoring networks during free viewing, irrespective of voluntary performance. This may deepen the understanding of the roles of autonomic regulation in these mental operations and may deepen our understanding of behavioral changes in verbal as well as in non-verbal species. The aim of this study was to explore differences between psychosensory PD responses in alerting, orienting, and executive conflict monitoring tasks to generate estimates of concurrent locus coeruleus (LC) noradrenergic input trajectories in healthy human adults using the attention networks test (ANT). The analysis revealed a construct-specific pattern of pupil responses: alerting is characterized by an early component (Pa), its acceleration enables covert orienting, and executive control is evidenced by a prominent late component (Pe). PD characteristics seem to be task-sensitive, allowing exploration of mental operations irrespective of conscious voluntary responses. These data may facilitate development of studies designed to assess mental operations in diverse species using autonomic responses. PMID:24133422
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Lee, Li-Hua; Lin, Hsing-Juh
2013-08-15
This study determined effects of an oil spill on subtropical benthic community production and respiration by monitoring CO2 fluxes in benthic chambers on intertidal sandflats during emersion before and after an accidental spill. The oil spill decreased sediment chlorophyll a concentrations, altered benthic macrofaunal community, and affected ecological functioning by suppressing or even stopping microalgal production, increasing bacterial respiration, and causing a shift from an autotrophic system to a heterotrophic system. Effects of the oil spill on the macrofauna were more severe than on benthic microalgae, and affected sedentary infauna more than motile epifauna. Despite the oil spill's impact on the benthic community and carbon metabolism, the affected area appeared to return to normal in about 23 days. Our results suggest that the prompt response of benthic metabolism to exposure to petroleum hydrocarbons can serve as a useful indicator of the impact of an oil spill. Copyright © 2013 Elsevier Ltd. All rights reserved.
Godwin, Sean C.; Jones, Stuart E.; Weidel, Brian C.; Solomon, Christopher T.
2014-01-01
We evaluated several potential drivers of primary production by benthic algae (periphyton) in north-temperate lakes. We used continuous dissolved oxygen measurements from in situ benthic chambers to quantify primary production by periphyton at multiple depths across 11 lakes encompassing a broad range of dissolved organic carbon (DOC) and total phosphorous (TP) concentrations. Light-use efficiency (primary production per unit incident light) was inversely related to average light availability (% of surface light) in 7 of the 11 study lakes, indicating that benthic algal assemblages exhibit photoadaptation, likely through physiological or compositional changes. DOC alone explained 86% of the variability in log-transformed whole-lake benthic production rates. TP was not an important driver of benthic production via its effects on nutrient and light availability. This result is contrary to studies in other systems, but may be common in relatively pristine north-temperate lakes. Our simple empirical model may allow for the prediction of whole-lake benthic primary production from easily obtained measurements of DOC concentration.
Miniature Robotic Submarine for Exploring Harsh Environments
NASA Technical Reports Server (NTRS)
Behar, Alberto; Bruhn, Fredrik; Carsey, Frank
2004-01-01
The miniature autonomous submersible explorer (MASE) has been proposed as a means of scientific exploration -- especially, looking for signs of life -- in harsh, relatively inaccessible underwater environments. Basically, the MASE would be a small instrumented robotic submarine (see figure) that could launch itself or could be launched from another vehicle. Examples of environments that might be explored by use of the MASE include subglacial lakes, deep-ocean hydrothermal vents, acidic or alkaline lakes, brine lenses in permafrost, and ocean regions under Antarctic ice shelves.
Knowledge/geometry-based Mobile Autonomous Robot Simulator (KMARS)
NASA Technical Reports Server (NTRS)
Cheng, Linfu; Mckendrick, John D.; Liu, Jeffrey
1990-01-01
Ongoing applied research is focused on developing guidance system for robot vehicles. Problems facing the basic research needed to support this development (e.g., scene understanding, real-time vision processing, etc.) are major impediments to progress. Due to the complexity and the unpredictable nature of a vehicle's area of operation, more advanced vehicle control systems must be able to learn about obstacles within the range of its sensor(s). A better understanding of the basic exploration process is needed to provide critical support to developers of both sensor systems and intelligent control systems which can be used in a wide spectrum of autonomous vehicles. Elcee Computek, Inc. has been working under contract to the Flight Dynamics Laboratory, Wright Research and Development Center, Wright-Patterson AFB, Ohio to develop a Knowledge/Geometry-based Mobile Autonomous Robot Simulator (KMARS). KMARS has two parts: a geometry base and a knowledge base. The knowledge base part of the system employs the expert-system shell CLIPS ('C' Language Integrated Production System) and necessary rules that control both the vehicle's use of an obstacle detecting sensor and the overall exploration process. The initial phase project has focused on the simulation of a point robot vehicle operating in a 2D environment.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan D.
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
Overview of Intelligent Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James F.; Dever, Timothy P.; McNelis, Anne M.; Beach, Raymond F.; Trase, Larry M.; May, Ryan
2014-01-01
Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASAs current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described.
Towards autonomous lab-on-a-chip devices for cell phone biosensing.
Comina, Germán; Suska, Anke; Filippini, Daniel
2016-03-15
Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context. Copyright © 2015 Elsevier B.V. All rights reserved.
An Autonomous Autopilot Control System Design for Small-Scale UAVs
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Pai, Ganeshmadhav J.; Denney, Ewen W.
2012-01-01
This paper describes the design and implementation of a fully autonomous and programmable autopilot system for small scale autonomous unmanned aerial vehicle (UAV) aircraft. This system was implemented in Reflection and has flown on the Exploration Aerial Vehicle (EAV) platform at NASA Ames Research Center, currently only as a safety backup for an experimental autopilot. The EAV and ground station are built on a component-based architecture called the Reflection Architecture. The Reflection Architecture is a prototype for a real-time embedded plug-and-play avionics system architecture which provides a transport layer for real-time communications between hardware and software components, allowing each component to focus solely on its implementation. The autopilot module described here, although developed in Reflection, contains no design elements dependent on this architecture.
Overview of Intelligent Power Controller Development for the Deep Space Gateway
NASA Technical Reports Server (NTRS)
Csank, Jeffrey
2017-01-01
Intelligent, or autonomous, control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASAs current long term human space platform, the International Space Station, which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As focus shifts from Low Earth Orbit, communication time-lag and communication bandwidth limitations beyond geosynchronous orbit does not permit this type of operation. This presentation contains ongoing work at NASA to develop an architecture for autonomous power control and the vehicle manager which monitors, coordinates, and delegates to all the on-board subsystems to enable autonomous control of the complete spacecraft.
Biological effects of long term fine limestone tailings discharge in a fjord ecosystem.
Brooks, Lucy; Melsom, Fredrik; Glette, Tormod
2015-07-15
Benthic infaunal data collected from 1993 to 2010 were analysed to examine the effect of long term discharge of fine limestone tailings on macrofaunal species assemblages in a fjord. Relative distance from the outfall and proportion of fine tailings in the sediment were correlated with benthic community structure. Diversity decreased with increasing proportion of fine tailings. Biological Traits Analysis (BTA) was used to explore the temporal and spatial effects of the tailings gradient on macrofaunal functional attributes. BTA revealed that all stations along a pressure gradient of fine limestone tailings were dominated by free-living species. As the proportion of fine tailings in the sediment increased, there was an increase in fauna that were smaller, highly mobile, living on or nearer the surface sediment, with shorter lifespans. There was a decrease in permanent tube dwellers, those fauna with low or no mobility, that live deeper in the sediment and have longer lifespans (>5 yrs). Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment
Jones, Nicole L.; Thompson, Janet K.; Arrigo, Kevin R.; Monismith, Stephen G.
2009-01-01
Field experiments were undertaken to measure the influence of hydrodynamics on the removal of phytoplankton by benthic grazers in Suisun Slough, North San Francisco Bay. Chlorophyll a concentration boundary layers were found over beds inhabited by the active suspension feeders Corbula amurensis and Corophium alienense and the passive suspension feeders Marenzellaria viridis and Laonome sp. Benthic losses of phytoplankton were estimated via both the control volume and the vertical flux approach, in which chlorophyll a concentration was used as a proxy for phytoplankton biomass. The rate of phytoplankton loss to the bed was positively correlated to the bed shear stress. The maximum rate of phytoplankton loss to the bed was five times larger than estimated by laboratory-derived pumping rates for the active suspension feeders. Reasons for this discrepancy are explored including a physical mechanism whereby phytoplankton is entrained in a near-bed fluff layer where aggregation is mediated by the presence of mucus produced by the infaunal community.
Hydrodynamic control of phytoplankton loss to the benthos in an estuarine environment
Jones, N.L.; Thompson, J.K.; Arrigo, K.R.; Monismith, Stephen G.
2009-01-01
Field experiments were undertaken to measure the influence of hydrodynamics on the removal of phytoplankton by benthic grazers in Suisun Slough, North San Francisco Bay. Chlorophyll a concentration boundary layers were found over beds inhabited by the active suspension feeders Corbula amurensis and Corophium alienense and the passive suspension feeders Marenzellaria viridis and Laonome sp. Benthic losses of phytoplankton were estimated via both the control volume and the vertical flux approach, in which chlorophyll a concentration was used as a proxy for phytoplankton biomass. The rate of phytoplankton loss to the bed was positively correlated to the bed shear stress. The maximum rate of phytoplankton loss to the bed was five times larger than estimated by laboratory-derived pumping rates for the active suspension feeders. Reasons for this discrepancy are explored including a physical mechanism whereby phytoplankton is entrained in a near-bed fluff layer where aggregation is mediated by the presence of mucus produced by the infaunal community. ?? 2009, by the American Society of Limnology and Oceanography, Inc.
Hydrodynamic patterns favouring sea urchin recruitment in coastal areas: A Mediterranean study case.
Farina, S; Quattrocchi, G; Guala, I; Cucco, A
2018-05-11
In invertebrate fisheries, sea urchin harvesting continues to grow with dramatic consequences for benthic ecosystems. The identification of areas with a marked natural recruitment and the mechanisms regulating it is crucial for the conservation of benthic communities and for planning the sustainable harvesting. This study evaluates the spatial distribution and density of recruits of the edible sea urchin Paracentrotus lividus along the Sinis + Peninsula (Sardinia) and explores its significant relationships with the local oceanographic features. Our results reveal that recruitment is favoured in areas with slow currents and high levels of confinement and trapping of the water masses. Analysis of the residual circulation indicates that the presence of local standing circulation structures promotes the sea urchin recruitment process. Our findings emphasize the importance of managing local sea urchin harvesting as a system of populations with their demographic influence mainly dependent on the most important ecological driver that is the recruitment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tavera-Martínez, Laura; Marchant, Margarita
2017-10-20
Research regarding deep-sea benthic foraminifera in the Colombian Caribbean requires further development given the complete lack of information related to the different groups that constitute associations and the ecological functions they fulfill. For this purpose, a taxonomic description of Superfamily Komokioidea was composed from macrofauna samples from between 1,215 m and 3,179 m depth, obtained during the research cruise ANH-COL 4 and COL 5 carried out in 2014. Results showed foraminifera belonging to the three families: Komokiidae, Baculellidae, and Normaninidae, inclu-ding five genera (Lana, Komokia, Ipoa, Normaninam, and Catena) and five species (Lana neglecta, Komokia multiramosa, Normanina conferta, Ipoa fragila, and Catena piriformis). This study presents knowledge regarding deep-sea Colombian Caribbean benthic foraminifera, which to date have not been recorded from this region. Their depth distribution when compared with other studies from the Atlantic and Pacific, allows the expansion of taxonomic inventories and the characterization of biodiversity within poorly explored regions.
Effects of Benthic Barriers on Macroinvertebrate Communities
1993-10-01
Aquatic Plant Control Research Program Effects of Benthic Barriers on Macroinvertebrate Communities by Barry S. Payne, Andrew C. Miller Environmental...Plant Control Technical Report A-93-5Resear h Program Oct ber 1993 Effects of Benthic Barriers on Macroinvertebrate Communities by Barry S. Payne...Effects of benthic barriers on macroinvertebrate communities / by Barry S. Payne, Andrew C. Miller, [and] Thomas Ussery ; prepared for U.S. Army Corps of
Integrated Demonstration of Instrument Placement , Robust Execution and Contingent Planning
NASA Technical Reports Server (NTRS)
Pedersen, L.; Bualat, M.; Lees, D.; Smith, D. E.; Korsmeyer, David (Technical Monitor); Washington, R.
2003-01-01
This paper describes an integrated demonstration of ground-based contingent planning, robust execution and autonomous instrument placement for the efficient exploration of a site by a prototype Mars rover.
NASA Astrophysics Data System (ADS)
Dunton, K. H.; Schonberg, S. V.; Mctigue, N.; Bucolo, P. A.; Connelly, T. L.; McClelland, J. W.
2014-12-01
Changes in sea-ice cover, coastal erosion, and freshwater run-off have the potential to greatly influence carbon assimilation pathways and affect trophic structure in benthic communities across the western Arctic. In the Chukchi Sea, variations in the duration and timing of ice cover affect the delivery of ice algae to a relatively shallow (40-50 m) shelf benthos. Although ice algae are known as an important spring carbon subsidy for marine benthic fauna, ice algal contributions may also help initiate productivity of an active microphytobenthos. Recent studies provide clear evidence that the microphytobenthos are photosynthetically active, and have sufficient light and nutrients for in situ growth. The assimilation of benthic diatoms from both sources may explain the 13C enrichment observed in benthic primary consumers throughout the northern Chukchi. On the eastern Beaufort Sea coast, shallow (2-4 m) estuarine lagoon systems receive massive subsidies of terrestrial carbon that is assimilated by a benthic fauna of significant importance to upper trophic level species, but again, distinct 13C enrichment in benthic primary consumers suggests the existence of an uncharacterized food source. Since ice algae are absent, we believe the 13C enrichment in benthic fauna is caused by the assimilation of benthic microalgae, as reflected in seasonally high benthic chlorophyll in spring under replete light and nutrient conditions. Our observations suggest that changes in ice cover, on both temporal and spatial scales, are likely to have significant effects on the magnitude and timing of organic matter delivery to both shelf and nearshore systems, and that locally produced organic matter may become an increasingly important carbon subsidy that affects trophic assimilation and secondary ecosystem productivity.
Hall, Lenwood W; Killen, William D
2006-01-01
This study was designed to assess trends in physical habitat and benthic communities (macroinvertebrates) annually in two agricultural streams (Del Puerto Creek and Salt Slough) in California's San Joaquin Valley from 2001 to 2005, determine the relationship between benthic communities and both water quality and physical habitat from both streams over the 5-year period, and compare benthic communities and physical habitat in both streams from 2001 to 2005. Physical habitat, measured with 10 metrics and a total score, was reported to be fairly stable over 5 years in Del Puerto Creek but somewhat variable in Salt Slough. Benthic communities, measured with 18 metrics, were reported to be marginally variable over time in Del Puerto Creek but fairly stable in Salt Slough. Rank correlation analysis for both water bodies combined showed that channel alteration, embeddedness, riparian buffer, and velocity/depth/diversity were the most important physical habitat metrics influencing the various benthic metrics. Correlations of water quality parameters and benthic community metrics for both water bodies combined showed that turbidity, dissolved oxygen, and conductivity were the most important water quality parameters influencing the different benthic metrics. A comparison of physical habitat metrics (including total score) for both water bodies over the 5-year period showed that habitat metrics were more positive in Del Puerto Creek when compared to Salt Slough. A comparison of benthic metrics in both water bodies showed that approximately one-third of the metrics were significantly different between the two water bodies. Generally, the more positive benthic metric scores were reported in Del Puerto Creek, which suggests that the communities in this creek are more robust than Salt Slough.
Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration
NASA Astrophysics Data System (ADS)
Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.
2002-01-01
The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (< 1 kg). The objective of this survey is to construct a compendium of composition, shape, and other physical parameter observations of a significant fraction of asteroid belt objects. Such an atlas will be of primary scientific importance for the understanding of Solar System origins and evolution and will lay the foundation for future exploration and capitalization of space. As the capabilities enabling ANTS are developed over the next two decades, these capabilities will need to be proven. Natural milestones for this process include the deployment of progenitors to ANTS on human expeditions to space and remote missions with interfaces for human interaction and control. These progenitors can show up in a variety of forms ranging from spacecraft subsystems and advanced handheld sensors, through complete prototypical ANTS spacecraft. A critical capability to be demonstrated is reliable, long-term autonomous operations across the ANTS architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual spacecraft at the lowest levels of control we have been studying control methods based on nonlinear dynamical systems. We describe the critically important autonomous control architecture of the ANTS mission concept and a sequence of partial implementations that feature increasingly autonomous behaviors. The scientific and engineering roles that these Progenitor ANTS could play in human missions or remote missions with near real time human interactions, particularly to the Moon and Mars, will be discussed.
Analytical characterization of selective benthic flux components in estuarine and coastal waters
King, Jeffrey N.
2011-01-01
Benthic flux is the rate of flow across the bed of a water body, per unit area of bed. It is forced by component mechanisms, which interact. For example, pressure gradients across the bed, forced by tide, surface gravity waves, density gradients, bed–current interaction, turbulence, and terrestrial hydraulic gradients, drive an advective benthic flux of water and constituents between estuarine and coastal waters, and surficial aquifers. Other mechanisms also force benthic flux, such as chemical gradients, bioturbation, and dispersion. A suite of component mechanisms force a total benthic flux at any given location, where each member of the suite contributes a component benthic flux. Currently, the types and characteristics of component interactions are not fully understood. For example, components may interact linearly or nonlinearly, and the interaction may be constructive or destructive. Benthic flux is a surface water–groundwater interaction process. Its discharge component to a marine water body is referred to, in some literature, as submarine groundwater discharge. Benthic flux is important in characterizing water and constituent budgets of estuarine and coastal systems. Analytical models to characterize selective benthic flux components are reviewed. Specifically, these mechanisms are for the component associated with the groundwater tidal prism, and forced by surface gravity wave setup, surface gravity waves on a plane bed, and the terrestrial hydraulic gradient. Analytical models are applied to the Indian River Lagoon, Florida; Great South Bay, New York; and the South Atlantic Bight in South Carolina and portions of North Carolina.
Yang, Jian; Jiang, Hongchen; Liu, Wen; Wang, Beichen
2018-01-01
Uncovering the limiting factors for benthic algal distributions in lakes is of great importance to understanding of their role in global carbon cycling. However, limited is known about the benthic algal community distribution and how they are influenced by geographic distance and environmental variables in alpine lakes. Here, we investigated the benthic algal community compositions in the surface sediments of six lakes on the Qinghai-Tibetan Plateau (QTP), China (salinity ranging from 0.8 to 365.6 g/L; pairwise geographic distance among the studied lakes ranging 8–514 km) employing an integrated approach including Illumina-Miseq sequencing and environmental geochemistry. The results showed that the algal communities of the studied samples were mainly composed of orders of Bacillariales, Ceramiales, Naviculales, Oscillatoriales, Spirulinales, Synechococcales, and Vaucheriales. The benthic algal community compositions in these QTP lakes were significantly (p < 0.05) correlated with many environmental (e.g., dissolved inorganic and organic carbon, illumination intensity, total nitrogen and phosphorus, turbidity and water temperature) and spatial factors, and salinity did not show significant influence on the benthic algal community structures in the studied lakes. Furthermore, geographic distance showed strong, significant correlation (r = 0.578, p < 0.001) with the benthic algal community compositions among the studied lakes, suggesting that spatial factors may play important roles in influencing the benthic algal distribution. These results expand our current knowledge on the influencing factors for the distributions of benthic alga in alpine lakes. PMID:29636745
Brown, Laura A.; Furlong, Jessica N.; Brown, Kenneth M.; LaPeyre, Megan K.
2013-01-01
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5years) and old (>6years) shell and rock substrate reefs. Using crab traps, gill-nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.
Photosynthesis as a Possible Source of Gas Bubbles in Shallow Sandy Coastal Sediments
2012-09-30
clearly demonstrates that gas bubbles can be formed when photosynthesis by benthic microalgae causes pore water to become supersaturated with oxygen...We also collected sediment samples from the upper few mm of sand to identify the dominant taxa of benthic microalgae present. Although benthic...Jan Rines (Graduate School of Oceanography / University of Rhode Island = GSO/URI) to identify the benthic microalgae in the samples. Following the
Lenz, Bernard N.; Robertson, Dale M.; Fallon, James D.; Ferrin, Randy
2001-01-01
Benthic invertebrates were sampled and indices of water quality were calculated at 16 tributaries in fall 1999. Benthic invertebrate indices indicated excellent to good water quality at all tributaries except Valley Creek, Willow River, and Kettle River. No relations were found between benthic invertebrate indices and the calculated and estimated 1999 annual tributary loads and yields.
An advanced terrain modeler for an autonomous planetary rover
NASA Technical Reports Server (NTRS)
Hunter, E. L.
1980-01-01
A roving vehicle capable of autonomously exploring the surface of an alien world is under development and an advanced terrain modeler to characterize the possible paths of the rover as hazardous or safe is presented. This advanced terrain modeler has several improvements over the Troiani modeler that include: a crosspath analysis, better determination of hazards on slopes, and methods for dealing with missing returns at the extremities of the sensor field. The results from a package of programs to simulate the roving vehicle are then examined and compared to results from the Troiani modeler.
Sample Return Robot Centennial Challenge
2012-06-16
NASA Program Manager for Centennial Challenges Sam Ortega help show a young visitor how to drive a rover as part of the interactive NASA Mars rover exhibit during the Worcester Polytechnic Institute (WPI) "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The NASA-WPI challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-16
NASA Deputy Administrator Lori Garver and NASA Chief Technologist Mason Peck stop to look at the bronze statue of the goat mascot for Worcester Polytechnic Institute (WPI) named "Gompei" that is wearing a staff t-shirt for the "TouchTomorrow" education and outreach event that was held in tandem with the NASA-WPI Sample Return Robot Centennial Challenge on Saturday, June 16, 2012 in Worcester, Mass. The challenge tasked robotic teams to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Sample Return Robot Centennial Challenge
2012-06-15
SpacePRIDE Team members Chris Williamson, right, and Rob Moore, second from right, answer questions from 8th grade Sullivan Middle School (Mass.) students about their robot on Friday, June 15, 2012 at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. SpacePRIDE's robot team will compete for a $1.5 million NASA prize in the NASA-WPI Sample Return Robot Centennial Challenge at WPI. Teams have been challenged to build autonomous robots that can identify, collect and return samples. NASA needs autonomous robotic capability for future planetary exploration. Photo Credit: (NASA/Bill Ingalls)
Autonomous Rendezvous and Docking Conference, volume 2
NASA Technical Reports Server (NTRS)
1990-01-01
Autonomous Rendezvous and Docking (ARD) will be a requirement for future space programs. Clear examples include satellite servicing, repair, recovery, and reboost in the near term, and the longer range lunar and planetary exploration programs. ARD will permit more aggressive unmanned space activities, while providing a valuable operational capability for manned missions. The purpose of the conference is to identify the technologies required for an on-orbit demonstration of ARD, assess the maturity of those technologies, and provide the necessary insight for a quality assessment of programmatic management, technical, schedule, and cost risks.
Using ANTS to explore small body populations in the solar system.
NASA Astrophysics Data System (ADS)
Clark, P. E.; Rilee, M.; Truszkowski, W.; Curtis, S.; Marr, G.; Chapman, C.
2001-11-01
ANTS (Autonomous Nano-Technology Swarm), a NASA advanced mission concept, is a large (100 to 1000 member) swarm of pico-class (1 kg) totally autonomous spacecraft that prospect the asteroid belt. Little data is available for asteroids because the vast majority are too small to be observed except in close proximity. Light curves are available for thousands of asteroids, confirmed trajectories for tens of thousands, detailed shape models for approximately ten. Asteroids originated in the transitional region between the inner (rocky) and outer (solidified gases) solar system. Many have remained largely unmodified since formation, and thus have more primitive composition than planetary surfaces. Determination of the systematic distribution of physical and compositional properties within the asteroid population is crucial in the understanding of solar system formation. The traditional exploration approach of using few, large spacecraft for sequential exploration, could be improved. Our far more cost-effective approach utilizes distributed intelligence in a swarm of tiny highly maneuverable spacecraft, each with specialized instrument capability (e.g., advanced computing, imaging, spectrometry). NASA is at the forefront of Intelligent Software Agents (ISAs) research, performing experiments in space and on the ground to advance deliberative and collaborative autonomous control techniques. The advanced development under consideration here is in the use of ISAs at a strategic level, to explore remote frontiers of the solar system, potentially involving a large class of objects such as asteroids. Supervised clusters of spacecraft operate simultaneously within a broadly defined framework of goals to select targets (> 1000) from among available candidates while developing scenarios for studying targets. Swarm members use solar sails to fly directly to asteroids > 1 kilometer in diameter, and then perform maneuvers appropriate for the instrument carried, ranging from hovering to orbiting. Selected members return with data and are replaced as needed.
Synopsis of Precision Landing and Hazard Avoidance (PL&HA) Capabilities for Space Exploration
NASA Technical Reports Server (NTRS)
Robertson, Edward A.
2017-01-01
Until recently, robotic exploration missions to the Moon, Mars, and other solar system bodies relied upon controlled blind landings. Because terrestrial techniques for terrain relative navigation (TRN) had not yet been evolved to support space exploration, landing dispersions were driven by the capabilities of inertial navigation systems combined with surface relative altimetry and velocimetry. Lacking tight control over the actual landing location, mission success depended on the statistical vetting of candidate landing areas within the predicted landing dispersion ellipse based on orbital reconnaissance data, combined with the ability of the spacecraft to execute a controlled landing in terms of touchdown attitude, attitude rates, and velocity. In addition, the sensors, algorithms, and processing technologies required to perform autonomous hazard detection and avoidance in real time during the landing sequence were not yet available. Over the past decade, NASA has invested substantial resources on the development, integration, and testing of autonomous precision landing and hazard avoidance (PL&HA) capabilities. In addition to substantially improving landing accuracy and safety, these autonomous PL&HA functions also offer access to targets of interest located within more rugged and hazardous terrain. Optical TRN systems are baselined on upcoming robotic landing missions to the Moon and Mars, and NASA JPL is investigating the development of a comprehensive PL&HA system for a Europa lander. These robotic missions will demonstrate and mature PL&HA technologies that are considered essential for future human exploration missions. PL&HA technologies also have applications to rendezvous and docking/berthing with other spacecraft, as well as proximity navigation, contact, and retrieval missions to smaller bodies with microgravity environments, such as asteroids.
Zamzow, Rachel M; Ferguson, Bradley J; Ragsdale, Alexandra S; Lewis, Morgan L; Beversdorf, David Q
2017-08-01
Autism spectrum disorder (ASD) is characterized by impairments in social communication as well as restricted, repetitive behaviors. Evidence suggests that some individuals with ASD have cognitive impairments related to weak central coherence and hyperrestricted processing. Reducing noradrenergic activity may improve aspects of network processing and thus improve cognitive abilities, such as verbal problem solving, in individuals with ASD. The present pilot study explores the effects of acute administration of the beta-adrenergic antagonist propranolol on verbal problem solving in adults and adolescents with ASD. In a within-subject crossover-design, 20 participants with ASD received a single dose of propranolol or placebo on one of two sessions in a double-blinded, counterbalanced manner. Verbal problem solving was assessed via an anagram task. Baseline measurements of autonomic nervous system functioning were obtained, and anxiety was assessed at baseline and following drug administration. Participants solved the anagrams more quickly in the propranolol condition, as compared to the placebo condition, suggesting a potential cognitive benefit of this agent. Additionally, we observed a negative linear relationship between response to propranolol on the anagram task and two measures of baseline autonomic activity, as well as a positive linear relationship between drug response and baseline anxiety. These relationships propose potential markers for treatment response, as propranolol influences both autonomic functioning and anxiety. Further investigation is needed to expand on the present single-dose psychopharmacological challenge and explore the observed effects of propranolol in a serial-dose setting.
NASA Technical Reports Server (NTRS)
Rodgers, Erica M.; Simon, Matthew A.; Antol, Jeffrey; Chai, Patrick R.; Jones, Christopher A.; Klovstad, Jordan J.; Neilan, James H.; Stillwagen, Frederic H.; Williams, Phillip A.; Bednara, Michael;
2015-01-01
The path from Earth to Mars requires exploration missions to be increasingly Earth-independent as the foundation is laid for a sustained human presence in the following decades. NASA pioneering of Mars will expand the boundaries of human exploration, as a sustainable presence on the surface requires humans to successfully reproduce in a partial gravity environment independent from Earth intervention. Before significant investment is made in capabilities leading to such pioneering efforts, the challenges of multigenerational mammalian reproduction in a partial gravity environment need be investigated. The Multi-generational Independent Colony for Extraterrestrial Habitation, Autonomy, and Behavior health is designed to study these challenges. The proposed concept is a conceptual, long duration, autonomous habitat designed to house rodents in a partial gravity environment with the goal of understanding the effects of partial gravity on mammalian reproduction over multiple generations and how to effectively design such a facility to operate autonomously while keeping the rodents healthy in order to achieve multiple generations. All systems are designed to feed forward directly to full-scale human missions to Mars. This paper presents the baseline design concept formulated after considering challenges in the mission and vehicle architectures such as: vehicle automation, automated crew health management/medical care, unique automated waste disposal and hygiene, handling of deceased crew members, reliable long-duration crew support systems, and radiation protection. This concept was selected from an architectural trade space considering the balance between mission science return and robotic and autonomy capabilities. The baseline design is described in detail including: transportation and facility operation constraints, artificial gravity system design, habitat design, and a full-scale mock-up demonstration of autonomous rodent care facilities. The proposed concept has the potential to integrate into existing mission architectures in order to achieve exploration objectives, and to demonstrate and mature common capabilities that enable a range of destinations and missions.
Hernández Fariñas, Tania; Ribeiro, Lourenço; Soudant, Dominique; Belin, Catherine; Bacher, Cédric; Lampert, Luis; Barillé, Laurent
2017-10-01
Suspended marine benthic microalgae in the water column reflect the close relationship between the benthic and pelagic components of coastal ecosystems. In this study, a 12-year phytoplankton time-series was used to investigate the contribution of benthic microalgae to the pelagic system at a site along the French-Atlantic coast. Furthermore, all taxa identified were allocated into different growth forms in order to study their seasonal patterns. The highest contribution of benthic microalgae was observed during the winter period, reaching up to 60% of the carbon biomass in the water column. The haptobenthic growth form showed the highest contribution in terms of biomass, dominant in the fall-winter period when the turbidity and the river flow were high. The epipelic growth form did not follow any seasonal pattern. The epiphytic diatom Licmophora was most commonly found during summer. As benthic microalgae were found in the water column throughout the year, the temporal variation detected in the structure of pelagic assemblages in a macrotidal ecosystem was partly derived from the differentiated contribution of several benthic growth forms. © 2017 Phycological Society of America.
