Autonomous system for launch vehicle range safety
NASA Astrophysics Data System (ADS)
Ferrell, Bob; Haley, Sam
2001-02-01
The Autonomous Flight Safety System (AFSS) is a launch vehicle subsystem whose ultimate goal is an autonomous capability to assure range safety (people and valuable resources), flight personnel safety, flight assets safety (recovery of valuable vehicles and cargo), and global coverage with a dramatic simplification of range infrastructure. The AFSS is capable of determining current vehicle position and predicting the impact point with respect to flight restriction zones. Additionally, it is able to discern whether or not the launch vehicle is an immediate threat to public safety, and initiate the appropriate range safety response. These features provide for a dramatic cost reduction in range operations and improved reliability of mission success. .
Launch vehicle operations cost reduction through artificial intelligence techniques
NASA Technical Reports Server (NTRS)
Davis, Tom C., Jr.
1988-01-01
NASA's Kennedy Space Center has attempted to develop AI methods in order to reduce the cost of launch vehicle ground operations as well as to improve the reliability and safety of such operations. Attention is presently given to cost savings estimates for systems involving launch vehicle firing-room software and hardware real-time diagnostics, as well as the nature of configuration control and the real-time autonomous diagnostics of launch-processing systems by these means. Intelligent launch decisions and intelligent weather forecasting are additional applications of AI being considered.
Demonstration of Autonomous Rendezvous Technology (DART) Project Summary
NASA Technical Reports Server (NTRS)
Rumford, TImothy E.
2003-01-01
Since the 1960's, NASA has performed numerous rendezvous and docking missions. The common element of all US rendezvous and docking is that the spacecraft has always been piloted by astronauts. Only the Russian Space Program has developed and demonstrated an autonomous capability. The Demonstration of Autonomous Rendezvous Technology (DART) project currently funded under NASA's Space Launch Initiative (SLI) Cycle I, provides a key step in establishing an autonomous rendezvous capability for the United States. DART's objective is to demonstrate, in space, the hardware and software necessary for autonomous rendezvous. Orbital Sciences Corporation intends to integrate an Advanced Video Guidance Sensor and Autonomous Rendezvous and Proximity Operations algorithms into a Pegasus upper stage in order to demonstrate the capability to autonomously rendezvous with a target currently in orbit. The DART mission will occur in April 2004. The launch site will be Vandenburg AFB and the launch vehicle will be a Pegasus XL equipped with a Hydrazine Auxiliary Propulsion System 4th stage. All mission objectives will be completed within a 24 hour period. The paper provides a summary of mission objectives, mission overview and a discussion on the design features of the chase and target vehicles.
G2 Autonomous Control for Cryogenic Delivery Systems
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.
Automatically calibrating admittances in KATE's autonomous launch operations model
NASA Technical Reports Server (NTRS)
Morgan, Steve
1992-01-01
This report documents a 1000-line Symbolics LISP program that automatically calibrates all 15 fluid admittances in KATE's Autonomous Launch Operations (ALO) model. (KATE is Kennedy Space Center's Knowledge-based Autonomous Test Engineer, a diagnosis and repair expert system created for use on the Space Shuttle's various fluid flow systems.) As a new KATE application, the calibrator described here breaks new ground for KSC's Artificial Intelligence Lab by allowing KATE to both control and measure the hardware she supervises. By automating a formerly manual process, the calibrator: (1) saves the ALO model builder untold amounts of labor; (2) enables quick repairs after workmen accidently adjust ALO's hand valves; and (3) frees the modeler to pursue new KATE applications that previously were too complicated. Also reported are suggestions for enhancing the program: (1) to calibrate ALO's TV cameras, pumps, and sensor tolerances; and (2) to calibrate devices in other KATE models, such as the shuttle's LOX and Environment Control System (ECS).
Autonomous Command Operations of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Walyus, Keith; Prior, Mike; Saylor, Richard
1999-01-01
This paper presents operational innovations which will be introduced on NASA's Wide Field Infrared Explorer (WIRE) mission. These innovations include an end-to-end design architecture for an autonomous commanding capability for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented all autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period. The key factors driving design and implementation of this capability were: 1) integration with already existing ground system autonomous capabilities and systems, 2) the desire to evolve autonomous operations capabilities based upon previous SMEX operations experience - specifically the TRACE mission, 3) integration with ground station operations - both autonomous and man-tended, 4) low cost and quick implementation, and 5) end-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed in addition to use of the TRACE mission as a testbed for autonomous commanding prior to implementation on WIRE. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They call be used as a design and implementation template by other missions interested in evolving toward autonomous and lower cost operations. Additionally, the WIRE spacecraft will be used as an operational testbed upon completion of its nominal mission later in 1999. One idea being studied is advanced on-board modeling. Advanced on-board modeling techniques will be used to more efficiently display the spacecraft state. This health and safety information could be used by engineers on the ground or could be used by tile spacecraft for its own assessments. Additionally, this same state information could also be input into the event-driven scheduling system, as the scheduling system will need to assess the spacecraft state before undertaking a new activity. Advanced modeling techniques are being evaluated for a number of NASA missions including The Next Generation Space Telescope (NGST), which is scheduled to launch in 2007.
Autonomous operations through onboard artificial intelligence
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2002-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
Autonomous Commanding of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They can be used as a design and implementation template by other small satellite missions interested in evolving toward autonomous and lower cost operations.
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
Autonomous Command Operation of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, an Orbital Sciences technician works with wiring on the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator, a spacecraft developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences workers remove the canister from the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator, a spacecraft developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences technicians watch closely as the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator is lowered onto a stand. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator is revealed after its protective cover has been removed. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator is revealed after its protective cover has been removed. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Vandenberg Air Force Base in California, the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator is revealed after its protective cover has been removed. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbitals Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
Integrating small satellite communication in an autonomous vehicle network: A case for oceanography
NASA Astrophysics Data System (ADS)
Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando
2018-04-01
Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.
Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles
NASA Astrophysics Data System (ADS)
Holland, K. T.; Calantoni, J.; Slocum, D.
2016-02-01
Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.
NASA Technical Reports Server (NTRS)
Regalado Reyes, Bjorn Constant
2015-01-01
1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.
Bolts from Orion: Destroying Mobile Surface-to-Air Missile Systems with Lethal Autonomous Aircraft
2016-07-01
era SAMs that had been upgraded by Ukrainian contractors . During the operation, Russian aircraft’s 10 electronic countermeasures could not...main SEAD asset is the F-16 CJ equipped with the HARM targeting system ( HTS ). The HTS can autonomously locate and identify threat radars and pass...targeting information to the HARMs before launch. The HTS can also provide targeting 13 information to global positioning system (GPS) guided
A scheduling and diagnostic system for scientific satellite GEOTAIL using expert system
NASA Technical Reports Server (NTRS)
Nakatani, I; Hashimoto, M.; Mukai, T.; Obara, T.; Nishigori, N.
1994-01-01
The Intelligent Satellite Control Software (ISACS) for the geoMagnetic tail observation satellite named GEOTAIL (launched in July 1992) has been successfully developed. ISACS has made it possible by applying Artificial Intelligence (AI) technology including an expert system to autonomously generate a tracking schedule, which originally used to be conducted manually. Using ISACS, a satellite operator can generate a maximum four day period of stored command stream autonomously and can easily confirm its safety. The ISACS system has another function -- to diagnose satellite troubles and to suggest necessary remedies. The workload of satellite operators has drastically been reduced since ISACS has been introduced into the operations of GEOTAIL.
Deployable reconnaissance from a VTOL UAS in urban environments
NASA Astrophysics Data System (ADS)
Barnett, Shane; Bird, John; Culhane, Andrew; Sharkasi, Adam; Reinholtz, Charles
2007-04-01
Reconnaissance collection in unknown or hostile environments can be a dangerous and life threatening task. To reduce this risk, the Unmanned Systems Group at Virginia Tech has produced a fully autonomous reconnaissance system able to provide live video reconnaissance from outside and inside unknown structures. This system consists of an autonomous helicopter which launches a small reconnaissance pod inside a building and an operator control unit (OCU) on a ground station. The helicopter is a modified Bergen Industrial Twin using a Rotomotion flight controller and can fly missions of up to one half hour. The mission planning OCU can control the helicopter remotely through teleoperation or fully autonomously by GPS waypoints. A forward facing camera and template matching aid in navigation by identifying the target building. Once the target structure is identified, vision algorithms will center the UAS adjacent to open windows or doorways. Tunable parameters in the vision algorithm account for varying launch distances and opening sizes. Launch of the reconnaissance pod may be initiated remotely through a human in the loop or autonomously. Compressed air propels the half pound stationary pod or the larger mobile pod into the open portals. Once inside the building, the reconnaissance pod will then transmit live video back to the helicopter. The helicopter acts as a repeater node for increased video range and simplification of communication back to the ground station.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences technicians check the bottom of the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator as it is raised of its platform. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences technicians check the bottom of the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator as it is raised off its platform. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-14
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, Orbital Sciences technicians observe closely the movement of the DART (Demonstration for Autonomous Rendezvous Technology) flight demonstrator as it is lowered onto a stand. The spacecraft was developed to prove technologies for locating and maneuvering near an orbiting satellite. Future applications of technologies developed by the DART project will benefit the nation in future space-vehicle systems development requiring in-space assembly, services or other autonomous rendezvous operations. Designed and developed for NASA by Orbital Sciences Corporation in Dulles, Va., the DART spacecraft will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
The MAP Autonomous Mission Control System
NASA Technical Reports Server (NTRS)
Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger
2000-01-01
The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.
Autonomous rendezvous and docking: A commercial approach to on-orbit technology validation
NASA Technical Reports Server (NTRS)
Tchoryk, Peter, Jr.; Dobbs, Michael E.; Conrad, David J.; Apley, Dale J.; Whitten, Raymond P.
1991-01-01
The Space Automation and Robotics Center (SpARC), a NASA-sponsored Center for the Commercial Development of Space (CCDS), in conjunction with its corporate affiliates, is planning an on-orbit validation of autonomous rendezvous and docking (ARD) technology. The emphasis in this program is to utilize existing technology and commercially available components whenever possible. The primary subsystems that will be validated by this demonstration include GPS receivers for navigation, a video-based sensor for proximity operations, a fluid connector mechanism to demonstrate fluid resupply capability, and a compliant, single-point docking mechanism. The focus for this initial experiment will be expendable launch vehicle (ELV) based and will make use of two residual Commercial Experiment Transporter (COMET) service modules. The first COMET spacecraft will be launched in late 1992 and will serve as the target vehicle. The ARD demonstration will take place in late 1994, after the second COMET spacecraft has been launched. The service module from the second COMET will serve as the chase vehicle.
Pipeline inspection using an autonomous underwater vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egeskov, P.; Bech, M.; Bowley, R.
1995-12-31
Pipeline inspection can be carried out by means of small Autonomous Underwater Vehicles (AUVs), operating either with a control link to a surface vessel, or totally independently. The AUV offers an attractive alternative to conventional inspection methods where Remotely Operated Vehicles (ROVs) or paravanes are used. A flatfish type AUV ``MARTIN`` (Marine Tool for Inspection) has been developed for this purpose. The paper describes the proposed types of inspection jobs to be carried out by ``MARTIN``. The design and construction of the vessel, its hydrodynamic properties, its propulsion and control systems are discussed. The pipeline tracking and survey systems, asmore » well as the launch and recovery systems are described.« less
A Personnel Launch System for safe and efficient manned operations
NASA Astrophysics Data System (ADS)
Petro, Andrew J.; Andrews, Dana G.; Wetzel, Eric D.
1990-10-01
Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.
National space transportation systems planning
NASA Technical Reports Server (NTRS)
Lucas, W. R.
1985-01-01
In the fall of 1984, the DOD and NASA had been asked to identify launch vehicle technologies which could be made available for use in 1995 to 2010. The results of the studies of the two groups were integrated, and a consumer report, dated December 1984, was forwarded to the President. Aspects of mission planning and analysis are discussed along with a combined mission model, future launch system requirements, a launch vehicle planning background, Shuttle derivative vehicle program options, payload modularization, launch vehicle technology implications, a new engine program for the mid-1990's. Future launch systems goals are to achieve an order of magnitude reduction in future launch cost and meet the lift requirements and launch rates. Attention is given to an advanced cryogenic engine, advanced LOX/hydrocarbon engine, advanced power systems, aerodynamics/flight mechanics, reentry/recovery systems, avionics/software, advanced manufacturing techniques, autonomous ground and mission operations, advanced structures/materials, and air breathing propulsion.
Operability driven space system concept with high leverage technologies
NASA Astrophysics Data System (ADS)
Woo, Henry H.
1997-01-01
One of the common objectives of future launch and space transfer systems is to achieve low-cost and effective operational capability by automating processes from pre-launch to the end of mission. Hierarchical and integrated mission management, system management, autonomous GN&C, and integrated micro-nano avionics technologies are critical to extend or revitalize the exploitation of space. Essential to space transfer, orbital systems, Earth-To-Orbit (ETO), commercial and military aviation, and planetary systems are these high leverage hardware and software technologies. This paper covers the driving issues, goals, and requirements definition supported with typical concepts and utilization of multi-use technologies. The approach and method results in a practical system architecture and lower level design concepts.
Autonomous rendezvous and docking: A commercial approach to on-orbit technology validation
NASA Technical Reports Server (NTRS)
Tchoryk, Peter, Jr.; Whitten, Raymond P.
1991-01-01
SpARC, in conjunction with its corporate affiliates, is planning an on-orbit validation of autonomous rendezvous and docking (ARD) technology. The emphasis in this program is to utilize existing technology and commercially available components wherever possible. The primary subsystems to be validated by this demonstration include GPS receivers for navigation, a video-based sensor for proximity operations, a fluid connector mechanism to demonstrate fluid resupply capability, and a compliant, single-point docking mechanism. The focus for this initial experiment will be ELV based and will make use of two residual Commercial Experiment Transporter (COMET) service modules. The first COMET spacecraft will be launched in late 1992 and will serve as the target vehicle. After the second COMET spacecraft has been launched in late 1994, the ARD demonstration will take place. The service module from the second COMET will serve as the chase vehicle.
Loosely Coupled GPS-Aided Inertial Navigation System for Range Safety
NASA Technical Reports Server (NTRS)
Heatwole, Scott; Lanzi, Raymond J.
2010-01-01
The Autonomous Flight Safety System (AFSS) aims to replace the human element of range safety operations, as well as reduce reliance on expensive, downrange assets for launches of expendable launch vehicles (ELVs). The system consists of multiple navigation sensors and flight computers that provide a highly reliable platform. It is designed to ensure that single-event failures in a flight computer or sensor will not bring down the whole system. The flight computer uses a rules-based structure derived from range safety requirements to make decisions whether or not to destroy the rocket.
A Future Vision for Remotely Piloted Aircraft: Leveraging Interoperability and Networked Operations
2013-06-21
over the next 25 years Balances the effects envisioned in the USAF UAS Flight Plan with the reality of constrained resources and ambitious...theater-level unmanned systems must detect, avoid, or counter threats – operating from permissive to highly contested access in all weather...Rapid Reaction Group II/III SUAS Unit Light Footprint, Low Cost ISR Option Networked Autonomous C2 System Air-Launched SUAS Common
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Tran, Daniel; Bellardo, John; Williams, Austin; Piug-Suari, Jordi; Crum, Gary; Flatley, Thomas
2012-01-01
The Intelligent Payload Experiment (IPEX) is a cubesat manifested for launch in October 2013 that will flight validate autonomous operations for onboard instrument processing and product generation for the Intelligent Payload Module (IPM) of the Hyperspectral Infra-red Imager (HyspIRI) mission concept. We first describe the ground and flight operations concept for HyspIRI IPM operations. We then describe the ground and flight operations concept for the IPEX mission and how that will validate HyspIRI IPM operations. We then detail the current status of the mission and outline the schedule for future development.
Adaptive Tunable Laser Spectrometer for Space Applications
NASA Technical Reports Server (NTRS)
Flesch, Gregory; Keymeulen, Didier
2010-01-01
An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.
Autonomous Mission Manager for Rendezvous, Inspection and Mating
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
2003-01-01
To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.
Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft
NASA Technical Reports Server (NTRS)
Lauer, Mathias; Jauregui, Libe; Kielbassa, Sabine
2007-01-01
Mars Express (MEX), Rosetta and Venus Express (VEX) are ESA interplanetary spacecrafts (S/C) launched in June 2003, March 2004 and November 2005, respectively. Mars Express was injected into Mars orbit end of 2003 with routine operations starting in spring 2004. Rosetta is since launch on its way to rendezvous comet Churyumov-Gerasimenko in 2014. It has completed several test and commissioning activities and is performing several planetary swingbys (Earth in spring 2005, Mars in spring 2007, Earth in autumn 2007 and again two years later). Venus Express has also started routine operations since the completion of the Venus orbit insertion maneuver sequence beginning of May 2006. All three S/C are three axes stabilized with a similar attitude and orbit control system (AOCS). The attitude is estimated on board using star and rate sensors and controlled using four reaction wheels. A bipropellant reaction control system with 10N thrusters serves for wheel off loadings and attitude control in safe mode. Mars Express and Venus Express have an additional 400N engine for the planetary orbit insertion. Nominal Earth communication is accomplished through a high gain antenna. All three S/C are equipped with a redundant set of autonomous star trackers (STR) which are based on almost the same hardware. The STR software is especially adapted for the respective mission. This paper addresses several topics related to the experience gained with the STR operations on board the three S/C so far.
Autonomous Flight Safety System September 27, 2005, Aircraft Test
NASA Technical Reports Server (NTRS)
Simpson, James C.
2005-01-01
This report describes the first aircraft test of the Autonomous Flight Safety System (AFSS). The test was conducted on September 27, 2005, near Kennedy Space Center (KSC) using a privately-owned single-engine plane and evaluated the performance of several basic flight safety rules using real-time data onboard a moving aerial vehicle. This test follows the first road test of AFSS conducted in February 2005 at KSC. AFSS is a joint KSC and Wallops Flight Facility (WEF) project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations. The mission rules are configured for each operation by the responsible Range Safety authorities and can be loosely categorized in four major categories: Parameter Threshold Violations, Physical Boundary Violations present position and instantaneous impact point (TIP), Gate Rules static and dynamic, and a Green-Time Rule. Examples of each of these rules were evaluated during this aircraft test.
Contrast in low-cost operational concepts for orbiting satellites
NASA Astrophysics Data System (ADS)
Walyus, Keith D.; Reis, James; Bradley, Arthur J.
2002-12-01
Older spacecraft missions, especially those in low Earth orbit with telemetry intensive requirements, required round-the-clock control center staffing. The state of technology relied on control center personnel to continually examine data, make decisions, resolve anomalies, and file reports. Hubble Space Telescope (HST) is a prime example of this description. Technological advancements in hardware and software over the last decade have yielded increases in productivity and operational efficiency, which result in lower cost. The re-engineering effort of HST, which has recently concluded, utilized emerging technology to reduce cost and increase productivity. New missions, of which NASA's Transition Region and Coronal Explorer Satellite (TRACE) is an example, have benefited from recent technological advancements and are more cost-effective than when HST was first launched. During its launch (1998) and early orbit phase, the TRACE Flight Operations Team (FOT) employed continually staffed operations. Yet once the mission entered its nominal phase, the FOT reduced their staffing to standard weekday business hours. Operations were still conducted at night and during the weekends, but these operations occurred autonomously without compromising their high standards for data collections. For the HST, which launched in 1990, reduced cost operations will employ a different operational concept, when the spacecraft enters its low-cost phase after its final servicing mission in 2004. Primarily due to the spacecraft"s design, the HST Project has determined that single-shift operations will introduce unacceptable risks for the amount of dollars saved. More importantly, significant cost-savings can still be achieved by changing the operational concept for the FOT, while still maintaining round-the-clock staffing. It"s important to note that the low-cost solutions obtained for one satellite may not be applicable for other satellites. This paper will contrast the differences between low-cost operational concepts for a satellite launched in 1998 versus a satellite launched in 1990.
Experimenting with Sensor Webs Using Earth Observing 1
NASA Technical Reports Server (NTRS)
Mandl, Dan
2004-01-01
The New Millennium Program (NMP) Earth Observing 1 ( EO-1) satellite was launched November 21, 2000 as a one year technology validation mission. After an almost flawless first year of operations, EO-1 continued to operate in a test bed d e to validate additional technologies and concepts that will be applicable to future sensor webs. A sensor web is a group of sensors, whether space-based, ground-based or air plane-based which act in a collaborative autonomous manner to produce more value than would otherwise result from the individual observations.
A three-finger multisensory hand for dexterous space robotic tasks
NASA Technical Reports Server (NTRS)
Murase, Yuichi; Komada, Satoru; Uchiyama, Takashi; Machida, Kazuo; Akita, Kenzo
1994-01-01
The National Space Development Agency of Japan will launch ETS-7 in 1997, as a test bed for next generation space technology of RV&D and space robot. MITI has been developing a three-finger multisensory hand for complex space robotic tasks. The hand can be operated under remote control or autonomously. This paper describes the design and development of the hand and the performance of a breadboard model.
The Standard Autonomous File Server, A Customized, Off-the-Shelf Success Story
NASA Technical Reports Server (NTRS)
Semancik, Susan K.; Conger, Annette M.; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
The Standard Autonomous File Server (SAFS), which includes both off-the-shelf hardware and software, uses an improved automated file transfer process to provide a quicker, more reliable, prioritized file distribution for customers of near real-time data without interfering with the assets involved in the acquisition and processing of the data. It operates as a stand-alone solution, monitoring itself, and providing an automated fail-over process to enhance reliability. This paper describes the unique problems and lessons learned both during the COTS selection and integration into SAFS, and the system's first year of operation in support of NASA's satellite ground network. COTS was the key factor in allowing the two-person development team to deploy systems in less than a year, meeting the required launch schedule. The SAFS system has been so successful; it is becoming a NASA standard resource, leading to its nomination for NASA's Software of the Year Award in 1999.
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Universal Propellant Servicing System (UPSS) is a dedicated mobile launcher propellant delivery method that will minimize danger and complexity in order to allow vehicles to be serviced and ultimately launched from a variety of locations previously not seen fit for space launch. The UPPS/G2 project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to the rocket for testing purposes. To accomplish this, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through classes and trial-and-error, and are now in the process of building the application that will soon be able to be tested on apparatuses here at Kennedy Space Center, and eventually on the actual unit. The UPSS will bring near-autonomous control of launches to those that need it, as well it will be a great addition to NASA and KSC's operational viability and the opportunity to bring space launches to parts of the world, and in time constraints, once not thought possible.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, P.; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
Dual Liquid Flyback Booster for the Space Shuttle
NASA Technical Reports Server (NTRS)
Blum, C.; Jones, Patti; Meinders, B.
1998-01-01
Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.
STS-112 crew with President of Ajara in Georgia (Russia)
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, Aslan Abashidze (left), President of the Autonomous Republic of Ajara in Georgia (Russia), STS-112 Mission Specialist Fyodor N. Yurchikhin, Ph.D., a cosmonaut with the Russian Space Agency; and Georgi Abashidze, Mayor of Batumi (Yurchikhin's hometown), pose for a portrait. Yurchikhin and the other members of the STS-112 crew are awaiting launch to the International Space Station aboard Space Shuttle Atlantis. The launch has been postponed to no earlier than Monday, Oct. 7, so that the Mission Control Center, located at the Lyndon B. Johnson Space Center in Houston, Texas, can be secured and protected from potential storm impacts from Hurricane Lili.
The Arctic Regional Communications Small SATellite (ARCSAT)
NASA Technical Reports Server (NTRS)
Casas, Joseph; Kress, Martin; Sims, William; Spehn, Stephen; Jaeger, Talbot; Sanders, Devon
2013-01-01
Traditional satellite missions are extremely complex and expensive to design, build, test, launch and operate. Consequently many complementary operational, exploration and research satellite missions are being formulated as a growing part of the future space community capabilities using formations of small, distributed, simple to launch and inexpensive highly capable small scale satellites. The Arctic Regional Communications small SATellite (ARCSAT) initiative would launch a Mini-Satellite "Mothership" into Polar or Sun Sync low-earth-orbit (LEO). Once on orbit, the Mothership would perform orbital insertion of four internally stored independently maneuverable nanosatellites, each containing electronically steerable antennas and reconfigurable software-defined radios. Unlike the traditional geostationary larger complex satellite communication systems, this LEO communications system will be comprised of initially a five small satellite formation that can be later incrementally increased in the total number of satellites for additional data coverage. ARCSAT will provide significant enabling capabilities in the Arctic for autonomous voice and data communications relay, Maritime Domain Awareness (MDA), data-extraction from unattended sensors, and terrestrial Search & Rescue (SAR) beacon detection missions throughout the "data starved desert" of the Arctic Region.
Informed maintenance for next generation reusable launch systems
NASA Astrophysics Data System (ADS)
Fox, Jack J.; Gormley, Thomas J.
2001-03-01
Perhaps the most substantial single obstacle to progress of space exploration and utilization of space for human benefit is the safety & reliability and the inherent cost of launching to, and returning from, space. The primary influence in the high costs of current launch systems (the same is true for commercial and military aircraft and most other reusable systems) is the operations, maintenance and infrastructure portion of the program's total life cycle costs. Reusable Launch Vehicle (RLV) maintenance and design have traditionally been two separate engineering disciplines with often conflicting objectives - maximizing ease of maintenance versus optimizing performance, size and cost. Testability analysis, an element of Informed Maintenance (IM), has been an ad hoc, manual effort, in which maintenance engineers attempt to identify an efficient method of troubleshooting for the given product, with little or no control over product design. Therefore, testability deficiencies in the design cannot be rectified. It is now widely recognized that IM must be engineered into the product at the design stage itself, so that an optimal compromise is achieved between system maintainability and performance. The elements of IM include testability analysis, diagnostics/prognostics, automated maintenance scheduling, automated logistics coordination, paperless documentation and data mining. IM derives its heritage from complimentary NASA science, space and aeronautic enterprises such as the on-board autonomous Remote Agent Architecture recently flown on NASA's Deep Space 1 Probe as well as commercial industries that employ quick turnaround operations. Commercial technologies and processes supporting NASA's IM initiatives include condition based maintenance technologies from Boeing's Commercial 777 Aircraft and Lockheed-Martin's F-22 Fighter, automotive computer diagnostics and autonomous controllers that enable 100,000 mile maintenance free operations, and locomotive monitoring system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2 nd Generation Reusable Launch Vehicle Program.
2004-07-27
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is raised to a vertical position. It will be lifted onto a test stand for launch processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-27
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is raised to a vertical position. It will be lifted onto a test stand for launch processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
1998-10-01
of motivation , acculturation, education, training and potentially action. This is a process of years. The timelines associated with each level of...payload and approximately $5K cost). This backpack robot clearly is most suited to visual scouting of threatening environments, including inside...Organic Man Portable, Ground Vehicle Backpack , Reusable Launch Techniques Command, Telemetry, and Image Return Deployment VTOL, Ship-Capable Autonomous
2004-07-27
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is on a work stand waiting for processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
2004-07-27
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft is placed on a work stand for processing activities. The spacecraft was developed for NASA by Orbital Sciences Corporation in Dulles, Va., to prove technologies for locating and maneuvering near an orbiting satellite. DART will be launched on a Pegasus launch vehicle. At about 40,000 feet over the Pacific Ocean, the Pegasus will be released from Orbital’s Stargazer L-1011 aircraft, fire its rocket motors and boost DART into a polar orbit approximately 472 miles by 479 miles. Once in orbit, DART will rendezvous with a target satellite, the Multiple Paths, Beyond-Line-of-Site Communications satellite, also built by Orbital Sciences. DART will then perform several close proximity operations, such as moving toward and away from the satellite using navigation data provided by onboard sensors. DART is scheduled for launch no earlier than Oct. 18.
NASA Space Launch System Operations Strategy
NASA Technical Reports Server (NTRS)
Singer, Joan A.; Cook, Jerry R.
2012-01-01
The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human and scientific exploration beyond Earth orbit. The SLS also will provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130 t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and 21st Century Ground Systems programs are working together to create streamlined, affordable operations for sustainable exploration.
Autonomous Flight Safety System - Phase III
NASA Technical Reports Server (NTRS)
2008-01-01
The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.
Space Congress, 27th, Cocoa Beach, FL, Apr. 24-27, 1990, Proceedings
NASA Technical Reports Server (NTRS)
1990-01-01
The present symposium on aeronautics and space encompasses DOD research and development, science payloads, small microgravity carriers, the Space Station, technology payloads and robotics, commercial initiatives, STS derivatives, space exploration, and DOD space operations. Specific issues addressed include the use of AI to meet space requirements, the Astronauts Laboratory Smart Structures/Skins Program, the Advanced Liquid Feed Experiment, an overview of the Spacelab program, the Autonomous Microgravity Industrial Carrier Initiative, and the Space Station requirements and transportation options for a lunar outpost. Also addressed are a sensor-data display for telerobotic systems, the Pegasus and Taurus launch vehicles, evolutionary transportation concepts, the upgrade of the Space Shuttle avionics, space education, orbiting security sentinels, and technologies for improving launch-vehicle responsiveness.
The Standard Autonomous File Server, a Customized, Off-the-Shelf Success Story
NASA Technical Reports Server (NTRS)
Semancik, Susan K.; Conger, Annette M.; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
The Standard Autonomous File Server (SAFS), which includes both off-the-shelf hardware and software, uses an improved automated file transfer process to provide a quicker, more reliable, prioritized file distribution for customers of near real-time data without interfering with the assets involved in the acquisition and processing of the data. It operates as a stand-alone solution, monitoring itself, and providing an automated fail-over process to enhance reliability. This paper will describe the unique problems and lessons learned both during the COTS selection and integration into SAFS, and the system's first year of operation in support of NASA's satellite ground network. COTS was the key factor in allowing the two-person development team to deploy systems in less than a year, meeting the required launch schedule. The SAFS system his been so successful, it is becoming a NASA standard resource, leading to its nomination for NASA's Software or the Year Award in 1999.
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, has been set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians secure connections for a crane which will be used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being set up at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - A crane is being used to set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, arrives at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being moved out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out from its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported out of its checkout building for a short trip to a launch position at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - NASA's Morpheus lander, a vertical test bed vehicle, is being transported along the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida for a short trip to a launch position along the runway. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
2012-07-31
CAPE CANAVERAL, Fla. - Technicians set up NASA's Morpheus lander, a vertical test bed vehicle, at its launch position along the runway at the Shuttle Landing Facility, or SLF, at the Kennedy Space Center in Florida. Morpheus is designed to demonstrate new green propellant propulsion systems and autonomous landing and an Autonomous Landing and Hazard Avoidance Technology, or ALHAT, system. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Dimitri Gerondidakis
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Simpson, James
2010-01-01
The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.
Agent Based Software for the Autonomous Control of Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
How, Jonathan P.; Campbell, Mark; Dennehy, Neil (Technical Monitor)
2003-01-01
Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful).
Autonomous planning and scheduling on the TechSat 21 mission
NASA Technical Reports Server (NTRS)
Sherwood, R.; Chien, S.; Castano, R.; Rabideau, G.
2002-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting.
NASA Space Launch System Operations Strategy
NASA Technical Reports Server (NTRS)
Singer, Joan A.; Cook, Jerry R.; Singer, Christer E.
2012-01-01
The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is charged with delivering a new capability for human and scientific exploration beyond Earth orbit (BEO). The SLS may also provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle (MPCV) on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and Ground Systems Development and Operations (GSDO) programs are working together to create streamlined, affordable operations for sustainable exploration for decades to come.
Autonomous safety and reliability features of the K-1 avionics system
NASA Astrophysics Data System (ADS)
Mueller, George E.; Kohrs, Dick; Bailey, Richard; Lai, Gary
2004-03-01
Kistler Aerospace Corporation is developing the K-1, a fully reusable, two-stage-to-orbit launch vehicle. Both stages return to the launch site using parachutes and airbags. Initial flight operations will occur from Woomera, Australia. K-1 guidance is performed autonomously. Each stage of the K-1 employs a triplex, fault tolerant avionics architecture, including three fault tolerant computers and three radiation hardened Embedded GPS/INS units with a hardware voter. The K-1 has an Integrated Vehicle Health Management (IVHM) system on each stage residing in the three vehicle computers based on similar systems in commercial aircraft. During first-stage ascent, the IVHM system performs an Instantaneous Impact Prediction (IIP) calculation 25 times per second, initiating an abort in the event the vehicle is outside a predetermined safety corridor for at least 3 consecutive calculations. In this event, commands are issued to terminate thrust, separate the stages, dump all propellant in the first-stage, and initiate a normal landing sequence. The second-stage flight computer calculates its ability to reach orbit along its state vector, initiating an abort sequence similar to the first stage if it cannot. On a nominal mission, following separation, the second-stage also performs calculations to assure its impact point is within a safety corridor. The K-1's guidance and control design is being tested through simulation with hardware-in-the-loop at Draper Laboratory. Kistler's verification strategy assures reliable and safe operation of the K-1.
NASA Technical Reports Server (NTRS)
Wright, Nathaniel, Jr.
