Sample records for autonomous integrity monitoring

  1. Knowledge-based and integrated monitoring and diagnosis in autonomous power systems

    NASA Technical Reports Server (NTRS)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.

  2. Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) web service to support Area Navigation (RNAV) flight planning

    DOT National Transportation Integrated Search

    2008-01-28

    The Volpe Center designed, implemented, and deployed a Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) prediction system in the mid 1990s to support both Air Force and Federal Aviation Administration (FAA) use of TSO C...

  3. Modular Autonomous Systems Technology Framework: A Distributed Solution for System Monitoring and Control

    NASA Technical Reports Server (NTRS)

    Badger, Julia M.; Claunch, Charles; Mathis, Frank

    2017-01-01

    The Modular Autonomous Systems Technology (MAST) framework is a tool for building distributed, hierarchical autonomous systems. Originally intended for the autonomous monitoring and control of spacecraft, this framework concept provides support for variable autonomy, assume-guarantee contracts, and efficient communication between subsystems and a centralized systems manager. MAST was developed at NASA's Johnson Space Center (JSC) and has been applied to an integrated spacecraft example scenario.

  4. From Here to Autonomicity: Self-Managing Agents and the Biological Metaphors that Inspire Them

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    We seek inspiration for self-managing systems from (obviously, pre-existing) biological mechanisms. Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward for integrating and designing reliable systems, while agent technologies have been identified as a key enabler for engineering autonomicity in systems. This paper looks at other biological metaphors such as reflex and healing, heart- beat monitors, pulse monitors and apoptosis for assisting in the realization of autonomicity.

  5. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  6. Integrated Systems Health Management as an Enabler for Condition Based Maintenance and Autonomic Logistics

    DTIC Science & Technology

    2015-09-17

    turbines , SHM tools, maintenance scheduling, and performance of the SHM system determine the added value of the system of systems (A. Van Horenbeek...J. R., & Pintelon, L. (2013). Quantifying the added value of an imperfectly performing condition monitoring system— Application to a wind turbine ...INTEGRATED SYSTEMS HEALTH MANAGEMENT AS AN ENABLER FOR CONDITION BASED MAINTENANCE AND AUTONOMIC

  7. Autonomous Operations System: Development and Application

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  8. Autonomous sensing of composites with carbon nanotubes for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi

    2012-04-01

    The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.

  9. Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000 (trademark)

    DTIC Science & Technology

    2012-09-30

    be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES  Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection.  Assemble the system

  10. Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000(TM)

    DTIC Science & Technology

    2011-09-30

    be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES  Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection.  Assemble the system

  11. ICAROUS: Integrated Configurable Architecture for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  12. Integration for navigation on the UMASS mobile perception lab

    NASA Technical Reports Server (NTRS)

    Draper, Bruce; Fennema, Claude; Rochwerger, Benny; Riseman, Edward; Hanson, Allen

    1994-01-01

    Integration of real-time visual procedures for use on the Mobile Perception Lab (MPL) was presented. The MPL is an autonomous vehicle designed for testing visually guided behavior. Two critical areas of focus in the system design were data storage/exchange and process control. The Intermediate Symbolic Representation (ISR3) supported data storage and exchange, and the MPL script monitor provided process control. Resource allocation, inter-process communication, and real-time control are difficult problems which must be solved in order to construct strong autonomous systems.

  13. GPS/GLONASS RAIM augmentation to WAAS for CAT 1 precision approach

    DOT National Transportation Integrated Search

    1997-06-30

    This paper deals with the potential use of Receiver Autonomous Integrity Monitoring @AIM) to supplement the FAAs Wide Area Augmentation System (WAAS). Integrity refers to the capability of a navigation or landing system to provide a timely warning...

  14. Small Autonomous Aircraft Servo Health Monitoring

    NASA Technical Reports Server (NTRS)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  15. Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.

    2008-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of autonomously tasking the other. Sensor-web data acquisition and dissemination will be accomplished through the use of the Open Geospatial Consortium Sensorweb Enablement protocols. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform. ??2008 IEEE.

  16. An Optimized Autonomous Space In-situ Sensorweb (OASIS) for Volcano Monitoring

    NASA Astrophysics Data System (ADS)

    Song, W.; Shirazi, B.; Lahusen, R.; Chien, S.; Kedar, S.; Webb, F.

    2006-12-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, we are developing a prototype real-time Optimized Autonomous Space In-situ Sensorweb. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been in continuous eruption since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO- 1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real- time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of triggering the other. Sensor-web data acquisition and dissemination will be accomplished through the use of SensorML language standards for geospatial information. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform.

  17. Fault detection and isolation in GPS receiver autonomous integrity monitoring based on chaos particle swarm optimization-particle filter algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao

    2018-03-01

    The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.

  18. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  19. Autonomous locomotion of capsule endoscope in gastrointestinal tract.

    PubMed

    Yang, Sungwook; Park, Kitae; Kim, Jinseok; Kim, Tae Song; Cho, Il-Joo; Yoon, Eui-Sung

    2011-01-01

    Autonomous locomotion in gastrointestinal (GI) tracts is achieved with a paddling-based capsule endoscope. For this, a miniaturized encoder module was developed utilizing a MEMS fabrication technology to monitor the position of paddles. The integrated encoder module yielded the high resolution of 0.0025 mm in the linear motion of the paddles. In addition, a PID control method was implemented on a DSP to control the stroke of the paddles accurately. As a result, the average accuracy and the standard deviation were measured to be 0.037 mm and 0.025 mm by a laser position sensor for the repetitive measurements. The locomotive performance was evaluated via ex-vivo tests according to various strokes in paddling. In an in-vivo experiment with a living pig, the locomotion speed was improved by 58% compared with the previous control method relying on a given timer value for reciprocation of the paddles. Finally, the integrated encoder module and the control system allow consistent paddling during locomotion even under loads in GI tract. It provides the autonomous locomotion without intervention in monitoring and controlling the capsule endoscope.

  20. Lightweight, Wearable, Metal Rubber Sensor

    NASA Technical Reports Server (NTRS)

    Hill, Andrea

    2015-01-01

    For autonomous health monitoring. NanoSonic, Inc., has developed comfortable garments with multiple integrated sensors designed to monitor astronaut health throughout long-duration space missions. The combined high electrical conductivity, low mechanical modulus, and environmental robustness of the sensors make them an effective, lightweight, and comfortable alternative to conventional use of metal wiring and cabling.

  1. Optimized autonomous space in-situ sensor web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.

    2010-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.

  2. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  3. RAIM availability for supplemental GPS navigation

    DOT National Transportation Integrated Search

    1992-06-29

    This paper examines GPS receiver autonomous integrity monitoring (RAIM) availability for supplemental navigation based on the approximate radial-error protection (ARP) method. This method applies ceiling levels for the ARP figure of merit to screen o...

  4. GPS/INS integration by functional partitioning

    NASA Astrophysics Data System (ADS)

    Diesel, John W.

    It is shown that a GPS/INS system integrated by functional partitioning can satisfy all of the RTCA navigation requirements and goals. This is accomplished by accurately calibrating the INS using GPS after the inertial instruments are thermally stabilized and by exploiting the very slow subsequent error growth in the INS information. In this way, autonomous integrity monitoring can be achieved using only existing or presently planned systems.

  5. Autonomous System for Monitoring the Integrity of Composite Fan Housings

    NASA Technical Reports Server (NTRS)

    Qing, Xinlin P.; Aquino, Christopher; Kumar, Amrita

    2010-01-01

    A low-cost and reliable system assesses the integrity of composite fan-containment structures. The system utilizes a network of miniature sensors integrated with the structure to scan the entire structural area for any impact events and resulting structural damage, and to monitor degradation due to usage. This system can be used to monitor all types of composite structures on aircraft and spacecraft, as well as automatically monitor in real time the location and extent of damage in the containment structures. This diagnostic information is passed to prognostic modeling that is being developed to utilize the information and provide input on the residual strength of the structure, and maintain a history of structural degradation during usage. The structural health-monitoring system would consist of three major components: (1) sensors and a sensor network, which is permanently bonded onto the structure being monitored; (2) integrated hardware; and (3) software to monitor in-situ the health condition of in-service structures.

  6. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    hierarchical control architecture that enables a hybrid control approach, where centralized control systems will be complemented by distributed control algorithms for solar inverters and autonomous control of ), involves developing a novel control scheme that provides system-wide monitoring and control using a small

  7. Autonomous microfluidic system for phosphate detection.

    PubMed

    McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot

    2007-02-28

    Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.

  8. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Astrophysics Data System (ADS)

    Alhorn, Dean C.

    2005-02-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  9. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.

  10. Volcano Monitoring: A Case Study in Pervasive Computing

    NASA Astrophysics Data System (ADS)

    Peterson, Nina; Anusuya-Rangappa, Lohith; Shirazi, Behrooz A.; Song, Wenzhan; Huang, Renjie; Tran, Daniel; Chien, Steve; Lahusen, Rick

    Recent advances in wireless sensor network technology have provided robust and reliable solutions for sophisticated pervasive computing applications such as inhospitable terrain environmental monitoring. We present a case study for developing a real-time pervasive computing system, called OASIS for optimized autonomous space in situ sensor-web, which combines ground assets (a sensor network) and space assets (NASA’s earth observing (EO-1) satellite) to monitor volcanic activities at Mount St. Helens. OASIS’s primary goals are: to integrate complementary space and in situ ground sensors into an interactive and autonomous sensorweb, to optimize power and communication resource management of the sensorweb and to provide mechanisms for seamless and scalable fusion of future space and in situ components. The OASIS in situ ground sensor network development addresses issues related to power management, bandwidth management, quality of service management, topology and routing management, and test-bed design. The space segment development consists of EO-1 architectural enhancements, feedback of EO-1 data into the in situ component, command and control integration, data ingestion and dissemination and field demonstrations.

  11. Autonomous self-powered structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.

    2010-03-01

    Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.

  12. Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.

    2014-12-01

    Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.

  13. ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee

    2016-01-01

    NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.

  14. Aerobot Autonomy Architecture

    NASA Technical Reports Server (NTRS)

    Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Cameron, Jonathan M.; Morfopoulos, Arin C.; Clouse, Daniel S.; Montgomery, James F.; Ansar, Adnan I.; Machuzak, Richard J.

    2009-01-01

    An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.

  15. Perceptions of seniors with heart failure regarding autonomous zero-effort monitoring of physiological parameters in the smart-home environment.

    PubMed

    Grace, Sherry L; Taherzadeh, Golnoush; Jae Chang, Isaac Sung; Boger, Jennifer; Arcelus, Amaya; Mak, Susanna; Chessex, Caroline; Mihailidis, Alex

    Technological advances are leading to the ability to autonomously monitor patient's health status in their own homes, to enable aging-in-place. To understand the perceptions of seniors with heart failure (HF) regarding smart-home systems to monitor their physiological parameters. In this qualitative study, HF outpatients were invited to a smart-home lab, where they completed a sequence of activities, during which the capacity of 5 autonomous sensing modalities was compared to gold standard measures. Afterwards, a semi-structured interview was undertaken. These were transcribed and analyzed using an interpretive-descriptive approach. Five themes emerged from the 26 interviews: (1) perceptions of technology, (2) perceived benefits of autonomous health monitoring, (3) disadvantages of autonomous monitoring, (4) lack of perceived need for continuous health monitoring, and (5) preferences for autonomous monitoring. Patient perception towards autonomous monitoring devices was positive, lending credence to zero-effort technology as a viable and promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.

    2005-01-01

    The fulfillment of the new US. National Vision for Space Exploration requires many new enabling technologies to accomplish the goal of utilizing space for commercial activities and for returning humans to the moon and extraterrestrial environments. Traditionally, flight structures are manufactured as complete systems and require humans to complete the integration and assembly in orbit. These structures are bulky and require the use of heavy launch vehicles to send the units to the desired location, e.g. International Space Station (ISS). This method requires a high degree of safety, numerous space walks and significant cost for the humans to perform the assembly in orbit. For example, for assembly and maintenance of the ISS, 52 Extravehicular Activities (EVA's) have been performed so far with a total EVA time of approximately 322 hours. Sixteen (16) shuttle flights haw been to the ISS to perform these activities with an approximate cost of $450M per mission. For future space missions, costs have to be reduced to reasonably achieve the exploration goals. One concept that has been proposed is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly operations. Assembly is autonomously performed when two components containing onboard electronics join after recognizing that the joint is appropriate and in the precise position and orientation required for assembly. The mechanism only activates when the specifications are correct and m a nominal range. After assembly, local sensors and electronics monitor the integrity of the joint for feedback to a master controller. To achieve this concept will require a shift in the methods for designing space structures. In addition, innovative techniques will be required to perform the assembly autonomously. Monitoring of the assembled joint will be necessary for safety and structural integrity. If a very large structure is to be assembled in orbit, then the number of integrity sensors will be significant. Thus simple, low cost sensors are integral to the success of this concept. This paper will address these issues and will propose a novel concept for assembling space structures autonomously. The paper will present Several autonomous assembly methods. Core technologies required to achieve in space assembly will be discussed and novel techniques for communicating, sensing, docking and assembly will be detailed. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Finally, these technologies can also be applied to other systems both on earth and extraterrestrial environments.

  17. An Integrated Approach for the Monitoring of Brain and Autonomic Response of Children with Autism Spectrum Disorders during Treatment by Wearable Technologies

    PubMed Central

    Billeci, Lucia; Tonacci, Alessandro; Tartarisco, Gennaro; Narzisi, Antonio; Di Palma, Simone; Corda, Daniele; Baldus, Giovanni; Cruciani, Federico; Anzalone, Salvatore M.; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo

    2016-01-01

    Autism Spectrum Disorders (ASD) are associated with physiological abnormalities, which are likely to contribute to the core symptoms of the condition. Wearable technologies can provide data in a semi-naturalistic setting, overcoming the limitations given by the constrained situations in which physiological signals are usually acquired. In this study an integrated system based on wearable technologies for the acquisition and analysis of neurophysiological and autonomic parameters during treatment is proposed and an application on five children with ASD is presented. Signals were acquired during a therapeutic session based on an imitation protocol in ASD children. Data were analyzed with the aim of extracting quantitative EEG (QEEG) features from EEG signals as well as heart rate and heart rate variability (HRV) from ECG. The system allowed evidencing changes in neurophysiological and autonomic response from the state of disengagement to the state of engagement of the children, evidencing a cognitive involvement in the children in the tasks proposed. The high grade of acceptability of the monitoring platform is promising for further development and implementation of the tool. In particular if the results of this feasibility study would be confirmed in a larger sample of subjects, the system proposed could be adopted in more naturalistic paradigms that allow real world stimuli to be incorporated into EEG/psychophysiological studies for the monitoring of the effect of the treatment and for the implementation of more individualized therapeutic programs. PMID:27445652

  18. Potential and challenges of body area networks for cardiac monitoring.

    PubMed

    Gyselinckx, Bert; Penders, Julien; Vullers, Ruud

    2007-01-01

    This article gives an overview of results of the Human++ research program related to cardiac monitoring (http://www.imec-nl.nl/). This research aims to achieve highly miniaturized and nearly autonomous sensor systems that assist our health and comfort. It combines expertise in wireless ultra-low-power communications, packaging and 3D integration technologies, Micro Electro Mechanical Systems (MEMS) energy scavenging techniques, and low-power design techniques.

  19. Automated monitoring of medical protocols: a secure and distributed architecture.

    PubMed

    Alsinet, T; Ansótegui, C; Béjar, R; Fernández, C; Manyà, F

    2003-03-01

    The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.

  20. INTEGRATED MONITORING HARDWARE DEVELOPMENTS AT LOS ALAMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. PARKER; J. HALBIG; ET AL

    1999-09-01

    The hardware of the integrated monitoring system supports a family of instruments having a common internal architecture and firmware. Instruments can be easily configured from application-specific personality boards combined with common master-processor and high- and low-voltage power supply boards, and basic operating firmware. The instruments are designed to function autonomously to survive power and communication outages and to adapt to changing conditions. The personality boards allow measurement of gross gammas and neutrons, neutron coincidence and multiplicity, and gamma spectra. In addition, the Intelligent Local Node (ILON) provides a moderate-bandwidth network to tie together instruments, sensors, and computers.

  1. Optimized Autonomous Space - In-situ Sensorweb: A new Tool for Monitoring Restless Volcanoes

    NASA Astrophysics Data System (ADS)

    Lahusen, R. G.; Kedar, S.; Song, W.; Chien, S.; Shirazi, B.; Davies, A.; Tran, D.; Pieri, D.

    2007-12-01

    An interagency team of earth scientists, space scientists and computer scientists are collaborating to develop a real-time monitoring system optimized for rapid deployment at restless volcanoes. The primary goals of this Optimized Autonomous Space In-situ Sensorweb (OASIS) are: 1) integrate complementary space and in-situ (ground-based) elements into an interactive, autonomous sensorweb; 2) advance sensorweb power and communication resource management technology; and 3) enable scalability for seamless infusion of future space and in-situ assets into the sensorweb. A prototype system will be deployed on Mount St. Helens by December 2009. Each node will include GPS, seismic, infrasonic and lightning (for ash plume detection) sensors plus autonomous decision making capabilities and interaction with EO-1 multi-spectral satellite. This three year project is jointly funded by NASA AIST program and USGS Volcano Hazards Program. Work has begun with a rigorous multi-disciplinary discussion and resulted in a system requirements document aimed to guide the design of OASIS and future networks and to achieve the project's stated goals. In this presentation we will highlight the key OASIS system requirements, their rationale and the physical and technical challenges they pose. Preliminary design decisions will be presented.

  2. Towards autonomous environmental monitoring systems.

    PubMed

    Sequeira, Margaret; Bowden, Michaela; Minogue, Edel; Diamond, Dermot

    2002-02-11

    The concept of micro total analysis systems (muTAS) or Lab-on-a-chip is based on the twin strategies of integration and miniaturisation that have been so successful in the electronics industry. This paper will look at the materials issues, particularly with respect to the new polymeric materials that are becoming available, and strategies for integrating optical (colorimetric) detection. The influence of breakthroughs in apparently unrelated areas on the range of chemistries that can be applied will be illustrated. For environmental monitoring, the further integration of wireless communications with micro-dimensioned analytical instruments and sensors will become the ultimate driving force. The emergence of these compact, self-sustaining, networked instruments will have enormous impact on all field-based environmental measurements.

  3. Web Based Autonomous Geophysical/Hydrological Monitoring of the Gilt Edge Mine Site: Implementation and Results

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Wangerud, K.; Mattson, E.; Ankeny, M.; Richardson, A.; Heath, G.

    2005-05-01

    The Ruby Gulch repository at the Gilt Edge Mine Superfund site is a capped waste rock repository. Early in the system design EPA and its subcontractor, Bureau of Reclamation, recognized the need for long-term monitoring system to provide information on the repository behavior with the following objectives: 1 Provide information on the integrity of the newly constructed surface cover and diversion system 2 Continually assess the waste's hydrological and geochemical behavior, such that rational decisions can be made for the operation of this cover and liner system 3 Easily access of information pertaining to the system performance to stakeholders 4 Integration of a variety of data sources to produce information which could be used to enhance future cover designs. Through discussions between EPA, the Bureau of Reclamation and Idaho National Laboratory a long-term monitoring system was designed and implemented allowing EPA to meet these objectives. This system was designed to provide a cost effective way to deal with massive amounts of data and information, subject to the following specifications: 1 Data acquisition should occur autonomously and automatically, 2 Data management, processing and presentation should be automated as much as possible, 3 Users should be able to access all data and information remotely through a web browser. The INL long-term monitoring system integrates the data from a set of 522 electrodes resistivity electrodes consisting of 462 surface electrodes and 60 borehole electrodes (in 4 wells with 15 electrodes each), an outflow meter at the toe of the repository, an autonomous, remotely accessible weather station, and four wells (average depths of 250 feet) with thermocouples, pressure transducers and sampling ports for water and air. The monitoring system has currently been in operation for over a year, and has collected data continuously over this period. Results from this system have shown both the diurnal variation in rockmass behavior, movement of water through the waste (allowing estimated in residence time) and are leading to a comprehensive model of the repository behavior. Due to the sheer volume of data, a user driven interface allows users to create their own views of the different datasets.

  4. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  5. Task-level control for autonomous robots

    NASA Technical Reports Server (NTRS)

    Simmons, Reid

    1994-01-01

    Task-level control refers to the integration and coordination of planning, perception, and real-time control to achieve given high-level goals. Autonomous mobile robots need task-level control to effectively achieve complex tasks in uncertain, dynamic environments. This paper describes the Task Control Architecture (TCA), an implemented system that provides commonly needed constructs for task-level control. Facilities provided by TCA include distributed communication, task decomposition and sequencing, resource management, monitoring and exception handling. TCA supports a design methodology in which robot systems are developed incrementally, starting first with deliberative plans that work in nominal situations, and then layering them with reactive behaviors that monitor plan execution and handle exceptions. To further support this approach, design and analysis tools are under development to provide ways of graphically viewing the system and validating its behavior.

  6. A Concept of Operations for the Use of Emergent Open Internet Technologies as the Basis for a Network-Centric Environment

    DTIC Science & Technology

    2006-09-01

    automated agents , such as chatbots to acts as a relay between chatrooms and blogs or other systems. In particular, chatbots could be used to monitor...bandwidth connections and legacy systems. Chatbot Integration The use of connected autonomous agents that monitor chatrooms to allow users access...of Cell Phone GPS Tracking. .............84 Figure 35. Example of a Chatbot Creating a Blog Entry

  7. Autonomic Computing: Panacea or Poppycock?

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    Autonomic Computing arose out of a need for a means to cope with rapidly growing complexity of integrating, managing, and operating computer-based systems as well as a need to reduce the total cost of ownership of today's systems. Autonomic Computing (AC) as a discipline was proposed by IBM in 2001, with the vision to develop self-managing systems. As the name implies, the influence for the new paradigm is the human body's autonomic system, which regulates vital bodily functions such as the control of heart rate, the body's temperature and blood flow-all without conscious effort. The vision is to create selfivare through self-* properties. The initial set of properties, in terms of objectives, were self-configuring, self-healing, self-optimizing and self-protecting, along with attributes of self-awareness, self-monitoring and self-adjusting. This self-* list has grown: self-anticipating, self-critical, self-defining, self-destructing, self-diagnosis, self-governing, self-organized, self-reflecting, and self-simulation, for instance.

  8. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie; Stetson, Howard K.

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  9. Automated Operations Development for Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard

    2012-01-01

    Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.

  10. Autonomous cloud based site monitoring through hydro geophysical data assimilation, processing and result delivery

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Johnson, D. V.; Rodzianko, A.; Zhou, H.; Dafflon, B.; Leger, E.; de Kleine, M.

    2017-12-01

    Understanding of processes in the shallow subsurface requires that geophysical, biogeochemical, hydrological and remote sensing datasets are assimilated, processed and interpreted. Multiple enabling software capabilities for process understanding have been developed by the science community. These include information models (ODM2), reactive transport modeling (PFLOTRAN, Modflow, CLM, Landlab), geophysical inversion (E4D, BERT), parameter estimation (PEST, DAKOTA), visualization (ViSiT, Paraview, D3, QGIS) as well as numerous tools written in python and R for petrophysical mapping, stochastic modeling, data analysis and so on. These capabilities use data collected using sensors and analytical tools developed by multiple manufacturers which produce many different measurements. While scientists obviously leverage tools, capabilities and lessons learned from one site at other sites, the current approach to site characterization and monitoring is very labor intensive and does not scale well. Our objective is to be able to monitor many (hundreds - thousands) of sites. This requires that monitoring can be done in a near time, affordable, auditable and essentially autonomous manner. For this we have developed a modular vertically integrated cloud based software framework which was designed from the ground up for effective site and process monitoring. This software framework (PAF - Predictive Assimilation Framework) is multitenant software and provides automation of data ingestion, processing and visualization of hydrological, geochemical and geophysical (ERT/DTS) data. The core organizational element of PAF is a project/user one in which capabilities available to users are controlled by a combination of available data and access permissions. All PAF capabilities are exposed through APIs, making it easy to quickly add new components. PAF is fully integrated with newly developed autonomous electrical geophysical hardware and thus allows for automation of electrical geophysical ingestion and processing and the ability for co analysis and visualization of the raw and processed data with other data of interest (e.g. soil temperature, soil moisture, precipitation). We will demonstrate current PAF capabilities and discuss future efforts.

  11. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  12. Unmanned tactical autonomous control and collaboration (utacc) human machine integration measures of performance and measures of effectiveness

    DTIC Science & Technology

    2017-06-01

    AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS by Thomas A...TACTICAL AUTONOMOUS CONTROL AND COLLABORATION (UTACC) HUMAN-MACHINE INTEGRATION MEASURES OF PERFORMANCE AND MEASURES OF EFFECTIVENESS 5. FUNDING...Tactical Autonomous Control and Collaboration (UTACC) program seeks to integrate Marines and autonomous machines to address the challenges encountered in

  13. Alerting, orienting or executive attention networks: differential patters of pupil dilations

    PubMed Central

    Geva, Ronny; Zivan, Michal; Warsha, Aviv; Olchik, Dov

    2013-01-01

    Attention capacities, alerting responses, orienting to sensory stimulation, and executive monitoring of performance are considered independent yet interrelated systems. These operations play integral roles in regulating the behavior of diverse species along the evolutionary ladder. Each of the primary attention constructs—alerting, orienting, and executive monitoring—involves salient autonomic correlates as evidenced by changes in reactive pupil dilation (PD), heart rate, and skin conductance. Recent technological advances that use remote high-resolution recording may allow the discernment of temporo-spatial attributes of autonomic responses that characterize the alerting, orienting, and executive monitoring networks during free viewing, irrespective of voluntary performance. This may deepen the understanding of the roles of autonomic regulation in these mental operations and may deepen our understanding of behavioral changes in verbal as well as in non-verbal species. The aim of this study was to explore differences between psychosensory PD responses in alerting, orienting, and executive conflict monitoring tasks to generate estimates of concurrent locus coeruleus (LC) noradrenergic input trajectories in healthy human adults using the attention networks test (ANT). The analysis revealed a construct-specific pattern of pupil responses: alerting is characterized by an early component (Pa), its acceleration enables covert orienting, and executive control is evidenced by a prominent late component (Pe). PD characteristics seem to be task-sensitive, allowing exploration of mental operations irrespective of conscious voluntary responses. These data may facilitate development of studies designed to assess mental operations in diverse species using autonomic responses. PMID:24133422

  14. Development and Control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS)

    NASA Astrophysics Data System (ADS)

    Porter, Robert D.

    2002-09-01

    The objective of this thesis was to design, construct and develop the initial autonomous control algorithm for the NPS Planar Autonomous Docking Simulator (NPADS) The effort included hardware design, fabrication, installation and integration; mass property determination; and the development and testing of control laws utilizing MATLAB and Simulink for modeling and LabView for NPADS control, The NPADS vehicle uses air pads and a granite table to simulate a 2-D, drag-free, zero-g space environment, It is a completely self-contained vehicle equipped with eight cold-gas, bang-bang type thrusters and a reaction wheel for motion control, A 'star sensor' CCD camera locates the vehicle on the table while a color CCD docking camera and two robotic arms will locate and dock with a target vehicle, The on-board computer system leverages PXI technology and a single source, simplifying systems integration, The vehicle is powered by two lead-acid batteries for completely autonomous operation, A graphical user interface and wireless Ethernet enable the user to command and monitor the vehicle from a remote command and data acquisition computer. Two control algorithms were developed and allow the user to either control the thrusters and reaction wheel manually or simply specify a desired location and rotation angle,

  15. Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase

    PubMed Central

    Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling

    2015-01-01

    In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate. PMID:26378533

  16. Vision-Aided RAIM: A New Method for GPS Integrity Monitoring in Approach and Landing Phase.

    PubMed

    Fu, Li; Zhang, Jun; Li, Rui; Cao, Xianbin; Wang, Jinling

    2015-09-10

    In the 1980s, Global Positioning System (GPS) receiver autonomous integrity monitoring (RAIM) was proposed to provide the integrity of a navigation system by checking the consistency of GPS measurements. However, during the approach and landing phase of a flight path, where there is often low GPS visibility conditions, the performance of the existing RAIM method may not meet the stringent aviation requirements for availability and integrity due to insufficient observations. To solve this problem, a new RAIM method, named vision-aided RAIM (VA-RAIM), is proposed for GPS integrity monitoring in the approach and landing phase. By introducing landmarks as pseudo-satellites, the VA-RAIM enriches the navigation observations to improve the performance of RAIM. In the method, a computer vision system photographs and matches these landmarks to obtain additional measurements for navigation. Nevertheless, the challenging issue is that such additional measurements may suffer from vision errors. To ensure the reliability of the vision measurements, a GPS-based calibration algorithm is presented to reduce the time-invariant part of the vision errors. Then, the calibrated vision measurements are integrated with the GPS observations for integrity monitoring. Simulation results show that the VA-RAIM outperforms the conventional RAIM with a higher level of availability and fault detection rate.

  17. Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.

    NASA Astrophysics Data System (ADS)

    Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John

    2010-05-01

    An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.

  18. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2012-01-01

    The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.

  19. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis

    DTIC Science & Technology

    2014-09-01

    ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR

  20. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements.

    PubMed

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-04-09

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.

  1. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements

    PubMed Central

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-01-01

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549

  2. Multisensor robotic system for autonomous space maintenance and repair

    NASA Technical Reports Server (NTRS)

    Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.

    1988-01-01

    The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.

  3. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  4. An Autonomous Control System for an Intra-Vehicular Spacecraft Mobile Monitor Prototype

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Desiano, Salvatore D.; Gawdiak, Yuri; Nicewarner, Keith

    2003-01-01

    This paper presents an overview of an ongoing research and development effort at the NASA Ames Research Center to create an autonomous control system for an internal spacecraft autonomous mobile monitor. It primary functions are to provide crew support and perform intra- vehicular sensing activities by autonomously navigating onboard the International Space Station. We describe the mission roles and high-level functional requirements for an autonomous mobile monitor. The mobile monitor prototypes, of which two are operational and one is actively being designed, physical test facilities used to perform ground testing, including a 3D micro-gravity test facility, and simulators are briefly described. We provide an overview of the autonomy framework and describe each of its components, including those used for automated planning, goal-oriented task execution, diagnosis, and fault recovery. A sample mission test scenario is also described.

  5. An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard

    2016-04-01

    As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.

  6. Life Science Research in Outer Space: New Platform Technologies for Low-Cost, Autonomous Small Satellite Missions

    NASA Technical Reports Server (NTRS)

    Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.; hide

    2009-01-01

    We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture density, gene expression, and metabolic activity while in the space environment. Flight data and results will be presented from GeneSat-1, which tracked gene expression levels of GFP-labeled E. coli and from PharmaSat, which monitored the dose dependency of an antifungal agent against S. cerevisiae. The O/OREOS SESLO instrument, which will study the effects of radiation and microgravity upon the viability and growth characteristics of B. subtilis and the halophile Halorubrum chaoviatoris for periods of 0 - 6 months in space, will be described as well. The ongoing expansion of the small satellite toolbox of biological technologies will be summarized.

  7. Autonomic regulation of hepatic glucose production.

    PubMed

    Bisschop, Peter H; Fliers, Eric; Kalsbeek, Andries

    2015-01-01

    Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system to communicate with peripheral organs. Within the brain, the hypothalamus is the key region to integrate signals on energy status, including signals from lipid, glucose, and hormone sensing cells, with afferent neural signals from the internal and external milieu. In turn, the hypothalamus regulates metabolism in peripheral organs, including the liver, not only via the anterior pituitary gland but also via multiple neuropeptidergic pathways in the hypothalamus that have been identified as regulators of hepatic glucose metabolism. These pathways comprise preautonomic neurons projecting to nuclei in the brain stem and spinal cord, which relay signals from the hypothalamus to the liver via the autonomic nervous system. The neuroendocrine and neuronal outputs of the hypothalamus are not separate entities. They appear to act as a single integrated regulatory system, far more subtle, and complex than when each is viewed in isolation. Consequently, hypothalamic regulation should be viewed as a summation of both neuroendocrine and neural influences. As a result, our endocrine-based understanding of diseases such as diabetes and obesity should be expanded by integration of neural inputs into our concept of the pathophysiological process. © 2014 American Physiological Society.

  8. Modular AUV System with Integrated Real-Time Water Quality Analysis.

    PubMed

    Eichhorn, Mike; Ament, Christoph; Jacobi, Marco; Pfuetzenreuter, Torsten; Karimanzira, Divas; Bley, Kornelia; Boer, Michael; Wehde, Henning

    2018-06-05

    This paper describes the concept, the technical implementation and the practical application of a miniaturized sensor system integrated into an autonomous underwater vehicle (AUV) for real-time acquisition of water quality parameters. The main application field of the presented system is the analysis of the discharge of nitrates into Norwegian fjords near aqua farms. The presented system was developed within the research project SALMON (Sea Water Quality Monitoring and Management) over a three-year period. The development of the sensor system for water quality parameters represented a significant challenge for the research group, as it was to be integrated in the payload unit of the autonomous underwater vehicle in compliance with the underwater environmental conditions. The German company -4H- JENA engineering GmbH (4HJE), with experience in optical in situ-detection of nutrients, designed and built the measurement system. As a carrier platform, the remotely operated vehicle (ROV) "CWolf" from Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung - Institutsteil Angewandte Systemtechnik (IOSB-AST) modified to an AUV was deployed. The concept presented illustrates how the measurement system can be integrated easily into the vehicle with a minimum of hard- and software technical interfaces.

  9. The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations

    DTIC Science & Technology

    2017-06-09

    Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence

  10. Damage Detection and Self-Repair in Inflatable/Deployable Structures

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Studor, George; Banks, DAvid; Curry, Mark; Broccato, Robert; Jackson, Tom; Champaigne, Kevin; Sottos, Nancy

    2009-01-01

    Inflatable/deployable structures are under consideration for applications as varied as expansion modules for the International Space Station to destinations for space tourism to habitats for the lunar surface. Monitoring and maintaining the integrity of the physical structure is critical, particularly since these structures rely on non-traditional engineering materials such as fabrics, foams, and elastomeric polymers to provide the primary protection for the human crew. The closely related prior concept of monitoring structural integrity by use of built-in or permanently attached sensors has been applied to structures made of such standard engineering materials as metals, alloys, and rigid composites. To effect monitoring of flexible structures comprised mainly of soft goods, however, it will be necessary to solve a different set of problems - especially those of integrating power and data-transfer cabling that can withstand, and not unduly interfere with, stowage and subsequent deployment of the structures. By incorporating capabilities for self-repair along with capabilities for structural health monitoring, successful implementation of these technologies would be a significant step toward semi-autonomous structures, which need little human intervention to maintain. This would not only increase the safety of these structures, but also reduce the inspection and maintenance costs associated with more conventional structures.

  11. Next generation control system for reflexive aerostructures

    NASA Astrophysics Data System (ADS)

    Maddux, Michael R.; Meents, Elizabeth P.; Barnell, Thomas J.; Cable, Kristin M.; Hemmelgarn, Christopher; Margraf, Thomas W.; Havens, Ernie

    2010-04-01

    Cornerstone Research Group Inc. (CRG) has developed and demonstrated a composite structural solution called reflexive composites for aerospace applications featuring CRG's healable shape memory polymer (SMP) matrix. In reflexive composites, an integrated structural health monitoring (SHM) system autonomously monitors the structural health of composite aerospace structures, while integrated intelligent controls monitor data from the SHM system to characterize damage and initiate healing when damage is detected. Development of next generation intelligent controls for reflexive composites were initiated for the purpose of integrating prognostic health monitoring capabilities into the reflexive composite structural solution. Initial efforts involved data generation through physical inspections and mechanical testing. Compression after impact (CAI) testing was conducted on composite-reinforced shape memory polymer samples to induce damage and investigate the effectiveness of matrix healing on mechanical performance. Non-destructive evaluation (NDE) techniques were employed to observe and characterize material damage. Restoration of mechanical performance was demonstrated through healing, while NDE data showed location and size of damage and verified mitigation of damage post-healing. Data generated was used in the development of next generation reflexive controls software. Data output from the intelligent controls could serve as input to Integrated Vehicle Health Management (IVHM) systems and Integrated Resilient Aircraft Controls (IRAC). Reflexive composite technology has the ability to reduce maintenance required on composite structures through healing, offering potential to significantly extend service life of aerospace vehicles and reduce operating and lifecycle costs.

  12. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  13. From Here to Autonomy.

    PubMed

    Endsley, Mica R

    2017-02-01

    As autonomous and semiautonomous systems are developed for automotive, aviation, cyber, robotics and other applications, the ability of human operators to effectively oversee and interact with them when needed poses a significant challenge. An automation conundrum exists in which as more autonomy is added to a system, and its reliability and robustness increase, the lower the situation awareness of human operators and the less likely that they will be able to take over manual control when needed. The human-autonomy systems oversight model integrates several decades of relevant autonomy research on operator situation awareness, out-of-the-loop performance problems, monitoring, and trust, which are all major challenges underlying the automation conundrum. Key design interventions for improving human performance in interacting with autonomous systems are integrated in the model, including human-automation interface features and central automation interaction paradigms comprising levels of automation, adaptive automation, and granularity of control approaches. Recommendations for the design of human-autonomy interfaces are presented and directions for future research discussed.

  14. Real time health monitoring and control system methodology for flexible space structures

    NASA Astrophysics Data System (ADS)

    Jayaram, Sanjay

    This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.

  15. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    PubMed

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  16. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    PubMed Central

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-01-01

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776

  17. Robust GPS autonomous signal quality monitoring

    NASA Astrophysics Data System (ADS)

    Ndili, Awele Nnaemeka

    The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and multipath. Results are presented which verify the effectiveness of these proposed methods. The benefits of pseudolites in reducing service outages due to interference are demonstrated. Pseudolites also enhance the geometry of the GPS constellation, improving overall system accuracy. Designs for pseudolites signals, to reduce the near-far problem associated with pseudolite use, are also presented.

  18. DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS

    EPA Science Inventory

    This project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. An existing teleoperated "Surveyor" robot developed by ARD...

  19. System for autonomous monitoring of bioagents

    DOEpatents

    Langlois, Richard G.; Milanovich, Fred P.; Colston, Jr, Billy W.; Brown, Steve B.; Masquelier, Don A.; Mariella, Jr., Raymond P.; Venkateswaran, Kodomudi

    2015-06-09

    An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.

  20. On the enhanced detectability of GPS anomalous behavior with relative entropy

    NASA Astrophysics Data System (ADS)

    Cho, Jeongho

    2016-10-01

    A standard receiver autonomous integrity monitoring (RAIM) technique for the global positioning system (GPS) has been dedicated to provide an integrity monitoring capability for safety-critical GPS applications, such as in civil aviation for the en-route (ER) through non-precision approach (NPA) or lateral navigation (LNAV). The performance of the existing RAIM method, however, may not meet more stringent aviation requirements for availability and integrity during the precision approach and landing phases of flight due to insufficient observables and/or untimely warning to the user beyond a specified time-to-alert in the event of a significant GPS failure. This has led to an enhanced RAIM architecture ensuring stricter integrity requirement by greatly decreasing the detection time when a satellite failure or a measurement error has occurred. We thus attempted to devise a user integrity monitor which is capable of identifying the GPS failure more rapidly than a standard RAIM scheme by incorporating the RAIM with the relative entropy, which is a likelihood ratio approach to assess the inconsistence between two data streams, quite different from a Euclidean distance. In addition, the delay-coordinate embedding technique needs to be considered and preprocessed to associate the discriminant measure obtained from the RAIM with the relative entropy in the new RAIM design. In simulation results, we demonstrate that the proposed user integrity monitor outperforms the standard RAIM with a higher level of detection rate of anomalies which could be hazardous to the users in the approach or landing phase and is a very promising alternative for the detection of deviations in GPS signal. The comparison also shows that it enables to catch even small anomalous gradients more rapidly than a typical user integrity monitor.

  1. Autonomous stimulus triggered self-healing in smart structural composites

    NASA Astrophysics Data System (ADS)

    Norris, C. J.; White, J. A. P.; McCombe, G.; Chatterjee, P.; Bond, I. P.; Trask, R. S.

    2012-09-01

    Inspired by the ability of biological systems to sense and autonomously heal damage, this research has successfully demonstrated the first autonomous, stimulus triggered, self-healing system in a structural composite material. Both the sensing and healing mechanisms are reliant on microvascular channels incorporated within a laminated composite material. For the triggering mechanism, a single air filled vessel was pressurized, sealed and monitored. Upon drop weight impact (10 J), delamination and microcrack connectivity between the pressurized vessel and those open to ambient led to a pressure loss which, with the use of a suitable sensor, triggered a pump to deliver a healing agent to the damage zone. Using this autonomous healing approach, near full recovery of post-impact compression strength was achieved (94% on average). A simplified alternative system with healing agent continuously flowing through the vessels, akin to blood flow, was found to offer 100% recovery of the material’s virgin strength. Optical microscopy and ultrasonic C-scanning provided further evidence of large-scale infusion of matrix damage with the healing agent. The successful implementation of this bioinspired technology could substantially enhance the integrity and reliability of aerospace structures, whilst offering benefits through improved performance/weight ratios and extended lifetimes.

  2. Agent Based Software for the Autonomous Control of Formation Flying Spacecraft

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Campbell, Mark; Dennehy, Neil (Technical Monitor)

    2003-01-01

    Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful).

  3. Amplifying human ability through autonomics and machine learning in IMPACT

    NASA Astrophysics Data System (ADS)

    Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.

    2017-05-01

    Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.

  4. A new array system for multiphysics (MT, LOTEM, and microseismics) with focus on reservoir monitoring

    NASA Astrophysics Data System (ADS)

    Strack, K.; Davydycheva, S.; Hanstein, T.; Smirnov, M.

    2017-07-01

    Over the last 6 years we developed an array system for electromagnetic acquisition (magnetotelluric & long offset transient electromagnetics [LOTEM]) that includes microseismic acquisition. While predominantly used for magnetotellurics, we focus on the autonomous operation as reservoir monitoring system including a shallow borehole receiver and 100/150 KVA transmitter. A marine extension is also under development. For Enhanced Oil recovery (EOR), in addition to reservoir flood front movements, reservoir seal integrity has become an issue [1]. Seal integrity is best addressed with microseismics while the water flood front is best addressed with electromagnetics. Since the flooded reservoir is conductive and the hydrocarbon saturated part is resistive, you need both magnetic and electric fields. The fluid imaging is addressed using electromagnetics. To overcome the volume-focus inherent to electromagnetics a new methodology to focus the sensitivity under the receiver is proposed. Field data and 3D modeling confirm this could increase the efficiency of LOTEM to reservoir monitoring.

  5. Autonomous Science Operations Technologies for Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.

    2018-02-01

    Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.

  6. Sensing, Control, and System Integration for Autonomous Vehicles: A Series of Challenges

    NASA Astrophysics Data System (ADS)

    Özgüner, Ümit; Redmill, Keith

    One of the important examples of mechatronic systems can be found in autonomous ground vehicles. Autonomous ground vehicles provide a series of challenges in sensing, control and system integration. In this paper we consider off-road autonomous vehicles, automated highway systems and urban autonomous driving and indicate the unifying aspects. We specifically consider our own experience during the last twelve years in various demonstrations and challenges in attempting to identify unifying themes. Such unifying themes can be observed in basic hierarchies, hybrid system control approaches and sensor fusion techniques.

  7. Autonomic Intelligent Cyber Sensor to Support Industrial Control Network Awareness

    DOE PAGES

    Vollmer, Todd; Manic, Milos; Linda, Ondrej

    2013-06-01

    The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of Autonomic computing and a SOAP based IF-MAP external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, self-managed framework. The contribution of this paper is two-fold: 1) A flexible two level communication layer based on Autonomic computing and Service Oriented Architecture is detailed and 2) Three complementary modules that dynamically reconfiguremore » in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific Operating System and port configurations. Additionally the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.« less

  8. Diagnostic Reasoning using Prognostic Information for Unmanned Aerial Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Roychoudhury, Indranil; Kulkarni, Chetan

    2015-01-01

    With increasing popularity of unmanned aircraft, continuous monitoring of their systems, software, and health status is becoming more and more important to ensure safe, correct, and efficient operation and fulfillment of missions. The paper presents integration of prognosis models and prognostic information with the R2U2 (REALIZABLE, RESPONSIVE, and UNOBTRUSIVE Unit) monitoring and diagnosis framework. This integration makes available statistically reliable health information predictions of the future at a much earlier time to enable autonomous decision making. The prognostic information can be used in the R2U2 model to improve diagnostic accuracy and enable decisions to be made at the present time to deal with events in the future. This will be an advancement over the current state of the art, where temporal logic observers can only do such valuation at the end of the time interval. Usefulness and effectiveness of this integrated diagnostics and prognostics framework was demonstrated using simulation experiments with the NASA Dragon Eye electric unmanned aircraft.