Autonomous Onboard Science Image Analysis for Future Mars Rover Missions
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.
1999-01-01
To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be transmitted to the ground, or to aid in image compression. We will discuss these and other algorithms and demonstrate their performance during a recent rover field test.
von Biela, Vanessa R.; Zimmerman, Christian E.; Kruse, Gordon H.; Mueter, Franz J.; Black, Bryan A.; Douglas, David C.; Bodkin, James L.
2016-01-01
Nearshore marine habitats are productive and vulnerable owing to their connections to pelagic and terrestrial landscapes. To understand how ocean basin- and local-scale conditions may influence nearshore species, we developed an annual index of nearshore production (spanning the period 1972–2010) from growth increments recorded in otoliths of representative pelagic-feeding (Black Rockfish Sebastes melanops) and benthic-feeding (Kelp Greenling Hexagrammos decagrammus) nearshore-resident fishes at nine sites in the California Current and Alaska Coastal Current systems. We explored the influence of basin- and local-scale conditions across all seasons at lags of up to 2 years to represent changes in prey quantity (1- or 2-year time lags) and quality (within-year relationships). Relationships linking fish growth to basin-scale (Pacific Decadal Oscillation, North Pacific Gyre Oscillation, and multivariate El Niño–Southern Oscillation index) and local-scale (sea surface temperature, sea surface height anomalies, upwelling index, photosynthetically active radiation, and freshwater discharge) environmental conditions varied by species and current system. Growth of Black Rockfish increased with cool basin-scale conditions in the California Current and warm local-scale conditions in the Alaska Coastal Current, consistent with existing hypotheses linking climate to pelagic production on continental shelves in the respective regions. Relationships for Kelp Greenlings in the California Current were complex, with faster growth related to within-year warm conditions and lagged-year cool conditions. These opposing, lag-dependent relationships may reflect differences in conditions that promote quantity versus quality of benthic invertebrate prey in the California Current. Thus, we hypothesize that benthic production is maximized by alternating cool and warm years, as benthic invertebrate recruitment is food limited during warm years while growth is temperature limited by cool years in the California Current. On the other hand, Kelp Greenlings grew faster during and subsequent to warm conditions at basin and local scales in the Alaska Coastal Current.
Reconstructing initial Mediterranean Outflow from Benthic Foraminifera
NASA Astrophysics Data System (ADS)
Garcia Gallardo, A.; Grunert, P.; Voelker, A. H. L.; Mendes, I.; Piller, W. E.
2016-12-01
The onset of Mediterranean Outflow Water (MOW) takes place after the opening of the Gibraltar Strait (5.33 Ma). Its impact on oceanography and climate in the present is widely studied but its role in the early Pliocene is not well explored yet. Quantitative analysis of benthic foraminifera has been performed on sediment samples from the lower part of IODP Hole U1387C (IODP Expedition 339) in order to reconstruct paleoenvironmental changes during the late Miocene-early Pliocene. Micropaleontological records reveal a shift from reduced oxygenation in the late Miocene to a better ventilated setting during the early Pliocene likely related to the first evidence of Mediterranean-Atlantic exchange. Increased abundances of the functional benthic foraminiferal "elevated epifauna" group have been directly related to MOW in the Gulf of Cadiz since they are adapted to settle on substrates above the sediment surface to catch food particles from strong bottom currents (Schönfeld, 2002). In our study, the elevated epifauna is represented by Planulina ariminensis, Cibicides lobatulus and C. refulgens. However, our early Pliocene records reveal that peak abundances of C. lobatulus and C. refulgens are well correlated with allochthonous shelf taxa and grain-size maxima, suggesting downslope transport to deeper settings. To clarify this issue, stable isotope analyses (δ18O, δ13C) have been performed on shells of shelf dwellers, deep water taxa and elevated epifauna from Pliocene and present-day samples from the Iberian Margin. Preliminary results indicate that some elevated epifaunal elements have a broad bathymetric range and are not always autochthonous to deeper settings. In the early Pliocene Gulf of Cadiz, characterized by frequent turbidite deposition, P. ariminensis would thus remain the only reliable indicator of MOW. Schönfeld, J., 2002. A new benthic foraminiferal proxy for near-bottom current velocities in the Gulf of cadiz, Northeastern Atlantic Ocean. Deep-Sea Res I 49:1853-1875.
The influence of reduced light intensity on the response of benthic diatoms to herbicide exposure.
Wood, Rebecca J; Mitrovic, Simon M; Lim, Richard P; Kefford, Ben J
2016-09-01
Herbicide pollution events in aquatic ecosystems often coincide with increased turbidity and reduced light intensity. It is therefore important to determine whether reduced light intensity can influence herbicide toxicity, especially to primary producers such as benthic diatoms. Benthic diatoms collected from 4 rivers were exposed to herbicides in 48 h rapid toxicity tests under high light (100 µmol m(-2) s(-1) ) and low light (20 µmol m(-2) s(-1) ) intensities. The effects of 2 herbicides (atrazine and glyphosate) were assessed on 26 freshwater benthic diatom taxa. There was no significant interaction of light and herbicide effects at the community level or on the majority (22 of 26) of benthic diatom taxa. This indicates that low light levels will likely have only a minor influence on the response of benthic diatoms to herbicides. Environ Toxicol Chem 2016;35:2252-2260. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Goineau, Aurélie; Gooday, Andrew J.
2017-04-01
The benthic biota of the Clarion-Clipperton Zone (CCZ, abyssal eastern equatorial Pacific) is the focus of a major research effort linked to possible future mining of polymetallic nodules. Within the framework of ABYSSLINE, a biological baseline study conducted on behalf of Seabed Resources Development Ltd. in the UK-1 exploration contract area (eastern CCZ, ~4,080 m water depth), we analysed foraminifera (testate protists), including ‘live’ (Rose Bengal stained) and dead tests, in 5 cores (0-1 cm layer, >150-μm fraction) recovered during separate megacorer deployments inside a 30 by 30 km seafloor area. In both categories (live and dead) we distinguished between complete and fragmented specimens. The outstanding feature of these assemblages is the overwhelming predominance of monothalamids, a group often ignored in foraminiferal studies. These single-chambered foraminifera, which include agglutinated tubes, spheres and komokiaceans, represented 79% of 3,607 complete tests, 98% of 1,798 fragments and 76% of the 416 morphospecies (live and dead combined) in our samples. Only 3.1% of monothalamid species and 9.8% of all species in the UK-1 assemblages are scientifically described and many are rare (29% singletons). Our results emphasise how little is known about foraminifera in abyssal areas that may experience major impacts from future mining activities.
Libration Point Navigation Concepts Supporting the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.
2004-01-01
This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.
NASA Technical Reports Server (NTRS)
1974-01-01
A number of problems related to the design, construction and evaluation of an autonomous roving planetary vehicle and its control and operating systems intended for an unmanned exploration of Mars are studied. Vehicle configuration, dynamics, control, systems and propulsion; systems analysis; terrain sensing and modeling and path selection; and chemical analysis of samples are included.
Williams, Gareth J; Smith, Jennifer E; Conklin, Eric J; Gove, Jamison M; Sala, Enric; Sandin, Stuart A
2013-01-01
Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54-86% cover), namely hard corals (20-74%) and crustose coralline algae (CCA) (10-36%). While turf algae were relatively common at both locations (8-22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7-9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra's backreef and Kingman's patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman's patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman's forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized shelter. In contrast, the cover of turf algae at Kingman was positively related to wave energy, reflecting their ability to rapidly colonize newly available space. No significant patterns with wave energy were observed on Palmyra's forereef, suggesting that a more detailed model is required to study biophysical coupling there. Kingman, Palmyra, and other remote oceanic reefs provide interesting case studies to explore biophysical influences on benthic ecology and dynamics.
Conklin, Eric J.; Gove, Jamison M.; Sala, Enric; Sandin, Stuart A.
2013-01-01
Kingman Reef and Palmyra Atoll in the central Pacific are among the most remote coral reefs on the planet. Here we describe spatial patterns in their benthic communities across reef habitats and depths, and consider these in the context of oceanographic gradients. Benthic communities at both locations were dominated by calcifying organisms (54–86% cover), namely hard corals (20–74%) and crustose coralline algae (CCA) (10–36%). While turf algae were relatively common at both locations (8–22%), larger fleshy macroalgae were virtually absent at Kingman (<1%) and rare at Palmyra (0.7–9.3%). Hard coral cover was higher, but with low diversity, in more sheltered habitats such as Palmyra’s backreef and Kingman’s patch reefs. Almost exclusive dominance by slow-growing Porites on Kingman’s patch reefs provides indirect evidence of competitive exclusion, probably late in a successional sequence. In contrast, the more exposed forereef habitats at both Kingman and Palmyra had higher coral diversity and were characterized by fast-growing corals (e.g., Acropora and Pocillopora), indicative of more dynamic environments. In general at both locations, soft coral cover increased with depth, likely reflecting increasingly efficient heterotrophic abilities. CCA and fleshy macroalgae cover decreased with depth, likely due to reduced light. Cover of other calcified macroalgae, predominantly Halimeda, increased with depth. This likely reflects the ability of many calcifying macroalgae to efficiently harvest light at deeper depths, in combination with an increased nutrient supply from upwelling promoting growth. At Palmyra, patterns of hard coral cover with depth were inconsistent, but cover peaked at mid-depths at Kingman. On Kingman’s forereef, benthic community composition was strongly related to wave energy, with hard coral cover decreasing and becoming more spatially clustered with increased wave energy, likely as a result of physical damage leading to patches of coral in localized shelter. In contrast, the cover of turf algae at Kingman was positively related to wave energy, reflecting their ability to rapidly colonize newly available space. No significant patterns with wave energy were observed on Palmyra’s forereef, suggesting that a more detailed model is required to study biophysical coupling there. Kingman, Palmyra, and other remote oceanic reefs provide interesting case studies to explore biophysical influences on benthic ecology and dynamics. PMID:23734341
Hammill, Edward; Booth, David J.; Madin, Elizabeth M. P.; Hinchliffe, Charles; Harborne, Alastair R.; Lovelock, Catherine E.; Macreadie, Peter I.; Atwood, Trisha B.
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways. PMID:29513746
Ollivier, Quinn R; Hammill, Edward; Booth, David J; Madin, Elizabeth M P; Hinchliffe, Charles; Harborne, Alastair R; Lovelock, Catherine E; Macreadie, Peter I; Atwood, Trisha B
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.
Information architecture for a planetary 'exploration web'
NASA Technical Reports Server (NTRS)
Lamarra, N.; McVittie, T.
2002-01-01
'Web services' is a common way of deploying distributed applications whose software components and data sources may be in different locations, formats, languages, etc. Although such collaboration is not utilized significantly in planetary exploration, we believe there is significant benefit in developing an architecture in which missions could leverage each others capabilities. We believe that an incremental deployment of such an architecture could significantly contribute to the evolution of increasingly capable, efficient, and even autonomous remote exploration.
Benthic Macroinvertebrate Assemblages in the Near Coastal Zone of Lake Erie
Benthic macroinvertebrate assemblages have been used as indicators of ecological condition because their responses integrate localized environmental conditions of the sediments and overlying water. Assemblages of benthic invertebrates in the near coastal region are of particular...
Hall, Lenwood W; Killen, William D; Alden, Raymond
2009-05-01
This study was designed to characterize long-term annual temporal and spatial trends (2001 to 2007) in physical habitat and benthic communities and to determine relationships of habitat and benthic communities during this 7-year period in an agricultural stream in the San Joaquin River watershed in California (Del Puerto Creek). The canonical discriminant analysis indicated that there were no overall significant temporal patterns for the habitat metrics although spatial patterns were prominent for nearly all the habitat metrics. Channel alteration, riparian vegetative zone, bank stability, vegetative protection and frequency of riffles/bends were the primary habitat metrics associated with these site effects. Approximately 3,700 to 4,500 individual macroinvertebrates were picked and identified from five Del Puerto Creek sites sampled annually from 2001 to 2007. The total number of taxa by year ranged from 81 in 2003 to 106 in 2007. These benthic assemblages were generally comprised of tolerant to moderately tolerant taxa such as blackflies, oligochaetes, snails and chironomids. The metrics % predators, % EPT index, % collectors/filterers and % shredders were the benthic metrics that were most associated with the temporal effects. Ephemeroptera taxa, trichoptera taxa, and % sensitive EPT index were the benthic metrics that were most associated with the site effects. The most upstream site in Del Puerto Creek had the most robust and healthy benthic communites. Strong statistical relationships were reported between certain benthic metrics and habitat metrics. Overall, samples taken from site-year combinations with sediments that were qualitatively less muddy (less fines) and that had higher habitat metric scores for embeddedness, riparian vegetative zone, and channel alteration tended to have benthic communities characterized by higher values of the benthic metrics such as EPT taxa, Ephemeroptera taxa, EPT index, abundance, and taxonomic richness, among others. Conversely, tolerance value and % tolerant taxa, the indicators of stressed benthic communities, were found to be inversely related to Bank Stability and Riparian vegetative zone (respectively), both indicators of habitat quality. Relationships between the quality of the physical habitat and the health of the benthic communities in aquatic systems, such as agricultural streams, needs to be considered before the impact of anthropogenic agents (e.g., pesticides, metals, and other potential toxicants) or other man-made perturbations may be understood. Otherwise, the interpretation of patterns of environmental conditions or causalities may be confounded.
RIACS Workshop on the Verification and Validation of Autonomous and Adaptive Systems
NASA Technical Reports Server (NTRS)
Pecheur, Charles; Visser, Willem; Simmons, Reid
2001-01-01
The long-term future of space exploration at NASA is dependent on the full exploitation of autonomous and adaptive systems: careful monitoring of missions from earth, as is the norm now, will be infeasible due to the sheer number of proposed missions and the communication lag for deep-space missions. Mission managers are however worried about the reliability of these more intelligent systems. The main focus of the workshop was to address these worries and hence we invited NASA engineers working on autonomous and adaptive systems and researchers interested in the verification and validation (V&V) of software systems. The dual purpose of the meeting was to: (1) make NASA engineers aware of the V&V techniques they could be using; and (2) make the V&V community aware of the complexity of the systems NASA is developing.
Autonomous RPRV Navigation, Guidance and Control
NASA Technical Reports Server (NTRS)
Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.
1983-01-01
Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.
Star Identification Without Attitude Knowledge: Testing with X-Ray Timing Experiment Data
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor
1997-01-01
As the budget for the scientific exploration of space shrinks, the need for more autonomous spacecraft increases. For a spacecraft with a star tracker, the ability to determinate attitude from a lost in space state autonomously requires the capability to identify the stars in the field of view of the tracker. Although there have been efforts to produce autonomous star trackers which perform this function internally, many programs cannot afford these sensors. The author previously presented a method for identifying stars without a priori attitude knowledge specifically targeted for onboard computers as it minimizes the necessary computer storage. The method has previously been tested with simulated data. This paper provides results of star identification without a priori attitude knowledge using flight data from two 8 by 8 degree charge coupled device star trackers onboard the X-Ray Timing Experiment.
Automatic Parking of Self-Driving CAR Based on LIDAR
NASA Astrophysics Data System (ADS)
Lee, B.; Wei, Y.; Guo, I. Y.