2000-01-01
The evolution of satellite operations over the last 40 years has drastically changed. October 4, 1957 (during the cold war) the Soviet Union launched the world's first spacecraft into orbit. The Sputnik satellite orbited Earth for three months and catapulted the United States into a race for dominance in space. A year after Sputnik, President Dwight Eisenhower formed the National Space and Aeronautics Administration (NASA). With a team of scientists and engineers, NASA successfully launched Explorer 1, the first US satellite to orbit Earth. During these early years, massive amounts of ground support equipment and operators were required to successfully operate spacecraft vehicles. Today, budget reductions and technological advances have forced new approaches to spacecraft operations. These approaches require increasingly complex, on board spacecraft systems, that enable autonomous operations, resulting in more cost-effective mission operations. NASA's Goddard Space Flight Center, considered world class in satellite development and operations, has developed and operated over 200 satellites during its 40 years of existence. NASA Goddard is adopting several new millennium initiatives that lower operational costs through the spacecraft autonomy and automation. This paper examines NASA's approach to spacecraft autonomy and ground system automation through a comparative analysis of satellite missions for Hubble Space Telescope-HST, Near Earth Asteroid Rendezvous-NEAR, and Solar Heliospheric Observatory-SoHO, with emphasis on cost reduction methods, risk analysis and anomalies and strategies employed for mitigating risk.
Tuning the Solar Dynamics Observatory Onboard Kalman Filter
NASA Technical Reports Server (NTRS)
Halverson, Julie Kay; Harman, Rick; Carpenter, Russell; Poland, Devin
2017-01-01
The Solar Dynamics Observatory (SDO) was launched in 2010. SDO is a sun pointing semi-autonomous spacecraft in a geosynchronous orbit that allows nearly continuous observations of the sun. SDO is equipped with coarse sun sensors, two star trackers, a digital sun sensor, and three two-axis inertial reference units (IRU). The IRUs are temperature sensitive and were designed to operate in a stable thermal environment. Due to battery degradation concerns the IRU heaters were not used on SDO and the onboard filter was tuned to accommodate the noisier IRU data. Since launch currents have increased on two IRUs, one had to eventually be powered off. Recent ground tests on a battery similar to SDO indicated the heaters would have negligible impact on battery degradation, so in 2016 a decision was made to turn the heaters on. This paper presents the analysis and results of updating the filter tuning parameters onboard SDO with the IRUs now operating in their intended thermal environment.
Informed maintenance for next generation space transportation systems
NASA Astrophysics Data System (ADS)
Fox, Jack J.
2001-02-01
Perhaps the most substantial single obstacle to progress of space exploration and utilization of space for human benefit is the safety & reliability and the inherent cost of launching to, and returning from, space. The primary influence in the high costs of current launch systems (the same is true for commercial and military aircraft and most other reusable systems) is the operations, maintenance and infrastructure portion of the program's total life cycle costs. Reusable Launch Vehicle (RLV) maintenance and design have traditionally been two separate engineering disciplines with often conflicting objectives-maximizing ease of maintenance versus optimizing performance, size and cost. Testability analysis, an element of Informed Maintenance (IM), has been an ad hoc, manual effort, in which maintenance engineers attempt to identify an efficient method of troubleshooting for the given product, with little or no control over product design. Therefore, testability deficiencies in the design cannot be rectified. It is now widely recognized that IM must be engineered into the product at the design stage itself, so that an optimal compromise is achieved between system maintainability and performance. The elements of IM include testability analysis, diagnostics/prognostics, automated maintenance scheduling, automated logistics coordination, paperless documentation and data mining. IM derives its heritage from complimentary NASA science, space and aeronautic enterprises such as the on-board autonomous Remote Agent Architecture recently flown on NASA's Deep Space 1 Probe as well as commercial industries that employ quick turnaround operations. Commercial technologies and processes supporting NASA's IM initiatives include condition based maintenance technologies from Boeing's Commercial 777 Aircraft and Lockheed-Martin's F-22 Fighter, automotive computer diagnostics and autonomous controllers that enable 100,000 mile maintenance free operations, and locomotive monitoring system software. This paper will summarize NASA's long-term strategy, development, and implementation plans for Informed Maintenance for next generation RLVs. This will be done through a convergence into a single IM vision the work being performed throughout NASA, industry and academia. Additionally, a current status of IM development throughout NASA programs such as the Space Shuttle, X-33, X-34 and X-37 will be provided and will conclude with an overview of near-term work that is being initiated in FY00 to support NASA's 2nd Generation Reusable Launch Vehicle Program. .
Autonomous Aerobraking Using Thermal Response Surface Analysis
NASA Technical Reports Server (NTRS)
Prince, Jill L.; Dec, John A.; Tolson, Robert H.
2007-01-01
Aerobraking is a proven method of significantly increasing the science payload that can be placed into low Mars orbits when compared to an all propulsive capture. However, the aerobraking phase is long and has mission cost and risk implications. The main cost benefit is that aerobraking permits the use of a smaller and cheaper launch vehicle, but additional operational costs are incurred during the long aerobraking phase. Risk is increased due to the repeated thermal loading of spacecraft components and the multiple attitude and propulsive maneuvers required for successful aerobraking. Both the cost and risk burdens can be significantly reduced by automating the aerobraking operations phase. All of the previous Mars orbiter missions that have utilized aerobraking have increasingly relied on onboard calculations during aerobraking. Even though the temperature of spacecraft components has been the limiting factor, operational methods have relied on using a surrogate variable for mission control. This paper describes several methods, based directly on spacecraft component maximum temperature, for autonomously predicting the subsequent aerobraking orbits and prescribing apoapsis propulsive maneuvers to maintain the spacecraft within specified temperature limits. Specifically, this paper describes the use of thermal response surface analysis in predicting the temperature of the spacecraft components and the corresponding uncertainty in this temperature prediction.
NASA Astrophysics Data System (ADS)
Bettanini, C.; Esposito, F.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; International Dreams Team
2018-07-01
The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) instrument on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and its direction, but also on solar irradiance, dust opacity and atmospheric electrification; this comprehensive set of parameters would assist the quantification of risks and hazards for future manned exploration missions mainly related to the presence of airborne dust. Schiaparelli landing on Mars was in fact scheduled during the foreseen dust storm season (October 2016 in Meridiani Planum) allowing DREAMS to directly measure the characteristics of such extremely harsh environment. DREAMS instrument’s architecture was based on a modular design developing custom boards for analog and digital channel conditioning, power distribution, on board data handling and communication with the lander. The boards, connected through a common backbone, were hosted in a central electronic unit assembly and connected to the external sensors with dedicated harness. Designed with very limited mass and an optimized energy consumption, DREAMS was successfully tested to operate autonomously, relying on its own power supply, for at least two Martian days (sols) after landing on the planet. A total of three flight models were fully qualified before launch through an extensive test campaign comprising electrical and functional testing, EMC verification and mechanical and thermal vacuum cycling; furthermore following the requirements for planetary protection, contamination control activities and assay sampling were conducted before model delivery for final integration on spacecraft. During the six months cruise to Mars following the successful launch of ExoMars on 14th March 2016, periodic check outs were conducted to verify instrument health check and update mission timelines for operation. Elaboration of housekeeping data showed that the behaviour of the whole instrument was nominal during the whole cruise. Unfortunately DREAMS was not able to operate on the surface of Mars, due to the known guidance anomaly during the descent that caused Schiaparelli to crash at landing. The adverse sequence of events at 4 km altitude anyway triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. The spare models of DREAMS are currently in use at university premises for the development of autonomous units to be used in cubesat mission and in probes for stratospheric balloons launches in collaboration with Italian Space Agency.
Highly Reusable Space Transportation System Concept Evaluation (The Argus Launch Vehicle)
NASA Technical Reports Server (NTRS)
Olds, John R.; Bellini, Peter X.
1998-01-01
This paper summarizes the results of a conceptual design study that was performed in support of NASA's recent Highly Reusable Space Transportation study. The Argus concept uses a Maglifter magnetic-levitation sled launch assist system to accelerate it to a takeoff ground speed of 800 fps on its way to delivering a payload of 20,000 lb. to low earth orbit. Main propulsion is provided by two supercharged ejector rocket engines. The vehicle is autonomous and is fully reusable. A conceptual design exercise determined the vehicle gross weight to be approximately 597,250 lb. and the dry weight to be 75,500 lb. Aggressive weight and operations cost assumptions were used throughout the design process consistent with a second-generation reusable system that might be deployed in 10-15 years. Drawings, geometry, and weight of the concept are included. Preliminary development, production, and operations costs along with a business scenario assuming a price-elastic payload market are also included. A fleet of three Argus launch vehicles flying a total of 149 flights per year is shown to have a financial internal rate of return of 28%. At $169/lb., the recurring cost of Argus is shown to meet the study goal of $100/lb.-$200/lb., but optimum market price results in only a factor of two to five reduction compared to today's launch systems.
NASA Technical Reports Server (NTRS)
Hall, Philip; Cobleigh, Brent; Buoni, Greg; Howell, Kathleen
2008-01-01
The National Aeronautics and Space Administration, United States Forest Service, and National Interagency Fire Center have developed a partnership to develop and demonstrate technology to improve airborne wildfire imaging and data dissemination. In the summer of 2007, a multi-spectral infrared scanner was integrated into NASA's Ikhana Unmanned Aircraft System (UAS) (a General Atomics Predator-B) and launched on four long duration wildfire mapping demonstration missions covering eight western states. Extensive safety analysis, contingency planning, and mission coordination were key to securing an FAA certificate of authorization (COA) to operate in the national airspace. Infrared images were autonomously geo-rectified, transmitted to the ground station by satellite communications, and networked to fire incident commanders within 15 minutes of acquisition. Close coordination with air traffic control ensured a safe operation, and allowed real-time redirection around inclement weather and other minor changes to the flight plan. All objectives of the mission demonstrations were achieved. In late October, wind-driven wildfires erupted in five southern California counties. State and national emergency operations agencies requested Ikhana to help assess and manage the wildfires. Four additional missions were launched over a 5-day period, with near realtime images delivered to multiple emergency operations centers and fire incident commands managing 10 fires.
Feasibility Study For A Spaceborne Ozone/Aerosol Lidar System
NASA Technical Reports Server (NTRS)
Campbell, Richard E.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Carswell, Allan I.; Ulitsky, Arkady
1997-01-01
Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.
Onboard Atmospheric Modeling and Prediction for Autonomous Aerobraking Missions
NASA Technical Reports Server (NTRS)
Tolson, Robert H.; Prince, Jill L. H.
2011-01-01
Aerobraking has proven to be an effective means of increasing the science payload for planetary orbiting missions and/or for enabling the use of less expensive launch vehicles. Though aerobraking has numerous benefits, large operations cost have been required to maintain the aerobraking time line without violating aerodynamic heating or other constraints. Two operations functions have been performed on an orbit by orbit basis to estimate atmospheric properties relevant to aerobraking. The Navigation team typically solves for an atmospheric density scale factor using DSN tracking data and the atmospheric modeling team uses telemetric accelerometer data to recover atmospheric density profiles. After some effort, decisions are made about the need for orbit trim maneuvers to adjust periapsis altitude to stay within the aerobraking corridor. Autonomous aerobraking would reduce the need for many ground based tasks. To be successful, atmospheric modeling must be performed on the vehicle in near real time. This paper discusses the issues associated with estimating the planetary atmosphere onboard and evaluates a number of the options for Mars, Venus and Titan aerobraking missions.
Preliminary GN&C Design for the On-Orbit Autonomous Assembly of Nanosatellite Demonstration Mission
NASA Technical Reports Server (NTRS)
Pei, Jing; Walsh, Matt; Roithmayr, Carlos; Karlgaard, Chris; Peck, Mason; Murchison, Luke
2017-01-01
Small spacecraft autonomous rendezvous and docking (ARD) is an essential technology for future space structure assembly missions. The On-orbit Autonomous Assembly of Nanosatellites (OAAN) team at NASA Langley Research Center (LaRC) intends to demonstrate the technology to autonomously dock two nanosatellites to form an integrated system. The team has developed a novel magnetic capture and latching mechanism that allows for docking of two CubeSats without precise sensors and actuators. The proposed magnetic docking hardware not only provides the means to latch the CubeSats, but it also significantly increases the likelihood of successful docking in the presence of relative attitude and position errors. The simplicity of the design allows it to be implemented on many CubeSat rendezvous missions. Prior to demonstrating the docking subsystem capabilities on orbit, the GN&C subsystem should have a robust design such that it is capable of bringing the CubeSats from an arbitrary initial separation distance of as many as a few thousand kilometers down to a few meters. The main OAAN Mission can be separated into the following phases: 1) Launch, checkout, and drift, 2) Far-Field Rendezvous or Drift Recovery, 3) Proximity Operations, 4) Docking. This paper discusses the preliminary GN&C design and simulation results for each phase of the mission.
STS-112 crew with President of Ajara in Georgia (Russia)
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, Aslan Abashidze (right), President of the Autonomous Republic of Ajara in Georgia (Russia), visits with the STS-112 crew. From left, they are Mission Specialist Piers J. Sellers; Pilot Pamela Ann Melroy; Mission Specialist Fyodor N. Yurchikhin, a cosmonaut with the Russian Space Agency; Mission Specialist Sandra H. Magnus; and CommanderJeffrey S. Ashby. Mission Specialist David A. Wolf, not pictured, is also a member of the crew. The crew is awaiting launch on mission STS-112 to the International Space Station aboard Space Shuttle Atlantis. The launch has been postponed to no earlier than Monday, Oct. 7, so that the Mission Control Center, located at the Lyndon B. Johnson Space Center in Houston, Texas, can be secured and protected from potential storm impacts from Hurricane Lili.
Enhancing Science and Automating Operations using Onboard Autonomy
NASA Technical Reports Server (NTRS)
Sherwood, Robert; Chien, Steve; Tran, Daniel; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Mandl, Dan; Szwaczkowski, Joseph; Frye, Stuart; Shulman, Seth
2006-01-01
In this paper, we will describe the evolution of the software from prototype to full time operation onboard Earth Observing One (EO-1). We will quantify the increase in science, decrease in operations cost, and streamlining of operations procedures. Included will be a description of how this software was adapted post-launch to the EO-1 mission, which had very limited computing resources which constrained the autonomy flight software. We will discuss ongoing deployments of this software to the Mars Exploration Rovers and Mars Odyssey Missions as well as a discussion of lessons learned during this project. Finally, we will discuss how the onboard autonomy has been used in conjunction with other satellites and ground sensors to form an autonomous sensor-web to study volcanoes, floods, sea-ice topography, and wild fires. As demonstrated on EO-1, onboard autonomy is a revolutionary advance that will change the operations approach on future NASA missions...
Range Safety for an Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Lanzi, Raymond J.; Simpson, James C.
2010-01-01
The Range Safety Algorithm software encapsulates the various constructs and algorithms required to accomplish Time Space Position Information (TSPI) data management from multiple tracking sources, autonomous mission mode detection and management, and flight-termination mission rule evaluation. The software evaluates various user-configurable rule sets that govern the qualification of TSPI data sources, provides a prelaunch autonomous hold-launch function, performs the flight-monitoring-and-termination functions, and performs end-of-mission safing
1994-09-09
KENNEDY SPACE CENTER, FLA. - The turbulent weather common to a Florida afternoon in the summer subsides into a serene canopy of cornflower blue, and a manmade "bird" takes flight. The Space Shuttle Discovery soars skyward from Launch Pad 39B on Mission STS-64 at 6:22:35 p.m. EDT, Sept. 9. On board are a crew of six: Commander Richard N. Richards; Pilot L. Blaine Hammond Jr.; and Mission Specialists Mark C. Lee, Carl J. Meade, Susan J. Helms and Dr. J.M. Linenger. Payloads for the flight include the Lidar In-Space Technology Experiment (LITE), the Shuttle Pointed Autonomous Research Tool for Astronomy-201 (SPARTAN-201) and the Robot Operated Material Processing System (ROMPS). Mission Specialists Lee and Meade also are scheduled to perform an extravehicular activity during the 64th Shuttle mission.
Autonomous Flight Safety System Road Test
NASA Technical Reports Server (NTRS)
Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.
2005-01-01
On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.
NASA Technical Reports Server (NTRS)
Marius, Julio L.; Busch, Jim
2008-01-01
The Tropical Rainfall Measuring Mission (TRMM) spacecraft was launched in November of 1996 in order to obtain unique three dimensional radar cross sectional observations of cloud structures with particular interest in hurricanes. The TRMM mission life was recently extended with current estimates that operations will continue through the 2012-2013 timeframe. Faced with this extended mission profile, the project has embarked on a technology refresh and re-engineering effort. TRMM has recently implemented a re-engineering effort to expand a middleware based messaging architecture to enable fully redundant lights-out of flight operations activities. The middleware approach is based on the Goddard Mission Services Evolution Center (GMSEC) architecture, tools and associated open-source Applications Programming Interface (API). Middleware based messaging systems are useful in spacecraft operations and automation systems because private node based knowledge (such as that within a telemetry and command system) can be broadcast on the middleware messaging bus and hence enable collaborative decisions to be made by multiple subsystems. In this fashion, private data is made public and distributed within the local area network and multiple nodes can remain synchronized with other nodes. This concept is useful in a fully redundant architecture whereby one node is monitoring the processing of the 'prime' node so that in the event of a failure the backup node can assume operations of the prime, without loss of state knowledge. This paper will review and present the experiences, architecture, approach and lessons learned of the TRMM re-engineering effort centered on the GMSEC middleware architecture and tool suite. Relevant information will be presented that relates to the dual redundant parallel nature of the Telemetry and Command (T and C) and Front-End systems and how these systems can interact over a middleware bus to achieve autonomous operations including autonomous commanding to recover missing science data during the same spacecraft contact.
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim
2004-01-01
Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.
Design of an autonomous teleoperated cargo transporting vehicle for lunar base operations
NASA Technical Reports Server (NTRS)
Holt, James; Lao, Tom; Monali, Nkoy
1989-01-01
At the turn of the century NASA plans to begin construction of a lunar base. The base will likely consist of developed areas (i.e., habitation, laboratory, landing and launching sites, power plant) separated from each other due to safety considerations. The Self-Repositioning Track Vehicle (SRTV) was designed to transport cargo between these base facilities. The SRTV operates by using two robotic arms to raise and position segments of track upon which the vehicle travels. The SRTV utilizes the semiautonomous mobility (SAM) method of teleoperation; actuator-controlled interlocking track sections; two robotic arms each with five degrees of freedom; and these materials: titanium for structural members and aluminum for shell members, with the possible use of light-weight, high-strength composites.
Latest Development in Advanced Sensors at Kennedy Space Center (KSC)
NASA Technical Reports Server (NTRS)
Perotti, Jose M.; Eckhoff, Anthony J.; Voska, N. (Technical Monitor)
2002-01-01
Inexpensive space transportation system must be developed in order to make spaceflight more affordable. To achieve this goal, there is a need to develop inexpensive smart sensors to allow autonomous checking of the health of the vehicle and associated ground support equipment, warn technicians or operators of an impending problem and facilitate rapid vehicle pre-launch operations. The Transducers and Data Acquisition group at Kennedy Space Center has initiated an effort to study, research, develop and prototype inexpensive smart sensors to accomplish these goals. Several technological challenges are being investigated and integrated in this project multi-discipline sensors; self-calibration, health self-diagnosis capabilities embedded in sensors; advanced data acquisition systems with failure prediction algorithms and failure correction (self-healing) capabilities.
Fundamentals of satellite navigation
NASA Astrophysics Data System (ADS)
Stiller, A. H.
The basic operating principles and capabilities of conventional and satellite-based navigation systems for air, sea, and land vehicles are reviewed and illustrated with diagrams. Consideration is given to autonomous onboard systems; systems based on visible or radio beacons; the Transit, Cicada, Navstar-GPS, and Glonass satellite systems; the physical laws and parameters of satellite motion; the definition of time in satellite systems; and the content of the demodulated GPS data signal. The GPS and Glonass data format frames are presented graphically, and tables listing the GPS and Glonass satellites, their technical characteristics, and the (past or scheduled) launch dates are provided.
Space station systems technology study (add-on task). Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1985-01-01
System concepts were characterized in order to define cost versus benefits for autonomous functional control and for controls and displays for OMV, OTV, and spacecraft servicing and operation. The attitude control topic focused on characterizing the Space Station attitude control problem through simulation of control system responses to structural disturbances. The first two topics, mentioned above, focused on specific technology items that require advancement in order to support an early 1990s initial launch of a Space Station, while the attitude control study was an exploration of the capability of conventional controller techniques.
Ground Operations Autonomous Control and Integrated Health Management
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Walker, Mark; Wilkins, Kim; Johnson, Robert; Sass, Jared; Youney, Justin
2014-01-01
An intelligent autonomous control capability has been developed and is currently being validated in ground cryogenic fluid management operations. The capability embodies a physical architecture consistent with typical launch infrastructure and control systems, augmented by a higher level autonomous control (AC) system enabled to make knowledge-based decisions. The AC system is supported by an integrated system health management (ISHM) capability that detects anomalies, diagnoses causes, determines effects, and could predict future anomalies. AC is implemented using the concept of programmed sequences that could be considered to be building blocks of more generic mission plans. A sequence is a series of steps, and each executes actions once conditions for the step are met (e.g. desired temperatures or fluid state are achieved). For autonomous capability, conditions must consider also health management outcomes, as they will determine whether or not an action is executed, or how an action may be executed, or if an alternative action is executed instead. Aside from health, higher level objectives can also drive how a mission is carried out. The capability was developed using the G2 software environment (www.gensym.com) augmented by a NASA Toolkit that significantly shortens time to deployment. G2 is a commercial product to develop intelligent applications. It is fully object oriented. The core of the capability is a Domain Model of the system where all elements of the system are represented as objects (sensors, instruments, components, pipes, etc.). Reasoning and decision making can be done with all elements in the domain model. The toolkit also enables implementation of failure modes and effects analysis (FMEA), which are represented as root cause trees. FMEA's are programmed graphically, they are reusable, as they address generic FMEA referring to classes of subsystems or objects and their functional relationships. User interfaces for integrated awareness by operators have been created.
NASA Technical Reports Server (NTRS)
Siders, Jeffrey A.; Smith, Robert H.
2004-01-01
The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Cameron, Jonathan M.; Morfopoulos, Arin C.; Clouse, Daniel S.; Montgomery, James F.; Ansar, Adnan I.; Machuzak, Richard J.
2009-01-01
An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.
SeaRover: An Emerging Technology for Sea Surface Sensor Networks
NASA Astrophysics Data System (ADS)
Fong, T.; Kudela, R.; Curcio, J.; Davidson, K.; Darling, D.; Kirkwood, B.
2005-12-01
Introduction - SeaRover is envisioned as an autonomous surface vehicle (ASV) for coastal operations. It is intended to lower the cost of existing marine survey applications while enabling new science missions. The current conceptual design is a small vehicle with hull and propulsion system optimized to eliminate cavitation and EM noise. SeaRover will make significant advances over existing platforms by providing longer duration science missions, better positioning and mission control, larger power budgets for instrumentation and significantly lower operational costs than existing vehicles. Science Enabled by SeaRover - SeaRover's unique design and autonomous capability provides several advantages compared to traditional autonomous underwater vehicles (AUV's) and crewed surface vessels: (1) Near surface sampling: SeaRover can sample within the top 1-2 meters. This is difficult to do with crewed vessels because of draft and perturbations from the hull. (2) Adaptive monitoring of dynamic events: SeaRover will be capable of intelligent decision making, as well as real-time remote control. This will enable highly-responsive autonomous tracking of moving phenomena (e.g., algal bloom). (3) Long term monitoring: SeaRover can be deployed for extended periods of time, allowing it to be used for longitudinal baseline studies. SeaRover will represent an advance over existing platforms in terms of: (1) Mobility: operational range from 10-1000 km, GPS accuracy, trajectory control with meter precision, and launch in hours. (2) Duration: from days up to months. (3) Payload and Power: accommodate approximately 100 kg for a 6m hull. Its surface design will allow access to wind and sun energy. (4) Communication: radio, wireless, satellite, direct data return. (5) Operational Cost: target costs are $2K/day (24 hour operation), with no onboard operator. (6) Recovery/Reusability: autonomous return to safe harbor provides sample return and on-base maintenance. Large science and power payload simplifies instrument design and integration. Enabling Technology for SeaRover - SeaRover's capabilities are made possible by advances in technologies developed during NASA planetary exploration missions: (1) Adaptive control (2) Automated data analysis (3) Communications management (4) Computer vision (5) Interactive 3D User Interfaces (6) Intelligent energy management (7) Long-duration operations planning (8) Multi-vehicle coordinated action As an example of what SeaRover could be used for, we envision augmenting existing monthly monitoring cruises in Monterey Bay with a SeaRover. Each month, the Center for Integrated Marine Technology (UC-Santa Cruz) conducts shipboard surveys of Monterey Bay. This requires 2-3 full days of ship time (weather dependent), 14 scientists, and 2 crew members. Operations are currently limited by sea-state, transit speed, and cost. SeaRover could provide all of the underway measurements and some of the hydrographic station measurements faster, more frequently, and for a fraction of the cost.
NASA Technical Reports Server (NTRS)
Ricco, Antonio J.; Parra, Macarena P.; Niesel, David; McGinnis, Michael; Ehrenfreund, Pascale; Nicholson, Wayne; Mancinelli, Rocco; Piccini, Matthew E.; Beasley, Christopher C.; Timucin, Linda R.;
2009-01-01
We develop integrated instruments and platforms suitable for economical, frequent space access for autonomous life science experiments and processes in outer space. The technologies represented by three of our recent free-flyer small-satellite missions are the basis of a rapidly growing toolbox of miniaturized biologically/biochemically-oriented instrumentation now enabling a new generation of in-situ space experiments. Autonomous small satellites ( 1 50 kg) are less expensive to develop and build than fullsize spacecraft and not subject to the comparatively high costs and scheduling challenges of human-tended experimentation on the International Space Station, Space Shuttle, and comparable platforms. A growing number of commercial, government, military, and civilian space launches now carry small secondary science payloads at far lower cost than dedicated missions; the number of opportunities is particularly large for so-called cube-sat and multicube satellites in the 1 10 kg range. The recent explosion in nano-, micro-, and miniature technologies, spanning fields from telecommunications to materials to bio/chemical analysis, enables development of remarkably capable autonomous miniaturized instruments to accomplish remote biological experimentation. High-throughput drug discovery, point-of-care medical diagnostics, and genetic analysis are applications driving rapid progress in autonomous bioanalytical technology. Three of our recent missions exemplify the development of miniaturized analytical payload instrumentation: GeneSat-1 (launched: December 2006), PharmaSat (launched: May 2009), and O/OREOS (organism/organics exposure to orbital stresses; scheduled launch: May 2010). We will highlight the overall architecture and integration of fluidic, optical, sensor, thermal, and electronic technologies and subsystems to support and monitor the growth of microorganisms in culture in these small autonomous space satellites, including real-time tracking of their culture density, gene expression, and metabolic activity while in the space environment. Flight data and results will be presented from GeneSat-1, which tracked gene expression levels of GFP-labeled E. coli and from PharmaSat, which monitored the dose dependency of an antifungal agent against S. cerevisiae. The O/OREOS SESLO instrument, which will study the effects of radiation and microgravity upon the viability and growth characteristics of B. subtilis and the halophile Halorubrum chaoviatoris for periods of 0 - 6 months in space, will be described as well. The ongoing expansion of the small satellite toolbox of biological technologies will be summarized.
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 on a launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus is being lowered by crane onto the launch pad. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
A 16-m Telescope for the Advanced Technology Large Aperture Telescope (ATLAST) Mission
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Dailey, D. R.; Polidan, R. S.
2010-01-01
Future space observatories will require increasingly large telescopes to study the earliest stars and galaxies, as well as faint nearby objects. Technologies now under development will enable telescopes much larger than the 6.5-meter diameter James Webb Space Telescope (JWST) to be developed at comparable costs. Current segmented mirror and deployable optics technology enables the 6.5 meter JWST telescope to be folded for launch in the 5-meter diameter Ariane 5 payload fairing, and deployed autonomously after reaching orbit. Late in the next decade, when the Ares V Cargo Launch Vehicle payload fairing becomes operational, even larger telescope can be placed in orbit. In this paper we present our concept for a 16-meter JWST derivative, chord-fold telescope which could be stowed in the 10-m diameter Ares V fairing, plus a description of the new technologies that enable ATLAST to be developed at an affordable price.
Operationally Efficient Propulsion System Study (OEPSS) data book. Volume 4: OEPSS design concepts
NASA Technical Reports Server (NTRS)
Wong, George S.; Ziese, James M.; Farhangi, Shahram
1990-01-01
This study was initiated to identify operations problems and cost drivers for current propulsion systems and to identify technology and design approaches to increase the operational efficiency and reduce operations costs for future propulsion systems. To provide readily usable data for the Advanced Launch System (ALS) program, the results of the OEPSS study have been organized into a series of OEPSS Data Books. This volume describes three propulsion concepts that will simplify the propulsion system design and significantly reduce operational requirements. The concepts include: (1) a fully integrated, booster propulsion module concept for the ALS that avoids the complex system created by using autonomous engines with numerous artificial interfaces; (2) an LOX tank aft concept which avoids potentially dangerous geysering in long LOX propellant lines; and (3) an air augmented, rocket engine nozzle afterburning propulsion concept that will significantly reduce LOX propellant requirements, reduce vehicle size and simplify ground operations and ground support equipment and facilities.
The Integration, Testing and Flight of the EO-1 GPS
NASA Technical Reports Server (NTRS)
Quinn, David A.; Sanneman, Paul A.; Shulman, Seth E.; Sager, Jennifer A.
2001-01-01
The Global Positioning System has long been hailed as the wave of the future for autonomous on-board navigation of low Earth orbiting spacecraft despite the fact that relatively few spacecraft have actually employed it for this purpose. While several missions operated out of the Goddard Space Flight Center have flown GPS receivers on board, the New Millenium Program (NMP) Earth Orbiting-1 (EO-1) spacecraft is the first to employ GPS for active, autonomous on-board navigation. Since EO-1 was designed to employ GPS as its primary source of the navigation ephemeris, special care had to be taken during the integration phase of spacecraft construction to assure proper performance. This paper is a discussion of that process: a brief overview of how the GPS works, how it fits into the design of the EO-1 Attitude Control System (ACS), the steps taken to integrate the system into the EO-1 spacecraft, the ultimate on-orbit performance during launch and early operations of the EO-1 mission and the performance of the on-board GPS ephemeris versus the ground based ephemeris. Conclusions will include a discussion of the lessons learned.
Automated Rendezvous and Capture System Development and Simulation for NASA
NASA Technical Reports Server (NTRS)
Roe, Fred D.; Howard, Richard T.; Murphy, Leslie
2004-01-01
The United States does not have an Automated Rendezvous and Capture/Docking (AR and C) capability and is reliant on manned control for rendezvous and docking of orbiting spacecraft. This reliance on the labor intensive manned interface for control of rendezvous and docking vehicles has a significant impact on the cost of the operation of the International Space Station (ISS) and precludes the use of any U.S. expendable launch capabilities for Space Station resupply. The Soviets have the capability to autonomously dock in space, but their system produces a hard docking with excessive force and contact velocity. Automated Rendezvous and Capture/Docking has been identified as a key enabling technology for the Space Launch Initiative (SLI) Program, DARPA Orbital Express and other DOD Programs. The development and implementation of an AR&C capability can significantly enhance system flexibility, improve safety, and lower the cost of maintaining, supplying, and operating the International Space Station. The Marshall Space Flight Center (MSFC) has conducted pioneering research in the development of an automated rendezvous and capture (or docking) (AR and C) system for U.S. space vehicles. This AR&C system was tested extensively using hardware-in-the-loop simulations in the Flight Robotics Laboratory, and a rendezvous sensor, the Video Guidance Sensor was developed and successfully flown on the Space Shuttle on flights STS-87 and STS-95, proving the concept of a video- based sensor. Further developments in sensor technology and vehicle and target configuration have lead to continued improvements and changes in AR&C system development and simulation. A new Advanced Video Guidance Sensor (AVGS) with target will be utilized on the Demonstration of Autonomous Rendezvous Technologies (DART) flight experiment in 2004.
Autonomous Navigation With Ground Station One-Way Forward-Link Doppler Data
NASA Technical Reports Server (NTRS)
Horstkamp, G. M.; Niklewski, D. J.; Gramling, C. J.
1996-01-01
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) has spent several years developing operational onboard navigation systems (ONS's) to provide real time autonomous, highly accurate navigation products for spacecraft using NASA's space and ground communication systems. The highly successful Tracking and Data Relay Satellite (TDRSS) ONS (TONS) experiment on the Explorer Platform/Extreme Ultraviolet (EP/EUV) spacecraft, launched on June 7, 1992, flight demonstrated the ONS for high accuracy navigation using TDRSS forward link communication services. In late 1994, a similar ONS experiment was performed using EP/EUV flight hardware (the ultrastable oscillator and Doppler extractor card in one of the TDRSS transponders) and ground system software to demonstrate the feasibility of using an ONS with ground station forward link communication services. This paper provides a detailed evaluation of ground station-based ONS performance of data collected over a 20 day period. The ground station ONS (GONS) experiment results are used to project the expected performance of an operational system. The GONS processes Doppler data derived from scheduled ground station forward link services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination. Analysis of the GONS experiment performance indicates that real time onboard position accuracies of better than 125 meters (1 sigma) are achievable with two or more 5-minute contacts per day for the EP/EUV 525 kilometer altitude, 28.5 degree inclination orbit. GONS accuracy is shown to be a function of the fidelity of the onboard propagation model, the frequency/geometry of the tracking contacts, and the quality of the tracking measurements. GONS provides a viable option for using autonomous navigation to reduce operational costs for upcoming spacecraft missions with moderate position accuracy requirements.