  9. Autonomous Ice Mass Balance Buoys for Seasonal Sea Ice

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Parno, J. T.; Elder, B. C.; Richter-Menge, J.; Polashenski, C. M.

    2017-12-01

    The ice mass-balance represents the integration of all surface and ocean heat fluxes and attributing the impact of these forcing fluxes on the ice cover can be accomplished by increasing temporal and spatial measurements. Mass balance information can be used to understand the ongoing changes in the Arctic sea ice cover and to improve predictions of future ice conditions. Thinner seasonal ice in the Arctic necessitates the deployment of Autonomous Ice Mass Balance buoys (IMB's) capable of long-term, in situ data collection in both ice and open ocean. Seasonal IMB's (SIMB's) are free floating IMB's that allow data collection in thick ice, thin ice, during times of transition, and even open water. The newest generation of SIMB aims to increase the number of reliable IMB's in the Arctic by leveraging inexpensive commercial-grade instrumentation when combined with specially developed monitoring hardware. Monitoring tasks are handled by a custom, expandable data logger that provides low-cost flexibility for integrating a large range of instrumentation. The SIMB features ultrasonic sensors for direct measurement of both snow depth and ice thickness and a digital temperature chain (DTC) for temperature measurements every 2cm through both snow and ice. Air temperature and pressure, along with GPS data complete the Arctic picture. Additionally, the new SIMB is more compact to maximize deployment opportunities from multiple types of platforms.

  10. SeaRover: An Emerging Technology for Sea Surface Sensor Networks

    NASA Astrophysics Data System (ADS)

    Fong, T.; Kudela, R.; Curcio, J.; Davidson, K.; Darling, D.; Kirkwood, B.

    2005-12-01

    Introduction - SeaRover is envisioned as an autonomous surface vehicle (ASV) for coastal operations. It is intended to lower the cost of existing marine survey applications while enabling new science missions. The current conceptual design is a small vehicle with hull and propulsion system optimized to eliminate cavitation and EM noise. SeaRover will make significant advances over existing platforms by providing longer duration science missions, better positioning and mission control, larger power budgets for instrumentation and significantly lower operational costs than existing vehicles. Science Enabled by SeaRover - SeaRover's unique design and autonomous capability provides several advantages compared to traditional autonomous underwater vehicles (AUV's) and crewed surface vessels: (1) Near surface sampling: SeaRover can sample within the top 1-2 meters. This is difficult to do with crewed vessels because of draft and perturbations from the hull. (2) Adaptive monitoring of dynamic events: SeaRover will be capable of intelligent decision making, as well as real-time remote control. This will enable highly-responsive autonomous tracking of moving phenomena (e.g., algal bloom). (3) Long term monitoring: SeaRover can be deployed for extended periods of time, allowing it to be used for longitudinal baseline studies. SeaRover will represent an advance over existing platforms in terms of: (1) Mobility: operational range from 10-1000 km, GPS accuracy, trajectory control with meter precision, and launch in hours. (2) Duration: from days up to months. (3) Payload and Power: accommodate approximately 100 kg for a 6m hull. Its surface design will allow access to wind and sun energy. (4) Communication: radio, wireless, satellite, direct data return. (5) Operational Cost: target costs are $2K/day (24 hour operation), with no onboard operator. (6) Recovery/Reusability: autonomous return to safe harbor provides sample return and on-base maintenance. Large science and power payload simplifies instrument design and integration. Enabling Technology for SeaRover - SeaRover's capabilities are made possible by advances in technologies developed during NASA planetary exploration missions: (1) Adaptive control (2) Automated data analysis (3) Communications management (4) Computer vision (5) Interactive 3D User Interfaces (6) Intelligent energy management (7) Long-duration operations planning (8) Multi-vehicle coordinated action As an example of what SeaRover could be used for, we envision augmenting existing monthly monitoring cruises in Monterey Bay with a SeaRover. Each month, the Center for Integrated Marine Technology (UC-Santa Cruz) conducts shipboard surveys of Monterey Bay. This requires 2-3 full days of ship time (weather dependent), 14 scientists, and 2 crew members. Operations are currently limited by sea-state, transit speed, and cost. SeaRover could provide all of the underway measurements and some of the hydrographic station measurements faster, more frequently, and for a fraction of the cost.

  11. Advanced receiver autonomous integrity monitoring using triple frequency data with a focus on treatment of biases

    NASA Astrophysics Data System (ADS)

    El-Mowafy, Ahmed

    2017-04-01

    Most current Advanced Receiver Autonomous Integrity Monitoring (ARAIM) methods are designed to use dual-frequency ionosphere-free observations. These methods assume that receiver bias is absorbed in the common receiver clock offset and bound satellite biases by nominal values. However, most multi-constellation Global Navigation Satellite Systems (GNSS) can offer triple frequency data that can be used for civilian applications in the future, which can improve observation redundancy, solution precision and detection of faults. In this contribution, we explore the use of this type of observations from GPS, Galileo and BeiDou in ARAIM. Nevertheless, the use of triple frequency data introduces receiver differential biases that have to be taken into consideration. To demonstrate the significance of these additional biases we first present a method to quantify them at stations of known coordinates and using available products from the International GNSS service (IGS). To deal with the additional receiver biases, we use a between-satellite single difference (BSSD) observation model that eliminates their effect. A pilot test was performed to evaluate ARAIM availability for Localizer Performance with Vertical guidance down to 200 feet (LPV-200) when using the triple-frequency observations. Real data were collected for one month at stations of known coordinates located in regions of different satellite coverage characteristics. The BSSD triple-frequency model was evaluated to give early indication about its feasibility, where the implementation phase still requires further comprehensive studies. The vertical position error was always found to be bounded by the protection level proven initial validity of the proposed integrity model.

  12. Relations Between Autonomous Motivation and Leisure-Time Physical Activity Participation: The Mediating Role of Self-Regulation Techniques.

    PubMed

    Nurmi, Johanna; Hagger, Martin S; Haukkala, Ari; Araújo-Soares, Vera; Hankonen, Nelli

    2016-04-01

    This study tested the predictive validity of a multitheory process model in which the effect of autonomous motivation from self-determination theory on physical activity participation is mediated by the adoption of self-regulatory techniques based on control theory. Finnish adolescents (N = 411, aged 17-19) completed a prospective survey including validated measures of the predictors and physical activity, at baseline and after one month (N = 177). A subsample used an accelerometer to objectively measure physical activity and further validate the physical activity self-report assessment tool (n = 44). Autonomous motivation statistically significantly predicted action planning, coping planning, and self-monitoring. Coping planning and self-monitoring mediated the effect of autonomous motivation on physical activity, although self-monitoring was the most prominent. Controlled motivation had no effect on self-regulation techniques or physical activity. Developing interventions that support autonomous motivation for physical activity may foster increased engagement in self-regulation techniques and positively affect physical activity behavior.

  13. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  14. Detecting GNSS spoofing attacks using INS coupling

    NASA Astrophysics Data System (ADS)

    Tanil, Cagatay

    Vulnerability of Global Navigation Satellite Systems (GNSS) users to signal spoofing is a critical threat to positioning integrity, especially in aviation applications, where the consequences are potentially catastrophic. In response, this research describes and evaluates a new approach to directly detect spoofing using integrated Inertial Navigation Systems (INS) and fault detection concepts based on integrity monitoring. The monitors developed here can be implemented into positioning systems using INS/GNSS integration via 1) tightly-coupled, 2) loosely-coupled, and 3) uncoupled schemes. New evaluation methods enable the statistical computation of integrity risk resulting from a worst-case spoofing attack - without needing to simulate an unmanageably large number of individual aircraft approaches. Integrity risk is an absolute measure of safety and a well-established metric in aircraft navigation. A novel closed-form solution to the worst-case time sequence of GNSS signals is derived to maximize the integrity risk for each monitor and used in the covariance analyses. This methodology tests the performance of the monitors against the most sophisticated spoofers, capable of tracking the aircraft position - for example, by means of remote tracking or onboard sensing. Another contribution is a comprehensive closed-loop model that encapsulates the vehicle and compensator (estimator and controller) dynamics. A sensitivity analysis uses this model to quantify the leveraging impact of the vehicle's dynamic responses (e.g., to wind gusts, or to autopilot's acceleration commands) on the monitor's detection capability. The performance of the monitors is evaluated for two safety-critical terminal area navigation applications: 1) autonomous shipboard landing and 2) Boeing 747 (B747) landing assisted with Ground Based Augmentation Systems (GBAS). It is demonstrated that for both systems, the monitors are capable of meeting the most stringent precision approach and landing integrity requirements of the International Civil Aviation Organization (ICAO). The statistical evaluation methods developed here can be used as a baseline procedure in the Federal Aviation Administration's (FAA) certification of spoof-free navigation systems. The final contribution is an investigation of INS sensor quality on detection performance. This determines the minimum sensor requirements to perform standalone GNSS positioning in general en route applications with guaranteed spoofing detection integrity.

  15. On the Use of a Signal Quality Index Applying at Tracking Stage Level to Assist the RAIM System of a GNSS Receiver.

    PubMed

    Berardo, Mattia; Lo Presti, Letizia

    2016-07-02

    In this work, a novel signal processing method is proposed to assist the Receiver Autonomous Integrity Monitoring (RAIM) module used in a receiver of Global Navigation Satellite Systems (GNSS) to improve the integrity of the estimated position. The proposed technique represents an evolution of the Multipath Distance Detector (MPDD), thanks to the introduction of a Signal Quality Index (SQI), which is both a metric able to evaluate the goodness of the signal, and a parameter used to improve the performance of the RAIM modules. Simulation results show the effectiveness of the proposed method.

  16. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    NASA Astrophysics Data System (ADS)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the use of UAS on oceanographic research vessels is just beginning. We report on several initial field efforts which demonstrated that UAS improve spatial and temporal mapping of ocean features, as well as monitoring marine mammal populations, ocean color, sea ice and wave fields and air-sea gas exchange. These studies however also confirm the challenges for shipboard computer systems ingesting and archiving UAS high resolution video, SAR and lidar data. We describe the successful inclusion of DTN communications for: 1) passing video data between two UAS or a UAS and ship; 2) for inclusion of ASVs as communication nodes for AUVs; as well as, 3) enabling extension of adaptive sampling software from AUVs and ASVs to include UAS. In conclusion, we describe how autonomous sampling systems may be best integrated into shipboard oceanographic vessel research to provide new and more comprehensive time-space ocean and atmospheric data collection that is important not only for scientific study, but also for sustainable ocean management, including emergency response capabilities. The recent examples of such integrated studies highlighted confirm ocean and atmospheric studies can more cost-effectively pursued, and in some cases only accomplished, by combining underwater, surface and aircraft autonomous systems with research vessel operations.

  17. Predicting sugar consumption: Application of an integrated dual-process, dual-phase model.

    PubMed

    Hagger, Martin S; Trost, Nadine; Keech, Jacob J; Chan, Derwin K C; Hamilton, Kyra

    2017-09-01

    Excess consumption of added dietary sugars is related to multiple metabolic problems and adverse health conditions. Identifying the modifiable social cognitive and motivational constructs that predict sugar consumption is important to inform behavioral interventions aimed at reducing sugar intake. We tested the efficacy of an integrated dual-process, dual-phase model derived from multiple theories to predict sugar consumption. Using a prospective design, university students (N = 90) completed initial measures of the reflective (autonomous and controlled motivation, intentions, attitudes, subjective norm, perceived behavioral control), impulsive (implicit attitudes), volitional (action and coping planning), and behavioral (past sugar consumption) components of the proposed model. Self-reported sugar consumption was measured two weeks later. A structural equation model revealed that intentions, implicit attitudes, and, indirectly, autonomous motivation to reduce sugar consumption had small, significant effects on sugar consumption. Attitudes, subjective norm, and, indirectly, autonomous motivation to reduce sugar consumption predicted intentions. There were no effects of the planning constructs. Model effects were independent of the effects of past sugar consumption. The model identified the relative contribution of reflective and impulsive components in predicting sugar consumption. Given the prominent role of the impulsive component, interventions that assist individuals in managing cues-to-action and behavioral monitoring are likely to be effective in regulating sugar consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. DualTrust: A Distributed Trust Model for Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.; Dionysiou, Ioanna; Frincke, Deborah A.

    2011-02-01

    For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, trust management is important for the acceptance of the mobile agent sensors and to protect the system from malicious behavior by insiders and entities that have penetrated network defenses. This paper examines the trust relationships, evidence, and decisions in a representative system and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. We then propose the DualTrust conceptual trust model. By addressing themore » autonomic manager’s bi-directional primary relationships in the ACS architecture, DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the sensor swarm in a scalable manner, and provide global trust awareness for the orchestrating autonomic manager.« less

  19. Applications of artificial intelligence 1993: Knowledge-based systems in aerospace and industry; Proceedings of the Meeting, Orlando, FL, Apr. 13-15, 1993

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)

    1993-01-01

    The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.

  20. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2009-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  1. Swarm autonomic agents with self-destruct capability

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)

    2011-01-01

    Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.

  2. Autonomous Buoyed Environmental Measurement System (ABES)

    DTIC Science & Technology

    1997-09-30

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S...azimuth and dip of the Earth’s magnetic field. It is a 3-V device, available in 16-pin small outline integrated circuit ( SOIC ) form factor. Cost is $4

  3. Potential and challenges of body area networks for personal health.

    PubMed

    Penders, Julien; van de Molengraft, Jef; Brown, Lindsay; Grundlehner, Bernard; Gyselinckx, Bert; Van Hoof, Chris

    2009-01-01

    This paper illustrates how body area network technology may enable new personal health concepts. A BAN technology platform is presented, which integrates technology building blocks from the Human++ research program on autonomous wireless sensors. Technology evaluation for the case of wireless sleep staging and real-time arousal monitoring is reported. Key technology challenges are discussed. The ultimate target is the development of miniaturized body sensor nodes powered by body-energy, anticipating the needs of emerging personal health applications.

  4. Autonomic Recovery: HyperCheck: A Hardware-Assisted Integrity Monitor

    DTIC Science & Technology

    2013-08-01

    system (OS). HyperCheck leverages the CPU System Management Mode ( SMM ), present in x86 systems, to securely generate and transmit the full state of the...HyperCheck harnesses the CPU System Management Mode ( SMM ) which is present in all x86 commodity systems to create a snapshot view of the current state of the...protect the software above it. Our assumptions are that the attacker does not have physical access to the machine and that the SMM BIOS is locked and

  5. Hardware design for the Autonomous Visibility Monitoring (AVM) observatory

    NASA Technical Reports Server (NTRS)

    Cowles, K.

    1993-01-01

    The hardware for the three Autonomous Visibility Monitoring (AVM) observatories was redesigned. Changes in hardware design include electronics components, weather sensors, and the telescope drive system. Operation of the new hardware is discussed, as well as some of its features. The redesign will allow reliable automated operation.

  6. Wrist ambulatory monitoring system and smart glove for real time emotional, sensorial and physiological analysis.

    PubMed

    Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A

    2004-01-01

    Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.

  7. A diaper-embedded disposable nitrite sensor with integrated on-board urine-activated battery for UTI screening.

    PubMed

    Yu, W; Seo, W; Tan, T; Jung, B; Ziaie, B

    2016-08-01

    This paper reports a low-cost solution to the early detection of urinary nitrite, a common surrogate for urinary tract infection (UTI). We present a facile method to fabricate a disposable and flexible colorimetric [1] nitrite sensor and its urine-activated power source [2] on a hydrophobic (wax) paper through laser-assisted patterning and lamination. Such device, integrated with interface circuitry and a Bluetooth low energy (BLE) module can be embedded onto a diaper, and transmit semi-quantitative UTI monitoring information in a point-of-care and autonomous fashion. The proposed nitrite sensing platform achieves a sensitivity of 1.35 ms/(mg/L) and a detection limit of 4 mg/L.

  8. Research on an autonomous vision-guided helicopter

    NASA Technical Reports Server (NTRS)

    Amidi, Omead; Mesaki, Yuji; Kanade, Takeo

    1994-01-01

    Integration of computer vision with on-board sensors to autonomously fly helicopters was researched. The key components developed were custom designed vision processing hardware and an indoor testbed. The custom designed hardware provided flexible integration of on-board sensors with real-time image processing resulting in a significant improvement in vision-based state estimation. The indoor testbed provided convenient calibrated experimentation in constructing real autonomous systems.

  9. Integrating High-Resolution Taskable Imagery into a Sensorweb for Automatic Space-Based Monitoring of Flooding in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mclaren, David; Doubleday, Joshua; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royol; Boonya-aroonnet, Surajate; Thanapakpawin, Porranee; Mandl, Daniel

    2012-01-01

    Several space-based assets (Terra, Aqua, Earth Observing One) have been integrated into a sensorweb to monitor flooding in Thailand. In this approach, the Moderate Imaging Spectrometer (MODIS) data from Terra and Aqua is used to perform broad-scale monitoring to track flooding at the regional level (250m/pixel) and EO-1 is autonomously tasked in response to alerts to acquire higher resolution (30m/pixel) Advanced Land Imager (ALI) data. This data is then automatically processed to derive products such as surface water extent and volumetric water estimates. These products are then automatically pushed to organizations in Thailand for use in damage estimation, relief efforts, and damage mitigation. More recently, this sensorweb structure has been used to request imagery, access imagery, and process high-resolution (several m to 30m), targetable asset imagery from commercial assets including Worldview-2, Ikonos, Radarsat-2, Landsat-7, and Geo-Eye-1. We describe the overall sensorweb framework as well as new workflows and products made possible via these extensions.

  10. Smart Composite Overwrapped Pressure Vessel - Integrated Structural Health Monitoring System to Meet Space Exploration and International Space Station Mission Assurance Needs

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Nichols, Charles; Waller, Jess

    2012-01-01

    Currently there are no integrated NDE methods for baselining and monitoring defect levels in fleet for Composite Overwrapped Pressure Vessels (COPVs) or related fracture critical composites, or for performing life-cycle maintenance inspections either in a traditional remove-and-inspect mode or in a more modern in situ inspection structural health monitoring (SHM) mode. Implicit in SHM and autonomous inspection is the existence of quantitative accept-reject criteria. To be effective, these criteria must correlate with levels of damage known to cause composite failure. Furthermore, implicit in SHM is the existence of effective remote sensing hardware and automated techniques and algorithms for interpretation of SHM data. SHM of facture critical composite structures, especially high pressure COPVs, is critical to the success of nearly every future NASA space exploration program as well as life extension of the International Space Station. It has been clearly stated that future NASA missions may not be successful without SHM [1]. Otherwise, crews will be busy addressing subsystem health issues and not focusing on the real NASA mission

  11. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.

    PubMed

    Xiao, Jian; Zou, Xiang; Xu, Wenyao

    2017-09-26

    "Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.

  12. Wind Turbine Contingency Control Through Generator De-Rating

    NASA Technical Reports Server (NTRS)

    Frost, Susan; Goebel, Kai; Balas, Mark

    2013-01-01

    Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  13. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement

    PubMed Central

    Xiao, Jian; Zou, Xiang

    2017-01-01

    “Smart Pavement” is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor—ePave—to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system’s performance and explore the trade-off. PMID:28954430

  14. The Standard Autonomous File Server, A Customized, Off-the-Shelf Success Story

    NASA Technical Reports Server (NTRS)

    Semancik, Susan K.; Conger, Annette M.; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    The Standard Autonomous File Server (SAFS), which includes both off-the-shelf hardware and software, uses an improved automated file transfer process to provide a quicker, more reliable, prioritized file distribution for customers of near real-time data without interfering with the assets involved in the acquisition and processing of the data. It operates as a stand-alone solution, monitoring itself, and providing an automated fail-over process to enhance reliability. This paper describes the unique problems and lessons learned both during the COTS selection and integration into SAFS, and the system's first year of operation in support of NASA's satellite ground network. COTS was the key factor in allowing the two-person development team to deploy systems in less than a year, meeting the required launch schedule. The SAFS system has been so successful; it is becoming a NASA standard resource, leading to its nomination for NASA's Software of the Year Award in 1999.

  15. Microfluidics-based integrated airborne pathogen detection systems

    NASA Astrophysics Data System (ADS)

    Northrup, M. Allen; Alleman-Sposito, Jennifer; Austin, Todd; Devitt, Amy; Fong, Donna; Lin, Phil; Nakao, Brian; Pourahmadi, Farzad; Vinas, Mary; Yuan, Bob

    2006-09-01

    Microfluidic Systems is focused on building microfluidic platforms that interface front-end mesofluidics to handle real world sample volumes for optimal sensitivity coupled to microfluidic circuitry to process small liquid volumes for complex reagent metering, mixing, and biochemical analysis, particularly for pathogens. MFSI is the prime contractor on two programs for the US Department of Homeland Security: BAND (Bioagent Autonomous Networked Detector) and IBADS (Instantaneous Bio-Aerosol Detection System). The goal of BAND is to develop an autonomous system for monitoring the air for known biological agents. This consists of air collection, sample lysis, sample purification, detection of DNA, RNA, and toxins, and a networked interface to report the results. For IBADS, MFSI is developing the confirmatory device which must verify the presence of a pathogen with 5 minutes of an air collector/trigger sounding an alarm. Instrument designs and biological assay results from both BAND and IBADS will be presented.

  16. Work Experience Report

    NASA Technical Reports Server (NTRS)

    Guo, Daniel

    2017-01-01

    The NASA Platform for Autonomous Systems (NPAS) toolkit is currently being used at the NASA John C. Stennis Space Center (SSC) to develop the INSIGHT program, which will autonomously monitor and control the Nitrogen System of the High Pressure Gas Facility (HPGF) on site. The INSIGHT program is in need of generic timing capabilities in order to perform timing based actions such as pump usage timing and sequence step timing. The purpose of this project was to develop a timing module that could fulfill these requirements and be adaptable for expanded use in the future. The code was written in Gensym G2 software platform, the same as INSIGHT, and was written generically to ensure compatibility with any G2 program. Currently, the module has two timing capabilities, a stopwatch function and a countdown function. Although the module has gone through some functionality testing, actual integration of the module into NPAS and the INSIGHT program is contingent on the module passing later checks.

  17. Autonomous Component Health Management with Failed Component Detection, Identification, and Avoidance

    NASA Technical Reports Server (NTRS)

    Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.

    2004-01-01

    This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.

  18. A field robot for autonomous laser-based N2O flux measurements

    NASA Astrophysics Data System (ADS)

    Molstad, Lars; Reent Köster, Jan; Bakken, Lars; Dörsch, Peter; Lien, Torgrim; Overskeid, Øyvind; Utstumo, Trygve; Løvås, Daniel; Brevik, Anders

    2014-05-01

    N2O measurements in multi-plot field trials are usually carried out by chamber-based manual gas sampling and subsequent laboratory-based gas chromatographic N2O determination. Spatial and temporal resolution of these measurements are commonly limited by available manpower. However, high spatial and temporal variability of N2O fluxes within individual field plots can add large uncertainties to time- and area-integrated flux estimates. Detailed mapping of this variability would improve these estimates, as well as help our understanding of the factors causing N2O emissions. An autonomous field robot was developed to increase the sampling frequency and to operate outside normal working hours. The base of this system was designed as an open platform able to carry versatile instrumentation. It consists of an electrically motorized platform powered by a lithium-ion battery pack, which is capable of autonomous navigation by means of a combined high precision real-time kinematic (RTK) GPS and an inertial measurement unit (IMU) system. On this platform an elevator is mounted, carrying a lateral boom with a static chamber on each side of the robot. Each chamber is equipped with a frame of plastic foam to seal the chamber when lowered onto the ground by the elevator. N2O flux from the soil covered by the two chambers is sequentially determined by circulating air between each chamber and a laser spectrometer (DLT-100, Los Gatos Research, Mountain View, CA, USA), which monitors the increase in N2O concentration. The target enclosure time is 1 - 2 minutes, but may be longer when emissions are low. CO2 concentrations are determined by a CO2/H2O gas analyzer (LI-840A, LI-COR Inc., Lincoln, NE, USA). Air temperature and air pressure inside both chambers are continuously monitored and logged. Wind speed and direction are monitored by a 3D sonic anemometer on top of the elevator boom. This autonomous field robot can operate during day and night time, and its working hours are only limited by the recharge time of the battery pack. It is therefore suited for field studies requiring high temporal and/or spatial resolution.

  19. Ultrasonic wireless health monitoring

    NASA Astrophysics Data System (ADS)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data processing into an autonomous wireless receiver, in terms of reduction of the energy and memory costs.

  20. An Innovative Unmanned System for Advanced Environmental Monitoring: Design and Development

    NASA Astrophysics Data System (ADS)

    Marsella, Ennio; Giordano, Laura; Evangelista, Lorenza; Iengo, Antonio; di Filippo, Alessandro; Coppola, Aniello

    2015-04-01

    The paper summarizes the design and development of a new technology and tools for real-time coordination and control of unmanned vehicles for advanced environmental monitoring. A new Unmanned System has been developed at Institute for Coastal Marine Environmental - National Research Council (Italy), in the framework of two National Operational Programs (PON): Technological Platform for Geophysical and Environmental Marine Survey-PITAM and Integrated Systems and Technologies for Geophysical and Environmental Monitoring in coastal-marine areas-STIGEAC. In particular, the system includes one Unmanned Aerial Vehicle (UAV) and two Unmanned Marine Vehicles (UMV). Major innovations concern the implementation of a new architecture to control each drone and/or to allow the cooperation between heterogeneous vehicles, the integration of distributed sensing techniques and real-time image processing capabilities. Part of the research in these projects involves, therefore, an architecture, where the ground operator can communicate with the Unmanned Vehicles at various levels of abstraction using pointing devices and video viewing. In detail, a Ground Control Station (GCS) has been design and developed to allow the government in security of the drones within a distance up to twenty kilometers for air explorations and within ten nautical miles for marine activities. The Ground Control Station has the following features: 1. hardware / software system for the definition of the mission profiles; 3. autonomous and semi-autonomous control system by remote control (joystick or other) for the UAV and UMVs; 4. integrated control system with comprehensive visualization capabilities, monitoring and archiving of real-time data acquired from scientific payload; 5. open structure to future additions of systems, sensors and / or additional vehicles. In detail, the UAV architecture is a dual-rotor, with an endurance ranging from 55 to 200 minutes, depending on payload weight (maximum 26 kg) and wind conditions, and a capability to survey an area of up to 5x5 square kilometers. The UAV payload consists of three different types of sensors: a laser scanner, a thermal-camera and an integrated camera reflex with gimbal. The laser scanner has 10 mm survey-grade accuracy and a field of view up to 330°. The thermal-camera has a resolution 640x480 pixels and a thermal sensitivity <20 mK (at 30 °C), while the reflex is a 22.3 Megapixel full-frame sensor. In addition to the common applications, such as generating mapping, charting, and geodesy products, the system allows performing real-time survey and monitoring of different natural risk under dangerous condition. The system is, also, address to environmental risk monitoring and prevention, industrial activity and emergency interventions related to environmental crises (i.e. oil spills).

  1. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, A.M.; Wagner, D.G.; Teese, G.D.

    1994-06-28

    An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.

  2. Autonomous mobile robot for radiologic surveys

    DOEpatents

    Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.

    1994-01-01

    An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.

  3. Planning Flight Paths of Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli

    2009-01-01

    Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.

  4. Inter-satellite links for satellite autonomous integrity monitoring

    NASA Astrophysics Data System (ADS)

    Rodríguez-Pérez, Irma; García-Serrano, Cristina; Catalán Catalán, Carlos; García, Alvaro Mozo; Tavella, Patrizia; Galleani, Lorenzo; Amarillo, Francisco

    2011-01-01

    A new integrity monitoring mechanisms to be implemented on-board on a GNSS taking advantage of inter-satellite links has been introduced. This is based on accurate range and Doppler measurements not affected neither by atmospheric delays nor ground local degradation (multipath and interference). By a linear combination of the Inter-Satellite Links Observables, appropriate observables for both satellite orbits and clock monitoring are obtained and by the proposed algorithms it is possible to reduce the time-to-alarm and the probability of undetected satellite anomalies.Several test cases have been run to assess the performances of the new orbit and clock monitoring algorithms in front of a complete scenario (satellite-to-satellite and satellite-to-ground links) and in a satellite-only scenario. The results of this experimentation campaign demonstrate that the Orbit Monitoring Algorithm is able to detect orbital feared events when the position error at the worst user location is still under acceptable limits. For instance, an unplanned manoeuvre in the along-track direction is detected (with a probability of false alarm equals to 5 × 10-9) when the position error at the worst user location is 18 cm. The experimentation also reveals that the clock monitoring algorithm is able to detect phase jumps, frequency jumps and instability degradation on the clocks but the latency of detection as well as the detection performances strongly depends on the noise added by the clock measurement system.

  5. Monitoring fetal maturation—objectives, techniques and indices of autonomic function*

    PubMed Central

    Hoyer, Dirk; Żebrowski, Jan; Cysarz, Dirk; Gonçalves, Hernâni; Pytlik, Adelina; Amorim-Costa, Célia; Bernardes, João; Ayres-de-Campos, Diogo; Witte, Otto W; Schleußner, Ekkehard; Stroux, Lisa; Redman, Christopher; Georgieva, Antoniya; Payne, Stephen; Clifford, Gari; Signorini, Maria G; Magenes, Giovanni; Andreotti, Fernando; Malberg, Hagen; Zaunseder, Sebastian; Lakhno, Igor; Schneider, Uwe

    2017-01-01

    Objective Monitoring the fetal behavior does not only have implications for acute care but also for identifying developmental disturbances that burden the entire later life. The concept, of ‘fetal programming’, also known as ‘developmental origins of adult disease hypothesis’, e.g. applies for cardiovascular, metabolic, hyperkinetic, cognitive disorders. Since the autonomic nervous system is involved in all of those systems, cardiac autonomic control may provide relevant functional diagnostic and prognostic information. Approach The fetal heart rate patterns (HRP) are one of the few functional signals in the prenatal period that relate to autonomic control and, therefore, is key to fetal autonomic assessment. The development of sensitive markers of fetal maturation and its disturbances requires the consideration of physiological fundamentals, recording technology and HRP parameters of autonomic control. Main Results Based on the ESGCO2016 special session on monitoring the fetal maturation we herein report the most recent results on: (i) functional fetal autonomic brain age score (fABAS), Recurrence Quantitative Analysis and Binary Symbolic Dynamics of complex HRP resolve specific maturation periods, (ii) magnetocardiography (MCG) based fABAS was validated for cardiotocography (CTG), (iii) 30 min recordings are sufficient for obtaining episodes of high variability, important for intrauterine growth restriction (IUGR) detection in handheld Doppler, (iv) novel parameters from PRSA to identify Intra IUGR fetuses, (v) evaluation of fetal electrocardiographic (ECG) recordings, (vi) correlation between maternal and fetal HRV is disturbed in pre-eclampsia. Significance The reported novel developments significantly extend the possibilities for the established CTG methodology. Novel HRP indices improve the accuracy of assessment due to their more appropriate consideration of complex autonomic processes across the recording technologies (CTG, handheld Doppler, MCG, ECG). The ultimate objective is their dissemination into routine practice and studies of fetal developmental disturbances with implications for programming of adult diseases. PMID:28186000

  6. An Autonomous Navigation Algorithm for High Orbit Satellite Using Star Sensor and Ultraviolet Earth Sensor

    PubMed Central

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust. PMID:24250261

  7. An autonomous navigation algorithm for high orbit satellite using star sensor and ultraviolet earth sensor.

    PubMed

    Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu

    2013-01-01

    An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.

  8. Integrated synoptic surveys using an autonomous underwater vehicle and manned boats

    USGS Publications Warehouse

    Jackson, P. Ryan

    2013-01-01

    Traditional surface-water surveys are being combined with autonomous technology to produce integrated surveys of bathymetry, water quality, and velocity in inland lakes and reservoirs. This new technology provides valuable, high-resolution, integrated data that allow a systems-based approach to understanding common environmental problems. This fact sheet presents several example applications of integrated surveys within inland lakes and coastal Lake Michigan and Lake Erie.

  9. Information surfing with the JHU/APL coherent imager

    NASA Astrophysics Data System (ADS)

    Ratto, Christopher R.; Shipley, Kara R.; Beagley, Nathaniel; Wolfe, Kevin C.

    2015-05-01

    The ability to perform remote forensics in situ is an important application of autonomous undersea vehicles (AUVs). Forensics objectives may include remediation of mines and/or unexploded ordnance, as well as monitoring of seafloor infrastructure. At JHU/APL, digital holography is being explored for the potential application to underwater imaging and integration with an AUV. In previous work, a feature-based approach was developed for processing the holographic imagery and performing object recognition. In this work, the results of the image processing method were incorporated into a Bayesian framework for autonomous path planning referred to as information surfing. The framework was derived assuming that the location of the object of interest is known a priori, but the type of object and its pose are unknown. The path-planning algorithm adaptively modifies the trajectory of the sensing platform based on historical performance of object and pose classification. The algorithm is called information surfing because the direction of motion is governed by the local information gradient. Simulation experiments were carried out using holographic imagery collected from submerged objects. The autonomous sensing algorithm was compared to a deterministic sensing CONOPS, and demonstrated improved accuracy and faster convergence in several cases.

  10. Professional figures in intermediate intensive units.

    PubMed

    Quadri, A; Simoni, P; Clini, E; Errera, D; Foglio, K; Vitacca, M; Schena, M

    1994-12-01

    In Italy, respiratory intermediate intensive care units (IICUs) are not yet considered as autonomous hospital departments. The IICU of the Rehabilitation Department of the Medical Centre of Gussago (12 monitored beds) provides care for respiratory and cardiac patients. Ventilatory assistance and noninvasive modalities both in treatment and monitoring suggest a multidisciplinary approach to the patient. Highly professional figures should, therefore, be singled out to provide care in a respiratory IICU. The medical staff is composed of one anaesthesiologist, one cardiologist and one pulmonologist, who can integrate care when respiratory complications occur in a cardiological patient, or when cardiac events affect a respiratory patient. Nurses are capable of specific activities, especially when ventilatory assistance is required. The presence of a physiotherapist reduces the nursing workload, especially for ventilated individuals. The psychological aspect is undertaken by a specialist. Finally, an expert in nutrition provides an individualized dietary regimen. Our 4 year experience encourages such a multidisciplinary approach. An ideal integration of the professional activities should provide adequate and individual care for patients admitted to an IICU.

  11. PHM Enabled Autonomous Propellant Loading Operations

    NASA Technical Reports Server (NTRS)

    Walker, Mark; Figueroa, Fernando

    2017-01-01

    The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.

  12. Development of a portable analyzer with polymer lab-on-a-chip (LOC) for continuous sampling and monitoring of Pb(II).

    PubMed

    Jang, A; Zou, Z; MacKnight, E; Wu, P M; Kim, I S; Ahn, C H; Bishop, P L

    2009-01-01

    A new portable analyzer with polymer lab-on-a-chip (LOC) has been designed, fabricated and fully characterized for continuous sampling and monitoring of lead (Pb(II)) in this work. As the working electrodes of the sensor, bismuth (Bi (III)) which allowed the advantage of being more environmentally friendly than traditional mercury drop electrodes was used, while maintaining similar sensitivity and other desirable characteristics. The size of a portable analyzer was 30 cmx23 cmx7 cm, and the weight was around 3 kg. The small size gives the advantage of being portable for field use while not sacrificing portability for accuracy of measurement. Furthermore, the autonomous system developed in coordination with the development of new polymer LOC integrated with electrochemical sensors can provide an innovative way to monitor surface waters in an efficient, cost-effective and sustainable manner.

  13. Near Field Communication-based telemonitoring with integrated ECG recordings.

    PubMed

    Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G

    2011-01-01

    Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.

  14. DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.

    Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and stillmore » serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.« less

  15. The non-autonomous YdKN equation and generalized symmetries of Boll equations

    NASA Astrophysics Data System (ADS)

    Gubbiotti, G.; Scimiterna, C.; Levi, D.

    2017-05-01

    In this paper, we study the integrability of a class of nonlinear non-autonomous quad graph equations compatible around the cube introduced by Boll in the framework of the generalized Adler, Bobenko, and Suris (ABS) classification. We show that all these equations possess three-point generalized symmetries which are subcases of either the Yamilov discretization of the Krichever-Novikov equation or of its non-autonomous extension. We also prove that all those symmetries are integrable as they pass the algebraic entropy test.

  16. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals-A Review.

    PubMed

    Michael, Scott; Graham, Kenneth S; Davis, Glen M

    2017-01-01

    Cardiac parasympathetic activity may be non-invasively investigated using heart rate variability (HRV), although HRV is not widely accepted to reflect sympathetic activity. Instead, cardiac sympathetic activity may be investigated using systolic time intervals (STI), such as the pre-ejection period. Although these autonomic indices are typically measured during rest, the "reactivity hypothesis" suggests that investigating responses to a stressor (e.g., exercise) may be a valuable monitoring approach in clinical and high-performance settings. However, when interpreting these indices it is important to consider how the exercise dose itself (i.e., intensity, duration, and modality) may influence the response. Therefore, the purpose of this investigation was to review the literature regarding how the exercise dosage influences these autonomic indices during exercise and acute post-exercise recovery. There are substantial methodological variations throughout the literature regarding HRV responses to exercise, in terms of exercise protocols and HRV analysis techniques. Exercise intensity is the primary factor influencing HRV, with a greater intensity eliciting a lower HRV during exercise up to moderate-high intensity, with minimal change observed as intensity is increased further. Post-exercise, a greater preceding intensity is associated with a slower HRV recovery, although the dose-response remains unclear. A longer exercise duration has been reported to elicit a lower HRV only during low-moderate intensity and when accompanied by cardiovascular drift, while a small number of studies have reported conflicting results regarding whether a longer duration delays HRV recovery. "Modality" has been defined multiple ways, with limited evidence suggesting exercise of a greater muscle mass and/or energy expenditure may delay HRV recovery. STI responses during exercise and recovery have seldom been reported, although limited data suggests that intensity is a key determining factor. Concurrent monitoring of HRV and STI may be a valuable non-invasive approach to investigate autonomic stress reactivity; however, this integrative approach has not yet been applied with regards to exercise stressors.

  17. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals—A Review

    PubMed Central

    Michael, Scott; Graham, Kenneth S.; Davis, Glen M.

    2017-01-01

    Cardiac parasympathetic activity may be non-invasively investigated using heart rate variability (HRV), although HRV is not widely accepted to reflect sympathetic activity. Instead, cardiac sympathetic activity may be investigated using systolic time intervals (STI), such as the pre-ejection period. Although these autonomic indices are typically measured during rest, the “reactivity hypothesis” suggests that investigating responses to a stressor (e.g., exercise) may be a valuable monitoring approach in clinical and high-performance settings. However, when interpreting these indices it is important to consider how the exercise dose itself (i.e., intensity, duration, and modality) may influence the response. Therefore, the purpose of this investigation was to review the literature regarding how the exercise dosage influences these autonomic indices during exercise and acute post-exercise recovery. There are substantial methodological variations throughout the literature regarding HRV responses to exercise, in terms of exercise protocols and HRV analysis techniques. Exercise intensity is the primary factor influencing HRV, with a greater intensity eliciting a lower HRV during exercise up to moderate-high intensity, with minimal change observed as intensity is increased further. Post-exercise, a greater preceding intensity is associated with a slower HRV recovery, although the dose-response remains unclear. A longer exercise duration has been reported to elicit a lower HRV only during low-moderate intensity and when accompanied by cardiovascular drift, while a small number of studies have reported conflicting results regarding whether a longer duration delays HRV recovery. “Modality” has been defined multiple ways, with limited evidence suggesting exercise of a greater muscle mass and/or energy expenditure may delay HRV recovery. STI responses during exercise and recovery have seldom been reported, although limited data suggests that intensity is a key determining factor. Concurrent monitoring of HRV and STI may be a valuable non-invasive approach to investigate autonomic stress reactivity; however, this integrative approach has not yet been applied with regards to exercise stressors. PMID:28611675

  18. The Personal Satellite Assistant: An Internal Spacecraft Autonomous Mobile Monitor

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Gawdiak, Yuri; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper presents an overview of the research and development effort at the NASA Ames Research Center to create an internal spacecraft autonomous mobile monitor capable of performing intra-vehicular sensing activities by autonomously navigating onboard the International Space Station. We describe the capabilities, mission roles, rationale, high-level functional requirements, and design challenges for an autonomous mobile monitor. The rapid prototyping design methodology used, in which five prototypes of increasing fidelity are designed, is described as well as the status of these prototypes, of which two are operational and being tested, and one is actively being designed. The physical test facilities used to perform ground testing are briefly described, including a micro-gravity test facility that permits a prototype to propel itself in 3 dimensions with 6 degrees-of-freedom as if it were in an micro-gravity environment. We also describe an overview of the autonomy framework and its components including the software simulators used in the development process. Sample mission test scenarios are also described. The paper concludes with a discussion of future and related work followed by the summary.

  19. Ground Control Point - Wireless System Network for UAV-based environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Mejia-Aguilar, Abraham

    2016-04-01

    In recent years, Unmanned Aerial Vehicles (UAV) have seen widespread civil applications including usage for survey and monitoring services in areas such as agriculture, construction and civil engineering, private surveillance and reconnaissance services and cultural heritage management. Most aerial monitoring services require the integration of information acquired during the flight (such as imagery) with ground-based information (such as GPS information or others) for improved ground truth validation. For example, to obtain an accurate 3D and Digital Elevation Model based on aerial imagery, it is necessary to include ground-based information of coordinate points, which are normally acquired with surveying methods based on Global Position Systems (GPS). However, GPS surveys are very time consuming and especially for longer time series of monitoring data repeated GPS surveys are necessary. In order to improve speed of data collection and integration, this work presents an autonomous system based on Waspmote technologies build on single nodes interlinked in a Wireless Sensor Network (WSN) star-topology for ground based information collection and later integration with surveying data obtained by UAV. Nodes are designed to be visible from the air, to resist extreme weather conditions with low-power consumption. Besides, nodes are equipped with GPS as well as Inertial Measurement Unit (IMU), accelerometer, temperature and soil moisture sensors and thus provide significant advantages in a broad range of applications for environmental monitoring. For our purpose, the WSN transmits the environmental data with 3G/GPRS to a database on a regular time basis. This project provides a detailed case study and implementation of a Ground Control Point System Network for UAV-based vegetation monitoring of dry mountain grassland in the Matsch valley, Italy.

  20. Emerging technologies for pediatric and adult trauma care.

    PubMed

    Moulton, Steven L; Haley-Andrews, Stephanie; Mulligan, Jane

    2010-06-01

    Current Emergency Medical Service protocols rely on provider-directed care for evaluation, management and triage of injured patients from the field to a trauma center. New methods to quickly diagnose, support and coordinate the movement of trauma patients from the field to the most appropriate trauma center are in development. These methods will enhance trauma care and promote trauma system development. Recent advances in machine learning, statistical methods, device integration and wireless communication are giving rise to new methods for vital sign data analysis and a new generation of transport monitors. These monitors will collect and synchronize exponentially growing amounts of vital sign data with electronic patient care information. The application of advanced statistical methods to these complex clinical data sets has the potential to reveal many important physiological relationships and treatment effects. Several emerging technologies are converging to yield a new generation of smart sensors and tightly integrated transport monitors. These technologies will assist prehospital providers in quickly identifying and triaging the most severely injured children and adults to the most appropriate trauma centers. They will enable the development of real-time clinical support systems of increasing complexity, able to provide timelier, more cost-effective, autonomous care.