2017-09-01
To overcome the deficiency of ultrasonic sensor and camera, this paper proposed a method of autonomous parking based on the self-driving car, using HDL-32E LiDAR. First the 3-D point cloud data was preprocessed. Then we calculated the minimum size of parking space according to the dynamic theories of vehicle. Second the rapidly-exploring random tree algorithm (RRT) algorithm was improved in two aspects based on the moving characteristic of autonomous car. And we calculated the parking path on the basis of the vehicle's dynamics and collision constraints. Besides, we used the fuzzy logic controller to control the brake and accelerator in order to realize the stably of speed. At last the experiments were conducted in an autonomous car, and the results show that the proposed automatic parking system is feasible and effective.
Posttraumatic Growth and Bereavement: The Contribution of Self-Determination Theory.
Lumb, Andrew B; Beaudry, Myriam; Blanchard, Celine
2017-09-01
No research drawing from Self-Determination Theory has investigated the bereavement experience of individuals or how motivation can help facilitate posttraumatic growth (PTG) following the death of a loved one. In two cross-sectional studies, university students completed an online survey. Study 1 investigated the contribution of global autonomous and controlled motivation in statistically predicting PTG above and beyond previously researched correlates. Study 2 explored the mediating role of cognitive appraisals and coping in explaining the relationship between global motivation orientations and PTG. Results indicated that in comparison to controlled motivation, autonomous motivation was positively related PTG, even after controlling for previously researched correlates. Mediation results indicated an indirect effect of global autonomous motivation on PTG through task-oriented coping. Collectively, these findings suggest the importance of incorporating motivation into models of PTG. Clinical implications of these findings are also discussed.
Wang, Linjie; Cao, Yi; Tan, Cheng; Zhao, Qi; He, Siyang; Niu, Dongbin; Tang, Guohua; Zou, Peng; Xing, Lei
2017-01-01
Explore the different vestibular physiologic response retention patterns after Coriolis acceleration training in student pilots and extend the results for use with Chinese astronauts in the future. Twelve healthy control male subjects were screened from males familiar with vestibular training and who physically resembled the astronauts. Fourteen student pilots were selected from 23 participants by rotational vestibular function tests. All subjects were exposed to five-day continuous or intermittent Coriolis acceleration training. Subjective motion sickness (MS) symptom scores, electrocardiography, electrogastrography (EGG), post-rotatory nystagmus and renin-angiotensin system responses were measured before, during and after rotational vestibular function tests at different times after vestibular training. Subjects could tolerate 10 min or 15 min of vestibular with mild MS symptoms. Retention of vestibular autonomic responses (retention of MS symptom scores, heart rate variability, power density of EGG, variations in levels of arginine vasopressin) were approximately 1 week for control subjects and approximately 5 weeks for student pilots. Decreases in slow-phase velocity of post-rotatory nystagmus were maintained for 14 weeks for control subjects and 9 weeks for student pilots. Retention of the vestibulo-autonomic reaction after vestibular training was different for control subjects and student pilots. All parameters related to autonomic responses could be maintained at low levels after vestibular training for approximately 1 week for control subjects and approximately 5 weeks for student pilots. Uncoupling patterns between post-rotatory nystagmus and the vestibulo-autonomic reaction may be helpful in the design of clinical rehabilitation plans for balance-disorder patients and for exploration of artificial gravity in future space missions.
Wei, Kun; Ren, Bingyin
2018-02-13
In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.
Linkages between benthic macroinvertebrate assemblages and landscape stressors in the US Great Lakes
We used multiple linear regression analysis to investigate relationships between benthic macroinvertebrate assemblages in the nearshore region of the Laurentian Great Lakes and landscape characteristics in adjacent watersheds. Benthic invertebrate data were obtained from the 201...
Kember, Guy; Ardell, Jeffrey L; Shivkumar, Kalyanam; Armour, J Andrew
2017-01-01
The cardiac nervous system continuously controls cardiac function whether or not pathology is present. While myocardial infarction typically has a major and catastrophic impact, population studies have shown that longer-term risk for recurrent myocardial infarction and the related potential for sudden cardiac death depends mainly upon standard atherosclerotic variables and autonomic nervous system maladaptations. Investigative neurocardiology has demonstrated that autonomic control of cardiac function includes local circuit neurons for networked control within the peripheral nervous system. The structural and adaptive characteristics of such networked interactions define the dynamics and a new normal for cardiac control that results in the aftermath of recurrent myocardial infarction and/or unstable angina that may or may not precipitate autonomic derangement. These features are explored here via a mathematical model of cardiac regulation. A main observation is that the control environment during pathology is an extrapolation to a setting outside prior experience. Although global bounds guarantee stability, the resulting closed-loop dynamics exhibited while the network adapts during pathology are aptly described as 'free-floating' in order to emphasize their dependence upon details of the network structure. The totality of the results provide a mechanistic reasoning that validates the clinical practice of reducing sympathetic efferent neuronal tone while aggressively targeting autonomic derangement in the treatment of ischemic heart disease.
Brown, Daniel K; Barton, Jo L; Gladwell, Valerie F
2013-06-04
A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor.
Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao
2014-09-18
The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.
Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao
2014-01-01
The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality. PMID:25237902
2013-01-01
A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor. PMID:23590163
The Northern Bering Sea: An Arctic Ecosystem in Change
NASA Astrophysics Data System (ADS)
Grebmeier, J. M.; Cooper, L. W.
2004-12-01
Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in a 20-yr environmental time-series in the Bering Strait region.
Belley, Rénald; Snelgrove, Paul V R; Archambault, Philippe; Juniper, S Kim
2016-01-01
The upwelling of deep waters from the oxygen minimum zone in the Northeast Pacific from the continental slope to the shelf and into the Salish Sea during spring and summer offers a unique opportunity to study ecosystem functioning in the form of benthic fluxes along natural gradients. Using the ROV ROPOS we collected sediment cores from 10 sites in May and July 2011, and September 2013 to perform shipboard incubations and flux measurements. Specifically, we measured benthic fluxes of oxygen and nutrients to evaluate potential environmental drivers of benthic flux variation and ecosystem functioning along natural gradients of temperature and bottom water dissolved oxygen concentrations. The range of temperature and dissolved oxygen encountered across our study sites allowed us to apply a suite of multivariate analyses rarely used in flux studies to identify bottom water temperature as the primary environmental driver of benthic flux variation and organic matter remineralization. Redundancy analysis revealed that bottom water characteristics (temperature and dissolved oxygen), quality of organic matter (chl a:phaeo and C:N ratios) and sediment characteristics (mean grain size and porosity) explained 51.5% of benthic flux variation. Multivariate analyses identified significant spatial and temporal variation in benthic fluxes, demonstrating key differences between the Northeast Pacific and Salish Sea. Moreover, Northeast Pacific slope fluxes were generally lower than shelf fluxes. Spatial and temporal variation in benthic fluxes in the Salish Sea were driven primarily by differences in temperature and quality of organic matter on the seafloor following phytoplankton blooms. These results demonstrate the utility of multivariate approaches in differentiating among potential drivers of seafloor ecosystem functioning, and indicate that current and future predictive models of organic matter remineralization and ecosystem functioning of soft-muddy shelf and slope seafloor habitats should consider bottom water temperature variation. Bottom temperature has important implications for estimates of seasonal and spatial benthic flux variation, benthic-pelagic coupling, and impacts of predicted ocean warming at high latitudes.
Linares, Marden Seabra; Callisto, Marcos; Marques, João Carlos
2018-02-01
Riparian vegetation cover influences benthic assemblages structure and functioning in headwater streams, as it regulates light availability and autochthonous primary production in these ecosystems.Secondary production, diversity, and exergy-based indicators were applied in capturing how riparian cover influences the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams. Four hypotheses were tested: (1) open canopy will determine the occurrence of higher diversity in benthic macroinvertebrate assemblages; (2) streams with open canopy will exhibit more complex benthic macroinvertebrate communities (in terms of information embedded in the organisms' biomass); (3) in streams with open canopy benthic macroinvertebrate assemblages will be more efficient in using the available resources to build structure, which will be reflected by higher eco-exergy values; (4) benthic assemblages in streams with open canopy will exhibit more secondary productivity. We selected eight non-impacted headwater streams, four shaded and four with open canopy, all located in the Neotropical savannah (Cerrado) of southeastern Brazil. Open canopy streams consistently exhibited significantly higher eco-exergy and instant secondary production values, exemplifying that these streams may support more complex and productive benthic macroinvertebrate assemblages. Nevertheless, diversity indices and specific eco-exergy were not significantly different in shaded and open canopy streams. Since all the studied streams were selected for being considered as non-impacted, this suggests that the potential represented by more available food resources was not used to build a more complex dissipative structure. These results illustrate the role and importance of the canopy cover characteristics on the structure and functioning of benthic macroinvertebrate assemblages in tropical headwater streams, while autochthonous production appears to play a crucial role as food source for benthic macroinvertebrates. This study also highlights the possible application of thermodynamic based indicators as tools to guide environmental managers in developing and implementing policies in the neotropical savannah. Copyright © 2017 Elsevier B.V. All rights reserved.
Metal contamination in benthic macroinvertebrates in a sub-basin in the southeast of Brazil.
Chiba, W A C; Passerini, M D; Tundisi, J G
2011-05-01
Benthic macroinvertebrates have many useful properties that make possible the use of these organisms as sentinel in biomonitoring programmes in freshwater. Combined with the characteristics of the water and sediment, benthic macroinvertebrates are potential indicators of environmental quality. Thus, the spatial occurrence of potentially toxic metals (Al, Zn, Cr, Co, Cu, Fe, Mn and Ni) in the water, sediment and benthic macroinvertebrates samples were investigated in a sub-basin in the southeast of Brazil in the city of São Carlos, São Paulo state, with the aim of verifying the metals and environment interaction with benthic communities regarding bioaccumulation. Hypothetically, there can be contamination by metals in the aquatic environment in the city due to lack of industrial effluent treatment. All samples were analysed by the USEPA adapted method and processed in an atomic absorption spectrophotometer. The sub-basin studied is contaminated by toxic metals in superficial water, sediment and benthic macroinvertebrates. The Bioaccumulation Factor showed a tendency for metal bioaccumulation by the benthic organisms for almost all the metal species. The results show a potential human and ecosystem health risk, contributing to metal contamination studies in aquatic environments in urban areas.
Lake Malawi cichlid evolution along a benthic/limnetic axis.
Hulsey, C D; Roberts, R J; Loh, Y-H E; Rupp, M F; Streelman, J T
2013-07-01
Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species-rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we provided a series of hypotheses regarding the evolutionary relationships among 24 benthic and limnetic species that suggests divergence along this axis has occurred multiple times within Lake Malawi cichlids. Because pectoral fin morphology is often associated with divergence along this habitat axis in other fish groups, we investigated divergence in pectoral fin muscles in these benthic and limnetic cichlid species. We showed that the eight pectoral fin muscles and fin area generally tended to evolve in a tightly correlated manner in the Lake Malawi cichlids. Additionally, we found that larger pectoral fin muscles are strongly associated with the independent evolution of the benthic feeding habit across this group of fish. Evolutionary specialization along a benthic/limnetic axis has occurred multiple times within this tropical lake radiation and has produced repeated convergent matching between exploitation of water column habitats and locomotory morphology.
Integrated System for Autonomous Science
NASA Technical Reports Server (NTRS)
Chien, Steve; Sherwood, Robert; Tran, Daniel; Cichy, Benjamin; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Frye, Stuart; Trout, Bruce; Shulman, Seth;
2006-01-01
The New Millennium Program Space Technology 6 Project Autonomous Sciencecraft software implements an integrated system for autonomous planning and execution of scientific, engineering, and spacecraft-coordination actions. A prior version of this software was reported in "The TechSat 21 Autonomous Sciencecraft Experiment" (NPO-30784), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 33. This software is now in continuous use aboard the Earth Orbiter 1 (EO-1) spacecraft mission and is being adapted for use in the Mars Odyssey and Mars Exploration Rovers missions. This software enables EO-1 to detect and respond to such events of scientific interest as volcanic activity, flooding, and freezing and thawing of water. It uses classification algorithms to analyze imagery onboard to detect changes, including events of scientific interest. Detection of such events triggers acquisition of follow-up imagery. The mission-planning component of the software develops a response plan that accounts for visibility of targets and operational constraints. The plan is then executed under control by a task-execution component of the software that is capable of responding to anomalies.
The effect of learning climate on snack consumption and ego depletion among undergraduate students.
Magaraggia, Christian; Dimmock, James A; Jackson, Ben
2013-10-01
We explored the effect of controlled and autonomous learning choices on the consumption of a high-energy snack food, and also examined whether snack consumption during a controlled choice learning activity could 'up-regulate' subsequent performance on a self-regulation task. Participants were randomly assigned to a controlled choice learning condition in which food was provided, a controlled choice learning condition in which food was not provided, or an autonomous choice learning condition in which food was provided. Results indicated that the autonomous choice group consumed significantly less snack food than the controlled-choice-and-food group. Participants in the autonomous choice condition also performed better on the subsequent self-regulation task than the controlled-choice-and-food group, even after controlling for the amount of food consumed. Furthermore, within the controlled-choice-and-food condition, there was no association between food consumption and subsequent self-regulation task performance. Discussion focuses on the potential impact of a controlled learning climate on snack food consumption and on the degradation of self-regulation capacities. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Spatial and temporal distributions of benthic green macroalgae in Yaquina bay, Oregon
Coastal estuaries of Oregon, USA, typically support relatively large accumulations of benthic green macroalgae (BGM) during the summer/early fall growing season. This raises questions regarding possible (positive and negative) effects on eelgrass and benthic epifauna and infauna...
Interoception and Autonomic Correlates during Social Interactions. Implications for Anorexia
Ambrosecchia, Marianna; Ardizzi, Martina; Russo, Elisa; Ditaranto, Francesca; Speciale, Maurizio; Vinai, Piergiuseppe; Todisco, Patrizia; Maestro, Sandra; Gallese, Vittorio
2017-01-01
The aim of this study is to investigate the bodily-self in Restrictive Anorexia, focusing on two basic aspects related to the bodily self: autonomic strategies in social behavior, in which others' social desirability features, and social cues (e.g., gaze) are modulated, and interoception (i.e., the sensitivity to stimuli originating inside the body). Furthermore, since previous studies carried out on healthy individuals found that interoception seems to contribute to the autonomic regulation of social behavior, as measured by Respiratory Sinus Arrhythmia (RSA), we aimed to explore this link in anorexia patients, whose ability to perceive their bodily signal seems to be impaired. To this purpose, we compared a group of anorexia patients (ANg; restrictive type) with a group of Healthy Controls (HCg) for RSA responses during both a resting state and a social proxemics task, for their explicit judgments of comfort in social distances during a behavioral proxemics task, and for their Interoceptive Accuracy (IA). The results showed that ANg displayed significantly lower social disposition and a flattened autonomic reactivity during the proxemics task, irrespective of the presence of others' socially desirable features or social cues. Moreover, unlike HCg, the autonomic arousal of ANg did not guide behavioral judgments of social distances. Finally, IA was strictly related to social disposition in both groups, but with opposite trends in ANg. We conclude that autonomic imbalance and its altered relationship with interoception might have a crucial role in anorexia disturbances. PMID:28567008
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schrenkenghost, Debra K.
2001-01-01
The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.