Command and Service Module Communications
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
This viewgraph presentation examines Command and Service Module (CSM) Communications. The communication system's capabilities are defined, including CSM-Earth, CSM-Lunar Module and CSM-Extravehicular crewman communications. An overview is provided for S-band communications, including data transmission and receiving rates, operating frequencies and major system components (pre-modulation processors, unified S-band electronics, S-band power amplifier and S-band antennas). Additionally, data transmission rates, operating frequencies and the capabilities of VHF communications are described. Major VHF components, including transmitters and receivers, and the VHF multiplexer and antennas are also highlighted. Finally, communications during pre-launch, ascent, in-flight and entry are discussed. Overall, the CSM communication system was rated highly by flight controllers and crew. The system was mostly autonomous for both crew and flight controllers and no major issues were encountered during flight.
Morpheus Campaign 2A Tether Test
2014-03-27
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is positioned near a new launch site at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida for a tethered test. The test will be performed to verify the lander's recently installed autonomous landing and hazard avoidance technology, or ALHAT, sensors and integration system. The launch pad was moved to a different location at the landing facility to support the next phase of flight testing. Project Morpheus tests NASA’s ALHAT, and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Glenn Benson
2014-01-21
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is transported to a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
2014-01-21
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is being lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
Dryden Flight Research Center Overview
NASA Technical Reports Server (NTRS)
Meyer, Robert R., Jr.
2007-01-01
This viewgraph document presents a overview of the Dryden Flight Research Center's facilities. Dryden's mission is to advancing technology and science through flight. The mission elements are: perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validate space exploration concepts, conduct airborne remote sensing and science observations, and support operations of the Space Shuttle and the ISS for NASA and the Nation. It reviews some of the recent research projects that Dryden has been involved in, such as autonomous aerial refueling, the"Quiet Spike" demonstration on supersonic F-15, intelligent flight controls, high angle of attack research on blended wing body configuration, and Orion launch abort tests.
Preliminary Operational Results of the TDRSS Onboard Navigation System (TONS) for the Terra Mission
NASA Technical Reports Server (NTRS)
Gramling, Cheryl; Lorah, John; Santoro, Ernest; Work, Kevin; Chambers, Robert; Bauer, Frank H. (Technical Monitor)
2000-01-01
The Earth Observing System Terra spacecraft was launched on December 18, 1999, to provide data for the characterization of the terrestrial and oceanic surfaces, clouds, radiation, aerosols, and radiative balance. The Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (ONS) (TONS) flying on Terra provides the spacecraft with an operational real-time navigation solution. TONS is a passive system that makes judicious use of Terra's communication and computer subsystems. An objective of the ONS developed by NASA's Goddard Space Flight Center (GSFC) Guidance, Navigation and Control Center is to provide autonomous navigation with minimal power, weight, and volume impact on the user spacecraft. TONS relies on extracting tracking measurements onboard from a TDRSS forward-link communication signal and processing these measurements in an onboard extended Kalman filter to estimate Terra's current state. Terra is the first NASA low Earth orbiting mission to fly autonomous navigation which produces accurate results. The science orbital accuracy requirements for Terra are 150 meters (m) (3sigma) per axis with a goal of 5m (1 sigma) RSS which TONS is expected to meet. The TONS solutions are telemetered in real-time to the mission scientists along with their science data for immediate processing. Once set in the operational mode, TONS eliminates the need for ground orbit determination and allows for a smooth flow from the spacecraft telemetry to planning products for the mission team. This paper will present the preliminary results of the operational TONS solution available from Terra.
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
Real Time Space Weather Support for Chandra X-ray Observatory Operations
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Miller, J. Scott; Minow, Joseph I.; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz, Douglas A.
2012-01-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (less than 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.
Real Time Space Weather Support for Chandra X-Ray Observatory Operations
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.
2012-01-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data sources that are used to protect the ACIS detector system from space weather events.
Real Time Space Weather Support for Chandra X-ray Observatory Operations
NASA Astrophysics Data System (ADS)
O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.
2012-12-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra's high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.
NASA's Orbital Space Plane Risk Reduction Strategy
NASA Technical Reports Server (NTRS)
Dumbacher, Dan
2003-01-01
This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.
2006 NASA Range Safety Annual Report
NASA Technical Reports Server (NTRS)
TenHaken, Ron; Daniels, B.; Becker, M.; Barnes, Zack; Donovan, Shawn; Manley, Brenda
2007-01-01
Throughout 2006, Range Safety was involved in a number of exciting and challenging activities and events, from developing, implementing, and supporting Range Safety policies and procedures-such as the Space Shuttle Launch and Landing Plans, the Range Safety Variance Process, and the Expendable Launch Vehicle Safety Program procedures-to evaluating new technologies. Range Safety training development is almost complete with the last course scheduled to go on line in mid-2007. Range Safety representatives took part in a number of panels and councils, including the newly formed Launch Constellation Range Safety Panel, the Range Commanders Council and its subgroups, the Space Shuttle Range Safety Panel, and the unmanned aircraft systems working group. Space based range safety demonstration and certification (formerly STARS) and the autonomous flight safety system were successfully tested. The enhanced flight termination system will be tested in early 2007 and the joint advanced range safety system mission analysis software tool is nearing operational status. New technologies being evaluated included a processor for real-time compensation in long range imaging, automated range surveillance using radio interferometry, and a space based range command and telemetry processor. Next year holds great promise as we continue ensuring safety while pursuing our quest beyond the Moon to Mars.
STS-72 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1996-01-01
The flight crew of the STS-72 Space Shuttle Orbiter Endeavour Cmdr. Brian Duffy, Pilot Brent W. Jett, and Mission Specialists; Leroy Chiao, Daniel T. Barry, Winston E. Scott, and Koichi Wakata (NASDA) present an overview of their mission, whose primary objective is the retrieval of two research satellites. The major activities of the mission will include retrieval of the Japanese Space Flyer Unit (SFU), which was launched aboard a Japanese H-2 rocket to conduct a variety of microgravity experiments. In addition, the STS-72 crew will deploy the AST-Flyer, a satellite, that will fly free of the Shuttle for about 50 hours. Four experiments on the science platform will operate autonomously before the satellite is retrieved by Endeavour's robot arm. Three of Endeavour's astronauts will conduct a pair of spacewalks during the mission to test hardware and tools that will be used in the assembly of the Space Station. Video footage includes the following: prelaunch and launch activities; the crew eating breakfast; shuttle launch; retrieval of the Japanese Space Flyer Unit (SFU); suit-up and EVA-1; EVA-2; crew members performing various physical exercises; various earth views; and the night landing of the shuttle at KSC.
Mars Mission Concepts: SAR and Solar Electric Propulsion
NASA Astrophysics Data System (ADS)
Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.
2012-12-01
Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (<10 m depth) subsurface of Mars, enabling identification of fine-scale layering within the Martian polar layered deposits (PLD), as well as the identification of pingos, investigations of polygonal terrain, and measurements of the thickness of mantling layers at non-polar latitudes. It would allow systematic near-surface prospecting, which is tremendously useful for human exploration purposes (in particular, the identification of accessible ice deposits and quantification of Martian regolith properties). Limited color capabilities in a notional high-resolution stereo imaging system would enable the generation of false color images, resulting in useful science results, and the stereo data could be reduced into high-resolution Digital Elevation Models uniquely useful for exploration planning and science purposes. Since the SAR and the notional high-resolution stereo imaging system would be huge data volume producers - to maximize the science return we are currently considering the usage of laser communications systems; this notional spacecraft represents one pathway to evaluate the utility of laser communications in planetary exploration while providing useful science return.. Mission Concept: Using a common space craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power (~5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both science and future manned exploration and utilization.
Launch Commit Criteria Monitoring Agent
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.
NASA Technical Reports Server (NTRS)
Fisher, J. E.; Lawrence, D. A.; Zhu, J. J.; Jackson, Scott (Technical Monitor)
2002-01-01
This paper presents a hierarchical architecture for integrated guidance and control that achieves risk and cost reduction for NASA's 2d generation reusable launch vehicle (RLV). Guidance, attitude control, and control allocation subsystems that heretofore operated independently will now work cooperatively under the coordination of a top-level autocommander. In addition to delivering improved performance from a flight mechanics perspective, the autocommander is intended to provide an autonomous supervisory control capability for traditional mission management under nominal conditions, G&C reconfiguration in response to effector saturation, and abort mode decision-making upon vehicle malfunction. This high-level functionality is to be implemented through the development of a relational database that is populated with the broad range of vehicle and mission specific data and translated into a discrete event system model for analysis, simulation, and onboard implementation. A Stateflow Autocoder software tool that translates the database into the Stateflow component of a Matlab/Simulink simulation is also presented.
Advancing Autonomous Operations Technologies for NASA Missions
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Thompson, Jerry Todd
2013-01-01
This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.
CANSAT: Design of a Small Autonomous Sounding Rocket Payload
NASA Technical Reports Server (NTRS)
Berman, Joshua; Duda, Michael; Garnand-Royo, Jeff; Jones, Alexa; Pickering, Todd; Tutko, Samuel
2009-01-01
CanSat is an international student design-build-launch competition organized by the American Astronautical Society (AAS) and American Institute of Aeronautics and Astronautics (AIAA). The competition is also sponsored by the Naval Research Laboratory (NRL), the National Aeronautics and Space Administration (NASA), AGI, Orbital Sciences Corporation, Praxis Incorporated, and SolidWorks. Specifically, the 2009 Virginia Tech CanSat Team is funded by BAE Systems, Incorporated of Manassas, Virginia. The objective of the 2009 CanSat competition is to complete remote sensing missions by designing a small autonomous sounding rocket payload. The payload designed will follow and perform to a specific set of mission requirements for the 2009 competition. The competition encompasses a complete life-cycle of one year which includes all phases of design, integration, testing, reviews, and launch.
Integrated Network Architecture for NASA's Orion Missions
NASA Technical Reports Server (NTRS)
Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.
2008-01-01
NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five phases of a mission: pre-launch, launch from T0 to T+6.5 min, launch from T+6.5 min to 12 min, in LEO for rendezvous and docking with ISS, and return to Earth. The network of networks that supports the mission during each of these phases and the concepts of operations during those phases are developed as a high level operational concepts graphic called OV-1, an architecture diagram type described in the Department of Defense Architecture Framework (DoDAF). Additional operational views on organizational relationships (OV-4), operational activities (OV-5), and operational node connectivity (OV-2) are also discussed. The system interfaces view (SV-1) that provides the communication and navigation services to Orion is also included and described. The challenges of architecting integrated network architecture for the NASA Orion missions are highlighted.
Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations
NASA Technical Reports Server (NTRS)
Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik
2004-01-01
Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
2014-01-21
CAPE CANAVERAL, Fla. – Technicians monitor the progress as a crane lowers the Project Morpheus prototype for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
2014-01-21
CAPE CANAVERAL, Fla. – Technicians and engineers monitor the progress as the Project Morpheus prototype lander is lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
2014-01-21
CAPE CANAVERAL, Fla. – Technicians monitor the progress as the Project Morpheus prototype lander is lifted by crane for positioning on a launch pad at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The prototype lander is being prepared for its fourth free flight test at Kennedy. Morpheus will launch from the ground over a flame trench and then descend and land on a dedicated pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Cory Huston
Baseline tests of an autonomous telerobotic system for assembly of space truss structures
NASA Technical Reports Server (NTRS)
Rhodes, Marvin D.; Will, Ralph W.; Quach, Coung
1994-01-01
Several proposed space missions include precision reflectors that are larger in diameter than any current or proposed launch vehicle. Most of these reflectors will require a truss structure to accurately position the reflector panels and these reflectors will likely require assembly in orbit. A research program has been conducted at the NASA Langley Research Center to develop the technology required for the robotic assembly of truss structures. The focus of this research has been on hardware concepts, computer software control systems, and operator interfaces necessary to perform supervised autonomous assembly. A special facility was developed and four assembly and disassembly tests of a 102-strut tetrahedral truss have been conducted. The test procedures were developed around traditional 'pick-and-place' robotic techniques that rely on positioning repeatability for successful operation. The data from two of the four tests were evaluated and are presented in this report. All operations in the tests were controlled by predefined sequences stored in a command file, and the operator intervened only when the system paused because of the failure of an actuator command. The tests were successful in identifying potential pitfalls in a telerobotic system, many of which would not have been readily anticipated or incurred through simulation studies. Addressing the total integrated task, instead of bench testing the component parts, forced all aspects of the task to be evaluated. Although the test results indicate that additional developments should be pursued, no problems were encountered that would preclude automated assembly in space as a viable construction method.
Cold Regions Issues for Off-Road Autonomous Vehicles
2004-04-01
the operation of off-road autonomous vehicles . Low-temperature effects on lubricants, materials, and batteries can impair a robot’s ability to operate...demanding that off-road autonomous vehicles must be designed for and tested in cold regions if they are expected to operate there successfully.
The autonomous sciencecraft constellations
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2003-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
Autonomous Vehicle Operation A person can operate a fully autonomous vehicle with the automated federal motor vehicle safety standards and is registered as a fully autonomous vehicle. Other conditions
A Flight Deck Decision Support Tool for Autonomous Airborne Operations
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin
2002-01-01
NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.
The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations
2017-06-09
Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence
SSTO rockets. A practical possibility
NASA Technical Reports Server (NTRS)
Bekey, Ivan
1994-01-01
Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.
SSTO rockets. A practical possibility
NASA Astrophysics Data System (ADS)
Bekey, Ivan
1994-07-01
Most experts agree that single-stage-to-orbit (SSTO) rockets would become feasible if more advanced technologies were available to reduce the vehicle dry weight, increase propulsion system performance, or both. However, these technologies are usually judged to be very ambitious and very far off. This notion persists despite major advances in technology and vehicle design in the past decade. There appears to be four major misperceptions about SSTOs, regarding their mass fraction, their presumed inadequate performance margin, their supposedly small payloads, and their extreme sensitivity to unanticipated vehicle weight growth. These misperceptions can be dispelled for SSTO rockets using advanced technologies that could be matured and demonstrated in the near term. These include a graphite-composite primary structure, graphite-composite and Al-Li propellant tanks with integral reusable thermal protection, long-life tripropellant or LOX-hydrogen engines, and several technologies related to operational effectiveness, including vehicle health monitoring, autonomous avionics/flight control, and operable launch and ground handling systems.
NASA Technical Reports Server (NTRS)
1990-01-01
As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.
Improving Human/Autonomous System Teaming Through Linguistic Analysis
NASA Technical Reports Server (NTRS)
Meszaros, Erica L.
2016-01-01
An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.
Autonomous Vehicle Regulations and Committee A fully autonomous vehicle is defined as a vehicle tactical control functions of the vehicle at any time.Effective December 1, 2017, the operator of a fully autonomous vehicle is not required to be licensed to operate a motor vehicle. A person may operate a fully
The IXV Ground Segment design, implementation and operations
NASA Astrophysics Data System (ADS)
Martucci di Scarfizzi, Giovanni; Bellomo, Alessandro; Musso, Ivano; Bussi, Diego; Rabaioli, Massimo; Santoro, Gianfranco; Billig, Gerhard; Gallego Sanz, José María
2016-07-01
The Intermediate eXperimental Vehicle (IXV) is an ESA re-entry demonstrator that performed, on the 11th February of 2015, a successful re-entry demonstration mission. The project objectives were the design, development, manufacturing and on ground and in flight verification of an autonomous European lifting and aerodynamically controlled re-entry system. For the IXV mission a dedicated Ground Segment was provided. The main subsystems of the IXV Ground Segment were: IXV Mission Control Center (MCC), from where monitoring of the vehicle was performed, as well as support during pre-launch and recovery phases; IXV Ground Stations, used to cover IXV mission by receiving spacecraft telemetry and forwarding it toward the MCC; the IXV Communication Network, deployed to support the operations of the IXV mission by interconnecting all remote sites with MCC, supporting data, voice and video exchange. This paper describes the concept, architecture, development, implementation and operations of the ESA Intermediate Experimental Vehicle (IXV) Ground Segment and outlines the main operations and lessons learned during the preparation and successful execution of the IXV Mission.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Patterson, Jonathan; Teare, David; Johnson, Stephen
2015-01-01
The engineering development of the new Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these spacecraft systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large and complex system engineering challenge, which is being addressed in part by focusing on the specific subsystems involved in the handling of off-nominal mission and fault tolerance with response management. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML) and Systems Modeling Language (SysML), the Mission and Fault Management (M&FM) algorithms for the vehicle are crafted and vetted in specialized Integrated Development Teams (IDTs) composed of multiple development disciplines such as Systems Engineering (SE), Flight Software (FSW), Safety and Mission Assurance (S&MA) and the major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GNC), Thrust Vector Control (TVC), and liquid engines. These model based algorithms and their development lifecycle from inception through Flight Software certification are an important focus of this development effort to further insure reliable detection and response to off-nominal vehicle states during all phases of vehicle operation from pre-launch through end of flight. NASA formed a dedicated M&FM team for addressing fault management early in the development lifecycle for the SLS initiative. As part of the development of the M&FM capabilities, this team has developed a dedicated testbed that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. Additionally, the team has developed processes for implementing and validating these algorithms for concept validation and risk reduction for the SLS program. The flexibility of the Vehicle Management End-to-end Testbed (VMET) enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the developed algorithms utilizing actual subsystem models such as MPS. The intent of VMET is to validate the M&FM algorithms and substantiate them with performance baselines for each of the target vehicle subsystems in an independent platform exterior to the flight software development infrastructure and its related testing entities. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test cases into flight software compounded with potential human errors throughout the development lifecycle. Risk reduction is addressed by the M&FM analysis group working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and associated detection and responses that can be tested in VMET to ensure that failures can be detected, and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM such as telemetry packing and processing. The baseline plan for use of VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes.
Lightweight Autonomous Underwater Vehicles (AUVs) performing coastal survey operations in REP 10A
NASA Astrophysics Data System (ADS)
Incze, Michael L.
2011-11-01
Lightweight Autonomous Underwater Vehicles (AUVs) were developed for Naval Special Warfare (NSW) Group 4 search and survey missions from a commercial AUV baseline (Iver 2) through integration of commercial off-the-shelf (COTS) hardware components, and through software development for enhanced on-board Command and Control functions. The development period was 1 year under a project sponsored by the Office of Naval Research TechSolutions Program Office. Hardware integration was completed by the commercial AUV vendor, OceanServer Technology, Inc., and software development was conducted by the Naval Undersea Warfare Center, Naval Oceanographic Office, and U MASS Dartmouth, with support from hardware and software application providers (YSI, Inc., Imagenex Technology Corp., and CARIS). At the conclusion of the integration and development period, an at-sea performance evaluation was scheduled for the Lightweight NSW AUVs with NSWG-4 personnel. The venue for this evaluation was the NATO exercise Recognized Environmental Picture 10A (REP 10A), hosted by Marinha Portuguesa, and coordinated by the Faculdade de Engenharia-Universidade do Porto. REP 10A offered an opportunity to evaluate the performance of the new AUVs and to explore the Concept of Operations (CONOPS) for employing them in military survey operations in shallow coastal waters. Shore- and ship-launched scenarios with launch/recovery by a single operator in a one-to-many coordinated survey, on-scene data product generation and visualization, data push to Reach Back Cells for product integration and enhancement, and survey optimization to streamline survey effort and timelines were included in the CONOPS review. Opportunities to explore employment of hybrid AUV fleets in Combined Force scenarios were also utilized. The Naval Undersea Warfare Center, Marinha Portuguesa, the Faculdade de Engenharia-Universidade do Porto, and OceanServer Technology, Inc., were the primary participants bringing in-water resources to REP 10A. Technical support and products were provided by the Naval Research Laboratory-Stennis Space Center, Naval Oceanographic Office, NATO Undersea Research Centre, University of Massachusetts-Dartmouth, and YSI, Inc. REP 10A proved to be a very effective exercise in meeting each of the critical goals. Results of the performance evaluation guided final development and Independent Verification and Validation (IV&V) for the Lightweight NSW AUV, leading to on-time, successful Factory Acceptance Testing and delivery of the three contracted vehicles to NSWG-4 in September, 2010.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David
2015-01-01
The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and detection and responses that can be tested in VMET and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM. The plan for VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes. This paper is outlined in a systematic fashion analogous to a lifecycle process flow for engineering development of algorithms into software and testing. Section I describes the NASA SLS M&FM context, presenting the current infrastructure, leading principles, methods, and participants. Section II defines the testing philosophy of the M&FM algorithms as related to VMET followed by section III, which presents the modeling methods of the algorithms to be tested and validated in VMET. Its details are then further presented in section IV followed by Section V presenting integration, test status, and state analysis. Finally, section VI addresses the summary and forward directions followed by the appendices presenting relevant information on terminology and documentation.
Advancing Autonomous Operations Technologies for NASA Missions
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Thompson, Jerry T.
2013-01-01
This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies
2014-01-21
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander touches down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field after launching on its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett
2014-01-21
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander touched down in the autonomous landing and hazard avoidance technology, or ALHAT, hazard field after launching on its fourth free flight test at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The 64-second test began at 1:15 p.m. EST with the Morpheus lander launching from the ground over a flame trench and ascending about 305 feet, significantly increasing the ascent velocity from the last test. The lander flew forward, covering about 358 feet in 25 seconds before descending and landing within 15 inches of its target on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, or green propellants, into a fully-operational lander that could deliver cargo to other planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus. Photo credit: NASA/Kim Shiflett
Advanced avionics concepts: Autonomous spacecraft control
NASA Technical Reports Server (NTRS)
1990-01-01
A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.
Systems, methods and apparatus for quiesence of autonomic safety devices with self action
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic environmental safety device may be quiesced. In at least one embodiment, a method for managing an autonomic safety device, such as a smoke detector, based on functioning state and operating status of the autonomic safety device includes processing received signals from the autonomic safety device to obtain an analysis of the condition of the autonomic safety device, generating one or more stay-awake signals based on the functioning status and the operating state of the autonomic safety device, transmitting the stay-awake signal, transmitting self health/urgency data, and transmitting environment health/urgency data. A quiesce component of an autonomic safety device can render the autonomic safety device inactive for a specific amount of time or until a challenging situation has passed.
The Jet Propulsion Laboratory shared control architecture and implementation
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad
1990-01-01
A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.
2012-06-01
This document was downloaded on August 16, 2012 at 10:14:04 Author(s) Acton, Brian E.; Taylor, David L. Title Autonomous Dirigible Airships: a ...Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation for Logistical Use in Complex Environments...2. REPORT DATE June 2012 3. REPORT TYPE AND DATES COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Autonomous Dirigible Airships: A
Towards Autonomous Airport Surface Operations: NextGen Flight Deck Implications
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky Lee; Bakowski, Deborah Lee
2017-01-01
Surface Trajectory-based Operations (STBO) is a potential concept candidate for flight deck autonomous operations. Existing research will be reviewed and possible architectures and research issues will be presented.
Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel
2014-10-22
In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems' (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach.
Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel
2014-01-01
In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach. PMID:25340450
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
DOT National Transportation Integrated Search
2016-10-01
This report addresses the matter of autonomous vehicles and the regulation of their operation in the : state of Louisiana. It was prepared in response to a request from the Louisiana State Legislature to : study the subject of autonomous vehicles and...
Autonomous Control of Space Reactor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo
2007-11-30
Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.
Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Zornetzer, Steve; Gage, Douglas
2005-01-01
Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.
Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike
2004-01-01
To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.
A Robust Compositional Architecture for Autonomous Systems
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara
2006-01-01
Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.
An Evaluation of Potential Operating Systems for Autonomous Underwater Vehicles
2013-02-01
Remotely Operated Vehicle RTOS Real-Time Operating System SAUC -E Student Autonomous Underwater Vehicle Challenge - Europe TCP Transmission Control Protocol...popularity, with examples including the Student Autonomous Underwater Vehicle Challenge - Europe ( SAUC -E) [7] and the AUVSI robosub competition [8]. For...28] for entry into AUV competitions such as SAUC -E [7], and AUVSI [8]. 8 UNCLASSIFIED UNCLASSIFIED DSTO–TN–1194 3.4 Windows CE Windows CE
JOMAR: Joint Operations with Mobile Autonomous Robots
2015-12-21
AFRL-AFOSR-JP-TR-2015-0009 JOMAR: Joint Operations with Mobile Autonomous Robots Edwin Olson UNIVERSITY OF MICHIGAN Final Report 12/21/2015...SUBTITLE JOMAR: Joint Operations with Mobile Autonomous Robots 5a. CONTRACT NUMBER FA23861114024 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT Under this grant, we formulated and implemented a variety of novel algorithms that address core problems in multi- robot systems. These
Enhancing the Cassini Mission Through FP Applications After Launch
NASA Technical Reports Server (NTRS)
Morgan, Paula S.
2016-01-01
Although rigorous pre-emptive measures are taken to preclude failures and anomalous conditions from occurring in JPL spacecraft missions prior to launch, unforeseeable problems can still surface after liftoff. In the case of the Cassini/Huygens Mission-to-Saturn spacecraft, several problems were observed post-launch: 1) immediately after takeoff, the collected engineering/science data stored on the Solid State Recorders (SSR) contained a significantly higher number of corrupted bits than was expected (considerably over spec) due to human error in the memory mapping of these devices, 2) numerous Solid State Power Switches (SSPS) sporadically tripped off throughout the mission due to cosmic ray bombardment from the unique space environment, and 3) false assumptions in the pressure regulator design in combination with missing heritage test data led to inaccurate design conclusions, causing the issuance of two waivers for the regulator to close properly (a potentially mission catastrophic single-point failure which occurred 24 days after launch) - amongst other problems. For Cassini, some of these anomalies led to arduous work-arounds or required continuous monitoring of telemetry variables by the ground-based Spacecraft Operations Flight Support (SOFS) team in order to detect and fix fault occurrences as they happened. Fortunately, sufficient funding and schedule margin allowed several Fault Protection (FP) solutions to be implemented into post-launch Flight Software (FSW) uploads to help resolve these issues autonomously, reducing SOFS ground support efforts while improving anomaly recovery time in order to preserve maximum science capture. This paper details the FP applications used to resolve the above issues as well as to optimize solutions for several other problems experienced by the Cassini spacecraft during its fight, in order to enhance the spacecraft's overall mission success throughout the 18 years of its 20 year expedition to and within the Saturnian system.
Rapid Application of Space Effects for the Small Satellites Systems and Services Symposium
NASA Technical Reports Server (NTRS)
Tsairides, Demosthenes; Finley, Charles; Moretti, George
2016-01-01
NASA Ames Research Center (ARC) has engaged Military Branches, the Department of Defense, and other Government Agencies in successful partnerships to design, develop, deliver and support various space effects capabilities and space vehicles on timeline of need. Contracts with Industry are in place to execute operational and enabler missions using physical and informational infrastructures including Responsive Manufacturing capabilities and Digital Assurance. The intent is to establish a secure, web-enabled "store front" for ordering and delivering any capabilities required as defined by the users and directed by NASA ARC and Partner Organizations. The capabilities are envisioned to cover a broad range and include 6U CubeSats, 50-100 kg Space Vehicles, Modular Space Vehicle architecture variations, as well as rapid payload integration on various Bus options. The paper will discuss the efforts underway to demonstrate autonomous manufacturing of low-volume, high-value assets, to validate the ability of autonomous digital techniques to provide Mission Assurance, and to demonstrate cost savings through the identification, characterization, and utilization of Responsive Space components. The culmination of this effort will be the integration of several 6U satellites and their launch in 2016.
Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James; Raitano, Paul; McNelis, Anne
2016-01-01
As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.
Miniature Robotic Submarine for Exploring Harsh Environments
NASA Technical Reports Server (NTRS)
Behar, Alberto; Bruhn, Fredrik; Carsey, Frank
2004-01-01
The miniature autonomous submersible explorer (MASE) has been proposed as a means of scientific exploration -- especially, looking for signs of life -- in harsh, relatively inaccessible underwater environments. Basically, the MASE would be a small instrumented robotic submarine (see figure) that could launch itself or could be launched from another vehicle. Examples of environments that might be explored by use of the MASE include subglacial lakes, deep-ocean hydrothermal vents, acidic or alkaline lakes, brine lenses in permafrost, and ocean regions under Antarctic ice shelves.
Operator Informational Needs for Multiple Autonomous Small Vehicles
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal
2015-01-01
With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.
Safety Ellipse Motion with Coarse Sun Angle Optimization
NASA Technical Reports Server (NTRS)
Naasz, Bo
2005-01-01
The Hubble Space Telescope Robotic Servicing and De-orbit Mission (HRSDM) was t o be performed by the unmanned Hubble Robotic Vehicle (HRV) consisting of a Deorbit Module (DM), responsible for the ultimate disposal of Hubble Space Telescope (HST) at the end of science operations, and an Ejection Module (EM), responsible for robotically servicing the HST to extend its useful operational lifetime. HRSDM consisted of eight distinct phases, including: launch, pursuit, proximity operations, capture, servicing, EM jettison and disposal, science operations, and deorbit. The scope of this paper is limited to the Proximity Operations phase of HRSDM. It introduces a relative motion strategy useful for Autonomous Rendezvous and Docking (AR&D) or Formation Flying missions where safe circumnavigation trajectories, or close proximity operations (tens or hundreds of meters) are required for extended periods of time. Parameters and algorithms used to model the relative motion of HRV with respect to HST during the Proximity Operations phase of the HRSDM are described. Specifically, the Safety Ellipse (SE) concept, convenient parameters for describing SE motion, and a concept for initializing SE motion around a target vehicle to coarsely optimize sun and relative navigation sensor angles are presented. The effects of solar incidence angle variations on sun angle optimization, and the effects of orbital perturbations and navigation uncertainty on long term SE motion are discussed.
A Low Cost Spacecraft Architecture for Robotic Lunar Exploration Projects
NASA Technical Reports Server (NTRS)
Lemke, Lawrence G.; Gonzales, Andrew A.
2006-01-01
A program of frequent, capable, but affordable lunar robotic missions prior to return of humans to the moon can contribute to the Vision for Space Exploration (VSE) NASA is tasked to execute. The Lunar Reconnaissance Orbiter (LRO) and its secondary payload are scheduled to orbit the moon, and impact it, respectively, in 2008. It is expected that the sequence of missions occurring for approximately the decade after 2008 will place an increasing emphasis on soft landed payloads. These missions are requited to explore intrinsic characteristics of the moon, such as hydrogen distribution in the regolith, and levitated dust, to demonstrate the ability to access and process in-situ resources, and to demonstrate functions critical to supporting human presence, such as automated precision navigation and landing. Additional factors governing the design of spacecraft to accomplish this diverse set of objectives are: operating within a relatively modest funding profile, the need tb visit multiple sites (both polar and equatorial) repeatedly, and to use the current generation of launch vehicles. In the US, this implies use of the Evolved Expendable Launch Vehicles, or EELVs, although this design philosophy may be extended to launch vehicles of other nations, as well. Many of these factors are seemingly inconsistent with each other. For example, the cost of a spacecraft usually increases with mass; therefore the desire to fly frequent, modestly priced spacecraft seems to imply small spacecraft (< 1 Mt, injected mass). On the other hand, the smallest of the EELVs will inject approx. 3 Mt. on a Trans Lunar Injection (TLI) trajectory md would therefore be wasteful or launching a single, small spacecraft. Increasing the technical capability of a spacecraft (such as autonomous navigation and soft landing) also usually increases cost. A strategy for spacecraft design that meets these conflicting requirements is presented. Taken together, spacecraft structure and propulsion subsystems constitute the majority of spacecraft mass; saving development and integration cost on these elements is critical to controlling cost. Therefore, a low cost, modular design for spacecraft structure and propulsion subsystems is presented which may be easily scaled up or down for either insertion into lunar orbit or braking for landing on the lunar surface. In order to effectively use the approx.3 Mt mass-to-TLI of the EELV, two low cost spacecraft will be manifested on the same launch. One spacecraft will be located on top of the other for launch and the two will have to be released in sequence in order to achieve all mission objectives. The two spacecraft could both be landers, both orbiters, or one lander and one orbiter. In order to achieve mass efficiency, the body of the spacecraft will serve the dual purposes of carrying launch loads and providing attachment points for all the spacecraft subsystems. In order to avoid unaffordable technology development costs, small liquid propulsion components and autonomous, scene-matching navigation cameras may be adapted from military missile programs in order to execute precision soft landings.
NASA Astrophysics Data System (ADS)
Stewart, H. A.; Stevenson, A.; Wilson, M.; Pheasant, I.
2014-12-01
The British Geological Survey (BGS) have developed a number of coring and drilling systems for use in science projects in the UK and internationally. These include 3m and 6m vibrocoring systems; a 5m combined rockdrill and vibrocorer system; an oriented drill designed specifically to recover samples for use in palaeomagnetic studies; and a 55m rockdrill (RockDrill2). Recently, BGS have developed an autonomous, battery-operated vibrocoring system compatible with both the 3m and 6m vibrocorers, which can be used in water depths up to 6000m. Use of a battery system negates the use of an umbilical power cable to operate the vibrocorer, which instead can be deployed using the vessels A-frame and winch. The autonomous battery system comprises six 48V 19Ah batteries connected in series to give a 288V power source, a microprocessor and real-time clock. Data from the sensors are recorded with a time-stamp, giving diagnostic information that can be downloaded once the system is returned to the deck. The vibrocorer is operated via a pre-set program which is set up before deployment.The new system not only allows vibrocoring in greater water depths, but can also be used on smaller vessels where deck space is limited as a separate winch and umbilical is not required. The autonomous system was used for the first time in June 2014 on-board the RV Belgica to acquire samples from 20 sites in the Dangeard and Explorer canyon heads, off the southwest of England in 430m water depth.Another development is the BGS 55m rockdrill (RockDrill2), a remotely operated sampling system capable of coring up to 55m below sea floor in water depths up to 4000m. The rockdrill can be operated via its own launch and recovery system and can be outfitted with additional sensors such as gas flow meters, which have been designed by the BGS for assessing volume of gas hydrate, and down-hole logging tools. The 55m rockdrill has recently been used to sample hydrate-entrained sediments in the Sea of Japan. The maximum coring depth achieved was 32m below sea floor and the system can operate for more than 50 hours on a single deployment. The BGS system will be used in conjunction with the Bremen University (MARUM) MeBo sea-floor rockdrill on future International Ocean Discovery Program (IODP) expeditions.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2009-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Large Diameter Shuttle Launched-AEM (LDSL-AEM) study
NASA Technical Reports Server (NTRS)
1976-01-01
A technical description of a Large Diameter Shuttle Launched-AEM (LDSL-AEM), an AEM base module adapted to carry 5 ft diameter payloads in the shuttle with propulsion for carrying payloads to higher altitude orbits from a 150 NM shuttle orbit, is described. The AEM is designed for launch on the scout launch vehicle. Onboard equipment provides capability to despin, acquire the earth, and control the vehicle in an earth pointing mode using reaction wheels for torque with magnets for all attitude acquisition, wheel desaturation, and nutation damping. Earth sensors in the wheels provide pitch and roll attitude. This system provides autonomous control capability to 1 degree in pitch and roll and 2 degrees in yaw. The attitude can be determined to .5 degrees in pitch and roll and 2 degrees in yaw.
