Science.gov

Sample records for autonomous microexplosives subsurface

  1. Autonomous microexplosives subsurface tracing system final report.

    SciTech Connect

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

    2004-04-01

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

  2. Ignition of thermonuclear microexplosions with antimatter

    SciTech Connect

    Shmatov, M.L.

    1994-10-01

    The use of antimatter for the indirect ignition of staged thermonuclear microexplosions is proposed. The space propulsion system based on this method may become economically acceptable earlier than that which uses only the energy of annihilation. 19 refs.

  3. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive

  4. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    NASA Astrophysics Data System (ADS)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  5. An Autonomous Cryobot Synthetic Aperture Radar for Subsurface Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Pradhan, O.; Gasiewski, A. J.

    2015-12-01

    We present the design and field testing of a forward-looking end-fire synthetic aperture radar (SAR) for the 'Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer' (VALKYRIE) ice-penetrating cryobot. This design demonstrates critical technologies that will support an eventual landing and ice penetrating mission to Jupiter's icy moon, Europa. Results proving the feasibility of an end-fire SAR system for vehicle guidance and obstacle avoidance in a sub-surface ice environment will be presented. Data collected by the SAR will also be used for constructing sub-surface images of the glacier which can be used for: (i) mapping of englacial features such as crevasses, moulins, and embedded liquid water and (ii) ice-depth and glacier bed analysis to construct digital elevation models (DEM) that can help in the selection of crybot trajectories and future drill sites for extracting long-term climate records. The project consists of three parts, (i) design of an array of four conformal cavity-backed log-periodic folded slot dipole array (LPFSA) antennas that form agile radiating elements, (ii) design of a radar system that includes RF signal generation, 4x4 transmit-receive antenna switching and isolation and digital SAR data processing and (iii) field testing of the SAR in melt holes. The antennas have been designed, fabricated, and lab tested at the Center for Environmental Technology (CET) at CU-Boulder. The radar system was also designed and integrated at CET utilizing rugged RF components and FPGA based digital processing. Field testing was performed in conjunction with VALKYRIE tests by Stone Aerospace in June, 2015 on Matanuska Glacier, Alaska. The antennas are designed to operate inside ice while being immersed in a thin layer of surrounding low-conductivity melt water. Small holes in the corners of the cavities allow flooding of these cavities with the same melt-water thus allowing for quarter-wavelength cavity-backed reflection. Testing of

  6. Physics of puffing and microexplosion of emulsion fuel droplets

    NASA Astrophysics Data System (ADS)

    Shinjo, J.; Xia, J.; Ganippa, L. C.; Megaritis, A.

    2014-10-01

    The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.

  7. Combustion and micro-explosion of multicomponent droplets

    SciTech Connect

    Wang, C.H.

    1983-01-01

    An experimental investigation of the gasification, combustion, and micro-explosion of droplets of miscible multicomponent fuel mixtures and water/oil emulsions in hot, oxidizing, pressurized environments is described. The experiment involves generating a stream of droplets of uniform and controllable size, spacing, and velocity by the ink-jet printing technique, injecting them into the continuously flowing combustion environment produced by a flat-flame burner, and examining the subsequent combustion processes using high-speed photography. Results show that the gasification mechanism of miscible multicomponent droplets consist of an initial phase of transient adjustment of the droplet surface layer such that it becomes more concentrated with the less volatile component, and a second phase of liquid-phase-diffusion-limited steady-state combustion with the fractional gasification rate of the constituents being equal to their respective initial mass fractions in the mixture. Micro-explosion of miscible multicomponent droplets is found to be favored with an unstable droplet generation mode, with increasing the system pressure, and with light alcohol addition. The internal bubble growth process is a relatively slow one, occupying about 10% of the droplet lifetime. Micro-explosion of water/oil emulsion droplets occurs under both normal and high pressure environments. Results also show that prior to the onset of micro-explosion in the nominally opaque droplet becomes transparent, indicating deterioration of the emulsion structure. Results and insights on the ignition, extinction, and soot formation characteristics are also documented.

  8. Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle.

    PubMed

    Skomal, G B; Hoyos-Padilla, E M; Kukulya, A; Stokey, R

    2015-12-01

    In this study, an autonomous underwater vehicle (AUV) was used to test this technology as a viable tool for directly observing the behaviour of marine animals and to investigate the behaviour, habitat use and feeding ecology of white sharks Carcharodon carcharias near Guadalupe Island off the coast of Mexico. During the period 31 October to 7 November 2013, six AUV missions were conducted to track one male and three female C. carcharias, ranging in estimated total length (LT ) from 3·9 to 5·7 m, off the north-east coast of Guadalupe Island. In doing so, the AUV generated over 13 h of behavioural data for C. carcharias at depths down to 90 m. The sharks remained in the area for the duration of each mission and moved through broad depth and temperature ranges from the surface to 163·8 m depth (mean ± S.D. = 112·5 ± 40·3 m) and 7·9-27·1° C (mean ± S.D. = 12·7 ± 2·9° C), respectively. Video footage and AUV sensor data revealed that two of the C. carcharias being tracked and eight other C. carcharias in the area approached (n = 17), bumped (n = 4) and bit (n = 9) the AUV during these tracks. This study demonstrated that an AUV can be used to effectively track and observe the behaviour of a large pelagic animal, C. carcharias. In doing so, the first observations of subsurface predatory behaviour were generated for this species. At its current state of development, this technology clearly offers a new and innovative tool for tracking the fine-scale behaviour of marine animals.

  9. Time Evolution of the Density Field of a Micro-Explosion Using Background Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Suriyanarayanan, P.; Venkatakrishnan, L.; Jagadeesh, G.

    In recent years micro-explosions have found interesting trans-disciplinary applications in the areas of food preservation,wood science, drug delivery, gene therapy and bio-medical applications [1, 2]. Generating controlled micro-explosions in a laboratory environment in a reliable manner is essential; to study and understand some of the near field flow dynamics associated with blast waves.

  10. Multi-Tier Multi-Agent Autonomous Robotic Planetary Surface/Subsurface Reconnaissance for Life

    NASA Astrophysics Data System (ADS)

    Fink, W.; Dohm, J. M.; Tarbell, M. A.; Hare, T. M.; Baker, V. R.; Schulze-Makuch, D.; Furfaro, R.; Fairén, A. G.; Ferré, T. P. A.; Miyamoto, H.; Komatsu, G.; Mahaney, W. C.

    2006-03-01

    Tier-scalable autonomous reconnaissance enables intelligent, unconstrained, and distributed science-driven exploration of prime locations on Venus, Mars, Io, Europa, Titan, and elsewhere, allowing for increased science return and the search for life.

  11. Evidence of superdense aluminium synthesized by ultrafast microexplosion

    PubMed Central

    Vailionis, Arturas; Gamaly, Eugene G.; Mizeikis, Vygantas; Yang, Wenge; Rode, Andrei V.; Juodkazis, Saulius

    2011-01-01

    At extreme pressures and temperatures, such as those inside planets and stars, common materials form new dense phases with compacted atomic arrangements and unusual physical properties. The synthesis and study of new phases of matter at pressures above 100 GPa and temperatures above 104 K—warm dense matter—may reveal the functional details of planet and star interiors, and may lead to materials with extraordinary properties. Many phases have been predicted theoretically that may be realized once appropriate formation conditions are found. Here we report the synthesis of a superdense stable phase of body-centred-cubic aluminium, predicted by first-principles theories to exist at pressures above 380 GPa. The superdense Al phase was synthesized in the non-equilibrium conditions of an ultrafast laser-induced microexplosion confined inside sapphire (α-Al2O3). Confined microexplosions offer a strategy to create and recover high-density polymorphs, and a simple method for tabletop study of warm dense matter. PMID:21863012

  12. Evidence of superdense aluminium synthesized by ultrafast microexplosion.

    PubMed

    Vailionis, Arturas; Gamaly, Eugene G; Mizeikis, Vygantas; Yang, Wenge; Rode, Andrei V; Juodkazis, Saulius

    2011-08-23

    At extreme pressures and temperatures, such as those inside planets and stars, common materials form new dense phases with compacted atomic arrangements and unusual physical properties. The synthesis and study of new phases of matter at pressures above 100 GPa and temperatures above 10(4) K--warm dense matter--may reveal the functional details of planet and star interiors, and may lead to materials with extraordinary properties. Many phases have been predicted theoretically that may be realized once appropriate formation conditions are found. Here we report the synthesis of a superdense stable phase of body-centred-cubic aluminium, predicted by first-principles theories to exist at pressures above 380 GPa. The superdense Al phase was synthesized in the non-equilibrium conditions of an ultrafast laser-induced microexplosion confined inside sapphire (α-Al(2)O(3)). Confined microexplosions offer a strategy to create and recover high-density polymorphs, and a simple method for tabletop study of warm dense matter.

  13. A web accessible scientific workflow system for transparent and reproducible generation of information on subsurface processes from autonomously sensed data

    NASA Astrophysics Data System (ADS)

    Versteeg, R.; Richardson, A.; Thomas, S.; Lu, B.; Neto, J.; Wheeler, M.; Rowe, T.; Parashar, M.; Ankeny, M.

    2005-12-01

    Information on subsurface processes is required for a broad range of applications, including site remediation, groundwater management, fossil fuel production and CO2 sequestration. Data on these processes is obtained from diverse sensor networks, includes physical, hydrological and chemical sensors and semi permanent geophysical sensors (mainly seismic and resistivity). Currently, processing is done by specialists through the use of commercial and research software packages such as numerical inverse and forward models, statistical data analysis software and visualization and data presentation packages. Information is presented to stakeholders as tables, images and reports. Processing steps, data and assumptions used for information generation are mostly opaque to endusers. As data migrates between applications the steps taken in each application (e.g. in data reduction)are often only partly documented, resulting in irreproducible results. In this approach, interactive tuning of data processing in a systematic way (e.g. changing model parameters, visualization parameters or data used) or using data processing as a discovery tool is de facto impossible. We implemented a web accessible scientific workflow system for subsurface performance monitoring. This system integrates distributed, automated data acquisition from autonomous sensor networks with server side data management and information visualization through flexible browser based data access tools. Webservices are used for communication with the sensor networks and interaction with applications. This system was originally developed for a monitoring network at the Gilt Edge Mine Superfund site, but has now been implemented for a range of different sensor networks of different complexity. The workflow framework allows for rapid and easy integration in a modular, transparent and reproducible manner of a multitude of existing applications for data analysis and processes. By embedding applications in webservice

  14. Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles

    DOE PAGES

    Rubio, Mario A.; Gunduz, I. Emre; Groven, Lori J.; ...

    2016-11-11

    Aluminum particles are widely used as a metal fuel in solid propellants. However, poor combustion efficiencies and two-phase flow losses result due in part to particle agglomeration. Engineered composite particles of aluminum (Al) with inclusions of polytetrafluoroethylene (PTFE) or low-density polyethylene (LDPE) have been shown to improve ignition and yield smaller agglomerates in solid propellants, recently. Reductions in agglomeration were attributed to internal pressurization and fragmentation (microexplosions) of the composite particles at the propellant surface. We explore the mechanisms responsible for microexplosions in order to better understand the combustion characteristics of composite fuel particles. Single composite particles of Al/PTFE andmore » Al/LDPE with diameters between 100 and 1200 µm are ignited on a substrate to mimic a burning propellant surface in a controlled environment using a CO2 laser in the irradiance range of 78–7700 W/cm2. Furthermore, the effects of particle size, milling time, and inclusion content on the resulting ignition delay, product particle size distributions, and microexplosion tendencies are reported. For example particles with higher PTFE content (30 wt%) had laser flux ignition thresholds as low as 77 W/cm2, exhibiting more burning particle dispersion due to microexplosions compared to the other materials considered. Composite Al/LDPE particles exhibit relatively high ignition thresholds compared to Al/PTFE particles, and microexplosions were observed only with laser fluxes above 5500 W/cm2 due to low LDPE reactivity with Al resulting in negligible particle self-heating. However, results show that microexplosions can occur for Al containing both low and high reactivity inclusions (LDPE and PTFE, respectively) and that polymer inclusions can be used to tailor the ignition threshold. Furthermore, this class of modified metal particles shows significant promise for application in many different energetic materials

  15. Microexplosions and ignition dynamics in engineered aluminum/polymer fuel particles

    SciTech Connect

    Rubio, Mario A.; Gunduz, I. Emre; Groven, Lori J.; Sippel, Travis R.; Han, Chang Wan; Unocic, Raymond R.; Ortalan, Volkan; Son, Steven F.