Feri, Rose; Soemantri, Diantha; Jusuf, Anwar
2016-12-29
This study applied self-determination theory (SDT) to investigate the relationship between students' autonomous motivation and tutors' autonomy support in medical students' academic achievement. This was a cross-sectional study. Out of 204 students in a fundamental medical science course, 199 participated in the study. Data was collected using two questionnaires: the Learning Self-Regulation and Learning Climate Questionnaires. The score of the course assessment was the measure of academic achievement. Data was analyzed and reported with descriptive and inferential statistics (mean, standard deviation and multiple regression analysis). Mean score (±standard deviation) of the autonomous motivation, tutors' autonomy support, and academic achievement were 5.48±0.89, 5.22±0.92, and 5.22±0.92. Multiple regression results reported students' autonomous motivation was associated with improvement of students' academic achievement (β=15.2, p=0.004). However, augmentation of tutors' autonomy support was not reflected in the improvement of students' academic achievement (β = -12.6, p = 0.019). Both students' autonomous motivation and tutors' autonomy support had a contribution of about 4.2% students' academic achievement (F = 4.343, p = 0.014, R 2 = 0.042). Due to the unique characteristic of our medical students' educational background, our study shows that tutors' autonomy support is inconsistent with students' academic achievement. However, both autonomous motivation and support are essential to students' academic achievement. Further study is needed to explore students' educational background and self-regulated learning competence to improve students' academic achievement.
CRAFT: Collaborative Rover and Astronauts Future Technology
NASA Astrophysics Data System (ADS)
Da-Poian, V. D. P.; Koryanov, V. V. K.
2018-02-01
Our project is focusing on the relationship between astronauts and rovers to best work together during surface explorations. Robots will help and assist astronauts, and will also work autonomously. Our project is to develop this type of rover.
Lenz, Bernard N.; Rheaume, S.J.
2000-01-01
This report describes the variability in family-level benthic-invertebrate population data and the reliability of the data as a water-quality indicator for 11 fixed surface-water sites in the Western Lake Michigan Drainages study area of the National Water-Quality Assessment Program. Benthic-invertebrate-community measures were computed for the following: number of individuals, Hilsenhoff’s Family-Level Biotic Index, number and percent EPT (Ephemeroptera, Plecoptera, and Tricoptera), Margalef’s Diversity Index, and mean tolerance value. Relations between these measures and environmental setting, habitat, and of chemical water quality are examined. Benthic-invertebrate communities varied greatly among fixed sites and within individual streams among multiple-reach and multiple-year sampling. The variations between multiple reaches and years were sometimes larger than those found between different fixed sites. Factors affecting benthic invertebrates included both habitat and chemical quality. Generally, fixed-site streams with the highest diversity, greatest number of benthic invertebrates, and those at which community measures indicated the best water quality also had the best habitat and chemical quality. Variations among reaches are most likely related to differences in habitat. Variations among years are most likely related to climatic changes, which create variations in flow and/or chemical quality. The variability in the data analyzed in this study shows how benthic invertebrates are affected by differences in both habitat and water quality, making them useful indicators of stream health; however, a single benthic-invertebrate sample alone cannot be relied upon to accurately describe water quality of the streams in this study. Benthic-invertebrate data contributed valuable information on the biological health of the 11 fixed sites when used as one of several data sources for assessing water quality.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-12-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
NASA Astrophysics Data System (ADS)
Stief, P.
2013-07-01
Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments often is enhanced even more than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies revealed that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen.
Trace metals, PCBs, and PAHs in benthic (epipelic) diatoms from intertidal sediments; a pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stronkhorst, J.; Misdorp, R.; Vos, P.C.
1994-06-01
Intertidal sediments in many estuaries around the world have a history of contamination resulting from long term discharges of industrial, agricultural and domestic waste effluents. These contaminated sediments are now regarded as a major source of toxicants for bottom-related organisms which, in turn, may pass on certain contaminants (e.g. methylmercury, polychlorinated biphenyls (PCBs)) to organisms higher in the foodchain. Many studies have been conducted on the contamination of benthic macrofauna, estuarine fish and birds, but to our knowledge no research has yet been carried out on benthic diatoms which form the lowest trophic level of an intertidal ecosystem. Research onmore » the effects of micro-contaminants on primary producers in marine ecosystems is mainly performed with phytoplankton. In the estuaries of temperate regions, benthic diatoms make a significant contribution to primary production in the ecosystem and are predated especially by deposit feeding Polychaete and Mollusca. Knowledge of the level of contamination in benthic diatoms is of major importance to recognize possible effects on growth rate and species composition of the benthic diatom populations and to understand the accumulation of toxicants into the foodchain. For chemical analysis it is difficult to obtain [open quote]pure[close quote] samples of benthic diatoms because they form part of the sediment. A similar problem occurs with the sampling of phytoplankton in turbid estuarine waters. The aim of this pilot study was (a) to improve a trap technique to collect pure samples of benthic diatoms of at least 2 gram dry weight for analysis of trace metals, PCBs and polyaromatic hydrocarbons (PAHs) and (b) to compare the concentrations in benthic diatoms with levels in sediment and some bottom-related organisms. 16 refs., 2 figs., 2 tabs.« less
Trawl disturbance on benthic communities: chronic effects and experimental predictions.
Hinz, Hilmar; Prieto, Virginia; Kaiser, Michel J
2009-04-01
Bottom trawling has widespread impacts on benthic communities and habitats. While the direct impacts of trawl disturbances on benthic communities have been extensively studied, the consequences from long-term chronic disturbances are less well understood. The response of benthic macrofauna to chronic otter-trawl disturbance from a Nephrops norvegicus (Norway lobster) fishery was investigated along a gradient of fishing intensity over a muddy fishing ground in the northeastern Irish Sea. Chronic otter trawling had a significant, negative effect on benthic infauna abundance, biomass, and species richness. Benthic epifauna abundance and species richness also showed a significant, negative response, while no such effect was evident for epibenthic biomass. Furthermore, chronic trawl disturbance led to clear changes in community composition of benthic infauna and epifauna. The results presented indicate that otter-trawl impacts are cumulative and can lead to profound changes in benthic communities, which may have far-reaching implications for the integrity of marine food webs. Studies investigating the short-term effects of fishing manipulations previously concluded that otter trawling on muddy substrates had only modest effects on the benthic biota. Hence, the results presented by this study highlight that data from experimental studies can not be readily extrapolated to an ecosystem level and that subtle cumulative effects may only become apparent when fishing disturbances are examined over larger spatial and temporal scales. Furthermore, this study shows that data on chronic effects of bottom trawling on the benthos will be vital in informing the recently advocated move toward an ecosystem approach in fisheries management. As bottom-trawl fisheries are expanding into ever deeper muddy habitats, the results presented here are an important step toward understanding the global ecosystem effects of bottom trawling.
Verification of NASA Emergent Systems
NASA Technical Reports Server (NTRS)
Rouff, Christopher; Vanderbilt, Amy K. C. S.; Truszkowski, Walt; Rash, James; Hinchey, Mike
2004-01-01
NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. This mission, the prospective ANTS (Autonomous Nano Technology Swarm) mission, will comprise of 1,000 autonomous robotic agents designed to cooperate in asteroid exploration. The emergent properties of swarm type missions make them powerful, but at the same time are more difficult to design and assure that the proper behaviors will emerge. We are currently investigating formal methods and techniques for verification and validation of future swarm-based missions. The advantage of using formal methods is their ability to mathematically assure the behavior of a swarm, emergent or otherwise. The ANT mission is being used as an example and case study for swarm-based missions for which to experiment and test current formal methods with intelligent swam. Using the ANTS mission, we have evaluated multiple formal methods to determine their effectiveness in modeling and assuring swarm behavior.
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
A New Paradigm for Robotic Rovers
NASA Astrophysics Data System (ADS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.
We are in the process of developing rovers with extreme mobility needed to explore remote, rugged terrain. We call these systems Tetrahedral Explorer Technologies (TETs). Architecture is based on conformable tetrahedra, the simplest space-filling form, as building blocks, single or networked, where apices act as nodes from which struts reversibly deploy. The tetrahedral framework acts as a simple skeletal muscular structure. We have already prototyped a simple robotic walker from a single reconfigurable tetrahedron capable of tumbling and a more evolved 12Tetrahedral Walker, the Autonomous Landed Investigator (ALI), which has interior nodes for payload, more continuous motion, and is commandable through a user friendly interface. ALI is an EMS level mission concept which would allow autonomous in situ exploration of the lunar poles within the next decade. ALI would consist of one or more 12tetrahedral walkers capable of rapid locomotion with the many degrees of freedom and equipped for navigation in the unilluminated, inaccessible and thus largely unexplored rugged terrains where lunar resources are likely to be found: the Polar Regions. ALI walkers would act as roving reconnaissance teams for unexplored regions, analyzing samples along the way.
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, right-center, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, kneeling on the left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-30
CAPE CANAVERAL, Fla. - Russell Romanella, director of Safety and Mission Assurance at NASA's Kennedy Space Center in Florida, left, is briefed on NASA's Morpheus lander, a vertical test bed vehicle. Morpheus is being checked out by technicians and engineers in a building at the Shuttle Landing Facility, or SLF, at Kennedy. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard
2011-01-01
Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.
Benthic invertebrate indices have commonly been utilized to assess benthic invertebrate communities. These indices have been constructed using different techniques, but have shown different levels of application success. For example, the EMAP Virginian Province Index did not pe...
The spatial patterns of subtidal benthic invertebrates and physical-chemical variables in the nearshore Gulf of Maine (Acadian Biogeographic Province) were studied to provide information needed to calibrate benthic indices of environmental condition, determine physical-chemical f...
Computer-Assisted Analysis of Near-Bottom Photos for Benthic Habitat Studies
2006-09-01
navigated survey platform greatly increases the efficiency of image analysis and provides new insight about the relationships between benthic organisms...increase in the efficiency of image analysis for benthic habitat studies, and provides the opportunity to assess small scale spatial distribution of
Streams and rivers in the California Central Valley Ecoregion have been substantially modified by human activities. This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers of this region. Benthic...
INDEX OF ESTUARINE BENTHIC INTEGRITY FOR GULF OF MEXICO ESTUARIES
A benthic index for northern Gulf of Mexico estuaries has been developed and successfully validated by the Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) in the Louisianian Province. The benthic index is a useful indicator of estuarine condition that provi...
The Power of Computer-aided Tomography to Investigate Marine Benthic Communities
Utilization of Computer-aided-Tomography (CT) technology is a powerful tool to investigate benthic communities in aquatic systems. In this presentation, we will attempt to summarize our 15 years of experience in developing specific CT methods and applications to marine benthic co...
Goto, Daisuke; Wallace, William G
2009-12-01
Organic mercury such as methylmercury is not only one of the most toxic substances found in coastal ecosystems but also has high trophic transfer efficiency. In this study, we examined implications of chronically altered benthic macroinfaunal assemblages for organic mercury trophic availability (based on organic mercury intracellular partitioning) to their predators in the Arthur Kill-AK (New York, USA). Despite low species diversity, both density and biomass of benthic macroinvertebrates in AK were significantly higher than those at the reference site. Disproportionately high biomass of benthic macroinvertebrates (mostly polychaetes) in the northern AK resulted in a more than twofold increase ('ecological enrichment') in the trophically available organic mercury pool. These results suggest that altered benthic macroinfaunal community structure in AK may play an important role in organic mercury trophic availability at the base of benthic food webs and potentially in mercury biogeochemical cycling in this severely urbanized coastal ecosystem.
Seasonal plasticity in telencephalon mass of a benthic fish.
McCallum, E S; Capelle, P M; Balshine, S
2014-11-01
To gain a deeper understanding of how environmental conditions affect brain plasticity, brain size was explored across different seasons using the invasive round goby Neogobius melanostomus. The results show that N. melanostomus had heavier telencephalon in the spring compared to the autumn across the two years of study. Furthermore, fish in reproductive condition had heavier telencephala, indicating that tissue investment and brain plasticity may be related to reproductive needs in N. melanostomus. © 2014 The Fisheries Society of the British Isles.
Data acquisition and path selection decision making for an autonomous roving vehicle
NASA Technical Reports Server (NTRS)
Frederick, D. K.; Shen, C. N.; Yerazunis, S. W.
1976-01-01
Problems related to the guidance of an autonomous rover for unmanned planetary exploration were investigated. Topics included in these studies were: simulation on an interactive graphics computer system of the Rapid Estimation Technique for detection of discrete obstacles; incorporation of a simultaneous Bayesian estimate of states and inputs in the Rapid Estimation Scheme; development of methods for estimating actual laser rangefinder errors and their application to date provided by Jet Propulsion Laboratory; and modification of a path selection system simulation computer code for evaluation of a hazard detection system based on laser rangefinder data.
NASA Technical Reports Server (NTRS)
Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.
1982-01-01
Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.
Reinforcement learning: Solving two case studies
NASA Astrophysics Data System (ADS)
Duarte, Ana Filipa; Silva, Pedro; dos Santos, Cristina Peixoto
2012-09-01
Reinforcement Learning algorithms offer interesting features for the control of autonomous systems, such as the ability to learn from direct interaction with the environment, and the use of a simple reward signalas opposed to the input-outputs pairsused in classic supervised learning. The reward signal indicates the success of failure of the actions executed by the agent in the environment. In this work, are described RL algorithmsapplied to two case studies: the Crawler robot and the widely known inverted pendulum. We explore RL capabilities to autonomously learn a basic locomotion pattern in the Crawler, andapproach the balancing problem of biped locomotion using the inverted pendulum.
Carbon fate in a large temperate human-impacted river system: Focus on benthic dynamics
NASA Astrophysics Data System (ADS)
Vilmin, Lauriane; Flipo, Nicolas; Escoffier, Nicolas; Rocher, Vincent; Groleau, Alexis
2016-07-01
Fluvial networks play an important role in regional and global carbon (C) budgets. The Seine River, from the Paris urban area to the entrance of its estuary (220 km), is studied here as an example of a large human-impacted river system subject to temperate climatic conditions. We assess organic C (OC) budgets upstream and downstream from one of the world's largest wastewater treatment plants and for different hydrological conditions using a hydrobiogeochemical model. The fine representation of sediment accumulation on the river bed allows for the quantification of pelagic and benthic effects on OC export toward the estuary and on river metabolism (i.e., net CO2 production). OC export is significantly affected by benthic dynamics during the driest periods, when 25% of the inputs to the system is transformed or stored in the sediment layer. Benthic processes also substantially affect river metabolism under any hydrological condition. On average, benthic respiration accounts for one third of the total river respiration along the studied stretch (0.27 out of 0.86 g C m-2 d-1). Even though the importance of benthic processes was already acknowledged by the scientific community for headwater streams, these results stress the major influence of benthic dynamics, and thus of physical processes such as sedimentation and resuspension, on C cycling in downstream river systems. It opens the door to new developments in the quantification of C emissions by global models, whereby biogeochemical processing and benthic dynamics should be taken into account.