2014-04-30
CAPE CANAVERAL, Fla. – Engineers and technicians check NASA's Project Morpheus prototype lander after it touched down on a dedicated landing pad inside the autonomous landing and hazard avoidance technology, or ALHAT, hazard field at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus launched on a free-flight test from a new launch pad at the north end of the landing facility. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver before landing on the dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
Surface Nuclear Power for Human Mars Missions
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
The Design Reference Mission for NASA's human mission to Mars indicates the desire for in-situ propellant production and bio-regenerative life systems to ease Earth launch requirements. These operations, combined with crew habitation and science, result in surface power requirements approaching 160 kilowatts. The power system, delivered on an early cargo mission, must be deployed and operational prior to crew departure from Earth. The most mass efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters. The resulting system satisfies the key mission requirements including autonomous deployment, high reliability, and cost effectiveness at a overall system mass of 12 tonnes and a stowed volume of about 63 cu m.
Flight Demonstrations of Orbital Space Plane (OSP) Technologies
NASA Technical Reports Server (NTRS)
Turner, Susan
2003-01-01
The Orbital Space Plane (OSP) Program embodies NASA s priority to transport Space Station crews safely, reliably, and affordably, while it empowers the Nation s greater strategies for scientific exploration and space leadership. As early in the development cycle as possible, the OSP will provide crew rescue capability, offering an emergency ride home from the Space Station, while accommodating astronauts who are deconditioned due to long- duration missions, or those that may be ill or injured. As the OSP Program develops a fully integrated system, it will use existing technologies and employ computer modeling and simulation. Select flight demonstrator projects will provide valuable data on launch, orbital, reentry, and landing conditions to validate thermal protection systems, autonomous operations, and other advancements, especially those related to crew safety and survival.
PHM Enabled Autonomous Propellant Loading Operations
NASA Technical Reports Server (NTRS)
Walker, Mark; Figueroa, Fernando
2017-01-01
The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.
Space experiments on basic technologies for a space elevator using microsatellites
NASA Astrophysics Data System (ADS)
Yamagiwa, Yoshiki; Nohmi, Masahiro; Aoki, Yoshio; Momonoi, Yu; Nanba, Hirotaka; Aiga, Masanori; Kumao, Takeru; Watahiki, Masahito
2017-09-01
We attempt to verify two basic technologies required for a space elevator using microsatellites; the tether (cable) deployment technology and the climber operation along the tether in space. Tether deployment is performed by a CubeSat called STARS-C (Space Tethered Autonomous Robotic Satellite - Cube) which will be released from the Japanese experimental module Kibo on ISS early in 2017. STARS-C consists of a mother satellite (MS) and daughter satellite (DS) connected by a 100-m tether. Its mission is focused on the tether deployment for studying the tether dynamics during the deployment with the goal of improving the smoothness of such deployment in future tether missions including space elevator. The MS and DS have common subsystems, including power, communication, and command and data handling systems. They also have a tether unit with spool and reel mechanisms as a mission system. In addition, we have been designing the next-step microsatellite called STARS-E (Space Tethered Autonomous Robotic Satellite - Elevator) under a Grant-in-Aid for Scientific Research. STARS-E is a 500-mm size satellite intended to verify the climber operation in space. It consists of a MS and DS jointed by a 2-km tether, and a climber that moves along the tether. STARS-C was launched on December 9 in 2016 and will be performed its mission early in 2017. STARS-E is in the BBM phase, and some designs are currently being fixed.
In Situ Surveying of Saturn's Rings
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C.
2004-01-01
The Saturn Autonomous Ring Array (SARA) mission concept is a new application for the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm being developed for exploration of high surface area and/or multibody targets to minimize costs and maximize effectiveness of survey operations. Systems designed with ANTS architecture are built from potentially very large numbers of highly autonomous, yet socially interactive, specialists, in approximately ten specialist classes. Here, we analyze requirements for such a mission as well as specialized autonomous operations which would support this application.
Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle
NASA Astrophysics Data System (ADS)
Sun, Hongsheng
This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.
Sextant X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Winternitz, Luke M.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolff, Michael T.; Kerr, Matthew; Wood, Kent S.;
2018-01-01
The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. SEXTANT will be a first demonstration of in-space, autonomous, X-ray pulsar navigation (XNAV). Navigating using millisecond X-ray pulsars which could provide a GPS-like navigation capability available throughout our Solar System and beyond. NICER is a NASA Astrophysics Explorer Mission of Opportunity to the International Space Station that was launched and installed in June of 2017. During NICER's nominal 18-month base mission, SEXTANT will perform a number of experiments to demonstrate XNAV and advance the technology on a number of fronts. In this work, we review the SEXTANT, its goals, and present early results from SEXTANT experiments conducted in the first six months of operation. With these results, SEXTANT has made significant progress toward meeting its primary and secondary mission goals. We also describe the SEXTANT flight operations, calibration activities, and initial results.
TDRSS Onboard Navigation System (TONS) flight qualification experiment
NASA Technical Reports Server (NTRS)
Gramling, C. J.; Hart, R. C.; Folta, D. C.; Long, A. C.
1994-01-01
The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing an operational Tracking and Data Relay Satellite (TDRS) System (TDRSS) Onboard Navigation System (TONS) to provide realtime, autonomous, high-accuracy navigation products to users of TDRSS. A TONS experiment was implemented on the Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft, launched June 7, 1992, to flight qualify the TONS operational system using TDRSS forward-link communications services. This paper provides a detailed evaluation of the flight hardware, an ultrastable oscillator (USO) and Doppler extractor (DE) card in one of the TDRSS user transponders and the ground-based prototype flight software performance, based on the 1 year of TONS experiment operation. The TONS experiment results are used to project the expected performance of the TONS 1 operational system. TONS 1 processes Doppler data derived from scheduled forward-link S-band services using a sequential estimation algorithm enhanced by a sophisticated process noise model to provide onboard orbit and frequency determination and time maintenance. TONS 1 will be the prime navigation system on the Earth Observing System (EOS)-AM1 spacecraft, currently scheduled for launch in 1998. Inflight evaluation of the USO and DE short-term and long-term stability indicates that the performance is excellent. Analysis of the TONS prototype flight software performance indicates that realtime onboard position accuracies of better than 25 meters root-mean-square are achievable with one tracking contact every one to two orbits for the EP/EUVE 525-kilometer altitude, 28.5 degree inclination orbit. The success of the TONS experiment demonstrates the flight readiness of TONS to support the EOS-AM1 mission.
Proceedings of the 20th International Symposium on Space Flight Dynamics
NASA Technical Reports Server (NTRS)
Woodard, Mark (Editor); Stengle, Tom (Editor)
2007-01-01
Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.
NASA Technical Reports Server (NTRS)
Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.
1993-01-01
Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.
14 CFR 417.103 - Safety organization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Safety organization. 417.103 Section 417... organization. (a) A launch operator must maintain and document a safety organization. A launch operator must... within the launch operator's organization and between the launch operator and any federal launch range or...
Information for Successful Interaction with Autonomous Systems
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Johnson, Kathy A.
2003-01-01
Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.
NASA Technical Reports Server (NTRS)
Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.;
2016-01-01
Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.
2012-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Autonomous Dirigible Airships: A Comparative Analysis...COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation...NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this report are
Innovation Talk at TARDEC by Dr. Tulga Ersal
problems of teleoperation and fully autonomous operation of large Unmanned Ground Vehicles (UGVs) at high wide spectrum in their mode of operation ranging from teleoperated, in which the remote human operator implementable solution. High speeds also present a challenge to fully autonomous operation with respect to
NASA Astrophysics Data System (ADS)
Bettanini, C.; Esposito, R.; Debei, S.; Molfese, C.; Colombatti, G.; Aboudan, A.; Brucato, J. R.; Cortecchia, F.; Di Achille, G.; Guizzo, G. P.; Friso, E.; Ferri, F.; Marty, L.; Mennella, V.; Molinaro, R.; Schipani, P.; Silvestro, S.; Mugnuolo, R.; Pirrotta, S.; Marchetti, E.; Harri, A.-M.; Montmessin, F.; Wilson, C.; Arruego Rodriguez, I.; Abbaki, S.; Apestigue, V.; Bellucci, G.; Berthelier, J. J.; Calcutt, S. B.; Forget, F.; Genzer, M.; Gilbert, P.; Haukka, H.; Jimenez, J. J.; Jimenez, S.; Josset, J. L.; Karatekin, O.; Landis, G.; Lorenz, R.; Martinez, J.; Möhlmann, D.; Moirin, D.; Palomba, E.; Pateli, M.; Pommereau, J.-P.; Popa, C. I.; Rafkin, S.; Rannou, P.; Renno, N. O.; Schmidt, W.; Simoes, F.; Spiga, A.; Valero, F.; Vazquez, L.; Vivat, F.; Witasse, O.
2017-08-01
The DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) experiment on Schiaparelli lander of ExoMars 2016 mission was an autonomous meteorological station designed to completely characterize the Martian atmosphere on surface, acquiring data not only on temperature, pressure, humidity, wind speed and direction, but also on solar irradiance, dust opacity and atmospheric electrification, to measure for the first time key parameters linked to hazard conditions for future manned explorations. Although with very limited mass and energy resources, DREAMS would be able to operate autonomously for at least two Martian days (sols) after landing in a very harsh environment as it was supposed to land on Mars during the dust storm season (October 2016 in Meridiani Planum) relying on its own power supply. ExoMars mission was successfully launched on 14th March 2016 and Schiaparelli entered the Mars atmosphere on October 20th beginning its 'six minutes of terror' journey to the surface. Unfortunately, some unexpected behavior during the parachuted descent caused an unrecoverable critical condition in navigation system of the lander driving to a destructive crash on the surface. The adverse sequence of events at 4 km altitude triggered the transition of the lander in surface operative mode, commanding switch on the DREAMS instrument, which was therefore able to correctly power on and send back housekeeping data. This proved the nominal performance of all DREAMS hardware before touchdown demonstrating the highest TRL of the unit for future missions. This paper describes this experiment in terms of scientific goals, design, performances, testing and operational capabilities with an overview of in flight performances and available mission data.
Mission Operations of EO-1 with Onboard Autonomy
NASA Technical Reports Server (NTRS)
Tran, Daniel Q.
2006-01-01
Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the prior, labor and knowledge intensive mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the new autonomous operations as part of the Autonomous Sciencecraft Experiment.
Mars Helicopter (Artist's Concept)
2018-05-25
This artist concept shows the Mars Helicopter, a small, autonomous rotorcraft, which will travel with NASA's Mars 2020 rover mission, currently scheduled to launch in July 2020, to demonstrate the viability and potential of heavier-than-air vehicles on the Red Planet. https://photojournal.jpl.nasa.gov/catalog/PIA22460
NASA Technical Reports Server (NTRS)
Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott
2010-01-01
Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for autonomous ultrasound image collection during exploration missions.
An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes
NASA Astrophysics Data System (ADS)
Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei
2016-01-01
For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.403 General. (a) Public safety. A launch operator must... with launch processing and post-launch operations. (b) Ground safety analysis. A launch operator must...
Advanced Autonomous Systems for Space Operations
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.
2002-01-01
New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.
Advancing Autonomous Operations for Deep Space Vehicles
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard K.
2014-01-01
Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.
Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers. It is hoped the results of this investigation will guide NASA's implementation of autonomous mission operations for long duration human space missions to Mars and beyond.
NASA Technical Reports Server (NTRS)
Trevino, Luis; Berg, Peter; England, Dwight; Johnson, Stephen B.
2016-01-01
Analysis methods and testing processes are essential activities in the engineering development and verification of the National Aeronautics and Space Administration's (NASA) new Space Launch System (SLS). Central to mission success is reliable verification of the Mission and Fault Management (M&FM) algorithms for the SLS launch vehicle (LV) flight software. This is particularly difficult because M&FM algorithms integrate and operate LV subsystems, which consist of diverse forms of hardware and software themselves, with equally diverse integration from the engineering disciplines of LV subsystems. M&FM operation of SLS requires a changing mix of LV automation. During pre-launch the LV is primarily operated by the Kennedy Space Center (KSC) Ground Systems Development and Operations (GSDO) organization with some LV automation of time-critical functions, and much more autonomous LV operations during ascent that have crucial interactions with the Orion crew capsule, its astronauts, and with mission controllers at the Johnson Space Center. M&FM algorithms must perform all nominal mission commanding via the flight computer to control LV states from pre-launch through disposal and also address failure conditions by initiating autonomous or commanded aborts (crew capsule escape from the failing LV), redundancy management of failing subsystems and components, and safing actions to reduce or prevent threats to ground systems and crew. To address the criticality of the verification testing of these algorithms, the NASA M&FM team has utilized the State Flow environment6 (SFE) with its existing Vehicle Management End-to-End Testbed (VMET) platform which also hosts vendor-supplied physics-based LV subsystem models. The human-derived M&FM algorithms are designed and vetted in Integrated Development Teams composed of design and development disciplines such as Systems Engineering, Flight Software (FSW), Safety and Mission Assurance (S&MA) and major subsystems and vehicle elements such as Main Propulsion Systems (MPS), boosters, avionics, Guidance, Navigation, and Control (GN&C), Thrust Vector Control (TVC), liquid engines, and the astronaut crew office. Since the algorithms are realized using model-based engineering (MBE) methods from a hybrid of the Unified Modeling Language (UML) and Systems Modeling Language (SysML), SFE methods are a natural fit to provide an in depth analysis of the interactive behavior of these algorithms with the SLS LV subsystem models. For this, the M&FM algorithms and the SLS LV subsystem models are modeled using constructs provided by Matlab which also enables modeling of the accompanying interfaces providing greater flexibility for integrated testing and analysis, which helps forecast expected behavior in forward VMET integrated testing activities. In VMET, the M&FM algorithms are prototyped and implemented using the same C++ programming language and similar state machine architectural concepts used by the FSW group. Due to the interactive complexity of the algorithms, VMET testing thus far has verified all the individual M&FM subsystem algorithms with select subsystem vendor models but is steadily progressing to assessing the interactive behavior of these algorithms with LV subsystems, as represented by subsystem models. The novel SFE applications has proven to be useful for quick look analysis into early integrated system behavior and assessment of the M&FM algorithms with the modeled LV subsystems. This early MBE analysis generates vital insight into the integrated system behaviors, algorithm sensitivities, design issues, and has aided in the debugging of the M&FM algorithms well before full testing can begin in more expensive, higher fidelity but more arduous environments such as VMET, FSW testing, and the Systems Integration Lab7 (SIL). SFE has exhibited both expected and unexpected behaviors in nominal and off nominal test cases prior to full VMET testing. In many findings, these behavioral characteristics were used to correct the M&FM algorithms, enable better test coverage, and develop more effective test cases for each of the LV subsystems. This has improved the fidelity of testing and planning for the next generation of M&FM algorithms as the SLS program evolves from non-crewed to crewed flight, impacting subsystem configurations and the M&FM algorithms that control them. SFE analysis has improved robustness and reliability of the M&FM algorithms by revealing implementation errors and documentation inconsistencies. It is also improving planning efficiency for future VMET testing of the M&FM algorithms hosted in the LV flight computers, further reducing risk for the SLS launch infrastructure, the SLS LV, and most importantly the crew.
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.
2004-01-01
NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.
Reducing cost with autonomous operations of the Deep Space Network radio science receiver
NASA Technical Reports Server (NTRS)
Asmar, S.; Anabtawi, A.; Connally, M.; Jongeling, A.
2003-01-01
This paper describes the Radio Science Receiver system and the savings it has brought to mission operations. The design and implementation of remote and autonomous operations will be discussed along with the process of including user feedback along the way and lessons learned and procedures avoided.
Mission Operations of Earth Observing-1 with Onboard Autonomy
NASA Technical Reports Server (NTRS)
Rabideau, Gregg; Tran, Daniel Q.; Chien, Steve; Cichy, Benjamin; Sherwood, Rob; Mandl, Dan; Frye, Stuart; Shulman, Seth; Szwaczkowski, Joseph; Boyer, Darrell;
2006-01-01
Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the past mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the more autonomous operations to which we transferred as part of the Autonomous Sciencecraft Experiment (ASE).
42nd Annual Armament Systems: Gun and Missile Systems
2007-04-26
to compare the various contenders: • FCS • Aero and flight dynamics of rounds • Phit and lethality • Direct and indirect fire capability Defence R&D...each other). • Guidance: Unguided, Command Guidance, Lock on Before Launch, Autonomous (needs Phit analysis). • Fuzing: Proximity – RF or Optical
50 CFR 216.155 - Requirements for monitoring and reporting.
Code of Federal Regulations, 2010 CFR
2010-10-01
... place 3 autonomous digital video cameras overlooking chosen haul-out sites located varying distances from the missile launch site. Each video camera will be set to record a focal subgroup within the... presence and activity will be conducted and recorded in a field logbook or recorded on digital video for...
14 CFR 417.405 - Ground safety analysis.
Code of Federal Regulations, 2011 CFR
2011-01-01
... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...
14 CFR 417.405 - Ground safety analysis.
Code of Federal Regulations, 2010 CFR
2010-01-01
... hazard from affecting the public. A launch operator must incorporate the launch site operator's systems... personnel who are knowledgeable of launch vehicle systems, launch processing, ground systems, operations...) Begin a ground safety analysis by identifying the systems and operations to be analyzed; (2) Define the...
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.
2017-05-01
Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).
2014-12-10
CAPE CANAVERAL, Fla. – Engineers and technicians prepare NASA's Project Morpheus prototype lander for free flight test number 15 on a launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
14 CFR 417.25 - Post launch report.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...
14 CFR 417.25 - Post launch report.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...
14 CFR 417.25 - Post launch report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...
14 CFR 417.25 - Post launch report.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...
14 CFR 417.25 - Post launch report.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Post launch report. 417.25 Section 417.25... TRANSPORTATION LICENSING LAUNCH SAFETY General and License Terms and Conditions § 417.25 Post launch report. (a) For a launch operator launching from a Federal launch range, a launch operator must file a post launch...
Otsuka, Kuniaki; Cornelissen, Germaine; Kubo, Yutaka; Hayashi, Mitsutoshi; Yamamoto, Naomune; Shibata, Koichi; Aiba, Tatsuya; Furukawa, Satoshi; Ohshima, Hiroshi; Mukai, Chiaki
2015-01-01
The fractal scaling of the long-term heart rate variability (HRV) reflects the 'intrinsic' autonomic regulatory system. Herein, we examine how microgravity on the ISS affected the power-law scaling β (beta) of astronauts during a long-duration (about 6 months) spaceflight. Ambulatory electrocardiographic (ECG) monitoring was performed on seven healthy astronauts (5 men, 52.0±4.2 years of age) five times: before launch, 24±5 (F01) and 73±5 (F02) days after launch, 15±5 days before return (F03), and after return to Earth. The power-law scaling β was calculated as the slope of the regression line of the power density of the MEM spectrum versus frequency plotted on a log 10 -log 10 scale in the range of 0.0001-0.01 Hz (corresponding to periods of 2.8 h to 1.6 min). β was less negative in space (-0.949±0.061) than on Earth (-1.163±0.075; P <0.025). The difference was more pronounced during the awake than during the rest/sleep span. The circadian amplitude and acrophase (phase of maximum) of β did not differ in space as compared with Earth. An effect of microgravity was detected within 1 month (F01) in space and continued throughout the spaceflight. The intrinsic autonomic regulatory system that protects life under serious environmental conditions on Earth is altered in the microgravity environment, with no change over the 6-month spaceflight. It is thus important to find a way to improve conditions in space and/or in terms of human physiology, not to compromise the intrinsic autonomic regulatory system now that plans are being made to inhabit another planet in the near future.
Otsuka, Kuniaki; Cornelissen, Germaine; Kubo, Yutaka; Hayashi, Mitsutoshi; Yamamoto, Naomune; Shibata, Koichi; Aiba, Tatsuya; Furukawa, Satoshi; Ohshima, Hiroshi; Mukai, Chiaki
2015-01-01
The fractal scaling of the long-term heart rate variability (HRV) reflects the ‘intrinsic’ autonomic regulatory system. Herein, we examine how microgravity on the ISS affected the power-law scaling β (beta) of astronauts during a long-duration (about 6 months) spaceflight. Ambulatory electrocardiographic (ECG) monitoring was performed on seven healthy astronauts (5 men, 52.0±4.2 years of age) five times: before launch, 24±5 (F01) and 73±5 (F02) days after launch, 15±5 days before return (F03), and after return to Earth. The power-law scaling β was calculated as the slope of the regression line of the power density of the MEM spectrum versus frequency plotted on a log10–log10 scale in the range of 0.0001–0.01 Hz (corresponding to periods of 2.8 h to 1.6 min). β was less negative in space (−0.949±0.061) than on Earth (−1.163±0.075; P<0.025). The difference was more pronounced during the awake than during the rest/sleep span. The circadian amplitude and acrophase (phase of maximum) of β did not differ in space as compared with Earth. An effect of microgravity was detected within 1 month (F01) in space and continued throughout the spaceflight. The intrinsic autonomic regulatory system that protects life under serious environmental conditions on Earth is altered in the microgravity environment, with no change over the 6-month spaceflight. It is thus important to find a way to improve conditions in space and/or in terms of human physiology, not to compromise the intrinsic autonomic regulatory system now that plans are being made to inhabit another planet in the near future. PMID:28725718
NASA Alternate Access to Station Service Concept
NASA Technical Reports Server (NTRS)
Bailey, Michelle D.; Crumbly, Chris
2001-01-01
The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research - and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply with existing technologies, not only will a new category of autonomous vehicles deliver cargo, but a commercial business base will be incubated that will improve the likelihood of commercial convergence with the next generation of RLVs. Traditional paradigms in government management and acquisition philosophy are being challenged in order to bring about the objective of the AAS project. The phased procurement approach is proving to be the most questionable aspect to date. This work addresses the fresh approach AAS is adopting in management and procurement through a study of the AAS history, current solutions, key technologies, procurement complications, and an incremental forward plan leading to the purchase of a service to deliver goods to ISS. Included in this work is a discussion of the Commercial Space Act of 1998 and how it affects government purchase of space launch and space vehicle services. Industry should find these topics pertinent to their current state of business.
NASA Alternate Access to Station Service Concept
NASA Astrophysics Data System (ADS)
Bailey, M. D.; Crumbly, C.
2002-01-01
The evolving nature of the NASA space enterprise compels the agency to develop new and innovative space systems concepts. NASA, working with increasingly strained budgets and a declining manpower base, is attempting to transform from operational activities to procurement of commercial services. NASA's current generation reusable launch vehicle, the Shuttle, is in transition from a government owned and operated entity to a commercial venture to reduce the civil servant necessities for that program. NASA foresees its second generation launch vehicles being designed and operated by industry for commercial and government services. The "service" concept is a pioneering effort by NASA. The purpose the "service" is not only to reduce the civil servant overhead but will free up government resources for further research and enable industry to develop a space business case so that industry can sustain itself beyond government programs. In addition, NASA desires a decreased responsibility thereby decreasing liability. The Second Generation Reusable Launch Vehicle (RLV) program is implementing NASA's Space Launch Initiative (SLI) to enable industry to develop the launch vehicles of the future. The Alternate Access to Station (AAS) project office within this program is chartered with enabling industry to demonstrate an alternate access capability for the International Space Station (ISS). The project will not accomplish this by traditional government procurement methods, not by integrating the space system within the project office, or by providing the only source of business for the new capability. The project funds will ultimately be used to purchase a service to take re-supply cargo to the ISS, much the same as any business might purchase a service from FedEx to deliver a package to its customer. In the near term, the project will fund risk mitigation efforts for enabling technologies. AAS is in some ways a precursor to the 2nd Generation RLV. By accomplishing ISS resupply with existing technologies, not only will a new category of autonomous vehicles deliver cargo, but a commercial business base will be incubated that will improve the likelihood of commercial convergence with the next generation of RLVs. Traditional paradigms in government management and acquisition philosophy are being challenged in order to bring about the objective of the AAS project. The phased procurement approach is proving to be the most questionable aspect to date. This work addresses the fresh approach AAS is adopting in management and procurement through a study of the AAS history, current solutions, key technologies, procurement complications, and an incremental forward plan leading to the purchase of a service to deliver goods to ISS. Included in this work is a discussion of the Commercial Space Act of 1998 and how it affects government purchase of space launch and space vehicle services. Industry should find these topics pertinent to their current state of business.
Automation of Armored Four Wheel Counter Steer Vehicles
2015-08-28
designed and implemented with an operator ease-of-use approach, allowing the simple transition between manual control and autonomous operation. Automation...Public Release The U.S. Army’s efforts in vehicle auto- mation are designed in part to protect soldiers in the field as they traverse poten- tially...System (AMAS) convoy autonomy, sensor, and drive-by-wire kits, to ground-up autonomous vehicle designs , such as TARDEC’s Autonomous Platform
Autonomous Operations Mission Development Suite
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.
2016-01-01
This is a presentation related to the development of Autonomous Operations Systems at NASA Kennedy Space Center. It covers a high level description of the work of FY14, FY15, FY16 for the AES IGODU and APL projects.
Autonomous calibration of single spin qubit operations
NASA Astrophysics Data System (ADS)
Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor
2017-12-01
Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.
Concepts for autonomous flight control for a balloon on Mars
NASA Technical Reports Server (NTRS)
Heinsheimer, Thomas F.; Friend, Robyn C.; Siegel, Neil G.
1988-01-01
Balloons operating as airborne rovers have been suggested as ideal candidates for early exploration of the Martian surface. An international study team composed of scientists from the U.S.S.R., France, and the U.S.A. is planning the launching in 1994 of a balloon system to fly on Mars. The current likely design is a dual thermal/gas balloon that consists of a gas balloon suspended above a solar-heated thermal balloon. At night, the thermal balloon provides no lift, and the balloon system drifts just above the Martian surface; the lift of the gas balloon is just sufficient to prevent the science payload from hitting the ground. During the day, the balloon system flies at an altitude of 4 to 5 kilometers, rising due to the added lift provided by the thermal balloon. Over the course of a single Martian day, there may be winds in several directions, and in fact it can be expected that there will be winds simultaneously in different directions at different altitudes. Therefore, a balloon system capable of controlling its own altitude, via an autonomous flight control system, can take advantage of these different winds to control its direction, thereby greatly increasing both its mission utility and its longevity.
Autonomic Management of Space Missions. Chapter 12
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Truszkowski, Walt; Rouff, Christopher A.; Sterritt, Roy
2006-01-01
With NASA s renewed commitment to outer space exploration, greater emphasis is being placed on both human and robotic exploration. Even when humans are involved in the exploration, human tending of assets becomes cost-prohibitive or in many cases is simply not feasible. In addition, certain exploration missions will require spacecraft that will be capable of venturing where humans cannot be sent. Early space missions were operated manually from ground control centers with little or no automated operations. In the mid-l980s, the high costs of satellite operations prompted NASA, and others, to begin automating as many functions as possible. In our context, a system is autonomous if it can achieve its goals without human intervention. A number of more-or-less automated ground systems exist today, but work continues with the goal being to reduce operations costs to even lower levels. Cost reductions can be achieved in a number of areas. Ground control and spacecraft operations are two such areas where greater autonomy can reduce costs. As a consequence, autonomy is increasingly seen as a critical approach for robotic missions and for some aspects of manned missions. Although autonomy will be critical for the success of future missions (and indeed will enable certain kinds of science data gathering approaches), missions imbued with autonomy must also exhibit autonomic properties. Exploitation of autonomy alone, without emphasis on autonomic properties, will leave spacecraft vulnerable to the dangerous environments in which they must operate. Without autonomic properties, a spacecraft may be unable to recognize negative environmental effects on its components and subsystems, or may be unable to take any action to ameliorate the effects. The spacecraft, though operating autonomously, may then sustain a degradation of performance of components or subsystems, and consequently may have a reduced potential for achieving mission objectives. In extreme cases, lack of autonomic properties could leave the spacecraft unable to recover from faults. Ensuring that exploration spacecraft have autonomic properties will increase the survivability and therefore the likelihood of success of these missions. In fact, over time, as mission requirements increased demands on spacecraft capabilities and longevity, designers have gradually built more autonomicity into spacecraft. For example, a spacecraft in low-earth orbit may experience an out-of-bounds perturbation of its attitude (orientation) due to increased drag caused by increased atmospheric density at its altitude as a result of a sufficiently large solar flare. If the spacecraft was designed to recognize the excessive attitude perturbation, it could decide to protect itself by going into a safe-hold mode where its internal configuration and operation are altered to conserve power and its coarse attitude is adjusted to point its solar panels toward the Sun to maximize power generation. This is an example of a simple type of autonomic behavior that has actually occurred. Future mission concepts will be increasingly dependent on space system survivability enabled by more advanced types of autonomic behaviors
NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable, Exploration
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Robinson, Kimberly F.
2014-01-01
Development of NASA's Space Launch System (SLS) exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated December 2017. SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. For the United States current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. This version will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. SLS is designed to evolve to a 130 t lift capability that can reduce mission costs, simplify payload design, reduce trip times, and lower overall risk. Each vehicle element completed its respective Preliminary Design Reviews, followed by the SLS Program. The Program also completed the Key Decision Point-C milestone to move from formulation to implementation in 2014. NASA hasthorized the program to proceed to Critical Design Review, scheduled for 2015. Accomplihments to date include: manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. This paper will discuss SLS Program successes over the past year and examine milestones and challenges ahead. The SLS Program and its elements are managed at NASA's Marshall Space Flight Center (MSFC).
Autonomous onboard crew operations: A review and developmental approach
NASA Technical Reports Server (NTRS)
Rogers, J. G.
1982-01-01
A review of the literature generated by an intercenter mission approach and consolidation team and their contractors was performed to obtain background information on the development of autonomous operations concepts for future space shuttle and space platform missions. The Boeing 757/767 flight management system was examined to determine the relevance for transfer of the developmental approach and technology to the performance of the crew operations function. In specific, the engine indications and crew alerting system was studied to determine the relevance of this display for the performance of crew operations onboard the vehicle. It was concluded that the developmental approach and technology utilized in the aeronautics industry would be appropriate for development of an autonomous operations concept for the space platform.
66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS ...
66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS IN CONSOLE LOCATED CENTRALLY IN SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT IN BACKGROUND: LAUNCH OPERATOR, LAUNCH ANALYST, AND FACILITIES PANELS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Distributed Web-Based Expert System for Launch Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.; Thirumalainambi, Rajkumar
2005-01-01
The simulation and modeling of launch operations is based on a representation of the organization of the operations suitable to experiment of the physical, procedural, software, hardware and psychological aspects of space flight operations. The virtual test bed consists of a weather expert system to advice on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, and the risk impact on human health. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.
NASA Astrophysics Data System (ADS)
Wigley, R. A.; Anderson, R.; Bazhenova, E.; Falconer, R. K. H.; Kearns, T.; Martin, T.; Minami, H.; Roperez, J.; Rosedee, A.; Ryzhov, I.; Sade, H.; Seeboruth, S.; Simpson, B.; Sumiyoshi, M.; Tinmouth, N.; Zarayskaya, Y.; Zwolak, K.
2017-12-01
The international team of Nippon Foundation/GEBCO Alumni was formed to compete in the Shell Ocean Discovery XPRIZE competition. The aim of the Team is to build an innovative seafloor mapping system, not only to successfully compete in the XPRIZE challenge, but also to make a step towards autonomously mapping the complex global seafloor at resolutions not achievable by standard surface mapping systems. This new technology is linked to goals of the recently announced Nippon Foundation-GEBCO Seabed 2030 Project, aiming in highest possible resolution bathymetric mapping of global World Ocean floor by 2030. The mapping system is composed of three main elements: an Unmanned Surface Vessel (USV), an Autonomous Underwater Vehicle (AUV) and an on-shore control station. A newly designed, USV, called SEA-KIT, was be built to interact with any AUV, acting as remote surface access to the deep ocean. The major function of the SEA-KIT in the system design is 1) the potential transportation of a commercially available AUV to and from the launch site to the survey site and 2) the deployment and recovery of the AUV. In further development stages, options for AUV charging and data transfer are considered. Additionally, the SEA-KIT will offer a positioning solution during AUV operations, utilizing an Ultra Short Base Line (USBL) acoustic system. The data acquisition platform (AUV) is equipped with a high-end technology interferometric sonar with synthetic aperture options, providing the possibility of collecting bathymetric data co-registered with seafloor object imagery. An automated data processing workflow is highly desirable due to the large amount of data collected during each mission. The processing workflow is being designed to be as autonomous as possible and an algorithm for automated data processing onboard are being considered to reduce the time of data processing and make a final products available as soon as possible after the completion of data collection. No human intervention on site is required for the operation of data collection using the integrated USV and AUV mapping system. The on-shore control station only plays a supervision role and is able to assess the USV performance, while AUV works autonomously, according to a previously set survey plan. This leads to lower-risk, less-effort deep ocean mapping.