    2016-11-11

    Aluminum particles are widely used as a metal fuel in solid propellants. However, poor combustion efficiencies and two-phase flow losses result due in part to particle agglomeration. Engineered composite particles of aluminum (Al) with inclusions of polytetrafluoroethylene (PTFE) or low-density polyethylene (LDPE) have been shown to improve ignition and yield smaller agglomerates in solid propellants, recently. Reductions in agglomeration were attributed to internal pressurization and fragmentation (microexplosions) of the composite particles at the propellant surface. We explore the mechanisms responsible for microexplosions in order to better understand the combustion characteristics of composite fuel particles. Single composite particles of Al/PTFE and Al/LDPE with diameters between 100 and 1200 µm are ignited on a substrate to mimic a burning propellant surface in a controlled environment using a CO2 laser in the irradiance range of 78–7700 W/cm2. Furthermore, the effects of particle size, milling time, and inclusion content on the resulting ignition delay, product particle size distributions, and microexplosion tendencies are reported. For example particles with higher PTFE content (30 wt%) had laser flux ignition thresholds as low as 77 W/cm2, exhibiting more burning particle dispersion due to microexplosions compared to the other materials considered. Composite Al/LDPE particles exhibit relatively high ignition thresholds compared to Al/PTFE particles, and microexplosions were observed only with laser fluxes above 5500 W/cm2 due to low LDPE reactivity with Al resulting in negligible particle self-heating. However, results show that microexplosions can occur for Al containing both low and high reactivity inclusions (LDPE and PTFE, respectively) and that polymer inclusions can be used to tailor the ignition threshold. Furthermore, this class of modified metal particles shows significant promise for application in

  16. Microexplosions initiated by a microwave capillary torch on a metal surface at atmospheric pressure

    SciTech Connect

    Gritsinin, S. I.; Davydov, A. M.; Kossyi, I. A.

    2015-07-15

    The interaction of the plasma of a microwave capillary argon torch with a metal surface was studied experimentally. It is shown that the interaction of the plasma jet generated by the capillary plasma torch with the metal in atmospheric-pressure air leads to the initiation of microexplosions (sparks) on the metal surface. As a result, the initially smooth surface acquires a relief in the form of microtips and microcraters. The possibility of practical application of the observed phenomenon is discussed.

  17. Thermal Imaging of Subsurface Coal Fires by means of an Unmanned Aerial Vehicle (UAV) in the Autonomous Province Xinjiang, PRC

    NASA Astrophysics Data System (ADS)

    Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph

    2010-05-01

    Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature

  18. Combustion and Micro-Explosion of Water/Oil Emulsions in High Pressure Environments.

    DTIC Science & Technology

    1986-03-11

    34 Combutions and Micro-Explosion of Water/Oil Emulsions in High Pressure Environments" Grant No. DAAG29-85-K-O010 Submitted to the U.S. Army Research Office...involving both the physical processes of heat and mass transport dnd the chemical processes of reaction kinetics, since droplet flames have very small... reaction . Up until the mid-seventies it was believed that a multicomponent droplet gasified in the manner of batch distillation, which states that the

  19. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion

    PubMed Central

    Rapp, L.; Haberl, B.; Pickard, C.J.; Bradby, J.E.; Gamaly, E.G.; Williams, J.S.; Rode, A.V.

    2015-01-01

    Ordinary materials can transform into novel phases at extraordinary high pressure and temperature. The recently developed method of ultrashort laser-induced confined microexplosions initiates a non-equilibrium disordered plasma state. Ultra-high quenching rates overcome kinetic barriers to the formation of new metastable phases, which are preserved in the surrounding pristine crystal for subsequent exploitation. Here we demonstrate that confined microexplosions in silicon produce several metastable end phases. Comparison with an ab initio random structure search reveals six energetically competitive potential phases, four tetragonal and two monoclinic structures. We show the presence of bt8 and st12, which have been predicted theoretically previously, but have not been observed in nature or in laboratory experiments. In addition, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings may pave the way for new materials with novel and exotic properties. PMID:26118985

  20. Microexplosion Recording in Spin-Coated Polymer Films Including ZnO Nanoparticles for Three-Dimensional Optical Memory

    NASA Astrophysics Data System (ADS)

    Shiono, Teruhiro; Yamamoto, Hiroaki; Nishino, Seiji

    2004-07-01

    As a microexplosion recording material, we propose polymer films including ZnO nanoparticles (ZnO polyester composite) for write-once multilayered recording media. These media with the ZnO composite material can be fabricated by a spin-coating method and can be read at the violet wavelength of 0.405 μm. By the electromagnetic analysis of diffraction loss, we clarified the pit design and the optical performance for void formation recording. From the results of experiments performed using three kinds of mode-locked pulsed lasers (pulse widths of 150 fs, 16 ps and 6 ns), with a clear reflection microscope image of submicrometer pits, the microexplosion sensitivity was confirmed to be greatly improved by 14, 38 and 50 times, respectively.

  1. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion

    SciTech Connect

    Rapp, L.; Haberl, B.; Pickard, C. J.; Bradby, J. E.; Gamaly, E. G.; Williams, J. S.; Rode, A. V.

    2015-06-29

    Ordinary materials can transform into novel phases with new crystal structures at extraordinary high pressure and temperature applied under both equilibrium and non-equilibrium conditions 1-6. The recently developed method of ultra-short laser-induced confined microexplosions 7-9 extends the range of possible new phases by initiating a highly non-equilibrium plasma state deep inside a bulk material 7-12. Ultra-high quenching rates can help to overcome kinetic barriers to the formation of new metastable phases, while the surrounding pristine crystal confines the affected material and preserves it for further study 10-12. Here we demonstrate that ultra-rapid pressure release from a completely disordered plasma state in silicon produces several new metastable end phases quenched to ambient conditions. Their structure is determined from comparison to an ab initio random structure search which revealed six new energetically competitive potential phases, four tetragonal and two monoclinic ones. We show the presence of bt8 and st12, which have been predicted theoretically previously 13-15, but have not been observed in nature or in laboratory experiments. Additionally, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings pave the way for new materials with novel and exotic properties.

  2. Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion

    DOE PAGES

    Rapp, L.; Haberl, B.; Pickard, C. J.; ...

    2015-06-29

    Ordinary materials can transform into novel phases with new crystal structures at extraordinary high pressure and temperature applied under both equilibrium and non-equilibrium conditions 1-6. The recently developed method of ultra-short laser-induced confined microexplosions 7-9 extends the range of possible new phases by initiating a highly non-equilibrium plasma state deep inside a bulk material 7-12. Ultra-high quenching rates can help to overcome kinetic barriers to the formation of new metastable phases, while the surrounding pristine crystal confines the affected material and preserves it for further study 10-12. Here we demonstrate that ultra-rapid pressure release from a completely disordered plasma statemore » in silicon produces several new metastable end phases quenched to ambient conditions. Their structure is determined from comparison to an ab initio random structure search which revealed six new energetically competitive potential phases, four tetragonal and two monoclinic ones. We show the presence of bt8 and st12, which have been predicted theoretically previously 13-15, but have not been observed in nature or in laboratory experiments. Additionally, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings pave the way for new materials with novel and exotic properties.« less

  3. Treatment of peri-implantitis around TiUnite-surface implants using Er:YAG laser microexplosions.

    PubMed

    Yamamoto, Atsuhikp; Tanabe, Toshiichiro

    2013-01-01

    Implant therapy can lead to peri-implantitis, and none of the methods used to treat this inflammatory response have been predictably effective. It is nearly impossible to treat infected surfaces such as TiUnite (a titanium oxide layer) that promote osteoinduction, but finding an effective way to do so is essential. Experiments were conducted to determine the optimum irradiation power for stripping away the contaminated titanium oxide layer with Er:YAG laser irradiation, the degree of implant heating as a result of Er:YAG laser irradiation, and whether osseointegration was possible after Er:YAG laser microexplosions were used to strip a layer from the surface of implants placed in beagle dogs. The Er:YAG laser was effective at removing an even layer of titanium oxide, and the use of water spray limited heating of the irradiated implant, thus protecting the surrounding bone tissue from heat damage.

  4. Subsurface sounders

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.

  5. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  6. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  7. Autonomic neuropathy

    MedlinePlus

    ... page, please enable JavaScript. Autonomic neuropathy is a group of symptoms that occur when there is damage to the nerves that manage every day body functions such as blood pressure, heart rate, sweating, bowel and bladder emptying, and ...

  8. Autonomous Soaring

    NASA Technical Reports Server (NTRS)

    Lin, Victor P.

    2007-01-01

    This viewgraph presentation reviews the autonomous soaring flight of unmanned aerial vehicles (UAV). It reviews energy sources for UAVs, and two examples of UAV's that used alternative energy sources, and thermal currents for soaring. Examples of flight tests, plans, and results are given. Ultimately, the concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

  9. Electrical Subsurface Grounding Analysis

    SciTech Connect

    J.M. Calle

    2000-11-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements.

  10. Subsurface Microbiology and Biogeochemistry

    SciTech Connect

    Fredrickson, Jim K.; Fletcher, Madilyn

    2001-05-01

    Jim contributed a chapter to this book, in addition to co-editing it with Madilyn Fletcher. Fredrickson, J. K., and M. Fletcher. (eds.) 2001 Subsurface Microbiology and Biogeochemistry. Wiley-Liss, Inc., New York.

  11. Ceramic subsurface marker prototypes

    SciTech Connect

    Lukens, C.E.

    1985-05-02

    The client submitted 5 sets of porcelain and stoneware subsurface (radioactive site) marker prototypes (31 markers each set). The following were determined: compressive strength, thermal shock resistance, thermal crazing resistance, alkali resistance, color retention, and chemical resistance.

  12. Deep subsurface microbial processes

    USGS Publications Warehouse

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  13. Site Recommendation Subsurface Layout

    SciTech Connect

    C.L. Linden

    2000-06-28

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M&O 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M&O 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU.

  14. Autonomous control

    NASA Technical Reports Server (NTRS)

    Brown, Barbara

    1990-01-01

    KSC has been developing the Knowledge-Based Autonomous Test Engineer (KATE), which is a tool for performing automated monitoring, diagnosis, and control of electromechanical devices. KATE employs artificial intelligence computing techniques to perform these functions. The KATE system consists of a generic shell and a knowledge base. The KATE shell is the portion of the system which performs the monitoring, diagnosis, and control functions. It is generic in the sense that it is application independent. This means that the monitoring activity, for instance, will be performed with the same algorithms regardless of the particular physical device being used. The knowledge base is the portion of the system which contains specific functional and behavorial information about the physical device KATE is working with. Work is nearing completion on a project at KSC to interface a Texas Instruments Explorer running a LISP version of KATE with a Generic Checkout System (GCS) test-bed to control a physical simulation of a shuttle tanking system (humorously called the Red Wagon because of its color and mobility). The Autonomous Control System (ACS) project supplements and extends the KATE/GCS project by adding three other major activities. The activities include: porting KATE from the Texas Instruments Explorer machine to an Intel 80386-based UNIX workstation in the LISP language; rewriting KATE as necessary to run on the same 80386 workstation but in the Ada language; and investigating software and techniques to translate ANSI Standard Common LISP to Mil Standard Ada. Primary goals of this task are as follows: (1) establish the advantages of using expert systems to provide intelligent autonomous software for Space Station Freedom applications; (2) determine the feasibility of using Ada as the run-time environment for model-based expert systems; (3) provide insight into the advantages and disadvantagesof using LISP or Ada in the run-time environment for expert systems; and (4

  15. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  16. Subsurface Contamination Control

    SciTech Connect

    Y. Yuan

    2001-11-16

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the subsurface repository; (2) provides a

  17. INL Autonomous Navigation System

    SciTech Connect

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  18. Diabetic autonomic neuropathy.

    PubMed

    Freeman, Roy

    2014-01-01

    Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.