  1. Integrating the autonomous subsystems management process

    NASA Technical Reports Server (NTRS)

    Ashworth, Barry R.

    1992-01-01

    Ways in which the ranking of the Space Station Module Power Management and Distribution testbed may be achieved and an individual subsystem's internal priorities may be managed within the complete system are examined. The application of these results in the integration and performance leveling of the autonomously managed system is discussed.

  2. Autonomous Commanding of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Prior, Mike; Walyus, Keith; Saylor, Rick

    1999-01-01

    This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They can be used as a design and implementation template by other small satellite missions interested in evolving toward autonomous and lower cost operations.

  3. Earthwork haul-truck cycle-time monitoring : a case study.

    DOT National Transportation Integrated Search

    2016-03-01

    Recent developments in autonomous technologies have motivated practitioners to adopt new technologies in highway and : earthwork construction projects. This project set out to (1) identify new and emerging autonomous earthwork technologies and : (2) ...

  4. Measuring the degree of integration for an integrated service network

    PubMed Central

    Ye, Chenglin; Browne, Gina; Grdisa, Valerie S; Beyene, Joseph; Thabane, Lehana

    2012-01-01

    Background Integration involves the coordination of services provided by autonomous agencies and improves the organization and delivery of multiple services for target patients. Current measures generally do not distinguish between agencies’ perception and expectation. We propose a method for quantifying the agencies’ service integration. Using the data from the Children’s Treatment Network (CTN), we aimed to measure the degree of integration for the CTN agencies in York and Simcoe. Theory and methods We quantified the integration by the agreement between perceived and expected levels of involvement and calculated four scores from different perspectives for each agency. We used the average score to measure the global network integration and examined the sensitivity of the global score. Results Most agencies’ integration scores were <65%. As measured by the agreement between every other agency’s perception and expectation, the overall integration of CTN in Simcoe and York was 44% (95% CI: 39%–49%) and 52% (95% CI: 48%–56%), respectively. The sensitivity analysis showed that the global scores were robust. Conclusion Our method extends existing measures of integration and possesses a good extent of validity. We can also apply the method in monitoring improvement and linking integration with other outcomes. PMID:23593050

  5. Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation for Logistical Use in Complex Environments

    DTIC Science & Technology

    2012-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Autonomous Dirigible Airships: A Comparative Analysis...COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation...NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this report are

  6. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  7. Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen.

    PubMed

    Shehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen

    2015-08-14

    This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.

  8. Unexploded Ordnance Characterization And Detection in Muddy Estuarine Environments

    NASA Astrophysics Data System (ADS)

    Trembanis, A. C.; DuVal, C.

    2017-12-01

    There is recognized need for better quantitative understanding of the impact of coastal environments on UXO mobility, burial, and detection. Current efforts are underway to address aspects of UXO mobility and detection in sandy coastal areas. However, a significant data gap has been identified regarding UXO in shallow, muddy environments; 139 Formally Used Defense Sites (FUDS), in U.S. tidal waters alone, have been identified as containing muddy sediments. This study works to address this data gap. Using a shallow estuarine site in the Delaware Bay, this study 1) monitors the mobility and behavior of sensor-integrated surrogate munitions in muddy environments using a high-accuracy acoustic positioning system, 2) directly observes surrogate munition response to hydrodynamic forcing through instrumented bottom frame time-lapse hydrodynamic data and sonar imagery, and 3) monitors site changes through repetitive site surveying autonomous underwater vehicle (AUV) using both sonar and magnetometry. Surrogate UXO, modified with acoustic tracking devices and inertial motion units (IMU), are being deployed at a previously characterized muddy estuarine site. The surrogates are being monitored for changes in mobility and burial using the VEMCO positioning system, an off-the-shelf acoustic positioning system that is capable of tracking the position of multiple acoustic tags with accuracies down to 10 cm. Concurrently, time-series acoustic imagery and hydrodynamic sensors are being deployed to characterize UXO response to varied hydrodynamic conditions and compared to site-wide surrogate behavior. A series of repetitive surveys are being conducted using a magnetometer specifically designed for UXO detection on an autonomous underwater vehicle (AUV). Survey results will be compared to long-term acoustic positioning of the surrogate UXO to determine the effectiveness of the magnetometer for efficiently and effectively locating UXO in shallow, muddy environments. Additionally, this study will help inform parameters for UXO mobility and behavior in storms and muddy environments for integration into existing expert system models of UXO burial and mobility.

  9. Environmental monitoring using autonomous vehicles: a survey of recent searching techniques.

    PubMed

    Bayat, Behzad; Crasta, Naveena; Crespi, Alessandro; Pascoal, António M; Ijspeert, Auke

    2017-06-01

    Autonomous vehicles are becoming an essential tool in a wide range of environmental applications that include ambient data acquisition, remote sensing, and mapping of the spatial extent of pollutant spills. Among these applications, pollution source localization has drawn increasing interest due to its scientific and commercial interest and the emergence of a new breed of robotic vehicles capable of operating in harsh environments without human supervision. The aim is to find the location of a region that is the source of a given substance of interest (e.g. a chemical pollutant at sea or a gas leakage in air) using a group of cooperative autonomous vehicles. Motivated by fast paced advances in this challenging area, this paper surveys recent advances in searching techniques that are at the core of environmental monitoring strategies using autonomous vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT).

    PubMed

    Moiş, George Dan; Sanislav, Teodora; Folea, Silviu Corneliu; Zeadally, Sherali

    2018-05-25

    Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO₂ and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings.

  11. Autonomous health management for PMSM rail vehicles through demagnetization monitoring and prognosis control.

    PubMed

    Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael

    2018-01-01

    Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. The Design of an Autonomous Underwater Vehicle for Water Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Li, Yulong; Liu, Rong; Liu, Shujin

    2018-01-01

    This paper describes the development of a civilian-used autonomous underwater vehicle (AUV) for water quality monitoring at reservoirs and watercourses that can obtain realtime visual and locational information. The mechanical design was completed with CAD software Solidworks. Four thrusters—two horizontal and two vertical—on board enable the vehicle to surge, heave, yaw, and pitch. A specialized water sample collection compartment is designed to perform water collection at target locations. The vehicle has a central controller—STM32—and a sub-coordinate controller—Arduino MEGA 2560—that coordinates multiple sensors including an inertial sensor, ultrasonic sensors, etc. Global Navigation Satellite System (GNSS) and the inertial sensor enable the vehicle’s localization. Remote operators monitor and control the vehicle via a host computer system. Operators choose either semi-autonomous mode in which they set target locations or manual mode. The experimental results show that the vehicle is able to perform well in either mode.

  13. The Standard Autonomous File Server, a Customized, Off-the-Shelf Success Story

    NASA Technical Reports Server (NTRS)

    Semancik, Susan K.; Conger, Annette M.; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    The Standard Autonomous File Server (SAFS), which includes both off-the-shelf hardware and software, uses an improved automated file transfer process to provide a quicker, more reliable, prioritized file distribution for customers of near real-time data without interfering with the assets involved in the acquisition and processing of the data. It operates as a stand-alone solution, monitoring itself, and providing an automated fail-over process to enhance reliability. This paper will describe the unique problems and lessons learned both during the COTS selection and integration into SAFS, and the system's first year of operation in support of NASA's satellite ground network. COTS was the key factor in allowing the two-person development team to deploy systems in less than a year, meeting the required launch schedule. The SAFS system his been so successful, it is becoming a NASA standard resource, leading to its nomination for NASA's Software or the Year Award in 1999.

  14. Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking

    NASA Astrophysics Data System (ADS)

    Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling

    2016-11-01

    Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.

  15. Sensor Webs: Autonomous Rapid Response to Monitor Transient Science Events

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Grosvenor, Sandra; Frye, Stu; Sherwood, Robert; Chien, Steve; Davies, Ashley; Cichy, Ben; Ingram, Mary Ann; Langley, John; Miranda, Felix

    2005-01-01

    To better understand how physical phenomena, such as volcanic eruptions, evolve over time, multiple sensor observations over the duration of the event are required. Using sensor web approaches that integrate original detections by in-situ sensors and global-coverage, lower-resolution, on-orbit assets with automated rapid response observations from high resolution sensors, more observations of significant events can be made with increased temporal, spatial, and spectral resolution. This paper describes experiments using Earth Observing 1 (EO-1) along with other space and ground assets to implement progressive mission autonomy to identify, locate and image with high resolution instruments phenomena such as wildfires, volcanoes, floods and ice breakup. The software that plans, schedules and controls the various satellite assets are used to form ad hoc constellations which enable collaborative autonomous image collections triggered by transient phenomena. This software is both flight and ground based and works in concert to run all of the required assets cohesively and includes software that is model-based, artificial intelligence software.

  16. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1988-01-01

    Expert systems that require access to data bases, complex simulations and real time instrumentation have both symbolic and algorithmic needs. Both of these needs could be met using a general purpose workstation running both symbolic and algorithmic codes, or separate, specialized computers networked together. The later approach was chosen to implement TEXSYS, the thermal expert system, developed by the NASA Ames Research Center in conjunction with the Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. The integration options and several possible solutions are presented.

  17. Integrating Systems Health Management with Adaptive Controls for a Utility-Scale Wind Turbine

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Goebel, Kai; Trinh, Khanh V.; Balas, Mark J.; Frost, Alan M.

    2011-01-01

    Increasing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. Systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage. Advanced adaptive controls can provide the mechanism to enable optimized operations that also provide the enabling technology for Systems Health Management goals. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency management and adaptive controls. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  18. Pelvic autonomic neuromonitoring: present reality, future prospects.

    PubMed

    Skinner, Stanley A

    2014-08-01

    Currently, the means to assess the autonomic nervous system primarily depend on end organ functional measurement: intravesical pressure, skin resistance, and penile strain gauge tension, for example. None of these measures has been generally accepted in the operating room. Nevertheless, the segmental and peripheral pelvic autonomic nerve supply is placed at risk during both pelvic and lower spine surgery. In this difficult era of suboptimal post-prostatectomy outcomes, the urological literature does reveal the salutary development of safer dissection techniques about the peri-prostatic and cavernous plexus. Means of reliably specific nerve identification remain elusive. The need for actual nerve monitoring (not just identification) has only recently been proposed. Data from the animal lab reinforce an appreciation of the intimate and elegant interconnectedness of autonomic and somatic structures, particularly at the segmental level. Also, the biochemistry of erectile tissue engorgement (in both sexes) is very well understood (the electrophysiology increasingly so). Understanding these principles should permit parallel investigation and implementation of neurophysiological techniques which both identify and monitor pelvic autonomic function. The predicates for these proposed new approaches in the operating room are discussed in this review.

  19. Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    NASA Technical Reports Server (NTRS)

    Zornetzer, Steve; Gage, Douglas

    2005-01-01

    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.

  20. Intelligent computer-aided training and tutoring

    NASA Technical Reports Server (NTRS)

    Loftin, R. Bowen; Savely, Robert T.

    1991-01-01

    Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed.

  1. Measuring Cardiac Autonomic Nervous System (ANS) Activity in Toddlers - Resting and Developmental Challenges.

    PubMed

    Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey

    2016-02-25

    The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence that this protocol is useful for the examination of ANS individual differences for toddlers.

  2. Intermediate Levels of Autonomy within the SSM/PMAD Breadboard

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Walls, Bryan

    1995-01-01

    The Space Station Module Power Management and Distribution (SSM/PMAD) bread-board is a test bed for the development of advanced power system control and automation. Software control in the SSM/PMAD breadboard is through co-operating systems, called Autonomous Agents. Agents can be a mixture of algorithmic software and expert systems. The early SSM/PMAD system was envisioned as being completely autonomous. It soon became apparent, though, that there would always be a need for human intervention, at least as long as a human interacts with the system in any way. In a system designed only for autonomous operation, manual intervention meant taking full control of the whole system, and loosing whatever expertise was in the system. Several methods for allowing humans to interact at an appropriate level of control were developed. This paper examines some of these intermediate modes of autonomy. The least humanly intrusive mode is simple monitoring. The ability to modify future behavior by altering a schedule involves high-level interaction. Modification of operating activities comes next. The coarsest mode of control is individual, unplanned operation of individual Power System components. Each of these levels is integrated into the SSM/PMAD breadboard, with support for the user (such as warnings of the consequences of control decisions) at every level.

  3. Optical Delineation of Benthic Habitat Using an Autonomous Underwater Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moline, Mark A.; Woodruff, Dana L.; Evans, Nathan R.

    To improve understanding and characterization of coastal regions, there has been an increasing emphasis on autonomous systems that can sample the ocean on relevant scales. Autonomous underwater vehicles (AUVs) with active propulsion are especially well suited for studies of the coastal ocean because they are able to provide systematic and near-synoptic spatial observations. With this capability, science users are beginning to integrate sensor suits for a broad range of specific and often novel applications. Here, the relatively mature Remote Environmental Monitoring Units (REMUS) AUV system is configured with multi-spectral radiometers to delineate benthic habitat in Sequim Bay, WA. The vehiclemore » was deployed in a grid pattern along 5 km of coastline in depths from 30 to less than 2 meters. Similar to satellite and/or aerial remote sensing, the bandwidth ratios from the downward looking radiance sensor and upward looking irradiance sensor were used to identify beds of eelgrass on sub-meter scales. Strong correlations were found between the optical reflectance signals and the geo-referenced in situ data collected with underwater video within the grid. Results demonstrate the ability of AUVs to map littoral habitats at high resolution and highlight the overall utility of the REMUS vehicle for nearshore oceanography.« less

  4. Autonomous microfluidic sample preparation system for protein profile-based detection of aerosolized bacterial cells and spores.

    PubMed

    Stachowiak, Jeanne C; Shugard, Erin E; Mosier, Bruce P; Renzi, Ronald F; Caton, Pamela F; Ferko, Scott M; Van de Vreugde, James L; Yee, Daniel D; Haroldsen, Brent L; VanderNoot, Victoria A

    2007-08-01

    For domestic and military security, an autonomous system capable of continuously monitoring for airborne biothreat agents is necessary. At present, no system meets the requirements for size, speed, sensitivity, and selectivity to warn against and lead to the prevention of infection in field settings. We present a fully automated system for the detection of aerosolized bacterial biothreat agents such as Bacillus subtilis (surrogate for Bacillus anthracis) based on protein profiling by chip gel electrophoresis coupled with a microfluidic sample preparation system. Protein profiling has previously been demonstrated to differentiate between bacterial organisms. With the goal of reducing response time, multiple microfluidic component modules, including aerosol collection via a commercially available collector, concentration, thermochemical lysis, size exclusion chromatography, fluorescent labeling, and chip gel electrophoresis were integrated together to create an autonomous collection/sample preparation/analysis system. The cycle time for sample preparation was approximately 5 min, while total cycle time, including chip gel electrophoresis, was approximately 10 min. Sensitivity of the coupled system for the detection of B. subtilis spores was 16 agent-containing particles per liter of air, based on samples that were prepared to simulate those collected by wetted cyclone aerosol collector of approximately 80% efficiency operating for 7 min.

  5. An ambulatory recording system for the assessment of autonomic changes across multiple days

    NASA Astrophysics Data System (ADS)

    Sollers, John J., III; Yonezawa, Yoshiharu; Silver, Rebecca A.; Merritt, Marcellus M.; Thayer, Julian F.

    2005-05-01

    Recent evidence indicates that poor autonomic regulation, indexed by decreased heart period variability (HPV), is associated with decreased working memory. HPV analyses are computed on the interbeat interval time series derived from the electrocardiogram (EKG). Unfortunately, the duration of the data collection and the issue of the size of ambulatory monitors with sufficient storage capacity for multi-day records is somewhat problematic. In the present paper we describe a system that allows for the collection of large amounts of high quality data using a small data collection device. The recording system consists of a miniature, single-module electrocardiogram-recording device. This module consists of an integrated three-electrode device that is attached to the chest of the subject. A low power 8-bit micro-controller detects the R-spike and stores the time between R-spikes in milliseconds on a 512 KB EEPROM. This system can record continuously for over four days. This system will allow the recording of cardio-dynamics in the field and provide highly reliable data across multiple days. The use of this device to assess physiological function in military operations would allow researchers to examine longer data records across several contexts and to understand the role of changes in autonomic function as they relate to performance.

  6. Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.

    2017-01-01

    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

  7. Human care system for heart-rate and human-movement trajectory in home and its application to detect mental disease

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi

    2012-06-01

    This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.

  8. Development and deployment of a low-cost, mobile-ready, air quality sensor system: progress toward distributed networks and autonomous aerial sampling

    NASA Astrophysics Data System (ADS)

    Hersey, S. P.; DiVerdi, R.; Gadtaula, P.; Sheneman, T.; Flores, K.; Chen, Y. H.; Jayne, J. T.; Cross, E. S.

    2017-12-01

    Throughout the 2016-2017 academic year, a new partnership between Olin College of Engineering and Aerodyne Research, Inc. developed an affordable, self-contained air quality monitoring instrument called Modulair. The Modulair instrument is based on the same operating principles as Aerodyne's newly-developed ARISense integrated sensor system, employing electrochemical sensors for gas-phase measurements of CO, NO, NO2, and O3 and an off-the-shelf optical particle counter for particle concentration, number, and size distribution information (0.4 < dp < 17 microns). High Dimensional Model Representation (HDMR) has been used to model the interference derived from relative humidity and temperature as well as the cross-sensitivity of the electrochemical sensors to non-target gas-phase species. The aim of the modeling effort is to provide transparent and robust calibration of electrical signals to pollutant concentrations from a set of electrochemical sensors. Modulair was designed from the ground-up, with custom electronics - including a more powerful microcontroller, a fully re-designed housing and a device-specific backend with a mobile, cloud-based data management system for real-time data posting and analysis. Open source tools and software were utilized in the development of the instrument. All initial work was completed by a team of undergraduate students as part of the Senior Capstone Program in Engineering (SCOPE) at Olin College. Deployment strategies for Modulair include distributed, mobile measurements and drone-based aerial sampling. Design goals for the drone integration include maximizing airborne sampling time and laying the foundation for software integration with the drone's autopilot system to allow for autonomous plume sampling across concentration gradients. Modulair and its flexible deployments enable real-time mapping of air quality data at exposure-relevant spatial scales, as well as regular, autonomous characterization of sources and dispersion of atmospheric pollutants. We will present an overview of the Modulair instrument and results from benchtop and field validation, including mobile and drone-based plume sampling in the Boston area.

  9. A wireless smart sensor network for automated monitoring of cable tension

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  10. Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human-like learning.

    PubMed

    Oudeyer, Pierre-Yves

    2017-01-01

    Autonomous lifelong development and learning are fundamental capabilities of humans, differentiating them from current deep learning systems. However, other branches of artificial intelligence have designed crucial ingredients towards autonomous learning: curiosity and intrinsic motivation, social learning and natural interaction with peers, and embodiment. These mechanisms guide exploration and autonomous choice of goals, and integrating them with deep learning opens stimulating perspectives.

  11. The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico

    NASA Astrophysics Data System (ADS)

    Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.

    2014-12-01

    The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network's monitoring capabilities.

  12. Near Field Communication-based telemonitoring with integrated ECG recordings

    PubMed Central

    Morak, J.; Kumpusch, H.; Hayn, D.; Leitner, M.; Scherr, D.; Fruhwald, F.M.; Schreier, G.

    2011-01-01

    Objectives Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. Methods We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system’s technical feasibility, usability and patient’s adherence to twice daily usage. Results 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Conclusions Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients. PMID:23616890

  13. Hybrid Architectures and Their Impact on Intelligent Design

    NASA Technical Reports Server (NTRS)

    Kandel, Abe

    1996-01-01

    In this presentation we investigate a novel framework for the design of autonomous fuzzy intelligent systems. The system integrates the following modules into a single autonomous entity: (1) a fuzzy expert system; (2) artificial neural network; (3) genetic algorithm; and (4) case-base reasoning. We describe the integration of these units into one intelligent structure and discuss potential applications.

  14. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    NASA Technical Reports Server (NTRS)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  15. Autonomous Monitoring of Radiation Environment and Personal Systems for Crew Enhanced SPE Protection (AMORE and PSYCHE)

    NASA Astrophysics Data System (ADS)

    Narici, L.; Baiocco, G.; Berrilli, F.; Giraudo, M.; Ottolenghi, A.; Rizzo, A.; Salina, G.

    2018-02-01

    Understand the relationship between SPE precursors, the related SPE radiation inside the Deep Space Gateway, and the associated risk levels, validating existing models, proposing countermeasures actions via a real time, autonomous intelligent system.

  16. Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center

    NASA Technical Reports Server (NTRS)

    Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.

    1995-01-01

    The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.

  17. Development and Characteristics of a Mobile, Semi-Autonomous Floating Platform for in situ Lake Measurements

    NASA Astrophysics Data System (ADS)

    Barry, D.; Lemmin, U.; Le Dantec, N.; Zulliger, L.; Rusterholz, M.; Bolay, M.; Rossier, J.; Kangur, K.

    2013-12-01

    In the development of sustainable management strategies of lakes more insight into their physical, chemical and ecological dynamics is needed. Field data obtained from various types of sensors with adequate spatial and temporal sampling rate are essential to understand better the processes that govern fluxes and pathways of water masses and transported compounds, whether for model validation or for monitoring purposes. One advantage of unmanned platforms is that they limit the disturbances typically affecting the quality of data collected on small vessels, including perturbations caused by movements of onboard crew. We have developed a mobile, semi-autonomous floating platform with 8 h power autonomy using a 5 m long by 2.5 m wide catamaran. Our approach focused on modularity and high payload capacity in order to accommodate a large number of sensors both in terms of electronic (power and data) and mechanical constraints of integration. Software architecture and onboard electronics use National Instruments technology to simplify and standardize integration of sensors, actuators and communication. Piecewise-movable deck sections allow optimizing platform stability depending on the payload. The entire system is controlled by a remote computer located on an accompanying vessel and connected via a wireless link with a range of over 1 km. Real-time transmission of GPS-stamped measurements allows immediate modifications in the survey plan if needed. The displacement of the platform is semi-autonomous, with the options of either autopilot mode following a pre-planned course specified by waypoints or remote manual control from the accompanying vessel. Maintenance of permanent control over the platform displacement is required for safety reasons with respect to other users of the lake. Currently, the sensor payload comprises an array of fast temperature probes, a bottom-tracking ADCP and atmospheric sensors including a radiometer. A towed CTD with additional water quality sensors operated from a remotely controlled winch is presently being integrated. Field tests have shown that the platform is reliable, capable of collecting long transects of 2D lake and collocated atmospheric boundary layer data and adaptable to integrate new sensors.

  18. Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Chelaru, Adrian

    2014-12-01

    The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.

  19. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    DTIC Science & Technology

    2017-12-01

    autonomic disorders greatly influence the functional, psychological , and socioeconomic aspects of patients’ lives. Compared to numer- ous...The disruption of descending autonomic pathways renders abnormalities in multiple organ systems including cardiovascular function, respiration...the rise in blood pressure, the integration center in the brainstem transmits signals to the heart via parasympathetic pathways to reduce the heart

  20. Stress, autonomic imbalance, and the prediction of metabolic risk: A model and a proposal for research.

    PubMed

    Wulsin, Lawson; Herman, James; Thayer, Julian F

    2018-03-01

    Devising novel prevention strategies for metabolic disorders will depend in part on the careful elucidation of the common pathways for developing metabolic risks. The neurovisceral integration model has proposed that autonomic imbalance plays an important role in the pathway from acute and chronic stress to cardiovascular disease. Though generally overlooked by clinicians, autonomic imbalance (sympathetic overactivity and/or parasympathetic underactivity) can be measured and modified by methods that are available in primary care. This review applies the neurovisceral integration concept to the clinical setting by proposing that autonomic imbalance plays a primary role in the development of metabolic risks. We present a testable model, a systematic review of the evidence in support of autonomic imbalance as a predictor for metabolic risks, and specific approaches to test this model as a guide to future research on the role of stress in metabolic disorders. We propose that autonomic imbalance deserves consideration by researchers, clinicians, and policymakers as a target for early interventions to prevent metabolic disorders. Published by Elsevier Ltd.

  1. Methods of monitoring the technical condition of the braking system of an autonomous vehicle during operation

    NASA Astrophysics Data System (ADS)

    Revin, A.; Dygalo, V.; Boyko, G.; Lyaschenko, M.; Dygalo, L.

    2018-02-01

    Possibilities of diagnosing of a technical condition of braking system of the autonomous vehicles with automated modules while in service are considered. The concept of sharing of onboard means and stands for diagnosing is presented.

  2. Reducing Manpower for a Technologically Advanced Ship

    DTIC Science & Technology

    2010-01-27

    Watchstations by 84% (119 to 34) “ Autonomic ” Fire Suppression System AFSS is designed to automatically: (1) Isolate damage to firemain piping... System (IPS) Advanced VLS Autonomic Fire Suppression Hull Form Scale Models Total Ship Computing Environment (TSCE) Integrated Undersea...Warfare (IUSW) System ( AFSS ) 8 Total Ship Organization Ship C3I Engage Support Technical Director TSCEI Sense Integrated Product Teams TSSE Director

  3. Adding navigation, artificial audition and vital sign monitoring capabilities to a telepresence mobile robot for remote home care applications.

    PubMed

    Laniel, Sebastien; Letourneau, Dominic; Labbe, Mathieu; Grondin, Francois; Polgar, Janice; Michaud, Francois

    2017-07-01

    A telepresence mobile robot is a remote-controlled, wheeled device with wireless internet connectivity for bidirectional audio, video and data transmission. In health care, a telepresence robot could be used to have a clinician or a caregiver assist seniors in their homes without having to travel to these locations. Many mobile telepresence robotic platforms have recently been introduced on the market, bringing mobility to telecommunication and vital sign monitoring at reasonable costs. What is missing for making them effective remote telepresence systems for home care assistance are capabilities specifically needed to assist the remote operator in controlling the robot and perceiving the environment through the robot's sensors or, in other words, minimizing cognitive load and maximizing situation awareness. This paper describes our approach adding navigation, artificial audition and vital sign monitoring capabilities to a commercially available telepresence mobile robot. This requires the use of a robot control architecture to integrate the autonomous and teleoperation capabilities of the platform.

  4. Autonomous detection of ISO fade point with color laser printers

    NASA Astrophysics Data System (ADS)

    Yan, Ni; Maggard, Eric; Fothergill, Roberta; Jessome, Renee J.; Allebach, Jan P.

    2015-01-01

    Image quality assessment is a very important field in image processing. Human observation is slow and subjective, it also requires strict environment setup for the psychological test 1. Thus developing algorithms to match desired human experiments is always in need. Many studies have focused on detecting the fading phenomenon after the materials are printed, that is to monitor the persistence of the color ink 2-4. However, fading is also a common artifact produced by printing systems when the cartridges run low. We want to develop an automatic system to monitor cartridge life and report fading defects when they appear. In this paper, we first describe a psychological experiment that studies the human perspective on printed fading pages. Then we propose an algorithm based on Color Space Projection and K-means clustering to predict the visibility of fading defects. At last, we integrate the psychological experiment result with our algorithm to give a machine learning tool that monitors cartridge life.

  5. Autonomic predictors of recovery following surgery: A comparative study

    PubMed Central

    Williamson, John B.; Lewis, Greg; Grippo, Angela J.; Lamb, Damon; Harden, Emily; Handleman, Mika; Lebow, Jocelyn; Carter, C. Sue; Porges, Stephen W.

    2015-01-01

    Although heart rate and temperature are continuously monitored in patients during recovery following surgery, measures that extract direct manifestations of neural regulation of autonomic circuits from the beat-to-beat heart rate may be more sensitive to outcome. We explore the relationship between features of autonomic regulation and survival in the prairie vole, a small mammal, with features of vagal regulation of the heart similar to humans. Cardiac vagal regulation is manifested in the beat-to-beat heart rate variability (HRV) pattern and can be quantified by extracting measures of the amplitude of periodic oscillations associated with spontaneous breathing. Thus, monitoring beat-to-beat heart rate patterns post-surgery in the prairie vole may provide an opportunity to dynamically assess autonomic adjustments during recovery. Surgeries to implant telemetry devices to monitor body temperature and continuous ECG in prairie voles are routinely performed in our laboratory. Ten of these implanted prairie voles died within 48 h post-surgery. To compare the post-surgery autonomic trajectories with typical surviving prairie voles, the post-surgery data from 17 surviving prairie voles were randomly selected. The data are reported hourly for 27 prairie voles between 6 and 14 h (1 h before the demise of the first subject) post-surgery. Receiver operator curves were calculated hourly for each variable to evaluate sensitivity in discriminating survival. The data illustrate that measures of HRV are the most sensitive indicators. These findings provide a foundation for investigating further neural mechanisms of cardiovascular function. PMID:20451468

  6. Treatment of Post-SCI Hypotension

    ClinicalTrials.gov

    2018-02-15

    Spinal Cord Injury; Autonomic Dysreflexia; Orthostatic Hypotension; Baroreceptor Integrity; Sympathetic Integrity; Vagal Integrity; Hypotension; Cerebral Blood Flow; Blood Pressure; Venous Occlusion Plethysmography

  7. Exploring morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones.

    PubMed

    Gammon, D; Christiansen, E K; Wynn, R

    2009-07-01

    Patient self-management of disease is increasingly supported by technologies that can monitor a wide range of behavioural and biomedical parameters. Incorporated into everyday devices such as cell phones and clothes, these technologies become integral to the psychosocial aspects of everyday life. Many technologies are likely to be marketed directly to families with ill members, and families may enlist the support of clinicians in shaping use. Current ethical frameworks are mainly conceptualised from the perspective of caregivers, researchers, developers and regulators in order to ensure the ethics of their own practices. This paper focuses on families as autonomous decision-makers outside the regulated context of healthcare. We discuss some morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones. An example - remote parental monitoring of adolescent blood glucose - is presented and discussed through the lens of two contrasting accounts of ethics; one reflecting the predominant focus on health outcomes within the health technology assessment (HTA) framework and the other that attends to the broader sociocultural contexts shaping technologies and their implications. Issues discussed include the focus of assessments, informed consent and child assent, and family co-creation of system characteristics and implications. The parents' decisions to remotely monitor their child has relational implications that are likely to influence conflict levels and thus also health outcomes. Current efforts to better integrate outcome assessments with social and ethical assessments are particularly relevant for informed decision-making about health monitoring technologies in families.

  8. Evolution of telemedicine in the space program and earth applications.

    PubMed

    Nicogossian, A E; Pober, D F; Roy, S A

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  9. Transparent Stretchable Self-Powered Patchable Sensor Platform with Ultrasensitive Recognition of Human Activities.

    PubMed

    Hwang, Byeong-Ung; Lee, Ju-Hyuck; Trung, Tran Quang; Roh, Eun; Kim, Do-Il; Kim, Sang-Woo; Lee, Nae-Eung

    2015-09-22

    Monitoring of human activities can provide clinically relevant information pertaining to disease diagnostics, preventive medicine, care for patients with chronic diseases, rehabilitation, and prosthetics. The recognition of strains on human skin, induced by subtle movements of muscles in the internal organs, such as the esophagus and trachea, and the motion of joints, was demonstrated using a self-powered patchable strain sensor platform, composed on multifunctional nanocomposites of low-density silver nanowires with a conductive elastomer of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate/polyurethane, with high sensitivity, stretchability, and optical transparency. The ultra-low-power consumption of the sensor, integrated with both a supercapacitor and a triboelectric nanogenerator into a single transparent stretchable platform based on the same nanocomposites, results in a self-powered monitoring system for skin strain. The capability of the sensor to recognize a wide range of strain on skin has the potential for use in new areas of invisible stretchable electronics for human monitoring. A new type of transparent, stretchable, and ultrasensitive strain sensor based on a AgNW/PEDOT:PSS/PU nanocomposite was developed. The concept of a self-powered patchable sensor system integrated with a supercapacitor and a triboelectric nanogenerator that can be used universally as an autonomous invisible sensor system was used to detect the wide range of strain on human skin.

  10. Evolution of telemedicine in the space program and earth applications

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  11. A Test-Bed Configuration: Toward an Autonomous System

    NASA Astrophysics Data System (ADS)

    Ocaña, F.; Castillo, M.; Uranga, E.; Ponz, J. D.; TBT Consortium

    2015-09-01

    In the context of the Space Situational Awareness (SSA) program of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. In order to fulfill all the security requirements for the TBT project, the use of a autonomous emergency system (AES) is foreseen to monitor the control system. The AES will monitor remotely the health of the observing system and the internal and external environment. It will incorporate both autonomous and interactive actuators to force the protection of the system (i.e., emergency dome close out).

  12. Trust Management in Swarm-Based Autonomic Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.; Haack, Jereme N.; Fink, Glenn A.

    2009-07-07

    Reputation-based trust management techniques can address issues such as insider threat as well as quality of service issues that may be malicious in nature. However, trust management techniques must be adapted to the unique needs of the architectures and problem domains to which they are applied. Certain characteristics of swarms such as their lightweight ephemeral nature and indirect communication make this adaptation especially challenging. In this paper we look at the trust issues and opportunities in mobile agent swarm-based autonomic systems and find that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust managementmore » problem becomes much more scalable and still serves to protect the swarms. We also analyze the applicability of trust management research as it has been applied to architectures with similar characteristics. Finally, we specify required characteristics for trust management mechanisms to be used to monitor the trustworthiness of the entities in a swarm-based autonomic computing system.« less

  13. System and method of self-properties for an autonomous and automatic computer environment

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.

  14. Range Safety for an Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J.; Simpson, James C.

    2010-01-01

    The Range Safety Algorithm software encapsulates the various constructs and algorithms required to accomplish Time Space Position Information (TSPI) data management from multiple tracking sources, autonomous mission mode detection and management, and flight-termination mission rule evaluation. The software evaluates various user-configurable rule sets that govern the qualification of TSPI data sources, provides a prelaunch autonomous hold-launch function, performs the flight-monitoring-and-termination functions, and performs end-of-mission safing

  15. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems

    NASA Astrophysics Data System (ADS)

    Tougher, B. B.

    2011-12-01

    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors within a Wave Glider aft payload dry box. The Wave Glider OA sensor suite includes the addition of a pCO2 standard tank not included within the current OA moorings. Communication links between MBARI electronics and Liquid Robotics Control and Communications were successfully established in the laboratory, however further steps to fully integrate and test the OA system into a Wave Glider ASV are still needed. In the future these ASVs will provide platforms for additional surface and subsurface instrumentation, particularly with MBARI's upcoming Controlled, Agile, and Novel, Observing Network (CANON) projects. The integration of the OA sensor package into a Wave Glider ASV will make it possible to continuously monitor the marine environment during adverse weather conditions which are often difficult to document but scientifically important.

  16. System control of an autonomous planetary mobile spacecraft

    NASA Technical Reports Server (NTRS)

    Dias, William C.; Zimmerman, Barbara A.

    1990-01-01

    The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced.

  17. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors.

    PubMed

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-03-11

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  18. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    PubMed Central

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488

  19. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  20. Recent developments in sensing methods for eutrophying nutrients with a focus on automation for environmental applications.

    PubMed

    Duffy, G; Regan, F

    2017-11-20

    The demand for autonomous sensors for unattended, continuous nutrient monitoring in water is rapidly growing with the increasing need for more frequent and widespread environmental pollution monitoring. Legislative bodies, local authorities and industries all require frequent water quality monitoring, however, this is time and labour intensive, and an expensive undertaking. Autonomous sensors allow for frequent, unattended data collection. While this solves the time and labour intensive aspects of water monitoring, sensors can be very expensive. Development of low-cost sensors is essential to realise the concept of Internet of Things (IoT). However there is much work yet to be done in this field. This article reviews current literature on the research and development efforts towards deployable autonomous sensors for phosphorus (in the form of phosphate) and nitrogen (in the form of nitrate), with a focus on analytical performance and cost considerations. Additionally, some recent sensing approaches that could be automated in the future are included, along with an overview of approaches to monitoring both nutrients. These approaches are compared with standard laboratory methods and also with commercially available sensors for both phosphate and nitrate. Application of nutrient sensors in agriculture is discussed as an example of how sensor networks can provide improvements in decision making.

  1. Monitoring Floods with NASA's ST6 Autonomous Sciencecraft Experiment: Implications on Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Ip, Felipe; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R.

    2005-01-01

    NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.

  2. Selective pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of internal anal sphincter and bladder innervation.

    PubMed

    Kneist, W; Kauff, D W; Koch, K P; Schmidtmann, I; Heimann, A; Hoffmann, K P; Lang, H

    2011-01-01

    Pelvic autonomic nerve preservation avoids postoperative functional disturbances. The aim of this feasibility study was to develop a neuromonitoring system with simultaneous intraoperative verification of internal anal sphincter (IAS) activity and intravesical pressure. 14 pigs underwent low anterior rectal resection. During intermittent bipolar electric stimulation of the inferior hypogastric plexus (IHP) and the pelvic splanchnic nerves (PSN), electromyographic signals of the IAS and manometry of the urinary bladder were observed simultaneously. Stimulation of IHP and PSN as well as simultaneous intraoperative monitoring could be realized with an adapted neuromonitoring device. Neurostimulation resulted in either bladder or IAS activation or concerted activation of both. Intravesical pressure increase as well as amplitude increase of the IAS neuromonitoring signal did not differ significantly between stimulation of IHP and PSN [6.0 cm H(2)O (interquartile range [IQR] 3.5-9.0) vs. 6.0 cm H(2)O (IQR 3.0-10.0) and 12.1 μV (IQR 3.0-36.7) vs. 40.1 μV (IQR 9.0-64.3)] (p > 0.05). Pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of IAS and bladder innervation is feasible. The method may enable neuromonitoring with increasing selectivity for pelvic autonomic nerve preservation. Copyright © 2011 S. Karger AG, Basel.

  3. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  4. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.

  5. Central-Monitor Software Module

    NASA Technical Reports Server (NTRS)

    Bachelder, Aaron; Foster, Conrad

    2005-01-01

    One of the software modules of the emergency-vehicle traffic-light-preemption system of the two preceding articles performs numerous functions for the central monitoring subsystem. This module monitors the states of all units (vehicle transponders and intersection controllers): It provides real-time access to the phases of traffic and pedestrian lights, and maps the positions and states of all emergency vehicles. Most of this module is used for installation and configuration of units as they are added to the system. The module logs all activity in the system, thereby providing information that can be analyzed to minimize response times and optimize response strategies. The module can be used from any location within communication range of the system; with proper configuration, it can also be used via the Internet. It can be integrated into call-response centers, where it can be used for alerting emergency vehicles and managing their responses to specific incidents. A variety of utility subprograms provide access to any or all units for purposes of monitoring, testing, and modification. Included are "sniffer" utility subprograms that monitor incoming and outgoing data for accuracy and timeliness, and that quickly and autonomously shut off malfunctioning vehicle or intersection units.

  6. Autonomous Multi-sensor Coordination: The Science Goal Monitor

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Jung, John; Geiger, Jenny; Grosvenor, Sandy

    2004-01-01

    Next-generation science and exploration systems will employ new observation strategies that will use multiple sensors in a dynamic environment to provide high quality monitoring, self-consistent analyses and informed decision making. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing of earth phenomenon. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe the dynamic phenomena. The SGM system enables users to specify events of interest and how to react when an event is detected. The system monitors streams of data to identify occurrences of the key events previously specified by the scientist/user. When an event occurs, the system autonomously coordinates the execution of the users desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems Aqua/Terra spacecrafts MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM is being used to investigate forest fires, floods and volcanic eruptions. We are now identifying new earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.

  7. Extending the Trans-Contextual Model in Physical Education and Leisure-Time Contexts: Examining the Role of Basic Psychological Need Satisfaction

    ERIC Educational Resources Information Center

    Barkoukis, Vassilis; Hagger, Martin S.; Lambropoulos, George; Tsorbatzoudis, Haralambos

    2010-01-01

    Background: The trans-contextual model (TCM) is an integrated model of motivation that aims to explain the processes by which agentic support for autonomous motivation in physical education promotes autonomous motivation and physical activity in a leisure-time context. It is proposed that perceived support for autonomous motivation in physical…

  8. Improving Human/Autonomous System Teaming Through Linguistic Analysis

    NASA Technical Reports Server (NTRS)

    Meszaros, Erica L.

    2016-01-01

    An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.

  9. Integrated polarization-dependent sensor for autonomous navigation

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Zhang, Ran; Wang, Zhiwen; Guan, Le; Li, Bin; Chu, Jinkui

    2015-01-01

    Based on the navigation strategy of insects utilizing the polarized skylight, an integrated polarization-dependent sensor for autonomous navigation is presented. The navigation sensor has the features of compact structure, high precision, strong robustness, and a simple manufacture technique. The sensor is composed by integrating a complementary-metal-oxide-semiconductor sensor with a multiorientation nanowire grid polarizer. By nanoimprint lithography, the multiorientation nanowire polarizer is fabricated in one step and the alignment error is eliminated. The statistical theory is added to the interval-division algorithm to calculate the polarization angle of the incident light. The laboratory and outdoor tests for the navigation sensor are implemented and the errors of the measured angle are ±0.02 deg and ±1.3 deg, respectively. The results show that the proposed sensor has potential for application in autonomous navigation.

  10. Integrated evaluation of visually induced motion sickness in terms of autonomic nervous regulation.

    PubMed

    Kiryu, Tohru; Tada, Gen; Toyama, Hiroshi; Iijima, Atsuhiko

    2008-01-01

    To evaluate visually-induced motion sickness, we integrated subjective and objective responses in terms of autonomic nervous regulation. Twenty-seven subjects viewed a 2-min-long first-person-view video section five times (total 10 min) continuously. Measured biosignals, the RR interval, respiration, and blood pressure, were used to estimate the indices related to autonomic nervous activity (ANA). Then we determined the trigger points and some sensation sections based on the time-varying behavior of ANA-related indices. We found that there was a suitable combination of biosignals to present the symptoms of visually-induced motion sickness. Based on the suitable combination, integrating trigger points and subjective scores allowed us to represent the time-distribution of subjective responses during visual exposure, and helps us to understand what types of camera motions will cause visually-induced motion sickness.

  11. Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hinchey, Mike; Sterritt, Roy

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring.

  12. Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control

    NASA Astrophysics Data System (ADS)

    Parker, Lynne E.; Pin, Francois G.

    1988-10-01

    The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.

  13. GaAs MOEMS Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SPAHN, OLGA B.; GROSSETETE, GRANT D.; CICH, MICHAEL J.

    2003-03-01

    Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vitalmore » step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.« less

  14. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    DOE PAGES

    Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...

    2011-01-01

    In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less

  15. Ground Operations Autonomous Control and Integrated Health Management

    NASA Technical Reports Server (NTRS)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  16. Highly integrated autonomous lab-on-a-chip device for on-line and in situ determination of environmental chemical parameters.

    PubMed

    Martinez-Cisneros, Cynthia; da Rocha, Zaira; Seabra, Antonio; Valdés, Francisco; Alonso-Chamarro, Julián

    2018-06-05

    The successful integration of sample pretreatment stages, sensors, actuators and electronics in microfluidic devices enables the attainment of complete micro total analysis systems, also known as lab-on-a-chip devices. In this work, we present a novel monolithic autonomous microanalyzer that integrates microfluidics, electronics, a highly sensitive photometric detection system and a sample pretreatment stage consisting on an embedded microcolumn, all in the same device, for on-line determination of relevant environmental parameters. The microcolumn can be filled/emptied with any resin or powder substrate whenever required, paving the way for its application to several analytical processes: separation, pre-concentration or ionic-exchange. To promote its autonomous operation, avoiding issues caused by bubbles in photometric detection systems, an efficient monolithic bubble removal structure was also integrated. To demonstrate its feasibility, the microanalyzer was successfully used to determine nitrate and nitrite in continuous flow conditions, providing real time and continuous information.

  17. Autonomous Energy Grids: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, Benjamin D; Dall-Anese, Emiliano; Bernstein, Andrey

    With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performancemore » while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.« less

  18. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis.

    PubMed

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G

    2014-01-01

    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  19. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control demonstration of intelligent procedures to automatically initialize a rack onboard the International Space Station (ISS) with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures provide a step-by-step messaging paradigm and a high level status upon termination. This messaging and high level status is the only data generated for operator display. To enhance situational awareness of the operator, the Web-based Procedure Display (WebPD) provides a novel approach to the issues of procedure display and execution tracking. For this demonstration, the procedure was initiated and monitored from the ground. As the Timeliner sequences executed, their high level execution status was transmitted to ground, for WebPD consumption.