SSPARR: Development of an efficient autonomous sampling strategy
NASA Astrophysics Data System (ADS)
Chayes, D. N.
2013-12-01
The Seafloor Sounding in Polar and Remote Regions (SSPARR) effort was launched in 2004 with funding from the US National Science Foundation (Anderson et al. 2005.) Experiments with a prototype were encouraging (Greenspan et al., 2012, Chayes et al. 2012) and we are proceeding toward building and testing units for deployment during the 2014 season season in ice covered parts of the Arctic ocean. The simplest operational mode for a SSPARR buoy will be to wake and sample on a fixed time interval. A slightly more complex mode will check the distance traveled since the pervious sounding and potentially return to sleep-mode if it has not traveled far enough to make a significant new measurement. We are developing a mode that will use a sampling strategy based on querying an on-board copy of the best available digital terrain model (DTM) e.g. IBCAO in the Arctic, to help decide if it is appropriate to turn on the echo sounder and make a new measurement. We anticipate that a robust strategy of this type will allow a buoy to operate substantially longer on a fixed battery size. Anderson, R., D. Chayes, et al. (2005). "Seafloor Soundings in Polar and Remote Regions - A new instrument for unattended bathymetric observations," Eos Trans. AGU 86(18): Abstract C43A-10. Greenspan, D., D. Porter, et al. (2012). "IBuoy: Expendable Echo Sounder Buoy with Satellite Telemetry." EOS Fall Meeting Supplement C13E-0660. Chayes, D. N., S. A. Goemmer, et al. (2012). "SSPARR-3: A cost-effective autonomous drifting echosounder." EOS Fall Meeting supplement C13E-0659.
14 CFR 420.29 - Launch site location review for unproven launch vehicles.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for unproven launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall...
14 CFR 420.29 - Launch site location review for unproven launch vehicles.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE Criteria and Information Requirements for Obtaining a License § 420.29 Launch site location review for unproven launch vehicles. An applicant for a license to operate a launch site for an unproven launch vehicle shall...
Using Multimodal Input for Autonomous Decision Making for Unmanned Systems
NASA Technical Reports Server (NTRS)
Neilan, James H.; Cross, Charles; Rothhaar, Paul; Tran, Loc; Motter, Mark; Qualls, Garry; Trujillo, Anna; Allen, B. Danette
2016-01-01
Autonomous decision making in the presence of uncertainly is a deeply studied problem space particularly in the area of autonomous systems operations for land, air, sea, and space vehicles. Various techniques ranging from single algorithm solutions to complex ensemble classifier systems have been utilized in a research context in solving mission critical flight decisions. Realized systems on actual autonomous hardware, however, is a difficult systems integration problem, constituting a majority of applied robotics development timelines. The ability to reliably and repeatedly classify objects during a vehicles mission execution is vital for the vehicle to mitigate both static and dynamic environmental concerns such that the mission may be completed successfully and have the vehicle operate and return safely. In this paper, the Autonomy Incubator proposes and discusses an ensemble learning and recognition system planned for our autonomous framework, AEON, in selected domains, which fuse decision criteria, using prior experience on both the individual classifier layer and the ensemble layer to mitigate environmental uncertainty during operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdeev, A V; Bashkin, A S; Katorgin, Boris I
2011-07-31
The possibility of clearing hazardous near-Earth space debris using a spaceborne laser station with a large autonomous cw chemical HF laser is substantiated and the requirements to its characteristics (i.e., power and divergence of laser radiation, pulse duration in the repetitively pulsed regime, repetition rate and total time of laser action on space debris, necessary to remove them from the orbits of the protected spacecrafts) are determined. The possibility of launching the proposed spaceborne laser station to the orbit with the help of a 'Proton-M' carrier rocket is considered. (laser applications)
73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED ...
73. VIEW OF LAUNCH OPERATOR AND LAUNCH ANAYLST PANELS LOCATED NEAR CENTER OF SOUTH WALL OF SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT ON WALL IN BACKGROUND: COMMUNICATIONS HEADSET AND FOOT PEDAL IN FORGROUND. ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
STS-112 crew with President of Ajara in Georgia (Russia)
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Aslan Abashidze, President of the Autonomous Republic of Ajara in Georgia (Russia) shakes hands with STS-112 Mission Specialist Fyodor N. Yurchikhin, Ph.D., (right) a cosmonaut with the Russian Space Agency. Yurchikhin is at Kennedy Space Center awaiting his launch aboard Space Shuttle Atlantis on mission STS-112 to the International Space Station. The launch has been postponed to no earlier than Monday, Oct. 7, so that the Mission Control Center, located at the Lyndon B. Johnson Space Center in Houston, Texas, can be secured and protected from potential storm impacts from Hurricane Lili.
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Kelley, Gary W.
2012-01-01
The Department of Defense (DoD) defined System Operational Effectiveness (SOE) model provides an exceptional framework for an affordable approach to the development and operation of space launch vehicles and their supporting infrastructure. The SOE model provides a focal point from which to direct and measure technical effectiveness and process efficiencies of space launch vehicles. The application of the SOE model to a space launch vehicle's development and operation effort leads to very specific approaches and measures that require consideration during the design phase. This paper provides a mapping of the SOE model to the development of space launch vehicles for human exploration by addressing the SOE model key points of measurement including System Performance, System Availability, Technical Effectiveness, Process Efficiency, System Effectiveness, Life Cycle Cost, and Affordable Operational Effectiveness. In addition, the application of the SOE model to the launch vehicle development process is defined providing the unique aspects of space launch vehicle production and operations in lieu of the traditional broader SOE context that examines large quantities of fielded systems. The tailoring and application of the SOE model to space launch vehicles provides some key insights into the operational design drivers, capability phasing, and operational support systems.
2004-07-16
KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.
2004-07-16
KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.
2004-07-16
KENNEDY SPACE CENTER, FLA. - An artist’s conception of the autonomous Demonstration for Autonomous Rendezvous (DART) spacecraft as it approaches the Multiple Paths, Beyond-Line-of-Site Communications (MUBLCOM) satellite. NASA is testing the DART as a docking system for next generation vehicles to guide spacecraft carrying cargo or equipment to the International Space Station, or retrieving or servicing satellites in orbit. Before the new system can be implemented on piloted spacecraft, it has to be tested in space. The computer-guided DART is equipped with an Advanced Video Guidance Sensor and a Global Positioning System that can receive signals from other spacecraft to allow DART to move within 330 feet of the target. DART is scheduled to launch from Vandenberg Air Force Base in California no earlier than Oct. 18. It will be released from a Pegasus XL launch vehicle carried aloft by an Orbital Sciences Corporation aircraft. The fourth stage of the Pegasus rocket will remain attached as an integral part of the spacecraft, allowing it to maneuver in space. Once in orbit, DART will race toward the target, the MUBLCOM satellite, for a rendezvous.
NASA Technical Reports Server (NTRS)
Ziese, James M.
1992-01-01
A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.
HIAD on ULA (HULA) Orbital Reentry Flight Experiment Concept
NASA Technical Reports Server (NTRS)
Dinonno, J. M.; Cheatwood, F. M.; Hughes, S. J.; Ragab, M. M.; Dillman, R. A.; Bodkin, R. J.; Zumwalt, C. H.; Johnson, R. K.
2016-01-01
This paper describes a proposed orbital velocity reentry flight test of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The flight test builds upon ground development activities that continue to advance the materials, design, and manufacturing techniques for the inflatable structure and flexible thermal protection system (F-TPS) that comprise the inflatable heat shield. While certain aspects of material and system performance can be assessed using a variety of ground testing capabilities, only orbital velocity energy on a trajectory through the gradient density of the atmosphere can impart the combined aerodynamic and aeroheating design environments in real time. To achieve this at limited cost, the HIAD would be delivered to a spin-stabilized entry trajectory as a secondary payload on the Centaur stage of a United Launch Alliance (ULA) Atlas V launch vehicle. Initial trajectory studies indicate that the combination of launch vehicle capability and achievable reentry vehicle ballistic numbers make this a strategic opportunity for technology development. This 4 to 6 meter diameter scale aeroshell flight, referred to as HIAD on ULA (HULA), would also contribute to ULA asset recovery development. ULA has proposed that a HIAD be utilized as part of the Sensible, Modular, Autonomous Return Technology (SMART) initiative to enable recovery of the Vulcan launch vehicle booster main engines [1], including a Mid-Air Recovery (MAR) to gently return these assets for reuse. Whereas HULA will attain valuable aerothermal and structural response data toward advancing HIAD technology, it may also provide a largest-to-date scaled flight test of the MAR operation, which in turn would allow the examination of a nearly pristine post-entry aeroshell. By utilizing infrared camera imaging, HULA will also attain aft-side thermal response data, enhancing understanding of the aft side aerothermal environment, an area of high uncertainty. The aeroshell inflation will utilize a heritage design compressed gas system to minimize development costs. The data will be captured to both an onboard recorder and a recorder that is jettisoned and recovered separately from the reentry vehicle to mitigate risk. This paper provides an overview, including the architecture and flight concept of operations, for the proposed HULA flight experiment.
NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable Exploration
NASA Technical Reports Server (NTRS)
Askins, Bruce
2014-01-01
Development of NASA's Space Launch System exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated for December 2017. In recognition of the current fiscal realities, SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. Current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. It is this version that will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. This configuration is also designed to evolve to 130 t lift capability that offers several benefits, such as reduced mission costs, simplified payload design, faster trip times, and lower overall risk for missions of national significance. The SLS Program formally transitioned from the formulation phase to implementation during the past year, passing its Preliminary Design Review in 2013 and completion of Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015. Among the Program's many accomplishments are manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and the main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. The result is a launch vehicle that will carry human and robotic exploration on the history-making missions in the coming decades. This paper will discuss the program and technical successes over the past year and provide a look at the milestones and challenges ahead.
2005-09-01
ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE ..................100 27. SHARPLE, SARAH (WITH COX, GEMMA & STEDMON...104 30. TANGO, FABIO: CONCEPT OF AUTONOMIC COMPUTING APPLIED TO TRANSPORTATION ISSUES: THE SENSITIVE CAR .....105 31. TAYLOR, ROBERT: POSITION...SYSTEMS ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE Today’s automation systems are typically introduced
Code of Federal Regulations, 2011 CFR
2011-01-01
... information: (i) Readiness of launch vehicle and payload. (ii) Readiness of any flight safety system and... of a launch safety review must ensure satisfaction of the following criteria: (i) A launch operator... operator must resolve all safety related action items. (ii) A launch operator must assign and certify...
Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites
NASA Technical Reports Server (NTRS)
Blume, Jennifer L.
2010-01-01
Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.
NASA Astrophysics Data System (ADS)
Yudhi Irwanto, Herma
2018-02-01
The development of autonomous controller system that is specially used in our high speed UAV, it’s call RKX-200EDF/TJ controlled vehicle needs to be continued as a step to mastery and to developt control system of LAPAN’s satellite launching rocket. The weakness of the existing control system in this high speed UAV needs to be repaired and replaced using the autonomous controller system. Conversion steps for ready-to-fly system involved controlling X tail fin, adjusting auto take off procedure by adding X axis sensor, procedure of way points reading and process of measuring distance and heading to the nearest way point, developing user-friendly ground station, and adding tools for safety landing. The development of this autonomous controller system also covered a real flying test in Pandanwangi, Lumajang in November 2016. Unfortunately, the flying test was not successful because the booster rocket was blown right after burning. However, the system could record the event and demonstrated that the controller system had worked according to plan.
2001-12-13
The X-38 prototype of the Crew Return Vehicle for the International Space Station drops away from its launch pylon on the wing of NASA's NB-52B mothership as it begins its eighth free flight on Thursday, Dec. 13, 2001. The 13-minute test flight of X-38 vehicle 131R was the longest and fastest and was launched from the highest altitude to date in the X-38's atmospheric flight test program. A portion of the descent was flown under remote control by a NASA astronaut from a ground vehicle configured like the CRV's interior before the X-38 made an autonomous landing on Rogers Dry Lake.
TMD detection and tracking using improved AWACS sensors
NASA Astrophysics Data System (ADS)
Petersen, Steve; Kinashi, Yasuhiro; Leslie, Daniel
1995-01-01
This paper identifies an UOES (User Operational Evaluation Systems) version of an airborne surveillance sensor funded by the BMDO (Ballistic Missile Defense Organization). The sensors will be integrated into an operational AWACS E-3 upgrade program. This BMDO program initiative is called Extended Airborne Global Launch Evaluator, or EAGLE. Initial Operational Capability (IOC) of the EAGLE system will be ready in time to support the THAAD/GBR UOES capability. This airborne system, when developed, will consist of a passive infrared surveillance sensor (IRSS) with an active laser-ranger, on board an upgraded AWACS E3 aircraft to operate effectively in the TMD (theater missile defense) mission. The objective for the EAGLE is to field, in a reasonably short time and at a relatively low cost, a cueing sensor capability in regional conflicts to augment the existing space-based surveillance systems. With autonomous surveillance capability to search a wide-sector field, the EAGLE can detect and track boosting TBM's shortly after launch or as they break the clouds. Its passive IR sensor can also detect and track warm hardbody targets. Together with its laser-ranger, it is able to determine, immediately after the booster burn-out, very precise target state vectors that are accurate enough to predict their eventual impact points, to cue fire control radars, and to engage the weapons, if needed. Its primary TMD mission is to provide precise cueing of fire control radars to initiate the active defense weapon systems. Accurate cues from the EAGLE will off load radar resources to enable earlier detection of the targets at longer extended ranges, thereby increasing the interceptor battlespace for potentially more effective defense engagements and opportunities. It can also provide a precise early warning message to enable immediate TBM attack assessment and appropriate selection of defense engagement options by the battle manager. The functions of the sensor suite can be distributed, such that it can be tasked independently to observe the threat intercept, while providing continuous surveillance of new TBM launches, to support the kill assessment function for shoot-look-shoot opportunities. Another potential function that can be performed by the EAGLE is the estimation of TMD launch points (LPE) for counterforce support. This technical paper provides an expanded discussion of the EAGLE's mission roles, specific system functions, and its detection and tracking performance capability. The paper also addresses the sensor and the laser subsystem design characteristics and operational modes required to accomplish all its functions. Initial analyses indicate that the impact of scattering and absorption of the IR signatures and laser signals will be minimal on the performance of the system. Recent satellite data provides measurement of atmospheric extinction.
2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER ...
2. VIEW OF WEST FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ON NORTH END OF ROOF. ESCAPE TUNNEL AND CABLE SHED VISIBLE ON NORTH FACE. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...
65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Progress of Crew Autonomous Scheduling Test (CAST) On the ISS
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.
Development of a semi-autonomous service robot with telerobotic capabilities
NASA Technical Reports Server (NTRS)
Jones, J. E.; White, D. R.
1987-01-01
The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.
2013-12-04
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians prepare to load the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to lower the Project Morpheus prototype lander onto a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-04
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians have loaded the Project Morpheus Prototype Lander with propellant at the launch platform located at the north end of the Shuttle Landing Facility. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-04
CAPE CANAVERAL, Fla. – The Project Morpheus prototype lander is attached to a tether at the launch platform located at the north end of the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Morpheus is being prepared for a dress rehearsal of a tethered flight test. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a team of engineers and technicians assist as a tether is used to move the Project Morpheus prototype lander to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, technicians prepare the Project Morpheus prototype lander to be transported from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a convoy of vehicles accompanies the Project Morpheus prototype lander as it is transported to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-03
CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is prepared for its move from a support building to a launch platform at the north end of the Shuttle Landing Facility. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
An intelligent algorithm for autonomous scientific sampling with the VALKYRIE cryobot
NASA Astrophysics Data System (ADS)
Clark, Evan B.; Bramall, Nathan E.; Christner, Brent; Flesher, Chris; Harman, John; Hogan, Bart; Lavender, Heather; Lelievre, Scott; Moor, Joshua; Siegel, Vickie
2018-07-01
The development of algorithms for agile science and autonomous exploration has been pursued in contexts ranging from spacecraft to planetary rovers to unmanned aerial vehicles to autonomous underwater vehicles. In situations where time, mission resources and communications are limited and the future state of the operating environment is unknown, the capability of a vehicle to dynamically respond to changing circumstances without human guidance can substantially improve science return. Such capabilities are difficult to achieve in practice, however, because they require intelligent reasoning to utilize limited resources in an inherently uncertain environment. Here we discuss the development, characterization and field performance of two algorithms for autonomously collecting water samples on VALKYRIE (Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer), a glacier-penetrating cryobot deployed to the Matanuska Glacier, Alaska (Mission Control location: 61°42'09.3''N 147°37'23.2''W). We show performance on par with human performance across a wide range of mission morphologies using simulated mission data, and demonstrate the effectiveness of the algorithms at autonomously collecting samples with high relative cell concentration during field operation. The development of such algorithms will help enable autonomous science operations in environments where constant real-time human supervision is impractical, such as penetration of ice sheets on Earth and high-priority planetary science targets like Europa.
4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...
4. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM NORTH FACE OF LAUNCH OPERATIONS BUILDING. TOPS OF BUNKER PERISCOPE AND FLAGPOLE ON ROOF OF LAUNCH OPERATIONS BUILDING IN BACKGROUND - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2014-12-11
CAPE CANAVERAL, Fla. – Engineers and technicians prepare the launch pad for NASA's Project Morpheus prototype lander at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. Morpheus is being prepared for free flight test number 15 at the SLF. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
2014-12-10
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander is being lowered by crane onto a launch pad at the north end of the Shuttle Landing Facility in preparation for free flight test number 15 at NASA’s Kennedy Space Center in Florida. The lander will take off from the ground over a flame trench and use its autonomous landing and hazard avoidance technology, or ALHAT sensors, to survey the hazard field to determine safe landing sites. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Jim Grossmann
Integrating CLIPS applications into heterogeneous distributed systems
NASA Technical Reports Server (NTRS)
Adler, Richard M.
1991-01-01
SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center.
Earth observations satellite data policy: Process and outcome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, L.R.
1994-12-31
The National Aeronautics and Space Administration (NASA) develops, launches, and operates satellites to observe and monitor the Earth and its environment. This study categorizes each program based on the relationship between NASA and external organizations. A program can be an autonomous mission undertaken for NASA`s own constituency, or it can involve a client agency or a partner. These relationships affect how data policy decisions are made and implemented, and how the valuable output of NASA`s Earth observations satellites is managed. The process in NASA for determining which programs will be approved is very informal. Ideas and concepts surface and reachmore » the consciousness of NASA management; if sufficient support is achieved, a proposal can move to the feasibility study phase and from there become an approved and funded mission. The handling of data can be an important consideration in generating political support for program approval. Autonomous programs tend to have decisions made at lower levels and documented informally or not at all. Data policy is part of routine implementation of programs and does not generally rise to the visibility of the agency head or congressional staff or the Executive Office of the President. Responsibility for data management for autonomous missions is retained at NASA centers. Client programs involve higher level decision makers, and are the subject of political interest because they cross agency boundaries. The data policy process includes presidential statements on data access. As part of the client relationship, NASA often provides resources to the client for data handling and analysis, and shares these responsibilities. Data policy for partner programs is the result of bargaining between the partners, either foreign government agencies or private companies.« less
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Astrophysics Data System (ADS)
Lewerenz, T.; Kosha, M.; Magazu, H.
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
Delta Advanced Reusable Transport (DART): An alternative manned spacecraft
NASA Technical Reports Server (NTRS)
Lewerenz, T.; Kosha, M.; Magazu, H.
1991-01-01
Although the current U.S. Space Transportation System (STS) has proven successful in many applications, the truth remains that the space shuttle is not as reliable or economical as was once hoped. In fact, the Augustine Commission on the future of the U.S. Space Program has recommended that the space shuttle only be used on missions directly requiring human capabilities on-orbit and that the shuttle program should eventually be phased out. This poses a great dilemma since the shuttle provides the only current or planned U.S. means for human access to space at the same time that NASA is building toward a permanent manned presence. As a possible solution to this dilemma, it is proposed that the U.S. begin development of an Alternative Manned Spacecraft (AMS). This spacecraft would not only provide follow-on capability for maintaining human space flight, but would also provide redundancy and enhanced capability in the near future. Design requirements for the AMS studied include: (1) capability of launching on one of the current or planned U.S. expendable launch vehicles (baseline McDonnell Douglas Delta II model 7920 expendable booster); (2) application to a wide variety of missions including autonomous operations, space station support, and access to orbits and inclinations beyond those of the space shuttle; (3) low enough costing to fly regularly in augmentation of space shuttle capabilities; (4) production surge capabilities to replace the shuttle if events require it; (5) intact abort capability in all flight regimes since the planned launch vehicles are not man-rated; (6) technology cut-off date of 1990; and (7) initial operational capability in 1995. In addition, the design of the AMS would take advantage of scientific advances made in the 20 years since the space shuttle was first conceived. These advances are in such technologies as composite materials, propulsion systems, avionics, and hypersonics.
NASA Astrophysics Data System (ADS)
Makhorin, Oleg I.; Pustovalov, Alexey A.; Zhabin, Vladimir N.; Greenberg, Edward I.; Nilolaev, Vadim S.; Sokolov, Nikolay A.
1996-03-01
This paper describes results of investigations of questions concerning integrity keeping for an ampula containing radionuclide fuel (Pu-238) under conditions of emergency landing in dense layers of the atmosphere and under conditions of fire on launching pad.
The Implementation and Testing of a Robotic Arm on an Autonomous Vehicle
2007-12-01
FIGURES Figure 1. BigFoot . .............................................................................................................2 Figure 2...Arm. ............................................................31 Figure 29. BigFoot launched a shaped charge model on the suspected IED...work with BigFoot . I would also like to thank you to LTCD Kirk Volland for his assistance in the implementation and testing of a robotic arm. I thank
Autonomous mission planning and scheduling: Innovative, integrated, responsive
NASA Technical Reports Server (NTRS)
Sary, Charisse; Liu, Simon; Hull, Larry; Davis, Randy
1994-01-01
Autonomous mission scheduling, a new concept for NASA ground data systems, is a decentralized and distributed approach to scientific spacecraft planning, scheduling, and command management. Systems and services are provided that enable investigators to operate their own instruments. In autonomous mission scheduling, separate nodes exist for each instrument and one or more operations nodes exist for the spacecraft. Each node is responsible for its own operations which include planning, scheduling, and commanding; and for resolving conflicts with other nodes. One or more database servers accessible to all nodes enable each to share mission and science planning, scheduling, and commanding information. The architecture for autonomous mission scheduling is based upon a realistic mix of state-of-the-art and emerging technology and services, e.g., high performance individual workstations, high speed communications, client-server computing, and relational databases. The concept is particularly suited to the smaller, less complex missions of the future.
NASA Astrophysics Data System (ADS)
Durst, Phillip J.; Gray, Wendell; Trentini, Michael
2013-05-01
A simple, quantitative measure for encapsulating the autonomous capabilities of unmanned systems (UMS) has yet to be established. Current models for measuring a UMS's autonomy level require extensive, operational level testing, and provide a means for assessing the autonomy level for a specific mission/task and operational environment. A more elegant technique for quantifying autonomy using component level testing of the robot platform alone, outside of mission and environment contexts, is desirable. Using a high level framework for UMS architectures, such a model for determining a level of autonomy has been developed. The model uses a combination of developmental and component level testing for each aspect of the UMS architecture to define a non-contextual autonomous potential (NCAP). The NCAP provides an autonomy level, ranging from fully non- autonomous to fully autonomous, in the form of a single numeric parameter describing the UMS's performance capabilities when operating at that level of autonomy.
Nature-Inspired Acoustic Sensor Projects
1999-08-24
m). The pager motors are worn on the wrists. Yale Intelligent Sensors Lab 8 Autonomous vehicle navigation Yago – Yale Autonomous Go-Cart Yago is used...proximity sensor determined the presence of close-by objects missed by the sonars. Yago operated autonomously by avoiding obstacles. Problems being
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... operations from VAFB launch complexes and Delta Mariner operations, cargo unloading activities, and harbor maintenance dredging in support of the Delta IV/Evolved Expendable Launch Vehicle (EELV) launch activity on... Delta Mariner operations, cargo unloading activities, and harbor maintenance dredging. The Delta Mariner...
Finding the Balance of Autonomy on-Board Versus Man-Triggered Actions from Ground
NASA Astrophysics Data System (ADS)
Lundin, Stefan
Odin is a scientific, 3-axis stabilised, fine-pointing, small satellite with a sensitive payload that provides high quality spectroscopy data in the optical, mm and submm regions. End-users are atmosphere scientists as well as astronomers in Canada, France, Finland and Sweden. The satellite was successfully injected into orbit in February 2001 by a START-1 rocket. Designed, developed and procured by the Swedish Space Corporation, Odin is now operated by our company ten times per day from its dedicated control centre located at Esrange in the northern Sweden. The usage of the same organisation gave us the possibility to find an efficient trade-off between "degree of autonomy on-board" versus "future operational cost".. The necessity of sophisticated, hard-to-develop autonomy was judged against mission objectives, spacecraft safety and additional operational cost. In the paper, the operational philosophy of Odin is presented and based on gathered experience in-orbit, the most essential autonomous functions on-board are identified. Odin is a low cost satellite with very high performance. For comparison, it is capable of unique science with a pointing accuracy better than 15 arcseconds. The procurement and launch of the satellite ended up to a total cost of 45 MUSD using a tight project team of only ten persons truly responsible for their subsystems. The same amount of people now operates the satellite and staffs the Mission Control Centre.
Hardware design for the Autonomous Visibility Monitoring (AVM) observatory
NASA Technical Reports Server (NTRS)
Cowles, K.
1993-01-01
The hardware for the three Autonomous Visibility Monitoring (AVM) observatories was redesigned. Changes in hardware design include electronics components, weather sensors, and the telescope drive system. Operation of the new hardware is discussed, as well as some of its features. The redesign will allow reliable automated operation.
Cooperative Control of Multiple Unmanned Autonomous Vehicles
2005-06-03
I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164
Lower cost offshore field development utilizing autonomous vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frisbie, F.R.; Vie, K.J.; Welch, D.W.
1996-12-31
The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable ormore » improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.« less
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)
2010-01-01
A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.
MARS PATHFINDER PYRO SYSTEMS SWITCHING ACTIVITY
NASA Technical Reports Server (NTRS)
1996-01-01
The Mars Pathfinder lander is subjected to a electrical and functional tests of its pyrotechic petal deployer system by Jet Propulsion Laboratory (JPL) engineers and technicians in KSC's Spacecraft Assembly and Encapsulation Facility (SAEF-2). In the background is the Pathfinder cruise stage, which the lander will be mated to once its functional tests are complete. The lander will remain attached to this stage during its six-to-seven-month journey to Mars. When the lander touches down on the surface of Mars next year, the pyrotechnic system will deploy its three petals open like a flower and allow the Sojourner autonomous rover to explore the Martian surface. The Mars Pathfinder is scheduled for launch aboard a Delta II expendable launch vehicle on Dec. 2, the beginning of a 24-day launch period. JPL is managing the Mars Pathfinder project for NASA.
SEL2 servicing: increased science return via on-orbit propellant replenishment
NASA Astrophysics Data System (ADS)
Reed, Benjamin B.; DeWeese, Keith; Kienlen, Michael; Aranyos, Thomas; Pellegrino, Joseph; Bacon, Charles; Qureshi, Atif
2016-07-01
Spacecraft designers are driving observatories to the distant Sun-Earth Lagrange Point 2 (SEL2) to meet ever-increasing science requirements. The mass fraction dedicated to propellant for these observatories to reach and operate at SEL2 will be allocated with the upmost care, as it comes at the expense of optics and instrument masses. As such, these observatories could benefit from on-orbit refueling, allowing greater dry-to-wet mass ratio at launch and/or longer mission life. NASA is developing technologies, capabilities and integrated mission designs for multiple servicing applications in low Earth orbit (LEO), geosynchronous Earth orbit (GEO) and cisluner locations. Restore-L, a mission officially in formulation, will launch a free-flying robotic servicer to refuel a government-owned satellite in LEO by mid 2020. This paper will detail the results of a point design mission study to extend Restore-L servicing technologies from LEO to SEL2. This SEL2 mission would launch an autonomous, robotic servicer spacecraft equipped to extend the life of two space assets through refueling. Two space platforms were chosen to 1) drive the requirements for achieving SEL2 orbit and rendezvous with a spacecraft, and 2) to drive the requirements to translate within SEL2 to conduct a follow-on servicing mission. Two fuels, xenon and hydrazine, were selected to assess a multiple delivery system. This paper will address key mission drivers, such as servicer autonomy (necessitated due to communications latency at L2). Also discussed will be the value of adding cooperative servicing elements to the client observatories to reduce mission risk.
Planetary surface exploration MESUR/autonomous lunar rover
NASA Astrophysics Data System (ADS)
Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston
Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.
Planetary surface exploration: MESUR/autonomous lunar rover
NASA Astrophysics Data System (ADS)
Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston
1992-06-01
Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.
Planetary surface exploration MESUR/autonomous lunar rover
NASA Technical Reports Server (NTRS)
Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Laux, Richard; Lentz, Dale; Nance, Preston
1992-01-01
Planetary surface exploration micro-rovers for collecting data about the Moon and Mars have been designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA/Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental Survey (MESUR) Alpha Particle/Proton/X-ray (APX) Instrument. The system is to be launched with the 16 MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker have been developed to deploy the APX from the lander to the Martian Surface. While on Mars, the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation that NASA can use for future lunar exploratory missions. This report includes a detailed description of the designs and the methods and procedures which the University of Idaho design teams followed to arrive at the final designs.
Planetary surface exploration: MESUR/autonomous lunar rover
NASA Technical Reports Server (NTRS)
Stauffer, Larry; Dilorenzo, Matt; Austin, Dave; Ayers, Raymond; Burton, David; Gaylord, Joe; Kennedy, Jim; Lentz, Dale; Laux, Richard; Nance, Preston
1992-01-01
Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included.
NASA Astrophysics Data System (ADS)
Dombrowski, M. P.; LaBelle, J.; McGaw, D. G.; Broughton, M. C.
2016-07-01
The programmable combined receiver/digital signal processor platform presented in this article is designed for digital downsampling and processing of general waveform inputs with a 66 MHz initial sampling rate and multi-input synchronized sampling. Systems based on this platform are capable of fully autonomous low-power operation, can be programmed to preprocess and filter the data for preselection and reduction, and may output to a diverse array of transmission or telemetry media. We describe three versions of this system, one for deployment on sounding rockets and two for ground-based applications. The rocket system was flown on the Correlation of High-Frequency and Auroral Roar Measurements (CHARM)-II mission launched from Poker Flat Research Range, Alaska, in 2010. It measured auroral "roar" signals at 2.60 MHz. The ground-based systems have been deployed at Sondrestrom, Greenland, and South Pole Station, Antarctica. The Greenland system synchronously samples signals from three spaced antennas providing direction finding of 0-5 MHz waves. It has successfully measured auroral signals and man-made broadcast signals. The South Pole system synchronously samples signals from two crossed antennas, providing polarization information. It has successfully measured the polarization of auroral kilometric radiation-like signals as well as auroral hiss. Further systems are in development for future rocket missions and for installation in Antarctic Automatic Geophysical Observatories.
Turning a remotely controllable observatory into a fully autonomous system
NASA Astrophysics Data System (ADS)
Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael
2014-08-01
We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.
Wireless IR Image Transfer System for Autonomous Vehicles
2003-12-01
the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received
Video Guidance Sensor for Surface Mobility Operations
NASA Technical Reports Server (NTRS)
Fernandez, Kenneth R.; Fischer, Richard; Bryan, Thomas; Howell, Joe; Howard, Ricky; Peters, Bruce
2008-01-01
Robotic systems and surface mobility will play an increased role in future exploration missions. Unlike the LRV during Apollo era which was an astronaut piloted vehicle future systems will include teleoperated and semi-autonomous operations. The tasks given to these vehicles will run the range from infrastructure maintenance, ISRU, and construction to name a few. A common task that may be performed would be the retrieval and deployment of trailer mounted equipment. Operational scenarios may require these operations to be performed remotely via a teleoperated mode,or semi-autonomously. This presentation describes the on-going project to adapt the Automated Rendezvous and Capture (AR&C) sensor developed at the Marshall Space Flight Center for use in an automated trailer pick-up and deployment operation. The sensor which has been successfully demonstrated on-orbit has been mounted on an iRobot/John Deere RGATOR autonomous vehicle for this demonstration which will be completed in the March 2008 time-frame.
2014-09-01
efficient yet safe operations. • Further understanding of human psychology in the operation of autonomous systems. • Interfaces, be they visual...that system, especially when included in aspects or during times where automation backup is required, when the human-operators anticipatory skills...political and psychological domains, where it connotes self-determination (Christman 2009). The autonomous systems domain that has evolved since
Launch Vehicle Control Center Architectures
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Williams, Randall; McLaughlin, Tom
2014-01-01
This analysis is a survey of control center architectures of the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures have similarities in basic structure, and differences in functional distribution of responsibilities for the phases of operations: (a) Launch vehicles in the international community vary greatly in configuration and process; (b) Each launch site has a unique processing flow based on the specific configurations; (c) Launch and flight operations are managed through a set of control centers associated with each launch site, however the flight operations may be a different control center than the launch center; and (d) The engineering support centers are primarily located at the design center with a small engineering support team at the launch site.