  19. Best Practice -- Subsurface Investigations

    SciTech Connect

    Clark Scott

    2010-03-01

    These best practices for Subsurface Survey processes were developed at the Idaho National Laboratory (INL) and later shared and formalized by a sub-committee, under the Electrical Safety Committee of EFCOG. The developed best practice is best characterized as a Tier II (enhanced) survey process for subsurface investigations. A result of this process has been an increase in the safety and lowering of overall cost, when utility hits and their related costs are factored in. The process involves improving the methodology and thoroughness of the survey and reporting processes; or improvement in tool use rather than in the tools themselves. It is hoped that the process described here can be implemented at other sites seeking to improve their Subsurface Investigation results with little upheaval to their existing system.

  20. The Serpentinite Subsurface Microbiome

    NASA Astrophysics Data System (ADS)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  1. Terrestrial Subsurface Ecosystem

    SciTech Connect

    Wilkins, Michael J.; Fredrickson, Jim K.

    2015-10-15

    The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free of microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our

  2. Subsurface connection methods for subsurface heaters

    DOEpatents

    Vinegar, Harold J.; Bass, Ronald Marshall; Kim, Dong Sub; Mason, Stanley Leroy; Stegemeier, George Leo; Keltner, Thomas Joseph; Carl, Jr., Frederick Gordon

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  3. Mars penetrator: Subsurface science mission

    NASA Technical Reports Server (NTRS)

    Lumpkin, C. K.

    1974-01-01

    A penetrator system to emplace subsurface science on the planet Mars is described. The need for subsurface science is discussed, and the technologies for achieving successful atmospheric entry, Mars penetration, and data retrieval are presented.

  4. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  5. Subsurface contaminants focus area

    SciTech Connect

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  6. Applications of subsurface microscopy.

    PubMed

    Tetard, Laurene; Passian, Ali; Farahi, Rubye H; Voy, Brynn H; Thundat, Thomas

    2012-01-01

    Exploring the interior of a cell is of tremendous importance in order to assess the effects of nanomaterials on biological systems. Outside of a controlled laboratory environment, nanomaterials will most likely not be conveniently labeled or tagged so that their translocation within a biological system cannot be easily identified and quantified. Ideally, the characterization of nanomaterials within a cell requires a nondestructive, label-free, and subsurface approach. Subsurface nanoscale imaging represents a real challenge for instrumentation. Indeed the tools available for high resolution characterization, including optical, electron or scanning probe microscopies, mainly provide topography images or require taggants that fluoresce. Although the intercellular environment holds a great deal of information, subsurface visualization remains a poorly explored area. Recently, it was discovered that by mechanically perturbing a sample, it was possible to observe its response in time with nanoscale resolution by probing the surface with a micro-resonator such as a microcantilever probe. Microcantilevers are used as the force-sensing probes in atomic force microscopy (AFM), where the nanometer-scale probe tip on the microcantilever interacts with the sample in a highly controlled manner to produce high-resolution raster-scanned information of the sample surface. Taking advantage of the existing capabilities of AFM, we present a novel technique, mode synthesizing atomic force microscopy (MSAFM), which has the ability to probe subsurface structures such as non-labeled nanoparticles embedded in a cell. In MSAFM mechanical actuators (PZTs) excite the probe and the sample at different frequencies as depicted in the first figure of this chapter. The nonlinear nature of the tip-sample interaction, at the point of contact of the probe and the surface of the sample, in the contact mode AFM configuration permits the mixing of the elastic waves. The new dynamic system comprises new

  7. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  8. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  9. Subsurface fracture spacing

    SciTech Connect

    Lorenz, J.C. ); Hill, R.E. )

    1991-01-01

    This study was undertaken in order to document and analyze the unique set of data on subsurface fracture characteristics, especially spacing, provided by the US Department of Energy's Slant Hole Completion Test well (SHCT-1) in the Piceance Basin, Colorado. Two hundred thirty-six (236) ft (71.9 m) of slant core and 115 ft (35.1 m) of horizontal core show irregular, but remarkably close, spacings for 72 natural fractures cored in sandstone reservoirs of the Mesaverde Group. Over 4200 ft (1280 m) of vertical core (containing 275 fractures) from the vertical Multiwell Experiment wells at the same location provide valuable information on fracture orientation, termination, and height, but only data from the SHCT-1 core allow calculations of relative fracture spacing. Within the 162-ft (49-m) thick zone of overlapping core from the vertical and deviated wellbores, only one fracture is present in vertical core whereas 52 fractures occur in the equivalent SHCT-1 core. The irregular distribution of regional-type fractures in these heterogeneous reservoirs suggests that measurements of average fracture spacing'' are of questionable value as direct input parameters into reservoir engineering models. Rather, deviated core provides data on the relative degree of fracturing, and confirms that cross fractures can be rare in the subsurface. 13 refs., 11 figs.

  10. Subsurface Biogeochemistry of Actinides

    SciTech Connect

    Kersting, Annie B.; Zavarin, Mavrik

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  11. Miniaturized autonomous robot

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidenori; Fukuda, Toshio

    1998-01-01

    Many projects developing the miniaturized autonomous robot have been carried out in the whole world. This paper deals with our challenges developing a miniaturized autonomous robot. The miniaturized autonomous robot is defined as the miniaturized closed-loop system with micro processor, microactuators and microsensors. We have developed the micro autonomous robotic system (MARS) consisting of the microprocessor, microsensors, microactuators, communication units and batteries. The MARS controls itself by the downloaded program supplied through the IR communication system. In this paper, we demonstrate several performance of the MARS, and discuss the properties of the miniaturized autonomous robot.

  12. Radar sensor for an autonomous Antarctic explorer

    NASA Astrophysics Data System (ADS)

    Foessel, Alex; Apostolopoulos, Dimi; Whittaker, William L.

    1999-01-01

    The localization and identification of antarctic meteorites is a task of great scientific interest and with implications to planetary exploration. Autonomous search for antarctic meteorites presents a profound technical challenge. Ground Penetrating Radar (GPR) holds the prospect to safeguard antarctic robot from terrain dangers and detect subsurface objects. In January 1998, we validated a 500 MHz GPR sensor as part of a field robotic technology demonstration at Patriot Hills, Antarctica. We deployed the sensor from a sled and integrate with position and attitude instruments to perform field measurements. Data was acquired under different conditions and in multiple locations. The radar detected hidden crevasses from 50 cm. distance, thus showing its merit as a rover safeguarding device. It also localized 5 cm. rocks ins now and ice. Moreover, the radar data was used to characterize snow/ice/bedrock stratigraphy. GPR position measurements enabled ground truth and mapping of the location of hazards and interesting subsurface objects and features.

  13. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  14. Nonintrusive subsurface surveying capability

    SciTech Connect

    Tunnell, T.W.; Cave, S.P.

    1994-06-01

    This presentation describes the capabilities of a ground-pentrating radar (GPR) system developed by EG&G Energy Measurements (EM), a prime contractor to the Department of Energy (DOE). The focus of the presentation will be on the subsurface survey of DOE site TA-21 in Los Alamos, New Mexico. EG&G EM developed the system for the Department of Defense. The system is owned by the Department of the Army and currently resides at KO in Albuquerque. EM is pursuing efforts to transfer this technology to environmental applications such as waste-site characterization with DOE encouragement. The Army has already granted permission to use the system for the waste-site characterization activities.

  15. Containment of subsurface contaminants

    DOEpatents

    Corey, J.C.

    1994-09-06

    A barrier is disclosed for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates. 5 figs.

  16. Containment of subsurface contaminants

    DOEpatents

    Corey, John C.

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  17. Subsurface Samples: Collection and Processing

    SciTech Connect

    Long, Philip E.; Griffin, W. Timothy; Phelps, Tommy J.

    2002-12-01

    Microbiological data, interpretation, and conclusions from subsurface samples ultimately depend on the quality and representative character of the samples. Subsurface samples for environmental microbiology ideally contain only the microbial community and geochemical properties that are representative of the subsurface environment from which the sample was taken. To that end, sample contamination by exogenous microorganisms or chemical constituents must be eliminated or minimized, and sample analyses need to begin before changes in the microbial community or geochemical characteristics occur. This article presents sampling methods and sample processing techniques for collecting representative samples from a range of subsurface environments. Factors that should be considered when developing a subsurface sampling program are discussed, including potential benefits, costs, and limitations enabling researchers to evaluate the techniques that are presented and match them to their project requirements. Methods and protocols to address coring, sampling, processing and quality assessment issues are presented.

  18. MAGIC (Mobile Autonomous Generic Instrument Carrier): Environment Specification & Requirements Assessment

    NASA Astrophysics Data System (ADS)

    Wagenbach, S.; Biele, J.; Ho, T.-M.; Lange, C.; Ulamec, S.; Witte, L.; Zoest, T. V.

    2011-10-01

    This paper presents first results of the DLR MAGIC (Mobile Autonomous Generic Instrument Carrier) study. MAGIC, a small robotic landing system that can autonomously relocate and upright, shall allow carrying variable suites of innovative instrumentation (up to a limit of ca. 3kg) for in-situ exploration to a broad, but defined, range of small bodies (such as asteroids, Near Earth Objects (NEO) and small moons). The instrumentation delivered shall allow studying the body's physical properties, internal, surface and subsurface structure and its chemical composition, thus being a complement to any rendezvous or sample return missions to small bodies.

  19. Intelligent Mobile Autonomous System

    DTIC Science & Technology

    1987-01-01

    jerk application. (c) Negative jerk application. Group (a). Application of positve jerk. Force is increased from initial value to force of resistance...fundamentals of the new emerging area of autonomous robotics . The goal of this research is to develop a theory of design and functioning of Intelligent...scientific research. This report contributes to a new rapidly developing area of autonomous robotics . Actual experience of dealing with autonomous robots (or

  20. The MDS autonomous control architecture

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    We describe the autonomous control architecture for the JPL Mission Data System (MDS). MDS is a comprehensive new software infrastructure for supporting unmanned space exploration. The autonomous control architecture is one component of MDS designed to enable autonomous operations.

  1. Microbial Transport in the Subsurface

    SciTech Connect

    Ginn, Timothy R.; Camesano, Terri; Scheibe, Timothy D.; Nelson, Kirk B.; Clement, T. P.; Wood, Brian D.

    2005-12-01

    In this article we focus on the physical, chemical, and biological processes involved in the transport of bacteria in the saturated subsurface. We will first review conceptual models of bacterial phases in the subsurface, and then the processes controlling fate and transport on short (e.g., bioremediation) time scales. Finally we briefly review field bacterial transport experiments and discuss a number of issues that impact the application of current process descriptions and models at the field scale.

  2. Autonomous multifunctional nanobrushes-autonomous materials

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Tius, Marcus A.

    2007-04-01

    In this work, taking advantage of carbon nanotubes' small size, and exceptional mechanical, chemical and electrical properties, we report on a series of nano-synthesis procedures that combine conventional chemical vapor deposition and selective substrate area growth followed by chemical functionalizations to fabricate functionalized nano-brushes from aligned carbon nanotube arrays and chemically selective functional groups. The high aspect ratio and small dimension, mechanical stability and flexibility, surface chemical and adhesive characteristics of carbon nanotubes provide opportunities to create nano-brushes with selected chemical functionalities. The nano-brushes are made from aligned multi-walled carbon nanotube bristles grafted onto long SiC fiber handles in various configurations and functionalized with various chemical functional groups. These nano-brushes can easily be manipulated physically, either manually or with the aid of motors. Here, we explain the autonomous characteristics of the functionalized nano-brushes employing functional chemical groups such that the nano-brush can potentially collect various metal particles, ions, and contaminants from liquid solutions and the air environment, autonomously. These functionalized multiwalled carbon nanotube based nano-brushes can work swiftly in both liquid and air environments. With surface modification and functionalization, the nanotube nano-brushes can potentially become a versatile nano-devices in many chemical and biological applications, where they can autonomously pick up the particles they encounter since they can be chemically programmed to function as Autonomous Chemical Nano Robots (ACNR).

  3. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    DOE PAGES

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...

    2016-08-31

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme – which is based on a nonisothermal, multiphase hydrological model – provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of themore » dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash–Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less

  4. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    NASA Astrophysics Data System (ADS)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.

    2016-08-01

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme - which is based on a nonisothermal, multiphase hydrological model - provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.

  5. Subsurface Geotechnical Parameters Report

    SciTech Connect

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  6. Tangible Exploration of Subsurface Data

    NASA Astrophysics Data System (ADS)

    Petrasova, A.; Harmon, B.; Mitasova, H.; White, J.