Role of macrofauna on benthic oxygen consumption in sandy sediments of a high-energy tidal beach
NASA Astrophysics Data System (ADS)
Charbonnier, Céline; Lavesque, Nicolas; Anschutz, Pierre; Bachelet, Guy; Lecroart, Pascal
2016-06-01
Sandy beaches exposed to tide and waves are characterized by low abundance and diversity of benthic macrofauna, because of high-energy conditions. This is the reason why there are few studies on benthic communities living in such highly dynamic environments. It has been shown recently that tidal sandy beaches may act as biogeochemical reactors. Marine organic matter that is supplied in the sand during each flood tide is efficiently mineralized through aerobic respiration. In order to quantify the role of macrofauna in the whole beach benthic respiration, we studied the macrofauna and the pore water oxygen content of an exposed sandy beach (Truc Vert, SW of France) during four seasons in 2011. The results showed that macrofauna was characterised by a low number of species of specialized organisms such as the crustaceans Eurydice naylori and Gastrosaccus spp. and the polychaetes Ophelia bicornis and Scolelepis squamata. The distribution and abundance of macrofauna were clearly affected by exposure degree and emersion time. The combined monitoring of benthic macrofauna and pore waters chemistry allowed us to estimate (1) the macrofauna oxygen uptake, calculated with a standard allometric relationship using biomass data, and (2) the total benthic oxygen uptake, calculated from the oxygen deficit measured in pore waters. This revealed that benthic macrofauna respiration represented a variable but low (<10%) contribution to the total benthic oxygen consumption. This suggests that oxygen was mainly consumed by microbial respiration.
Umek, John; Chandra, Sudeep; Rosen, Michael; Wittmann, Marion; Sullivan, Joe; Orsak, Erik
2010-01-01
Limnologists recently have developed an interest in quantifying benthic resource contributions to higher-level consumers. Much of this research focuses on natural lakes with very little research in reservoirs. In this study, we provide a contemporary snapshot of the food web structure of Lake Mead to evaluate the contribution of benthic resources to fish consumers. In addition, we document the available food to fishes on soft sediments and changes to the invertebrate community over 2 time periods. Benthic invertebrate food availability for fishes is greater in Las Vegas Bay than Overton Arm. Las Vegas Bay is dominated by oligochaetes, whose biomass increased with depth, while Overton Arm is dominated by chironomids, whose biomass did not change with depth. Diet and isotopic measurements indicate the fish community largely relies on benthic resources regardless of basin (Las Vegas Bay >80%; Overton Arm >92%); however, the threadfin shad likely contribute more to largemouth and striped bass production in Overton Arm versus Las Vegas Bay. A 2-time period analysis, pre and post quagga mussel establishment and during lake level declines, suggests there is no change in the density of benthic invertebrates in Boulder Basin, but there were greater abundances of select taxa in this basin by season and depth than in other basins. Given the potential of alterations as a result of the expansion of quagga mussel and the reliance of the fishery on benthic resources, future investigation of basin specific, benthic processes is recommended.
Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C.
Feng, Wei; Jacob, Yannick; Veley, Kira M; Ding, Lei; Yu, Xuhong; Choe, Goh; Michaels, Scott D
2011-03-01
The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC.
Feng, Wei; Jacob, Yannick; Veley, Kira M.; Ding, Lei; Yu, Xuhong; Choe, Goh; Michaels, Scott D.
2011-01-01
The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC. PMID:21209277
Association between autonomic dysfunction and fatigue in Parkinson disease.
Chou, Kelvin L; Gilman, Sid; Bohnen, Nicolaas I
2017-06-15
Fatigue is a disabling non-motor symptom in Parkinson disease (PD). We investigated the relationship between autonomic dysfunction and fatigue in PD while accounting for possible confounding factors. 29 subjects with PD (8F/21M; mean age 61.6±5.9; mean disease duration 4.8±3.0years), underwent clinical assessment and completed several non-motor symptom questionnaires, including a modified version of the Mayo Clinic Composite Autonomic Symptom Score (COMPASS) scale and the Fatigue Severity Scale (FSS). The mean modified COMPASS was 21.6±14.2 (range 1.7-44.2) and the mean FSS score was 3.3±1.6 (range 1.0-6.7). There was a significant bivariate relationship between the modified COMPASS and FSS scores (R=0.69, P<0.0001). Stepwise regression analysis was used to assess the specificity of the association between the modified COMPASS and FSS scores while accounting for possible confounder effects from other variables that were significantly associated with autonomic dysfunction. Results showed that the modified COMPASS (R 2 =0.52, F=28.4, P<0.0001) was highly associated with fatigue, followed by ESS (R 2 =0.13, F=8.4, P=0.008) but no other co-variates. Post-hoc analysis exploring the association between the different modified COMPASS autonomic sub-domain scores and FSS scores found significant regressor effects for the orthostatic intolerance (R 2 =0.45, F=21.2, P<0.0001) and secretomotor sub-domains (R 2 =0.09, F=4.8, P=0.04) but not for other autonomic sub-domains. Autonomic dysfunction, in particular orthostatic intolerance, is highly associated with fatigue in PD. Copyright © 2017 Elsevier B.V. All rights reserved.
Cohen, Michal; Syme, Catriona; McCrindle, Brian W; Hamilton, Jill
2013-06-01
Dysregulation of the autonomic nervous system is thought to be involved in craniopharyngioma-related hypothalamic obesity (CRHO). Increased parasympathetic activity and decreased sympathetic activity have been suggested. We aimed to study autonomic activity using heart rate variability (HRV) and biochemical measures in youth with CRHO compared with controls and to explore relationships between obesity and autonomic indices. A cross-sectional study of 16 youth with CRHO and 16 controls matched for sex, age, and BMI. Anthropometrics, fasting blood-work, resting energy expenditure (REE), 24-h HRV, and 24-h urine catecholamines were assessed. Quality of life, sleepiness, and autonomic symptoms were evaluated. Power spectral analysis of the HRV was performed. HRV power spectral analysis parameters of both parasympathetic activity (mean high frequency (HF (ms(2))) 611±504 vs 459±336, P=0.325) and sympathetic activity (median low frequency/HF 1.62 (1.37, 2.41) vs 1.89 (1.44, 2.99), P=0.650) did not differ between the groups. Parasympathetic activity negatively correlated with central adiposity in both groups (r=-0.53, P=0.034 and r=-0.54, P=0.029) and sympathetic activity positively correlated with central adiposity in CRHO (r=0.51, P=0.043). Youth with CRHO had significantly lower REE; lower health and activity scores in the quality of life questionnaires, and higher sleepiness scores. Autonomic activity was similar in CRHO and control subjects. The degree of central adiposity correlated negatively with parasympathetic activity and positively with sympathetic activity in children with CRHO. These results provide a new perspective regarding autonomic balance in this unique patient population.
Modeling Plankton Aggregation and Transport by Nonlinear Internal Waves Propagating Onshore.
NASA Astrophysics Data System (ADS)
Garwood, J. C.; Musgrave, R. C.; Franks, P. J. S.
2016-02-01
Many coastal benthic species have planktonic larval forms. These larvae must return to suitable adult habitat to allow recruitment to the breeding population. To a large extent these larvae are at the mercy of the ambient currents. However, simple vertical swimming behaviors may significantly enhance onshore or offshore transport of these organisms in certain coastal flows. Here we use models to investigate the interaction of nonlinear internal waves (NLIW) and swimming behaviors in determining plankton aggregation and cross-shelf transport. In a 2D, non-hydrostatic MITgcm with particle tracking, NLIW are generated and propagate onshore into a region of sloping bottom topography. Lagrangian and swimming particles representing plankton are introduced in the flow field to quantify transport and dispersion. Characteristics of the environment (bottom slope and stratification), as well as of the particles (source, depth, and swimming vs. passive) were varied to identify scenarios that would maximize transport or accumulation. Our results will be used to design experiments using swarms of autonomous buoyancy-controlled drifters to quantify transport and accumulation in the field.
Sustained ecological observing, how hard can it be?
NASA Astrophysics Data System (ADS)
Moltmann, T.; Proctor, R.
2016-02-01
Australia's Integrated Marine Observing System (IMOS) is a national scale, sustained observing system that has now been operating for a decade. The direction of IMOS has been strongly influenced by developments in the Global Ocean Observing System, particularly the integration of physical, chemical and biological observing, from open-ocean to coast. In addition to more mature approaches for measuring physical and chemical variables, IMOS has piloted sustained observing of benthic habitats, primary and secondary producers, mid-trophic, and higher trophic level organisms. Observing technologies used include autonomous underwater vehicles, continuous plankton recorders, underway measurements from ships of opportunity, monthly vessel-based sampling, bio-optical sensors on buoys and gliders, echo sounders, acoustic telemetry, bio-logging, noise logging and satellite remote sensing. Increased focus is now being placed on producing valued added products from biological time series, and working with biogeochemical and ecosystem modellers to help reduce model uncertainties, and to get feedback on future design of the observing system. Significant steps have been made towards the long term goal of sustained ecological observing, and important lessons learned along the way.
Benthic macroinvertebrate assemblages have been used as indicators of ecological condition because their responses integrate localized environmental conditions of the sediments and overlying water. Assemblages of benthic invertebrates in the near coastal region are of particular...
Benthic invertebrate indices have commonly been utilized to assess benthic invertebrate communities. These indices have been constructed using different techniques, but have shown different levels of application success. For example, the EMAP Virginian Province Index did not pe...
LATITUDINAL GRADIENTS IN BENTHIC COMMUNITY COMPOSITION IN WESTERN ATLANTIC ESTUARIES
The community structure of benthic macroinvertebrates from estuaries along the Atlantic coast of North America from Cape Cod, MA, to Biscayne Bay, FL, were compared. Benthic data were collected over a 5 year period (1990 to 1995) by the U.S. Environmental Protection Agency's Envi...
Kennedy, Theodore A.; Yackulic, Charles B.; Cross, Wyatt F.; Grams, Paul E.; Yard, Michael D.; Copp, Adam J.
2014-01-01
1. Invertebrate drift is a fundamental process in streams and rivers. Studies from laboratory experiments and small streams have identified numerous extrinsic (e.g. discharge, light intensity, water quality) and intrinsic factors (invertebrate life stage, benthic density, behaviour) that govern invertebrate drift concentrations (# m−3), but the factors that govern invertebrate drift in larger rivers remain poorly understood. For example, while large increases or decreases in discharge can lead to large increases in invertebrate drift, the role of smaller, incremental changes in discharge is poorly described. In addition, while we might expect invertebrate drift concentrations to be proportional to benthic densities (# m−2), the benthic–drift relation has not been rigorously evaluated. 2. Here, we develop a framework for modelling invertebrate drift that is derived from sediment transport studies. We use this framework to guide the analysis of high-resolution data sets of benthic density and drift concentration for four important invertebrate taxa from the Colorado River downstream of Glen Canyon Dam (mean daily discharge 325 m3 s−1) that were collected over 18 months and include multiple observations within days. Ramping of regulated flows on this river segment provides an experimental treatment that is repeated daily and allowed us to describe the functional relations between invertebrate drift and two primary controls, discharge and benthic densities. 3. Twofold daily variation in discharge resulted in a >10-fold increase in drift concentrations of benthic invertebrates associated with pools and detritus (i.e. Gammarus lacustris and Potamopyrgus antipodarum). In contrast, drift concentrations of sessile blackfly larvae (Simuliium arcticum), which are associated with high-velocity cobble microhabitats, decreased by over 80% as discharge doubled. Drift concentrations of Chironomidae increased proportional to discharge. 4. Drift of all four taxa was positively related to benthic density. Drift concentrations of Gammarus, Potamopyrgus and Chironomidae were proportional to benthic density. Drift concentrations of Simulium were positively related to benthic density, but the benthic–drift relation was less than proportional (i.e. a doubling of benthic density only led to a 40% increase in drift concentrations). 5. Our study demonstrates that invertebrate drift concentrations in the Colorado River are jointly controlled by discharge and benthic densities, but these controls operate at different timescales. Twofold daily variation in discharge associated with hydropeaking was the primary control on within-day variation in invertebrate drift concentrations. In contrast, benthic density, which varied 10- to 1000-fold among sampling dates, depending on the taxa, was the primary control on invertebrate drift concentrations over longer timescales (weeks to months).
NASA Astrophysics Data System (ADS)
Point, D.; Monperrus, M.; Tessier, E.; Amouroux, D.; Chauvaud, L.; Thouzeau, G.; Jean, F.; Amice, E.; Grall, J.; Leynaert, A.; Clavier, J.; Donard, O. F. X.
2007-04-01
In situ benthic chamber experiments were conducted in the Thau Lagoon that allowed the simultaneous determination of the benthic exchanges of trace metals (Cd, Co, Cu, Mn, Pb and U) and mercury species (iHg and MMHg). Fluxes of organotin compounds (MBT, DBT and TBT) were also investigated for the first time. The benthic incubations were performed during two campaigns at four stations that presented different macrobenthic and macrophytic species distribution and abundance (see [Thouzeau, G., Grall, J., Clavier, J., Chauvaud, L., Jean, F., Leynaert, A., Longpuirt, S., Amice, E., Amouroux, D., 2007. Spatial and temporal variability of benthic biogeochemical fluxes associated with macrophytic and macrofaunal distributions in the Thau lagoon (France). Estuarine, Coastal and Shelf Science 72 (3), 432 446.]). The results indicate that most of the flux intensity as well as the temporal and spatial variability can be explained by the combined influence of microscale and macroscale processes. Microscale changes were identified using Mn flux as a good indicator of the redox conditions at the sediment water interface, and by extension, as an accurate proxy of benthic fluxes for most trace metals and mercury species. We also observed that the redox gradient at the interface is promoted by both microbial and macrobenthic species activity that governs O2 budgets. Macroscale processes have been investigated considering macrobenthic organisms activity (macrofauna and macroalgal cover). The density of such macroorganisms is able to explain most of the spatial and temporal variability of the benthic metal fluxes within a specific site. A tentative estimation of the flux of metals and organometals associated with deposit feeder and suspension feeder activity was found to be in the range of the flux determined within the chambers for most considered elements. Furthermore, a light/dark incubation investigating a dense macroalgal cover present at the sediment surface illustrates the role of photosynthetic activity in controlling benthic exchanges. Significant changes in benthic flux intensity and/or direction were reported for all redox sensitive elements (Cd, Co, Cu, Mn, Pb, U, and iHg). For MMHg and organotin species, other complimentary processes such as photodegradation/uptake and hydrophobic absorption/desorption need to be considered. This work demonstrates that the processes governing benthic exchanges are complex and that benthic organisms play a major role in the significant seasonal, diurnal and spatial variability of trace metals and organometals benthic fluxes in the lagoon.
NASA Astrophysics Data System (ADS)
Dauvin, Jean-Claude
2015-06-01
Benthic studies in the English Channel (EC), a shallow megatidal and epicontinental sea, began in the 1960s and 1970s with the work of teams led by Norman Holme (UK) and Louis Cabioch (F). During this period, benthic sampling was mainly qualitative, i.e. using a device such as the 'Rallier du Baty' dredge in the case of the French team and a modified anchor dredge in the case of the British team. Studies were focused on acquiring knowledge of the main distributions of benthic communities and species. Surveys on the scale of the whole EC led to the recognition of general features and two main patterns were identified: 1) the role of hydrodynamics on the spatial distribution of sediment, benthic species and communities; 2) the presence of a west-east climatic gradient of faunal impoverishment. Benthic studies in the 1980s-1990s were focused on the beginning of the implementation of long-term survey at a limited number of sites to identify seasonal and multi-annual changes. In the first decade of the 2000s, the implementation of the European Water Framework Directive and the Marine Strategy Framework Directive to define the Ecological Quality Status of marine environments increased the need to acquire better information of the structure and functioning of benthic communities, since benthic species and habitats were recognised as good indicators of human pressure on marine ecosystems. Faced with the increase of human maritime activities, the appearance of invasive species and the need to preserve sensitive marine habitats, benthic studies have been focused on developing a 'toolkit' to help in the decision-making and planning for both sound governance and sustainable management of marine resources and human activities in the English Channel. Multidisciplinary approaches were used to differentiate habitats in a more precise detail. Both indirect (side-scan sonar, ROV) and direct (grab sampling with benthos identification and grain-size analyses) approaches were used and combined to allow the description of benthic habitats using numerous descriptors. These approaches were mainly applied on a local scale, leading to the identification of habitat mosaics mainly in coarse sands, gravels and pebbly areas which cover 80% of the EC seabed. They also allowed the enrichment of the EUNIS habitat classification for infralittoral and circalittoral zones taking into account the scale of observations of benthic habitats. Moreover, several recommendations for future benthic studies are proposed within a HABITAT approach.