The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements
NASA Technical Reports Server (NTRS)
Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray
2012-01-01
In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.
Onboard Processing and Autonomous Operations on the IPEX Cubesat
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi;
2012-01-01
IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.
Modeling and Simulation of Shuttle Launch and Range Operations
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.
Mission Operations with an Autonomous Agent
NASA Technical Reports Server (NTRS)
Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.
1998-01-01
The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.
STS Derived Exploration Launch Operations
NASA Technical Reports Server (NTRS)
Best, Joel; Sorge, L.; Siders, J.; Sias, Dave
2004-01-01
A key aspect of the new space exploration programs will be the approach to optimize launch operations. A STS Derived Launch Vehicle (SDLV) Program can provide a cost effective, low risk, and logical step to launch all of the elements of the exploration program. Many benefits can be gained by utilizing the synergy of a common launch site as an exploration spaceport as well as evolving the resources of the current Space Shuttle Program (SSP) to meet the challenges of the Vision for Space Exploration. In particular, the launch operation resources of the SSP can be transitioned to the exploration program and combined with the operations efficiencies of unmanned EELVs to obtain the best of both worlds, resulting in lean launch operations for crew and cargo missions of the exploration program. The SDLV Program would then not only capture the extensive human space flight launch operations knowledge, but also provide for the safe fly-out of the SSP through continuity of system critical skills, manufacturing infrastructure, and ability to maintain and attract critical skill personnel. Thus, a SDLV Program can smoothly transition resources from the SSP and meet the transportation needs to continue the voyage of discovery of the space exploration program.
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
14 CFR 417.17 - Launch reporting requirements and launch specific updates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... by the terms of the launch operator's license. A launch operator must file any change to the... information: (i) Payload information required by § 415.59 of this chapter; and (ii) Flight information, including the launch vehicle, planned flight path, staging and impact locations, and any on-orbit activity...
NASA's Space Launch System: Moving Toward the Launch Pad
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; May, Todd A.
2013-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life-cycle milestones such as the vehicle's Preliminary Design Review (PDR). The paper will also discuss the remaining challenges both in delivering the 70-t vehicle and in evolving its capabilities to the 130-t vehicle, and how NASA plans to accomplish these goals. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.
Information Technology and the Autonomous Control of a Mars In-Situ Propellant Production System
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Sridhar, K. R.; Larson, William E.; Clancy, Daniel J.; Peschur, Charles; Briggs, Geoffrey A.; Zornetzer, Steven F. (Technical Monitor)
1999-01-01
With the rapidly increasing performance of information technology, i.e., computer hardware and software systems, as well as networks and communication systems, a new capability is being developed that holds the clear promise of greatly increased exploration capability, along with dramatically reduced design, development, and operating costs. These new intelligent systems technologies, utilizing knowledge-based software and very high performance computer systems, will provide new design and development tools, scheduling mechanisms, and vehicle and system health monitoring capabilities. In addition, specific technologies such as neural nets will provide a degree of machine intelligence and associated autonomy which has previously been unavailable to the mission and spacecraft designer and to the system operator. One of the most promising applications of these new information technologies is to the area of in situ resource utilization. Useful resources such as oxygen, compressed carbon dioxide, water, methane, and buffer gases can be extracted and/or generated from planetary atmospheres, such as the Martian atmosphere. These products, when used for propulsion and life-support needs can provide significant savings in the launch mass and costs for both robotic and crewed missions. In the longer term the utilization of indigenous resources is an enabling technology that is vital to sustaining long duration human presence on Mars. This paper will present the concepts that are currently under investigation and development for mining the Martian atmosphere, such as temperature-swing adsorption, zirconia electrolysis etc., to create propellants and life-support materials. This description will be followed by an analysis of the information technology and control needs for the reliable and autonomous operation of such processing plants in a fault tolerant manner, as well as the approach being taken for the development of the controlling software. Finally, there will be a brief discussion of the verification and validation process so crucial to the implementation of mission-critical software.
Evolution of the Hubble Space Telescope Safing Systems
NASA Technical Reports Server (NTRS)
Pepe, Joyce; Myslinski, Michael
2006-01-01
The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the telescope.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The fulfillment of the new US. National Vision for Space Exploration requires many new enabling technologies to accomplish the goal of utilizing space for commercial activities and for returning humans to the moon and extraterrestrial environments. Traditionally, flight structures are manufactured as complete systems and require humans to complete the integration and assembly in orbit. These structures are bulky and require the use of heavy launch vehicles to send the units to the desired location, e.g. International Space Station (ISS). This method requires a high degree of safety, numerous space walks and significant cost for the humans to perform the assembly in orbit. For example, for assembly and maintenance of the ISS, 52 Extravehicular Activities (EVA's) have been performed so far with a total EVA time of approximately 322 hours. Sixteen (16) shuttle flights haw been to the ISS to perform these activities with an approximate cost of $450M per mission. For future space missions, costs have to be reduced to reasonably achieve the exploration goals. One concept that has been proposed is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly operations. Assembly is autonomously performed when two components containing onboard electronics join after recognizing that the joint is appropriate and in the precise position and orientation required for assembly. The mechanism only activates when the specifications are correct and m a nominal range. After assembly, local sensors and electronics monitor the integrity of the joint for feedback to a master controller. To achieve this concept will require a shift in the methods for designing space structures. In addition, innovative techniques will be required to perform the assembly autonomously. Monitoring of the assembled joint will be necessary for safety and structural integrity. If a very large structure is to be assembled in orbit, then the number of integrity sensors will be significant. Thus simple, low cost sensors are integral to the success of this concept. This paper will address these issues and will propose a novel concept for assembling space structures autonomously. The paper will present Several autonomous assembly methods. Core technologies required to achieve in space assembly will be discussed and novel techniques for communicating, sensing, docking and assembly will be detailed. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Finally, these technologies can also be applied to other systems both on earth and extraterrestrial environments.
3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH ...
3. VIEW OF ESCAPE TUNNEL IN NORTH FACE OF LAUNCH OPERATIONS BUILDING. BUNKER PERISCOPE VISIBLE ABOVE RIGHT CORNER OF TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
ATRAN Terrain Sensing Guidance-The Grand-Daddy System
NASA Astrophysics Data System (ADS)
Koch, Richard F.; Evans, Donald C.
1980-12-01
ATRAN was the pioneer terrain sensing guidance system developed in the 1950 era and deployed in Europe on the Air Force's mobile, ground launched TM-76A MACE cruise missile in the late 1950's and early 1960's. The background, principles and technology are described for this system which was the forerunner of todays modern autonomous standoff terrain sensing guided weapons.
The embodied dynamics of perceptual causality: a slippery slope?
Amorim, Michel-Ange; Siegler, Isabelle A.; Baurès, Robin; Oliveira, Armando M.
2015-01-01
In Michotte's launching displays, while the launcher (object A) seems to move autonomously, the target (object B) seems to be displaced passively. However, the impression of A actively launching B does not persist beyond a certain distance identified as the “radius of action” of A over B. If the target keeps moving beyond the radius of action, it loses its passivity and seems to move autonomously. Here, we manipulated implied friction by drawing (or not) a surface upon which A and B are traveling, and by varying the inclination of this surface in screen- and earth-centered reference frames. Among 72 participants (n = 52 in Experiment 1; n = 20 in Experiment 2), we show that both physical embodiment of the event (looking straight ahead at a screen displaying the event on a vertical plane vs. looking downwards at the event displayed on a horizontal plane) and contextual information (objects moving along a depicted surface or in isolation) affect interpretation of the event and modulate the radius of action of the launcher. Using classical mechanics equations, we show that representational consistency of friction from radius of action responses emphasizes the embodied nature of frictional force in our cognitive architecture. PMID:25954235
The embodied dynamics of perceptual causality: a slippery slope?
Amorim, Michel-Ange; Siegler, Isabelle A; Baurès, Robin; Oliveira, Armando M
2015-01-01
In Michotte's launching displays, while the launcher (object A) seems to move autonomously, the target (object B) seems to be displaced passively. However, the impression of A actively launching B does not persist beyond a certain distance identified as the "radius of action" of A over B. If the target keeps moving beyond the radius of action, it loses its passivity and seems to move autonomously. Here, we manipulated implied friction by drawing (or not) a surface upon which A and B are traveling, and by varying the inclination of this surface in screen- and earth-centered reference frames. Among 72 participants (n = 52 in Experiment 1; n = 20 in Experiment 2), we show that both physical embodiment of the event (looking straight ahead at a screen displaying the event on a vertical plane vs. looking downwards at the event displayed on a horizontal plane) and contextual information (objects moving along a depicted surface or in isolation) affect interpretation of the event and modulate the radius of action of the launcher. Using classical mechanics equations, we show that representational consistency of friction from radius of action responses emphasizes the embodied nature of frictional force in our cognitive architecture.
Autonomic Computing for Spacecraft Ground Systems
NASA Technical Reports Server (NTRS)
Li, Zhenping; Savkli, Cetin; Jones, Lori
2007-01-01
Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.
GPS World, Innovation: Autonomous Navigation at High Earth Orbits
NASA Technical Reports Server (NTRS)
Bamford, William; Winternitz, Luke; Hay, Curtis
2005-01-01
Calculating a spacecraft's precise location at high orbital altitudes-22,000 miles (35,800 km) and beyond-is an important and challenging problem. New and exciting opportunities become possible if satellites are able to autonomously determine their own orbits. First, the repetitive task of periodically collecting range measurements from terrestrial antennas to high altitude spacecraft becomes less important-this lessens competition for control facilities and saves money by reducing operational costs. Also, autonomous navigation at high orbital altitudes introduces the possibility of autonomous station keeping. For example, if a geostationary satellite begins to drift outside of its designated slot it can make orbit adjustments without requiring commands from the ground. Finally, precise onboard orbit determination opens the door to satellites flying in formation-an emerging concept for many scientific space applications. The realization of these benefits is not a trivial task. While the navigation signals broadcast by GPS satellites are well suited for orbit and attitude determination at lower altitudes, acquiring and using these signals at geostationary (GEO) and highly elliptical orbits is much more difficult. The light blue trace describes the GPS orbit at approximately 12,550 miles (20,200 km) altitude. GPS satellites were designed to provide navigation signals to terrestrial users-consequently the antenna array points directly toward the earth. GEO and HE0 orbits, however, are well above the operational GPS constellation, making signal reception at these altitudes more challenging. The nominal beamwidth of a Block II/IIA GPS satellite antenna array is approximately 42.6 degrees. At GEO and HE0 altitudes, most of these primary beam transmissions are blocked by the Earth, leaving only a narrow region of nominal signal visibility near opposing limbs of the earth. This region is highlighted in gray. If GPS receivers at GEO and HE0 orbits were designed to use these higher power signals only, precise orbit determination would not be practical. Fortunately, the GPS satellite antenna array also produces side lobe signals at much lower power levels. NASA has designed and tested the Navigator, a new GPS receiver that can acquire and track these weaker signals, thereby dramatically increasing the signal visibility at these altitudes. While using much weaker signals is a fundamental requirement for a high orbital altitude GPS receiver, it is certainly not the only challenge. There are other unique characteristics of this application that must also be considered. For example, Position Dilution of Precision (PDOP) figures are much higher at GEO and HE0 altitudes because visible GPS satellites are concentrated in a much smaller area with respect to the spacecraft antenna. These poor PDOP values contribute considerable error to the point solutions calculated by the spacecraft GPS receiver. Finally, spacecraft GPS receivers must be designed to withstand a variety of extreme environmental conditions. Variations in acceleration between launch and booster separation are extreme. Temperature gradients in the space environment are also severe. Furthermore, radiation effects are a major concern-spacecraft-borne GPS receivers must be designed with radiation-hardened electronics to guard against this phenomenon, otherwise they simply will not work. Perhaps most importantly, there are no opportunities to repair or modify any space-borne GPS receiver after it has been launched. Great care must be taken to ensure all performance characteristics have been analyzed prior to liftoff.
Autonomous Payload Operations Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Stetson, Howard K.; Deitsch, David K.; Cruzen, Craig A.; Haddock, Angie T.
2007-01-01
Operating the International Space Station (ISS) involves many complex crew tended, ground operated and combined systems. Over the life of the ISS program, it has become evident that by having automated and autonomous systems on board, more can be accomplished and at the same time reduce the workload of the crew and ground operators. Engineers at the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center in Huntsville Alabama, working in collaboration with The Charles Stark Draper Laboratory have developed an autonomous software system that uses the Timeliner User Interface Language and expert logic to continuously monitor ISS payload systems, issue commands and signal ground operators as required. This paper describes the development history of the system, its concept of operation and components. The paper also discusses the testing process as well as the facilities used to develop the system. The paper concludes with a description of future enhancement plans for use on the ISS as well as potential applications to Lunar and Mars exploration systems.
View from northeast to southwest of remote launch operations building, ...
View from northeast to southwest of remote launch operations building, showing (left to right) diesel exhaust, diesel intake, and entrance tunnel - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND
Natural Environmental Service Support to NASA Vehicle, Technology, and Sensor Development Programs
NASA Technical Reports Server (NTRS)
1993-01-01
The research performed under this contract involved definition of the natural environmental parameters affecting the design, development, and operation of space and launch vehicles. The Universities Space Research Association (USRA) provided the manpower and resources to accomplish the following tasks: defining environmental parameters critical for design, development, and operation of launch vehicles; defining environmental forecasts required to assure optimal utilization of launch vehicles; and defining orbital environments of operation and developing models on environmental parameters affecting launch vehicle operations.
NASA Astrophysics Data System (ADS)
Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark
2008-01-01
Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.
Autonomous Navigation for Deep Space Missions
NASA Technical Reports Server (NTRS)
Bhaskaran, Shyam
2012-01-01
Navigation (determining where the spacecraft is at any given time, controlling its path to achieve desired targets), performed using ground-in- the-loop techniques: (1) Data includes 2-way radiometric (Doppler, range), interferometric (Delta- Differential One-way Range), and optical (images of natural bodies taken by onboard camera) (2) Data received on the ground, processed to determine orbit, commands sent to execute maneuvers to control orbit. A self-contained, onboard, autonomous navigation system can: (1) Eliminate delays due to round-trip light time (2) Eliminate the human factors in ground-based processing (3) Reduce turnaround time from navigation update to minutes, down to seconds (4) React to late-breaking data. At JPL, we have developed the framework and computational elements of an autonomous navigation system, called AutoNav. It was originally developed as one of the technologies for the Deep Space 1 mission, launched in 1998; subsequently used on three other spacecraft, for four different missions. The primary use has been on comet missions to track comets during flybys, and impact one comet.
Operations Analysis of the 2nd Generation Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Noneman, Steven R.; Smith, C. A. (Technical Monitor)
2002-01-01
The Space Launch Initiative (SLI) program is developing a second-generation reusable launch vehicle. The program goals include lowering the risk of loss of crew to 1 in 10,000 and reducing annual operations cost to one third of the cost of the Space Shuttle. The SLI missions include NASA, military and commercial satellite launches and crew and cargo launches to the space station. The SLI operations analyses provide an assessment of the operational support and infrastructure needed to operate candidate system architectures. Measures of the operability are estimated (i.e. system dependability, responsiveness, and efficiency). Operations analysis is used to determine the impact of specific technologies on operations. A conceptual path to reducing annual operations costs by two thirds is based on key design characteristics, such as reusability, and improved processes lowering labor costs. New operations risks can be expected to emerge. They can be mitigated with effective risk management with careful identification, assignment, tracking, and closure. SLI design characteristics such as nearly full reusability, high reliability, advanced automation, and lowered maintenance and servicing coupled with improved processes are contributors to operability and large operating cost reductions.
1992-02-01
Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real - time operating system , real-time programming language, real-time system, soft real-time system.
Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Myungsoo; Markel, Anthony J
Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehiclesmore » is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.« less
Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations
NASA Astrophysics Data System (ADS)
Hardy, Terry L.
2005-12-01
A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2012-01-01
The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.
System and method of self-properties for an autonomous and automatic computer environment
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)
2010-01-01
Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.
46 CFR 112.43-11 - Illumination for launching operations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...
46 CFR 112.43-11 - Illumination for launching operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...
46 CFR 112.43-11 - Illumination for launching operations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...
46 CFR 112.43-11 - Illumination for launching operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...
46 CFR 112.43-11 - Illumination for launching operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 112.43-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Lighting Systems § 112.43-11 Illumination for launching operations. Branch circuits supplying power to lights for survival craft launching operations must supply no...
1. View from southeast to northwest of remote launch operations ...
1. View from southeast to northwest of remote launch operations buildings, showing diesel exhaust and intake shafts, with tunnel on the right - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Building, Near Service Road exit from Patrol Road, Nekoma, Cavalier County, ND
Launch Vehicle Control Center Architectures
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Epps, Amy; Woodruff, Van; Vachon, Michael Jacob; Monreal, Julio; Levesque, Marl; Williams, Randall; Mclaughlin, Tom
2014-01-01
Launch vehicles within the international community vary greatly in their configuration and processing. Each launch site has a unique processing flow based on the specific launch vehicle configuration. Launch and flight operations are managed through a set of control centers associated with each launch site. Each launch site has a control center for launch operations; however flight operations support varies from being co-located with the launch site to being shared with the space vehicle control center. There is also a nuance of some having an engineering support center which may be co-located with either the launch or flight control center, or in a separate geographical location altogether. A survey of control center architectures is presented for various launch vehicles including the NASA Space Launch System (SLS), United Launch Alliance (ULA) Atlas V and Delta IV, and the European Space Agency (ESA) Ariane 5. Each of these control center architectures shares some similarities in basic structure while differences in functional distribution also exist. The driving functions which lead to these factors are considered and a model of control center architectures is proposed which supports these commonalities and variations.
14 CFR 417.103 - Safety organization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Safety organization. 417.103 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.103 Safety organization. (a) A launch operator must maintain and document a safety organization. A launch operator must...
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.
2011-12-01
Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we highlight use in the arctic of two different small remotely piloted aircraft (ScanEagle and RAVEN) for remote sensing of ice and ocean conditions as well as surveys of marine mammals. Finally, we explain how these can be used in future networked environments with DTN support not only for the collection of ocean and ice data for maritime domain awareness, but also for monitoring oil spill dynamics in high latitude environments, including spills in and under sea ice. The networked operation of heterogeneous air and ocean vehicle systems using DTN communications methods can provide unprecedented levels of spatial-temporal sampling resolution important to improving arctic remote sensing and maritime domain awareness capabilities.
Galileo spacecraft power distribution and autonomous fault recovery
NASA Technical Reports Server (NTRS)
Detwiler, R. C.
1982-01-01
There is a trend in current spacecraft design to achieve greater fault tolerance through the implemenation of on-board software dedicated to detecting and isolating failures. A combination of hardware and software is utilized in the Galileo power system for autonomous fault recovery. Galileo is a dual-spun spacecraft designed to carry a number of scientific instruments into a series of orbits around the planet Jupiter. In addition to its self-contained scientific payload, it will also carry a probe system which will be separated from the spacecraft some 150 days prior to Jupiter encounter. The Galileo spacecraft is scheduled to be launched in 1985. Attention is given to the power system, the fault protection requirements, and the power fault recovery implementation.
Search of GRB with AGILE Minicalorimeter
NASA Astrophysics Data System (ADS)
Fuschino, F.; Labanti, C.; Galli, M.; Marisaldi, M.; Bulgarelli, A.; Gianotti, F.; Trifoglio, M.; Argan, A.; Del Monte, E.; Donnarumma, I.; Feroci, M.; Lazzarotto, F.; Pacciani, L.; Tavani, M.; Trois, A.
2008-04-01
AGILE, the small scientific mission of the Italian Space Agency devoted to Hard-X and Gamma-ray astrophysics, was successfully launched on April 23, 2007. The AGILE payload is composed of a tungsten-silicon tracker (ST), operating in the gamma-ray energy range 30 MeV 50 GeV; Super-AGILE, an X-ray imager operating in the energy range 15 45 keV; the Minicalorimeter (MCAL) and an Anticoincidence shield. MCAL is a detector of about 1400 cm2 sensitive in the range 0.3 200 MeV, that can be used both as a slave of the ST to contribute to the AGILE Gamma Ray imaging Detector (GRID operative mode) and autonomously for detection of transient events (BURST operative mode). MCAL is made of 30 CsI(Tl) bar-shaped scintillation detectors with photodiode readout at both ends, arranged in two orthogonal layers. Energy and position of interaction can be derived from a proper composition of the signals readout at the bar's ends, absolute time tagging can be achieved with a μs resolution. The Burst logic deals with various rate-meters on different time scales, energy bands, and MCAL spatial zones. Different algorithms can be chosen for Burst triggering considering also the contribution of other detectors like Super AGILE. In this paper the various trigger logic will be reviewed as well as their on-ground test performed with a dedicated experimental setup.
Orbital Express mission operations planning and resource management using ASPEN
NASA Astrophysics Data System (ADS)
Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel
2008-04-01
As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.
115. Photocopy of drawing (1964 architectural drawing by Koebig & ...
115. Photocopy of drawing (1964 architectural drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, SECTIONS AND ELEVATIONS, SHEET A-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin closing the gap between the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage behind them in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, a worker prepares the second and third stages of the Orbital Sciences Pegasus XL launch vehicle for mating. The Pegasus XL will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers begin mating the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-03
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft (foreground) is ready to be mated to second and third stages in preparation for the launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA’s Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
2004-09-01
KENNEDY SPACE CENTER, FLA. - At Vandenberg Air Force Base in California, workers prepare to mate the second and third stages of the Orbital Sciences Pegasus XL launch vehicle that will launch the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft. DART was designed and built for NASA by Orbital Sciences Corporation as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. The Pegasus XL will launch DART into a circular polar orbit of approximately 475 miles. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASA's Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
Image Mission Attitude Support Experiences
NASA Technical Reports Server (NTRS)
Ottenstein, N.; Challa, M.; Home, A.; Harman, R.; Burley, R.
2001-01-01
The spin-stabilized Imager for Magnetopause to Aurora Global Exploration (IMAGE) is the National Aeronautics and Space Administration's (NASA's) first Medium-class Explorer Mission (MIDEX). IMAGE was launched into a highly elliptical polar orbit on March 25, 2000 from Vandenberg Air Force Base, California, aboard a Boeing Delta II 7326 launch vehicle. This paper presents some of the observations of the flight dynamics analyses during the launch and in-orbit checkout period through May 18, 2000. Three new algorithms - one algebraic and two differential correction - for computing the parameters of the coning motion of a spacecraft are described and evaluated using in-flight data from the autonomous star tracker (AST) on IMAGE. Other attitude aspects highlighted include support for active damping consequent upon the failure of the passive nutation damper, performance evaluation of the AST, evaluation of the Sun sensor and magnetometer using AST data, and magnetometer calibration.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At Vandenberg Air Force Base in California, workers maneuver the Demonstration of Autonomous Rendezvous Technology (DART) spacecraft and mated upper stage toward the second stage at right in preparation or launch aboard the Orbital Sciences Pegasus XL launch vehicle. Pegasus will launch DART into a circular polar orbit of approximately 475 miles. Built for NASA by Orbital Sciences Corporation, DART was designed as an advanced flight demonstrator to locate and maneuver near an orbiting satellite. DART weighs about 800 pounds and is nearly 6 feet long and 3 feet in diameter. DART is designed to demonstrate technologies required for a spacecraft to locate and rendezvous, or maneuver close to, other craft in space. Results from the DART mission will aid in the development of NASAs Crew Exploration Vehicle and will also assist in vehicle development for crew transfer and crew rescue capability to and from the International Space Station.
TacSat-2: Path finder for a Close Space Support Asset
NASA Astrophysics Data System (ADS)
Bhopale, A.; Finley, C.
2008-08-01
With th e launch of TacSat-2, the Oper ationally Responsive Sp ace (O RS) commun ity had its f irst on- orbit asset and opportunity to prove or disprove the premise that small, in expensiv e, and quickly constructed spacecraf t could perform useful operation al missions when needed and for as long as need ed. All of the components of the comp lex TacSat-2 system had to work together to answer the basic questions, "In a crisis, can a lab-developed spacecraf t and ground architecture competen tly p erform th e mission of systems that cost twen ty times the price and tak e four times as long to develop? Mor eover, can th is system actu ally improve on the responsiveness of Nation al Systems to a certain set of underserv ed Oper ational customers?" When all w as said and done, TacSat-2 was a sp acecraf t that h ad to: 1) Carry th irteen tactical and scientific payloads to orbit, many of which doubled as essen tial, non-redundant subsystems; 2) Launch from an unproven launch base on a last minute "rep lacement" launch vehicle; and 3) Fulfill about 140 on-orbit mission requirements. It had tactical sensors, two unproven communication links, numerous next-gen eration single- string componen ts (e.g., h igh-efficiency propulsion system, thin-film so lar arrays, low-power versatile star camera) , and autonomous softw are to mak e the system more friendly and familiar to Tactical, rather than Spacecraf t Op erators. However, the mission was as mu ch about the implementation as it w as about the components. TacSat-2 was designed for and emp loyed with a different concept of operations ( CONOPS) than tradition al N ational Operational Assets. It w as designed to be th e fir st-ev er Clo se Space Support platform and operated in a manner more analogous to Close Air Support aircraf t than to tr aditional spacecraft. Therefore, th e primary objective of the TacSat-2 mission was to use th e TacSat-2 system to id entify those parts of the spacecr aft, ground system, and CON OPS that mak e it eff ectiv e and su itable for a Tactical Operator emp loying it as a Close Space Support asset. The TacSat-2 story was tru ly a story of survival in the low-budget, high-expectation spacecraft world . The mission su ccesses w ere signif icant and ground- breaking, but they w ere, almost w ithou t exception, compromised successes. Most importan tly, you w ill see an asset th at was unquestionably bo th effective and suitable for military operators, but only worth the investmen t if curren t responsiveness deficiencies dr ive leadership towards a so lution where Close Space Support platforms are a pursued alternativ e. This p aper w ill present the objective positive and negative r esults of the TacSat-2 system' s space/ground components and CONO PS and w ill use these resu lts to project th e co mplexion of an OpSat-X that could best fulfill the role of a Close Sp ace Support p latform directly employed by a front-lin e tactical oper ator to responsively return a product that meets an immediate need.
1987-06-01
by block numoiber) The study of human driving of automotive vehicles is an important aid to the development of viable autonomous vehicle navigation...of human driving which could provide some different insights into possible approaches to autonomous vehicle control. At the start of this work, it was...advanced work in the behavioral aspects of human driving . Research of this nature can have a significant impact on the development of autonomous vehicles
NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing
NASA Technical Reports Server (NTRS)
Clements, Greg
2011-01-01
This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather forecasting for example for the effect of these process improvements on our daily lives.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-02-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-06-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Collaborating with Autonomous Agents
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette
2015-01-01
With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.
NASA Astrophysics Data System (ADS)
Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.
This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.
Autonomous Electrothermal Facility for Oil Recovery Intensification Fed by Wind Driven Power Unit
NASA Astrophysics Data System (ADS)
Belsky, Aleksey A.; Dobush, Vasiliy S.
2017-10-01
This paper describes the structure of autonomous facility fed by wind driven power unit for intensification of viscous and heavy crude oil recovery by means of heat impact on productive strata. Computer based service simulation of this facility was performed. Operational energy characteristics were obtained for various operational modes of facility. The optimal resistance of heating element of the downhole heater was determined for maximum operating efficiency of wind power unit.
Airborne Management of Traffic Conflicts in Descent With Arrival Constraints
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik
2005-01-01
NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie; Stetson, Howard K.
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
Design for an 8 Meter Monolithic UV/OIR Space Telescope
NASA Technical Reports Server (NTRS)
Stahl, H. Philip; Postman, Marc; Hornsby, Linda; Hopkins, Randall; Mosier, Gary E.; Pasquale, Bert A.; Arnold, William R.
2009-01-01
ATLAST-8 is an 8-meter monolithic UV/optical/NIR space observatory to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V cargo launch vehicle. The ATLAST-8 will yield fundamental astronomical breakthroughs. The mission concept utilizes two enabling technologies: planned Ares-V launch vehicle (scheduled for 2019) and autonomous rendezvous and docking (AR&D). The unprecedented Ares-V payload and mass capacity enables the use of a massive, monolithic, thin-meniscus primary mirror - similar to a VLT or Subaru. Furthermore, it enables simple robust design rules to mitigate cost, schedule and performance risk. AR&D enables on-orbit servicing, extending mission life and enhancing science return.
2004-01-26
Hitching a ride on the same B-52 mother ship that once launched X-15 research aircraft in the 1960s, NASA's X-43A scramjet and it's Pegasus booster rocket performed a captive carry evaluation flight from Edwards Air Force Base, California, January 26, 2004. The X-43 and it's booster remained mated to the B-52 throughout this mission, intended to check its readiness for launch. The hydrogen-fueled aircraft is autonomous and has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.
Launch Vehicle Production and Operations Cost Metrics
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Neeley, James R.; Blackburn, Ruby F.
2014-01-01
Traditionally, launch vehicle cost has been evaluated based on $/Kg to orbit. This metric is calculated based on assumptions not typically met by a specific mission. These assumptions include the specified orbit whether Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO), or both. The metric also assumes the payload utilizes the full lift mass of the launch vehicle, which is rarely true even with secondary payloads.1,2,3 Other approaches for cost metrics have been evaluated including unit cost of the launch vehicle and an approach to consider the full program production and operations costs.4 Unit cost considers the variable cost of the vehicle and the definition of variable costs are discussed. The full program production and operation costs include both the variable costs and the manufacturing base. This metric also distinguishes operations costs from production costs, including pre-flight operational testing. Operations costs also consider the costs of flight operations, including control center operation and maintenance. Each of these 3 cost metrics show different sensitivities to various aspects of launch vehicle cost drivers. The comparison of these metrics provides the strengths and weaknesses of each yielding an assessment useful for cost metric selection for launch vehicle programs.
Contingency Software in Autonomous Systems: Technical Level Briefing
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.; Patterson-Hines, Ann
2006-01-01
Contingency management is essential to the robust operation of complex systems such as spacecraft and Unpiloted Aerial Vehicles (UAVs). Automatic contingency handling allows a faster response to unsafe scenarios with reduced human intervention on low-cost and extended missions. Results, applied to the Autonomous Rotorcraft Project and Mars Science Lab, pave the way to more resilient autonomous systems.
Autonomous Aircraft Operations using RTCA Guidelines for Airborne Conflict Management
NASA Technical Reports Server (NTRS)
Krishnamurthy, Karthik; Wing, David J.; Barmore, Bryan E.; Barhydt, Richard; Palmer, Michael T.; Johnson, Edward J.; Ballin, Mark G.; Eischeid, Todd M.
2003-01-01
A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of DAG-TM autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special-use airspace (SUA) regions on either side of the pilot's planned route. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. Key guidelines from the RTCA Airborne Conflict Management (ACM) concept were applied to autonomous aircraft operations for this experiment. These concepts included the RTCA ACM definitions of distinct conflict detection and collision avoidance zones, and the use of a graded system of conflict alerts for the flight crew. Three studies were conducted in the course of the experiment. The first study investigated the effect of hazard proximity upon pilot ability to meet constraints and solve conflict situations. The second study investigated pilot use of the airborne tools when faced with an unexpected loss of separation (LOS). The third study explored pilot interactions in an over-constrained conflict situation, with and without priority rules dictating who should move first. Detailed results from these studies were presented at the 5th USA/Europe Air Traffic Management R&D Seminar (ATM2003). This overview paper focuses on the integration of the RTCA ACM concept into autonomous aircraft operations in highly constrained situations, and provides an overview of the results presented at the ATM2003 seminar. These results, together with previously reported studies, continue to support the feasibility of autonomous aircraft operations.
General Dynamic (GD) Launch Waveform On-Orbit Performance Report
NASA Technical Reports Server (NTRS)
Briones, Janette C.; Shalkhauser, Mary Jo
2014-01-01
The purpose of this report is to present the results from the GD SDR on-orbit performance testing using the launch waveform over TDRSS. The tests include the evaluation of well-tested waveform modes, the operation of RF links that are expected to have high margins, the verification of forward return link operation (including full duplex), the verification of non-coherent operational models, and the verification of radio at-launch operational frequencies. This report also outlines the launch waveform tests conducted and comparisons to the results obtained from ground testing.
113. Photocopy of drawing (1964 civil engineering drawing by Koebig ...
113. Photocopy of drawing (1964 civil engineering drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, GRADING AND UTILITY PLAN, SHEET C3 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
116. Photocopy of drawing (1964 mechanical drawing by Koebig & ...
116. Photocopy of drawing (1964 mechanical drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING, POINT ARGUELLO LAUNCH COMPLEX ONE, FLOW SHEET 1 AND PIPING PLANS, SHEET M-2 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
117. Photocopy of drawing (1964 mechanical drawing by Koebig & ...
117. Photocopy of drawing (1964 mechanical drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING; POINT ARGUELLO LAUNCH COMPLEX ONE; ABBREVIATIONS, SYMBOLS, AND SCHEDULES; SHEET M-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
114. Photocopy of drawing (1964 architectural drawing by Koebig & ...
114. Photocopy of drawing (1964 architectural drawing by Koebig & Koebig Inc.) ADDITION TO LAUNCH OPERATIONS BUILDING; POINT ARGUELLO LAUNCH COMPLEX ONE; FLOOR PLANS, SECTIONS, AND DETAILS; SHEET A-1 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance. 417.402 Section 417.402... TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.402 Compliance. (a) General. A launch operator's... of compliance to the FAA if: (1) A launch operator has contracted with a Federal launch range for the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance. 417.402 Section 417.402... TRANSPORTATION LICENSING LAUNCH SAFETY Ground Safety § 417.402 Compliance. (a) General. A launch operator's... of compliance to the FAA if: (1) A launch operator has contracted with a Federal launch range for the...