    2014-12-01

    Since traditional subsurface visualizations using 2D maps, profiles or charts can be difficult to interpret and often do not convey information in an engaging form, scientists are interested in developing alternative visualization techniques which would help them communicate the subsurface volume data with students and general public. We would like to present new technique for interactive visualization of subsurface using Tangible geospatial modeling and visualization system (Tangeoms). It couples a physical, three-dimensional model with geospatial modeling and analysis through a cycle of scanning and projection. Previous applications of Tangeoms were exploring the impact of terrain modifications on surface-based geophysical processes, such as overland water flow, sediment transport, and also on viewsheds, cast shadows or solar energy potential. However, Tangeoms can serve as a tool for exploring subsurface as well. By creating a physical sand model of a study area, removing the sand from different parts of the model and projecting the computed cross-sections, we can look under the ground as if we were at an excavation site, and see the actual data represented as a 3D raster in that particular part of the model. Depending on data availability, we can also incorporate temporal dimension. Our method is an intuitive and natural way of exploring subsurface data and for users, it represents an alternative to more abstract 3D computer visualization tools, by offering direct, tangible interface.

  7. Endoscopic subsurface imaging in tissues

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B

    2001-02-12

    The objective of this work is to develop endoscopic subsurface optical imaging technology that will be able to image different tissue components located underneath the surface of the tissue at an imaging depth of up to 1 centimeter. This effort is based on the utilization of existing technology and components developed for medical endoscopes with the incorporation of the appropriate modifications to implement the spectral and polarization difference imaging technique. This subsurface imaging technique employs polarization and spectral light discrimination in combination with image processing to remove a large portion of the image information from the outer layers of the tissue which leads to enhancement of the contrast and image quality of subsurface tissue structures.

  8. Measuring isotropic subsurface light transport.

    PubMed

    Happel, Kathrin; Dörsam, Edgar; Urban, Philipp

    2014-04-21

    Subsurface light transport can affect the visual appearance of materials significantly. Measuring and modeling this phenomenon is crucial for accurately reproducing colors in printing or for rendering translucent objects on displays. In this paper, we propose an apparatus to measure subsurface light transport employing a reference material to cancel out adverse signals that may bias the results. In contrast to other approaches, the setup enables improved focusing on rough surfaces (e.g. uncoated paper). We derive a measurement equation that may be used to deduce the point spread function (PSF) of subsurface light transport. Main contributions are the usage of spectrally-narrowband exchangeable LEDs allowing spectrally-resolved measurements and an approach based on quadratic programming for reconstructing PSFs in the case of isotropic light transport.

  9. Subsurface microbial habitats on Mars

    NASA Technical Reports Server (NTRS)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  10. Autonomous spacecraft design methodology

    SciTech Connect

    Divita, E.L.; Turner, P.R.

    1984-08-01

    A methodology for autonomous spacecraft design blends autonomy requirements with traditional mission requirements and assesses the impact of autonomy upon the total system resources available to support faulttolerance and automation. A baseline functional design can be examined for autonomy implementation impacts, and the costs, risk, and benefits of various options can be assessed. The result of the process is a baseline design that includes autonomous control functions.

  11. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  12. Towed Subsurface Optical Communications Buoy

    NASA Technical Reports Server (NTRS)

    Stirbl, Robert C.; Farr, William H.

    2013-01-01

    The innovation allows critical, high-bandwidth submarine communications at speed and depth. This reported innovation is a subsurface optical communications buoy, with active neutral buoyancy and streamlined flow surface veins for depth control. This novel subsurface positioning for the towed communications buoy enables substantial reduction in water-absorption and increased optical transmission by eliminating the intervening water absorption and dispersion, as well as by reducing or eliminating the beam spread and the pulse spreading that is associated with submarine-launched optical beams.

  13. Diabetic autonomic neuropathy.

    PubMed

    Vinik, Aaron I; Erbas, Tomris

    2013-01-01

    Autonomic neuropathy, once considered to be the Cinderella of diabetes complications, has come of age. The autonomic nervous system innervates the entire human body, and is involved in the regulation of every single organ in the body. Thus, perturbations in autonomic function account for everything from abnormalities in pupillary function to gastroparesis, intestinal dysmotility, diabetic diarrhea, genitourinary dysfunction, amongst others. "Know autonomic function and one knows the whole of medicine!" It is now becoming apparent that before the advent of severe pathological damage to the autonomic nervous system there may be an imbalance between the two major arms, namely the sympathetic and parasympathetic nerve fibers that innervate the heart and blood vessels, resulting in abnormalities in heart rate control and vascular dynamics. Cardiac autonomic neuropathy (CAN) has been linked to resting tachycardia, postural hypotension, orthostatic bradycardia and orthostatic tachycardia (POTTS), exercise intolerance, decreased hypoxia-induced respiratory drive, loss of baroreceptor sensitivity, enhanced intraoperative or perioperative cardiovascular lability, increased incidence of asymptomatic ischemia, myocardial infarction, and decreased rate of survival after myocardial infarction and congestive heart failure. Autonomic dysfunction can affect daily activities of individuals with diabetes and may invoke potentially life-threatening outcomes. Intensification of glycemic control in the presence of autonomic dysfunction (more so if combined with peripheral neuropathy) increases the likelihood of sudden death and is a caveat for aggressive glycemic control. Advances in technology, built on decades of research and clinical testing, now make it possible to objectively identify early stages of CAN with the use of careful measurement of time and frequency domain analyses of autonomic function. Fifteen studies using different end points report prevalence rates of 1% to 90

  14. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    SciTech Connect

    D.W. Markman

    2001-08-06

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M&O 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M&O 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree of

  15. Autonomic disturbances in narcolepsy.

    PubMed

    Plazzi, Giuseppe; Moghadam, Keivan Kaveh; Maggi, Leonardo Serra; Donadio, Vincenzo; Vetrugno, Roberto; Liguori, Rocco; Zoccoli, Giovanna; Poli, Francesca; Pizza, Fabio; Pagotto, Uberto; Ferri, Raffaele

    2011-06-01

    Narcolepsy is a clinical condition characterized mainly by excessive sleepiness and cataplexy. Hypnagogic hallucinations and sleep paralysis complete the narcoleptic tetrad; disrupted night sleep, automatic behaviors and weight gain are also usual complaints. Different studies focus on autonomic changes or dysfunctions among narcoleptic patients, such as pupillary abnormalities, fainting spells, erectile dysfunction, night sweats, gastric problems, low body temperature, systemic hypotension, dry mouth, heart palpitations, headache and extremities dysthermia. Even if many studies lack sufficient standardization or their results have not been replicated, a non-secondary involvement of the autonomic nervous system in narcolepsy is strongly suggested, mainly by metabolic and cardiovascular findings. Furthermore, the recent discovery of a high risk for overweight and for metabolic syndrome in narcoleptic patients represents an important warning for clinicians in order to monitor and follow them up for their autonomic functions. We review here studies on autonomic functions and clinical disturbances in narcoleptic patients, trying to shed light on the possible contribute of alterations of the hypocretin system in autonomic pathophysiology.

  16. Autonomic dysfunction in multiple sclerosis.

    PubMed

    Racosta, Juan Manuel; Kimpinski, Kurt; Morrow, Sarah Anne; Kremenchutzky, Marcelo

    2015-12-01

    Autonomic dysfunction is a prevalent and significant cause of disability among patients with multiple sclerosis. Autonomic dysfunction in multiple sclerosis is usually explained by lesions within central nervous system regions responsible for autonomic regulation, but novel evidence suggests that other factors may be involved as well. Additionally, the interactions between the autonomic nervous system and the immune system have generated increased interest about the role of autonomic dysfunction in the pathogenesis of multiple sclerosis. In this paper we analyze systematically the most relevant signs and symptoms of autonomic dysfunction in MS, considering separately their potential causes and implications.

  17. Subsurface Electromagnetic Target Characterization and Identification

    DTIC Science & Technology

    1979-06-01

    B. Subsurface Electromagnetic Video Pulse Radar System 5 C. The Subsurface Targets 11 D. Raw Measured Waveforms 14 E. Processed Waveforms 15 III...259 r i. I .. . . .... .. . . . . .;. . . . .. .. o _ • v . . • • • -• -. . .. -"... .. . II II LIST OF FIGURES Figure Page 1 The subsurface pulse ...7 3 Typical raw waveform received by the pulse radar system ..... ................... .i..... 9 4 Physical characteristics of the subsurface

  18. Autonomous Locator of Thermals (ALOFT) Autonomous Soaring Algorithm

    DTIC Science & Technology

    2015-04-03

    could exploit naturally occurring convective thermal updrafts for extending the endurance of an unmanned aerial vehicle (UAV). Essentially, the...1 AUTONOMOUS LOCATOR OF THERMALS (ALOFT) AUTONOMOUS SOARING ALGORITHM INTRODUCTION The increasing use of unmanned aerial

  19. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  20. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  1. Simple Autonomous Chaotic Circuits

    NASA Astrophysics Data System (ADS)

    Piper, Jessica; Sprott, J.

    2010-03-01

    Over the last several decades, numerous electronic circuits exhibiting chaos have been proposed. Non-autonomous circuits with as few as two components have been developed. However, the operation of such circuits relies on the non-ideal behavior of the devices used, and therefore the circuit equations can be quite complex. In this paper, we present two simple autonomous chaotic circuits using only opamps and linear passive components. The circuits each use one opamp as a comparator, to provide a signum nonlinearity. The chaotic behavior is robust, and independent of nonlinearities in the passive components. Moreover, the circuit equations are among the algebraically simplest chaotic systems yet constructed.

  2. Autonomous electrochromic assembly

    SciTech Connect

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  3. Method of installing subsurface barrier

    SciTech Connect

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  4. Autonomous In-Situ Resources Prospector

    NASA Technical Reports Server (NTRS)

    Dissly, R. W.; Buehler, M. G.; Schaap, M. G.; Nicks, D.; Taylor, G. J.; Castano, R.; Suarez, D.

    2004-01-01

    -penetrating radar, and an instrumented cone penetrometer for subsurface assessment. Output from these sensors will be evaluated autonomously in real-time by decision-making software to evaluate if any of the targeted resources has been detected, and if so, to quantify their abundance. Algorithms for optimizing the mapping strategy based on target resource abundance and distribution are also included in the autonomous software. This approach emphasizes on-the-fly survey measurements to enable efficient and rapid prospecting of large areas, which will improve the economics of ISRU system approaches. The mature technology will enable autonomous rovers to create in-situ resource maps of lunar or other planetary surfaces, which will facilitate human and robotic exploration.

  5. INL Subsurface Wireless Sensor Platform

    SciTech Connect

    Dennis C. Kunerth; John M. Svoboda; James T. Johnson

    2005-10-01

    The Idaho National Laboratory is developing a versatile micro-power sensor interface platform for periodic subsurface sensing of environmental variables important to waste disposal sites such as volumetric moisture, water potential, and temperature. The key characteristics of the platform architecture are that the platform is passive until externally energized --no internal power source is required -- and that it communicates with a "reader" via short-range telemetry - no wires penetrate the subsurface. Other significant attributes include the potential for a long service life and a compact size that makes it well suited for retrofitting existing landfill structures. Functionally, the sensor package is "read" by a short-range induction coil that activates and powers the sensor platform as well as detects the sensor output via a radio frequency signal generated by the onboard programmable interface controller microchip. As a result, the platform has a functional subsurface communication range of approximately 10 to 12 ft. and can only accept sensors that require low power to operate.

  6. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  7. Developing Autonomous Learners.

    ERIC Educational Resources Information Center

    Mulcahy, Robert F.

    1991-01-01

    Defines the concept of autonomous learning. Presents the Strategies Program for Effective Learning/Thinking (SPELT), including its underlying assumptions, instructional model, teacher training procedures, research findings, and anticipated future development. Research results include implications for learning-disabled and gifted students. (KS)

  8. Micro autonomous robotic system

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidenori; Fukuda, Toshio

    1995-12-01

    This paper deals with the structural proposal of the micro autonomous robotic system, and shows the design of the prototype. We aim at developing the micro robot, which autonomously acts based on its detection, in order to propose a solution to constitute the micro autonomous robotic system. However, as miniaturizing the size, the number of the sensors gets restricted and the information from them becomes lack. Lack of the information makes it difficult to realize an intelligence of quality. Because of that, the micro robotic system needs to develop the simple algorithm. In this paper, we propose the simply logical algorithms to control the actuator, and show the performance of the micro robot controlled by them, and design the Micro Line Trace Robot, which dimension is about 1 cm cube and which moves along the black line on the white-colored ground, and the programmable micro autonomous robot, which dimension is about 2 cm cube and which performs according to the program optionally.