NASA Astrophysics Data System (ADS)
Shah, Anjana K.; Cormier, Marie-Helene; Ryan, William B. F.; Jin, Wen; Sinton, John; Bergmanis, Eric; Carlut, Julie; Bradley, Al; Yoerger, Dana
2003-02-01
Near-bottom, high-resolution magnetic field data gathered at the southern East Pacific Rise near 17°28'S, 18°14'S, and 18°37'S, using the autonomous underwater vehicle Autonomous Benthic Explorer (ABE) echo various geologic structures, including void space within lobate caverns, recent pillow mounds, and hydrothermal vent activity. This study is focused on a magnetic field low extending several kilometers along axis, coincident with a trough created by the draining of a lava lake during a highly effusive fissure eruption at 17°28'S. Similar lows are observed at three other drained lava lake troughs, including one which is at least 1800 years old, residing 400 m away from the present-day axis. We attribute these lows to the presence of shallow dike swarms. The degree to which other geologic features may contribute to the lows is constrained using geologic, geophysical, and geochemical observations and forward modeling. Compositional analyses of Alvin samples at 17°28'S do not support Fe or Ti variations as a primary source. Hypotheses requiring hydrothermal alteration and porosity variations are both inconsistent with geologic observations and near-bottom gravity data analysis from similar areas. Previous mappings between paleointensity variations and the observed magnetic field over distances of several kilometers from the axis suggest that such variations do not create the field low. The dominant source of the magnetization low is most likely the presence of a 100-200 m wide region of shallow dikes which are poorly magnetized relative to extrusives, or a region heated above magnetic blocking or Curie temperatures by intrusions during the most recent eruption (though the latter interpretation cannot explain the low at the fossil trough). In the first case, this extrusive thinning implies a change in eruptive behavior over the last 750-1500 years given the local spreading rate. For the latter case, thermal models suggest the anomaly had to have been created by a dike swarms totaling at least 45 m width during the most recent eruption(s), corresponding to ˜300 years of plate spreading. Models indicate that the source of the low is centered slightly east of the axial trough. This offset suggests that the axis has been progressively migrating westward over the past millennium, consistent with other studies covering greater length and timescales. Westward migration provides an explanation for the preferential emplacement of recent lavas flows west of the axis, evident in ABE bathymetry and submersible observations.
Tjin A Tsoi, Sharon L; de Boer, Anthonius; Croiset, Gerda; Kusurkar, Rashmi A; Koster, Andries S
2018-03-01
Objective. To explore the changes in motivation of Dutch pharmacists for Continuing Education (CE) in the Dutch CE system. Methods. Pharmacists' motivation was measured across three time points with the Academic Motivation Scale, based on the Self-Determination Theory of motivation. The Latent Growth Modelling technique was used to analyze these data. Results. Over a period of 21 months, Controlled Motivation had increased and Relative Autonomous Motivation of Dutch pharmacists had decreased. Traineeship was the only demographic factor with a significant influence on the change in motivation. No subgroups with different trajectories could be identified. Conclusion. Relative Autonomous Motivation of Dutch pharmacists for CE decreases over time. This indicates a loss of Autonomous Motivation ("good" motivation) in favor of Controlled Motivation ("bad" motivation). Further research needs to be conducted to gain a better understanding of the association between pharmacist motivation and the features of the current CE system.
Drewery, Merritt L; Spedale, Steven B; Lammi-Keefe, Carol J
2017-09-01
Heart rate (HR) and heart rate variability (HRV) are valuable markers of health. Although the underlying mechanism(s) are controversial, it is well documented that n-3 long chain polyunsaturated fatty acid (LCPUFA) intake improves HR and HRV in various populations. Autonomic modulation and/or alterations in cardiac electrophysiology are commonly cited as potential mechanisms responsible for these effects. This article reviews existing evidence for each and explores a separate mechanism which has not received much attention but has scientific merit. Based on presented evidence, it is proposed that n-3 LCPUFAs affect HR and HRV directly by autonomic modulation and indirectly by altering circulating factors, both dependently and independently of the autonomic nervous system. The evidence for changes in cardiac electrophysiology as the mechanism by which n-3 LCPUFAs affect HR and HRV needs strengthening. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation-Based Verification of Autonomous Controllers via Livingstone PathFinder
NASA Technical Reports Server (NTRS)
Lindsey, A. E.; Pecheur, Charles
2004-01-01
AI software is often used as a means for providing greater autonomy to automated systems, capable of coping with harsh and unpredictable environments. Due in part to the enormous space of possible situations that they aim to addrs, autonomous systems pose a serious challenge to traditional test-based verification approaches. Efficient verification approaches need to be perfected before these systems can reliably control critical applications. This publication describes Livingstone PathFinder (LPF), a verification tool for autonomous control software. LPF applies state space exploration algorithms to an instrumented testbed, consisting of the controller embedded in a simulated operating environment. Although LPF has focused on NASA s Livingstone model-based diagnosis system applications, the architecture is modular and adaptable to other systems. This article presents different facets of LPF and experimental results from applying the software to a Livingstone model of the main propulsion feed subsystem for a prototype space vehicle.
Unsupervised feature learning for autonomous rock image classification
NASA Astrophysics Data System (ADS)
Shu, Lei; McIsaac, Kenneth; Osinski, Gordon R.; Francis, Raymond
2017-09-01
Autonomous rock image classification can enhance the capability of robots for geological detection and enlarge the scientific returns, both in investigation on Earth and planetary surface exploration on Mars. Since rock textural images are usually inhomogeneous and manually hand-crafting features is not always reliable, we propose an unsupervised feature learning method to autonomously learn the feature representation for rock images. In our tests, rock image classification using the learned features shows that the learned features can outperform manually selected features. Self-taught learning is also proposed to learn the feature representation from a large database of unlabelled rock images of mixed class. The learned features can then be used repeatedly for classification of any subclass. This takes advantage of the large dataset of unlabelled rock images and learns a general feature representation for many kinds of rocks. We show experimental results supporting the feasibility of self-taught learning on rock images.
Video Guidance Sensor for Surface Mobility Operations
NASA Technical Reports Server (NTRS)
Fernandez, Kenneth R.; Fischer, Richard; Bryan, Thomas; Howell, Joe; Howard, Ricky; Peters, Bruce
2008-01-01
Robotic systems and surface mobility will play an increased role in future exploration missions. Unlike the LRV during Apollo era which was an astronaut piloted vehicle future systems will include teleoperated and semi-autonomous operations. The tasks given to these vehicles will run the range from infrastructure maintenance, ISRU, and construction to name a few. A common task that may be performed would be the retrieval and deployment of trailer mounted equipment. Operational scenarios may require these operations to be performed remotely via a teleoperated mode,or semi-autonomously. This presentation describes the on-going project to adapt the Automated Rendezvous and Capture (AR&C) sensor developed at the Marshall Space Flight Center for use in an automated trailer pick-up and deployment operation. The sensor which has been successfully demonstrated on-orbit has been mounted on an iRobot/John Deere RGATOR autonomous vehicle for this demonstration which will be completed in the March 2008 time-frame.
Modeling Benthic Sediment Processes to Predict Water Quality and Ecology in Narragansett Bay
The benthic sediment acts as a huge reservoir of particulate and dissolved material (within interstitial water) which can contribute to loading of contaminants and nutrients to the water column. A benthic sediment model is presented in this report to predict spatial and temporal ...
The US EPA has evaluated the application of a national-scale indicator of estuarine benthic condition for the National Coastal Condition Assessment (NCCA). Historically, in the National Coastal Condition Reports (NCCR I-IV), estuarine benthic condition was assessed by applying m...
BENTHIC NUTRIENT FLUX IN A SMALL ESTUARY IN NORTHWESTERNFLORIDA (USA)
Benthic Nutrient Flux in a Small Estuary in Northwestern Florida(USA).Gulf and Caribbean Research 18, 15-25, 2006.
Benthic nutrient fluxes of ammonium (NH4+), nitrite/nitrate (NO2-+NO3-), phosphate (PO4-), and dissolved silica (DSi) were measured in Escambia Bay, an estuar...
Population changes of three major benthic taxa are discussed in relation to Dreissena spp. Lake Ontario was sampled pre-invasion (1972) and post-invasion (1994, 1997) for abundance of benthic organisms. In offshore sediments of Lake Ontario, neither species composition nor abunda...
A MORE COST-EFFECTIVE EMAP-ESTUARIES BENTHIC MACROFAUNAL SAMPLING PROTOCOL
The standard benthic macrofaunal sampling protocol in the U.S. Environmental Protection Agency's Pacific Coast Environmental Monitoring and Assessment Program (EMAP) is to collect a minimum of 30 random benthic samples per reporting unit (e.g., estuary) using a 0.1 m2 grab and to...
A MORE COST-EFFECTIVE EMAP BENTHIC MACROFAUNAL SAMPLING PROTOCOL
Benthic macrofaunal sampling protocols in the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) are to collect 30 to 50 random benthic macrofauna [defined as animals retained on a 0.5 mm (East and Gulf Coasts, USA) or a 1.0 mm mesh siev...
Marine Benthic Communities of Block Island and Rhode Island Sounds and What they're Good For
The benthic invertebrates of Block Island and Rhode Island Sounds include those adapted to near-shore habitats with variable temperature and salinity, mid-shelf species with narrower requirements, and boreal species that avoid elevated temperatures. Studies of benthic fauna in th...
2001-09-30
significance of fluorescence and reflectance characteristics of benthic marine organisms in general, and coral reef cnidarians in particular. We wish to... cnidarians in particular. We wish to determine 1) how biological processes act to produce the optical properties and 2) how optical measurements can be
Explosive diversification following a benthic to pelagic shift in freshwater fishes.
Hollingsworth, Phillip R; Simons, Andrew M; Fordyce, James A; Hulsey, C Darrin
2013-12-17
Interspecific divergence along a benthic to pelagic habitat axis is ubiquitous in freshwater fishes inhabiting lentic environments. In this study, we examined the influence of this habitat axis on the macroevolution of a diverse, lotic radiation using mtDNA and nDNA phylogenies for eastern North America's most species-rich freshwater fish clade, the open posterior myodome (OPM) cyprinids. We used ancestral state reconstruction to identify the earliest benthic to pelagic transition in this group and generated fossil-calibrated estimates of when this shift occurred. This transition could have represented evolution into a novel adaptive zone, and therefore, we tested for a period of accelerated lineage accumulation after this historical habitat shift. Ancestral state reconstructions inferred a similar and concordant region of our mtDNA and nDNA based gene trees as representing the shift from benthic to pelagic habitats in the OPM clade. Two independent tests conducted on each gene tree suggested an increased diversification rate after this inferred habitat transition. Furthermore, lineage through time analyses indicated rapid early cladogenesis in the clade arising after the benthic to pelagic shift. A burst of diversification followed the earliest benthic to pelagic transition during the radiation of OPM cyprinids in eastern North America. As such, the benthic/pelagic habitat axis has likely influenced the generation of biodiversity across disparate freshwater ecosystems.
Microbial and sponge loops modify fish production in phase-shifting coral reefs.
Silveira, Cynthia B; Silva-Lima, Arthur W; Francini-Filho, Ronaldo B; Marques, Jomar S M; Almeida, Marcelo G; Thompson, Cristiane C; Rezende, Carlos E; Paranhos, Rodolfo; Moura, Rodrigo L; Salomon, Paulo S; Thompson, Fabiano L
2015-10-01
Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Lake Ontario benthic prey fish assessment, 2014
Weidel, Brian C.; Walsh, Maureen
2015-01-01
Benthic prey fishes are an important component of the Lake Ontario fish community and serve as vectors that move energy from benthic invertebrates into native and introduced sport fishes. Since the 1970’s, the USGS Lake Ontario Biological Station has assessed benthic fish populations and community dynamics with bottom trawls at depths ranging from 8 m out to depths of 150-225 m along the south and eastern shores of Lake Ontario. From the late 1970’s through the early 2000’s the benthic fish community was dominated by Slimy Sculpin Cottus cognatus, but in 2004 non-native Round Goby Neogobius melanostomus abundance increased and, since then Round Goby have generally been the dominant benthic species. Over the past 10 years the native Deepwater Sculpin Myoxocephalus thompsonii, once considered absent from the lake, have increased. Presently their lake-wide biomass density is equal to, or larger than, Slimy Sculpin. Species-specific assessments found Slimy and Deepwater Sculpin abundance increased slightly in 2014 relative to 2013, while changes in Round Goby abundance differed between spring and fall survey. Recent survey modifications have increased our understanding of benthic prey fish abundance and behavior in Lake Ontario. For instance, increasing the maximum tow depth to 225 m in 2014 improved our understanding of Deepwater Sculpin distribution in this rarely sampled lake habitat.
NASA Astrophysics Data System (ADS)
Diz, Paula; Francés, Guillermo; Rosón, Gabriel
2006-04-01
Live benthic foraminifera in the superficial sediments from the muddy central axis of the Ría de Vigo were examined under two contrasting hydrographic conditions: downwelling and upwelling. During downwelling conditions the abundance of benthic foraminifera does not show large differences between sites with different organic carbon contents. The arrival of labile organic carbon to the seafloor delivered during upwelling events causes an increase in the abundance of the most significant species and the appearance of new species in the life assemblage. This suggests that benthic foraminiferal faunas strongly depend on high quality organic carbon supply and the sedimentary organic carbon is not a good indicator of food availability to benthic foraminifera. The response of benthic foraminifera to phytoplankton blooms differs between outer and inner sites. In outer and middle areas benthic foraminiferal assemblages show quick population growth in reaction to phytoplankton blooms (r-strategists), whereas in inner sites the most abundant species displays both growth and reproduction (k-strategists). It is suggested that r-strategy results of adaptation to perturbations on short time-scales (downwelling/upwelling cycles) under favourable microenvironmental conditions, while the k-strategy represents the adaptation to long term perturbations, such as relatively low oxygen concentrations and/or reducing microenvironmental conditions in the sediment.
Concentrations of selected heavy metals in benthic diatoms and sediment in the Westerschelde Estuary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Absil, M.C.P.; Scheppingen, Y. van
1996-12-31
In recent years considerable data have been compiled on heavy metal levels in biota in marine and estuarine environments. With respect to the fauna, much information is available on accumulation and effects of heavy metals in birds, fish and benthic macrofauna. Accumulation of heavy metals in aquatic flora has been studied mostly in benthic macroalgae, in particular in relation to the use as a biological monitor. The response of planktonic algal species to heavy metals has been studied extensively in cultured populations. Also. heavy metal concentrations in natural plankton have been studied. As far as we know, very few datamore » are available on the concentrations of heavy metals in the lowest benthic trophic level, the benthic microflora. It is a major food supply for numerous intertidal species, so it is obvious that microflora might play an important role in the accumulation of contaminants through coastal food chains. The aim of this research was to adjust a recently developed collection technique for benthic diatoms so that it is suitable for large-scale field studies. The method was then used to assess the concentration of the heavy metals Cd, Cu, Pb and Zn in benthic diatoms and sediments along an estuarine gradient. 18 refs., 2 figs., 1 tab.« less
NASA Astrophysics Data System (ADS)
Leduc, Daniel; Pilditch, Conrad A.; Nodder, Scott D.