  20. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    PubMed

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  1. Autonomous software: Myth or magic?

    NASA Astrophysics Data System (ADS)

    Allan, A.; Naylor, T.; Saunders, E. S.

    2008-03-01

    We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.

  2. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae

    PubMed Central

    Jia, Fei; Kacira, Murat; Ogden, Kimberly L.

    2015-01-01

    A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L−1 (1.51 × 108 cells·mL−1) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency. PMID:26364640

  3. Unattended reaction monitoring using an automated microfluidic sampler and on-line liquid chromatography.

    PubMed

    Patel, Darshan C; Lyu, Yaqi Fara; Gandarilla, Jorge; Doherty, Steve

    2018-04-03

    In-process sampling and analysis is an important aspect of monitoring kinetic profiles and impurity formation or rejection, both in development and during commercial manufacturing. In pharmaceutical process development, the technology of choice for a substantial portion of this analysis is high-performance liquid chromatography (HPLC). Traditionally, the sample extraction and preparation for reaction characterization have been performed manually. This can be time consuming, laborious, and impractical for long processes. Depending on the complexity of the sample preparation, there can be variability introduced by different analysts, and in some cases, the integrity of the sample can be compromised during handling. While there are commercial instruments available for on-line monitoring with HPLC, they lack capabilities in many key areas. Some do not provide integration of the sampling and analysis, while others afford limited flexibility in sample preparation. The current offerings provide a limited number of unit operations available for sample processing and no option for workflow customizability. This work describes development of a microfluidic automated program (MAP) which fully automates the sample extraction, manipulation, and on-line LC analysis. The flexible system is controlled using an intuitive Microsoft Excel based user interface. The autonomous system is capable of unattended reaction monitoring that allows flexible unit operations and workflow customization to enable complex operations and on-line sample preparation. The automated system is shown to offer advantages over manual approaches in key areas while providing consistent and reproducible in-process data. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Towards an Autonomous Space In-Situ Marine Sensorweb

    NASA Technical Reports Server (NTRS)

    Chien, S.; Doubleday, J.; Tran, D.; Thompson, D.; Mahoney, G.; Chao, Y.; Castano, R.; Ryan, J.; Kudela, R.; Palacios, S.; hide

    2009-01-01

    We describe ongoing efforts to integrate and coordinate space and marine assets to enable autonomous response to dynamic ocean phenomena such as algal blooms, eddies, and currents. Thus far we have focused on the use of remote sensing assets (e.g. satellites) but future plans include expansions to use a range of in-situ sensors such as gliders, autonomous underwater vehicles, and buoys/moorings.

  5. Information for Successful Interaction with Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  6. Development Of Autonomous Systems

    NASA Astrophysics Data System (ADS)

    Kanade, Takeo

    1989-03-01

    In the last several years at the Robotics Institute of Carnegie Mellon University, we have been working on two projects for developing autonomous systems: Nablab for Autonomous Land Vehicle and Ambler for Mars Rover. These two systems are for different purposes: the Navlab is a four-wheeled vehicle (van) for road and open terrain navigation, and the Ambler is a six-legged locomotor for Mars exploration. The two projects, however, share many common aspects. Both are large-scale integrated systems for navigation. In addition to the development of individual components (eg., construction and control of the vehicle, vision and perception, and planning), integration of those component technologies into a system by means of an appropriate architecture is a major issue.

  7. Conditions for Fully Autonomous Anticipation

    NASA Astrophysics Data System (ADS)

    Collier, John

    2006-06-01

    Anticipation allows a system to adapt to conditions that have not yet come to be, either externally to the system or internally. Autonomous systems actively control the conditions of their own existence so as to increase their overall viability. This paper will first give minimal necessary and sufficient conditions for autonomous anticipation, followed by a taxonomy of autonomous anticipation. In more complex systems, there can be semi-autonomous subsystems that can anticipate and adapt on their own. Such subsystems can be integrated into a system's overall autonomy, typically with greater efficiency due to modularity and specialization of function. However, it is also possible that semi-autonomous subsystems can act against the viability of the overall system, and have their own functions that conflict with overall system functions.

  8. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  9. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    NASA Astrophysics Data System (ADS)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  10. Eigenstandig lernende Schulerinnen und Schuler--Bericht uber ein empirisches Forschungsprojekt = Autonomous Learners--An Empirical Research Project.

    ERIC Educational Resources Information Center

    Beck, Erwin; And Others

    1991-01-01

    Presents results of an experiment enabling students to develop their own cognitive and metacognitive strategies to promote autonomous learning in mathematical problem solving, knowledge acquisition, and written composition. Explains that students dealt with models of teachers' and classmates' cognitive performances and monitored their own…

  11. USE OF A LONG ENDURANCE SOLAR POWERED AUTONOMOUS UNDERWATER VEHICLE (SAUV II) TO MEASURE DISSOLVED OXYGEN CONCENTRATIONS IN GREENWICH BAY, RHODE ISLAND, USA

    EPA Science Inventory

    As hypoxic water masses increase worldwide in duration and extent due to coastal eutrophication, advanced technology water quality monitoring by autonomous vehicles can increase our capability to document and respond to these environmental perturbations. We evaluated the use of a...

  12. What the Academics Have to Do When Colleges in Kerala Become Autonomous

    ERIC Educational Resources Information Center

    Vilanilam, J. V.

    2014-01-01

    After reviewing the history and objectives of higher education briefly, the article suggests that teachers and managers in autonomous colleges have to give special emphasis to a new system of teaching and evaluation involving Syllabus Revision, Distribution of Course Formats in the very first class meeting, Monitoring of Lab and Library…

  13. A GPS-based Real-time Road Traffic Monitoring System

    NASA Astrophysics Data System (ADS)

    Tanti, Kamal Kumar

    In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.

  14. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated coverage. Both would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. UTM is creating an airspace management tool that allows the ATM system to accommodate the number of UAS that will operate in the low altitude airspace. The analogy is just because we have a car, whether its autonomous or someone is driving, does not diminish the need for a road or road signs or rules of the road.

  15. Smart fastener for KC-135 structural integrity monitoring

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Seifert, Greg

    1997-06-01

    Hidden and inaccessible corrosion in aircraft structures is the number-one logistics problem for the U.S. Air Force, with an estimated maintenance cost in excess of $DOL1.0 billion per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system is being developed to provide early warning detection of corrosion- related symptoms in hidden locations of aircraft structures. The SAFE incorporates an in situ measurement approach that measures and autonomously records several environmental conditions (i.e., pH, temperature, chloride, free potential, time-of-wetness) within a Hi-Lok aircraft fastener that could cause corrosion to occur. The SAFE system integrates a miniature electrochemical microsensor array and a time-of- wetness sensor with an ultra-low-power 8-bit microcontroller and 5-Mbyte solid-state FLASH archival memory to measure the evidence of active corrosion. A summary of the technical approach, system design definition, software architecture, and future field test plans will be presented.

  16. Integration of symbolic and algorithmic hardware and software for the automation of space station subsystems

    NASA Technical Reports Server (NTRS)

    Gregg, Hugh; Healey, Kathleen; Hack, Edmund; Wong, Carla

    1987-01-01

    Traditional expert systems, such as diagnostic and training systems, interact with users only through a keyboard and screen, and are usually symbolic in nature. Expert systems that require access to data bases, complex simulations and real-time instrumentation have both symbolic as well as algorithmic computing needs. These needs could both be met using a general purpose workstation running both symbolic and algorithmic code, or separate, specialized computers networked together. The latter approach was chosen to implement TEXSYS, the thermal expert system, developed by NASA Ames Research Center in conjunction with Johnson Space Center to demonstrate the ability of an expert system to autonomously monitor the thermal control system of the space station. TEXSYS has been implemented on a Symbolics workstation, and will be linked to a microVAX computer that will control a thermal test bed. This paper will explore the integration options, and present several possible solutions.

  17. Ridge Regression Signal Processing

    NASA Technical Reports Server (NTRS)

    Kuhl, Mark R.

    1990-01-01

    The introduction of the Global Positioning System (GPS) into the National Airspace System (NAS) necessitates the development of Receiver Autonomous Integrity Monitoring (RAIM) techniques. In order to guarantee a certain level of integrity, a thorough understanding of modern estimation techniques applied to navigational problems is required. The extended Kalman filter (EKF) is derived and analyzed under poor geometry conditions. It was found that the performance of the EKF is difficult to predict, since the EKF is designed for a Gaussian environment. A novel approach is implemented which incorporates ridge regression to explain the behavior of an EKF in the presence of dynamics under poor geometry conditions. The basic principles of ridge regression theory are presented, followed by the derivation of a linearized recursive ridge estimator. Computer simulations are performed to confirm the underlying theory and to provide a comparative analysis of the EKF and the recursive ridge estimator.

  18. Advanced Caution and Warning System, Final Report - 2011

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Aaseng, Gordon; Iverson, David; McCann, Robert S.; Robinson, Peter; Dittemore, Gary; Liolios, Sotirios; Baskaran, Vijay; Johnson, Jeremy; Lee, Charles; hide

    2013-01-01

    The work described in this report is a continuation of the ACAWS work funded in fiscal year (FY) 2010 under the Exploration Technology Development Program (ETDP), Integrated Systems Health Management (ISHM) project. In FY 2010, we developed requirements for an ACAWS system and vetted the requirements with potential users via a concept demonstration system. In FY 2011, we developed a working prototype of aspects of that concept, with placeholders for technologies to be fully developed in future phases of the project. The objective is to develop general capability to assist operators with system health monitoring and failure diagnosis. Moreover, ACAWS was integrated with the Discrete Controls (DC) task of the Autonomous Systems and Avionics (ASA) project. The primary objective of DC is to demonstrate an electronic and interactive procedure display environment and multiple levels of automation (automatic execution by computer, execution by computer if the operator consents, and manual execution by the operator).

  19. Natural Variability and Anthropogenic Trends in the Ocean Carbon Sink

    NASA Astrophysics Data System (ADS)

    McKinley, Galen A.; Fay, Amanda R.; Lovenduski, Nicole S.; Pilcher, Darren J.

    2017-01-01

    Since preindustrial times, the ocean has removed from the atmosphere 41% of the carbon emitted by human industrial activities. Despite significant uncertainties, the balance of evidence indicates that the globally integrated rate of ocean carbon uptake is increasing in response to increasing atmospheric CO2 concentrations. The El Niño-Southern Oscillation in the equatorial Pacific dominates interannual variability of the globally integrated sink. Modes of climate variability in high latitudes are correlated with variability in regional carbon sinks, but mechanistic understanding is incomplete. Regional sink variability, combined with sparse sampling, means that the growing oceanic sink cannot yet be directly detected from available surface data. Accurate and precise shipboard observations need to be continued and increasingly complemented with autonomous observations. These data, together with a variety of mechanistic and diagnostic models, are needed for better understanding, long-term monitoring, and future projections of this critical climate regulation service.

  20. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.

    1984-01-01

    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.

  1. Autonomic neuropathy in an alcoholic population.

    PubMed

    Barter, F; Tanner, A R

    1987-12-01

    Autonomic nervous system integrity has been assessed in 30 alcoholic subjects and 30 age-sex matched controls using five simple tests of cardiovascular responses. There was evidence of parasympathetic neuropathy alone in five of the alcoholic subjects (16%) and of combined parasympathetic and sympathetic neuropathy in an additional six (20%). None of the controls showed any abnormality. Within the alcoholic group, those with autonomic neuropathy were older, were more likely to be female and to have established alcoholic liver disease. Symptoms were a poor guide to the presence or absence of autonomic neuropathy.

  2. Autonomous Sensorweb Operations for Integrated Space, In-Situ Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Doubleday, Joshua; Kedar, Sharon; Davies, Ashley G.; Lahusen, Richard; Song, Wenzhan; Shirazi, Behrooz; Mandl, Daniel; Frye, Stuart

    2010-01-01

    We have deployed and demonstrated operations of an integrated space in-situ sensorweb for monitoring volcanic activity. This sensorweb includes a network of ground sensors deployed to the Mount Saint Helens volcano as well as the Earth Observing One spacecraft. The ground operations and space operations are interlinked in that ground-based intelligent event detections can cause the space segment to acquire additional data via observation requests and space-based data acquisitions (thermal imagery) can trigger reconfigurations of the ground network to allocate increased bandwidth to areas of the network best situated to observe the activity. The space-based operations are enabled by an automated mission planning and tasking capability which utilizes several Opengeospatial Consortium (OGC) Sensorweb Enablement (SWE) standards which enable acquiring data, alerts, and tasking using web services. The ground-based segment also supports similar protocols to enable seamless tasking and data delivery. The space-based segment also supports onboard development of data products (thermal summary images indicating areas of activity, quicklook context images, and thermal activity alerts). These onboard developed products have reduced data volume (compared to the complete images) which enables them to be transmitted to the ground more rapidly in engineering channels.

  3. Increasing Mission Science Return Through Use of Spacecraft Autonomy and Sensor Webs: A Volcanology Example

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Chien, S. A.; Castano, R.; Tran, D. Q.; Scharenbroich, L. J.

    2006-12-01

    Mission science return is increased through use of onboard autonomy, and using disparate assets integrated into an autonomously-operating sensor web that can re-task these assets to rapidly obtain additional data. Software on spacecraft has been used to analyse data to detect dynamic events of high interest, such as on- going volcanic activity. This capability has been successfully demonstrated by the NASA New Millennium Program Autonomous Sciencecraft Experiment (ASE), on the Earth Observing 1 spacecraft in Earth-orbit [1-2]. The potential now exists for eruption parameters to be quantified onboard a spacecraft, using models that relate thermal emission to volumetric eruption rate. This promises a notification not only of on-going activity, but also the magnitude of the event, within a few hours of the original observation, a process that normally takes weeks. ASE/EO-1 is part of the JPL Volcano Sensor Web [3]. This autonomous system collates information of volcanic activity from numerous assets and retasks EO-1 to obtain observations as soon as practicable. The use of a ground-based planner allows rapid insertion or replacement of new observations, with no human intervention. Endusers are notified automatically by email. Spacecraft autonomy, involving automatic fault detection and mitigation, onboard processing of data, and replanning of observations, allows mission operations to break free from pre-ordained operations sequencing, necessary for studying dynamic volcanic processes on other bodies in the Solar System (e.g., Io and Enceladus). Onboard processing allows quantification of dynamic processes, improving both science content per returned byte and optimization of subsequent resource use. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. [1] Chien, S. et al. (2004) The EO-1 Autonomous Science Agent, Proceedings of the 2004 Conferences on Autonomous Agents and Multi-agent Systems (AAMAS), New York City, USA, July 2004. [2] Davies, A. G. et al. (2006) Monitoring active volcanism with the Autonomous Sciencecraft Experiment (ASE) on EO-1, RSE, 101, 427-446. [3] Davies, A. G. et al., (2006) Sensor Web enables rapid response to volcanic activity, Eos, 87, 1, 1&5.

  4. New aspects in electrostimulation of the heart.

    PubMed

    Schaldach, M

    1995-01-01

    The interaction of the autonomic nervous system (ANS) and the heart is characterized by a new interdisciplinary field known as neurocardiology which presents the newest strategy for electro-cardiostimulation. In this context, the reestablishment of chronotropy with physiological, closed-loop pacing, as well as the prevention and treatment of a malignant arrhythmia by ANS modulation, is of the highest priority. The main objective toward this goal consists of appropriate monitoring of the autonomic balance and stimulation, respectively, so that neuromodulation of the cardiac efferents can be established. The electrode, as a sensor and an actuator, with its interface on the cellular level becomes of essential importance. The electrode-myocardium interface is determined by the structure of the Helmholtz double layer with regard to its physical, electrochemical, and physiological behavior. The transportation of electrons across the boundary, as well as the electro-chemical reactions determining the biocompatibility of the interface, can be improved by the microstructure of the solid component by creating a fractal surface coating with titanium-nitride or iridium. Experimental and clinical results have demonstrated that the fractal structure ensures negligible polarization as well as improved detection performance, thus, detecting the evoked response of the myocardial cells makes it possible to monitor the neural response of the myocardium as a consequence of a superimposed chronotropic disturbance. The stimulation electrode also monitors the sympathetic activity extracted from intracardiac impedance measurements, thereby providing a new principle of rate adaptation in which the pacemaker is an integral part of the ANS, reestablishing normal chronotropy. Further advantages of the improved electrode interface performance open new aspects in the treatment and prevention of tachyarrhythmia, and in the follow-up of transplanted hearts for the prevention of the rejection processes.

  5. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources.

    PubMed

    Liu, Yu-Ting; Pal, Nikhil R; Marathe, Amar R; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems.

  6. Fuzzy Decision-Making Fuser (FDMF) for Integrating Human-Machine Autonomous (HMA) Systems with Adaptive Evidence Sources

    PubMed Central

    Liu, Yu-Ting; Pal, Nikhil R.; Marathe, Amar R.; Wang, Yu-Kai; Lin, Chin-Teng

    2017-01-01

    A brain-computer interface (BCI) creates a direct communication pathway between the human brain and an external device or system. In contrast to patient-oriented BCIs, which are intended to restore inoperative or malfunctioning aspects of the nervous system, a growing number of BCI studies focus on designing auxiliary systems that are intended for everyday use. The goal of building these BCIs is to provide capabilities that augment existing intact physical and mental capabilities. However, a key challenge to BCI research is human variability; factors such as fatigue, inattention, and stress vary both across different individuals and for the same individual over time. If these issues are addressed, autonomous systems may provide additional benefits that enhance system performance and prevent problems introduced by individual human variability. This study proposes a human-machine autonomous (HMA) system that simultaneously aggregates human and machine knowledge to recognize targets in a rapid serial visual presentation (RSVP) task. The HMA focuses on integrating an RSVP BCI with computer vision techniques in an image-labeling domain. A fuzzy decision-making fuser (FDMF) is then applied in the HMA system to provide a natural adaptive framework for evidence-based inference by incorporating an integrated summary of the available evidence (i.e., human and machine decisions) and associated uncertainty. Consequently, the HMA system dynamically aggregates decisions involving uncertainties from both human and autonomous agents. The collaborative decisions made by an HMA system can achieve and maintain superior performance more efficiently than either the human or autonomous agents can achieve independently. The experimental results shown in this study suggest that the proposed HMA system with the FDMF can effectively fuse decisions from human brain activities and the computer vision techniques to improve overall performance on the RSVP recognition task. This conclusion demonstrates the potential benefits of integrating autonomous systems with BCI systems. PMID:28676734

  7. NASA NDE Applications for Mobile MEMS Devices and Sensors

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.; Barclay, R. O.

    2008-01-01

    NASA would like new devices and sensors for performing nondestructive evaluation (NDE) of aerospace vehicles. These devices must be small in size/volume, mass, and power consumption. The devices must be autonomous and mobile so they can access the internal structures of aircraft and spacecraft and adequately monitor the structural health of these craft. The platforms must be mobile in order to transport NDE sensors for evaluating structural integrity and determining whether further investigations will be required. Microelectromechanical systems (MEMS) technology is crucial to the development of the mobile platforms and sensor systems. This paper presents NASA s needs for micro mobile platforms and MEMS sensors that will enable NDE to be performed on aerospace vehicles.

  8. Feasibility Study of a Vision-Based Landing System for Unmanned Fixed-Wing Aircraft

    DTIC Science & Technology

    2017-06-01

    International Journal of Computer Science and Network Security 7 no. 3: 112–117. Accessed April 7, 2017. http://www.sciencedirect.com/science/ article /pii...the feasibility of applying computer vision techniques and visual feedback in the control loop for an autonomous system. This thesis examines the...integration into an autonomous aircraft control system. 14. SUBJECT TERMS autonomous systems, auto-land, computer vision, image processing

  9. Real-time path planning and autonomous control for helicopter autorotation

    NASA Astrophysics Data System (ADS)

    Yomchinda, Thanan

    Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.

  10. Automated Power Systems Management (APSM)

    NASA Technical Reports Server (NTRS)

    Bridgeforth, A. O.

    1981-01-01

    A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.

  11. Development of autonomous gamma dose logger for environmental monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.

    2012-03-15

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less

  12. Development of autonomous gamma dose logger for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.

    2012-03-01

    Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.

  13. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Astrophysics Data System (ADS)

    Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.

  14. Development of High Fidelity Mobility Simulation of an Autonomous Vehicle in an Off-Road Scenario Using Integrated Sensor, Controller, and Multi-Body Dynamics

    DTIC Science & Technology

    2011-08-04

    AND MULTI-BODY DYNAMICS Jayakumar , Smith, Ross, Jategaonkar, Konarzewski 4 August 2011 UNCLASSIFIED: Distribution Statement A. Approved for public...Autonomous Vehicle in an Off-Road Scenario Using Integrated Sensor, Controller, and Multi-Body Dynamics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Cannot neglect vehicle dynamics 4 August 2011 3 UNCLASSIFIED Importance of Simulation Fidelity • Performance evaluation requires entire system

  15. Instrumentation and Control Needs for Reliable Operation of Lunar Base Surface Nuclear Power Systems

    NASA Technical Reports Server (NTRS)

    Turso, James; Chicatelli, Amy; Bajwa, Anupa

    2005-01-01

    As one of the near-term goals of the President's Vision for Space Exploration, establishment of a multi-person lunar base will require high-endurance power systems which are independent of the sun, and can operate without replenishment for several years. These requirements may be obtained using nuclear power systems specifically designed for use on the lunar surface. While it is envisioned that such a system will generally be supervised by humans, some of the evolutions required maybe semi or fully autonomous. The entire base complement for near-term missions may be less than 10 individuals, most or all of which may not be qualified nuclear plant operators and may be off-base for extended periods thus, the need for power system autonomous operation. Startup, shutdown, and load following operations will require the application of advanced control and health management strategies with an emphasis on robust, supervisory, coordinated control of, for example, the nuclear heat source, energy conversion plant (e.g., Brayton Energy Conversion units), and power management system. Autonomous operation implies that, in addition to being capable of automatic response to disturbance input or load changes, the system is also capable of assessing the status of the integrated plant, determining the risk associated with the possible actions, and making a decision as to the action that optimizes system performance while minimizing risk to the mission. Adapting the control to deviations from design conditions and degradation due to component failures will be essential to ensure base inhabitant safety and mission success. Intelligent decisions will have to be made to choose the right set of sensors to provide the data needed to do condition monitoring and fault detection and isolation because of liftoff weight and space limitations, it will not be possible to have an extensive set of instruments as used for earth-based systems. Advanced instrumentation and control technologies will be needed to enable this critical functionality of autonomous operation. It will be imperative to consider instrumentation and control requirements in parallel to system configuration development so as to identify control-related, as well as integrated system-related, problem areas early to avoid potentially expensive work-arounds . This paper presents an overview of the enabling technologies necessary for the development of reliable, autonomous lunar base nuclear power systems with an emphasis on system architectures and off-the-shelf algorithms rather than hardware. Autonomy needs are presented in the context of a hypothetical lunar base nuclear power system. The scenarios and applications presented are hypothetical in nature, based on information from open-literature sources, and only intended to provoke thought and provide motivation for the use of autonomous, intelligent control and diagnostics.

  16. Relative receiver autonomous integrity monitoring for future GNSS-based aircraft navigation

    NASA Astrophysics Data System (ADS)

    Gratton, Livio Rafael

    The Global Positioning System (GPS) has enabled reliable, safe, and practical aircraft positioning for en-route and non-precision phases of flight for more than a decade. Intense research is currently devoted to extending the use of Global Navigation Satellite Systems (GNSS), including GPS, to precision approach and landing operations. In this context, this work is focused on the development, analysis, and verification of the concept of Relative Receiver Autonomous Integrity Monitoring (RRAIM) and its potential applications to precision approach navigation. RRAIM fault detection algorithms are developed, and associated mathematical bounds on position error are derived. These are investigated as possible solutions to some current key challenges in precision approach navigation, discussed below. Augmentation systems serving continent-size areas (like the Wide Area Augmentation System or WAAS) allow certain precision approach operations within the covered region. More and better satellites, with dual frequency capabilities, are expected to be in orbit in the mid-term future, which will potentially allow WAAS-like capabilities worldwide with a sparse ground station network. Two main challenges in achieving this goal are (1) ensuring that navigation fault detection functions are fast enough to alert worldwide users of hazardously misleading information, and (2) minimizing situations in which navigation is unavailable because the user's local satellite geometry is insufficient for safe position estimation. Local augmentation systems (implemented at individual airports, like the Local Area Augmentation System or LAAS) have the potential to allow precision approach and landing operations by providing precise corrections to user-satellite range measurements. An exception to these capabilities arises during ionospheric storms (caused by solar activity), when hazardous situations can exist with residual range errors several orders of magnitudes higher than nominal. Until dual frequency civil GPS signals are available, the ability to provide integrity during ionospheric storms, without excessive loss of availability is a major challenge. For all users, with or without augmentation, some situations cause short duration losses of satellites in view. Two examples are aircraft banking during turns and ionospheric scintillation. The loss of range signals can translate into gaps in good satellite geometry, and the resulting challenge is to ensure navigation continuity by bridging these gaps, while simultaneously maintaining high integrity. It is shown that the RRAIM methods developed in this research can be applied to mitigate each of these obstacles to safe and reliable precision aircraft navigation.

  17. Multi-organ autonomic dysfunction in Parkinson disease

    PubMed Central

    2010-01-01

    Both pathologic and clinical studies of autonomic pathways have expanded the concept of Parkinson disease (PD) from a movement disorder to a multi-level widespread neurodegenerative process with non-motor features spanning several organ systems. This review integrates neuropathologic findings and autonomic physiology in PD as it relates to end organ autonomic function. Symptoms, pathology and physiology of the cardiovascular, skin/sweat gland, urinary, gastrointestinal, pupillary and neuroendocrine systems can be probed by autopsy, biopsy and non-invasive electrophysiological techniques in vivo which assess autonomic anatomy and function. There is mounting evidence that PD affects a chain of neurons in autonomic pathways. Consequently, autonomic physiology may serve as a window into non-motor PD progression and allow the development of mechanistically based treatment strategies for several non-motor features of PD. End-organ physiologic markers may be used to inform a model of PD pathophysiology and non-motor progression. PMID:20851033

  18. Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse

    PubMed Central

    Abboud, Talal; Bamsey, Matthew; Paul, Anna-Lisa; Graham, Thomas; Braham, Stephen; Noumeir, Rita; Berinstain, Alain; Ferl, Robert

    2013-01-01

    Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated. PMID:23486220

  19. High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

    PubMed Central

    Yang, V W; Marks, J A; Davis, B P; Jeffries, T W

    1994-01-01

    This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063

  20. The planning coordinator: A design architecture for autonomous error recovery and on-line planning of intelligent tasks

    NASA Technical Reports Server (NTRS)

    Farah, Jeffrey J.

    1992-01-01

    Developing a robust, task level, error recovery and on-line planning architecture is an open research area. There is previously published work on both error recovery and on-line planning; however, none incorporates error recovery and on-line planning into one integrated platform. The integration of these two functionalities requires an architecture that possesses the following characteristics. The architecture must provide for the inclusion of new information without the destruction of existing information. The architecture must provide for the relating of pieces of information, old and new, to one another in a non-trivial rather than trivial manner (e.g., object one is related to object two under the following constraints, versus, yes, they are related; no, they are not related). Finally, the architecture must be not only a stand alone architecture, but also one that can be easily integrated as a supplement to some existing architecture. This thesis proposal addresses architectural development. Its intent is to integrate error recovery and on-line planning onto a single, integrated, multi-processor platform. This intelligent x-autonomous platform, called the Planning Coordinator, will be used initially to supplement existing x-autonomous systems and eventually replace them.

  1. A quadcopter with heterogeneous sensors for autonomous bridge inspection.

    DOT National Transportation Integrated Search

    2014-02-01

    Continuously monitoring a bridges health by sensor technologies has been widely used to maintain the operation of : a : roadwork while protecting public users safety. However, monitoring and inspecting numerous bridges in a state is a labor : -...

  2. Health monitoring of Japanese payload specialist: Autonomic nervous and cardiovascular responses under reduced gravity condition (L-0)

    NASA Technical Reports Server (NTRS)

    Sekiguchi, Chiharu

    1993-01-01

    In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.

  3. Consensus statement on the definition of neurogenic supine hypertension in cardiovascular autonomic failure by the American Autonomic Society (AAS) and the European Federation of Autonomic Societies (EFAS) : Endorsed by the European Academy of Neurology (EAN) and the European Society of Hypertension (ESH).

    PubMed

    Fanciulli, Alessandra; Jordan, Jens; Biaggioni, Italo; Calandra-Buonaura, Giovanna; Cheshire, William P; Cortelli, Pietro; Eschlboeck, Sabine; Grassi, Guido; Hilz, Max J; Kaufmann, Horacio; Lahrmann, Heinz; Mancia, Giuseppe; Mayer, Gert; Norcliffe-Kaufmann, Lucy; Pavy-Le Traon, Anne; Raj, Satish R; Robertson, David; Rocha, Isabel; Struhal, Walter; Thijs, Roland; Tsioufis, Konstantinos P; van Dijk, J Gert; Wenning, Gregor K

    2018-05-15

    Patients suffering from cardiovascular autonomic failure often develop neurogenic supine hypertension (nSH), i.e., high blood pressure (BP) in the supine position, which falls in the upright position owing to impaired autonomic regulation. A committee was formed to reach consensus among experts on the definition and diagnosis of nSH in the context of cardiovascular autonomic failure. As a first and preparatory step, a systematic search of PubMed-indexed literature on nSH up to January 2017 was performed. Available evidence derived from this search was discussed in a consensus expert round table meeting in Innsbruck on February 16, 2017. Statements originating from this meeting were further discussed by representatives of the American Autonomic Society and the European Federation of Autonomic Societies and are summarized in the document presented here. The final version received the endorsement of the European Academy of Neurology and the European Society of Hypertension. In patients with neurogenic orthostatic hypotension, nSH is defined as systolic BP ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg, measured after at least 5 min of rest in the supine position. Three severity degrees are recommended: mild, moderate and severe. nSH may also be present during nocturnal sleep, with reduced-dipping, non-dipping or rising nocturnal BP profiles with respect to mean daytime BP values. Home BP monitoring and 24-h-ambulatory BP monitoring provide relevant information for a customized clinical management. The establishment of expert-based criteria to define nSH should standardize diagnosis and allow a better understanding of its epidemiology, prognosis and, ultimately, treatment.

  4. ACCA College English Teaching Mode

    ERIC Educational Resources Information Center

    Ding, Renlun

    2008-01-01

    This paper elucidates a new college English teaching mode--"ACCA" (Autonomous Cooperative Class-teaching All-round College English Teaching Mode). Integrated theories such as autonomous learning and cooperative learning into one teaching mode, "ACCA", which is being developed and advanced in practice as well, is the achievement…

  5. Incorporating Manual and Autonomous Code Generation

    NASA Technical Reports Server (NTRS)

    McComas, David

    1998-01-01

    Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.

  6. Bright light therapy for depression: A review of its effects on chronobiology and the autonomic nervous system

    PubMed Central

    Oldham, Mark A.; Ciraulo, Domenic A.

    2017-01-01

    Bright light therapy (BLT) is considered among the first-line treatments for seasonal affective disorder (SAD), yet a growing body of literature supports its use in other neuropsychiatric conditions including non-seasonal depression. Despite evidence of its antidepressant efficacy, clinical use of BLT remains highly variable internationally. In this article, we explore the autonomic effects of BLT and suggest that such effects may play a role in its antidepressant and chronotherapeutic properties. After providing a brief introduction on the clinical application of BLT, we review the chronobiological effects of BLT on depression and on the autonomic nervous system in depressed and non-depressed individuals with an emphasis on non-seasonal depression. Such a theory of autonomic modulation via BLT could serve to integrate aspects of recent work centered on alleviating allostatic load, the polyvagal theory, the neurovisceral integration model and emerging evidence on the roles of glutamate and gamma-hydroxybutyric acid (GABA). PMID:24397276

  7. Bright light therapy for depression: a review of its effects on chronobiology and the autonomic nervous system.

    PubMed

    Oldham, Mark A; Ciraulo, Domenic A

    2014-04-01

    Bright light therapy (BLT) is considered among the first-line treatments for seasonal affective disorder (SAD), yet a growing body of literature supports its use in other neuropsychiatric conditions including non-seasonal depression. Despite evidence of its antidepressant efficacy, clinical use of BLT remains highly variable internationally. In this article, we explore the autonomic effects of BLT and suggest that such effects may play a role in its antidepressant and chronotherapeutic properties. After providing a brief introduction on the clinical application of BLT, we review the chronobiological effects of BLT on depression and on the autonomic nervous system in depressed and non-depressed individuals with an emphasis on non-seasonal depression. Such a theory of autonomic modulation via BLT could serve to integrate aspects of recent work centered on alleviating allostatic load, the polyvagal theory, the neurovisceral integration model and emerging evidence on the roles of glutamate and gamma-hydroxybutyric acid (GABA).

  8. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 6: Controls and guidance

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings from the Space Systems and Technology Advisory Committee (SSTAC)/ARTS review of the draft Integrated Technology Plan (ITP) on controls and guidance are included. Topics covered include: strategic avionics technology planning and bridging programs; avionics technology plan; vehicle health management; spacecraft guidance research; autonomous rendezvous and docking; autonomous landing; computational control; fiberoptic rotation sensors; precision instrument and telescope pointing; microsensors and microinstruments; micro guidance and control initiative; and earth-orbiting platforms controls-structures interaction.

  9. Secure, Autonomous, Intelligent Controller for Integrating Distributed Sensor Webs

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    This paper describes the infrastructure and protocols necessary to enable near-real-time commanding, access to space-based assets, and the secure interoperation between sensor webs owned and controlled by various entities. Select terrestrial and aeronautics-base sensor webs will be used to demonstrate time-critical interoperability between integrated, intelligent sensor webs both terrestrial and between terrestrial and space-based assets. For this work, a Secure, Autonomous, Intelligent Controller and knowledge generation unit is implemented using Virtual Mission Operation Center technology.

  10. Integrated Microsensors for Autonomous Microrobots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ADKINS, DOUGLAS R.; BYRNE, RAYMOND H.; HELLER, EDWIN J.

    2003-02-01

    This report describes the development of a miniature mobile microrobot device and several microsystems needed to create a miniature microsensor delivery platform. This work was funded under LDRD No.10785, entitled, ''Integrated Microsensors for Autonomous Microrobots''. The approach adopted in this project was to develop a mobile platform, to which would be attached wireless RF remote control and data acquisition in addition to various microsensors. A modular approach was used to produce a versatile microrobot platform and reduce power consumption and physical size.

  11. Secure, Autonomous, Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.

    2013-01-01

    This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.

  12. Estimating movement and survival rates of a small saltwater fish using autonomous antenna receiver arrays and passive integrated transponder tags

    USGS Publications Warehouse

    Rudershausen, Paul J.; Buckel, Jeffery A.; Dubreuil, Todd; O'Donnell, Matthew J.; Hightower, Joseph E.; Poland, Steven J.; Letcher, Benjamin H.

    2014-01-01

    We evaluated the performance of small (12.5 mm long) passive integrated transponder (PIT) tags and custom detection antennas for obtaining fine-scale movement and demographic data of mummichog Fundulus heteroclitus in a salt marsh creek. Apparent survival and detection probability were estimated using a Cormack Jolly Seber (CJS) model fitted to detection data collected by an array of 3 vertical antennas from November 2010 to March 2011 and by a single horizontal antenna from April to August 2011. Movement of mummichogs was monitored during the period when the array of vertical antennas was used. Antenna performance was examined in situ using tags placed in wooden dowels (drones) and in live mummichogs. Of the 44 tagged fish, 42 were resighted over the 9 mo monitoring period. The in situ detection probabilities of the drone and live mummichogs were high (~80-100%) when the ambient water depth was less than ~0.8 m. Upstream and downstream movement of mummichogs was related to hourly water depth and direction of tidal current in a way that maximized time periods over which mummichogs utilized the intertidal vegetated marsh. Apparent survival was lower during periods of colder water temperatures in December 2010 and early January 2011 (median estimate of daily apparent survival = 0.979) than during other periods of the study (median estimate of daily apparent survival = 0.992). During late fall and winter, temperature had a positive effect on the CJS detection probability of a tagged mummichog, likely due to greater fish activity over warmer periods. During the spring and summer, this pattern reversed possibly due to mummichogs having reduced activity during the hottest periods. This study demonstrates the utility of PIT tags and continuously operating autonomous detection systems for tracking fish at fine temporal scales, and improving estimates of demographic parameters in salt marsh creeks that are difficult or impractical to sample with active fishing gear.

  13. Ikhana: A NASA UAS Supporting Long Duration Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    2006-01-01

    NASA's Ikhana unmanned aerial vehicle (UAV) is a General Atomics MQ-9 Predator-B modified to support the conduct of Earth science missions for the NASA Science Mission Directorate through partnerships, other government agencies and universities. Ikhana, a Native American word meaning 'intelligence', can carry over 2000 lbs of atmospheric and remote sensing instruments in the payload bay and external pods. The aircraft is capable of mission durations in excess of 24 hours at altitudes above 40,000 ft. Redundant flight control, avionics, power, and network systems increase the system reliability and allow easier access to public airspace. The aircraft is remotely piloted from a mobile ground control station (GCS) using both C-band line-of-sight and Ku-band over-the-horizon satellite datalinks. NASA's GCS has been modified to support on-site science monitoring, or the downlink data can be networked to remote sites. All ground support systems are designed to be deployable to support global Eart science investigations. On-board support capabilities include an instrumentation system and an Airborne Research Test System (ARTS). The ARTS can host research algorithms that will autonomously command and control on-board sensors, perform sensor health monitoring, conduct data analysis, and request changes to the flight plan to maximize data collection. The ARTS also has the ability to host algorithms that will autonomously control the aircraft trajectory based on sensor needs, (e.g. precision trajectory for repeat pass interferometry) or to optimize mission objectives (e.g. search for specific atmospheric conditions). Standard on-board networks will collect science data for recording and for inclusion in the aircraft's high bandwidth downlink. The Ikhana project will complete GCS development, science support systems integration, external pod integration and flight clearance, and operations crew training in early 2007. A large-area remote sensing mission is currently scheduled for the Summer 2007.

  14. Results from the Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by Spacecraft

    NASA Astrophysics Data System (ADS)

    Doubleday, J.; Behar, A.; Davies, A.; Mora-Vargas, A.; Tran, D.; Abtahi, A.; Pieri, D. C.; Boudreau, K.; Cecava, J.

    2008-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors were incorporated into expendable "Volcano Monitor" capsules and placed downwind of the Pu'u 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors were collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. When SO2 readings exceeded a predetermined threshold, the modem within the Volcano Monitor sent an alert to the Sensor Web, and triggered a request for prompt Earth Observing-1 (EO-1) spacecraft data acquisition. The Volcano Monitors were also triggered by the Sensor Web in response to an eruption detection by the MODIS instrument on Terra. During these pre- defined "critical events" the Sensor Web ordered the SO2 sensors within the Volcano Monitor to increase their sampling frequency to every 5 minutes (high power "burst mode"). Autonomous control of the sensors' sampling frequency enabled the Sensor Web to monitor and respond to rapidly evolving conditions, and allowed rapid compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1 and 5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We also especially thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable scientific guidance and logistical assistance.

  15. Use of Semi-Autonomous Tools for ISS Commanding and Monitoring

    NASA Technical Reports Server (NTRS)

    Brzezinski, Amy S.

    2014-01-01

    As the International Space Station (ISS) has moved into a utilization phase, operations have shifted to become more ground-based with fewer mission control personnel monitoring and commanding multiple ISS systems. This shift to fewer people monitoring more systems has prompted use of semi-autonomous console tools in the ISS Mission Control Center (MCC) to help flight controllers command and monitor the ISS. These console tools perform routine operational procedures while keeping the human operator "in the loop" to monitor and intervene when off-nominal events arise. Two such tools, the Pre-positioned Load (PPL) Loader and Automatic Operators Recorder Manager (AutoORM), are used by the ISS Communications RF Onboard Networks Utilization Specialist (CRONUS) flight control position. CRONUS is responsible for simultaneously commanding and monitoring the ISS Command & Data Handling (C&DH) and Communications and Tracking (C&T) systems. PPL Loader is used to uplink small pieces of frequently changed software data tables, called PPLs, to ISS computers to support different ISS operations. In order to uplink a PPL, a data load command must be built that contains multiple user-input fields. Next, a multiple step commanding and verification procedure must be performed to enable an onboard computer for software uplink, uplink the PPL, verify the PPL has incorporated correctly, and disable the computer for software uplink. PPL Loader provides different levels of automation in both building and uplinking these commands. In its manual mode, PPL Loader automatically builds the PPL data load commands but allows the flight controller to verify and save the commands for future uplink. In its auto mode, PPL Loader automatically builds the PPL data load commands for flight controller verification, but automatically performs the PPL uplink procedure by sending commands and performing verification checks while notifying CRONUS of procedure step completion. If an off-nominal condition occurs during procedure execution, PPL Loader notifies CRONUS through popup messages, allowing CRONUS to examine the situation and choose an option of how PPL loader should proceed with the procedure. The use of PPL Loader to perform frequent, routine PPL uplinks offloads CRONUS to better monitor two ISS systems. It also reduces procedure performance time and decreases risk of command errors. AutoORM identifies ISS communication outage periods and builds commands to lock, playback, and unlock ISS Operations Recorder files. Operation Recorder files are circular buffer files of continually recorded ISS telemetry data. Sections of these files can be locked from further writing, be played back to capture telemetry data that occurred during an ISS loss of signal (LOS) period, and then be unlocked for future recording use. Downlinked Operation Recorder files are used by mission support teams for data analysis, especially if failures occur during LOS. The commands to lock, playback, and unlock Operations Recorder files are encompassed in three different operational procedures and contain multiple user-input fields. AutoORM provides different levels of automation for building and uplinking the commands to lock, playback, and unlock Operations Recorder files. In its automatic mode, AutoORM automatically detects ISS LOS periods, then generates and uplinks the commands to lock, playback, and unlock Operations Recorder files when MCC regains signal with ISS. AutoORM also features semi-autonomous and manual modes which integrate CRONUS more into the command verification and uplink process. AutoORMs ability to automatically detect ISS LOS periods and build the necessary commands to preserve, playback, and release recorded telemetry data greatly offloads CRONUS to perform more high-level cognitive tasks, such as mission planning and anomaly troubleshooting. Additionally, since Operations Recorder commands contain numerical time input fields which are tedious for a human to manually build, AutoORM's ability to automatically build commands reduces operational command errors. PPL Loader and AutoORM demonstrate principles of semi-autonomous operational tools that will benefit future space mission operations. Both tools employ different levels of automation to perform simple and routine procedures, thereby offloading human operators to perform higher-level cognitive tasks. Because both tools provide procedure execution status and highlight off-nominal indications, the flight controller is able to intervene during procedure execution if needed. Semi-autonomous tools and systems that can perform routine procedures, yet keep human operators informed of execution, will be essential in future long-duration missions where the onboard crew will be solely responsible for spacecraft monitoring and control.

  16. Autonomous Power System intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  17. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  18. Preliminary Analyses of Beidou Signal-In Anomaly Since 2013

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Ren, J.; Liu, W.

    2016-06-01

    As BeiDou navigation system has been operational since December 2012. There is an increasing desire to use multiple constellation to improve positioning performance. The signal-in-space (SIS) anomaly caused by the ground control and the space vehicle is one of the major threats to affect the integrity. For a young Global Navigation Satellite System, knowledge about SIS anomalies in history is very important for not only assessing the SIS integrity performance of a constellation but also providing the assumption for ARAIM (Advanced Receiver Autonomous Integrity Monitoring). In this paper, the broadcast ephemerides and the precise ones are pre-processed for avoiding the false anomaly identification. The SIS errors over the period of Mar. 2013-Feb. 2016 are computed by comparing the broadcast ephemerides with the precise ones. The time offsets between GPST (GPS time) and BDT (BeiDou time) are estimated and removed by an improved estimation algorithm. SIS worst-UREs are computed and a RMS criteria are investigated to identify the SIS anomalies. The results show that the probability of BeiDou SIS anomalies is in 10-3 level in last three years. Even though BeiDou SIS integrity performance currently cannot match the GPS integrity performances, the result indicates that BeiDou has a tendency to improve its integrity performance.