  9. Autonomous Robot Skill Acquisition

    DTIC Science & Technology

    2011-05-01

    Research. ix ABSTRACT AUTONOMOUS ROBOT SKILL ACQUISITION MAY 2011 GEORGE DIMITRI KONIDARIS B.Sc., UNIVERSITY OF THE WITWATERSRAND B.Sc. Hons., UNIVERSITY...OF THE WITWATERSRAND M.Sc., UNIVERSITY OF EDINBURGH Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Andrew G. Barto Among the most

  10. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  11. Diabetic autonomic neuropathy.

    PubMed

    Vinik, Aaron I; Maser, Raelene E; Mitchell, Braxton D; Freeman, Roy

    2003-05-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes. Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of DAN has not been fully appreciated. The reported prevalence of DAN varies widely depending on the cohort studied and the methods of assessment. In randomly selected cohorts of asymptomatic individuals with diabetes, approximately 20% had abnormal cardiovascular autonomic function. DAN frequently coexists with other peripheral neuropathies and other diabetic complications, but DAN may be isolated, frequently preceding the detection of other complications. Major clinical manifestations of DAN include resting tachycardia, exercise intolerance, orthostatic hypotension, constipation, gastroparesis, erectile dysfunction, sudomotor dysfunction, impaired neurovascular function, "brittle diabetes," and hypoglycemic autonomic failure. DAN may affect many organ systems throughout the body (e.g., gastrointestinal [GI], genitourinary, and cardiovascular). GI disturbances (e.g., esophageal enteropathy, gastroparesis, constipation, diarrhea, and fecal incontinence) are common, and any section of the GI tract may be affected. Gastroparesis should be suspected in individuals with erratic glucose control. Upper-GI symptoms should lead to consideration of all possible causes, including autonomic dysfunction. Whereas a radiographic gastric emptying study can definitively establish the diagnosis of gastroparesis, a reasonable approach is to exclude autonomic dysfunction and other known causes of these upper-GI symptoms. Constipation is the most common lower-GI symptom but can alternate with episodes of diarrhea. Diagnostic approaches should rule out autonomic dysfunction and the well-known causes such as neoplasia. Occasionally, anorectal manometry and other specialized tests typically performed by the gastroenterologist may be helpful. DAN is also

  12. Autonomous Optical Lunar Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; Crouse, Brian; D'souza, Chris

    2009-01-01

    The performance of optical autonomous navigation is investigated for low lunar orbits and for high elliptical lunar orbits. Various options for employing the camera measurements are presented and compared. Strategies for improving navigation performance are developed and applied to the Orion vehicle lunar mission

  13. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  14. Remote Real-Time Monitoring of Subsurface Landfill Gas Migration

    PubMed Central

    Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot

    2011-01-01

    The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975

  15. The Inchworm Deep Drilling System for Kilometer Scale Subsurface Exploration of Europa (IDDS)

    NASA Astrophysics Data System (ADS)

    Rafeek, S.; Gorevan, S. P.; Bartlett, P. W.; Kong, K. Y.

    2001-01-01

    The Inchworm Deep Drilling System (IDDS) is a compact subsurface transport system capable of accessing regions of astrobiological interest deep below the surface of Jupiter's moon, Europa. The IDDS answers Focus Investigation Area 1 as an innovative concept for implementing subsurface exploration of Europa. The concept is being developed at Honeybee Robotics to reach depths on the order of one kilometer with no tether or umbilical of any kind. The device's unique, inchworm-burrowing method appears capable of achieving this near-term depth goal and it is foreseeable that the IDDS will be capable of autonomously drilling to tens of kilometers below the surface. Logical applications of the concept also include accessing the proposed subsurface oceans on Ganymede and Callisto, subsurface water ice on Mars, and Lake Vostok on Earth. The conference presentation will communicate the IDDS concept and how it can enable the search for prebiotic and biotic chemical processes on Europa by bringing proper instrumentation to the subsurface ocean for in-situ investigation and/or returning samples to the surface. Currently, a proposal for breadboarding the IDDS is pending for the Research Opportunities for Space Science's Astrobiology Science and Technology Instrument Development NRA. Additional information is contained in the original extended abstract.

  16. Advances in Autonomous Systems for Missions of Space Exploration

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.

    applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other

  17. Trigeminal autonomic cephalgias

    PubMed Central

    2012-01-01

    Summary points 1. Trigeminal autonomic cephalgias (TACs) are headaches/facial pains classified together based on:a suspected common pathophysiology involving the trigeminovascular system, the trigeminoparasympathetic reflex and centres controlling circadian rhythms;a similar clinical presentation of trigeminal pain, and autonomic activation. 2. There is much overlap in the diagnostic features of individual TACs. 3. In contrast, treatment response is relatively specific and aids in establishing a definitive diagnosis. 4. TACs are often presentations of underlying pathology; all patients should be imaged. 5. The aim of the article is to provide the reader with a broad introduction to, and an overview of, TACs. The reading list is extensive for the interested reader. PMID:26516482

  18. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  19. Mobile Autonomous Humanoid Assistant

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  20. Pharmacotherapy of autonomic failure

    PubMed Central

    Shibao, Cyndya; Okamoto, Luis; Biaggioni, Italo

    2012-01-01

    The clinical picture of autonomic failure is characterized by severe and disabling orthostatic hypotension. These disorders can develop as a result of damage of central neural pathways or peripheral autonomic nerves, caused either by a primary autonomic neurodegenerative disorder or secondary to systemic illness. Treatment should be focused on decreasing presyncopal symptoms instead of achieving blood pressure goals. Non-pharmacologic strategies such as physical counter-maneuvers, dietary changes (i.e. high salt diet, rapid water drinking or compression garments) are the first line therapy. Affected patients should be screened for co-morbid conditions such as post-prandial hypotension and supine hypertension that can worsen orthostatic hypotension if not treated. If symptoms are not controlled with these conservative measures the next step is to start pharmacological agents; these interventions should be aimed at increasing intravascular volume either by promoting water and salt retention (fludrocortisone) or by increasing red blood cell mass when anemia is present (recombinant erythropoietin). When pressor agents are needed, direct pressor agents (midodrine) or agents that potentiate sympathetic activity (atomoxetine, yohimbine, pyridostigmine) can be used. It is preferable to use short-acting pressor agents that can be taken on as needed basis in preparation for upright activities. PMID:21664375

  1. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  2. Introduction: energy and the subsurface.

    PubMed

    Christov, Ivan C; Viswanathan, Hari S

    2016-10-13

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection.This article is part of the themed issue 'Energy and the subsurface'.

  3. Phylogenetic relationships among subsurface microorganisms

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-01-01

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  4. Spirituality and Autonomic Cardiac Control

    PubMed Central

    Berntson, Gary G.; Norman, Greg J.; Hawkley, Louise C.; Cacioppo, John T.

    2009-01-01

    Background Spirituality has been suggested to be associated with positive health, but potential biological mediators have not been well characterized. Purpose and Methods The present study examined, in a population based sample of middle-aged and older adults, the potential relationship between spirituality and patterns of cardiac autonomic control, which may have health significance. Measures of parasympathetic (high-frequency heart rate variability) and sympathetic (pre-ejection period) cardiac control were obtained from a representative sample of 229 participants. Participants completed questionnaires to assess spirituality (closeness to and satisfactory relation with God). Personality, demographic, anthropometric, health behavior, and health status information was also obtained. A series of multivariate regression models was used to examine the relations between spirituality, the autonomic measures, and two derived indexes-- cardiac autonomic balance (CAB, reflecting parasympathetic to sympathetic balance) and cardiac autonomic regulation (CAR, reflecting total autonomic control). Results Spirituality, net of demographics or other variables, was found to be associated with enhanced parasympathetic as well as sympathetic cardiac control (yielding a higher CAR); but was not associated with CAB. Although the number of cases was small (N=11), both spirituality and CAR were significant negative predictors of the prior occurrence of a myocardial infarction. Conclusions In a population based sample, spirituality appears to be associated with a specific pattern of cardiac autonomic regulation, characterized by a high level of cardiac autonomic control, irrespective of the relative contribution of the two autonomic branches. This pattern of autonomic control may have health significance. PMID:18357497

  5. Cardiovascular manifestations of autonomic epilepsy.

    PubMed

    Freeman, Roy

    2006-02-01

    Cardiovascular autonomic manifestations of seizures occur frequently in the epileptic population. Common manifestations include alterations in heart rate and rhythm, blood pressure, ECG changes and chest pain. The neuroanatomical and neurophysiological underpinnings of these autonomic manifestations are not been fully elucidated. Diagnostic confusion may arise when ictal symptoms are confined to the autonomic nervous system; conversely, such symptoms in association with convulsions or altered consciousness are more readily recognized as concomitant ictal features. Awareness of the diverse autonomic manifestations of epilepsy will enhance diagnosis and lead to more effective therapy of these patients.

  6. Microbial processes and subsurface contaminants

    NASA Astrophysics Data System (ADS)

    Molz, Fred J.

    A Chapman Conference entitled “Microbial Processes in the Transport, Fate, and In Situ Treatment of Subsurface Contaminants” was held in Snowbird, Utah, October 1-3, 1986. Members of the program committee and session chairmen were Lenore Clesceri (Rensselaer Polytechnic Institute, Troy, N.Y.), David Gibson (University of Texas, Austin), James Mercer (GeoTrans, Inc., Herndon , Va.), Donald Michelsen (Virginia Polytechnic Institute and State University, Blacksburg), Fred Molz (Auburn University, Auburn, Ala.), Bruce Rittman (University of Illinois, Urbana), Gary Sayler (University of Tennessee, Knoxville), and John T. Wilson (U.S. Environmental Protection Agency, Ada, Okla.). The following report attempts to highlight the six sessions that constituted the conference. For additional information, including a bound summary and abstracts, contact Fred J. Molz, Civil Engineering Department, Auburn University, AL 36849 (telephone: 205-826-4321).

  7. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  8. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  9. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  10. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  11. Experiments in autonomous robotics

    SciTech Connect

    Hamel, W.R.

    1987-01-01

    The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.

  12. Awareness and Responsibility in Autonomous Weapons Systems

    NASA Astrophysics Data System (ADS)

    Bhuta, Nehal; Rotolo, Antonino; Sartor, Giovanni

    The following sections are included: * Introduction * Why Computational Awareness is Important in Autonomous Weapons * Flying Drones and Other Autonomous Weapons * The Impact of Autonomous Weapons Systems * From Autonomy to Awareness: A Perspective from Science Fiction * Summary and Conclusions

  13. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  14. Nemesis Autonomous Test System

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  15. Autonomic Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.; Miller, N. E.

    1994-01-01

    The purpose of this report is to describe how changes in autonomic nervous system responses may be used as an index of individual differences in adaptational capacity to space flight. During two separate Spacelab missions, six crewmembers wore an ambulatory monitoring system which enabled continuous recording of their physiological responses for up to twelve hours a day for 3 to 5 mission days. The responses recorded were electrocardiography, respiration wave form, skin conductance level, hand temperature, blood flow to the hands and triaxial accelerations of the head and upper body. Three of these subjects had been given training, before the mission, in voluntary control of these autonomic responses as a means of facilitating adaptation to space. Three of these subjects served as Controls, i.e., did not receive this training but took anti-motion sickness medication. Nearly 300 hours of flight data are summarized. These data were examined using time-series analyses, spectral analyses of heart rate variability, and analyses of variance. Information was obtained on responses to space motion sickness, inflight medications, circadian rhythm, workload and fatigue. Preliminary assessment was made on the effectiveness of self-regulation training as a means of facilitating adaptation, with recommendations for future flights.