Autonomous System Technologies for Resilient Airspace Operations
NASA Technical Reports Server (NTRS)
Houston, Vincent E.; Le Vie, Lisa R.
2017-01-01
Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.
NASA Technical Reports Server (NTRS)
Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.
1984-01-01
The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.
Fuzzy logic in autonomous orbital operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
Laser Range and Bearing Finder for Autonomous Missions
NASA Technical Reports Server (NTRS)
Granade, Stephen R.
2004-01-01
NASA has recently re-confirmed their interest in autonomous systems as an enabling technology for future missions. In order for autonomous missions to be possible, highly-capable relative sensor systems are needed to determine an object's distance, direction, and orientation. This is true whether the mission is autonomous in-space assembly, rendezvous and docking, or rover surface navigation. Advanced Optical Systems, Inc. has developed a wide-angle laser range and bearing finder (RBF) for autonomous space missions. The laser RBF has a number of features that make it well-suited for autonomous missions. It has an operating range of 10 m to 5 km, with a 5 deg field of view. Its wide field of view removes the need for scanning systems such as gimbals, eliminating moving parts and making the sensor simpler and space qualification easier. Its range accuracy is 1% or better. It is designed to operate either as a stand-alone sensor or in tandem with a sensor that returns range, bearing, and orientation at close ranges, such as NASA's Advanced Video Guidance Sensor. We have assembled the initial prototype and are currently testing it. We will discuss the laser RBF's design and specifications. Keywords: laser range and bearing finder, autonomous rendezvous and docking, space sensors, on-orbit sensors, advanced video guidance sensor
ERIC Educational Resources Information Center
Betti, Mauro; Knijnik, Jorge; Venâncio, Luciana; Neto, Luiz Sanches
2015-01-01
Background: Academics, teachers and policy-makers across the world have discussed how to develop a relevant physical education (PE) curriculum that addresses the "body education" needs and interests of twenty-first-century students. In Brazil, after the launch of the national curricular parameters (PCNs) in the late 1990s, many new PE…
Challenges in verification and validation of autonomous systems for space exploration
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Jonsson, Ari
2005-01-01
Space exploration applications offer a unique opportunity for the development and deployment of autonomous systems, due to limited communications, large distances, and great expense of direct operation. At the same time, the risk and cost of space missions leads to reluctance to taking on new, complex and difficult-to-understand technology. A key issue in addressing these concerns is the validation of autonomous systems. In recent years, higher-level autonomous systems have been applied in space applications. In this presentation, we will highlight those autonomous systems, and discuss issues in validating these systems. We will then look to future demands on validating autonomous systems for space, identify promising technologies and open issues.
Pegasus air-launched space booster
NASA Astrophysics Data System (ADS)
Lindberg, Robert E.; Mosier, Marty R.
The launching of small satellites with the mother- aircraft-launched Pegasus booster yields substantial cost improvements over ground launching and enhances operational flexibility, since it allows launches to be conducted into any orbital inclination. The Pegasus launch vehicle is a three-stage solid-rocket-propelled system with delta-winged first stage. The major components of airborne support equipment, located on the mother aircraft, encompass a launch panel operator console, an electronic pallet, and a pylon adapter. Alternatives to the currently employed B-52 launch platform aircraft have been identified for future use. Attention is given to the dynamic, thermal, and acoustic environments experienced by the payload.
Autonomous Cryogenic Leak Detector for Improving Launch Site Operations
NASA Technical Reports Server (NTRS)
Goswami, Kisholoy
2013-01-01
NASA, military, and commercial satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. This project has developed a tapered optical fiber sensor for detecting hydrogen. The invention involves incorporating chemical indicators on the tapered end of an optical fiber using organically modified silicate nanomaterials. The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and qualify various mission-critical chemicals. Historically, hydrogen, helium, nitrogen, oxygen, and argon are the first five gases of HGDL focus. The use of these cryogenic fluids in the area of propulsion offers challenges. Due to their extreme low temperatures, these fluids induce contraction of the materials they contact, a potential cause of leakage. Among them, hydrogen is of particular concern. Small sensors are needed in multiple locations without adding to the structural weight. The most vulnerable parts of the engine are the connection flanges on the transfer lines, which have to support cycles of large thermal amplitude. The thermal protection of the engine provides a closed area, increasing the likelihood of an explosive atmosphere. Thus, even a small leak represents an unacceptable hazardous condition during loading operations, in flight, or after an aborted launch. Tapered fibers were first fabricated from 1/1.3-mm core/cladding (silica/ plastic) optical fibers. Typically a 1-ft (approx. 30- cm) section of the 1-mm fiber is cut from the bundle and marked with a pen into five 2-.-in. (.5.7-cm) sections. A propane torch is applied at every alternate mark to burn the jacket and soften the glass core. While the core is softening, the two ends of the fiber are pulled apart slowly to create fine tapers of .- to .-in. (.6- to 12-mm) long on the 1-mm optical fiber. Following this, the non-tapered ends of the fibers are polished to a 0.3-micron finish. Then these fibers were coated with indicators sensitive to hydrogen. The tapered hydrogen detection system with its unique flexibility is the only system that can be placed in many locations inside the vehicles and detect the exact location of leaks, saving millions of dollars for launch vehicle industries.
NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit
NASA Technical Reports Server (NTRS)
May, Todd
2012-01-01
The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Cargo Vehicle s first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate high-priority science experiments. SLS affordability initiatives include streamlining interfaces, applying risk-based insight into contracted work, centralizing systems engineering and integration, and nurturing a learning culture that continually benchmarks its performance against successful ventures. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.
NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit
NASA Technical Reports Server (NTRS)
May, Todd A.
2012-01-01
The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate high-priority science experiments. SLS affordability initiatives include streamlining interfaces, applying risk-based insight into contracted work, centralizing systems engineering and integration, and nurturing a learning culture that continually benchmarks its performance against successful ventures. As this paper will explain, the SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.
Orbital Express Mission Operations Planning and Resource Management using ASPEN
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel
2008-01-01
As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less man-power rises.Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. The Automated-Scheduling and Planning Environment (ASPEN)tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the ASE project's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.
Arianespace Launch Service Operator Policy for Space Safety (Regulations and Standards for Safety)
NASA Astrophysics Data System (ADS)
Jourdainne, Laurent
2013-09-01
Since December 10, 2010, the French Space Act has entered into force. This French Law, referenced as LOS N°2008-518 ("Loi relative aux Opérations Spatiales"), is compliant with international rules. This French Space Act (LOS) is now applicable for any French private company whose business is dealing with rocket launch or in orbit satellites operations. Under CNES leadership, Arianespace contributed to the consolidation of technical regulation applicable to launch service operators.Now for each launch operation, the operator Arianespace has to apply for an authorization to proceed to the French ministry in charge of space activities. In the files issued for this purpose, the operator is able to justify a high level of warranties in the management of risks through robust processes in relation with the qualification maintenance, the configuration management, the treatment of technical facts and relevant conclusions and risks reduction implementation when needed.Thanks to the historic success of Ariane launch systems through its more than 30 years of exploitation experience (54 successes in a row for latest Ariane 5 launches), Arianespace as well as European public and industrial partners developed key experiences and knowledge as well as competences in space security and safety. Soyuz-ST and Vega launch systems are now in operation from Guiana Space Center with identical and proved risks management processes. Already existing processes have been slightly adapted to cope with the new roles and responsibilities of each actor contributing to the launch preparation and additional requirements like potential collision avoidance with inhabited space objects.Up to now, more than 12 Ariane 5 launches and 4 Soyuz-ST launches have been authorized under the French Space Act regulations. Ariane 5 and Soyuz- ST generic demonstration of conformity have been issued, including exhaustive danger and impact studies for each launch system.This article will detail how Arianespace succeeded to contribute to the maturation of the LOS. How Arianespace managed to demonstrate t he full compliance to the technical regulation for the two launch systems under exploitation (Ariane 5 andSoyuz-ST). Up to now, Vega launch system organization is still in an intermediate transition phase between development and exploitation prior to its second flight. Vega launch system will benefit of Arianespace experience capitalized through Ariane and Soyuz."Safet y is not an option". For our company regarding the mid and long term interest of space business of the launch operations and associated customers, it is a must!
Autonomous Soaring for Improved Endurance of a Small Uninhabited Air Vehicle
NASA Technical Reports Server (NTRS)
Allen, Michael J.
2005-01-01
A relatively unexplored method to improve the endurance of an autonomous aircraft is to use buoyant plumes of air found in the lower atmosphere called thermals or updrafts. Glider pilots and birds commonly use updrafts to improve range, endurance, or cross-country speed. This report presents a quantitative analysis of a small electric-powered uninhabited air vehicle using updrafts to extend its endurance over a target location. A three-degree-of-freedom simulation of the uninhabited air vehicle was used to determine the yearly effect of updrafts on performance. Surface radiation and rawinsonde balloon measurements taken at Desert Rock, Nevada, were used to determine updraft size, strength, spacing, shape, and maximum height for the simulation. A fixed-width spiral path was used to search for updrafts at the same time as maintaining line-of-sight to the surface target position. Power was used only when the aircraft was flying at the lower-altitude limit in search of updrafts. Results show that an uninhabited air vehicle with a nominal endurance of 2 hours can fly a maximum of 14 hours using updrafts during the summer and a maximum of 8 hours during the winter. The performance benefit and the chance of finding updrafts both depend on what time of day the uninhabited air vehicle is launched. Good endurance and probability of finding updrafts during the year was obtained when the uninhabited air vehicle was launched 30 percent into the daylight hours after sunrise each day. Yearly average endurance was found to be 8.6 hours with these launch times.
Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry
2009-01-01
The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the launch platform for the Project Morpheus lander at the midfield point of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. At the north end of the runway is a rock and crater-filled planetary scape built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
2012-07-19
CAPE CANAVERAL, Fla. – This aerial view shows the launch platform for the Project Morpheus lander at the midfield point of the Shuttle Landing Facility, or SLF, at NASA’s Kennedy Space Center in Florida. At the north end of the runway is a rock and crater-filled planetary scape built so engineers can test the Autonomous Landing and Hazard Avoidance Technology, or ALHAT system on the Morpheus lander. Testing will demonstrate ALHAT’s ability to provide required navigation data negotiating the Morpheus lander away from risks during descent. Checkout of the prototype lander has been ongoing at NASA’s Johnson Space Center in Houston in preparation for its first free flight. The SLF site will provide the lander with the kind of field necessary for realistic testing. Project Morpheus is one of 20 small projects comprising the Advanced Exploration Systems, or AES, program in NASA’s Human Exploration and Operations Mission Directorate. AES projects pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://www.nasa.gov/centers/johnson/exploration/morpheus/index.html Photo credit: NASA/Kim Shiflett
GOES-R STATIONKEEPING AND MOMENTUM MANAGEMENT
NASA Technical Reports Server (NTRS)
Chu, Donald; Chen, Sam; Early, Derrick; Freesland, Doug; Krimchansky, Alexander; Naasz, Bo; Reth, Alan; Tadikonda, Kumar; Tsui, John; Walsh, Tim
2006-01-01
The NOAA Geostationary Operational Environmental Satellites (GOES) fire thrusters to remain within a 1deg longitude-latitude box and to dump accumulated angular momentum. In the past, maneuvers have disrupted GOES imaging due to attitude transients and the loss of orbit knowledge. If the R-series of spacecraft to be launched starting in 2012 were to follow current practice, maneuvers would still fail to meet Image Navigation and Registration (INR) specifications during and after thruster firings. Although maneuvers and recovery take only one percent of spacecraft lifetime, they sometimes come at inopportune times, such as hurricane season, when coverage is critical. To alleviate this problem, thruster firings small enough not to affect imaging are being considered. Eliminating post-maneuver recovery periods increases availability and facilitates autonomous operation. Frequent maneuvers also reduce 1ongitudeAatitude variation and allow satellite co-location. Improved orbit observations come from a high-altitude GPS receiver, and improved attitude control comes from thruster torque compensation. This paper reviews the effects of thruster firings on position knowledge and pointing control and suggests that low-thrust burns plus GPS and feedforward control offer a less disruptive approach to GOES-R stationkeeping and momentum management.
NASA Technical Reports Server (NTRS)
Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.
2013-01-01
Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and raise the amount of crew time available for scientific research. The next phase of autonomous procedure development is expected to include payload science and human research investigations. Additionally, ISS International Partners have expressed interest in participating in this effort. The recently approved one-year crew expedition starting in 2015, consisting of one Russian and one U.S. Operating Segment (USOS) crewmember, will be used not only for long duration human research investigations but also for the testing of exploration operations concepts, including crew autonomy.
14 CFR 420.45 - Transfer of a license to operate a launch site.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transfer of a license to operate a launch site. 420.45 Section 420.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE License Terms and...
14 CFR 420.45 - Transfer of a license to operate a launch site.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transfer of a license to operate a launch site. 420.45 Section 420.45 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION LICENSING LICENSE TO OPERATE A LAUNCH SITE License Terms and...
Launch operations manpower yesterday, today and tomorrow
NASA Technical Reports Server (NTRS)
Ojalehto, George
1991-01-01
The manpower to accomplish spacecraft launch operations was analyzed. It seems that the ratio of personnel to launches was much higher in the beginning of the space program than in later years. The analysis was performed to see why the operational efficiency was better then than now and how that efficiency can be reattained.
View (southwest to northeast) of remote launch operations building, showing ...
View (southwest to northeast) of remote launch operations building, showing diesel exhaust shaft on the left and intake shaft on the right. To the far right is the tunnel entrance - Stanley R. Mickelsen Safeguard Complex, Remote Launch Operations Buildings, Near Service Road exit from patrol Road, Nekoma, Cavalier County, ND
Autonomous Aerobraking: A Design, Development, and Feasibility Study
NASA Technical Reports Server (NTRS)
Prince, Jill L. H.; Powell, Richard W.; Murri, Dan
2011-01-01
Aerobraking has been used four times to decrease the apoapsis of a spacecraft in a captured orbit around a planetary body with a significant atmosphere utilizing atmospheric drag to decelerate the spacecraft. While aerobraking requires minimum fuel, the long time required for aerobraking requires both a large operations staff, and large Deep Space Network resources. A study to automate aerobraking has been sponsored by the NASA Engineering and Safety Center to determine initial feasibility of equipping a spacecraft with the onboard capability for autonomous aerobraking, thus saving millions of dollars incurred by a large aerobraking operations workforce and continuous DSN coverage. This paper describes the need for autonomous aerobraking, the development of the Autonomous Aerobraking Development Software that includes an ephemeris estimator, an atmospheric density estimator, and maneuver calculation, and the plan forward for continuation of this study.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S., Jr.
2013-01-01
Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).
Autonomous Flight Rules Concept: User Implementation Costs and Strategies
NASA Technical Reports Server (NTRS)
Cotton, William B.; Hilb, Robert
2014-01-01
The costs to implement Autonomous Flight Rules (AFR) were examined for estimates in acquisition, installation, training and operations. The user categories were airlines, fractional operators, general aviation and unmanned aircraft systems. Transition strategies to minimize costs while maximizing operational benefits were also analyzed. The primary cost category was found to be the avionics acquisition. Cost ranges for AFR equipment were given to reflect the uncertainty of the certification level for the equipment and the extent of existing compatible avionics in the aircraft to be modified.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.
2013-01-01
This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.
14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.
Code of Federal Regulations, 2010 CFR
2010-01-01
... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...
14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.
Code of Federal Regulations, 2013 CFR
2013-01-01
... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...
14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.
Code of Federal Regulations, 2012 CFR
2012-01-01
... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...
14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.
Code of Federal Regulations, 2011 CFR
2011-01-01
... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...
14 CFR 417.125 - Launch of an unguided suborbital launch vehicle.
Code of Federal Regulations, 2014 CFR
2014-01-01
... elevation angle setting that ensures the rocket will not fly uprange. A launch operator must set the... throughout each stage of powered flight. A caliber, for a rocket configuration, is defined as the distance... rocket configuration. (f) Tracking. A launch operator must track the flight of an unguided suborbital...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...
Code of Federal Regulations, 2010 CFR
2010-07-01
... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...
Code of Federal Regulations, 2014 CFR
2014-07-01
... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and examine lifeboat and rescue boat launching appliances? 150.504 Section 150.504 Navigation and... and examine lifeboat and rescue boat launching appliances? (a) The operator must service launching appliances for lifeboats and rescue boats at intervals recommended in the manufacturer's instructions under...
X-34 Vehicle Aerodynamic Characteristics
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.
1998-01-01
The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.
NASA Technical Reports Server (NTRS)
Conway, Lynn; Volz, Richard; Walker, Michael W.
1989-01-01
There is a growing need for humans to perform complex remote operations and to extend the intelligence and experience of experts to distant applications. It is asserted that a blending of human intelligence, modern information technology, remote control, and intelligent autonomous systems is required, and have coined the term tele-autonomous technology, or tele-automation, for methods producing intelligent action at a distance. Tele-automation goes beyond autonomous control by blending in human intelligence. It goes beyond tele-operation by incorporating as much autonomy as possible and/or reasonable. A new approach is discussed for solving one of the fundamental problems facing tele-autonomous systems: The need to overcome time delays due to telemetry and signal propagation. New concepts are introduced called time and position clutches, that allow the time and position frames between the local user control and the remote device being controlled, to be desynchronized respectively. The design and implementation of these mechanisms are described in detail. It is demonstrated that these mechanisms lead to substantial telemanipulation performance improvements, including the result of improvements even in the absence of time delays. The new controls also yield a simple protocol for control handoffs of manipulation tasks between local operators and remote systems.
Launch Vehicle Operations Simulator
NASA Technical Reports Server (NTRS)
Blackledge, J. W.
1974-01-01
The Saturn Launch Vehicle Operations Simulator (LVOS) was developed for NASA at Kennedy Space Center. LVOS simulates the Saturn launch vehicle and its ground support equipment. The simulator was intended primarily to be used as a launch crew trainer but it is also being used for test procedure and software validation. A NASA/contractor team of engineers and programmers implemented the simulator after the Apollo XI lunar landing during the low activity periods between launches.
Debris Dispersion Model Using Java 3D
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.
NASA Range Safety Annual Report 2007
NASA Technical Reports Server (NTRS)
Dumont, Alan G.
2007-01-01
As always, Range Safety has been involved in a number of exciting and challenging activities and events. Throughout the year, we have strived to meet our goal of protecting the public, the workforce, and property during range operations. During the past year, Range Safety was involved in the development, implementation, and support of range safety policy. Range Safety training curriculum development was completed this year and several courses were presented. Tailoring exercises concerning the Constellation Program were undertaken with representatives from the Constellation Program, the 45th Space Wing, and the Launch Constellation Range Safety Panel. Range Safety actively supported the Range Commanders Council and it subgroups and remained involved in updating policy related to flight safety systems and flight safety analysis. In addition, Range Safety supported the Space Shuttle Range Safety Panel and addressed policy concerning unmanned aircraft systems. Launch operations at Kennedy Space Center, the Eastern and Western ranges, Dryden Flight Research Center, and Wallops Flight Facility were addressed. Range Safety was also involved in the evaluation of a number of research and development efforts, including the space-based range (formerly STARS), the autonomous flight safety system, the enhanced flight termination system, and the joint advanced range safety system. Flight safety system challenges were evaluated. Range Safety's role in the Space Florida Customer Assistance Service Program for the Eastern Range was covered along with our support for the Space Florida Educational Balloon Release Program. We hope you have found the web-based format both accessible and easy to use. Anyone having questions or wishing to have an article included in the 2008 Range Safety Annual Report should contact Alan Dumont, the NASA Range Safety Program Manager located at the Kennedy Space Center, or Michael Dook at NASA Headquarters.
2014-04-30
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander touches down on the autonomous landing and hazard avoidance technology, or ALHAT, field after lifting off on a free-flight test from a new launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Kim Shiflett
2014-04-30
CAPE CANAVERAL, Fla. – NASA's Project Morpheus prototype lander touches down on the autonomous landing and hazard avoidance technology, or ALHAT, field after lifting off on a free-flight test from a new launch pad at the north end of the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. The 98-second test began at 1:57 p.m. EDT with the Morpheus lander launching from the ground over a flame trench and ascending more than 800 feet at a peak speed of 36 mph. The vehicle, with its recently installed ALHAT sensors, surveyed the hazard field to determine safe landing sites. Morpheus then flew forward and downward covering approximately 1300 feet while performing a 78-foot divert to simulate a hazard avoidance maneuver. The lander descended and landed on a dedicated pad inside the ALHAT hazard field. Project Morpheus tests NASA’s ALHAT and an engine that runs on liquid oxygen and methane, which are green propellants. These new capabilities could be used in future efforts to deliver cargo to planetary surfaces. The landing facility provides the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus’ ALHAT payload allows it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov/. Photo credit: NASA/Frankie Martin
Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.;
2007-01-01
Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.
The Spacecraft Emergency Response System (SERS) for Autonomous Mission Operations
NASA Technical Reports Server (NTRS)
Breed, Julia; Chu, Kai-Dee; Baker, Paul; Starr, Cynthia; Fox, Jeffrey; Baitinger, Mick
1998-01-01
Today, most mission operations are geared toward lowering cost through unmanned operations. 7-day/24-hour operations are reduced to either 5-day/8-hour operations or become totally autonomous, especially for deep-space missions. Proper and effective notification during a spacecraft emergency could mean success or failure for an entire mission. The Spacecraft Emergency Response System (SERS) is a tool designed for autonomous mission operations. The SERS automatically contacts on-call personnel as needed when crises occur, either on-board the spacecraft or within the automated ground systems. Plus, the SERS provides a group-ware solution to facilitate the work of the person(s) contacted. The SERS is independent of the spacecraft's automated ground system. It receives and catalogues reports for various ground system components in near real-time. Then, based on easily configurable parameters, the SERS determines whom, if anyone, should be alerted. Alerts may be issued via Sky-Tel 2-way pager, Telehony, or e-mail. The alerted personnel can then review and respond to the spacecraft anomalies through the Netscape Internet Web Browser, or directly review and respond from the Sky-Tel 2-way pager.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
On-board emergent scheduling of autonomous spacecraft payload operations
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1994-01-01
This paper describes a behavioral competency level concerned with emergent scheduling of spacecraft payload operations. The level is part of a multi-level subsumption architecture model for autonomous spacecraft, and it functions as an action selection system for processing a spacecraft commands that can be considered as 'plans-as-communication'. Several versions of the selection mechanism are described, and their robustness is qualitatively compared.
2008-12-01
n. , ’>, ,. Australian Government Department of Defence Defence Science and Technology Organisation Automated Detection and Classification in... Organisation DSTO-GD-0537 ABSTRACT Autonomous Underwater Vehicles (AUVs) are increasingly being used by military forces to acquire high-resolution sonar...release Published by Maritime Operations Division DsTO Defrnce sdence and Technology Organisation PO Box 1500 Edinburgh South Australia 5111 Australia
Active Control of NITINOL-Reinforced Structural Composites
1992-10-12
useful in many critical structures that are intended to operate autonomously for long durations in isolated environments such as defense vehicles , space...durations in isolated environment such as defense vehicles , space structures and satellites. ACKNOWLEDGEMENTS This work is funded by a grant from the US Army...are intended to operate autonomously for long durations in isolated environment such as defense vehicles , space structures and satellites. REFERENCES
System for autonomous monitoring of bioagents
Langlois, Richard G.; Milanovich, Fred P.; Colston, Jr, Billy W.; Brown, Steve B.; Masquelier, Don A.; Mariella, Jr., Raymond P.; Venkateswaran, Kodomudi
2015-06-09
An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.
Effectivity of atmospheric electricity on launch availability
NASA Technical Reports Server (NTRS)
Ernst, John A.
1991-01-01
Thunderstorm days at KSC; percentage of frequency of thunderstorms (1957-1989); effect of lightning advisory on ground operations; Shuttle launch history; Shuttle launch weather history; applied meteorology unit; and goals/operational benefits. This presentation is represented by viewgraphs.
Aircraft operability methods applied to space launch vehicles
NASA Astrophysics Data System (ADS)
Young, Douglas
1997-01-01
The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.
NASA Astrophysics Data System (ADS)
Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.
2016-05-01
For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-σ. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.
NASA Technical Reports Server (NTRS)
Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.
2016-01-01
For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.
Explanation Capabilities for Behavior-Based Robot Control
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2012-01-01
A recent study that evaluated issues associated with remote interaction with an autonomous vehicle within the framework of grounding found that missing contextual information led to uncertainty in the interpretation of collected data, and so introduced errors into the command logic of the vehicle. As the vehicles became more autonomous through the activation of additional capabilities, more errors were made. This is an inefficient use of the platform, since the behavior of remotely located autonomous vehicles didn't coincide with the "mental models" of human operators. One of the conclusions of the study was that there should be a way for the autonomous vehicles to describe what action they choose and why. Robotic agents with enough self-awareness to dynamically adjust the information conveyed back to the Operations Center based on a detail level component analysis of requests could provide this description capability. One way to accomplish this is to map the behavior base of the robot into a formal mathematical framework called a cost-calculus. A cost-calculus uses composition operators to build up sequences of behaviors that can then be compared to what is observed using well-known inference mechanisms.
Launch and Landing Effects Ground Operations (LLEGO) Model
NASA Technical Reports Server (NTRS)
2008-01-01
LLEGO is a model for understanding recurring launch and landing operations costs at Kennedy Space Center for human space flight. Launch and landing operations are often referred to as ground processing, or ground operations. Currently, this function is specific to the ground operations for the Space Shuttle Space Transportation System within the Space Shuttle Program. The Constellation system to follow the Space Shuttle consists of the crewed Orion spacecraft atop an Ares I launch vehicle and the uncrewed Ares V cargo launch vehicle. The Constellation flight and ground systems build upon many elements of the existing Shuttle flight and ground hardware, as well as upon existing organizations and processes. In turn, the LLEGO model builds upon past ground operations research, modeling, data, and experience in estimating for future programs. Rather than to simply provide estimates, the LLEGO model s main purpose is to improve expenses by relating complex relationships among functions (ground operations contractor, subcontractors, civil service technical, center management, operations, etc.) to tangible drivers. Drivers include flight system complexity and reliability, as well as operations and supply chain management processes and technology. Together these factors define the operability and potential improvements for any future system, from the most direct to the least direct expenses.
Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)
2001-01-01
NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.
Apollo Saturn 511 effluent measurements from the Apollo 16 launch operations: An experiment
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Hulten, W. C.; Wornom, D. E.
1974-01-01
An experiment was performed in conjunction with the Apollo 16 launch to define operational and instrumentational problems associated with launch-vehicle exhaust effluent monitoring. Ground and airborne sampling were performed for CO, CO2, hydrocarbons, and particulates. Sampling systems included filter pads and photometers for particulates and whole-air grab samples for gases. Launch debris was identified in the particulate samples at ground level(taken immediately after launch) and in the airborne measurements (taken 40 to 50 minutes after launch approximately 40 km downwind of the pad). Operational problems were identified and included the need for higher instrumentation mobility and the need for real-time sampling instrumentation as opposed to collection-type samples such as the whole-air grab sample.
Intelligent Systems: Terrestrial Observation and Prediction Using Remote Sensing Data
NASA Technical Reports Server (NTRS)
Coughlan, Joseph C.
2005-01-01
NASA has made science and technology investments to better utilize its large space-borne remote sensing data holdings of the Earth. With the launch of Terra, NASA created a data-rich environment where the challenge is to fully utilize the data collected from EOS however, despite unprecedented amounts of observed data, there is a need for increasing the frequency, resolution, and diversity of observations. Current terrestrial models that use remote sensing data were constructed in a relatively data and compute limited era and do not take full advantage of on-line learning methods and assimilation techniques that can exploit these data. NASA has invested in visualization, data mining and knowledge discovery methods which have facilitated data exploitation, but these methods are insufficient for improving Earth science models that have extensive background knowledge nor do these methods refine understanding of complex processes. Investing in interdisciplinary teams that include computational scientists can lead to new models and systems for online operation and analysis of data that can autonomously improve in prediction skill over time.
1999-11-01
Two of KSC's X-34 technicians (far right), David Rowell and Roger Cartier, look at work being done on the modified A-1A at Dryden Flight Research Center, Calif. Since September, eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted Orbital Sciences Corporation and NASA's Dryden Flight Research Center in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala
1999-11-01
At Dryden Flight Research Center, Calif., KSC technician Bryan Taylor makes an adjustment on the modified X-34, known as A-1A. Taylor is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital Sciences Corporation and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and David Rowell. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala
1999-11-01
At Dryden Flight Research Center, Calif., KSC technician James Niehoff Jr. (left) helps attach the wing of the modified X-34, known as A-1A. Niehoff is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital Sciences Corporation and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, David Rowell and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala
NASA Technical Reports Server (NTRS)
Spencer, James E., Jr.; Looney, Joe
1994-01-01
In this paper, the prime objective is to describe a custom 4-dof (degree-of-freedom) robotic arm capable of autonomously or telerobotically performing systematic HEPA filter inspection and certification in the Shuttle Launch Pad Payload Changeout Rooms (PCR's) on pads A and B at the Kennedy Space Center, Florida. This HEPA filter inspection robot (HFIR) has been designed to be easily deployable and is equipped with the necessary sensory devices, control hardware, software and man-machine interfaces needed to implement HEPA filter inspection reliably and efficiently without damaging the filters or colliding with existing PCR structures or filters. The main purpose of the HFIR is to implement an automated positioning system to move special inspection sensors in pre-defined or manual patterns for the purpose of verifying filter integrity and efficiency. This will ultimately relieve NASA Payload Operations from significant problems associated with time, cost and personnel safety, impacts realized during non-automated PCR HFIR filter certification.
SP-100 - The national space reactor power system program in response to future needs
NASA Astrophysics Data System (ADS)
Armijo, J. S.; Josloff, A. T.; Bailey, H. S.; Matteo, D. N.
The SP-100 system has been designed to meet comprehensive and demanding NASA/DOD/DOE requirements. The key requirements include: nuclear safety for all mission phases, scalability from 10's to 100's of kWe, reliable performance at full power for seven years of partial power for ten years, survivability in civil or military threat environments, capability to operate autonomously for up to six months, capability to protect payloads from excessive radiation, and compatibility with shuttle and expendable launch vehicles. The authors address of major progress in terms of design, flexibility/scalability, survivability, and development. These areas, with the exception of survivability, are discussed in detail. There has been significant improvement in the generic flight system design with substantial mass savings and simplification that enhance performance and reliability. Design activity has confirmed the scalability and flexibility of the system and the ability to efficiently meet NASA, AF, and SDIO needs. SP-100 development continues to make significant progress in all key technology areas.
KSC technicians on team to modify X-34
NASA Technical Reports Server (NTRS)
1999-01-01
The modified X-34, known as A-1A, rests in the background of the Dryden Flight Research Center at Edwards Air Force Base, Calif., while an integrated team of KSC, Dryden Flight Research Center and Orbital Sciences Corporation engineers and technicians bring the X-34 A-1A vehicle closer to test flight readiness. Since September, eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air- launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.
KSC technicians on team to modify X-34
NASA Technical Reports Server (NTRS)
1999-01-01
At Dryden Flight Research Center, Calif., KSC technician Bryan Taylor makes an adjustment on the modified X-34, known as A-1A. Taylor is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital Sciences Corporation and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, James Niehoff Jr. and David Rowell. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L- 1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.
KSC technicians on team to modify X-34
NASA Technical Reports Server (NTRS)
1999-01-01
At Dryden Flight Research Center, Calif., KSC technician James Niehoff Jr. (left) helps attach the wing of the modified X-34, known as A-1A. Niehoff is one of eight NASA engineering technicians from KSC's Engineering Prototype Lab who have assisted Orbital Sciences Corporation and Dryden in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The other KSC technicians are Kevin Boughner, Roger Cartier, Mike Dininny, Mike Lane, Jerry Moscoso, David Rowell and Bryan Taylor. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.
NASA Technical Reports Server (NTRS)
Beauchamp, P. M.; Brown, R. H.; Capps, R. W.; Rodgers, D. H.; Sercel, J.; Vane, G.; Soderblom, L. A.; Yelle, R. V.
1994-01-01
The technological capabilities are now at hand to design an integrated system that combines science instruments, spacecraft, and propulsion elements into a single system. The authors have called this a sciencecraft since it is intended to provide automatic scientific observations of planetary and astrophysical objects. Integration of function allows lower mass and cost and supports a short development cycle. A specific science mission is described in this paper, a flyby of Neptune, Triton, and an object in the Kuiper belt. The SCIENCECRAFT system is described. It has electric propulsion and is capable of measuring the surface constituents and morphology of objects visited and characterizing their atmospheres both in emission and adsorption (against the Sun). Miniature fields and particles experiments are incorporated that will provide interplanetary information together with details of the magnetic and electric attributes of each object. The Sciencecraft is Delta launched and has a flight time to the Kuiper belt of 7 years. The design is such that the craft functions in a largely autonomous mode to provide low cost mission operations.