  19. Autonomous vertical autorotation for unmanned helicopters

    NASA Astrophysics Data System (ADS)

    Dalamagkidis, Konstantinos

    Small Unmanned Aircraft Systems (UAS) are considered the stepping stone for the integration of civil unmanned vehicles in the National Airspace System (NAS) because of their low cost and risk. Such systems are aimed at a variety of applications including search and rescue, surveillance, communications, traffic monitoring and inspection of buildings, power lines and bridges. Amidst these systems, small helicopters play an important role because of their capability to hold a position, to maneuver in tight spaces and to take off and land from virtually anywhere. Nevertheless civil adoption of such systems is minimal, mostly because of regulatory problems that in turn are due to safety concerns. This dissertation examines the risk to safety imposed by UAS in general and small helicopters in particular, focusing on accidents resulting in a ground impact. To improve the performance of small helicopters in this area, the use of autonomous autorotation is proposed. This research goes beyond previous work in the area of autonomous autorotation by developing an on-line, model-based, real-time controller that is capable of handling constraints and different cost functions. The approach selected is based on a non-linear model-predictive controller, that is augmented by a neural network to improve the speed of the non-linear optimization. The immediate benefit of this controller is that a class of failures that would otherwise result in an uncontrolled crash and possible injuries or fatalities can now be accommodated. Furthermore besides simply landing the helicopter, the controller is also capable of minimizing the risk of serious injury to people in the area. This is accomplished by minimizing the kinetic energy during the last phase of the descent. The presented research is designed to benefit the entire UAS community as well as the public, by allowing for safer UAS operations, which in turn also allow faster and less expensive integration of UAS in the NAS.

  20. A Model for Field Deployment of Wireless Sensor Networks (WSNs) within the Domain of Microclimate Habitat Monitoring

    ERIC Educational Resources Information Center

    Sanborn, Mark

    2011-01-01

    Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…

  1. A Primer on Autonomous Aerial Vehicle Design

    PubMed Central

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  2. A Primer on Autonomous Aerial Vehicle Design.

    PubMed

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-12-02

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  3. A new integrated instrumental approach to autonomic nervous system assessment.

    PubMed

    Corazza, I; Barletta, G; Guaraldi, P; Cecere, A; Calandra-Buonaura, G; Altini, E; Zannoli, R; Cortelli, P

    2014-11-01

    The autonomic nervous system (ANS) regulates involuntary body functions and is commonly evaluated by measuring reflex responses of systolic and diastolic blood pressure (BP) and heart rate (HR) to physiological and pharmacological stimuli. However, BP and HR values may not sufficient be to explain specific ANS events and other parameters like the electrocardiogram (ECG), BP waves, the respiratory rate and the electroencephalogram (EEG) are mandatory. Although ANS behaviour and its response to stimuli are well-known, their clinical evaluation is often based on individual medical training and experience. As a result, ANS laboratories have been customized, making it impossible to standardize procedures and share results with colleagues. The aim of our study was to build a powerful versatile instrument easy-to-use in clinical practice to standardize procedures and allow a cross-analysis of all the parameters of interest for ANS evaluation. The new ANScovery System developed by neurologists and technicians is a two-step device: (1) integrating physiological information from different already existing commercial modules, making it possible to cross-analyse, store and share data; (2) standardizing procedures by an innovative tutor monitor able to guide the patient throughout ANS testing. The daily use of the new ANScovery System in clinical practice has proved it is a versatile easy to use instrument. Standardization of the manoeuvres and step-by-step guidance throughout the procedure avoid repetitions and allow intra and inter-patient data comparison. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Modern and prospective technologies for weather modification activities: Developing a framework for integrating autonomous unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    DeFelice, T. P.; Axisa, Duncan

    2017-09-01

    This paper builds upon the processes and framework already established for identifying, integrating and testing an unmanned aircraft system (UAS) with sensing technology for use in rainfall enhancement cloud seeding programs to carry out operational activities or to monitor and evaluate seeding operations. We describe the development and assessment methodologies of an autonomous and adaptive UAS platform that utilizes in-situ real time data to sense, target and implement seeding. The development of a UAS platform that utilizes remote and in-situ real-time data to sense, target and implement seeding deployed with a companion UAS ensures optimal, safe, secure, cost-effective seeding operations, and the dataset to quantify the results of seeding. It also sets the path for an innovative, paradigm shifting approach for enhancing precipitation independent of seeding mode. UAS technology is improving and their application in weather modification must be explored to lay the foundation for future implementation. The broader significance lies in evolving improved technology and automating cloud seeding operations that lowers the cloud seeding operational footprint and optimizes their effectiveness and efficiency, while providing the temporal and spatial sensitivities to overcome the predictability or sparseness of environmental parameters needed to identify conditions suitable for seeding, and how such might be implemented. The dataset from the featured approach will contain data from concurrent Eulerian and Lagrangian perspectives over sub-cloud scales that will facilitate the development of cloud seeding decision support tools.

  5. Extending the trans-contextual model in physical education and leisure-time contexts: examining the role of basic psychological need satisfaction.

    PubMed

    Barkoukis, Vassilis; Hagger, Martin S; Lambropoulos, George; Tsorbatzoudis, Haralambos

    2010-12-01

    The trans-contextual model (TCM) is an integrated model of motivation that aims to explain the processes by which agentic support for autonomous motivation in physical education promotes autonomous motivation and physical activity in a leisure-time context. It is proposed that perceived support for autonomous motivation in physical education is related to autonomous motivation in physical education and leisure-time contexts. Furthermore, relations between autonomous motivation and the immediate antecedents of intentions to engage in physical activity behaviour and actual behaviour are hypothesized. The purpose of the present study was to incorporate the constructs of basic psychological need satisfaction in the TCM to provide a more comprehensive explanation of motivation and demonstrate the robustness of the findings of previous tests of the model that have not incorporated these constructs. Students (N=274) from Greek secondary schools. Participants completed self-report measures of perceived autonomy support, autonomous motivation, and basic psychological need satisfaction in physical education. Follow-up measures of these variables were taken in a leisure-time context along with measures of attitudes, subjective norms, perceived behavioural control (PBC), and intentions from the theory of planned behaviour 1 week later. Self-reported physical activity behaviour was measured 4 weeks later. Results supported TCM hypotheses. Basic psychological need satisfaction variables uniquely predicted autonomous motivation in physical education and leisure time as well as the antecedents of intention, namely, attitudes, and PBC. The basic psychological need satisfaction variables also mediated the effects of perceived autonomy support on autonomous motivation in physical education. Findings support the TCM and provide further information of the mechanisms in the model and integrated theories of motivation in physical education and leisure time.

  6. Automation study for space station subsystems and mission ground support

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.

  7. The use of multisensor data for robotic applications

    NASA Technical Reports Server (NTRS)

    Abidi, M. A.; Gonzalez, R. C.

    1990-01-01

    The feasibility of realistic autonomous space manipulation tasks using multisensory information is shown through two experiments involving a fluid interchange system and a module interchange system. In both cases, autonomous location of the mating element, autonomous location of the guiding light target, mating, and demating of the system were performed. Specifically, vision-driven techniques were implemented to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. The robotic system was also equipped with a force/torque sensor that continuously monitored the six components of force and torque exerted on the end effector. Using vision, force, torque, proximity, and touch sensors, the two experiments were completed successfully and autonomously.

  8. A fuzzy logic control in adjustable autonomy of a multi-agent system for an automated elderly movement monitoring application.

    PubMed

    Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A

    2018-04-01

    Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Scheduling lessons learned from the Autonomous Power System

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.

    1992-01-01

    The Autonomous Power System (APS) project at NASA LeRC is designed to demonstrate the applications of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution systems. The project consists of three elements: the Autonomous Power Expert System (APEX) for Fault Diagnosis, Isolation, and Recovery (FDIR); the Autonomous Intelligent Power Scheduler (AIPS) to efficiently assign activities start times and resources; and power hardware (Brassboard) to emulate a space-based power system. The AIPS scheduler was tested within the APS system. This scheduler is able to efficiently assign available power to the requesting activities and share this information with other software agents within the APS system in order to implement the generated schedule. The AIPS scheduler is also able to cooperatively recover from fault situations by rescheduling the affected loads on the Brassboard in conjunction with the APEX FDIR system. AIPS served as a learning tool and an initial scheduling testbed for the integration of FDIR and automated scheduling systems. Many lessons were learned from the AIPS scheduler and are now being integrated into a new scheduler called SCRAP (Scheduler for Continuous Resource Allocation and Planning). This paper will service three purposes: an overview of the AIPS implementation, lessons learned from the AIPS scheduler, and a brief section on how these lessons are being applied to the new SCRAP scheduler.

  10. Autonomous Multi-Sensor Coordination: The Science Goal Monitor

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Hess, Melissa; Jones, Jeremy

    2004-01-01

    Many dramatic earth phenomena are dynamic and coupled. In order to fully understand them, we need to obtain timely coordinated multi-sensor observations from widely dispersed instruments. Such a dynamic observing system must include the ability to Schedule flexibly and react autonomously to sciencehser driven events; Understand higher-level goals of a sciencehser defined campaign; Coordinate various space-based and ground-based resources/sensors effectively and efficiently to achieve goals. In order to capture transient events, such a 'sensor web' system must have an automated reactive capability built into its scientific operations. To do this, we must overcome a number of challenges inherent in infusing autonomy. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe dynamic phenomena. The SGM system enables users to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of data to identify occurrences of the key events previously specified by the scientisther. When an event occurs, the system autonomously coordinates the execution of the users' desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems' Aqua/Terra spacecrafts' MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM was used to investigate forest fires, floods and volcanic eruptions. We are now identifying new Earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.

  11. Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation

    NASA Astrophysics Data System (ADS)

    El-Diasty, M.

    2017-10-01

    Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after 42 minutes of convergence time for Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking, respectively. Moreover, the misleading information is about 2 % for all navigation phases that is considered less safe is not in immediate danger because the horizontal position error is less than the navigation alert limits.

  12. Systems autonomy

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1988-01-01

    Information on systems autonomy is given in viewgraph form. Information is given on space systems integration, intelligent autonomous systems, automated systems for in-flight mission operations, the Systems Autonomy Demonstration Project on the Space Station Thermal Control System, the architecture of an autonomous intelligent system, artificial intelligence research issues, machine learning, and real-time image processing.

  13. An Integrated Performance-Based Budgeting Model for Thai Higher Education

    ERIC Educational Resources Information Center

    Charoenkul, Nantarat; Siribanpitak, Pruet

    2012-01-01

    This research mainly aims to develop an administrative model of performance-based budgeting for autonomous state universities. The sample population in this study covers 4 representatives of autonomous state universities from 4 regions of Thailand, where the performance-based budgeting system has been fully practiced. The research informants…

  14. Design of an integrated aerial image sensor

    NASA Astrophysics Data System (ADS)

    Xue, Jing; Spanos, Costas J.

    2005-05-01

    The subject of this paper is a novel integrated aerial image sensor (IAIS) system suitable for integration within the surface of an autonomous test wafer. The IAIS could be used as a lithography processing monitor, affording a "wafer's eye view" of the process, and therefore facilitating advanced process control and diagnostics without integrating (and dedicating) the sensor to the processing equipment. The IAIS is composed of an aperture mask and an array of photo-detectors. In order to retrieve nanometer scale resolution of the aerial image with a practical photo-detector pixel size, we propose a design of an aperture mask involving a series of spatial phase "moving" aperture groups. We demonstrate a design example aimed at the 65nm technology node through TEMPEST simulation. The optimized, key design parameters include an aperture width in the range of 30nm, aperture thickness in the range of 70nm, and offer a spatial resolution of about 5nm, all with comfortable fabrication tolerances. Our preliminary simulation work indicates the possibility of the IAIS being applied to the immersion lithography. A bench-top far-field experiment verifies that our approach of the spatial frequency down-shift through forming large Moire patterns is feasible.

  15. Development of Algorithms for Control of Humidity in Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Costello, Thomas A.

    2003-01-01

    Algorithms were developed to control humidity in plant growth chambers used for research on bioregenerative life support at Kennedy Space Center. The algorithms used the computed water vapor pressure (based on measured air temperature and relative humidity) as the process variable, with time-proportioned outputs to operate the humidifier and de-humidifier. Algorithms were based upon proportional-integral-differential (PID) and Fuzzy Logic schemes and were implemented using I/O Control software (OPTO-22) to define and download the control logic to an autonomous programmable logic controller (PLC, ultimate ethernet brain and assorted input-output modules, OPTO-22), which performed the monitoring and control logic processing, as well the physical control of the devices that effected the targeted environment in the chamber. During limited testing, the PLC's successfully implemented the intended control schemes and attained a control resolution for humidity of less than 1%. The algorithms have potential to be used not only with autonomous PLC's but could also be implemented within network-based supervisory control programs. This report documents unique control features that were implemented within the OPTO-22 framework and makes recommendations regarding future uses of the hardware and software for biological research by NASA.

  16. The unique observing capabilities of the Swift x-ray telescope

    NASA Astrophysics Data System (ADS)

    Hill, J. E.; Angelini, L.; Morris, D. C.; Burrows, D. N.; Abbey, A. F.; Campana, S.; Capalbi, M.; Cusumano, G.; Kennea, J. A.; Klar, R.; Mangels, C.; Moretti, A.; Osborne, J. P.; Perri, M.; Racusin, J.; Tagliaferri, G.; Tamburelli, F.; Wood, P.; Nousek, J. A.; Wells, A.

    2005-08-01

    The XRT is a sensitive, autonomous X-ray imaging spectrometer onboard the Swift Gamma-Ray Burst Observatory. The unique observing capabilities of the XRT allow it to autonomously refine the Swift BAT positions (~1-4' uncertainty) to better than 2.5 arcsec in XRT detector coordinates, within 5 seconds of target acquisition by the Swift Observatory for typical bursts, and to measure the flux, spectrum, and light curve of GRBs and afterglows over a wide dynamic range covering more than seven orders of magnitude in flux (62 Crab to < 1 mCrab). The results of the rapid positioning capability of the XRT are presented here for both known sources and newly discovered GRBs, demonstrating the ability to automatically utilise one of two integration times according to the burst brightness, and to correct the position for alignment offsets caused by the fast pointing performance and variable thermal environment of the satellite as measured by the Telescope Alignment Monitor. The onboard results are compared to the positions obtained by groundbased follow-up. After obtaining the position, the XRT switches between four CCD readout modes, automatically optimising the scientific return from the source depending on the flux of the GRB. Typical data products are presented here.

  17. The unique observing capabilities of the Swift x-ray telescope

    NASA Astrophysics Data System (ADS)

    Hill, J. E.; Angelini, L.; Morris, D. C.; Burrows, D. N.; Abbey, A. F.; Campana, S.; Cusumano, G.; Kennea, J. A.; Klar, R.; Mangels, C.; Moretti, A.; Perri, M.; Racusin, J.; Tagliaferri, G.; Tamburelli, F.; Wood, P.; Nousek, J. A.; Wells, A.

    2005-01-01

    The XRT is a sensitive, autonomous X-ray imaging spectrometer onboard the Swift Gamma-Ray Burst Observatory. The unique observing capabilities of the XRT allow it to autonomously refine the Swift BAT positions (~1-4' uncertainty) to better than 2.5 arcsec in XRT detector coordinates, within 5 seconds of target acquisition by the Swift Observatory for typical bursts, and to measure the flux, spectrum, and light curve of GRBs and afterglows over a wide dynamic range covering more than seven orders of magnitude in flux (62 Crab to < 1 mCrab). The results of the rapid positioning capability of the XRT are presented here for both known sources and newly discovered GRBs, demonstrating the ability to automatically utilise one of two integration times according to the burst brightness, and to correct the position for alignment offsets caused by the fast pointing performance and variable thermal environment of the satellite as measured by the Telescope Alignment Monitor. The onboard results are compared to the positions obtained by groundbased follow-up. After obtaining the position, the XRT switches between four CCD readout modes, automatically optimising the scientific return from the source depending on the flux of the GRB. Typical data products are presented here.

  18. Implementation of a robotic flexible assembly system

    NASA Technical Reports Server (NTRS)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  19. The Dawning of the Ethics of Environmental Robots.

    PubMed

    van Wynsberghe, Aimee; Donhauser, Justin

    2017-10-23

    Environmental scientists and engineers have been exploring research and monitoring applications of robotics, as well as exploring ways of integrating robotics into ecosystems to aid in responses to accelerating environmental, climatic, and biodiversity changes. These emerging applications of robots and other autonomous technologies present novel ethical and practical challenges. Yet, the critical applications of robots for environmental research, engineering, protection and remediation have received next to no attention in the ethics of robotics literature to date. This paper seeks to fill that void, and promote the study of environmental robotics. It provides key resources for further critical examination of the issues environmental robots present by explaining and differentiating the sorts of environmental robotics that exist to date and identifying unique conceptual, ethical, and practical issues they present.

  20. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    NASA Technical Reports Server (NTRS)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  1. Vestibular autonomic regulation (including motion sickness and the mechanism of vomiting)

    NASA Technical Reports Server (NTRS)

    Balaban, C. D.

    1999-01-01

    Autonomic manifestations of vestibular dysfunction and motion sickness are well established in the clinical literature. Recent studies of 'vestibular autonomic regulation' have focused predominantly on autonomic responses to stimulation of the vestibular sense organs in the inner ear. These studies have shown that autonomic responses to vestibular stimulation are regionally selective and have defined a 'vestibulosympathetic reflex' in animal experiments. Outside the realm of experimental preparations, however, the importance of vestibular inputs in autonomic regulation is unclear because controls for secondary factors, such as affective/emotional responses and cardiovascular responses elicited by muscle contraction and regional blood pooling, have been inadequate. Anatomic and physiologic evidence of an extensive convergence of vestibular and autonomic information in the brainstem suggests though that there may be an integrated representation of gravitoinertial acceleration from vestibular, somatic, and visceral receptors for somatic and visceral motor control. In the case of vestibular dysfunction or motion sickness, the unpleasant visceral manifestations (e.g. epigastric discomfort, nausea or vomiting) may contribute to conditioned situational avoidance and the development of agoraphobia.

  2. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    NASA Technical Reports Server (NTRS)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  3. A smart dust biosensor powered by kinesin motors.

    PubMed

    Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry

    2009-03-01

    Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.

  4. Prediction of autonomic dysreflexia during urodynamics: a prospective cohort study.

    PubMed

    Walter, Matthias; Knüpfer, Stephanie C; Cragg, Jacquelyn J; Leitner, Lorenz; Schneider, Marc P; Mehnert, Ulrich; Krassioukov, Andrei V; Schubert, Martin; Curt, Armin; Kessler, Thomas M

    2018-04-13

    Autonomic dysreflexia is a severe and potentially life-threatening condition in patients with spinal cord injury, as it can lead to myocardial ischemia, brain hemorrhage, or even death. Urodynamic investigation is the gold standard to assess neurogenic lower urinary tract dysfunction due to spinal cord injury and reveal crucial pathological findings, such as neurogenic detrusor overactivity. However, neurogenic detrusor overactivity and urodynamic investigation are known to be leading triggers of autonomic dysreflexia. Therefore, we aimed to determine predictors of autonomic dysreflexia in individuals with spinal cord injury during urodynamic investigation. This prospective cohort study included 300 patients with spinal cord injuries and complete datasets of continuous non-invasive cardiovascular monitoring, recorded during same session repeat urodynamic investigation. We used logistic regression to reveal predictors of autonomic dysreflexia during urodynamic investigation. We found that level of injury and presence of neurogenic detrusor overactivity were the only two independent significant predictors for autonomic dysreflexia during urodynamic investigation. A lesion at spinal segment T6 or above (odds ratio (OR) 5.5, 95% CI 3.2-9.4) compared to one at T7 or below, and presence of neurogenic detrusor overactivity (OR 2.7, 95% confidence interval (CI) 1.4-4.9) were associated with a significant increased odds of autonomic dysreflexia during urodynamic investigation. Both odds persisted after adjustment for age, sex, and completeness and stage of injury (adjusted OR (AOR) 6.6, 95% CI 3.8-11.7, and AOR 2.2, 95% CI 1.1-4.5, respectively). Further stratification by lesion level showed level-dependent significantly increased adjusted odds of autonomic dysreflexia, i.e., from C1-C4 (AOR 16.2, 95% CI 5.9-57.9) to T4-T6 (AOR 2.6, 95% CI 1.3-5.2), compared to lesions at T7 or below. In patients with neurogenic lower urinary tract dysfunction due to spinal cord injury, autonomic dysreflexia is independently predicted by lesion level and presence of neurogenic detrusor overactivity. Considering the health risks associated with autonomic dysreflexia, such as seizures, stroke, retinal bleeding, or even death, we recommend both continuous cardiovascular monitoring during urodynamic investigation in all spinal cord-injured patients with emphasis on those with cervical lesions, and appropriate neurogenic detrusor overactivity treatment to reduce the probability of potentially life-threatening complications. ClinicalTrials.gov, NCT01293110 .

  5. HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.

    PubMed

    Jeong, In Cheol; Finkelstein, Joseph

    2014-01-01

    Spectral analysis of heart rate variability (HRV) has been widely used to investigate activity of autonomous nervous system. Previous studies demonstrated potential of analysis of short-term sequences of heart rate data in a time domain for continuous monitoring of levels of physiological stress however the value of HRV parameters in frequency domain for monitoring cycling exercise has not been established. The goal of this study was to assess whether HRV parameters in frequency domain differ depending on a stage of cycling exercise. We compared major HRV parameters in high, low and very low frequency ranges during rest, height of exercise, and recovery during cycling exercise. Our results indicated responsiveness of frequency-domain indices to different phases of cycling exercise program and their potential in monitoring autonomic balance and stress levels as a part of a tailored home-based telerehabilitation program.

  6. On-Orbit Measurements of the ISS Atmosphere by the Vehicle Cabin Atmosphere Monitor

    NASA Technical Reports Server (NTRS)

    Darrach, M. R.; Chutjian, A.; Bornstein, B. J.; Croonquist, A. P.; Garkanian, V.; Haemmerle, V. R.; Hofman, J.; Heinrichs, W. M.; Karmon, D.; Kenny, J.; hide

    2011-01-01

    We report on trace gas and major atmospheric constituents results obtained by the Vehicle Cabin Atmosphere Monitor (VCAM) during operations aboard the International Space Station (ISS). VCAM is an autonomous environmental monitor based on a miniature gas chromatograph/mass spectrometer. It was flown to the ISS on shuttle mission STS-131 and commenced operations on 6/10/10. VCAM provides measurements of ppb-to-ppm levels of volatile trace-gas constituents, and of the atmospheric major constituents (nitrogen, oxygen, argon, and carbon dioxide) in a space vehicle or station. It is designed to operate autonomously and maintenance-free, approximately once per day, with a self-contained gas supply sufficient for a one-year lifetime. VCAM is designed to detect and identify 90% of the target compounds at their 180-day Spacecraft Maximum Allowable Concentration levels.

  7. Coincident Above- and Below-ground Autonomous Monitoring to Quantify Co-variability in Permafrost, Soil and Vegetation Properties in Arctic Tundra: Supporting Data

    DOE Data Explorer

    Baptiste Dafflon; Rusen Oktem; John Peterson; Craig Ulrich; Anh Phuong Tran; Vladimir Romanovsky; Susan Hubbard

    2017-05-10

    The dataset contains measurements obtained through electrical resistivity tomography (ERT) to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness and soil dielectric permittivity.

  8. Integration of X-band SAR interferometry, continuous and periodic D-GPS and in-place inclinometers to characterize and monitor a deep-seated earthslide in the Dolomites (Italy)

    NASA Astrophysics Data System (ADS)

    Mulas, Marco; Corsini, Alessandro; Soldati, Mauro; Marcato, Gianluca; Pasuto, Alessandro; Crespi, Mattia; Mazzoni, Augusto; Benedetti, Elisa; Branzanti, Mara; Manunta, Michele; Ojha, Chandrakanta; Chinellato, Giulia; Cuozzo, Giovanni; Costa, Armin; Monsorno, Roberto; Thiebes, Benni; Piantelli, Elena; Magnani, Massimo; Meroni, Marco; Mair, Volkmar

    2015-04-01

    The Corvara landslide is an active, large-scale, deep-seated and slow moving earthslide of about 30 Mm3 located in the Dolomites (Italy). It is frequently damaging a national road and, occasionally, isolated buildings and recreational ski facilities. Since the mid '90s it has been mapped, dated and monitored thanks to field surveys, boreholes, radiocarbon dating, inclinometers, piezometers and periodic D-GPS measurements, carried out by the Geology and the Forestry Planning offices of the Autonomous Province of Bolzano, the Municipality of Corvara in Badia, the University of Modena and Reggio Emilia, the IRPI-CNR of Padua. In 2013, a new phase of characterization and monitoring has started which also involves the EURAC's Institute for Applied Remote Sensing, the geodesy group of University La Sapienza, the CNR-IREA of Naples and the Leica Geosystems office in Italy. This new phase of characterization and monitoring is meant to investigate the opportunities of innovative SAR interferometry, D-GPS and in-place inclinometers techniques to provide for a high frequency monitoring of the study site in support to the analysis of the investigation of forcing factors leading unsteady, nonuniform landslide motion through different seasons of the year. Monitoring results are also expected to provide a validation of innovative interferometric techniques so to fully evaluate their conformity to be used as a long-term monitoring system in land-use planning and risk management procedures. The monitoring infrastructure now integrates: 16 Corner Reflector for satellite X-Band SAR interferometric products, 13 benchmarks for D-GPS periodic surveys, three on-site GPS receivers for continuous positioning and remote ftp data pushing, two in-place inclinometers and a pressure transducer to record pore-pressure variations. The coupling of SAR-based products with GPS records is achieved using especially designed Corner Reflectors having an appendix dedicated to hold Dual-Frequency GPS antennas. COSMO-SkyMed X-Band SAR acquisitions started on October 2013 and are ongoing with a temporal resolution of 16 days using STRIPMAP (HIMAGE) measuring mode. Discontinuous D-GPS Fast-Static surveys are scheduled with a triple frequency: annual for 24 points outside recent activation areas, monthly for 13 points in the active zone and a bi-weekly for 6 points located in the most active zone. Displacement high-frequency data are acquired thank to the installation of 3 Dual-Frequency GPS in permanent acquisition that have been located in the accumulation, track and source zone of the active portion of the landslide. High frequency data are also obtained by the two inclinometers operating in continuous acquisition located across the main slide surface at 48 m depth into a 90 m borehole drilled in the accumulation zone. A piezometer installed in the source zone and the meteorological station of Piz La Ila (3 km far away) of the Autonomous Province of Bolzano complete the system. The poster presents the infrastructural details of the monitoring network, the technical characteristics of data acquisition systems, the data processing procedures and the latest ongoing results.

  9. INS integrated motion analysis for autonomous vehicle navigation

    NASA Technical Reports Server (NTRS)

    Roberts, Barry; Bazakos, Mike

    1991-01-01

    The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.

  10. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  11. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle (STV)

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  12. Project Integration Architecture as a Foundation for Autonomous Solution Systems: The Postulation of a Meaningful "SolveYourself" Method

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2005-01-01

    The Project Integration Architecture (PIA) uses object-oriented technology to implement self-revelation and semantic infusion through class derivation. That is, the kind of an object can be discovered through program inquiry and the well-known, well-defined meaning of that object can be utilized as a result of that discovery. This technology has already been demonstrated by the PIA effort in its parameter object classes. It is proposed that, by building on this technology, an autonomous, automatic, goal-seeking, solution system may be devised.

  13. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-07-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  14. Directional MAC approach for wireless body area networks.

    PubMed

    Hussain, Md Asdaque; Alam, Md Nasre; Kwak, Kyung Sup

    2011-01-01

    Wireless Body Area Networks (WBANs) designed for medical, sports, and entertainment applications, have drawn the attention of academia and industry alike. A WBAN is a special purpose network, designed to operate autonomously to connect various medical sensors and appliances, located inside and/or outside of a human body. This network enables physicians to remotely monitor vital signs of patients and provide real time feedback for medical diagnosis and consultations. The WBAN system can offer two significant advantages: patient mobility due to their use of portable monitoring devices and a location independent monitoring facility. With its appealing dimensions, it brings about a new set of challenges, which we do not normally consider in such small sensor networks. It requires a scalable network in terms of heterogeneous data traffic, low power consumption of sensor nodes, integration in and around the body networking and coexistence. This work presents a medium access control protocol for WBAN which tries to overcome the aforementioned challenges. We consider the use of multiple beam adaptive arrays (MBAA) at BAN Coordinator (BAN_C) node. When used as a BAN_C, an MBAA can successfully receive two or more overlapping packets at the same time. Each beam captures a different packet by automatically pointing its pattern toward one packet while annulling other contending packets. This paper describes how an MBAA can be integrated into a single hope star topology as a BAN_C. Simulation results show the performance of our proposed protocol.

  15. Maturation of Structural Health Management Systems for Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Quing, Xinlin; Beard, Shawn; Zhang, Chang

    2011-01-01

    Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.

  16. Software for autonomous astronomical observatories: challenges and opportunities in the age of big data

    NASA Astrophysics Data System (ADS)

    Sybilski, Piotr W.; Pawłaszek, Rafał; Kozłowski, Stanisław K.; Konacki, Maciej; Ratajczak, Milena; Hełminiak, Krzysztof G.

    2014-07-01

    We present the software solution developed for a network of autonomous telescopes, deployed and tested in Solaris Project. The software aims to fulfil the contemporary needs of distributed autonomous observatories housing medium sized telescopes: ergonomics, availability, security and reusability. The datafication of such facilities seems inevitable and we give a preliminary study of the challenges and opportunities waiting for software developers. Project Solaris is a global network of four 0.5 m autonomous telescopes conducting a survey of eclipsing binaries in the Southern Hemisphere. The Project's goal is to detect and characterise circumbinary planets using the eclipse timing method. The observatories are located on three continents, and the headquarters coordinating and monitoring the network is in Poland. All four are operational as of December 2013.

  17. A Low-Cost, In Situ Resistivity and Temperature Monitoring System

    EPA Science Inventory

    We present a low-cost, reliable method for long-term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with close electrode spacing. Once i...

  18. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  19. Autonomous smart sensor network for full-scale structural health monitoring

    NASA Astrophysics Data System (ADS)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  20. A network of autonomous surface ozone monitors in Antarctica: technical description and first results

    NASA Astrophysics Data System (ADS)

    Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.

    2009-12-01

    Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.

  1. Determination of elementary first integrals of a generalized Raychaudhuri equation by the Darboux integrability method

    NASA Astrophysics Data System (ADS)

    Choudhury, A. Ghose; Guha, Partha; Khanra, Barun

    2009-10-01

    The Darboux integrability method is particularly useful to determine first integrals of nonplanar autonomous systems of ordinary differential equations, whose associated vector fields are polynomials. In particular, we obtain first integrals for a variant of the generalized Raychaudhuri equation, which has appeared in string inspired modern cosmology.

  2. Trust and Influence

    DTIC Science & Technology

    2012-03-05

    DISTRIBUTION A: Approved for public release; distribution is unlimited. Program Trends •Trust in Autonomous Systems • Cross - cultural Trust...Trust & trustworthiness are independent (Mayer et al, 1995) •Trust is relational •Humans in cross - cultural interactions •Complex human-machine...Interpersonal Trustworthiness •Ability •Benevolence •Integrity Trust Metrics Cross - Cultural Trust Issues Human-Machine Interactions Autonomous

  3. Automation and robotics

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin

    1988-01-01

    The Autonomous Systems focus on the automation of control systems for the Space Station and mission operations. Telerobotics focuses on automation for in-space servicing, assembly, and repair. The Autonomous Systems and Telerobotics each have a planned sequence of integrated demonstrations showing the evolutionary advance of the state-of-the-art. Progress is briefly described for each area of concern.

  4. Autonomous Learning through Task-Based Instruction in Fully Online Language Courses

    ERIC Educational Resources Information Center

    Lee, Lina

    2016-01-01

    This study investigated the affordances for autonomous learning in a fully online learning environment involving the implementation of task-based instruction in conjunction with Web 2.0 technologies. To that end, four-skill-integrated tasks and digital tools were incorporated into the coursework. Data were collected using midterm reflections,…

  5. Integrated System for Autonomous Science

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Robert; Tran, Daniel; Cichy, Benjamin; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Frye, Stuart; Trout, Bruce; Shulman, Seth; hide

    2006-01-01

    The New Millennium Program Space Technology 6 Project Autonomous Sciencecraft software implements an integrated system for autonomous planning and execution of scientific, engineering, and spacecraft-coordination actions. A prior version of this software was reported in "The TechSat 21 Autonomous Sciencecraft Experiment" (NPO-30784), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 33. This software is now in continuous use aboard the Earth Orbiter 1 (EO-1) spacecraft mission and is being adapted for use in the Mars Odyssey and Mars Exploration Rovers missions. This software enables EO-1 to detect and respond to such events of scientific interest as volcanic activity, flooding, and freezing and thawing of water. It uses classification algorithms to analyze imagery onboard to detect changes, including events of scientific interest. Detection of such events triggers acquisition of follow-up imagery. The mission-planning component of the software develops a response plan that accounts for visibility of targets and operational constraints. The plan is then executed under control by a task-execution component of the software that is capable of responding to anomalies.

  6. An embedded wireless system for remote monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Harms, T.; Bastianini, F.; Sedigh Sarvestani, S.

    2008-03-01

    This paper describes an autonomous embedded system for remote monitoring of bridges. Salient features of the system include ultra-low power consumption, wireless communication of data and alerts, and incorporation of embedded sensors that monitor various indicators of the structural health of a bridge, while capturing the state of its surrounding environment. Examples include water level, temperature, vibration, and acoustic emissions. Ease of installation, physical robustness, remote maintenance and calibration, and autonomous data communication make the device a self-contained solution for remote monitoring of structural health. The system addresses shortcomings present in centralized structural health monitoring systems, particularly their reliance on a laptop or handheld computer. The system has been field-tested to verify the accuracy of the collected data and dependability of communication. The sheer volume of data collected, and the regularity of its collection can enable accurate and precise assessment of the health of a bridge, guiding maintenance efforts and providing early warning of potentially dangerous events. In this paper, we present a detailed breakdown of the system's power requirements and the results of the initial field test.

  7. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  8. Enhanced pain and autonomic responses to ambiguous visual stimuli in chronic Complex Regional Pain Syndrome (CRPS) type I.

    PubMed

    Cohen, H E; Hall, J; Harris, N; McCabe, C S; Blake, D R; Jänig, W

    2012-02-01

    Cortical reorganisation of sensory, motor and autonomic systems can lead to dysfunctional central integrative control. This may contribute to signs and symptoms of Complex Regional Pain Syndrome (CRPS), including pain. It has been hypothesised that central neuroplastic changes may cause afferent sensory feedback conflicts and produce pain. We investigated autonomic responses produced by ambiguous visual stimuli (AVS) in CRPS, and their relationship to pain. Thirty CRPS patients with upper limb involvement and 30 age and sex matched healthy controls had sympathetic autonomic function assessed using laser Doppler flowmetry of the finger pulp at baseline and while viewing a control figure or AVS. Compared to controls, there were diminished vasoconstrictor responses and a significant difference in the ratio of response between affected and unaffected limbs (symmetry ratio) to a deep breath and viewing AVS. While viewing visual stimuli, 33.5% of patients had asymmetric vasomotor responses and all healthy controls had a homologous symmetric pattern of response. Nineteen (61%) CRPS patients had enhanced pain within seconds of viewing the AVS. All the asymmetric vasomotor responses were in this group, and were not predictable from baseline autonomic function. Ten patients had accompanying dystonic reactions in their affected limb: 50% were in the asymmetric sub-group. In conclusion, there is a group of CRPS patients that demonstrate abnormal pain networks interacting with central somatomotor and autonomic integrational pathways. © 2011 European Federation of International Association for the Study of Pain Chapters.

  9. Digital autonomous terminal access communications

    NASA Technical Reports Server (NTRS)

    Novacki, S.

    1987-01-01

    A significant problem for the Bus Monitor Unit is to identify the source of a given transmission. This problem arises from the fact that the label which identifies the source of the transmission as it is put into the bus is intercepted by the Digital Autonomous Terminal Access Communications (DATAC) terminal and removed from the transmission. Thus, a given subsystem will see only data associated with a label and never the identifying label itself. The Bus Monitor must identify the source of the transmission so as to be able to provide some type of error identification/location in the event that some problem with the data transmission occurs. Steps taken to alleviate this problem by modifications to the DATAC terminal are discussed.

  10. Special Section on InterPACK 2017—Part 1

    DOE PAGES

    Mysore, Kaushik; Narumanchi, Sreekant; Dede, Ercan; ...

    2018-03-02

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  11. Concurrent planning and execution for a walking robot

    NASA Astrophysics Data System (ADS)

    Simmons, Reid

    1990-07-01

    The Planetary Rover project is developing the Ambler, a novel legged robot, and an autonomous software system for walking the Ambler over rough terrain. As part of the project, we have developed a system that integrates perception, planning, and real-time control to navigate a single leg of the robot through complex obstacle courses. The system is integrated using the Task Control Architecture (TCA), a general-purpose set of utilities for building and controlling distributed mobile robot systems. The walking system, as originally implemented, utilized a sequential sense-plan-act control cycle. This report describes efforts to improve the performance of the system by concurrently planning and executing steps. Concurrency was achieved by modifying the existing sequential system to utilize TCA features such as resource management, monitors, temporal constraints, and hierarchical task trees. Performance was increased in excess of 30 percent with only a relatively modest effort to convert and test the system. The results lend support to the utility of using TCA to develop complex mobile robot systems.

  12. Special Section on InterPACK 2017—Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mysore, Kaushik; Narumanchi, Sreekant; Dede, Ercan

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  13. Guest Editorial: Special Section on InterPACK 2017 - Part 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant V; Mysore, Kaushik; Dede, Ercan

    InterPACK is a premier international forum for exchange of state-of-the-art knowledge in research, development, manufacturing, and applications of micro-electronics packaging. It is the flagship conference of the ASME Electronic and Photonic Packaging Division (EPPD) founded in 1992 as an ASME-JSME joint biannual conference. Rapid changes in the semiconductor landscape together with findings from InterPACK Pathfinding workshop (IPW) in 2016 led to a significant reset of InterPACK conference priorities and focus to comprehensively address needs of the InterPACK community. As a result, starting in 2017, InterPACK has become an annual conference and the scope of the conference has increased significantly togethermore » with a systems-focus to include some of the most cutting-edge topics in electronics packaging, device integration, and reliability. These topics are organized across five different tracks: (1) heterogeneous integration: microsystems with diverse functionality, (2) servers of the future, (3) structural and physical health monitoring, (4) energy conversion and storage, and (5) transportation: autonomous and electric vehicles.« less

  14. Monitoring and Correcting Autonomic Function Aboard Mir: NASA Technology Used in Space and on Earth to Facilitate Adaptation

    NASA Technical Reports Server (NTRS)

    Cowings, P.; Toscano, W.; Taylor, B.; DeRoshia, C.; Kornilova, L.; Koslovskaya, I.; Miller, N.

    1999-01-01

    The broad objective of the research was to study individual characteristics of human adaptation to long duration spaceflight and possibilities of their correction using autonomic conditioning. The changes in autonomic state during adaptation to microgravity can have profound effects on the operational efficiency of crewmembers and may result in debilitating biomedical symptoms. Ground-based and inflight experiment results showed that certain responses of autonomic nervous system were correlated with, or consistently preceded, reports of performance decrements or the symptoms. Autogenic-Feedback-Training Exercise (AFTE) is a physiological conditioning method that has been used to train people to voluntary control several of their own physiological responses. The specific objectives were: 1) To study human autonomic nervous system (ANS) responses to sustained exposure to microgravity; 2) To study human behavior/performance changes related to physiology; 3) To evaluate the effectiveness of preflight autonomic conditioning (AFTE) for facilitating adaptation to space and readaptation to Earth; and 4) To archive these data for the NASA Life Sciences Data Archive and thereby make this information available to the international scientific community.

  15. Autonomous Scheduling Requirements for Agile Cubesat Constellations in Earth Observation

    NASA Astrophysics Data System (ADS)

    Nag, S.; Li, A. S. X.; Kumar, S.

    2017-12-01

    Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solutions to increase measurement samples over space and time. Cubesats are increasing in size (27U, 40 kg) with increasing capabilities to host imager payloads. Given the precise attitude control systems emerging commercially, Cubesats now have the ability to slew and capture images within short notice. Prior literature has demonstrated a modular framework that combines orbital mechanics, attitude control and scheduling optimization to plan the time-varying orientation of agile Cubesats in a constellation such that they maximize the number of observed images, within the constraints of hardware specs. Schedule optimization is performed on the ground autonomously, using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming. Our algorithm-in-the-loop simulation applied to Landsat's use case, captured up to 161% more Landsat images than nadir-pointing sensors with the same field of view, on a 2-satellite constellation over a 12-hour simulation. In this paper, we will derive the requirements for the above algorithm to run onboard small satellites such that the constellation can make time-sensitive decisions to slew and capture images autonomously, without ground support. We will apply the above autonomous algorithm to a time critical use case - monitoring of precipitation and subsequent effects on floods, landslides and soil moisture, as quantified by the NASA Unified Weather Research and Forecasting Model. Since the latency between these event occurrences is quite low, they make a strong case for autonomous decisions among satellites in a constellation. The algorithm can be implemented in the Plan Execution Interchange Language - NASA's open source technology for automation, used to operate the International Space Station and LADEE's in flight software - enabling a controller-in-the-loop demonstration. The autonomy software can then be integrated with NASA's open source Core Flight Software, ported onto a Raspberry Pi 3.0 for a software-in-the-loop demonstration. Future use cases can be time critical events such as cloud movement, storms or other disasters, and in conjunction with other platforms in a Sensor Web.

  16. Young athletes' awareness and monitoring of anti-doping in daily life: Does motivation matter?

    PubMed

    Chan, D K C; Donovan, R J; Lentillon-Kaestner, V; Hardcastle, S J; Dimmock, J A; Keatley, D A; Hagger, M S

    2015-12-01

    This study was a preliminarily investigation into the prevention of unintentional doping on the basis of self-determination theory (SDT). Specifically, we examined the relationship between athletes' motives for doping avoidance and their behavior when offered an unfamiliar food product. Participants were young Australian athletes (n = 410) that were offered a free lollipop prior to completing a questionnaire. It was noted whether participants refused to take or eat the lollipop and whether they read the ingredients of the lollipop. The questionnaire assessed autonomous and controlled forms of motivation, amotivation, doping intentions, and adherence regarding doping avoidance behaviors. The results showed that young athletes who adopted controlled reasons to avoid doping in sport (e.g., not getting caught) tended to report higher adherence to behaviors related to avoiding and monitoring banned substances, whereas those who adopted autonomous reasons (e.g., anti-doping being consistent with life goals) appeared to be more willing to read the ingredients of the provided food. The significant interaction effect between autonomous and controlled motivation indicated that autonomous motivation was more predictive to doping intention for athletes with low controlled motivation. It is concluded that SDT may help understand the motivational processes of the prevention of unintentional doping in sport. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Motivating and assisting physical exercise in independently living older adults: a pilot study.