  16. Autonomous mobile communication relays

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Everett, Hobart R.; Manouk, Narek; Verma, Ambrish

    2002-07-01

    Maintaining a solid radio communication link between a mobile robot entering a building and an external base station is a well-recognized problem. Modern digital radios, while affording high bandwidth and Internet-protocol-based automatic routing capabilities, tend to operate on line-of-sight links. The communication link degrades quickly as a robot penetrates deeper into the interior of a building. This project investigates the use of mobile autonomous communication relay nodes to extend the effective range of a mobile robot exploring a complex interior environment. Each relay node is a small mobile slave robot equipped with sonar, ladar, and 802.11b radio repeater. For demonstration purposes, four Pioneer 2-DX robots are used as autonomous mobile relays, with SSC-San Diego's ROBART III acting as the lead robot. The relay robots follow the lead robot into a building and are automatically deployed at various locations to maintain a networked communication link back to the remote operator. With their on-board external sensors, they also act as rearguards to secure areas already explored by the lead robot. As the lead robot advances and RF shortcuts are detected, relay nodes that become unnecessary will be reclaimed and reused, all transparent to the operator. This project takes advantage of recent research results from several DARPA-funded tasks at various institutions in the areas of robotic simulation, ad hoc wireless networking, route planning, and navigation. This paper describes the progress of the first six months of the project.

  17. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  18. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  19. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  20. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  1. Autonomous Learner Model Resource Book

    ERIC Educational Resources Information Center

    Betts, George T.; Carey, Robin J.; Kapushion, Blanche M.

    2016-01-01

    "Autonomous Learner Model Resource Book" includes activities and strategies to support the development of autonomous learners. More than 40 activities are included, all geared to the emotional, social, cognitive, and physical development of students. Teachers may use these activities and strategies with the entire class, small groups, or…

  2. The Design and Implementation of Instruments for Low-Frequency Electromagnetic Sounding of the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Delory, G. T.; Grimm, R. E.

    2003-01-01

    Low-frequency electromagnetic soundings of the subsurface can identify liquid water at depths ranging from hundreds of meters to approx. 10 km in an environment such as Mars. Among the tools necessary to perform these soundings are low-frequency electric and magnetic field sensors capable of being deployed from a lander or rover such that horizontal and vertical components of the fields can be measured free of structural or electrical interference. Under a NASA Planetary Instrument Definition and Development Program (PIDDP), we are currently engaged in the prototype stages of low frequency sensor implementations that will enable this technique to be performed autonomously within the constraints of a lander platform. Once developed, this technique will represent both a complementary and alternative method to orbital radar sounding investigations, as the latter may not be able to identify subsurface water without significant ambiguities. Low frequency EM methods can play a crucial role as a ground truth measurement, performing deep soundings at sites identified as high priority areas by orbital radars. Alternatively, the penetration depth and conductivity discrimination of low-frequency methods may enable detection of subsurface water in areas that render radar methods ineffective. In either case, the sensitivity and depth of penetration inherent in low frequency EM exploration makes this tool a compelling candidate method to identify subsurface liquid water from a landed platform on Mars or other targets of interest.

  3. Pure autonomic failure without synucleinopathy.

    PubMed

    Isonaka, Risa; Holmes, Courtney; Cook, Glen A; Sullivan, Patti; Sharabi, Yehonatan; Goldstein, David S

    2017-04-01

    Pure autonomic failure is a rare form of chronic autonomic failure manifesting with neurogenic orthostatic hypotension and evidence of sympathetic noradrenergic denervation unaccompanied by signs of central neurodegeneration. It has been proposed that pure autonomic failure is a Lewy body disease characterized by intra-neuronal deposition of the protein alpha-synuclein in Lewy bodies and neurites. A middle-aged man with previously diagnosed pure autonomic failure experienced a sudden, fatal cardiac arrest. He was autopsied, and tissues were harvested for neurochemical and immunofluorescence studies. Post-mortem microscopic neuropathology showed no Lewy bodies, Lewy neurites, or alpha-synuclein deposition by immunohistochemistry anywhere in the brain. The patient had markedly decreased immunofluorescent tyrosine hydroxylase in sympathetic ganglion tissue without detectable alpha-synuclein even in rare residual nests of tyrosine hydroxylase-containing ganglionic fibers. In pure autonomic failure, sympathetic noradrenergic denervation can occur without concurrent Lewy bodies or alpha-synuclein deposition in the brain or sympathetic ganglion tissue.

  4. Introduction: energy and the subsurface

    PubMed Central

    Viswanathan, Hari S.

    2016-01-01

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597784

  5. Fluid-powered subsurface pump

    SciTech Connect

    Gipson, T.C.

    1991-12-03

    This paper describes a fluid-powered pump for attachment to small diametered coiled tubing for pumping subsurface liquid from a well production tube. It comprises: a pump housing having an upper end and a lower end, the upper end releasably attachable to a downhole end of the coiled tubing, the inside of the upper end of the housing in fluid communication with the inside of the coiled tubing; a cross head seal member dividing the pump into an upper chamber and a lower chamber, the upper chamber in fluid communication with the inside of the coiled tubing; a pump actuator extending between the upper and lower chambers, the actuator having an upper piston head sealingly fitted to reciprocate in the upper chamber and a lower piston head sealingly fitted to reciprocate in the lower chamber, the upper piston head and the lower piston head connected to each other by a connector rod sealing slidable in the cross head seal member, the actuator having a conduit for fluid communication between the upper chamber and the lower chamber, the conduit extending from an orifice in the top surface of the upper piston head, through the connector rod to a port above the top surface of the lower piston head.

  6. Subsurface Explosions in Granular Media

    NASA Astrophysics Data System (ADS)

    Lai, Shuyue; Houim, Ryan; Oran, Elaine

    2015-11-01

    Numerical simulations of coupled gas-granular flows are used to study properties of shock formation and propagation in media, such as sand or regolith on the moon, asteroids, or comets. The simulations were performed with a multidimensional fully compressible model, GRAF, which solves two sets of coupled Navier-Stokes equations, one for the gas and one for the granular medium. The specific case discussed here is for a subsurface explosion in a granular medium initiated by an equivalent of 200g of TNT in depths ranging from 0.1m to 3m. The background conditions of 100K, 10 Pa and loose initial particle volume fraction of 25% are consistent with an event on a comet. The initial blast creates a cavity as a granular shock expands outwards. Since the gas-phase shock propagates faster than the granular shock in loose, granular material, some gas and particles are ejected before the granular shock arrives. When the granular shock reaches the surface, a cap-like structure forms. This cap breaks and may fall back on the surface and in this process, relatively dense particle clusters form. At lower temperatures, the explosion timescales are increased and entrained particles are more densely packed.

  7. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  8. Autonomous docking ground demonstration

    NASA Technical Reports Server (NTRS)

    Lamkin, Steve L.; Le, Thomas Quan; Othon, L. T.; Prather, Joseph L.; Eick, Richard E.; Baxter, Jim M.; Boyd, M. G.; Clark, Fred D.; Spehar, Peter T.; Teters, Rebecca T.

    1991-01-01

    The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved.

  9. Autonomous path-planning navigation system for site characterization

    NASA Astrophysics Data System (ADS)

    Rankin, Arturo L.; Crane, Carl D., III; Armstrong, David G., II; Nease, Allen D.; Brown, H. Edward

    1996-05-01

    The location and removal of buried munitions is an important yet hazardous task. Current development is aimed at performing both the ordnance location and removal tasks autonomously. An autonomous survey vehicle (ASV) named the Gator has been developed at the Center for Intelligent Machines and Robotics, under the direction of Wright Laboratory, Tyndall Air Force Base, Florida, and the Navy Explosive Ordnance Disposal Technology Division, Indian Head, Maryland. The primary task of the survey vehicle is to autonomously traverse an off-road site, towing behind it a trailer containing a sensor package capable of characterizing the sub-surface contents. Achieving 00 percent coverage of the site is critical to fully characterizing the site. This paper presents a strategy for planning efficient paths for the survey vehicle that guarantees near-complete coverage of a site. A small library of three in-house developed path planners are reviewed. A strategy is also presented to keep the trailer on-path and to calculate the percent of coverage of a site with a resolution of 0.01 m2. All of the algorithms discussed in this paper were initially developed in simulation on a Silicon Graphics computer and subsequently implemented on the survey vehicle.

  10. Subsurface application enhances benefits of manure redistribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable nutrient management requires redistribution of livestock manure from nutrient-excess areas to nutrient-deficit areas. Field experiments were conducted to assess agronomic and environmental effects of different poultry litter application methods (surface vs. subsurface) and timings (fall ...

  11. Subsurface Imaging with the Scanning Microwave Microscope

    NASA Astrophysics Data System (ADS)

    Kopanski, Joseph; You, Lin; Michelson, Jonathan; Hitz, Emily; Obeng, Yaw; Back End of the Line Reliability; Metrology Project Team

    2015-03-01

    The scanning microwave microscope (SMM) forms images from the reflected amplitude and phase of an incident RF (~ 2.3 GHz) signal. The reflected signal is a function of the properties of the tip-sample contact, but can also be influenced by buried interfaces and subsurface variations of the sample permittivity. This mechanism allows limited imaging of conductors buried within dielectrics, voids within metal, or multiple metal layers with different permittivity. Subsurface SMM data acquisition modes include passive and various active data acquisition modes. The theory of sub-surface imaging with SMM and COMSOL multi-physics simulations of specific situations will be presented. Measurements of specifically designed test structures and correlation with simulations show the sensitivity and resolution of the technique applied to imaging subsurface metal lines embedded in dielectric. Applications include metrology for back end of the line (BEOL) multi-level metallization and three-dimensional integrated circuits (3D-ICs).

  12. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    SciTech Connect

    D.C. Randle

    2000-01-07

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I&C) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I&C and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I&C systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I&C systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored, controlled, and

  13. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  14. Autonomous software: Myth or magic?

    NASA Astrophysics Data System (ADS)

    Allan, A.; Naylor, T.; Saunders, E. S.

    2008-03-01

    We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.

  15. Microbial life in the deep terrestrial subsurface

    SciTech Connect

    Fliermans, C.B.; Balkwill, D.L.; Beeman, R.E.

    1988-12-31

    The distribution and function of microorganisms is a vital issue in microbial ecology. The US Department of Energy`s Program, ``Microbiology of the Deep Subsurface,`` concentrates on establishing fundamental scientific information about organisms at depth, and the use of these organisms for remediation of contaminants in deep vadose zone and groundwater environments. This investigation effectively extends the Biosphere hundreds of meters into the Geosphere and has implications to a variety of subsurface activities.

  16. Floating insulated conductors for heating subsurface formations

    DOEpatents

    Burns, David; Goodwin, Charles R.

    2014-07-29

    A heating system for a subsurface formation includes a conduit located in a first opening in the subsurface formation. Three electrical conductors are located in the conduit. A return conductor is located inside the conduit. The return conductor is electrically coupled to the ends of the electrical conductors distal from the surface of the formation. Insulation is located inside the conduit. The insulation electrically insulates the three electrical conductors, the return conductor, and the conduit from each other.

  17. Autonomous power system brassboard

    NASA Technical Reports Server (NTRS)

    Merolla, Anthony

    1992-01-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the

  18. ISS Update: Autonomous Mission Operations

    NASA Video Gallery

    NASA Public Affairs Officer Brandi Dean interviews Jeff Mauldin, Simulation Supervisor for Autonomous Mission Operations at Johnson Space Center in Houston, Texas. Ask us on Twitter @NASA_Johnson a...

  19. Autonomic Dysregulation in Multiple Sclerosis

    PubMed Central

    Pintér, Alexandra; Cseh, Domonkos; Sárközi, Adrienn; Illigens, Ben M.; Siepmann, Timo

    2015-01-01

    Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment. PMID:26213927

  20. Autonomous Operations Mission Development Suite

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2016-01-01

    This is a presentation related to the development of Autonomous Operations Systems at NASA Kennedy Space Center. It covers a high level description of the work of FY14, FY15, FY16 for the AES IGODU and APL projects.

  1. Autonomous Landing Hazard Avoidance Technology

    NASA Video Gallery

    Future NASA space crafts will be able to safely land on the Moon, Marsand even an asteroid, in potentially hazardous terrain areas, allautonomously. And NASA’s Autonomous Landing Hazard Avoidan...