Comparison of three control methods for an autonomous vehicle
NASA Astrophysics Data System (ADS)
Deshpande, Anup; Mathur, Kovid; Hall, Ernest
2010-01-01
The desirability and challenge of developing a completely autonomous vehicle and the rising need for more efficient use of energy by automobiles motivate this research- a study for an optimum solution to computer control of energy efficient vehicles. The purpose of this paper is to compare three control methods - mechanical, hydraulic and electric that have been used to convert an experimental all terrain vehicle to drive by wire which would eventually act as a test bed for conducting research on various technologies for autonomous operation. Computer control of basic operations in a vehicle namely steering, braking and speed control have been implemented and will be described in this paper. The output from a 3 axis motion controller is used for this purpose. The motion controller is interfaced with a software program using WSDK (Windows Servo Design Kit) as an intermediate tuning layer for tuning and parameter settings in autonomous operation. The software program is developed in C++. The voltage signal sent to the motion controller can be varied through the control program for desired results in controlling the steering motor, activating the hydraulic brakes and varying the vehicle's speed. The vehicle has been tested for its basic functionality which includes testing of street legal operations and also a 1000 mile test while running in a hybrid mode. The vehicle has also been tested for control when it is interfaced with devices such as a keyboard, joystick and sensors under full autonomous operation. The vehicle is currently being tested in various safety studies and is being used as a test bed for experiments in control courses and research studies. The significance of this research is in providing a greater understanding of conventional driving controls and the possibility of improving automobile safety by removing human error in control of a motor vehicle.
Orion Pad Abort 1 Flight Test - Ground and Flight Operations
NASA Technical Reports Server (NTRS)
Hackenbergy, Davis L.; Hicks, Wayne
2011-01-01
This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.
Deep Space 1: Testing New Technologies for Future Small Bodies Missions
NASA Technical Reports Server (NTRS)
Rayman, Marc D.
2001-01-01
Launched on October 24, 1998, Deep Space 1 (DS1) was the first mission of NASA's New Millennium Program, chartered to validate in space high-risk, new technologies important for future space science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The mission met or exceeded all of its success criteria. The 12 technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the fist users of these new capabilities. Examples of the benefits to future small body missions from DS1's technologies will be described.
Web-based Weather Expert System (WES) for Space Shuttle Launch
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.; Rajkumar, T.
2003-01-01
The Web-based Weather Expert System (WES) is a critical module of the Virtual Test Bed development to support 'go/no go' decisions for Space Shuttle operations in the Intelligent Launch and Range Operations program of NASA. The weather rules characterize certain aspects of the environment related to the launching or landing site, the time of the day or night, the pad or runway conditions, the mission durations, the runway equipment and landing type. Expert system rules are derived from weather contingency rules, which were developed over years by NASA. Backward chaining, a goal-directed inference method is adopted, because a particular consequence or goal clause is evaluated first, and then chained backward through the rules. Once a rule is satisfied or true, then that particular rule is fired and the decision is expressed. The expert system is continuously verifying the rules against the past one-hour weather conditions and the decisions are made. The normal procedure of operations requires a formal pre-launch weather briefing held on Launch minus 1 day, which is a specific weather briefing for all areas of Space Shuttle launch operations. In this paper, the Web-based Weather Expert System of the Intelligent Launch and range Operations program is presented.
Ground breaking at Astrotech for a new facility
NASA Technical Reports Server (NTRS)
1999-01-01
Dirt flies during a ground-breaking ceremony to kick off Astrotech Space Operations' construction of a new satellite preparation facility to support the Delta IV, Boeing's winning entrant in the Air Force Evolved Expendable Launch Vehicle (EELV) Program. Wielding shovels are (from left to right) Tom Alexico; Chet Lee, chairman, Astrotech Space Operations; Gen. Forrest McCartney, vice president, Launch Operations, Lockheed Martin; Richard Murphy, director, Delta Launch Operations, The Boeing Company; Keith Wendt; Toby Voltz; Loren Shriver, deputy director, Launch & Payload Processing, Kennedy Space Center; Truman Scarborough, Brevard County commissioner; U.S. Representative 15th Congressional District David Weldon; Ron Swank; and watching the action at right is George Baker, president, Astrotech Space Operations. Astrotech is located in Titusville, Fla. It is a wholly owned subsidiary of SPACEHAB, Inc., and has been awarded a 10-year contract to provide payload processing services for The Boeing Company. The facility will enable Astrotech to support the full range of satellite sizes planned for launch aboard Delta II, III and IV launch vehicles, as well as the Atlas V, Lockheed Martin's entrant in the EELV Program. The Atlas V will be used to launch satellites for government, including NASA, and commercial customers.
NASA Technical Reports Server (NTRS)
2013-01-01
Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays; Multi-Dimensional Damage Detection for Surfaces and Structures; ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy; Autonomous Cryogenic Leak Detector for Improving Launch Site Operations; Submillimeter Planetary Atmospheric Chemistry Exploration Sounder; Method for Reduction of Silver Biocide Plating on Metal Surfaces; Silicon Micromachined Microlens Array for THz Antennas; Forward-Looking IED Detector Ground Penetrating Radar; Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication, Battery Charge Equalizer with Transformer Array; An Efficient, Highly Flexible Multi-Channel Digital Downconverter Architecture; Dimmable Electronic Ballast for a Gas Discharge Lamp; Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology; Enhanced Schapery Theory Software Development for Modeling Failure of Fiber-Reinforced Laminates; High-Performance, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants; Carbon Nanotube Microarrays Grown on Nanoflake Substrates; Differential Muon Tomography to Continuously Monitor Changes in the Composition of Subsurface Fluids; Microgravity Drill and Anchor System; 20 Granular Media-Based Tunable Passive Vibration Suppressor; 21 Miga Aero Actuator and 2D Machined Mechanical Binary Latch; Micro-XRF for In Situ Geological Exploration of Other Planets; Hydrogen-Enhanced Lunar Oxygen Extraction and Storage Using Only Solar Power; Uplift of Ionospheric Oxygen Ions During Extreme Magnetic Storms; Miniaturized, High-Speed, Modulated X-Ray Source; Hollow-Fiber Spacesuit Water Membrane Evaporator 25 High-Power Single-Mode 2.65-micrometers InGaAsSb/AlInGaAsSb Diode Lasers; Optical Device for Converting a Laser Beam Into Two Co-aligned but Oppositely Directed Beams; A Hybrid Fiber/Solid-State Regenerative Amplifier with Tunable Pulse Widths for Satellite Laser Ranging; X-Ray Diffractive Optics; SynGenics Optimization System (SynOptSys); 29 CFD Script for Rapid TPS Damage Assessment; radEq Add-On Module for CFD Solver Loci-CHEM; Science Opportunity Analyzer (SOA) Version 8; 30 Autonomous Byte Stream Randomizer; Distributed Engine Control Empirical/Analytical Verification Tools; Dynamic Server-Based KML Code Generator Method for Level-of-Detail Traversal of Geospatial Data; Automated Planning of Science Products Based on Nadir Overflights and Alerts for Onboard and Ground Processing; Linked Autonomous Interplanetary Satellite Orbit Navigation; Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing; Scheduling Operations for Massive Heterogeneous Clusters; Deepak Condenser Model (DeCoM); Flight Software Math Library; Recirculating 1-K-Pot for Pulse-Tube Cryostats; 35 Method for Processing Lunar Regolith Using Microwaves; Wells for In Situ Extraction of Volatiles from Regolith (WIEVR); and Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft.
Situation Awareness of Onboard System Autonomy
NASA Technical Reports Server (NTRS)
Schreckenghost, Debra; Thronesbery, Carroll; Hudson, Mary Beth
2005-01-01
We have developed intelligent agent software for onboard system autonomy. Our approach is to provide control agents that automate crew and vehicle systems, and operations assistants that aid humans in working with these autonomous systems. We use the 3 Tier control architecture to develop the control agent software that automates system reconfiguration and routine fault management. We use the Distributed Collaboration and Interaction (DCI) System to develop the operations assistants that provide human services, including situation summarization, event notification, activity management, and support for manual commanding of autonomous system. In this paper we describe how the operations assistants aid situation awareness of the autonomous control agents. We also describe our evaluation of the DCI System to support control engineers during a ground test at Johnson Space Center (JSC) of the Post Processing System (PPS) for regenerative water recovery.
Fifth FLTSATCOM to be launched
NASA Technical Reports Server (NTRS)
1981-01-01
Launch of the FLTSATOOM-E, into an elliptical orbit by the Atlas Centaur launch vehicle is announced. The launch and relevant launch operations are described. A chart of the launch sequence for FLTSATCOM-E communication satellite is given.
Autonomous Vehicles: A Policy Roadmap for Law Enforcement
2015-09-01
Timeline for Autonomous Vehicle Development ................................48 Figure 3. RAS 2020 Strategic Theme, Five Areas of Strategic Activity to...BLANK 1 I. INTRODUCTION It would be like an elevator. They used to have elevator operators, and then we developed some simple circuitry to have...advancements to make autonomous vehicles possible are being developed , manufactured, and tested. These two advantages should be used to help develop a solid
Testing the Intelligence of Unmanned Autonomous Systems
2008-01-01
decisions without the operator. The term autonomous is also used interchangeably with intelligent, giving rise to the name unmanned autonomous system ( UAS ...For the purposes of this article, UAS describes an unmanned system that makes decisions based on gathered information. Because testers should not...make assumptions about the decision process within a UAS , there is a need for a methodology that completely tests this decision process without biasing
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.
2005-02-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
NASA Technical Reports Server (NTRS)
1971-01-01
Individualized program direct costs for each satellite program are presented. This breakdown provides the activity level dependent costs for each satellite program. The activity level dependent costs, or, more simply, program direct costs, are comprised of the total payload costs (as these costs are strictly program dependent) and the direct launch vehicle costs. Only those incremental launch vehicle costs associated directly with the satellite program are considered. For expendable launch vehicles the direct costs include the vehicle investment hardware costs and the launch operations costs. For the reusable STS vehicles the direct costs include only the launch operations, recovery operations, command and control, vehicle maintenance, and propellant support. The costs associated with amortization of reusable vehicle investment, RDT&E range support, etc., are not included.
1965-05-25
This image depicts the tension in the Launch Control Center of the Launch Complex 37 at Cape Canaveral, Florida, during the SA-8 on May 25, 1965. Pointing, center is Dr. Kurt Debus, Director, Launch Operations Directorate, MSFC. To the right is Dr. Hans Gruene, Deputy Director, Launch Operations Directorate, MSFC; Dr. von Braun, Director, Marshall Space Flight Center (MSFC); and leaning, Dr. Eberhard Rees, Director, Deputy Director for Research and Development, MSFC. The SA-8 mission, with a Saturn I launch vehicle, made the first night launch and deployed Pegasus II, micrometeoroid detection satellite.
Development of Mission Enabling Infrastructure — Cislunar Autonomous Positioning System (CAPS)
NASA Astrophysics Data System (ADS)
Cheetham, B. W.
2017-10-01
Advanced Space, LLC is developing the Cislunar Autonomous Positioning System (CAPS) which would provide a scalable and evolvable architecture for navigation to reduce ground congestion and improve operations for missions throughout cislunar space.
Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2014-01-01
Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.
Design Description of the X-33 Avionics Architecture
NASA Technical Reports Server (NTRS)
Reichenfeld, Curtis J.; Jones, Paul G.
1999-01-01
In this paper, we provide a design description of the X-33 avionics architecture. The X-33 is an autonomous Single Stage to Orbit (SSTO) launch vehicle currently being developed by Lockheed Martin for NASA as a technology demonstrator for the VentureStar Reusable Launch Vehicle (RLV). The X-33 avionics provides autonomous control of die vehicle throughout takeoff, ascent, descent, approach, landing, rollout, and vehicle safing. During flight the avionics provides communication to the range through uplinked commands and downlinked telemetry. During pre-launch and post-safing activities, the avionics provides interfaces to ground support consoles that perform vehicle flight preparations and maintenance. The X-33 Avionics is a hybrid of centralized and distributed processing elements connected by three dual redundant Mil-Std 1553 data buses. These data buses are controlled by a central processing suite located in the avionics bay and composed of triplex redundant Vehicle Mission Computers (VMCs). The VMCs integrate mission management, guidance, navigation, flight control, subsystem control and redundancy management functions. The vehicle sensors, effectors and subsystems are interfaced directly to the centralized VMCs as remote terminals or through dual redundant Data Interface Units (DIUs). The DIUs are located forward and aft of the avionics bay and provide signal conditioning, health monitoring, low level subsystem control and data interface functions. Each VMC is connected to all three redundant 1553 data buses for monitoring and provides a complete identical data set to the processing algorithms. This enables bus faults to be detected and reconfigured through a voted bus control configuration. Data is also shared between VMCs though a cross channel data link that is implemented in hardware and controlled by AlliedSignal's Fault Tolerant Executive (FTE). The FTE synchronizes processors within the VMC and synchronizes redundant VMCs to each other. The FTE provides an output-voting plane to detect, isolate and contain faults due to internal hardware or software faults and reconfigures the VMCs to accommodate these faults. Critical data in the 1553 messages are scheduled and synchronized to specific processing frames in order to minimize data latency. In order to achieve an open architecture, military and commercial off-the-shelf equipment is incorporated using common processors, standard VME backplanes and chassis, the VxWorks operating system, and MartixX for automatic code generation. The use of off-the-shelf tools and equipment helps reduce development time and enables software reuse. The open architecture allows for technology insertion, while the distributed modular elements allow for expansion to increased redundancy levels to meet the higher reliability goals of future RLVs.
Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations
2007-12-01
programs may be the XSS-11. The AFRL Space Vehicle Directorate at Kirtland Air Force Base in New Mexico developed the XSS-11 in order to exhibit the...the LQR/APF algorithm appears to be a promising new development for the field of multiple spacecraft close proximity maneuver control. Monte...dissertation reports the development of an autonomous distributed control algorithm for multiple spacecraft during close proximity operations
Investigating the Usefulness of Soldier Aids for Autonomous Unmanned Ground Vehicles, Part 2
2015-03-01
distribution is unlimited. 13. SUPPLEMENTARY NOTES DCS Corporation, Alexandria, VA 14. ABSTRACT In the past, robot operation has been a high-cognitive...increase performance and reduce perceived workload. The aids were overlays displaying what an autonomous robot perceived in the environment and the...subsequent course of action planned by the robot . Eight active-duty, US Army Soldiers completed 16 scenario missions using an operator interface
30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS ...
30. LAUNCH CONTROL CAPSULE. ACOUSTICAL ENCLOSURE. OPERATORS' CHAIR AND COMMUNICATIONS CONSOLE IN FOREGROUND. ELECTRONIC EQUIPMENT RACK AT LEFT; LAUNCH CONTROL CONSOLE WITH CAPTAIN JAMES L. KING, JR. IN CENTER. LIEUTENANT KEVIN R. MCCLUNEY IN BACKGROUND. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO
Moonport: A History of Apollo Launch Facilities and Operations
NASA Technical Reports Server (NTRS)
Benson, C. D.; Faherty, W. B.
1978-01-01
The development of the Apollo f launch facilities and launch operations is described from the beginning of design through the final launch. Management techniques, innovation in automation, and testing on the ground to avoid failures in space are among the topics covered. The impact of the Apollo program on the citrus groves and quiet beaches of Florida's east coast is included.
Development of a large scale Chimera grid system for the Space Shuttle Launch Vehicle
NASA Technical Reports Server (NTRS)
Pearce, Daniel G.; Stanley, Scott A.; Martin, Fred W., Jr.; Gomez, Ray J.; Le Beau, Gerald J.; Buning, Pieter G.; Chan, William M.; Chiu, Ing-Tsau; Wulf, Armin; Akdag, Vedat
1993-01-01
The application of CFD techniques to large problems has dictated the need for large team efforts. This paper offers an opportunity to examine the motivations, goals, needs, problems, as well as the methods, tools, and constraints that defined NASA's development of a 111 grid/16 million point grid system model for the Space Shuttle Launch Vehicle. The Chimera approach used for domain decomposition encouraged separation of the complex geometry into several major components each of which was modeled by an autonomous team. ICEM-CFD, a CAD based grid generation package, simplified the geometry and grid topology definition by provoding mature CAD tools and patch independent meshing. The resulting grid system has, on average, a four inch resolution along the surface.
Development of autonomous eating mechanism for biomimetic robots
NASA Astrophysics Data System (ADS)
Jeong, Kil-Woong; Cho, Ik-Jin; Lee, Yun-Jung
2005-12-01
Most of the recently developed robots are human friendly robots which imitate animals or humans such as entertainment robot, bio-mimetic robot and humanoid robot. Interest for these robots are being increased because the social trend is focused on health, welfare, and graying. Autonomous eating functionality is most unique and inherent behavior of pets and animals. Most of entertainment robots and pet robots make use of internal-type battery. Entertainment robots and pet robots with internal-type battery are not able to operate during charging the battery. Therefore, if a robot has an autonomous function for eating battery as its feeds, the robot is not only able to operate during recharging energy but also become more human friendly like pets. Here, a new autonomous eating mechanism was introduced for a biomimetic robot, called ELIRO-II(Eating LIzard RObot version 2). The ELIRO-II is able to find a food (a small battery), eat and evacuate by itself. This work describe sub-parts of the developed mechanism such as head-part, mouth-part, and stomach-part. In addition, control system of autonomous eating mechanism is described.
Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie
2014-12-01
Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.
Pelvic autonomic neuromonitoring: present reality, future prospects.
Skinner, Stanley A
2014-08-01
Currently, the means to assess the autonomic nervous system primarily depend on end organ functional measurement: intravesical pressure, skin resistance, and penile strain gauge tension, for example. None of these measures has been generally accepted in the operating room. Nevertheless, the segmental and peripheral pelvic autonomic nerve supply is placed at risk during both pelvic and lower spine surgery. In this difficult era of suboptimal post-prostatectomy outcomes, the urological literature does reveal the salutary development of safer dissection techniques about the peri-prostatic and cavernous plexus. Means of reliably specific nerve identification remain elusive. The need for actual nerve monitoring (not just identification) has only recently been proposed. Data from the animal lab reinforce an appreciation of the intimate and elegant interconnectedness of autonomic and somatic structures, particularly at the segmental level. Also, the biochemistry of erectile tissue engorgement (in both sexes) is very well understood (the electrophysiology increasingly so). Understanding these principles should permit parallel investigation and implementation of neurophysiological techniques which both identify and monitor pelvic autonomic function. The predicates for these proposed new approaches in the operating room are discussed in this review.
Operational Analysis in the Launch Environment
NASA Technical Reports Server (NTRS)
James, George; Kaouk, Mo; Cao, Tim; Fogt, Vince; Rocha, Rodney; Schultz, Ken; Tucker, Jon-Michael; Rayos, Eli; Bell,Jeff; Alldredge, David;
2012-01-01
The launch environment is a challenging regime to work due to changing system dynamics, changing environmental loading, joint compression loads that cannot be easily applied on the ground, and control effects. Operational testing is one of the few feasible approaches to capture system level dynamics since ground testing cannot reproduce all of these conditions easily. However, the most successful applications of Operational Modal Testing involve systems with good stationarity and long data acquisition times. This paper covers an ongoing effort to understand the launch environment and the utility of current operational modal tools. This work is expected to produce a collection of operational tools that can be applied to non-stationary launch environment, experience dealing with launch data, and an expanding database of flight parameters such as damping. This paper reports on recent efforts to build a software framework for the data processing utilizing existing and specialty tools; understand the limits of current tools; assess a wider variety of current tools; and expand the experience with additional datasets as well as to begin to address issues raised in earlier launch analysis studies.
NASA Technical Reports Server (NTRS)
Rayman, Marc D.; Patel, Keyur C.
2008-01-01
Dawn launched on 27 September 2007 on a mission to orbit main belt asteroids (4) Vesta in 2011 - 2012 and (1) Ceres in 2015. The operations team conducted an extensive set of assessments of the engineering subsystems and science instruments during the first 80 days of the mission. A major objective of this period was to thrust for one week with the ion propulsion system to verify flight and ground systems readiness for typical interplanetary operations. Upon successful conclusion of the checkout phase, the interplanetary cruise phase began, most of which will be devoted to thrusting. The flexibility afforded by the use of ion propulsion enabled the project to accommodate a launch postponement of more than 3 months caused by a combination of launch vehicle and tracking system readiness, unfavorable weather, and then conflicts with other launches. Even with the shift in the launch date, all of the science objectives are retained with the same schedule and greater technical margins. This paper describes the conclusion of the development phase of the project, launch operations, and the progress of mission operations.
NASA Technical Reports Server (NTRS)
Martelli, Andrea
1994-01-01
This paper presents the capabilities implemented in the SAX system for an efficient operations management during its in-flight mission. SAX is an Italian scientific satellite for x-ray astronomy whose major mission objectives impose quite tight constraints on the implementation of both the space and ground segment. The most relevant mission characteristics require an operative lifetime of two years, performing scientific observations both in contact and in noncontact periods, with a low equatorial orbit supported by one ground station, so that only a few minutes of communications are available each orbit. This operational scenario determines the need to have a satellite capable of performing the scheduled mission automatically and reacting autonomously to contingency situations. The implementation approach of the on-board operations management, through which the necessary automation and autonomy are achieved, follows a hierarchical structure. This has been achieved adopting a distributed avionic architecture. Nine different on-board computers, in fact, constitute the on-board data management system. Each of them performs the local control and monitors its own functions while the system level control is performed at a higher level by the data handling applications software. The SAX on-board architecture provides the ground operators with different options of intervention by three classes of telecommands. The management of the scientific operations will be scheduled by the operation control center via dedicated operating plans. The SAX satellite flight mode is presently being integrated at Alenia Spazio premises in Turin for a launch scheduled for the end of 1995. Once in orbit, the SAX satellite will be subject to intensive check-out activities in order to verify the required mission performances. An overview of the envisaged procedure and of the necessary on-ground activities is therefore depicted as well.
An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics
NASA Technical Reports Server (NTRS)
Nelson, Kurt
1991-01-01
The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.
Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.
The experimental studies of operating modes of a diesel-generator set at variable speed
NASA Astrophysics Data System (ADS)
Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.
2017-02-01
A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.
NASA Astrophysics Data System (ADS)
Fornas, D.; Sales, J.; Peñalver, A.; Pérez, J.; Fernández, J. J.; Marín, R.; Sanz, P. J.
2016-03-01
This article presents research on the subject of autonomous underwater robot manipulation. Ongoing research in underwater robotics intends to increase the autonomy of intervention operations that require physical interaction in order to achieve social benefits in fields such as archaeology or biology that cannot afford the expenses of costly underwater operations using remote operated vehicles. Autonomous grasping is still a very challenging skill, especially in underwater environments, with highly unstructured scenarios, limited availability of sensors and adverse conditions that affect the robot perception and control systems. To tackle these issues, we propose the use of vision and segmentation techniques that aim to improve the specification of grasping operations on underwater primitive shaped objects. Several sources of stereo information are used to gather 3D information in order to obtain a model of the object. Using a RANSAC segmentation algorithm, the model parameters are estimated and a set of feasible grasps are computed. This approach is validated in both simulated and real underwater scenarios.
NASA's Space Launch System: Moving Toward the Launch Pad
NASA Technical Reports Server (NTRS)
Creech, Stephen D.; May, Todd
2013-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. NASA is working to develop this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS program has made in the 2 years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen which combines the use and enhancement of legacy systems and technology with strategic new development projects that will evolve the capabilities of the launch vehicle. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved version of the vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and the record-breaking testing of the J-2X engine, to life-cycle milestones such as the vehicle's Preliminary Design Review. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Kopardekar, Parimal; Ippolito, Corey; Melton, John E.; Stepanyan, Vahram; Sankararaman, Shankar; Nikaido, Ben
2017-01-01
The most difficult phase of small Unmanned Aerial System (sUAS) deployment is autonomous operations below the notional 50 ft in urban landscapes. Understanding the feasibility of safely flying sUAS autonomously below 50 ft is a game changer for many civilian applications. This paper outlines three areas of research currently underway which address key challenges for flight in the urban landscape. These are: (1) Off-line and On-board wind estimation and accommodation; (2) Real-time trajectory planning via characterization of obstacles using a LIDAR; (3) On-board information fusion for real-time decision-making and safe trajectory generation.
Project : transit demand and routing after autonomous vehicle availability.
DOT National Transportation Integrated Search
2015-12-01
Autonomous vehicles (AVs) create the potential for improvements in traffic operations as well as : new behaviors for travelers such as car sharing among trips through driverless repositioning. Most studies : on AVs have focused on technology or traff...
Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David; Hawkins, Albin
2001-01-01
NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.
Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II
2005-01-01
NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.
GOATS 2008: Autonomous, Adaptive Multistatic Acoustic Sensing
2010-09-30
carried out jointly with the NATO Undersea Research Centre in the Tuscan archipelago July 26 – August 16, 2010. MIT operated the Unicorn AUV and...4 trail behavior with the physical Unicorn AUV, and is accidentally passing close the R/V Leonardo, fully autonomously changing its depth from...vehicles. The AUV Unicorn is performing an adaptive thermocline mapping mission, with the vehicle trail shown in green. Note the autonomous collision
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...
5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
Electrorheological Fluid Based Force Feedback Device
NASA Technical Reports Server (NTRS)
Pfeiffer, Charles; Bar-Cohen, Yoseph; Mavroidis, Constantinos; Dolgin, Benjamin
1999-01-01
Parallel to the efforts to develop fully autonomous robots, it is increasingly being realized that there are applications where it is essential to have a fully controlled robot and "feel" its operating conditions, i.e. telepresence. This trend is a result of the increasing efforts to address tasks where humans can perform significantly better but, due to associated hazards, distance, physical limitations and other causes, only robots can be employed to perform these tasks. Such robots need to be assisted by a human that remotely controls the operation. To address the goal of operating robots as human surrogates, the authors launched a study of mechanisms that provide mechanical feedback. For this purpose, electrorheological fluids (ERF) are being investigated for the potential application as miniature haptic devices. This family of electroactive fluids has the property of changing the viscosity during electrical stimulation. Consequently, ERF can be used to produce force feedback haptic devices for tele-operated control of medical and space robotic systems. Forces applied at the robot end-effector due to a compliant environment are reflected to the user using an ERF device where a change in the system viscosity will occur proportionally to the transmitted force. Analytical model and control algorithms are being developed taking into account the non-linearities of these type of devices. This paper will describe the concept and the developed mechanism of ERF based force feedback. The test process and the physical properties of this device will be described and the results of preliminary tests will be presented.
Distributed subterranean exploration and mapping with teams of UAVs
NASA Astrophysics Data System (ADS)
Rogers, John G.; Sherrill, Ryan E.; Schang, Arthur; Meadows, Shava L.; Cox, Eric P.; Byrne, Brendan; Baran, David G.; Curtis, J. Willard; Brink, Kevin M.
2017-05-01
Teams of small autonomous UAVs can be used to map and explore unknown environments which are inaccessible to teams of human operators in humanitarian assistance and disaster relief efforts (HA/DR). In addition to HA/DR applications, teams of small autonomous UAVs can enhance Warfighter capabilities and provide operational stand-off for military operations such as cordon and search, counter-WMD, and other intelligence, surveillance, and reconnaissance (ISR) operations. This paper will present a hardware platform and software architecture to enable distributed teams of heterogeneous UAVs to navigate, explore, and coordinate their activities to accomplish a search task in a previously unknown environment.
NASA Astrophysics Data System (ADS)
Khavanov, Pavel; Chulenyov, Anatoly
2017-10-01
Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.
Development of autonomous grasping and navigating robot
NASA Astrophysics Data System (ADS)
Kudoh, Hiroyuki; Fujimoto, Keisuke; Nakayama, Yasuichi
2015-01-01
The ability to find and grasp target items in an unknown environment is important for working robots. We developed an autonomous navigating and grasping robot. The operations are locating a requested item, moving to where the item is placed, finding the item on a shelf or table, and picking the item up from the shelf or the table. To achieve these operations, we designed the robot with three functions: an autonomous navigating function that generates a map and a route in an unknown environment, an item position recognizing function, and a grasping function. We tested this robot in an unknown environment. It achieved a series of operations: moving to a destination, recognizing the positions of items on a shelf, picking up an item, placing it on a cart with its hand, and returning to the starting location. The results of this experiment show the applicability of reducing the workforce with robots.
Station set requirements document. Volume 82: Fire support. Book 2: Preliminary functional fire plan
NASA Technical Reports Server (NTRS)
Gray, N. C.
1974-01-01
The fire prevention/protection requirements for all shuttle facility and ground support equipment are presented for the hazardous operations. These include: preparing the orbiter for launch, launch operations, landing operations, safing operations, and associated off-line activities.
Usage of Fault Detection Isolation & Recovery (FDIR) in Constellation (CxP) Launch Operations
NASA Technical Reports Server (NTRS)
Ferrell, Rob; Lewis, Mark; Perotti, Jose; Oostdyk, Rebecca; Spirkovska, Lilly; Hall, David; Brown, Barbara
2010-01-01
This paper will explore the usage of Fault Detection Isolation & Recovery (FDIR) in the Constellation Exploration Program (CxP), in particular Launch Operations at Kennedy Space Center (KSC). NASA's Exploration Technology Development Program (ETDP) is currently funding a project that is developing a prototype FDIR to demonstrate the feasibility of incorporating FDIR into the CxP Ground Operations Launch Control System (LCS). An architecture that supports multiple FDIR tools has been formulated that will support integration into the CxP Ground Operation's Launch Control System (LCS). In addition, tools have been selected that provide fault detection, fault isolation, and anomaly detection along with integration between Flight and Ground elements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Reviews. 417.117 Section 417.117... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.117 Reviews. (a) General. A launch operator must— (1) Review the status of operations, systems, equipment, and personnel required by part 417...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Tests. 417.115 Section 417.115 Aeronautics... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.115 Tests. (a) General. All flight... re-testing necessary to ensure reliable operation. A launch operator must— (1) Coordinate test plans...
DOT National Transportation Integrated Search
1997-01-01
The satellite launch industry has steadily grown and matured to take on the features of a truly commercial industry. This year, commercial launches outnumber government launches for the first time. New launch systems, such as the Delta 3, Sea Launch,...
NASA Technical Reports Server (NTRS)
2001-01-01
X-40A Free Flight #5. The unpowered X-40A, an 85 percent scale risk reduction version of the proposed X-37, proved the capability of an autonomous flight control and landing system in a series of glide flights at NASA's Dryden Flight Research Center in California. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the X-37 project. At Dryden, the X-40A underwent a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound. The X-37, carried into orbit by the Space Shuttle, is planned to fly two orbital missions to test reusable launch vehicle technologies.
Multi-Spacecraft Autonomous Positioning System
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2015-01-01
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhorin, O.I.; Pustovalov, A.A.; Zhabin, V.N.
1996-03-01
This paper describes results of investigations of questions concerning integrity keeping for an ampula containing radionuclide fuel (Pu-238) under conditions of emergency landing in dense layers of the atmosphere and under conditions of fire on launching pad. {copyright} {ital 1996 American Institute of Physics.}
Stable Research Platform Workshop
1988-04-01
autonomous or manned submersibles, by providing them with a deep underwater garage for launch and recovery. A track system for bringing the vehicle...s;. 10- f(H2) Figure 5 SIO Reference 87-2.0 69 STEREO - PHOTOGRAPHY Figure 6 70 Appendix E -15 0 31 62 93 124 155 DISTANCE, x...WAVE FOLLOWER WITH MULTI-BEAM LASER OPTICAL SENSOR • STEREO -PHOTOQRAPHY • MULTI-FREQUENCY RADAR: 10-100 GHz • SURFACE TENSION SENSORS • LONG WAVE
Optimized autonomous operations of a 20 K space hydrogen sorption cryocooler
NASA Astrophysics Data System (ADS)
Borders, J.; Morgante, G.; Prina, M.; Pearson, D.; Bhandari, P.
2004-06-01
A fully redundant hydrogen sorption cryocooler is being developed for the European Space Agency Planck mission, dedicated to the measurement of the temperature anisotropies of the cosmic microwave background radiation with unprecedented sensitivity and resolution [Advances in Cryogenic Engineering 45A (2000) 499]. In order to achieve this ambitious scientific task, this cooler is required to provide a stable temperature reference (˜20 K) and appropriate cooling (˜1 W) to the two instruments on-board, with a flight operational lifetime of 18 months. During mission operations, communication with the spacecraft will be possible in a restricted time-window, not longer than 2 h/day. This implies the need for an operations control structure with the required robustness to safely perform autonomous procedures. The cooler performance depends on many operating parameters (such as the temperatures of the pre-cooling stages and the warm radiator), therefore the operation control system needs the capability to adapt to variations of these boundary conditions, while maintaining safe operating procedures. An engineering bread board (EBB) cooler was assembled and tested to evaluate the behavior of the system under conditions simulating flight operations and the test data were used to refine and improve the operation control software. In order to minimize scientific data loss, the cooler is required to detect all possible failure modes and to autonomously react to them by taking the appropriate action in a rapid fashion. Various procedures and schemes both general and specific in nature were developed, tested and implemented to achieve these goals. In general, the robustness to malfunctions was increased by implementing an automatic classification of anomalies in different levels relative to the seriousness of the error. The response is therefore proportional to the failure level. Specifically, the start-up sequence duration was significantly reduced, allowing a much faster activation of the system, particularly useful in case of restarts after inadvertent shutdowns arising from malfunctions in the spacecraft. The capacity of the system to detect J-T plugs was increased to the point that the cooler is able to autonomously identify actual contaminants clogging from gas flow reductions due to off-nominal operating conditions. Once a plug is confirmed, the software autonomously energizes, and subsequently turns off, a J-T defrost heater until the clog is removed, bringing the system back to normal operating conditions. In this paper, all the cooler Operational Modes are presented, together with the description of the logic structure of the procedures and the advantages they produce for the operations.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.