    PubMed

    Silveira, Patrícia; van het Reve, Eva; Daniel, Florian; Casati, Fabio; de Bruin, Eling D

    2013-05-01

    With age reaction time, coordination and cognition tend to deteriorate, which may lead to gait impairments, falls and injuries. To reduce this problem in elderly and to improve health, well-being and independence, regular balance and strength exercises are recommended. However, elderly face strong barriers to exercise. We developed Active Lifestyle, an IT-based system for active and healthy aging aiming at improving elderly's balance and strength. Active Lifestyle is a proactive training application, running on a tablet, which assists, monitors and motivates elderly to follow personalized training plans autonomously at home, while integrating them socially. The objective is to run a pilot study to investigate: (i) the feasibility of assisting the autonomous, physical training of independently living elderly with the Active Lifestyle system, (ii) the adherence of the participants to the training plans, and (iii) the effectiveness of the motivation instruments built into the system. After three introductory meetings, 13 elderly adults followed personalized two-weeks strength and balance training plans using the Active Lifestyle app autonomously at home. Questionnaires were used to assess the technological familiarity of the participants, the feasibility aspects of the physical intervention, and the effectiveness of the motivation instruments. Adherence to the exercise plan was evaluated using the performance data collected by the app during the study. A total of 13 participants were enrolled, of whom 11 (85%) completed the study (mean age 77 ± 7 years); predominantly females (55%), vocational educated (64%), and their past profession requiring moderate physical activity (64%). The Active Lifestyle app facilitated autonomous physical training at home (median=7 on a 7-point Likert scale), and participants expressed a high intention to use the app also after the end of the study (median=7). Adherence with the training plans was 73% (89% on the balance exercises and 60% on the strength exercises). The outcome from our questionnaires showed that without the app the participants did not feel motivated to perform exercises; with the support of the app they felt more motivated (median=6). Participants were especially motivated by being part of a virtual exercise group and by the capability to automatically monitor their performance (median=6 for both). This study shows that the Active Lifestyle app prototype has valuable potential to support physical exercise practice at home and it is worthwhile to further develop it into a more mature system. Furthermore, the results add to the knowledge base into mobile-based applications for elderly, in that it shows that elderly users can learn to work with mobile-based systems. The Active Lifestyle app proved viable to support and motivate independently living elderly to autonomously perform balance and strength exercises. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Control Design and Performance Analysis for Autonomous Formation Flight Experimentss

    NASA Astrophysics Data System (ADS)

    Rice, Caleb Michael

    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.

  19. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists' inputs. The software framework uses multiple source languages and is a general framework for combining inputs and incrementally submitting observation requests/reconfigurations, accounting for prior requests. The autonomous aspect of operations is unique, especially in the context of the wide range of inputs that includes manually inputted electronic reports (such as the Air Force Weather Advisories), automated satellite-based detection methods (such as MODVOLC and GOESVOLC), and in situ sensor networks.

  20. Lessons Learned in the Livingstone 2 on Earth Observing One Flight Experiment

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Sweet, Adam J.; Shulman, Seth

    2005-01-01

    The Livingstone 2 (L2) model-based diagnosis software is a reusable diagnostic tool for monitoring complex systems. In 2004, L2 was integrated with the JPL Autonomous Sciencecraft Experiment (ASE) and deployed on-board Goddard's Earth Observing One (EO-1) remote sensing satellite, to monitor and diagnose the EO-1 space science instruments and imaging sequence. This paper reports on lessons learned from this flight experiment. The goals for this experiment, including validation of minimum success criteria and of a series of diagnostic scenarios, have all been successfully net. Long-term operations in space are on-going, as a test of the maturity of the system, with L2 performance remaining flawless. L2 has demonstrated the ability to track the state of the system during nominal operations, detect simulated abnormalities in operations and isolate failures to their root cause fault. Specific advances demonstrated include diagnosis of ambiguity groups rather than a single fault candidate; hypothesis revision given new sensor evidence about the state of the system; and the capability to check for faults in a dynamic system without having to wait until the system is quiescent. The major benefits of this advanced health management technology are to increase mission duration and reliability through intelligent fault protection, and robust autonomous operations with reduced dependency on supervisory operations from Earth. The work-load for operators will be reduced by telemetry of processed state-of-health information rather than raw data. The long-term vision is that of making diagnosis available to the onboard planner or executive, allowing autonomy software to re-plan in order to work around known component failures. For a system that is expected to evolve substantially over its lifetime, as for the International Space Station, the model-based approach has definite advantages over rule-based expert systems and limit-checking fault protection systems, as these do not scale well. The model-based approach facilitates reuse of the L2 diagnostic software; only the model of the system to be diagnosed and telemetry monitoring software has to be rebuilt for a new system or expanded for a growing system. The hierarchical L2 model supports modularity and expendability, and as such is suitable solution for integrated system health management as envisioned for systems-of-systems.

  1. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 4: Functional specification for the prototype Automated Integrated Receive System (AIRS)

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1984-01-01

    The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.

  2. Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik

    2004-01-01

    Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.

  3. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    NASA Technical Reports Server (NTRS)

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  4. PRIMUS: autonomous navigation in open terrain with a tracked vehicle

    NASA Astrophysics Data System (ADS)

    Schaub, Guenter W.; Pfaendner, Alfred H.; Schaefer, Christoph

    2004-09-01

    The German experimental robotics program PRIMUS (PRogram for Intelligent Mobile Unmanned Systems) is focused on solutions for autonomous driving in unknown open terrain, over several project phases under specific realization aspects for more than 12 years. The main task of the program is to develop algorithms for a high degree of autonomous navigation skills with off-the-shelf available hardware/sensor technology and to integrate this into military vehicles. For obstacle detection a Dornier-3D-LADAR is integrated on a tracked vehicle "Digitized WIESEL 2". For road-following a digital video camera and a visual perception module from the Universitaet der Bundeswehr Munchen (UBM) has been integrated. This paper gives an overview of the PRIMUS program with a focus on the last program phase D (2001 - 2003). This includes the system architecture, the description of the modes of operation and the technology development with the focus on obstacle avoidance and obstacle classification using a 3-D LADAR. A collection of experimental results and a short look at the next steps in the German robotics program will conclude the paper.

  5. Integrated Demonstration of Instrument Placement , Robust Execution and Contingent Planning

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Bualat, M.; Lees, D.; Smith, D. E.; Korsmeyer, David (Technical Monitor); Washington, R.

    2003-01-01

    This paper describes an integrated demonstration of ground-based contingent planning, robust execution and autonomous instrument placement for the efficient exploration of a site by a prototype Mars rover.

  6. Progress towards autonomous, intelligent systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry; Heer, Ewald

    1987-01-01

    An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.

  7. Autonomous Triggering of in situ Sensors on Kilauea Volcano, HI, from Eruption Detection by the EO-1 Spacecraft: Design and Operational Scenario.

    NASA Astrophysics Data System (ADS)

    Boudreau, K.; Cecava, J. R.; Behar, A.; Davies, A. G.; Tran, D. Q.; Abtahi, A. A.; Pieri, D. C.; Jpl Volcano Sensor Web Team, A

    2007-12-01

    Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors have been incorporated into expendable "Volcano Monitor" capsules to be placed downwind of the Pu'U 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors are collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. If SO2 readings exceed a predetermined threshold, the modem within the Volcano Monitor sends an alert to the Sensor Web, triggering a request for prompt Earth Observing-1 ( EO-1) spacecraft data acquisition. During pre-defined "critical events" as perceived by multiple sensors (which could include both in situ and spaceborne devices), however, the Sensor Web can order the SO2 sensors within the Volcano Monitor to increase their sampling frequency to once per minute (high power "burst mode"). Autonomous control of the sensors' sampling frequency enables the Sensor Web to monitor and respond to rapidly evolving conditions before and during an eruption, and allows near real-time compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1&5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable assistance.

  8. Autonomous Command Operations of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Walyus, Keith; Prior, Mike; Saylor, Richard

    1999-01-01

    This paper presents operational innovations which will be introduced on NASA's Wide Field Infrared Explorer (WIRE) mission. These innovations include an end-to-end design architecture for an autonomous commanding capability for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented all autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period. The key factors driving design and implementation of this capability were: 1) integration with already existing ground system autonomous capabilities and systems, 2) the desire to evolve autonomous operations capabilities based upon previous SMEX operations experience - specifically the TRACE mission, 3) integration with ground station operations - both autonomous and man-tended, 4) low cost and quick implementation, and 5) end-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed in addition to use of the TRACE mission as a testbed for autonomous commanding prior to implementation on WIRE. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They call be used as a design and implementation template by other missions interested in evolving toward autonomous and lower cost operations. Additionally, the WIRE spacecraft will be used as an operational testbed upon completion of its nominal mission later in 1999. One idea being studied is advanced on-board modeling. Advanced on-board modeling techniques will be used to more efficiently display the spacecraft state. This health and safety information could be used by engineers on the ground or could be used by tile spacecraft for its own assessments. Additionally, this same state information could also be input into the event-driven scheduling system, as the scheduling system will need to assess the spacecraft state before undertaking a new activity. Advanced modeling techniques are being evaluated for a number of NASA missions including The Next Generation Space Telescope (NGST), which is scheduled to launch in 2007.

  9. Compact autonomous navigation system (CANS)

    NASA Astrophysics Data System (ADS)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  10. Grounding Robot Autonomy in Emotion and Self-awareness

    NASA Astrophysics Data System (ADS)

    Sanz, Ricardo; Hernández, Carlos; Hernando, Adolfo; Gómez, Jaime; Bermejo, Julita

    Much is being done in an attempt to transfer emotional mechanisms from reverse-engineered biology into social robots. There are two basic approaches: the imitative display of emotion —e.g. to intend more human-like robots— and the provision of architectures with intrinsic emotion —in the hope of enhancing behavioral aspects. This paper focuses on the second approach, describing a core vision regarding the integration of cognitive, emotional and autonomic aspects in social robot systems. This vision has evolved as a result of the efforts in consolidating the models extracted from rat emotion research and their implementation in technical use cases based on a general systemic analysis in the framework of the ICEA and C3 projects. The desire for generality of the approach intends obtaining universal theories of integrated —autonomic, emotional, cognitive— behavior. The proposed conceptualizations and architectural principles are then captured in a theoretical framework: ASys — The Autonomous Systems Framework.

  11. Integrated neuron circuit for implementing neuromorphic system with synaptic device

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Jun; Park, Jungjin; Kwon, Min-Woo; Hwang, Sungmin; Kim, Hyungjin; Park, Byung-Gook

    2018-02-01

    In this paper, we propose and fabricate Integrate & Fire neuron circuit for implementing neuromorphic system. Overall operation of the circuit is verified by measuring discrete devices and the output characteristics of the circuit. Since the neuron circuit shows asymmetric output characteristic that can drive synaptic device with Spike-Timing-Dependent-Plasticity (STDP) characteristic, the autonomous weight update process is also verified by connecting the synaptic device and the neuron circuit. The timing difference of the pre-neuron and the post-neuron induce autonomous weight change of the synaptic device. Unlike 2-terminal devices, which is frequently used to implement neuromorphic system, proposed scheme of the system enables autonomous weight update and simple configuration by using 4-terminal synapse device and appropriate neuron circuit. Weight update process in the multi-layer neuron-synapse connection ensures implementation of the hardware-based artificial intelligence, based on Spiking-Neural- Network (SNN).

  12. Visual monitoring of autonomous life sciences experimentation

    NASA Technical Reports Server (NTRS)

    Blank, G. E.; Martin, W. N.

    1987-01-01

    The design and implementation of a computerized visual monitoring system to aid in the monitoring and control of life sciences experiments on board a space station was investigated. A likely multiprocessor design was chosen, a plausible life science experiment with which to work was defined, the theoretical issues involved in the programming of a visual monitoring system for the experiment was considered on the multiprocessor, a system for monitoring the experiment was designed, and simulations of such a system was implemented on a network of Apollo workstations.

  13. Heart rate variability regression and risk of sudden unexpected death in epilepsy.

    PubMed

    Galli, Alessio; Lombardi, Federico

    2017-02-01

    The exact mechanisms of sudden unexpected death in epilepsy remain elusive, despite there is consensus that SUDEP is associated with severe derangements in the autonomic control to vital functions as breathing and heart rate regulation. Heart rate variability (HRV) has been advocated as biomarker of autonomic control to the heart. Cardiac dysautonomia has been found in diseases where other branches of the autonomous nervous system are damaged, as Parkinson disease and multiple system atrophy. In this perspective, an impaired HRV not only is a risk factor for sudden cardiac death mediated by arrhythmias, but also a potential biomarker for monitoring a progressive decline of the autonomous nervous system. This slope may lead to an acute imbalance of the regulatory pathways of vital functions after seizure and then to SUDEP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A UAV-based gas sensing system for detecting fugitive methane emissions

    NASA Astrophysics Data System (ADS)

    Hugenholtz, C.; Barchyn, T.; Myshak, S.; Bauer, J.

    2016-12-01

    Methane is one of the most prevalent greenhouse gases emitted by human activities and is a major component of government-led initiatives to reduce GHG emissions in Canada, the USA, and elsewhere. In light of growing demand for measurements and verification of atmospheric methane concentration across the oil and gas supply chain, an autonomous airborne gas sensing system was developed that combines a small UAV and a lightweight gas monitor. This paper outlines the technology, analytics, and presents data from a case study to demonstrate the proof of concept. The UAV is a fixed-wing (2.2 m wingspan), battery-operated platform, with a flight endurance of 80-120 minutes. The gas sensor onboard the UAV is a tunable diode laser absorption spectrometer that uses an integrated transmitter/receiver unit and a remote, passive retro-reflector. The transmitter is attached to one of the winglets, while the other is coated with reflective material. The total weight of the UAV and gas sensor is 4.3 kg. During flight, the system operates autonomously, acquiring averages of raw measurements at 1 Hz, with a recorded resolution of 0.0455 ppm. The onboard measurement and control unit (MCU) for the gas sensor is integrated with the UAV autopilot in order to provide time-stamped and geotagged concentration measurements, and to provide real-time flight adjustments when concentration exceeds a pre-determined threshold. The data are retrieved from the MCU when the mission is complete. In order to demonstrate the proof of concept, we present results from a case study and outline opportunities for translating the measurements into decision making.

  15. Non-autonomous Hénon--Heiles systems

    NASA Astrophysics Data System (ADS)

    Hone, Andrew N. W.

    1998-07-01

    Scaling similarity solutions of three integrable PDEs, namely the Sawada-Kotera, fifth order KdV and Kaup-Kupershmidt equations, are considered. It is shown that the resulting ODEs may be written as non-autonomous Hamiltonian equations, which are time-dependent generalizations of the well-known integrable Hénon-Heiles systems. The (time-dependent) Hamiltonians are given by logarithmic derivatives of the tau-functions (inherited from the original PDEs). The ODEs for the similarity solutions also have inherited Bäcklund transformations, which may be used to generate sequences of rational solutions as well as other special solutions related to the first Painlevé transcendent.

  16. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 2: Design and development

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.

    1984-01-01

    Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.

  17. Microscale autonomous sensor and communications module

    DOEpatents

    Okandan, Murat; Nielson, Gregory N

    2014-03-25

    Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

  18. Traveler Phase 1A Joint Review

    NASA Technical Reports Server (NTRS)

    St. John, Clint; Scofield, Jan; Skoog, Mark; Flock, Alex; Williams, Ethan; Guirguis, Luke; Loudon, Kevin; Sutherland, Jeffrey; Lehmann, Richard; Garland, Michael; hide

    2017-01-01

    The briefing contains the preliminary findings and suggestions for improvement of methods used in development and evaluation of a multi monitor runtime assurance architecture for autonomous flight vehicles. Initial system design, implementation, verification, and flight testing has been conducted. As of yet detailed data review is incomplete, and flight testing has been limited to initial monitor force fights. Detailed monitor flight evaluations have yet to be performed.

  19. A Hybrid FPGA/Tilera Compute Element for Autonomous Hazard Detection and Navigation

    NASA Technical Reports Server (NTRS)

    Villalpando, Carlos Y.; Werner, Robert A.; Carson, John M., III; Khanoyan, Garen; Stern, Ryan A.; Trawny, Nikolas

    2013-01-01

    To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.

  20. A hybrid FPGA/Tilera compute element for autonomous hazard detection and navigation

    NASA Astrophysics Data System (ADS)

    Villalpando, C. Y.; Werner, R. A.; Carson, J. M.; Khanoyan, G.; Stern, R. A.; Trawny, N.

    To increase safety for future missions landing on other planetary or lunar bodies, the Autonomous Landing and Hazard Avoidance Technology (ALHAT) program is developing an integrated sensor for autonomous surface analysis and hazard determination. The ALHAT Hazard Detection System (HDS) consists of a Flash LIDAR for measuring the topography of the landing site, a gimbal to scan across the terrain, and an Inertial Measurement Unit (IMU), along with terrain analysis algorithms to identify the landing site and the local hazards. An FPGA and Manycore processor system was developed to interface all the devices in the HDS, to provide high-resolution timing to accurately measure system state, and to run the surface analysis algorithms quickly and efficiently. In this paper, we will describe how we integrated COTS components such as an FPGA evaluation board, a TILExpress64, and multi-threaded/multi-core aware software to build the HDS Compute Element (HDSCE). The ALHAT program is also working with the NASA Morpheus Project and has integrated the HDS as a sensor on the Morpheus Lander. This paper will also describe how the HDS is integrated with the Morpheus lander and the results of the initial test flights with the HDS installed. We will also describe future improvements to the HDSCE.

  1. Integrating Sensory/Actuation Systems in Agricultural Vehicles

    PubMed Central

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-01-01

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles. PMID:24577525

  2. Integrating sensory/actuation systems in agricultural vehicles.

    PubMed

    Emmi, Luis; Gonzalez-de-Soto, Mariano; Pajares, Gonzalo; Gonzalez-de-Santos, Pablo

    2014-02-26

    In recent years, there have been major advances in the development of new and more powerful perception systems for agriculture, such as computer-vision and global positioning systems. Due to these advances, the automation of agricultural tasks has received an important stimulus, especially in the area of selective weed control where high precision is essential for the proper use of resources and the implementation of more efficient treatments. Such autonomous agricultural systems incorporate and integrate perception systems for acquiring information from the environment, decision-making systems for interpreting and analyzing such information, and actuation systems that are responsible for performing the agricultural operations. These systems consist of different sensors, actuators, and computers that work synchronously in a specific architecture for the intended purpose. The main contribution of this paper is the selection, arrangement, integration, and synchronization of these systems to form a whole autonomous vehicle for agricultural applications. This type of vehicle has attracted growing interest, not only for researchers but also for manufacturers and farmers. The experimental results demonstrate the success and performance of the integrated system in guidance and weed control tasks in a maize field, indicating its utility and efficiency. The whole system is sufficiently flexible for use in other agricultural tasks with little effort and is another important contribution in the field of autonomous agricultural vehicles.

  3. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  4. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  5. SIG: Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael; Palanque, Philippe; Martinie, Célia; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects/systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  6. Multiple Views on Safety-Critical Automation: Aircraft, Autonomous Vehicles, Air Traffic Management and Satellite Ground Segments Perspectives

    NASA Technical Reports Server (NTRS)

    Feary, Michael S.; Palanque, Philippe Andre Rolan; Martinie, De Almeida; Tscheligi, Manfred

    2016-01-01

    This SIG focuses on the engineering of automation in interactive critical systems. Automation has already been studied in a number of (sub-) disciplines and application fields: design, human factors, psychology, (software) engineering, aviation, health care, games. One distinguishing feature of the area we are focusing on is that in the field of interactive critical systems properties such as reliability, dependability, fault-tolerance are as important as usability, user experience or overall acceptance issues. The SIG targets at two problem areas: first the engineering of the user interaction with (partly-) autonomous systems: how to design, build and assess autonomous behavior, especially in cases where there is a need to represent on the user interface both autonomous and interactive objects. An example of such integration is the representation of an unmanned aerial vehicle (UAV) (where no direct interaction is possible), together with aircrafts (that have to be instructed by an air traffic controller to avoid the UAV). Second the design and engineering of user interaction in general for autonomous objects systems (for example a cruise control in a car or an autopilot in an aircraft). The goal of the SIG is to raise interest in the CHI community on the general aspects of automation and to identify a community of researchers and practitioners interested in those increasingly prominent issues of interfaces towards (semi)-autonomous systems. The expected audience should be interested in addressing the issues of integration of mainly unconnected research domains to formulate a new joint research agenda.

  7. An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence

    NASA Technical Reports Server (NTRS)

    Lindley, Craig A.

    1993-01-01

    This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation.

  8. Semi-Autonomous Electrosurgery for Tumor Resection Using a Multi-Degree of Freedom Electrosurgical Tool and Visual Servoing*

    PubMed Central

    Opfermann, Justin D.; Leonard, Simon; Decker, Ryan S.; Uebele, Nicholas A.; Bayne, Christopher E.; Joshi, Arjun S.; Krieger, Axel

    2017-01-01

    This paper specifies a surgical robot performing semi-autonomous electrosurgery for tumor resection and evaluates its accuracy using a visual servoing paradigm. We describe the design and integration of a novel, multi-degree of freedom electrosurgical tool for the smart tissue autonomous robot (STAR). Standardized line tests are executed to determine ideal cut parameters in three different types of porcine tissue. STAR is then programmed with the ideal cut setting for porcine tissue and compared against expert surgeons using open and laparoscopic techniques in a line cutting task. We conclude with a proof of concept demonstration using STAR to semi-autonomously resect pseudo-tumors in porcine tissue using visual servoing. When tasked to excise tumors with a consistent 4mm margin, STAR can semi-autonomously dissect tissue with an average margin of 3.67 mm and a standard deviation of 0.89mm. PMID:29503760

  9. Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.

    PubMed

    Chen, Boshan; Chen, Jiejie

    2015-08-01

    We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Who Wants to Save the Forest? Characterizing Community-Led Monitoring in Prey Lang, Cambodia

    NASA Astrophysics Data System (ADS)

    Turreira-García, Nerea; Meilby, Henrik; Brofeldt, Søren; Argyriou, Dimitris; Theilade, Ida

    2018-06-01

    Community monitoring is believed to be successful only where there is sustained funding, legislation for communities to enforce rules, clear tenure rights, and an enabling environment created by the state. Against this backdrop, we present the case of an autonomous grassroots-monitoring network that took the initiative to protect their forest, in a context, where no external incentives and rule enforcement power were provided. The aim was to analyze the socio-demographic and economic backgrounds, motivations and achievements of forest monitors, compared to non-monitors in the same communities. A total of 137 interviews were conducted in four villages bordering Prey Lang forest in Cambodia. We used binary logit models to identify the factors that influenced the likelihood of being a monitor. Results show that there were few (22%, n = 30) active monitors. Active monitors were intrinsically motivated forest-users, and not specifically associated with a particular gender, ethnicity, or residence-time in that area. The most common interventions were with illegal loggers, and the monitors had a general feeling of success in stopping the illegal activities. Most (73%, n = 22) of them had been threatened by higher authorities and loggers. Our results show that despite the lack of power to enforce rules, absence of external funding and land-ownership rights, and enduring threats of violence and conflicts, autonomous community monitoring may take place when community members are sufficiently motivated by the risk of losing their resources.

  11. What Is Being Done to Control Motion Sickness?

    NASA Technical Reports Server (NTRS)

    Hall, Y. D.

    1985-01-01

    AFT (Autogenic Feedback Training) involves practicing a series of mental exercises to speed up or slow down the control of autonomic activity. This produces a reduced tendency for autonomic activity levels to diverge from baseline (at rest) under stressful motion-sickness-inducing conditions. Subjects conditions. Subjects engaged in applying AFT exercises are required to closely monitor their own bodily sensations during motion-sickness-eliciting tests. These tests include the Coriolis Sickness Susceptibility Index (CSSI), which consists of sitting a subject into a rotating chair that moves at various speeds while a visual background turns at differing speeds and directions, and the Vertical Acceleration Rotation Device (VARD) test, which involves the placing of a subject in a drum that moves in an upward and downward motion until he or she is sick, while simultaneously monitoring the subject's vital signs. These tests provide investigators with evidence of slight changes in autonomic activities such as increases in heart rate, skin temperature, and sweat. All of these symptoms occur in subjects that experience bodily weakness or discomfort with the onset of motion sickness.

  12. The Influence of Motor Impairment on Autonomic Heart Rate Modulation among Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Zamuner, Antonio Roberto; Cunha, Andrea Baraldi; da Silva, Ester; Negri, Ana Paola; Tudella, Eloisa; Moreno, Marlene Aparecida

    2011-01-01

    The study of heart rate variability is an important tool for a noninvasive evaluation of the neurocardiac integrity. The present study aims to evaluate the autonomic heart rate modulation in supine and standing positions in 12 children diagnosed with cerebral palsy and 16 children with typical motor development (control group), as well as to…

  13. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.

  14. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling an dynamic replanning.

  15. Semi autonomous mine detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIKmore » was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.« less

  16. Application of autonomous robotized systems for the collection of nearshore topographic changing and hydrodynamic measurements

    NASA Astrophysics Data System (ADS)

    Belyakov, Vladimir; Makarov, Vladimir; Zezyulin, Denis; Kurkin, Andrey; Pelinovsky, Efim

    2015-04-01

    Hazardous phenomena in the coastal zone lead to the topographic changing which are difficulty inspected by traditional methods. It is why those autonomous robots are used for collection of nearshore topographic and hydrodynamic measurements. The robot RTS-Hanna is well-known (Wubbold, F., Hentschel, M., Vousdoukas, M., and Wagner, B. Application of an autonomous robot for the collection of nearshore topographic and hydrodynamic measurements. Coastal Engineering Proceedings, 2012, vol. 33, Paper 53). We describe here several constructions of mobile systems developed in Laboratory "Transported Machines and Transported Complexes", Nizhny Novgorod State Technical University. They can be used in the field surveys and monitoring of wave regimes nearshore.

  17. Propulsion Health Management System Development for Affordable and Reliable Operation of Space Exploration Systems

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Maul, William A.; Garg, Sanjay

    2007-01-01

    The constraints of future Exploration Missions will require unique integrated system health management capabilities throughout the mission. An ambitious launch schedule, human-rating requirements, long quiescent periods, limited human access for repair or replacement, and long communication delays, all require an integrated approach to health management that can span distinct, yet interdependent vehicle subsystems, anticipate failure states, provide autonomous remediation and support the Exploration Mission from beginning to end. Propulsion is a critical part of any space exploration mission, and monitoring the health of the propulsion system is an integral part of assuring mission safety and success. Health management is a somewhat ubiquitous technology that encompasses a large spectrum of physical components and logical processes. For this reason, it is essential to develop a systematic plan for propulsion health management system development. This paper provides a high-level perspective of propulsion health management systems, and describes a logical approach for the future planning and early development that are crucial to planned space exploration programs. It also presents an overall approach, or roadmap, for propulsion health management system development and a discussion of the associated roadblocks and challenges.

  18. Sea-Ice Thickness Monitoring from Sensor Equipped Inuit Sleds

    NASA Astrophysics Data System (ADS)

    Rodwell, Shane; Jones, Bryn; Wilkinson, Jeremy

    2013-04-01

    A novel instrumentation package capable of measuring sea-ice thickness autonomously has been designed for long-term deployment upon the dog drawn sleds of the indigenous peoples of the Arctic. The device features a range of sensors that have been integrated with an electromagnetic induction device. These include a global positioning system, temperature sensor, tilt meter and accelerometer. Taken together, this system is able to provide accurate (+/-5cm) measurements of ice thickness with spatio-temporal resolution ranging from 1m to 5m every second. Autonomous data transmission capability is provided via GSM, inspired by the fact that many of the coastal communities in Greenland possess modern cell-phone infrastructure, enabling an inexpensive means of data-retrieval. Such data is essential in quantifying the sea-ice mass balance; given that existing satellite based systems are unable to measure ice-thickness directly. Field-campaign results from a prototype device, deployed in the North West of Greenland during three consecutive seasons, have demonstrated successful proof-of-concept when compared to data provided by ice mass balance (IMB) stations provided at fixed positions along the route of the sled. This project highlights not only the use of novel polar technology, but how opportunistic deployment using an existing roving platform (Inuit sledges) can provide economical, yet highly valuable, data for instrumentation development.

  19. Neutron Radiography Based Visualization and Profiling of Water Uptake in (Un)cracked and Autonomously Healed Cementitious Materials

    PubMed Central

    Van den Heede, Philip; Van Belleghem, Bjorn; Alderete, Natalia; Van Tittelboom, Kim; De Belie, Nele

    2016-01-01

    Given their low tensile strength, cement-based materials are very susceptible to cracking. These cracks serve as preferential pathways for corrosion inducing substances. For large concrete infrastructure works, currently available time-consuming manual repair techniques are not always an option. Often, one simply cannot reach the damaged areas and when making those areas accessible anyway (e.g., by redirecting traffic), the economic impacts involved would be enormous. Under those circumstances, it might be useful to have concrete with an embedded autonomous healing mechanism. In this paper, the effectiveness of incorporating encapsulated high and low viscosity polyurethane-based healing agents to ensure (multiple) crack healing has been investigated by means of capillary absorption tests on mortar while monitoring the time-dependent water ingress with neutron radiography. Overall visual interpretation and water front/sample cross-section area ratios as well as water profiles representing the area around the crack and their integrals do not show a preference for the high or low viscosity healing agent. Another observation is that in presence of two cracks, only one is properly healed, especially when using the latter healing agent. Exposure to water immediately after release of the healing agent stimulates the foaming reaction of the polyurethane and ensures a better crack closure. PMID:28773436

  20. Autonomous water sampling for long-term monitoring of trace metals in remote environments.

    PubMed

    Kim, Hyojin; Bishop, James K B; Wood, Todd J; Fung, Inez Y

    2012-10-16

    A remotely controlled autonomous method for long-term high-frequency sampling of environmental waters in remote locations is described. The method which preserves sample integrity of dissolved trace metals and major ions for month-long periods employs a gravitational filtration system (GFS) that separates dissolved and particulate phases as samples are collected. The key elements of GFS are (1) a modified "air-outlet" filter holder to maximize filtration rate and thus minimize filtration artifacts; and (2) the direct delivery of filtrate to dedicated bottle sets for specific analytes. Depth and screen filter types were evaluated with depth filters showing best performance. GFS performance is validated using ground, stream, and estuary waters. Over 30 days of storage, samples with GFS treatment had average recoveries of 95 ± 19% and 105 ± 7% of Fe and Mn, respectively; without GFS treatment, average recoveries were only 16% and 18%. Dissolved major cations K, Mg, and Na were stable independent of collection methodology, whereas Ca in some groundwater samples decreased up to 42% without GFS due to CaCO(3) precipitation. In-field performance of GFS equipped autosamplers is demonstrated using ground and streamwater samples collected at the Angelo Coast Range Reserve, California from October 3 to November 4 2011.

  1. Quantitative Evaluation of Stereo Visual Odometry for Autonomous Vessel Localisation in Inland Waterway Sensing Applications

    PubMed Central

    Kriechbaumer, Thomas; Blackburn, Kim; Breckon, Toby P.; Hamilton, Oliver; Rivas Casado, Monica

    2015-01-01

    Autonomous survey vessels can increase the efficiency and availability of wide-area river environment surveying as a tool for environment protection and conservation. A key challenge is the accurate localisation of the vessel, where bank-side vegetation or urban settlement preclude the conventional use of line-of-sight global navigation satellite systems (GNSS). In this paper, we evaluate unaided visual odometry, via an on-board stereo camera rig attached to the survey vessel, as a novel, low-cost localisation strategy. Feature-based and appearance-based visual odometry algorithms are implemented on a six degrees of freedom platform operating under guided motion, but stochastic variation in yaw, pitch and roll. Evaluation is based on a 663 m-long trajectory (>15,000 image frames) and statistical error analysis against ground truth position from a target tracking tachymeter integrating electronic distance and angular measurements. The position error of the feature-based technique (mean of ±0.067 m) is three times smaller than that of the appearance-based algorithm. From multi-variable statistical regression, we are able to attribute this error to the depth of tracked features from the camera in the scene and variations in platform yaw. Our findings inform effective strategies to enhance stereo visual localisation for the specific application of river monitoring. PMID:26694411

  2. Observing Active Volcanism on Earth and Beyond With an Autonomous Science Investigation Capability

    NASA Astrophysics Data System (ADS)

    Davies, A. G.; Mjolsness, E. D.; Fink, W.; Castano, R.; Park, H. G.; Zak, M.; Burl, M. C.

    2001-12-01

    Operational constraints imposed by restricted downlink and long communication delays make autonomous systems a necessity for exploring dynamic processes in the Solar System and beyond. Our objective is to develop an onboard, modular, automated science analysis tool that will autonomously detect unexpected events, identify rare events at predicted sites, quantify the processes under study, and prioritize the science data and analyses as they are collected. A primary target for this capability is terrestrial active volcanism. Our integrated, science-driven command and control package represents the next stage of the automatic monitoring of volcanic activity pioneered by GOES. The resulting system will maximize science return from day-to-day instrument use and provide immediate reaction to capture the fullest information from infrequent events. For example, a sensor suite consisting of a Galileo-like multi-filter visible wavelength camera and an infrared spectrometer, can acquire high-spatial resolution data of eruptions of lava and volcanic plumes and identify large concentrations of volcanic SO2. After image/spectrum formation, software is applied to the data which is capable of change detection (in the visible and infrared), feature identification (both in imagery and spectra), and novelty detection. In this particular case, the latter module detects change in the parameter space of an advanced multi-component black-body volcanic thermal emission model by means of a novel technique called the "Grey-Box" method which analyzes time series data through a combination of deterministic and stochastic models. This approach can be demonstrated using data obtained by the Galileo spacecraft of ionian volcanism. The system autonomously identifies the most scientifically important targets and prioritizes data and analyses for return. All of these techniques have been successfully demonstrated in laboratory experiments, and are ready to be tested in an operational environment. After identification of a target of interest, an onboard planner prioritizes resources to obtain the best possible dataset of the identified process. We emphasize that the software is modular. The change detection and feature identification modules can be applied to any imaged dataset, and are not confined to volcanic targets. Applications are therefore widespread, across all NASA Enterprises. Examples include detection and quantification of extraterrestrial volcanism (Io, Triton), the monitoring of features in planetary atmospheres (Earth, Gas Giants), the ebb and flow of ices (Earth, Mars), asteriod, comet and supernova detection, change detection in magnetic fields, and identification of structure within radio outbursts.

  3. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform.

    PubMed

    Emaminejad, Sam; Gao, Wei; Wu, Eric; Davies, Zoe A; Yin Yin Nyein, Hnin; Challa, Samyuktha; Ryan, Sean P; Fahad, Hossain M; Chen, Kevin; Shahpar, Ziba; Talebi, Salmonn; Milla, Carlos; Javey, Ali; Davis, Ronald W

    2017-05-02

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.

  4. Monitoring the autonomic nervous activity as the objective evaluation of music therapy for severely and multiply disabled children.

    PubMed

    Orita, Makiko; Hayashida, Naomi; Shinkawa, Tetsuko; Kudo, Takashi; Koga, Mikitoshi; Togo, Michita; Katayama, Sotetsu; Hiramatsu, Kozaburo; Mori, Shunsuke; Takamura, Noboru

    2012-07-01

    Severely and multiply disabled children (SMDC) are frequently affected in more than one area of development, resulting in multiple disabilities. The aim of the study was to evaluate the efficacy of music therapy in SMDC using monitoring changes in the autonomic nervous system, by the frequency domain analysis of heart rate variability. We studied six patients with SMDC (3 patients with cerebral palsy, 1 patient with posttraumatic syndrome after head injury, 1 patient with herpes encephalitis sequelae, and 1 patient with Lennox-Gastaut syndrome characterized by frequent seizures, developmental delay and psychological and behavioral problems), aged 18-26 (mean 22.5 ± 3.5). By frequency domain method using electrocardiography, we measured the high frequency (HF; with a frequency ranging from 0.15 to 0.4 Hz), which represents parasympathetic activity, the low frequency/high frequency ratio, which represents sympathetic activity between the sympathetic and parasympathetic activities, and heart rate. A music therapist performed therapy to all patients through the piano playing for 50 min. We monitored each study participant for 150 min before therapy, 50 min during therapy, and 10 min after therapy. Interestingly, four of 6 patients showed significantly lower HF components during music therapy than before therapy, suggesting that these four patients might react to music therapy through the suppression of parasympathetic nervous activities. Thus, music therapy can suppress parasympathetic nervous activities in some patients with SMDC. The monitoring changes in the autonomic nervous activities could be a powerful tool for the objective evaluation of music therapy in patients with SMDC.

  5. Demonstration of Autonomous Rendezvous Technology (DART) Project Summary

    NASA Technical Reports Server (NTRS)

    Rumford, TImothy E.

    2003-01-01

    Since the 1960's, NASA has performed numerous rendezvous and docking missions. The common element of all US rendezvous and docking is that the spacecraft has always been piloted by astronauts. Only the Russian Space Program has developed and demonstrated an autonomous capability. The Demonstration of Autonomous Rendezvous Technology (DART) project currently funded under NASA's Space Launch Initiative (SLI) Cycle I, provides a key step in establishing an autonomous rendezvous capability for the United States. DART's objective is to demonstrate, in space, the hardware and software necessary for autonomous rendezvous. Orbital Sciences Corporation intends to integrate an Advanced Video Guidance Sensor and Autonomous Rendezvous and Proximity Operations algorithms into a Pegasus upper stage in order to demonstrate the capability to autonomously rendezvous with a target currently in orbit. The DART mission will occur in April 2004. The launch site will be Vandenburg AFB and the launch vehicle will be a Pegasus XL equipped with a Hydrazine Auxiliary Propulsion System 4th stage. All mission objectives will be completed within a 24 hour period. The paper provides a summary of mission objectives, mission overview and a discussion on the design features of the chase and target vehicles.

  6. Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Carson, John M. III; Robertson, Edward A.; Trawny, Nikolas; Amzajerdian, Farzin

    2015-01-01

    A suite of prototype sensors, software, and avionics developed within the NASA Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project were terrestrially demonstrated onboard the NASA Morpheus rocket-propelled Vertical Testbed (VTB) in 2014. The sensors included a LIDAR-based Hazard Detection System (HDS), a Navigation Doppler LIDAR (NDL) velocimeter, and a long-range Laser Altimeter (LAlt) that enable autonomous and safe precision landing of robotic or human vehicles on solid solar system bodies under varying terrain lighting conditions. The flight test campaign with the Morpheus vehicle involved a detailed integration and functional verification process, followed by tether testing and six successful free flights, including one night flight. The ALHAT sensor measurements were integrated into a common navigation solution through a specialized ALHAT Navigation filter that was employed in closed-loop flight testing within the Morpheus Guidance, Navigation and Control (GN&C) subsystem. Flight testing on Morpheus utilized ALHAT for safe landing site identification and ranking, followed by precise surface-relative navigation to the selected landing site. The successful autonomous, closed-loop flight demonstrations of the prototype ALHAT system have laid the foundation for the infusion of safe, precision landing capabilities into future planetary exploration missions.

  7. Autonomous planetary rover at Carnegie Mellon

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Kanade, Takeo; Mitchell, Tom

    1990-01-01

    This report describes progress in research on an autonomous robot for planetary exploration. In 1989, the year covered by this report, a six-legged walking robot, the Ambler, was configured, designed, and constructed. This configuration was used to overcome shortcomings exhibited by existing wheeled and walking robot mechanisms. The fundamental advantage of the Ambler is that the actuators for body support are independent of those for propulsion; a subset of the planar joints propel the body, and the vertical actuators support and level the body over terrain. Models of the Ambler's dynamics were developed and the leveling control was studied. An integrated system capable of walking with a single leg over rugged terrain was implemented and tested. A prototype of an Ambler leg is suspended below a carriage that slides along rails. To walk, the system uses a laser scanner to find a clear, flat foothold, positions the leg above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced rocks, and sand hills. In addition, preliminary experiments were conducted with concurrent planning and execution, and a leg recovery planner that generates time and power efficient 3D trajectories using 2D search was developed. A Hero robot was used to demonstrate mobile manipulation. Indoor tasks include collecting cups from the lab floor, retrieving printer output, and recharging when its battery gets low. The robot monitors its environment, and handles exceptional conditions in a robust fashion, using vision to track the appearance and disappearance of cups, onboard sonars to detect imminent collisions, and monitors to detect the battery level.

  8. Cardiovascular Responses to Sexual Activity in Able-Bodied Individuals and Those Living with Spinal Cord Injury.

    PubMed

    Davidson, Ross; Elliott, Stacy; Krassioukov, Andrei

    2016-12-15

    Sexuality is an integral part of the human experience and persists in health and disability. The cardiovascular system is crucial to sexual function and can be affected profoundly by spinal cord injury (SCI). The effects of sexual activity on the cardiovascular system in SCI have not been summarized and compared with sexual activity in able-bodied individuals. A keyword search of Embase, PubMed, and Medline was conducted. From 471 retrieved studies for able-bodied individuals, 11 were included that met the strict criteria of medically uncomplicated participants. In the SCI literature, 117 studies were screened, with 18 meeting criteria. In able-bodied persons, sexual activity resulted in modest increases in systolic blood pressure peaking at orgasm (males of 163 mm Hg and females of 142 mm Hg) and returning to baseline shortly afterward. In persons with SCI, results varied from minimal changes to significant elevations in systolic blood pressure because of episodes of autonomic dysreflexia, especially in those with high thoracic and cervical lesions. Peak systolic blood pressure in these individuals was measured to be as high as 325 mm Hg. In the SCI population, more intense stimuli (including penile vibrostimulation and electroejaculation) tended to result in a greater increase in systolic blood pressure compared with self-stimulation. Studies that used continuous versus intermittent monitoring were more likely to report greater changes in systolic blood pressure. In able-bodied persons, sexual activity results in modest increases in blood pressure. In those with SCI, intense stimulation and higher injury levels result in a higher likelihood of autonomic dysreflexia and elevated blood pressure. Because of rapid changes in blood pressure, continuous monitoring is more advantageous than intermittent measurement, because the latter may miss peak values.

  9. Successful Detection of Floods in Real Time Onboard EO1 Through NASA's ST6 Autonomous Sciencecraft Experiment (ASE)

    NASA Astrophysics Data System (ADS)

    Ip, F.; Dohm, J. M.; Baker, V. R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Doggett, T.; Greeley, R.

    2004-12-01

    For the first time, a spacecraft has the ability to autonomously detect and react to flood events. Flood detection and the investigation of flooding dynamics in real time from space have never been done before at least not until now. Part of the challenge for the hydrological community has been the difficulty of obtaining cloud-free scenes from orbit at sufficient temporal and spatial resolutions to accurately assess flooding. In addition, the large spatial extent of drainage networks coupled with the size of the data sets necessary to be downlinked from satellites add to the difficulty of monitoring flooding from space. Technology developed as part of the Autonomous Sciencecraft Experiment (ASE) creates the new capability to autonomously detect, assess, and react to dynamic events, thereby enabling the monitoring of transient processes such as flooding in real time. In addition to being able to autonomously process the imaged data onboard the spacecraft for the first time and search the data for specific spectral features, the ASE Science Team has developed and tested change detection algorithms for the Hyperion spectrometer on EO-1. For flood events, if a change is detected in the onboard processed image (i.e. an increase in the number of ¡wet¡" pixels relative to a baseline image where the system is in normal flow condition or relatively dry), the spacecraft is autonomously retasked to obtain additional scenes. For instance, in February 2004 a rare flooding of the Australian Diamantina River was captured by EO-1. In addition, in August during ASE onboard testing a Zambezi River scene in Central Africa was successfully triggered by the classifier to autonomously take another observation. Yet another successful trigger-response flooding test scenario of the Yellow River in China was captured by ASE on 8/18/04. These exciting results pave the way for future smart reconnaissance missions of transient processes on Earth and beyond. Acknowledgments: We are grateful to the City of Tucson and Tucson Water for their support and cooperation.

  10. [The Madrid autonomous community epidemiological bulletin. A survey on its dissemination and opinion thereof on among primary care physicians for the year 2000].