  2. Genetic engineering and autonomous agency.

    PubMed

    Barclay, Linda

    2003-01-01

    In this paper I argue that the genetic manipulation of sexual orientation at the embryo stage could have a detrimental effect on the subsequent person's later capacity for autonomous agency. By focussing on an example of sexist oppression I show that the norms and expectations expressed with this type of genetic manipulation can threaten the development of autonomous agency and the kind of social environment that makes its exercise likely.

  3. Cooperative Autonomous Robots for Reconnaissance

    DTIC Science & Technology

    2009-03-06

    REPORT Cooperative Autonomous Robots for Reconnaissance 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Collaborating mobile robots equipped with WiFi ...Cooperative Autonomous Robots for Reconnaissance Report Title ABSTRACT Collaborating mobile robots equipped with WiFi transceivers are configured as a mobile...equipped with WiFi transceivers are configured as a mobile ad-hoc network. Algorithms are developed to take advantage of the distributed processing

  4. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  5. AUTONOMOUS GAUSSIAN DECOMPOSITION

    SciTech Connect

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Dickey, John

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  6. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  7. The autonomous ocean profiler

    SciTech Connect

    Echert, D.C.; White, G.B.; Geller, E.W.; Morison, J.H.

    1989-04-01

    This paper describes the development and initial field test results of the Autonomous Ocean Profiler (AOP). The AOP is an oceanographic instrument platform for measuring profiles of physical, thermodynamic, and biological properties in the ocean. The profiler employs a hydrodynamic lift device to ''fly'' the instrument package up and down the water column along a taut vertical cable. Because the local currents drive the platform's vertical motion, power requirements are low, and therefore long, unattended deployments are possible. By using ARGOS or GOES satellite retrieval networks, the system can supply near real-time data. The system provides profile data at very high vertical resolution in contrast to conventional buoys, which gather data at only fixed sensor depths. Because only a single set of sensors is required to cover the vertical range desired, the system is low cost and, for many applications, expendable. The initial deployment configuration is as an Arctic drifting buoy. A satellite retransmission buoy is placed on the sea-ice surface with the cable suspended below the ice. Conductivity, temperature, and depth information are gathered over a depth range of 0 to 300 m. Data are internally recorded and relayed to the surface buoy through an inductive communications link for transmission via satellite.

  8. Autonomous landing guidance program

    NASA Astrophysics Data System (ADS)

    Brown, John A.

    1996-05-01

    The Autonomous Landing Guidance program is partly funded by the US Government under the Technology Reinvestment Project. The program consortium consists of avionics and other equipment vendors, airlines and the USAF. A Sextant Avionique HUD is used to present flight symbology in cursive form as well as millimeter wave radar imagery from Lear Astronics equipment and FLIR Systems dual-channel, forward-looking, infrared imagery. All sensor imagery is presented in raster form. A future aim is to fuse all imagery data into a single presentation. Sensor testing has been accomplished in a Cessna 402 operated by the Maryland Advanced Development Laboratory. Development testing is under way in a Northwest Airlines simulator equipped with HUD and image simulation. Testing is also being carried out using United Airlines Boeing 727 and USAF C-135C (Boeing 707) test aircraft. The paper addresses the technology utilized in sensory and display systems as well as modifications made to accommodate the elements in the aircraft. Additions to the system test aircraft include global positioning systems, inertial navigation systems and extensive data collection equipment. Operational philosophy and benefits for both civil and military users are apparent. Approach procedures have been developed allowing use of Category 1 ground installations in Category 3 conditions.

  9. Autonomous Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  10. An intelligent subsurface buoy design for measuring ocean ambient noise

    NASA Astrophysics Data System (ADS)

    Li, Bing; Wang, Lei

    2012-11-01

    A type of ultra-low power subsurface buoy system is designed to measure and record ocean ambient noise data. The buoy utilizes a vector hydrophone (pass band 20Hz-1.2kHz) and a 6-element vertical hydrophone array (pass band 20Hz-2kHz) to measure ocean ambient noise. The acoustic signals are passed through an automatically modified gain, a band pass filter, and an analog-to-digital (A/D) conversion module. They are then stored in high-capacity flash memory. In order to identify the direction of noise source, the vector sensor measuring system has integrated an electric-magnetic compass. The system provides a low-rate underwater acoustic communication system which is used to report the buoy state information and a high-speed USB interface which is used to retrieve the recorded data on deck. The whole system weighs about 125kg and can operate autonomously for more than 72 hours. The system's main architecture and the sea-trial test results are provided in this paper.

  11. Unusual Structural Autonomic Disorders Presenting in Pediatrics: Disorders Associated with Hypoventilation and Autonomic Neuropathies.

    PubMed

    Chelimsky, Gisela; Chelimsky, Thomas

    2017-02-01

    Structural autonomic disorders (producing structural damage to the autonomic nervous system or autonomic centers) are far less common than functional autonomic disorders (reflected in abnormal function of a fundamentally normal autonomic nervous system) in children and teenagers. This article focuses on this uncommon first group in the pediatric clinic. These disorders are grouped into 2 main categories: those characterized by hypoventilation and those that feature an autonomic neuropathy.

  12. Autonomous Byte Stream Randomizer

    NASA Technical Reports Server (NTRS)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  13. Wave-Based Subsurface Guide Star

    SciTech Connect

    Lehman, S K

    2011-07-26

    Astronomical or optical guide stars are either natural or artificial point sources located above the Earth's atmosphere. When imaged from ground-based telescopes, they are distorted by atmospheric effects. Knowing the guide star is a point source, the atmospheric distortions may be estimated and, deconvolved or mitigated in subsequent imagery. Extending the guide star concept to wave-based measurement systems to include acoustic, seismo-acoustic, ultrasonic, and radar, a strong artificial scatterer (either acoustic or electromagnetic) may be buried or inserted, or a pre-existing or natural sub-surface point scatterer may be identified, imaged, and used as a guide star to determine properties of the sub-surface volume. That is, a data collection is performed on the guide star and the sub-surface environment reconstructed or imaged using an optimizer assuming the guide star is a point scatterer. The optimization parameters are the transceiver height and bulk sub-surface background refractive index. Once identified, the refractive index may be used in subsequent reconstructions of sub-surface measurements. The wave-base guide star description presented in this document is for a multimonostatic ground penetrating radar (GPR) but is applicable to acoustic, seismo-acoustic, and ultrasonic measurement systems operating in multimonostatic, multistatic, multibistatic, etc., modes.

  14. Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hinchey, Mike; Sterritt, Roy

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring.

  15. Microbial activities in deep subsurface environments

    SciTech Connect

    Phelps, T.J.; Raione, E.G.; White, D.C. |; Fliermans, C.B.

    1988-12-31

    Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in forty-six sediment samples from three aseptically sampled boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 minutes of core recovery. [{sup 14}C-1-] Acetate incorporation into lipids. [methyl-{sup 3}H-]thymidine incorporation into DNA, [{sup 14}C-2-]acetate and [{sup 14}C-U-]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities followed by the shallow aquifer zones. Water saturated subsurface sediments exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones. Regardless of depth, sediments which contained more than 20% clays exhibited the lowest activities and culturable microorganisms.

  16. Anthropogenic effects on subsurface temperature in Bangkok

    NASA Astrophysics Data System (ADS)

    Taniguchi, M.

    2006-09-01

    Subsurface temperatures in Bangkok, where population and density increase rapidly, were analyzed to evaluate the effects of surface warming due to urbanization. The magnitude of surface warming evaluated from subsurface temperature in Bangkok was 1.7°C which agreed with meteorological data during the last 50 years. The depth apart from steady thermal gradient, which shows an indicator of the magnitude of surface warming due to additional heat from urbanization, was deeper at the center of the city than in the suburb areas of Bangkok. In order to separate surface warming effects into global warming effect and urbanization effect, analyses of subsurface temperature have been done depending on the distance from the city center. The results show that the expansion of urbanization in Bangkok reaches up to 80 km from the city center.

  17. Urban heat island in the subsurface

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2007-12-01

    The urban heat island effect has received significant attention in recent years due to the possible effect on long-term meteorological records. Recent studies of this phenomenon have suggested that this may not be important to estimates of regional climate change once data are properly corrected. However, surface air temperatures within urban environments have significant variation, making correction difficult. In the current study, we examine subsurface temperatures in an urban environment and the surrounding rural area to help characterize the nature of this variability. The results of our study indicate that subsurface temperatures are linked to land-use and supports previous work indicating that the urban heat island effect has significant and complex spatial variability. In most situations, the relationship between subsurface and surface processes cannot be easily determined, indicating that previous studies that relying on such a linkage may require further examination.

  18. Subsurface Contaminants Focus Area annual report 1997

    SciTech Connect

    1997-12-31

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line.

  19. Autonomic control of the eye

    PubMed Central

    McDougal, David H.; Gamlin, Paul D.

    2016-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275

  20. Autonomic control of the eye.

    PubMed

    McDougal, David H; Gamlin, Paul D

    2015-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia.

  1. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  2. Improving the biodegradative capacity of subsurface bacteria

    SciTech Connect

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates.

  3. Autonomous mobile robots: Vehicles with cognitive control

    SciTech Connect

    Meystel, A.

    1987-01-01

    This book explores a new rapidly developing area of robotics. It describes the state-of-the-art intelligence control, applied machine intelligence, and research and initial stages of manufacturing of autonomous mobile robots. A complete account of the theoretical and experimental results obtained during the last two decades together with some generalizations on Autonomous Mobile Systems are included in this book. Contents: Introduction; Requirements and Specifications; State-of-the-art in Autonomous Mobile Robots Area; Structure of Intelligent Mobile Autonomous System; Planner, Navigator; Pilot; Cartographer; Actuation Control; Computer Simulation of Autonomous Operation; Testing the Autonomous Mobile Robot; Conclusions; Bibliography.

  4. Induction heaters used to heat subsurface formations

    DOEpatents

    Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX

    2012-04-24

    A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.

  5. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph

    1997-01-01

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere.

  6. Radar Soundings of the Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Picardi, Giovanni; Plaut, Jeffrey J.; Biccari, Daniela; Bombaci, Ornella; Calabrese, Diego; Cartacci, Marco; Cicchetti, Andrea; Clifford, Stephen M.; Edenhofer, Peter; Farrell, William M.; Federico, Costanzo; Frigeri, Alessandro; Gurnett, Donald A.; Hagfors, Tor; Heggy, Essam; Herique, Alain; Huff, Richard L.; Ivanov, Anton B.; Johnson, William T. K.; Jordan, Rolando L.; Kirchner, Donald L.; Kofman, Wlodek; Leuschen, Carlton J.; Nielsen, Erling; Orosei, Roberto

    2005-01-01

    The martian subsurface has been probed to kilometer depths by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument aboard the Mars Express orbiter. Signals penetrate the polar layered deposits, probably imaging the base of the deposits. Data from the northern lowlands of Chryse Planitia have revealed a shallowly buried quasi-circular structure about 250 kilometers in diameter that is interpreted to be an impact basin. In addition, a planar reflector associated with the basin structure may indicate the presence of a low-loss deposit that is more than 1 kilometer thick.

  7. Subsurface Microbes Expanding the Tree of Life

    SciTech Connect

    Banfield, Jillian

    2015-05-11

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  8. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, B.E.; May, C.P.; Rossabi, J.

    1997-06-24

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.

  9. Heating systems for heating subsurface formations

    SciTech Connect

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  10. Subsurface Microbes Expanding the Tree of Life

    ScienceCinema

    Banfield, Jillian

    2016-07-12

    Jillian Banfield, Ph.D., UC Berkeley Professor and Berkeley Lab Earth Sciences Division staff scientist and long-time user of the DOE Joint Genome Institute’s resources shares her perspective on how the DOE JGI helps advance her research addressing knowledge gaps related to the roles of subsurface microbial communities in biogeochemical cycling. The video was filmed near the town of Rifle, Colorado at the primary field site for Phase I of the Subsurface Systems Scientific Focus Area 2.0 sponsored by the DOE Office of Biological and Environmental Research.

  11. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    USGS Publications Warehouse

    Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-01-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.