2016-02-01
Understanding and predicting change in deep-sea benthic ecosystem function remains a major challenge. Here, we conducted analyses combining data on the abundance and biomass of benthic fauna and sediment community oxygen consumption (SCOC) on New Zealand's continental margin to estimate and compare the contributions of meio-, macro-, and megafauna to total benthic metabolism and identify potential links with environmental factors and trawling intensity. We focussed on two regions in close proximity-the high surface primary productivity Chatham Rise and low surface productivity Challenger Plateau. Mean megafauna biomass was twenty times greater on Chatham Rise than Challenger Plateau, likely reflecting differences in food supply between the two regions; this contrast in megafaunal biomass was mainly due to differences in mean body weight rather than abundance. Meio- and macrofauna made similar contributions to SCOC and together accounted for 12% of benthic metabolism on average. In contrast, the estimated contribution of megafauna never exceeded 1.5%. Significant positive correlations between faunal respiration and food availability indicate a link between food supply and benthic community function. Our analyses also show that fauna made a greater contribution to SCOC in conditions of high food availability, and that microorganisms (i.e., the proportion of SCOC not accounted for by the fauna) tended to be more dominant at sites with low food availability. These findings provide support for the concept that large organisms are more strongly affected by a reduction in food resources than small organisms, which in turn underlies one of the most widely described patterns in the deep-sea benthos, i.e., the reduction in organism body size with depth. Because metabolism in deep-sea sediments is typically dominated by microorganisms and small fauna, the absence of a relationship between bottom trawling intensity and the respiration of benthic fauna in the present study may be explained by benthic communities shifting towards smaller body size following physical disturbance. Future studies of deep-sea benthic ecosystem function will need to quantify the indirect influence of fauna on microbial metabolism through activities such as feeding and bioturbation in order to better understand the total contribution of benthic fauna to benthic processes.
NASA Astrophysics Data System (ADS)
Tsagarakis, K.; Coll, M.; Giannoulaki, M.; Somarakis, S.; Papaconstantinou, C.; Machias, A.
2010-06-01
A mass-balance trophic model was built to describe the food-web traits of the North Aegean Sea (Strymonikos Gulf and Thracian Sea, Greece, Eastern Mediterranean) during the mid-2000s and to explore the impacts of fishing. This is the first food-web model representing the Aegean Sea, and results were presented and discussed in comparison to other previous ecosystems modelled from the western and the central areas of the basin (South Catalan and North-Central Adriatic Seas). Forty functional groups were defined, covering the entire trophic spectrum from lower to higher trophic levels. Emphasis was placed on commercial invertebrates and fish. The potential ecological role of the invasive ctenophore, Mnemiopsis leidyi, and several vulnerable groups (e.g., dolphins) was also explored. Results confirmed the spatial productivity patterns known for the Mediterranean Sea showing, for example, that the total biomass is highest in N.C. Adriatic and lowest in N. Aegean Sea. Accordingly, food-web flows and several ecosystem indicators like the mean transfer efficiency were influenced by these patterns. Nevertheless, all three systems shared some common features evidencing similarities of Mediterranean Sea ecosystems such as dominance of the pelagic fraction in terms of flows and strong benthic-pelagic coupling of zooplankton and benthic invertebrates through detritus. The importance of detritus highlighted the role of the microbial food-web, which was indirectly considered through detritus dynamics. Ciliates, mesozooplankton and several benthic invertebrate groups were shown as important elements of the ecosystem linking primary producers and detritus with higher trophic levels in the N. Aegean Sea. Adult anchovy was shown as the most important fish group in terms of production, consumption and overall effect on the rest of the ecological groups in the model, in line with results from the Western Mediterranean Sea. The five fishing fleets considered (both artisanal and industrial) had high impacts on vulnerable species and numerous targeted groups given the multispecies nature of the fisheries in the N. Aegean Sea. Several exploitation indices highlighted that the N. Aegean Sea ecosystem was highly exploited and unlikely to be sustainably fished, similarly to other Mediterranean marine ecosystems.
LINKING NUTRIENTS TO ALTERATIONS IN AQUATIC LIFE ...
This report estimates the natural background and ambient concentrations of primary producer abundance indicators in California wadeable streams, identifies thresholds of adverse effects of nutrient-stimulated primary producer abundance on benthic macroinvertebrate and algal community structure in CA wadeable streams, and evaluates existing nutrient-algal response models for CA wadeable streams (Tetra Tech 2006), with recommendations for improvements. This information will be included in an assessment of the science forming the basis of recommendations for stream nutrient criteria for the state of California. The objectives of the project are three-fold: 1. Estimate the natural background and ambient concentrations of nutrients and candidate indicators of primary producer abundance in California wadeable streams; 2. Explore relationships and identify thresholds of adverse effects of nutrient concentrations and primary producer abundance on indicators of aquatic life use in California wadeable streams; and 3. Evaluate the Benthic Biomass Spreadsheet Tool (BBST) for California wadeable streams using existing data sets, and recommend avenues for refinement. The intended outcome of this study is NOT final regulatory endpoints for nutrient and response indicators for California wadeable streams.
Variability in benthic exchange rate, depth, and residence time beneath a shallow coastal estuary
NASA Astrophysics Data System (ADS)
Russoniello, C. J.; Michael, H. A.; Heiss, J.
2017-12-01
Hydrodynamically-driven exchange of water between the water column and shallow seabed aquifer, benthic exchange, is a significant and dynamic component of coastal and estuarine fluid budgets, but wave-induced benthic exchange has not been measured in the field. Mixing between surface water and groundwater solutes promotes ecologically important chemical reactions, so quantifying benthic exchange rates, depths, and residence times, constrains estimates of coastal chemical cycling. In this study, we present the first field-based direct measurements of wave-induced exchange and compare it to exchange induced by the other primary drivers of exchange - tides, and currents. We deployed instruments in a shallow estuary to measure benthic exchange and temporal variability over an 11-day period. Differential pressure sensors recorded pressure gradients across the seabed, and up-and down-looking ADCPs recorded currents and pressures from which wave parameters, surface-water currents, and water depth were determined. Wave-induced exchange was calculated directly from 1) differential pressure measurements, and indirectly with an analytical solution based on wave parameters from 2) ADCP and 3) weather station data. Groundwater flow models were used to assess the effects of aquifer properties on benthic exchange depth and residence time. Benthic exchange driven by tidal pumping or current-bedform interaction was calculated from tidal stage variation and from ADCP-measured currents at the bed, respectively. Waves were the primary benthic exchange driver (average = 20.0 cm/d, maximum = 92.3 cm/d) during the measurement period. Benthic exchange due to tides (average = 3.7 cm/d) and current-bedform interaction (average = 6.5x10-2 cm/d) was much lower. Wave-induced exchange calculated from pressure measurements and ADCP-measured wave parameters matched well, but wind-based rates underestimated wave energy and exchange. Groundwater models showed that residence time and depth increased in high-permeability, incompressible aquifers, and exchange rates increased in low-permeability, compressible aquifers. These findings support and extend the utility of existing wave-induced exchange solutions and will help managers assess the importance of benthic exchange on coastal chemical cycling.
Wind-based navigation of a hot-air balloon on Titan: a feasibility study
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-04-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semi-autonomous exploration of Titan.
Autonomous Multi-sensor Coordination: The Science Goal Monitor
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha; Jung, John; Geiger, Jenny; Grosvenor, Sandy
2004-01-01
Next-generation science and exploration systems will employ new observation strategies that will use multiple sensors in a dynamic environment to provide high quality monitoring, self-consistent analyses and informed decision making. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing of earth phenomenon. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe the dynamic phenomena. The SGM system enables users to specify events of interest and how to react when an event is detected. The system monitors streams of data to identify occurrences of the key events previously specified by the scientist/user. When an event occurs, the system autonomously coordinates the execution of the users desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems Aqua/Terra spacecrafts MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM is being used to investigate forest fires, floods and volcanic eruptions. We are now identifying new earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Cameron, Jonathan M.; Morfopoulos, Arin C.; Clouse, Daniel S.; Montgomery, James F.; Ansar, Adnan I.; Machuzak, Richard J.
2009-01-01
An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.
Lake Ontario benthic prey fish assessment, 2016
Weidel, Brian C.; Walsh, Maureen; Holden, Jeremy P.; Connerton, Michael J.
2017-01-01
Benthic prey fishes are a critical component of the Lake Ontario food web, serving as energy vectors from benthic invertebrates to native and introduced piscivores. Beginning in 1978, Lake Ontario benthic prey fishes were assessed using bottom trawls collected from the lake’s south shore (depth range: 8 – 150 m). Historically, the survey targeted the then dominant species, Slimy Sculpin, however in 2015, the Benthic Prey Fish Survey was cooperatively expanded to a whole-lake survey, to address resource management information needs related to Round Goby, Deepwater Sculpin, and nearshore native fishes. In 2016, 142 trawls were collected at 18 transects, and spanned depths from 6 – 225 m. Trawl catches indicated the benthic and demersal prey fish community was dominated by Round Goby, however the proportional importance of native Deepwater Sculpin is increasing. Species-specific assessments found lake-wide Round Goby density (~600 fish per hectare) was slightly lower in 2016 relative to 2015. Deepwater Sculpin density has generally increased since 2004. In 2016 their estimated density was greater than 100 fish per hectare. Slimy Sculpin density (15 fish/ha) was similar to the past 3 years. Catches of juvenile Slimy Sculpin continue to be low relative to historic catches and the timing of their decline coincides with the proliferation of Round Goby. Additionally, we found a strong negative relationship between trawl catches of Round Goby and near-shore native benthic and demersal fishes such as Trout-perch, Johnny Darter and Spottail Shiner. The introduction of Round Goby and the reappearance of native Deepwater Sculpin have shaped the Lake Ontario benthic prey fish community.
Benthic foraminifera at the Cretaceous-Tertiary boundary around the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Alegret, Laia; Molina, Eustoquio; Thomas, Ellen
2001-10-01
Cretaceous-Tertiary (K-T) boundary sections in northeastern Mexico contain marly formations separated by a controversial clastic unit. Benthic foraminifera in seven sections indicate middle and lower bathyal depths of deposition for the marls, with the exception of the upper bathyal northernmost section. Mixed neritic-bathyal faunas were present in the clastic unit, indicating redeposition in the deep basin by mass-wasting processes resulting from the K-T bolide impact in the Gulf of Mexico. Benthic foraminifera in the Mexican sections, and at other deep-sea locations, were not subject to major extinction at the time of impact, but there were temporary changes in assemblage composition. Benthic faunas indicate well- oxygenated bottom waters and mesotrophic conditions during the late Maastrichtian and increased food supply during the latest Maastrichtian. The food supply decreased drastically just after the K-T boundary, possibly because of the collapse of surface productivity. Cretaceous and early Paleogene benthic foraminifera, however, did not exhibit the benthic-pelagic coupling of present-day faunas, as documented by the lack of significant extinction at the K-T collapse of surface productivity. Much of the food supplied to the benthic faunas along this continental margin might have been refractory material transported from land or shallow coastal regions. The decrease in food supply at the K-T boundary might be associated with the processes of mass wasting, which removed surface, food-rich sediment. Benthic faunas show a staggered pattern of faunal recovery in the lowermost Paleogene, consistent with a staged recovery of the vertical organic flux but also with a gradual buildup of organic matter in the sediment.
Biologically Inspired Behavioral Strategies for Autonomous Aerial Explorers on Mars
NASA Technical Reports Server (NTRS)
Plice, Laura; Pisanich, Greg; Lau, Benton; Young, Larry A.
2002-01-01
The natural world is a rich source of problem- solving approaches. This paper discusses the feasibility and technical challenges underlying mimicking, or analogously adapting, biological behavioral strategies to mission/flight planning for aerial vehicles engaged in planetary exploration. Two candidate concepts based on natural resource utilization and searching behaviors are adapted io technological applications. Prototypes and test missions addressing the difficulties of implementation and their solutions are also described.
NASA Center for Intelligent Robotic Systems for Space Exploration
NASA Technical Reports Server (NTRS)
1990-01-01
NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.
NASA Astrophysics Data System (ADS)
Hofmann, G. E.; Evans, T. G.; Kelly, M. W.; Padilla-Gamiño, J. L.; Blanchette, C. A.; Washburn, L.; Chan, F.; McManus, M. A.; Menge, B. A.; Gaylord, B.; Hill, T. M.; Sanford, E.; LaVigne, M.; Rose, J. M.; Kapsenberg, L.; Dutton, J. M.
2013-07-01
The California Current Large Marine Ecosystem (CCLME), a temperate marine region dominated by episodic upwelling, is predicted to experience rapid environmental change in the future due to ocean acidification. Aragonite saturation state within the California Current System is predicted to decrease in the future, with near-permanent undersaturation conditions expected by the year 2050. Thus, the CCLME is a critical region to study due to the rapid rate of environmental change that resident organisms will experience and because of the economic and societal value of this coastal region. Recent efforts by a research consortium - the Ocean Margin Ecosystems Group for Acidification Studies (OMEGAS) - has begun to characterize a portion of the CCLME; both describing the mosaic of pH in coastal waters and examining the responses of key calcification-dependent benthic marine organisms to natural variation in pH and to changes in carbonate chemistry that are expected in the coming decades. In this review, we present the OMEGAS strategy of co-locating sensors and oceanographic observations with biological studies on benthic marine invertebrates, specifically measurements of functional traits such as calcification-related processes and genetic variation in populations that are locally adapted to conditions in a particular region of the coast. Highlighted in this contribution are (1) the OMEGAS sensor network that spans the west coast of the US from central Oregon to southern California, (2) initial findings of the carbonate chemistry amongst the OMEGAS study sites, (3) an overview of the biological data that describes the acclimatization and the adaptation capacity of key benthic marine invertebrates within the CCLME.
Food supply mechanisms for cold-water corals along a continental shelf edge
NASA Astrophysics Data System (ADS)
Thiem, Øyvind; Ravagnan, Elisa; Fosså, Jan Helge; Berntsen, Jarle
2006-05-01
In recent years it has been documented that deep-water coral reefs of the species Lophelia pertusa are a major benthic habitat in Norwegian waters. However, basic information about the biology and ecology of this species is still unknown. Lophelia live and thrive under special environmental conditions of which factors such as temperature, water depth, water movement and food supply are important. The present work explores the hypothesis that Lophelia forms reefs in places where the encounter rate of food particles is sufficiently high and stable over long periods of time for continuous growth. This is done by relating the distribution of reefs with the results of numerical ocean modelling. Numerical simulations have been performed with an idealized bottom topography similar to what is found outside parts of the Norwegian coast. In the simulations the model is first forced with an along slope jet and then with an idealized atmospheric low pressure. The model results show that the encounter rates between the particles and the water layer near the seabed are particularly high close to the shelf break. This may indicate that many Lophelia reefs are located along the shelf edges because the supply of food is particularly good in these areas. A sensitivity study of the particle supply in the area close to the seabed for increasing latitude has also been done. This shows that the Ekman transport in the benthic layer tends to create a steady supply of food for benthic organisms near the shelf edge away from the equator.