    PubMed

    Fernández Rodríguez, Silvia; Zorrilla Torras, Belén; Ramírez Fernández, Rosa; Alvarez Castillo, M Carmen; López-Gay Lucio, Dulce; Ibáñez Martín, Cosuelo; Bueno Vallejos, Rafael

    2002-01-01

    The Autonomous Community of Madrid Epidemiological Bulletin is the main communications link between epidemiological monitoring system and health care professionals. The purpose of this study is that of ascertaining the dissemination and opinion of this Autonomous Community of Madrid Epidemiological Bulletin among primary care physicians for the purpose of adapting this publication to its readers' interests. A telephone survey among primary care physicians in the Autonomous Community of Madrid, asking how often they read the Bulletin, the interest and usefulness of the information included in it. The sample size was estimated at 346 physicians. A two-stage sampling process was carried out-by cluster sampling in the first stage, randomly selecting 125 health care centers and 2.7 physicians per center, 17% being primary care team coordinators. A comparison is made of the results among physicians and coordinators by means of the Chi-square and Fisher's Exact Test method, with Epi-Info v.6. A total of 305 surveys were conducted (245 physicians and 60 coordinators). There was an awareness of the existence of the Autonomous Community of Madrid Epidemiological Bulletin on the part of 91.5% (CI 95%: 88.1-94.8), and 27.2% (CI 95%: 21.9-32.5) were familiar with more than 50% of the last issues published. A total of 92.4% (CI 95%: 89.4-95.8) considered the Bulletin to be interesting or highly interesting, grading its usefulness an average of 3.5 on a maximum scale of 5. Of the permanent sections, the most highly-valued was Epidemic Outbreaks, those reports related to meningococcal infection, tuberculosis and HIV/AIDS being the most highly-valued. The Autonomous Community of Madrid Epidemiological Bulletin is a publication which, although not widely-known by the primary care physicians in the Community, is well-valued when it is read, thus being a useful feedback tool within the Epidemiological Monitoring System.

  11. Macro to microfluidics system for biological environmental monitoring.

    PubMed

    Delattre, Cyril; Allier, Cédric P; Fouillet, Yves; Jary, Dorothée; Bottausci, Frederic; Bouvier, Denis; Delapierre, Guillaume; Quinaud, Manuelle; Rival, Arnaud; Davoust, Laurent; Peponnet, Christine

    2012-01-01

    Biological environmental monitoring (BEM) is a growing field of research which challenges both microfluidics and system automation. The aim is to develop a transportable system with analysis throughput which satisfies the requirements: (i) fully autonomous, (ii) complete protocol integration from sample collection to final analysis, (iii) detection of diluted molecules or biological species in a large real life environmental sample volume, (iv) robustness and (v) flexibility and versatility. This paper discusses all these specifications in order to define an original fluidic architecture based on three connected modules, a sampling module, a sample preparation module and a detection module. The sample preparation module highly concentrates on the pathogens present in a few mL samples of complex and unknown solutions and purifies the pathogens' nucleic acids into a few μL of a controlled buffer. To do so, a two-step concentration protocol based on magnetic beads is automated in a reusable macro-to-micro fluidic system. The detection module is a PCR based miniaturized platform using digital microfluidics, where reactions are performed in 64 nL droplets handled by electrowetting on dielectric (EWOD) actuation. The design and manufacture of the two modules are reported as well as their respective performances. To demonstrate the integration of the complete protocol in the same system, first results of pathogen detection are shown. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Active Wireless System for Structural Health Monitoring Applications.

    PubMed

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  13. A mobile phone based telemonitoring concept for the simultaneous acquisition of biosignals physiological parameters.

    PubMed

    Kumpusch, Hannes; Hayn, Dieter; Kreiner, Karl; Falgenhauer, Markus; Mor, Jürgen; Schreier, Günter

    2010-01-01

    Congestive Heart Failure (CHF) is a common chronic heart disease with high socioeconomic impact. Conventional treatment of CHF is often ineffective and inefficient, since self-management is complex and patients are insufficiently involved in therapy management. With telemedical concepts, continuous monitoring of the health status can be ensured, and consequently therapy management can be adapted to the individual requirements of every individual patient. Therefore, a mobile phone based patient terminal for the concurrent acquisition of biosignals (e.g. ECG) and bioparameters (e.g. blood pressure) for patients with CHF has been developed and prototypically implemented. Usability and interoperability aspects were especially considered by using Bluetooth and Near Field Communication (NFC) technology for data acquisition and standardized data formats for transmission of the data to a central monitoring centre. Results indicated that even complicated measurements like the acquisition of ECG signals could be accomplished autonomously by the patients in an intuitive and easy-to-use way. Through the usage of IHE conform HL7 messages, self-measured data could easily be integrated into a higher-ranking eHealth infrastructure.

  14. Arrhythmias and hemodialysis: role of potassium and new diagnostic tools.

    PubMed

    Buemi, Michele; Coppolino, Giuseppe; Bolignano, Davide; Sturiale, Alessio; Campo, Susanna; Buemi, Antoine; Crascì, Eleonora; Romeo, Adolfo

    2009-01-01

    Cardiovascular diseases represent the main causes of death in patients affected by renal failure, and arrhythmias are frequently observed in patients undergoing hemodialysis. Dialytic treatment per se can be considered as an arrhythmogenic stimulus; moreover, uraemic patients are characterized by a "pro-arrhythmic substrate" because of the high prevalence of ischaemic heart disease, left ventricular hypertrophy and autonomic neuropathy. One of the most important pathogenetic element involved in the onset of intra-dialytic arrhythmias is the alteration in electrolytes concentration, particularly calcium and potassium. It may be very useful to monitor the patient's cardiac activity during the whole hemodilaytic session. Nevertheless, the application of an extended intradialytic electrocardiographic monitoring is not simple because of several technical and structural impairments. We tried to overcome these difficulties using Whealthy, a wearable system consisting in a t-shirt composed of conductors and piezoresistive materials, integrated to form fibers and threads connected to tissutal sensors, electrodes, and connectors. ECG and pneumographic impedance signals are acquired by the electrodes in the tissue, and the data are registered by a small computer and transmitted via GPRS or Bluetooth.

  15. Consortium for Robotics & Unmanned Systems Education & Research (CRUSER)

    DTIC Science & Technology

    2012-09-30

    as facilities at Camp Roberts, Calif. and frequent experimentation events, the Many vs. Many ( MvM ) Autonomous Systems Testbed provides the...and expediently translate theory to practice. The MvM Testbed is designed to integrate technological advances in hardware (inexpensive, expendable...designed to leverage the MvM Autonomous Systems Testbed to explore practical and operationally relevant avenues to counter these “swarm” opponents, and

  16. Multiple Integrated Navigation Sensors for Improved Occupancy Grid FastSLAM

    DTIC Science & Technology

    2011-03-01

    to the Faculty Department of Electrical and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air...autonomous vehicle exploration with applications to search and rescue. To current knowledge , this research presents the first SLAM solution to...solution is a key component of an autonomous vehicle, especially one whose mission involves gaining knowledge of unknown areas. It provides the ability

  17. A Wearable EEG-HEG-HRV Multimodal System With Simultaneous Monitoring of tES for Mental Health Management.

    PubMed

    Ha, Unsoo; Lee, Yongsu; Kim, Hyunki; Roh, Taehwan; Bae, Joonsung; Kim, Changhyeon; Yoo, Hoi-Jun

    2015-12-01

    A multimodal mental management system in the shape of the wearable headband and earplugs is proposed to monitor electroencephalography (EEG), hemoencephalography (HEG) and heart rate variability (HRV) for accurate mental health monitoring. It enables simultaneous transcranial electrical stimulation (tES) together with real-time monitoring. The total weight of the proposed system is less than 200 g. The multi-loop low-noise amplifier (MLLNA) achieves over 130 dB CMRR for EEG sensing and the capacitive correlated-double sampling transimpedance amplifier (CCTIA) has low-noise characteristics for HEG and HRV sensing. Measured three-physiology domains such as neural, vascular and autonomic domain signals are combined with canonical correlation analysis (CCA) and temporal kernel canonical correlation analysis (tkCCA) algorithm to find the neural-vascular-autonomic coupling. It supports highly accurate classification with the 19% maximum improvement with multimodal monitoring. For the multi-channel stimulation functionality, after-effects maximization monitoring and sympathetic nerve disorder monitoring, the stimulator is designed as reconfigurable. The 3.37 × 2.25 mm(2) chip has 2-channel EEG sensor front-end, 2-channel NIRS sensor front-end, NIRS current driver to drive dual-wavelength VCSEL and 6-b DAC current source for tES mode. It dissipates 24 mW with 2 mA stimulation current and 5 mA NIRS driver current.

  18. Structural health monitoring system for bridges based on skin-like sensor

    NASA Astrophysics Data System (ADS)

    Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd

    2017-09-01

    Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.

  19. Estimation and Control for Autonomous Coring from a Rover Manipulator

    NASA Technical Reports Server (NTRS)

    Hudson, Nicolas; Backes, Paul; DiCicco, Matt; Bajracharya, Max

    2010-01-01

    A system consisting of a set of estimators and autonomous behaviors has been developed which allows robust coring from a low-mass rover platform, while accommodating for moderate rover slip. A redundant set of sensors, including a force-torque sensor, visual odometry, and accelerometers are used to monitor discrete critical and operational modes, as well as to estimate continuous drill parameters during the coring process. A set of critical failure modes pertinent to shallow coring from a mobile platform is defined, and autonomous behaviors associated with each critical mode are used to maintain nominal coring conditions. Autonomous shallow coring is demonstrated from a low-mass rover using a rotary-percussive coring tool mounted on a 5 degree-of-freedom (DOF) arm. A new architecture of using an arm-stabilized, rotary percussive tool with the robotic arm used to provide the drill z-axis linear feed is validated. Particular attention to hole start using this architecture is addressed. An end-to-end coring sequence is demonstrated, where the rover autonomously detects and then recovers from a series of slip events that exceeded 9 cm total displacement.

  20. Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.

    PubMed

    Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L

    2014-10-01

    The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Unmanned aerial vehicle acquisition of three-dimensional digital image correlation measurements for structural health monitoring of bridges

    NASA Astrophysics Data System (ADS)

    Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher

    2017-04-01

    Civil engineering structures such as bridges, buildings, and tunnels continue to be used despite aging and deterioration well past their design life. In 2013, the American Society of Civil Engineers (ASCE) rated the state of the U.S. bridges as mediocre, despite the $12.8 billion USD annually invested. Traditional inspection and monitoring techniques may produce inconsistent results, are labor intensive and too time-consuming to be considered effective for large-scale monitoring. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems possess the capability of extracting full-field strain, displacement, and geometry profiles. Furthermore, as this measurement technique is implemented within an Unmanned Aerial Vehicle (UAV) the capability to expedite the optical-based measurement process is increased as well as the infrastructure downtime being reduced. These resulting integrity maps of the structure of interest can be easily interpreted by trained personal. Within this paper, the feasibility of performing DIC measurements using a pair of cameras installed on a UAV is shown. Performance is validated with in-flight measurements. Also, full-field displacement monitoring, 3D measurement stitching, and 3D point-tracking techniques are employed in conjunction with 3D mapping and data management software. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a highly valuable and effective civil inspection platform.

  2. Cold pressor test in spinal cord injury-revisited.

    PubMed

    Hubli, Michèle; Bolt, Doris; Krassioukov, Andrei V

    2018-06-01

    Systematic review. A spinal cord injury (SCI) commonly results in alterations of cardiovascular physiology. In order to investigate such alterations, the cold pressor test (CPT) has been used as an established challenge test. This review summarizes the basic physiology underlying a CPT, discusses potential mechanisms responsible for abnormal pressor responses following SCI, and highlights the utility of CPT in the SCI population. Canada and Switzerland. We have completed a comprehensive review of studies that have investigated the effect of foot or hand CPT on hemodynamic indices in individuals with SCI. Depending on the level of spinal cord lesion and the location of cold application, i.e., above or below the lesion, mean arterial pressure typically increases (ranging between 4 and 23 mmHg), while heart rate responses demonstrated either a decrease or an increase (ranging between -4 and 24 bpm) during CPT. The increase in blood pressure during foot CPT in high-level lesions might not necessarily be attributed to a physiological CPT response as seen in able-bodied individuals, but rather due to a reflexic sympathetic discharge below the level of lesion, known as autonomic dysreflexia. Further investigations in a wider range of individuals with SCI including incomplete injuries might be helpful to examine the ability of CPT assessing the integrity of the autonomic nervous system following SCI. Furthermore, additional autonomic tests are needed to emphasize the integrity of autonomic pathways and to account for the complexity of the autonomic nervous system.

  3. Dose requirements of alfentanil to eliminate autonomic responses during rapid-sequence induction with thiopental 4 mg/kg and rocuronium 0.6 mg/kg.

    PubMed

    Abou-Arab, Mohammad H; Rostrup, Morten; Heier, Tom

    2016-12-01

    Opioids are integral part of anesthesia induction, but information on optimal dosing is limited. We aimed to determine doses of alfentanil needed to eliminate increases in 5 autonomic response variables (plasma concentrations of epinephrine, norepinephrine and vasopressin, arterial blood pressure [ABP], and heart rate) during rapid-sequence induction of anesthesia with thiopental 4 mg/kg and rocuronium 0.6 mg/kg. Prospective, randomized, observer-blinded, interventional clinical study. Large academic institution. Eighty-four healthy patients, aged 18 to 55 years, received 1 of 7 assessor-blinded doses of alfentanil (0, 10, 20, 30, 40, 50, and 60 μg/kg) together with thiopental 4 mg/kg and rocuronium 0.6 mg/kg, administered in rapid succession (15 seconds). Laryngoscopy was initiated 40 seconds after rocuronium, and tracheal intubation was concluded within 15 seconds thereafter. An indwelling radial artery catheter was used for hemodynamic monitoring and blood sampling. Relationships between alfentanil dose and response variables were tested with linear regression, and the influence of covariates (sex, body weight, and age) was determined. Alfentanil dose needed to prevent increases in ABP >10% above baseline with 95% probability was estimated with logistic regression. Significant relationships were determined between alfentanil dose and response variables. Clinically interesting influence of covariates was not found. Alfentanil 55 μg/kg was needed to prevent increases in ABP postintubation >10% above baseline with 95% probability. One individual needed a bolus of vasopressor postintubation. Optimal control of autonomic responses during rapid-sequence induction was achieved with clinically relevant doses of alfentanil in healthy patients anesthetized with thiopental 4 mg/kg and rocuronium 0.6 mg/kg. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Extracorporeal Stimulation of Sacral Nerve Roots for Observation of Pelvic Autonomic Nerve Integrity: Description of a Novel Methodological Setup.

    PubMed

    Moszkowski, Tomasz; Kauff, Daniel W; Wegner, Celine; Ruff, Roman; Somerlik-Fuchs, Karin H; Kruger, Thilo B; Augustyniak, Piotr; Hoffmann, Klaus-Peter; Kneist, Werner

    2018-03-01

    Neurophysiologic monitoring can improve autonomic nerve sparing during critical phases of rectal cancer surgery. To develop a system for extracorporeal stimulation of sacral nerve roots. Dedicated software controlled a ten-electrode stimulation array by switching between different electrode configurations and current levels. A built-in impedance and current level measurement assessed the effectiveness of current injection. Intra-anal surface electromyography (sEMG) informed on targeting the sacral nerve roots. All tests were performed on five pig specimens. During switching between electrode configurations, the system delivered 100% of the set current (25 mA, 30 Hz, 200 μs cathodic pulses) in 93% of 250 stimulation trains across all specimens. The impedance measured between single stimulation array contacts and corresponding anodes across all electrode configurations and specimens equaled 3.7 ± 2.5 kΩ. The intra-anal sEMG recorded a signal amplitude increase as previously observed in the literature. When the stimulation amplitude was tested in the range from 1 to 21 mA using the interconnected contacts of the stimulation array and the intra-anal anode, the impedance remained below 250 Ω and the system delivered 100% of the set current in all cases. Intra-anal sEMG showed an amplitude increase for current levels exceeding 6 mA. The system delivered stable electric current, which was proved by built-in impedance and current level measurements. Intra-anal sEMG confirmed the ability to target the branches of the autonomous nervous system originating from the sacral nerve roots. Stimulation outside of the operative field during rectal cancer surgery is feasible and may improve the practicality of pelvic intraoperative neuromonitoring.

  5. Autonomous, agile micro-satellites and supporting technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breitfeller, E; Dittman, M D; Gaughan, R J

    1999-07-19

    This paper updates the on-going effort at Lawrence Livermore National Laboratory to develop autonomous, agile micro-satellites (MicroSats). The objective of this development effort is to develop MicroSats weighing only a few tens of kilograms, that are able to autonomously perform precision maneuvers and can be used telerobotically in a variety of mission modes. The required capabilities include satellite rendezvous, inspection, proximity-operations, docking, and servicing. The MicroSat carries an integrated proximity-operations sensor-suite incorporating advanced avionics. A new self-pressurizing propulsion system utilizing a miniaturized pump and non-toxic mono-propellant hydrogen peroxide was successfully tested. This system can provide a nominal 25 kg MicroSatmore » with 200-300 m/s delta-v including a warm-gas attitude control system. The avionics is based on the latest PowerPC processor using a CompactPCI bus architecture, which is modular, high-performance and processor-independent. This leverages commercial-off-the-shelf (COTS) technologies and minimizes the effects of future changes in processors. The MicroSat software development environment uses the Vx-Works real-time operating system (RTOS) that provides a rapid development environment for integration of new software modules, allowing early integration and test. We will summarize results of recent integrated ground flight testing of our latest non-toxic pumped propulsion MicroSat testbed vehicle operated on our unique dynamic air-rail.« less

  6. Autonomic deficit not the cause of death in West Nile virus neurological disease.

    PubMed

    Wang, Hong; Siddharthan, Venkatraman; Hall, Jeffery O; Morrey, John D

    2014-02-01

    Some West Nile virus (WNV)-infected patients have been reported to manifest disease signs consistent with autonomic dysfunction. Moreover, WNV infection in hamsters causes reduced electromyography amplitudes of the gastrointestinal tract and diaphragm, and they have reduced heart rate variability (HRV), a read-out for the parasympathetic autonomic function. HRV was measured in both hamsters and mice using radiotelemetry to identify autonomic deficits. To identify areas of WNV infection within the medulla oblongata mapping to the dorsal motor nucleus of vagus (DMNV) and the nucleus ambiguus (NA), fluorogold dye was injected into the cervical trunk of the vagus nerve of hamsters. As a measurement of the loss of parasympathetic function, tachycardia was monitored contiguously over the time course of the disease. Decrease of HRV did not occur in all animals that died, which is not consistent with autonomic function being the mechanism of death. Fluorogold-stained cells in the DMNV were not stained for WNV envelope protein. Fourteen percent of WNV-stained cells were co-localized with fluorogold-stained cells in the NA. These data, however, did not suggest a fatal loss of autonomic functions because tachycardia was not observed in WNV-infected hamsters. Parasympathetic autonomic function deficit was not a likely mechanism of death in WNV-infected rodents and possibly in human patients with fatal WN neurological disease.

  7. Development of a component centered fault monitoring and diagnosis knowledge based system for space power system

    NASA Technical Reports Server (NTRS)

    Lee, S. C.; Lollar, Louis F.

    1988-01-01

    The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.

  8. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    DOE PAGES

    Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; ...

    2014-12-12

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometrymore » data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.« less

  9. Space Station man-machine automation trade-off analysis

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Bard, J.; Feinberg, A.

    1985-01-01

    The man machine automation tradeoff methodology presented is of four research tasks comprising the autonomous spacecraft system technology (ASST) project. ASST was established to identify and study system level design problems for autonomous spacecraft. Using the Space Station as an example spacecraft system requiring a certain level of autonomous control, a system level, man machine automation tradeoff methodology is presented that: (1) optimizes man machine mixes for different ground and on orbit crew functions subject to cost, safety, weight, power, and reliability constraints, and (2) plots the best incorporation plan for new, emerging technologies by weighing cost, relative availability, reliability, safety, importance to out year missions, and ease of retrofit. A fairly straightforward approach is taken by the methodology to valuing human productivity, it is still sensitive to the important subtleties associated with designing a well integrated, man machine system. These subtleties include considerations such as crew preference to retain certain spacecraft control functions; or valuing human integration/decision capabilities over equivalent hardware/software where appropriate.

  10. Autonomous Modal Identification of the Space Shuttle Tail Rudder

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; James, George H., III; Zimmerman, David C.

    1997-01-01

    Autonomous modal identification automates the calculation of natural vibration frequencies, damping, and mode shapes of a structure from experimental data. This technology complements damage detection techniques that use continuous or periodic monitoring of vibration characteristics. The approach shown in the paper incorporates the Eigensystem Realization Algorithm (ERA) as a data analysis engine and an autonomous supervisor to condense multiple estimates of modal parameters using ERA's Consistent-Mode Indicator and correlation of mode shapes. The procedure was applied to free-decay responses of a Space Shuttle tail rudder and successfully identified the seven modes of the structure below 250 Hz. The final modal parameters are a condensed set of results for 87 individual ERA cases requiring approximately five minutes of CPU time on a DEC Alpha computer.

  11. NBC detection in air and water

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Smith, Steven J.; McMurtry, Gary M.

    2003-01-01

    Participating in a Navy STTR project to develop a system capable of the 'real-time' detection and quanitification of nuclear, biological and chemical (NBC) warfare agents, and of related industrial chemicals including NBC agent synthesis by-products in water and in air immediately above the water's surface. This project uses JPL's Soft Ionization Membrane (SIM) technology which totally ionizes molecules without fragmentation (a process that can markedly improve the sensitivity and specificity of molecule compostition identification), and JPL's Rotating Field Mass Spectrometer (RFMS) technology which has large enough dynamic mass range to enable detection of nuclear materials as well as biological and chemical agents. This Navy project integrates these JPL Environmental Monitoring UnitS (REMUS) an autonomous underwater vehicle (AUV). It is anticipated that the REMUS AUV will be capable of 'real-time' detection and quantification of NBC warefare agents.

  12. Large-area multiplexed sensing using MEMS and fiber optics

    NASA Astrophysics Data System (ADS)

    Miller, Michael B.; Clark, Richard L., Jr.; Bell, Clifton R.; Russler, Patrick M.

    2000-06-01

    Micro-electro-mechanical (MEMS) technology offers the ability to implement local and independent sensing and actuation functions through the coordinated response of discrete micro-electro-mechanical 'basis function' elements. The small size of micromechanical components coupled with the ability to reduce costs using volume manufacturing techniques opens up significant potential not only in military applications such as flight and engine monitoring and control, but in autonomous vehicle control, smart munitions, airborne reconnaissance, LADAR, missile guidance, and even in intelligent transportation systems and automotive guidance applications. In this program, Luna Innovations is developing a flexible, programmable interface which can be integrated direction with different types of MEMS sensors, and then used to multiplex many sensors ona single optical fiber to provide a unique combination of functions that will allow larger quantities of sensory input with better resolution than ever before possible.

  13. NASA Tech Briefs, April 2009

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Topics covered include: Direct-Solve Image-Based Wavefront Sensing; Use of UV Sources for Detection and Identification of Explosives; Using Fluorescent Viruses for Detecting Bacteria in Water; Gradiometer Using Middle Loops as Sensing Elements in a Low-Field SQUID MRI System; Volcano Monitor: Autonomous Triggering of In-Situ Sensors; Wireless Fluid-Level Sensors for Harsh Environments; Interference-Detection Module in a Digital Radar Receiver; Modal Vibration Analysis of Large Castings; Structural/Radiation-Shielding Epoxies; Integrated Multilayer Insulation; Apparatus for Screening Multiple Oxygen-Reduction Catalysts; Determining Aliasing in Isolated Signal Conditioning Modules; Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems; Spectrum Analyzers Incorporating Tunable WGM Resonators; Quantum-Well Thermophotovoltaic Cells; Bounded-Angle Iterative Decoding of LDPC Codes; Conversion from Tree to Graph Representation of Requirements; Parallel Hybrid Vehicle Optimal Storage System; and Anaerobic Digestion in a Flooded Densified Leachbed.

  14. Science Goal Driven Observing and Spacecraft Autonomy

    NASA Technical Reports Server (NTRS)

    Koratkar, Amuradha; Grosvenor, Sandy; Jones, Jeremy; Wolf, Karl

    2002-01-01

    Spacecraft autonomy will be an integral part of mission operations in the coming decade. While recent missions have made great strides in the ability to autonomously monitor and react to changing health and physical status of spacecraft, little progress has been made in responding quickly to science driven events. For observations of inherently variable targets and targets of opportunity, the ability to recognize early if an observation will meet the science goals of a program, and react accordingly, can have a major positive impact on the overall scientific returns of an observatory and on its operational costs. If the onboard software can reprioritize the schedule to focus on alternate targets, discard uninteresting observations prior to downloading, or download a subset of observations at a reduced resolution, the spacecraft's overall efficiency will be dramatically increased. The science goal monitoring (SGM) system is a proof-of-concept effort to address the above challenge. The SGM will have an interface to help capture higher level science goals from the scientists and translate them into a flexible observing strategy that SGM can execute and monitor. We are developing an interactive distributed system that will use on-board processing and storage combined with event-driven interfaces with ground-based processing and operations, to enable fast re-prioritization of observing schedules, and to minimize time spent on non-optimized observations.

  15. Non-Commutative Rational Yang-Baxter Maps

    NASA Astrophysics Data System (ADS)

    Doliwa, Adam

    2014-03-01

    Starting from multidimensional consistency of non-commutative lattice-modified Gel'fand-Dikii systems, we present the corresponding solutions of the functional (set-theoretic) Yang-Baxter equation, which are non-commutative versions of the maps arising from geometric crystals. Our approach works under additional condition of centrality of certain products of non-commuting variables. Then we apply such a restriction on the level of the Gel'fand-Dikii systems what allows to obtain non-autonomous (but with central non-autonomous factors) versions of the equations. In particular, we recover known non-commutative version of Hirota's lattice sine-Gordon equation, and we present an integrable non-commutative and non-autonomous lattice modified Boussinesq equation.

  16. Evolution of Autonomous Self-Righting Behaviors for Articulated Nanorovers

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward

    1999-01-01

    Miniature rovers with articulated mobility mechanisms are being developed for planetary surface exploration on Mars and small solar system bodies. These vehicles are designed to be capable of autonomous recovery from overturning during surface operations. This paper describes a computational means of developing motion behaviors that achieve the autonomous recovery function. It proposes a control software design approach aimed at reducing the effort involved in developing self-righting behaviors. The approach is based on the integration of evolutionary computing with a dynamics simulation environment for evolving and evaluating motion behaviors. The automated behavior design approach is outlined and its underlying genetic programming infrastructure is described.

  17. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  18. Using Multimodal Input for Autonomous Decision Making for Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Neilan, James H.; Cross, Charles; Rothhaar, Paul; Tran, Loc; Motter, Mark; Qualls, Garry; Trujillo, Anna; Allen, B. Danette

    2016-01-01

    Autonomous decision making in the presence of uncertainly is a deeply studied problem space particularly in the area of autonomous systems operations for land, air, sea, and space vehicles. Various techniques ranging from single algorithm solutions to complex ensemble classifier systems have been utilized in a research context in solving mission critical flight decisions. Realized systems on actual autonomous hardware, however, is a difficult systems integration problem, constituting a majority of applied robotics development timelines. The ability to reliably and repeatedly classify objects during a vehicles mission execution is vital for the vehicle to mitigate both static and dynamic environmental concerns such that the mission may be completed successfully and have the vehicle operate and return safely. In this paper, the Autonomy Incubator proposes and discusses an ensemble learning and recognition system planned for our autonomous framework, AEON, in selected domains, which fuse decision criteria, using prior experience on both the individual classifier layer and the ensemble layer to mitigate environmental uncertainty during operation.

  19. Integrated Geo Hazard Management System in Cloud Computing Technology

    NASA Astrophysics Data System (ADS)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  20. Galileo: The Added Value for Integrity in Harsh Environments.

    PubMed

    Borio, Daniele; Gioia, Ciro

    2016-01-16

    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability.

  1. Galileo: The Added Value for Integrity in Harsh Environments

    PubMed Central

    Borio, Daniele; Gioia, Ciro

    2016-01-01

    A global navigation satellite system (GNSS)-based navigation is a challenging task in a signal-degraded environments where GNSS signals are distorted by multipath and attenuated by fading effects: the navigation solution may be inaccurate or unavailable. A possible approach to improve accuracy and availability is the joint use of measurements from different GNSSs and quality check algorithms; this approach is investigated here using live GPS and Galileo signals. A modified receiver autonomous integrity monitoring (RAIM) algorithm, including geometry and separability checks, is proposed to detect and exclude erroneous measurements: the multi-constellation approach provides redundant measurements, and RAIM exploits them to exclude distorted observations. The synergy between combined GPS/Galileo navigation and RAIM is analyzed using live data; the performance is compared to the accuracy and availability of a GPS-only solution. The tests performed demonstrate that the methods developed are effective techniques for GNSS-based navigation in signal-degraded environments. The joint use of the multi-constellation approach and of modified RAIM algorithms improves the performance of the navigation system in terms of both accuracy and availability. PMID:26784205

  2. Immobile Robots: AI in the New Millennium

    NASA Technical Reports Server (NTRS)

    Williams, Brian C.; Nayak, P. Pandurang

    1996-01-01

    A new generation of sensor rich, massively distributed, autonomous systems are being developed that have the potential for profound social, environmental, and economic change. These include networked building energy systems, autonomous space probes, chemical plant control systems, satellite constellations for remote ecosystem monitoring, power grids, biosphere-like life support systems, and reconfigurable traffic systems, to highlight but a few. To achieve high performance, these immobile robots (or immobots) will need to develop sophisticated regulatory and immune systems that accurately and robustly control their complex internal functions. To accomplish this, immobots will exploit a vast nervous system of sensors to model themselves and their environment on a grand scale. They will use these models to dramatically reconfigure themselves in order to survive decades of autonomous operations. Achieving these large scale modeling and configuration tasks will require a tight coupling between the higher level coordination function provided by symbolic reasoning, and the lower level autonomic processes of adaptive estimation and control. To be economically viable they will need to be programmable purely through high level compositional models. Self modeling and self configuration, coordinating autonomic functions through symbolic reasoning, and compositional, model-based programming are the three key elements of a model-based autonomous systems architecture that is taking us into the New Millennium.

  3. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.

  4. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  5. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  6. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  7. Patients With Fibromyalgia Have Significant Autonomic Symptoms But Modest Autonomic Dysfunction.

    PubMed

    Vincent, Ann; Whipple, Mary O; Low, Phillip A; Joyner, Michael; Hoskin, Tanya L

    2016-05-01

    Research suggests that disordered autonomic function may be one contributor to deconditioning reported in fibromyalgia; however, no study to date has assessed these variables simultaneously with comprehensive measures. To characterize physical fitness and autonomic function with the use of clinically validated measures and subjective questionnaires between patients with fibromyalgia and healthy controls. Cross-sectional, observational, controlled study. Community sample of patients with fibromyalgia and healthy controls. Thirty patients with fibromyalgia and 30 pain and fatigue-free controls. Participants completed a battery of self-report questionnaires and physiological measures, including clinically validated measures of physical fitness and autonomic function. Six-Minute Walk Test total distance, maximal oxygen consumption as assessed by cardiopulmonary exercise testing, total steps using activity monitor, Composite Autonomic Scoring Scale as assessed by Autonomic Reflex Screen, total metabolic equivalents per week using the International Physical Activity Questionnaire, and self-reported autonomic symptoms via the 31-item Composite Autonomic Symptom Score questionnaire. Autonomic function, as assessed by self-report, was significantly different between patients and controls (P < .0001); in contrast, the only difference between patients and controls on the Autonomic Reflex Screen was in the adrenergic domain (P = .022), and these abnormalities were mild. Self-reported physical activity was not significantly different between patients and controls (P = .99), but levels of moderate and vigorous physical activity as measured by actigraphy were significantly lower in patients (P = .012 and P = .047, respectively). Exercise capacity (6-Minute Walk) was poorer in patients (P = .0006), but there was no significant difference in maximal volume of oxygen consumption (P = .07). Patients with fibromyalgia report more severe symptoms across all domains, including physical activity and autonomic symptoms, compared with controls, but the objective assessments only showed modest differences. Our results suggest that patients with widespread subjective impairment of function have only modest objective measures of autonomic dysfunction. We recommend that the primary treatment goal should be focused on restoration of function, which may also ameliorate symptoms. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. Patients with Fibromyalgia Have Significant Autonomic Symptoms but Modest Autonomic Dysfunction

    PubMed Central

    Vincent, Ann; Whipple, Mary O.; Low, Phillip A.; Joyner, Michael; Hoskin, Tanya L.

    2015-01-01

    Background Research suggests that disordered autonomic function may be one contributor to deconditioning reported in fibromyalgia, however no study to date has simultaneously assessed these variables utilizing comprehensive measures. Objective To characterize physical fitness and autonomic function using clinically validated measures and subjective questionnaires between patients with fibromyalgia and healthy controls. Design Cross-sectional, observational, controlled study Setting Community sample of patients with fibromyalgia and healthy controls Participants 30 patients with fibromyalgia and 30 pain and fatigue-free controls Methods: Participants completed a battery of self-report questionnaires and physiological measures including clinically validated measures of physical fitness and autonomic function. Main Outcome Measurements 6 Minute Walk Test total distance, VO2 max as assessed by cardiopulmonary exercise testing, total steps using activity monitor, Composite Autonomic Scoring Scale as assessed by Autonomic Reflex Screen, total metabolic equivalents per week using the International Physical Activity Questionnaire and self-reported autonomic symptoms using the 31-item Composite Autonomic Symptom Score questionnaire. Results Autonomic function, as assessed by self-report, was significantly different between patients and controls (p<.0001); in contrast, the only difference between patients and controls on the Autonomic Reflex Screen was in the adrenergic domain (p=.022), and these abnormalities were mild. Self-reported physical activity was not significantly different between patients and controls (p=.99), but levels of moderate and vigorous physical activity as measured by actigraphy, were significantly lower in patients (p=.012 and p=.047, respectively). Exercise capacity (6 Minute Walk) was poorer in patients (p=.0006), but there was no significant difference in maximal volume of oxygen consumption (p=.07). Conclusions Patients with fibromyalgia report more severe symptoms across all domains including physical activity and autonomic symptoms when compared to controls, but the objective assessments only showed modest differences. Our results suggest that patients with widespread subjective impairment of function have only modest objective measures of autonomic dysfunction. We recommend that the primary treatment goal should be focused on restoration of function which may also ameliorate symptoms. PMID:26314231

  9. A Forest Fire Sensor Web Concept with UAVSAR

    NASA Astrophysics Data System (ADS)

    Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.

    2008-12-01

    We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.

  10. An autonomous fault detection, isolation, and recovery system for a 20-kHz electric power distribution test bed

    NASA Technical Reports Server (NTRS)

    Quinn, Todd M.; Walters, Jerry L.

    1991-01-01

    Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.

  11. Changes in autonomic regulation and ventricular repolarization induced by subclinical hyperthyroidism.

    PubMed

    Galetta, F; Franzoni, F; Fallahi, P; Tocchini, L; Graci, F; Gaddeo, C; Rossi, M; Cini, G; Carpi, A; Santoro, G; Antonelli, A

    2010-10-01

    The aim of the present study was to evaluate the effect of subclinical hyperthyroidism (SHT) on cardiovascular autonomic function and ventricular repolarization. Thirty subjects (25 females; mean age 49.6 ± 9.8 years) with SHT, as judged by reduced TSH serum levels and normal free T4 and T3 serum levels, and 30 age and sex-matched control subjects underwent standard 12-lead ECG, and 24h ambulatory ECG monitoring. The dispersion of the QT interval, an index of inhomogeneity of repolarization, and the heart rate variability (HRV), a measure of cardiac autonomic modulation, were studied. Patients with SHT showed higher QT dispersion (p<0.001) and lower HRV measures (0.01>p<0.001) than controls. In SHT patients, QT dispersion was inversely related to HRV (r=-0.47, p<0.01). The results of the present study demonstrated that SHT is associated with a sympathovagal imbalance, characterized by increased sympathetic activity in the presence of diminished vagal tone, and with an increased inhomogeneity of ventricular recovery times. The assessment of HRV and QT dispersion in patients with SHT may represent a useful tool in monitoring the cardiovascular risk of this condition. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  12. Abnormal cardiac autonomic regulation in mice lacking ASIC3.

    PubMed

    Cheng, Ching-Feng; Kuo, Terry B J; Chen, Wei-Nan; Lin, Chao-Chieh; Chen, Chih-Cheng

    2014-01-01

    Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3(-/-) mice. Asic3(-/-) mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3(-/-) mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3(-/-) mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  13. Microbiorobots for Manipulation and Sensing

    DTIC Science & Technology

    2016-04-19

    integrated into microscale robotics and biosensor systems. The objective of the proposed program is to develop a platform that integrates bacteria with...information represent enormous potential that can be harnessed and integrated into microscale robotics and biosensor systems. The objective of the...applicable in microscale assembly systems and biosensors that require autonomous coordination of bacteria. (a) Papers published in peer-reviewed

  14. APDS: the autonomous pathogen detection system.

    PubMed

    Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M

    2005-04-15

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.

  15. Secure VM for Monitoring Industrial Process Controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K

    2011-01-01

    In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicatedmore » host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.« less

  16. Autonomic dysfunction with early respiratory syncytial virus-related infection.

    PubMed

    Stock, Claire; Teyssier, Georges; Pichot, Vincent; Goffaux, Philippe; Barthelemy, Jean-Claude; Patural, Hugues

    2010-08-25

    Apparent life-threatening events (ALTE) and/or prolonged apnoea have been well-documented during respiratory syncytial virus (RSV) infection in infants less than 2 months of age but fundamental mechanisms remain unclear. The possibility of a central origin for the development of severe cardiac and respiratory events encouraged us, to explore the autonomic nervous system (ANS) profile of infected infants, since ANS activity may contribute to the constellation of symptoms observed during severe forms of RSV bronchiolitis. Eight infants (2 preterm and 6 full-term) less than 2 months of age and presenting with severe and apnoeic forms of RSV infection were evaluated using non-invasive electrophysiological monitoring obtained simultaneously for approximately 2 consecutive hours, including a quiet sleep period. Eight control subjects, paired for gestational and postnatal age, were also evaluated. ANS status was monitored using electrocardiogram recordings and quantified through a frequency-domain analysis of heart rate variability (HRV). This included sympathetic (VLF and LF) and parasympathetic (HF) indices as well as a measure of baroreflex sensitivity (BRS) obtained using non-invasive continuous arterial pressure. Regardless of gestational and postnatal age, heart rate variability components (Ptot, VLF, LF, and HF) and baroreflex components (alpha LF, alpha HF and sBR) were found to be significantly lower in the RSV-infected group than in the control group (p<0.05). RSV infection in neonates is associated with profound central autonomic dysfunction. The potentially fatal consequence stresses the importance of maintaining prolonged cardiopulmonary monitoring. Copyright 2010 Elsevier B.V. All rights reserved.

  17. An Architecture for Autonomic Web Service Process Planning

    NASA Astrophysics Data System (ADS)

    Moore, Colm; Xue Wang, Ming; Pahl, Claus

    Web service composition is a technology that has received considerable attention in the last number of years. Languages and tools to aid in the process of creating composite Web services have been received specific attention. Web service composition is the process of linking single Web services together in order to accomplish more complex tasks. One area of Web service composition that has not received as much attention is the area of dynamic error handling and re-planning, enabling autonomic composition. Given a repository of service descriptions and a task to complete, it is possible for AI planners to automatically create a plan that will achieve this goal. If however a service in the plan is unavailable or erroneous the plan will fail. Motivated by this problem, this paper suggests autonomous re-planning as a means to overcome dynamic problems. Our solution involves automatically recovering from faults and creating a context-dependent alternate plan. We present an architecture that serves as a basis for the central activities autonomous composition, monitoring and fault handling.

  18. Autonomous Underwater Vehicle Navigation

    DTIC Science & Technology

    2008-02-01

    three standard deviations are ignored as indicated by the × marker. 25 7. REFERENCES [1] R. G. Brown and P. Y. C. Hwang , Introduction to Random Signals...autonomous underwater vehicle with six degrees of freedom. We approach this problem using an error state formulation of the Kalman filter. Integration...each position fix, but is this ad-hoc method optimal? Here, we present an approach using an error state formulation of the Kalman filter to provide an

  19. Inexpensive robots used to teach dc circuits and electronics

    NASA Astrophysics Data System (ADS)

    Sidebottom, David L.

    2017-05-01

    This article describes inexpensive, autonomous robots, built without microprocessors, used in a college-level introductory physics laboratory course to motivate student learning of dc circuits. Detailed circuit descriptions are provided as well as a week-by-week course plan that can guide students from elementary dc circuits, through Kirchhoff's laws, and into simple analog integrated circuits with the motivational incentive of building an autonomous robot that can compete with others in a public arena.

  20. Autonomous mobile robot research using the HERMIES-III robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, F.G.; Beckerman, M.; Spelt, P.F.

    1989-01-01

    This paper reports on the status and future directions in the research, development and experimental validation of intelligent control techniques for autonomous mobile robots using the HERMIES-III robot at the Center for Engineering Systems Advanced research (CESAR) at Oak Ridge National Laboratory (ORNL). HERMIES-III is the fourth robot in a series of increasingly more sophisticated and capable experimental test beds developed at CESAR. HERMIES-III is comprised of a battery powered, onmi-directional wheeled platform with a seven degree-of-freedom manipulator arm, video cameras, sonar range sensors, laser imaging scanner and a dual computer system containing up to 128 NCUBE nodes in hypercubemore » configuration. All electronics, sensors, computers, and communication equipment required for autonomous operation of HERMIES-III are located on board along with sufficient battery power for three to four hours of operation. The paper first provides a more detailed description of the HERMIES-III characteristics, focussing on the new areas of research and demonstration now possible at CESAR with this new test-bed. The initial experimental program is then described with emphasis placed on autonomous performance of human-scale tasks (e.g., valve manipulation, use of tools), integration of a dexterous manipulator and platform motion in geometrically complex environments, and effective use of multiple cooperating robots (HERMIES-IIB and HERMIES- III). The paper concludes with a discussion of the integration problems and safety considerations necessarily arising from the set-up of an experimental program involving human-scale, multi-autonomous mobile robots performance. 10 refs., 3 figs.« less

  1. Using an autonomous Wave Glider to detect seawater anomalies related to submarine groundwater discharge - engineering challenge

    NASA Astrophysics Data System (ADS)

    Leibold, P.; Brueckmann, W.; Schmidt, M.; Balushi, H. A.; Abri, O. A.

    2017-12-01

    Coastal aquifer systems are amongst the most precious and vulnerable water resources worldwide. While differing in lateral and vertical extent they commonly show a complex interaction with the marine realm. Excessive groundwater extraction can cause saltwater intrusion from the sea into the aquifers, having a strongly negative impact on the groundwater quality. While the reverse pathway, the discharge of groundwater into the sea is well understood in principle, it's mechanisms and quantities not well constrained. We will present a project that combines onshore monitoring and modeling of groundwater in the coastal plain of Salalah, Oman with an offshore autonomous robotic monitoring system, the Liquid Robotics Wave Glider. Eventually, fluxes detected by the Wave Glider system and the onshore monitoring of groundwater will be combined into a 3-D flow model of the coastal and deeper aquifers. The main tool for offshore SGD investigation project is a Wave Glider, an autonomous vehicle based on a new propulsion technology. The Wave Glider is a low-cost satellite-connected marine craft, consisting of a combination of a sea-surface and an underwater component which is propelled by the conversion of ocean wave energy into forward thrust. While the wave energy propulsion system is purely mechanical, electrical energy for onboard computers, communication and sensors is provided by photovoltaic cells. For the project the SGD Wave Glider is being equipped with dedicated sensors to measure temperature, conductivity, Radon isotope (222Rn, 220Rn) activity concentration as well as other tracers of groundwater discharge. Dedicated software using this data input will eventually allow the Wave Glider to autonomously collect information and actively adapt its search pattern to hunt for spatial and temporal anomalies. Our presentation will focus on the engineering and operational challenges ofdetecting submarine groundwater discharges with the Wave Glider system in the Bay of Salalah, Oman and solutions to overcome them.

  2. Overview of Intelligent Power Controller Development for the Deep Space Gateway

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey

    2017-01-01

    Intelligent, or autonomous, control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASAs current long term human space platform, the International Space Station, which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As focus shifts from Low Earth Orbit, communication time-lag and communication bandwidth limitations beyond geosynchronous orbit does not permit this type of operation. This presentation contains ongoing work at NASA to develop an architecture for autonomous power control and the vehicle manager which monitors, coordinates, and delegates to all the on-board subsystems to enable autonomous control of the complete spacecraft.

  3. Carbon nanotube sensors integrated inside a microfluidic channel for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Li, Xinghui; Dokmeci, Mehmet R.; Wang, Ming L.

    2011-04-01

    Single-walled carbon nanotubes (SWNTs) with their unique electrical properties and large surface area are remarkable materials for detecting low concentration of toxic and hazardous chemicals (both from the gaseous and liquid phases). Ionic adsorbates in water will attach on to SWNTs and drastically alter their electrical properties. Several SWNTs based pH and chemical sensors have been demonstrated. However, most of them require external components to test and analyze the response of SWNTs to ions inside the liquid samples. Here, we report a water quality monitoring sensor composed of SWNTs integrated inside microfluidic channels and on-chip testing components with a wireless transmission board. To detect multiple analytes in water requires the functionalization of SWNTs with different chemistries. In addition, microfluidic channels are used to guide liquid samples to individual nanotube sensors in an efficient manner. Furthermore, the microfluidic system enables sample mixing and separation before testing. To realize the nanosensors, first microelectrodes were fabricated on an oxidized silicon substrate. Next, PDMS micro channels were fabricated and bonded on the substrate. These channels can be incorporated with a microfluidic system which can be designed to manipulate different analytes for specific molecule detection. Low temperature, solution based Dielectrophoretic (DEP) assembly was conducted inside this microfluidic system which successfully bridged SWNTs between the microelectrodes. The SWNTs sensors were next characterized with different pH buffer solutions. The resistance of SWNTs had a linearly increase as the pH values ranged from 5 to 8. The nanosensor incorporated within the microfluidic system is a versatile platform and can be utilized to detect numerous water pollutants, including toxic organics and microorganisms down to low concentrations. On-chip processing and wireless transmission enables the realization of a full autonomous system for real time monitoring of water quality.

  4. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    DOE PAGES

    Emaminejad, Sam; Gao, Wei; Wu, Eric; ...

    2017-04-17

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 μL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, withoutmore » electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. In conclusion, our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.« less

  5. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    PubMed Central

    Emaminejad, Sam; Gao, Wei; Wu, Eric; Davies, Zoe A.; Yin Yin Nyein, Hnin; Challa, Samyuktha; Ryan, Sean P.; Fahad, Hossain M.; Chen, Kevin; Shahpar, Ziba; Talebi, Salmonn; Milla, Carlos; Javey, Ali; Davis, Ronald W.

    2017-01-01

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals’ health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 µL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, without electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. Our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications. PMID:28416667

  6. Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emaminejad, Sam; Gao, Wei; Wu, Eric

    Perspiration-based wearable biosensors facilitate continuous monitoring of individuals' health states with real-time and molecular-level insight. The inherent inaccessibility of sweat in sedentary individuals in large volume (≥10 μL) for on-demand and in situ analysis has limited our ability to capitalize on this noninvasive and rich source of information. A wearable and miniaturized iontophoresis interface is an excellent solution to overcome this barrier. The iontophoresis process involves delivery of stimulating agonists to the sweat glands with the aid of an electrical current. The challenge remains in devising an iontophoresis interface that can extract sufficient amount of sweat for robust sensing, withoutmore » electrode corrosion and burning/causing discomfort in subjects. Here, we overcame this challenge through realizing an electrochemically enhanced iontophoresis interface, integrated in a wearable sweat analysis platform. This interface can be programmed to induce sweat with various secretion profiles for real-time analysis, a capability which can be exploited to advance our knowledge of the sweat gland physiology and the secretion process. To demonstrate the clinical value of our platform, human subject studies were performed in the context of the cystic fibrosis diagnosis and preliminary investigation of the blood/sweat glucose correlation. With our platform, we detected the elevated sweat electrolyte content of cystic fibrosis patients compared with that of healthy control subjects. Furthermore, our results indicate that oral glucose consumption in the fasting state is followed by increased glucose levels in both sweat and blood. In conclusion, our solution opens the possibility for a broad range of noninvasive diagnostic and general population health monitoring applications.« less

  7. Association Between Autonomic Impairment and Structural Deficit in Parkinson Disease

    PubMed Central

    Chen, Meng-Hsiang; Lu, Cheng-Hsien; Chen, Pei-Chin; Tsai, Nai-Wen; Huang, Chih-Cheng; Chen, Hsiu-Ling; Yang, I-Hsiao; Yu, Chiun-Chieh; Lin, Wei-Che

    2016-01-01

    Abstract Patients with Parkinson disease (PD) have impaired autonomic function and altered brain structure. This study aimed to evaluate the relationship of gray matter volume (GMV) determined by voxel-based morphometry (VBM) to autonomic impairment in patients with PD. Whole-brain VBM analysis was performed on 3-dimensional T1-weighted images in 23 patients with PD and 15 sex- and age-matched healthy volunteers. The relationship of cardiovascular autonomic function (determined by survey) to baroreflex sensitivity (BRS) (determined from changes in heart rate and blood pressure during the early phase II of the Valsalva maneuver) was tested using least-squares regression analysis. The differences in GMV, autonomic parameters, and clinical data were correlated after adjusting for age and sex. Compared with controls, patients with PD had low BRS, suggesting worse cardiovascular autonomic function, and smaller GMV in several brain locations, including the right amygdala, left hippocampal formation, bilateral insular cortex, bilateral caudate nucleus, bilateral cerebellum, right fusiform, and left middle frontal gyri. The decreased GMVs of the selected brain regions were also associated with increased presence of epithelial progenitor cells (EPCs) in the circulation. In patients with PD, decrease in cardiovascular autonomic function and increase in circulating EPC level are associated with smaller GMV in several areas of the brain. Because of its possible role in the modulation of the circulatory EPC pool and baroreflex control, the left hippocampal formation may be a bio-target for disease-modifying therapy and treatment monitoring in PD. PMID:26986144

  8. Association Between Autonomic Impairment and Structural Deficit in Parkinson Disease.

    PubMed

    Chen, Meng-Hsiang; Lu, Cheng-Hsien; Chen, Pei-Chin; Tsai, Nai-Wen; Huang, Chih-Cheng; Chen, Hsiu-Ling; Yang, I-Hsiao; Yu, Chiun-Chieh; Lin, Wei-Che

    2016-03-01

    Patients with Parkinson disease (PD) have impaired autonomic function and altered brain structure. This study aimed to evaluate the relationship of gray matter volume (GMV) determined by voxel-based morphometry (VBM) to autonomic impairment in patients with PD. Whole-brain VBM analysis was performed on 3-dimensional T1-weighted images in 23 patients with PD and 15 sex- and age-matched healthy volunteers. The relationship of cardiovascular autonomic function (determined by survey) to baroreflex sensitivity (BRS) (determined from changes in heart rate and blood pressure during the early phase II of the Valsalva maneuver) was tested using least-squares regression analysis. The differences in GMV, autonomic parameters, and clinical data were correlated after adjusting for age and sex. Compared with controls, patients with PD had low BRS, suggesting worse cardiovascular autonomic function, and smaller GMV in several brain locations, including the right amygdala, left hippocampal formation, bilateral insular cortex, bilateral caudate nucleus, bilateral cerebellum, right fusiform, and left middle frontal gyri. The decreased GMVs of the selected brain regions were also associated with increased presence of epithelial progenitor cells (EPCs) in the circulation. In patients with PD, decrease in cardiovascular autonomic function and increase in circulating EPC level are associated with smaller GMV in several areas of the brain. Because of its possible role in the modulation of the circulatory EPC pool and baroreflex control, the left hippocampal formation may be a bio-target for disease-modifying therapy and treatment monitoring in PD.

  9. Autonomic functions in acrocyanosis assessed by heart rate variability

    PubMed Central

    Yılmaz, Sedat; Yokuşoğlu, Mehmet; Çınar, Muhammet; Şimşek, İsmail; Baysan, Oben; Öz, Bilgehan Savaş; Erdem, Hakan; Pay, Salih; Dinç, Ayhan

    2014-01-01

    Objective To evaluate the autonomic activity of patients with acrocyanosis by using heart rate variability indices. Material and Methods The study group consisted of 24 patients with acrocyanosis and the control group contained 22 sex- and age-matched healthy subjects. All subjects underwent 24-hour Holter monitoring. Among the heart rate variability (HRV) parameters, time-domain and frequency-domain indices were analysed. Results The time-domain indices of HRV indicating global autonomic functions were found to be increased, and indices indicating parasympathetic activity showed a significant decrease in the patient group. Power-spectral analysis of HRV revealed that the low frequency and high frequency power were higher in the patient group than in controls. However, the ratio of Low Frequency/High Frequency was found to be lower in the patient group than in controls. Conclusion In acrocyanosis, both sympathetic and parasympathetic systems seem to be disrupted. Therefore, we may conclude that acrocyanosis may be resulted of systemic autonomic imbalance rather than pure sympathetic over-activation. Also, these results suggest that acrocyanosis is not a localised disorder; on the contrary, it is associated with various abnormalities of the systemic autonomic nervous system. PMID:27708866

  10. Coordinating teams of autonomous vehicles: an architectural perspective

    NASA Astrophysics Data System (ADS)

    Czichon, Cary; Peterson, Robert W.; Mettala, Erik G.; Vondrak, Ivo

    2005-05-01

    In defense-related robotics research, a mission level integration gap exists between mission tasks (tactical) performed by ground, sea, or air applications and elementary behaviors enacted by processing, communications, sensors, and weaponry resources (platform specific). The gap spans ensemble (heterogeneous team) behaviors, automatic MOE/MOP tracking, and tactical task modeling/simulation for virtual and mixed teams comprised of robotic and human combatants. This study surveys robotic system architectures, compares approaches for navigating problem/state spaces by autonomous systems, describes an architecture for an integrated, repository-based modeling, simulation, and execution environment, and outlines a multi-tiered scheme for robotic behavior components that is agent-based, platform-independent, and extendable via plug-ins. Tools for this integrated environment, along with a distributed agent framework for collaborative task performance are being developed by a U.S. Army funded SBIR project (RDECOM Contract N61339-04-C-0005).

  11. Framework and Method for Controlling a Robotic System Using a Distributed Computer Network

    NASA Technical Reports Server (NTRS)

    Sanders, Adam M. (Inventor); Strawser, Philip A. (Inventor); Barajas, Leandro G. (Inventor); Permenter, Frank Noble (Inventor)

    2015-01-01

    A robotic system for performing an autonomous task includes a humanoid robot having a plurality of compliant robotic joints, actuators, and other integrated system devices that are controllable in response to control data from various control points, and having sensors for measuring feedback data at the control points. The system includes a multi-level distributed control framework (DCF) for controlling the integrated system components over multiple high-speed communication networks. The DCF has a plurality of first controllers each embedded in a respective one of the integrated system components, e.g., the robotic joints, a second controller coordinating the components via the first controllers, and a third controller for transmitting a signal commanding performance of the autonomous task to the second controller. The DCF virtually centralizes all of the control data and the feedback data in a single location to facilitate control of the robot across the multiple communication networks.

  12. Onboard planning for geological investigations using a rover team

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Gaines, Daniel; Fisher, Forest; Castano, Rebecca

    2004-01-01

    This paper describes an integrated system for coordinating multiple rover behavior with the overall goal of collecting planetary surface data. The Multi-Rover Integrated Science Understanding System (MISUS) combines techniques from planning and scheduling with machine learning to perform autonomous scientific exploration with cooperating rovers.

  13. Non-autonomous multi-rogue waves for spin-1 coupled nonlinear Gross-Pitaevskii equation and management by external potentials.

    PubMed

    Li, Li; Yu, Fajun

    2017-09-06

    We investigate non-autonomous multi-rogue wave solutions in a three-component(spin-1) coupled nonlinear Gross-Pitaevskii(GP) equation with varying dispersions, higher nonlinearities, gain/loss and external potentials. The similarity transformation allows us to relate certain class of multi-rogue wave solutions of the spin-1 coupled nonlinear GP equation to the solutions of integrable coupled nonlinear Schrödinger(CNLS) equation. We study the effect of time-dependent quadratic potential on the profile and dynamic of non-autonomous rogue waves. With certain requirement on the backgrounds, some non-autonomous multi-rogue wave solutions exhibit the different shapes with two peaks and dip in bright-dark rogue waves. Then, the managements with external potential and dynamic behaviors of these solutions are investigated analytically. The results could be of interest in such diverse fields as Bose-Einstein condensates, nonlinear fibers and super-fluids.

  14. Autonomous mission planning and scheduling: Innovative, integrated, responsive

    NASA Technical Reports Server (NTRS)

    Sary, Charisse; Liu, Simon; Hull, Larry; Davis, Randy

    1994-01-01

    Autonomous mission scheduling, a new concept for NASA ground data systems, is a decentralized and distributed approach to scientific spacecraft planning, scheduling, and command management. Systems and services are provided that enable investigators to operate their own instruments. In autonomous mission scheduling, separate nodes exist for each instrument and one or more operations nodes exist for the spacecraft. Each node is responsible for its own operations which include planning, scheduling, and commanding; and for resolving conflicts with other nodes. One or more database servers accessible to all nodes enable each to share mission and science planning, scheduling, and commanding information. The architecture for autonomous mission scheduling is based upon a realistic mix of state-of-the-art and emerging technology and services, e.g., high performance individual workstations, high speed communications, client-server computing, and relational databases. The concept is particularly suited to the smaller, less complex missions of the future.

  15. PERCEIVED AUTONOMY SUPPORT AND BEHAVIORAL ENGAGEMENT IN PHYSICAL EDUCATION: A CONDITIONAL PROCESS MODEL OF POSITIVE EMOTION AND AUTONOMOUS MOTIVATION.

    PubMed

    Yoo, Jin

    2015-06-01

    A variety of theoretical perspectives describe the crucial behavioral roles of motivation and emotion, but how these interact with perceptions of social contexts and behaviors is less well understood. This study examined whether autonomous motivation mediated the relationship between perceived autonomy support and behavioral engagement in physical education and whether this mediating process was moderated by positive emotion. A sample of 592 Korean middle-school students (304 boys, 288 girls; M age = 14.0 yr., SD = 0.8) completed questionnaires. Autonomous motivation partially mediated the positive association between perceived autonomy support and behavioral engagement. Positive emotion moderated the relationship between autonomous motivation and behavioral engagement. This indirect link was stronger as positive emotion increased. These findings suggest the importance of integrating emotion into motivational processes to understand how and when perceived autonomy support is associated with behavioral engagement in physical education.

  16. Bilevel shared control for teleoperators

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A. (Inventor); Venkataraman, Subramanian T. (Inventor)

    1992-01-01

    A shared system is disclosed for robot control including integration of the human and autonomous input modalities for an improved control. Autonomously planned motion trajectories are modified by a teleoperator to track unmodelled target motions, while nominal teleoperator motions are modified through compliance to accommodate geometric errors autonomously in the latter. A hierarchical shared system intelligently shares control over a remote robot between the autonomous and teleoperative portions of an overall control system. Architecture is hierarchical, and consists of two levels. The top level represents the task level, while the bottom, the execution level. In space applications, the performance of pure teleoperation systems depend significantly on the communication time delays between the local and the remote sites. Selection/mixing matrices are provided with entries which reflect how each input's signals modality is weighted. The shared control minimizes the detrimental effects caused by these time delays between earth and space.

  17. Music and Autonomic Nervous System (Dys)function

    PubMed Central

    Ellis, Robert J.; Thayer, Julian F.

    2010-01-01

    Despite a wealth of evidence for the involvement of the autonomic nervous system (ANS) in health and disease and the ability of music to affect ANS activity, few studies have systematically explored the therapeutic effects of music on ANS dysfunction. Furthermore, when ANS activity is quantified and analyzed, it is usually from a point of convenience rather than from an understanding of its physiological basis. After a review of the experimental and therapeutic literatures exploring music and the ANS, a “Neurovisceral Integration” perspective on the interplay between the central and autonomic nervous systems is introduced, and the associated implications for physiological, emotional, and cognitive health are explored. The construct of heart rate variability is discussed both as an example of this complex interplay and as a useful metric for exploring the sometimes subtle effect of music on autonomic response. Suggestions for future investigations using musical interventions are offered based on this integrative account. PMID:21197136

  18. Learning Agents for Autonomous Space Asset Management (LAASAM)

    NASA Astrophysics Data System (ADS)

    Scally, L.; Bonato, M.; Crowder, J.

    2011-09-01

    Current and future space systems will continue to grow in complexity and capabilities, creating a formidable challenge to monitor, maintain, and utilize these systems and manage their growing network of space and related ground-based assets. Integrated System Health Management (ISHM), and in particular, Condition-Based System Health Management (CBHM), is the ability to manage and maintain a system using dynamic real-time data to prioritize, optimize, maintain, and allocate resources. CBHM entails the maintenance of systems and equipment based on an assessment of current and projected conditions (situational and health related conditions). A complete, modern CBHM system comprises a number of functional capabilities: sensing and data acquisition; signal processing; conditioning and health assessment; diagnostics and prognostics; and decision reasoning. In addition, an intelligent Human System Interface (HSI) is required to provide the user/analyst with relevant context-sensitive information, the system condition, and its effect on overall situational awareness of space (and related) assets. Colorado Engineering, Inc. (CEI) and Raytheon are investigating and designing an Intelligent Information Agent Architecture that will provide a complete range of CBHM and HSI functionality from data collection through recommendations for specific actions. The research leverages CEI’s expertise with provisioning management network architectures and Raytheon’s extensive experience with learning agents to define a system to autonomously manage a complex network of current and future space-based assets to optimize their utilization.

  19. Autonomous Mission Manager for Rendezvous, Inspection and Mating

    NASA Technical Reports Server (NTRS)

    Zimpfer, Douglas J.

    2003-01-01

    To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.

  20. Integrating planning, execution, and learning

    NASA Technical Reports Server (NTRS)

    Kuokka, Daniel R.

    1989-01-01

    To achieve the goal of building an autonomous agent, the usually disjoint capabilities of planning, execution, and learning must be used together. An architecture, called MAX, within which cognitive capabilities can be purposefully and intelligently integrated is described. The architecture supports the codification of capabilities as explicit knowledge that can be reasoned about. In addition, specific problem solving, learning, and integration knowledge is developed.

  1. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette Syndrome

    PubMed Central

    Nagai, Yoko

    2015-01-01

    This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in epilepsy (small) and tics in Tourette Syndrome (TS). In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g., syncope), or in relation to Sudden Unexpected Death in Epilepsy (SUDEP). Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in epilepsy and TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behavior influence central thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated to gain a strong position within the next generation of treatment for epilepsy, as a non-invasive technique with minimal side effects. This approach also takes advantage of the current practical opportunity to utilize growing digital health technology. PMID:26441491

  2. KAM tori and whiskered invariant tori for non-autonomous systems

    NASA Astrophysics Data System (ADS)

    Canadell, Marta; de la Llave, Rafael

    2015-08-01

    We consider non-autonomous dynamical systems which converge to autonomous (or periodic) systems exponentially fast in time. Such systems appear naturally as models of many physical processes affected by external pulses. We introduce definitions of non-autonomous invariant tori and non-autonomous whiskered tori and their invariant manifolds and we prove their persistence under small perturbations, smooth dependence on parameters and several geometric properties (if the systems are Hamiltonian, the tori are Lagrangian manifolds). We note that such definitions are problematic for general time-dependent systems, but we show that they are unambiguous for systems converging exponentially fast to autonomous. The proof of persistence relies only on a standard Implicit Function Theorem in Banach spaces and it does not require that the rotations in the tori are Diophantine nor that the systems we consider preserve any geometric structure. We only require that the autonomous system preserves these objects. In particular, when the autonomous system is integrable, we obtain the persistence of tori with rational rotational. We also discuss fast and efficient algorithms for their computation. The method also applies to infinite dimensional systems which define a good evolution, e.g. PDE's. When the systems considered are Hamiltonian, we show that the time dependent invariant tori are isotropic. Hence, the invariant tori of maximal dimension are Lagrangian manifolds. We also obtain that the (un)stable manifolds of whiskered tori are Lagrangian manifolds. We also include a comparison with the more global theory developed in Blazevski and de la Llave (2011).

  3. Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette Syndrome.

    PubMed

    Nagai, Yoko

    2015-01-01

    This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in epilepsy (small) and tics in Tourette Syndrome (TS). In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g., syncope), or in relation to Sudden Unexpected Death in Epilepsy (SUDEP). Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in epilepsy and TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behavior influence central thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated to gain a strong position within the next generation of treatment for epilepsy, as a non-invasive technique with minimal side effects. This approach also takes advantage of the current practical opportunity to utilize growing digital health technology.

  4. Belousov Zhabotinsky Autonomic Hydrogel Composites: Regulating Waves via Asymmetry (Postprint)

    DTIC Science & Technology

    2016-09-23

    distribution unlimited. © 2016 AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND...MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY ACRONYM(S) Air Force Research Laboratory Materials and Manufacturing...EARCH ART I C L EPHYS I CAL SC I ENCEFunctional Materials Division, Materials and Manufacturing Directorate, Air Force Re- search Laboratory, 2179 12th

  5. Health Monitoring System Based on Intra-Body Communication

    NASA Astrophysics Data System (ADS)

    Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2015-11-01

    This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model that operates at the range of 21 MHz frequency and reduce the power consumption for a longer battery lifetime.

  6. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits with minimal impact on IVA operators and ground controllers, the Mini AERCam system architecture incorporates intelligent systems attributes that support various autonomous capabilities. 1) A robust command sequencer enables task-level command scripting. Command scripting is employed for operations such as automatic inspection scans over a region of interest, and operator-hands-off automated docking. 2) A system manager built on the same expert-system software as the command sequencer provides detection and smart-response capability for potential system-level anomalies, like loss of communications between the Free Flyer and control station. 3) An AERCam dynamics manager provides nominal and off-nominal management of guidance, navigation, and control (GN&C) functions. It is employed for safe trajectory monitoring, contingency maneuvering, and related roles. This paper will describe these architectural components of Mini AERCam autonomy, as well as the interaction of these elements with a human operator during supervised autonomous control.

  7. The MAP Autonomous Mission Control System

    NASA Technical Reports Server (NTRS)

    Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger

    2000-01-01

    The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.

  8. New Autonomous Motors of Metal-Organic Framework (MOF) Powered by Reorganization of Self-Assembled Peptides at interfaces

    PubMed Central

    Ikezoe, Yasuhiro; Washino, Gosuke; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi

    2012-01-01

    There have developed a variety of microsystems that harness energy and convert it to mechanical motion. Here we developed new autonomous biochemical motors by integrating metal-organic framework (MOF) and self-assembling peptides. MOF is applied as an energy-storing cell that assembles peptides inside nanoscale pores of the coordination framework. The robust assembling nature of peptides enables reconfiguring their assemblies at the water-MOF interface, which is converted to fuel energy. Re-organization of hydrophobic peptides could create the large surface tension gradient around the MOF and it efficiently powers the translation motion of MOF. As a comparison, the velocity of normalized by volume for the DPA-MOF particle is faster and the kinetic energy per the unit mass of fuel is more than twice as large as the one for previous gel motor systems. This demonstration opens the new application of MOF and reconfigurable molecular self-assembly and it may evolve into the smart autonomous motor that mimic bacteria to swim and harvest target chemicals by integrating recognition units. PMID:23104155

  9. Autonomous, In-Flight Crew Health Risk Management for Exploration-Class Missions: Leveraging the Integrated Medical Model for the Exploration Medical System Demonstration Project

    NASA Technical Reports Server (NTRS)

    Butler, D. J.; Kerstman, E.; Saile, L.; Myers, J.; Walton, M.; Lopez, V.; McGrath, T.

    2011-01-01

    The Integrated Medical Model (IMM) captures organizational knowledge across the space medicine, training, operations, engineering, and research domains. IMM uses this knowledge in the context of a mission and crew profile to forecast risks to crew health and mission success. The IMM establishes a quantified, statistical relationship among medical conditions, risk factors, available medical resources, and crew health and mission outcomes. These relationships may provide an appropriate foundation for developing an in-flight medical decision support tool that helps optimize the use of medical resources and assists in overall crew health management by an autonomous crew with extremely limited interactions with ground support personnel and no chance of resupply.

  10. Integrated 3-D vision system for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Hou, Kun M.; Shawky, Mohamed; Tu, Xiaowei

    1992-03-01

    Nowadays, autonomous vehicles have become a multidiscipline field. Its evolution is taking advantage of the recent technological progress in computer architectures. As the development tools became more sophisticated, the trend is being more specialized, or even dedicated architectures. In this paper, we will focus our interest on a parallel vision subsystem integrated in the overall system architecture. The system modules work in parallel, communicating through a hierarchical blackboard, an extension of the 'tuple space' from LINDA concepts, where they may exchange data or synchronization messages. The general purpose processing elements are of different skills, built around 40 MHz i860 Intel RISC processors for high level processing and pipelined systolic array processors based on PLAs or FPGAs for low-level processing.

  11. Mechanisms of selective attention and space motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.

    1987-01-01

    The neural mismatch theory of space motion sickness asserts that the central and peripheral autonomic sequelae of discordant sensory input arise from central integrative processes falling to reconcile patterns of incoming sensory information with existing memory. Stated differently, perceived novelty reaches a stress level as integrative mechanisms fail to return a sense of control to the individual in the new environment. Based on evidence summarized here, the severity of the neural mismatch may be dependent upon the relative amount of attention selectively afforded to each sensory input competing for control of behavior. Components of the limbic system may play important roles in match-mismatch operations, be therapeutically modulated by antimotion sickness drugs, and be optimally positioned to control autonomic output.

  12. Field assessment of the Village Green Project: an autonomous community air quality monitoring system.

    PubMed

    Jiao, Wan; Hagler, Gayle S W; Williams, Ronald W; Sharpe, Robert N; Weinstock, Lewis; Rice, Joann

    2015-05-19

    Continuous, long-term, and time-resolved measurement of outdoor air pollution has been limited by logistical hurdles and resource constraints. Measuring air pollution in more places is desired to address community concerns regarding local air quality impacts related to proximate sources, to provide data in areas lacking regional air monitoring altogether, or to support environmental awareness and education. This study integrated commercially available technologies to create the Village Green Project (VGP), a durable, solar-powered air monitoring park bench that measures real-time ozone, PM2.5, and meteorological parameters. The data are wirelessly transmitted via cellular modem to a server, where automated quality checks take place before data are provided to the public nearly instantaneously. Over 5500 h of data were successfully collected during the first ten months of pilot testing in Durham, North Carolina, with about 13 days (5.5%) of downtime because of low battery power. Additional data loss (4-14% depending on the measurement) was caused by infrequent wireless communication interruptions and instrument maintenance. The 94.5% operational time via solar power was within 1.5% of engineering calculations using historical solar data for the location. The performance of the VGP was evaluated by comparing the data to nearby air monitoring stations operating federal equivalent methods (FEM), which exhibited good agreement with the nearest benchmark FEMs for hourly ozone (r(2) = 0.79) and PM2.5 (r(2) = 0.76).

  13. Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Soeder, James; Raitano, Paul; McNelis, Anne

    2016-01-01

    As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.

  14. Measuring the Beginning: A Quantitative Study of the Transition to Higher Education

    ERIC Educational Resources Information Center

    Brooman, Simon; Darwent, Sue

    2014-01-01

    This quantitative study measures change in certain factors known to influence success of first-year students during the transition to higher education: self-efficacy, autonomous learning and social integration. A social integration scale was developed with three subscales: "sense of belonging", "relationship with staff" and…

  15. SSTO rockets. A practical possibility

    NASA Technical Reports Server (NTRS)

    Bekey, Ivan

    1994-01-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  16. SSTO rockets. A practical possibility

    NASA Astrophysics Data System (ADS)

    Bekey, Ivan

    1994-07-01

    Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.

  17. Cryptic Coral Reef Diversity Across the Pacific Assessed using Autonomous Reef Monitoring Structures and Multi-omic Methods

    NASA Astrophysics Data System (ADS)

    Ransome, E. J.; Timmers, M.; Hartmann, A.; Collins, A.; Meyer, C.

    2016-02-01

    Coral reefs harbor diverse and distinct eukaryotic, bacterial and viral communities, which are critically important for their success. The lack of standardized measures for comprehensively assessing reef diversity has been a major obstacle in understanding the complexity of eukaryotic and microbial associations, and the processes that drive ecosystem shifts on reefs. ARMS, which mimic the structural complexity of the reef using artificial settlement plates, were used to systematically measure reef biodiversity across the Indo-Pacific. This device allows for standardized sampling of reef microbes to metazoans, providing the opportunity to investigate the fundamental links between these groups at an ecosystem level. We integrate the use of traditional ecology methods with metagenomics and metabolomics (metabolic predictors) to quantify the taxonomic composition of one of the planet's most diverse ecosystems and to assess the fundamental links between these cryptic communities and ecosystem function along geographical and anthropogenic stress gradients.

  18. Regenerative Fuel Cell Test Rig at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.

    2003-01-01

    The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.

  19. Insular cortex activity and the evocation of laughter.

    PubMed

    Wattendorf, Elise; Westermann, Birgit; Lotze, Martin; Fiedler, Klaus; Celio, Marco R

    2016-06-01

    The insular cortex is fundamentally involved in the processing of interoceptive information. It has been postulated that the integrative monitoring of the bodily responses to environmental stimuli is crucial for the recognition and experience of emotions. Because emotional arousal is known to be closely coupled to functions of the anterior insula, we suspected laughter to be associated primarily with neuronal activity in this region. An anatomically constrained re-analysis of our imaging data pertaining to ticklish laughter, to inhibited ticklish laughter, and to voluntary laughter revealed regional differences in the levels of neuronal activity in the posterior and mid-/anterior portions of the insula. Ticklish laughter was associated specifically with right ventral anterior insular activity, which was not detected under the other two conditions. Hence, apparently, only laughter that is evoked as an emotional response bears the signature of autonomic arousal in the insular cortex. © 2015 Wiley Periodicals, Inc.

  20. A learning-based semi-autonomous controller for robotic exploration of unknown disaster scenes while searching for victims.

    PubMed

    Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie

    2014-12-01

    Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.

  1. An autonomous structural health monitoring system for Waiau interchange.

    DOT National Transportation Integrated Search

    2013-03-01

    Bridge infrastructure is a critical element of the transportation system which makes maintaining its safety and : performance vital to a healthy society. However, the civil infrastructure systems in the United States are decaying : at an accelerated ...

  2. Quantitative sensing of bridges, railways, and tunnels with autonomous unmanned aerial vehicles.

    DOT National Transportation Integrated Search

    2017-05-04

    Managing a growing population of deteriorated transportation infrastructure : systems (i.e. bridges, railways, tunnels) is one of biggest challenges faced by the nation. : Traditional inspection and monitoring techniques (e.g., visual inspection, mec...

  3. 76 FR 77806 - International Affairs; U.S. Fish Quotas in the Northwest Atlantic Fisheries Organization...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... available from Douglas Christel, at the NMFS Northeast Regional Office at 55 Great Republic Drive..., autonomous vessel monitoring system; and adherence to all relevant minimum size, gear, bycatch, and other...

  4. Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology.

    PubMed

    Oliver, Ruth Y; Ellis, Daniel P W; Chmura, Helen E; Krause, Jesse S; Pérez, Jonathan H; Sweet, Shannan K; Gough, Laura; Wingfield, John C; Boelman, Natalie T

    2018-06-01

    Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observations of climate and vegetation. This approach would enable global-scale understanding of how climate change influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous recorders typically generate demand automated analyses that remain largely undeveloped. We devised automated signal processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were strongly related to the landscape's snow-free dates. We found that environmental conditions heavily influenced daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in the face of climate change.

  5. Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott; hide

    2010-01-01

    This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.

  6. Network, system, and status software enhancements for the autonomously managed electrical power system breadboard. Volume 2: Protocol specification

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1990-01-01

    This volume (2 of 4) contains the specification, structured flow charts, and code listing for the protocol. The purpose of an autonomous power system on a spacecraft is to relieve humans from having to continuously monitor and control the generation, storage, and distribution of power in the craft. This implies that algorithms will have been developed to monitor and control the power system. The power system will contain computers on which the algorithms run. There should be one control computer system that makes the high level decisions and sends commands to and receive data from the other distributed computers. This will require a communications network and an efficient protocol by which the computers will communicate. One of the major requirements on the protocol is that it be real time because of the need to control the power elements.

  7. Automated Planning and Scheduling for Space Mission Operations

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Jonsson, Ari; Knight, Russell

    2005-01-01

    Research Trends: a) Finite-capacity scheduling under more complex constraints and increased problem dimensionality (subcontracting, overtime, lot splitting, inventory, etc.) b) Integrated planning and scheduling. c) Mixed-initiative frameworks. d) Management of uncertainty (proactive and reactive). e) Autonomous agent architectures and distributed production management. e) Integration of machine learning capabilities. f) Wider scope of applications: 1) analysis of supplier/buyer protocols & tradeoffs; 2) integration of strategic & tactical decision-making; and 3) enterprise integration.

  8. Cryosphere Sensor Webs With The Autonomous Sciencecraft Experiment

    NASA Astrophysics Data System (ADS)

    Scharenbroich, L.; Doggett, T.; Kratz, T.; Castano, R.; Chien, S.; Davies, A. G.; Tran, D.; Mazzoni, D.

    2006-12-01

    Autonomous sensor-webs are being deployed as part of the Autonomous Sciencecraft Experiment [1], whereby observations using the Hyperion instrument [2] on-board Earth Observing-1 (EO-1 are triggered by either ground sensors or by near-real-time analysis of data from other space-based sensors. In the realm of cryosphere monitoring, one sensor-web has been set up pairing EO-1 with a sensor buoy [3] deployed in Sparkling Lake, one of several lakes in northern Wisconsin monitored by University of Wisconsin's Trout Lake Station. A Support Vector Machine (SVM) classifier was trained on historical thermistor chain data with manually recorded ice-in and ice-out times and used to trigger Hyperion observations of the Trout Lake area during spring thaw and winter freeze in 2005. A second sensor-web is being developed using near-real time sea ice data products, based on Department of Defense meteorological satellites, available from the National Snow and Ice Data Center (NSIDC) [4]. Once operational, this sensor web will trigger Hyperion observations of pre-defined targets in the Arctic and Antarctic where regional resolution data shows sea ice formation or break up. [1] Chien et al. (2005), An autonomous earth-observing sensor-web, IEEE Intelligent Systems, [2] Pearlman et al. (2003), Hyperion, a space-based imaging spectrometer, IEEE Trans. Geosci. Rem. Sens., 41(6), [3] Kratz, T. et al. (in press) Toward a Global Lake Ecological Observatory Network, Proceedings of the Karelian Institute, [4] Cavalieri et al. (1999) Near real-time DMSP SSM/I daily polar gridded sea ice concentrations, National Snow and Ice Data Center. Digital Media.

  9. Flightspeed Integral Image Analysis Toolkit

    NASA Technical Reports Server (NTRS)

    Thompson, David R.

    2009-01-01

    The Flightspeed Integral Image Analysis Toolkit (FIIAT) is a C library that provides image analysis functions in a single, portable package. It provides basic low-level filtering, texture analysis, and subwindow descriptor for applications dealing with image interpretation and object recognition. Designed with spaceflight in mind, it addresses: Ease of integration (minimal external dependencies) Fast, real-time operation using integer arithmetic where possible (useful for platforms lacking a dedicated floatingpoint processor) Written entirely in C (easily modified) Mostly static memory allocation 8-bit image data The basic goal of the FIIAT library is to compute meaningful numerical descriptors for images or rectangular image regions. These n-vectors can then be used directly for novelty detection or pattern recognition, or as a feature space for higher-level pattern recognition tasks. The library provides routines for leveraging training data to derive descriptors that are most useful for a specific data set. Its runtime algorithms exploit a structure known as the "integral image." This is a caching method that permits fast summation of values within rectangular regions of an image. This integral frame facilitates a wide range of fast image-processing functions. This toolkit has applicability to a wide range of autonomous image analysis tasks in the space-flight domain, including novelty detection, object and scene classification, target detection for autonomous instrument placement, and science analysis of geomorphology. It makes real-time texture and pattern recognition possible for platforms with severe computational restraints. The software provides an order of magnitude speed increase over alternative software libraries currently in use by the research community. FIIAT can commercially support intelligent video cameras used in intelligent surveillance. It is also useful for object recognition by robots or other autonomous vehicles

  10. System Engineering and Integration of Controls for Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  11. Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies

    PubMed Central

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P.; Bonastre, Alberto; Serrano, Juan J.

    2012-01-01

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.). PMID:23202232

  12. Monitoring pest insect traps by means of low-power image sensor technologies.

    PubMed

    López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P; Bonastre, Alberto; Serrano, Juan J

    2012-11-13

    Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.).

  13. A fault-tolerant intelligent robotic control system

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Tso, Kam Sing

    1993-01-01

    This paper describes the concept, design, and features of a fault-tolerant intelligent robotic control system being developed for space and commercial applications that require high dependability. The comprehensive strategy integrates system level hardware/software fault tolerance with task level handling of uncertainties and unexpected events for robotic control. The underlying architecture for system level fault tolerance is the distributed recovery block which protects against application software, system software, hardware, and network failures. Task level fault tolerance provisions are implemented in a knowledge-based system which utilizes advanced automation techniques such as rule-based and model-based reasoning to monitor, diagnose, and recover from unexpected events. The two level design provides tolerance of two or more faults occurring serially at any level of command, control, sensing, or actuation. The potential benefits of such a fault tolerant robotic control system include: (1) a minimized potential for damage to humans, the work site, and the robot itself; (2) continuous operation with a minimum of uncommanded motion in the presence of failures; and (3) more reliable autonomous operation providing increased efficiency in the execution of robotic tasks and decreased demand on human operators for controlling and monitoring the robotic servicing routines.

  14. MOBLAB: a mobile laboratory for testing real-time vision-based systems in path monitoring

    NASA Astrophysics Data System (ADS)

    Cumani, Aldo; Denasi, Sandra; Grattoni, Paolo; Guiducci, Antonio; Pettiti, Giuseppe; Quaglia, Giorgio

    1995-01-01

    In the framework of the EUREKA PROMETHEUS European Project, a Mobile Laboratory (MOBLAB) has been equipped for studying, implementing and testing real-time algorithms which monitor the path of a vehicle moving on roads. Its goal is the evaluation of systems suitable to map the position of the vehicle within the environment where it moves, to detect obstacles, to estimate motion, to plan the path and to warn the driver about unsafe conditions. MOBLAB has been built with the financial support of the National Research Council and will be shared with teams working in the PROMETHEUS Project. It consists of a van equipped with an autonomous power supply, a real-time image processing system, workstations and PCs, B/W and color TV cameras, and TV equipment. This paper describes the laboratory outline and presents the computer vision system and the strategies that have been studied and are being developed at I.E.N. `Galileo Ferraris'. The system is based on several tasks that cooperate to integrate information gathered from different processes and sources of knowledge. Some preliminary results are presented showing the performances of the system.

  15. Wireless structural monitoring for homeland security applications

    NASA Astrophysics Data System (ADS)

    Kiremidjian, Garo K.; Kiremidjian, Anne S.; Lynch, Jerome P.

    2004-07-01

    This paper addresses the development of a robust, low-cost, low power, and high performance autonomous wireless monitoring system for civil assets such as large facilities, new construction, bridges, dams, commercial buildings, etc. The role of the system is to identify the onset, development, location and severity of structural vulnerability and damage. The proposed system represents an enabling infrastructure for addressing structural vulnerabilities specifically associated with homeland security. The system concept is based on dense networks of "intelligent" wireless sensing units. The fundamental properties of a wireless sensing unit include: (a) interfaces to multiple sensors for measuring structural and environmental data (such as acceleration, displacements, pressure, strain, material degradation, temperature, gas agents, biological agents, humidity, corrosion, etc.); (b) processing of sensor data with embedded algorithms for assessing damage and environmental conditions; (c) peer-to-peer wireless communications for information exchange among units(thus enabling joint "intelligent" processing coordination) and storage of data and processed information in servers for information fusion; (d) ultra low power operation; (e) cost-effectiveness and compact size through the use of low-cost small-size off-the-shelf components. An integral component of the overall system concept is a decision support environment for interpretation and dissemination of information to various decision makers.

  16. NASA Tech Briefs, January 2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Topics covered include: Multisensor Instrument for Real-Time Biological Monitoring; Sensor for Monitoring Nanodevice-Fabrication Plasmas; Backed Bending Actuator; Compact Optoelectronic Compass; Micro Sun Sensor for Spacecraft; Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets; Finned-Ladder Slow-Wave Circuit for a TWT; Directional Radio-Frequency Identification Tag Reader; Integrated Solar-Energy-Harvesting and -Storage Device; Event-Driven Random-Access-Windowing CCD Imaging System; Stroboscope Controller for Imaging Helicopter Rotors; Software for Checking State-charts; Program Predicts Broadband Noise from a Turbofan Engine; Protocol for a Delay-Tolerant Data-Communication Network; Software Implements a Space-Mission File-Transfer Protocol; Making Carbon-Nanotube Arrays Using Block Copolymers: Part 2; Modular Rake of Pitot Probes; Preloading To Accelerate Slow-Crack-Growth Testing; Miniature Blimps for Surveillance and Collection of Samples; Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle; Fabricating Blazed Diffraction Gratings by X-Ray Lithography; Freeze-Tolerant Condensers; The StarLight Space Interferometer; Champagne Heat Pump; Controllable Sonar Lenses and Prisms Based on ERFs; Measuring Gravitation Using Polarization Spectroscopy; Serial-Turbo-Trellis-Coded Modulation with Rate-1 Inner Code; Enhanced Software for Scheduling Space-Shuttle Processing; Bayesian-Augmented Identification of Stars in a Narrow View; Spacecraft Orbits for Earth/Mars-Lander Radio Relay; and Self-Inflatable/Self-Rigidizable Reflectarray Antenna.

  17. FRAM (FRontiers in Arctic marine Monitoring: The FRAM Ocean Observing System) planned efforts for integrated water column biogeochemistry

    NASA Astrophysics Data System (ADS)

    Nielsdóttir, Maria; Salter, Ian; Kanzow, Torsten; Boetius, Antje

    2015-04-01

    The Arctic is a region undergoing rapid environmental change and will be subject to multiple stressors in the coming decades. Reductions in sea ice concentration; warming, increased terrigenous inputs and Atlantification are all expected to exert a significant impact on the structure and function of Arctic ecosystems. The Fram Strait is a particularly important region because it acts as a gateway in the exchange of Atlantic and Arctic water masses. The logistical constraints in conducting year round biogeochemical measurements in such areas impose a significant limitation to our understanding of these complicated ecosystems. To address these important challenges the German ministry of research has funded a multi-million Euro infrastructure project (FRAM). Over the next five years FRAM will develop a remote access and autonomous sampling infrastructure to improve the temporal and spatial resolution of biogeochemical measurements in the Fram Strait and central Arctic. Here we present a summary of sampling strategies, technological innovations and biogeochemical parameters that will be addressed over the duration of the project. Specific emphasis will be placed on platforms for monitoring nutrient dynamics, carbonate chemistry, organic carbon flux and the development of a sustained microbial observatory.

  18. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm

    PubMed Central

    Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis

    2016-01-01

    Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds. PMID:27827883

  19. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.

    PubMed

    Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis

    2016-11-03

    Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds.

  20. Autonomous Underwater Navigation and Optical Mapping in Unknown Natural Environments.

    PubMed

    Hernández, Juan David; Istenič, Klemen; Gracias, Nuno; Palomeras, Narcís; Campos, Ricard; Vidal, Eduard; García, Rafael; Carreras, Marc

    2016-07-26

    We present an approach for navigating in unknown environments while, simultaneously, gathering information for inspecting underwater structures using an autonomous underwater vehicle (AUV). To accomplish this, we first use our pipeline for mapping and planning collision-free paths online, which endows an AUV with the capability to autonomously acquire optical data in close proximity. With that information, we then propose a reconstruction pipeline to create a photo-realistic textured 3D model of the inspected area. These 3D models are also of particular interest to other fields of study in marine sciences, since they can serve as base maps for environmental monitoring, thus allowing change detection of biological communities and their environment over time. Finally, we evaluate our approach using the Sparus II, a torpedo-shaped AUV, conducting inspection missions in a challenging, real-world and natural scenario.

Top