  12. Autonomous hazard detection and avoidance

    NASA Technical Reports Server (NTRS)

    Pien, Homer

    1992-01-01

    During GFY 91, Draper Laboratory was awarded a task by NASA-JSC under contract number NAS9-18426 to study and evaluate the potential for achieving safe autonomous landings on Mars using an on-board autonomous hazard detection and avoidance (AHDA) system. This report describes the results of that study. The AHDA task had four objectives: to demonstrate, via a closed-loop simulation, the ability to autonomously select safe landing sites and the ability to maneuver to the selected site; to identify key issues in the development of AHDA systems; to produce strawman designs for AHDA sensors and algorithms; and to perform initial trade studies leading to better understanding of the effect of sensor/terrain/viewing parameters on AHDA algorithm performance. This report summarizes the progress made during the first year, with primary emphasis on describing the tools developed for simulating a closed-loop AHDA landing. Some cursory performance evaluation results are also presented.

  13. Autonomic Dysfunctions in Parkinsonian Disorders

    PubMed Central

    Bae, Hyo-Jin; Cheon, Sang-Myung; Kim, Jae Woo

    2009-01-01

    Background and Purpose: Symptoms of autonomic dysfunctions are common in the patients with parkinsonian disorders. Because clinical features of autonomic dysfunctions are diverse, the comprehensive evaluation is essential for the appropriate management. For the appreciation of autonomic dysfunctions and the identification of differences, patients with degenerative parkinsonisms are evaluated using structured questionnaire for autonomic dysfunction (ADQ). Methods: Total 259 patients, including 192 patients with [idiopathic Parkinson’s disease (IPD, age 64.6 ± 9.6 years)], 37 with [multiple system atrophy (MSA, 62.8 ± 9.1)], 9 with [dementia with Lewy body (DLB, 73.9 ± 4.3)], and 21 with [progressive supranuclear palsy (PSP, 69.4 ± 9.6)]. The ADQ was structured for evaluation of the presence of symptoms and its severity due to autonomic dysfunction, covering gastrointestinal, urinary, sexual, cardiovascular and thermoregulatory domains. Patients were also evaluated for the orthostatic hypotension. Results: Although dementia with Lewy body (DLB) patients were oldest and duration of disease was longest in IPD, total ADQ scores of MSA and PSP (23.9 ± 12.6 and 21.1 ± 7.8) were significantly increased than that of IPD (15.1 ± 10.6). Urinary and cardiovascular symptom scores of MSA and gastrointestinal symptom score of PSP were significantly worse than those of IPD. The ratio of patient with orthostatic hypotension in IPD was 31.2% and not differed between groups (35.1% in MSA, 33.3% in DLB and 33.3% in PSP). But the systolic blood pressure dropped drastically after standing in patients with MSA and DLB than in patients with IPD and PSP. Conclusions: Patients with degenerative parkinsonism showed widespread symptoms of autonomic dysfunctions. The severity of those symptoms in patients with PSP were comparing to that of MSA patients and worse than that of IPD. PMID:24868361

  14. Discerning non-autonomous dynamics

    NASA Astrophysics Data System (ADS)

    Clemson, Philip T.; Stefanovska, Aneta

    2014-09-01

    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale-from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems-their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noise-forced Duffing system and for the non-autonomous the

  15. Contingency Software in Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn; Patterson-Hine, Ann

    2006-01-01

    This viewgraph presentation reviews the development of contingency software for autonomous systems. Autonomous vehicles currently have a limited capacity to diagnose and mitigate failures. There is a need to be able to handle a broader range of contingencies. The goals of the project are: 1. Speed up diagnosis and mitigation of anomalous situations.2.Automatically handle contingencies, not just failures.3.Enable projects to select a degree of autonomy consistent with their needs and to incrementally introduce more autonomy.4.Augment on-board fault protection with verified contingency scripts

  16. Autonomous DNA-Molecule Computing

    NASA Astrophysics Data System (ADS)

    Komiya, Ken; Rose, John A.; Yamamura, Masayuki

    DNA molecules autonomously change their forms from the single strand to the double helix by specific binding between complementary sequences according to the Watson-Crick base pairing rule. This paring rule allows us to control connections among molecules and to construct various structures by sequence design. Further, the motion of constructed structures can also be designed by considering sequential bindings. Recently, the feasibility to utilize the programmed DNA structural change for information processing was studied. In the present paper, we report an efficient synthetic chain reaction based on autonomous binding of DNA to realize a computing system, which enable us to implement computational intelligence in vitro.

  17. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  18. Rehabilitation medicine: 1. Autonomic dysreflexia

    PubMed Central

    Blackmer, Jeff

    2003-01-01

    AUTONOMIC DYSREFLEXIA IS AN ACUTE SYNDROME OF EXCESSIVE, UNCONTROLLED SYMPATHETIC OUTPUT that can occur in patients who have had an injury to the spinal cord (generally at or above the sixth thoracic neurologic level). It is caused by spinal reflex mechanisms that remain intact despite the patient's injury, leading to hypertension. This review describes the clinical features of autonomic dysreflexia, its common causes (most frequently stimulation of the lower urinary tract) and a recommended approach to treatment. The condition can nearly always be managed successfully, but prompt recognition is essential — without treatment there may be dire consequences, including death. PMID:14581313

  19. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  20. Autonomous and Remote-Controlled Airborne and Ground-Based Robotic Platforms for Adaptive Geophysical Surveying

    NASA Astrophysics Data System (ADS)

    Spritzer, J. M.; Phelps, G. A.

    2011-12-01

    Low-cost autonomous and remote-controlled robotic platforms have opened the door to precision-guided geophysical surveying. Over the past two years, the U.S. Geological Survey, Senseta, NASA Ames Research Center, and Carnegie Mellon University Silicon Valley, have developed and deployed small autonomous and remotely controlled vehicles for geophysical investigations. The purpose of this line of investigation is to 1) increase the analytical capability, resolution, and repeatability, and 2) decrease the time, and potentially the cost and map-power necessary to conduct near-surface geophysical surveys. Current technology has advanced to the point where vehicles can perform geophysical surveys autonomously, freeing the geoscientist to process and analyze the incoming data in near-real time. This has enabled geoscientists to monitor survey parameters; process, analyze and interpret the incoming data; and test geophysical models in the same field session. This new approach, termed adaptive surveying, provides the geoscientist with choices of how the remainder of the survey should be conducted. Autonomous vehicles follow pre-programmed survey paths, which can be utilized to easily repeat surveys on the same path over large areas without the operator fatigue and error that plague man-powered surveys. While initial deployments with autonomous systems required a larger field crew than a man-powered survey, over time operational experience costs and man power requirements will decrease. Using a low-cost, commercially available chassis as the base for autonomous surveying robotic systems promise to provide higher precision and efficiency than human-powered techniques. An experimental survey successfully demonstrated the adaptive techniques described. A magnetic sensor was mounted on a small rover, which autonomously drove a prescribed course designed to provide an overview of the study area. Magnetic data was relayed to the base station periodically, processed and gridded. A

  1. A Robust Compositional Architecture for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara

    2006-01-01

    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.

  2. Is Europa's Subsurface Water Ocean Warm?

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.

    2002-01-01

    Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.

  3. Lateral gene transfer in the subsurface

    SciTech Connect

    Barkay, Tamar; Sobecky, Patricia

    2007-08-27

    Lateral gene transfer (LGT) is an important adaptive mechanism among prokaryotic organisms. This mechanism is particularly important for the response of microorganisms to changing environmental conditions because it facilitates the transfer of a large number of genes and their rapid expression. Together the transferred genes promote rapid genetic and metabolic changes that may enhance survival to newly established and sometimes hostile environmental conditions. The goal of our project was to examine if and how LGT enhances microbial adaptation to toxic heavy metals in subsurface environments that had been contaminated by mixed wastes due to activities associated with the production of nuclear energy and weapons. This task has been accomplished by dividing the project to several sub-tasks. Thus, we: (1) Determined the level of resistance of subsurface bacterial isolates to several toxic metals, all identified as pollutants of concern in subsurface environments; (2) Designed, tested, and applied, a molecular approach that determined whether metal resistance genes had evolved by LGT among subsurface bacteria; and (3) Developed a DNA hybridization array for the identification of broad host range plasmids and of metal resistance plasmids. The results are briefly summarized below with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  4. Irrigation strategies using subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...

  5. BIODEGRADATION OF ATRAZINE IN SUBSURFACE ENVIRONMENTS

    EPA Science Inventory

    The pesticide atrazine is frequently detected in ground water, including ground water used as drinking water. Little information is available on the fate of atrazine in the subsurface, including its biodegradability. The objectives of this study were to evaluate the biodegradabil...

  6. Biomarker Preservation Potential of Subsurface Ecosystems

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Harris, R. L.; Sherwood Lollar, B.; Pedersen, K. A.; Colwell, F. S.; Pfiffner, S. M.; Phelps, T. J.; Kieft, T. L.; Bakermans, C.

    2016-05-01

    If surface life emerged on Mars it may have succumbed to a Gaian bottleneck, whereas subsurface life would have continued to grow and evolve sheltered in rocks with sub-freezing saline pore water and their remains preserved in excavated rock.

  7. Characterization of imidacloprid availability in subsurface soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Degradation and sorption/desorption are the most important processes affecting the leaching of pesticides through soil because they control the amount of pesticide available for transport. Once pesticides move past the surface soil layers, variations in subsurface soil physical, chemical, and biolog...

  8. Methods for forming long subsurface heaters

    DOEpatents

    Kim, Dong Sub

    2013-09-17

    A method for forming a longitudinal subsurface heater includes longitudinally welding an electrically conductive sheath of an insulated conductor heater along at least one longitudinal strip of metal. The longitudinal strip is formed into a tubular around the insulated conductor heater with the insulated conductor heater welded along the inside surface of the tubular.

  9. Subsurface barrier verification technologies, informal report

    SciTech Connect

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier`s integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification.

  10. Linguistic geometry for autonomous navigation

    SciTech Connect

    Stilman, B.

    1995-09-01

    To discover the inner properties of human expert heuristics, which were successful in a certain class of complex control systems, we develop a formal theory, the Linguistic Geometry. This paper reports two examples of application of Linguistic Geometry to autonomous navigation of aerospace vehicles that demonstrate dramatic search reduction.

  11. Biology-Inspired Autonomous Control

    DTIC Science & Technology

    2011-08-31

    understanding the mechanisms of biological flight through collaboration with various experimental biology academic research laboratories around the world ...around the world . The research focus addressed two broad, complementary research areas: autonomous systems concepts inspired by the behavior and...freedom to do so”.2 This definition characterizes the most obvious feature of biological flight: flying organisms exploit real- world aerial

  12. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based/ Tension-Release Practices Trauma...Physiological Activities ANS Physiological Activities Cardiac Pupillary Response Catecholamines Respiration Cortisol Salivary Amylase Galvanic Skin...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement Most measures of salivary amylase

  13. Autonomic dysreflexia: a medical emergency

    PubMed Central

    Bycroft, J; Shergill, I; Choong, E; Arya, N; Shah, P

    2005-01-01

    Autonomic dysreflexia is an important clinical diagnosis that requires prompt treatment to avoid devastating complications. The condition may present itself to all members of medical and surgical specialties, who may not be accustomed to treating it. It is the clinician's responsibility to have a basic understanding of the pathophysiology of the condition and the simple steps required to treat it. PMID:15811886

  14. The Functioning of Autonomous Colleges

    ERIC Educational Resources Information Center

    Rao, V. Pala Prasada; Rao, Digumarti Bhaskara

    2012-01-01

    The college gets separated from the university, though not completely, when it is an autonomous college, which is practice in India. Academic package will become flexible and the decision-making is internalized, changes and updating could be easily carried out, depending on the need as reflected from the feedback taken from alumni, user sectors,…

  15. AARD - Autonomous Airborne Refueling Demonstration

    NASA Technical Reports Server (NTRS)

    Ewers, Dick

    2007-01-01

    This viewgraph document reviews the Autonomous Airborne Refueling Demonstration program, and NASA Dryden's work in the program. The primary goal of the program is to make one fully automatic probe-to-drogue engagement using the AARD system. There are pictures of the aircraft approaching to the docking.

  16. Designing Assessment for Autonomous Learning

    ERIC Educational Resources Information Center

    Hay, Marie; Mathers, Lucy

    2012-01-01

    This paper aims to disseminate and evaluate an autonomous learning framework developed through collaborative research with first- and second-year undergraduate students at De Montfort University. Central to the framework is the involvement of students in the assessment of their peers and themselves using dialogue about the assessment and feedback…

  17. Computing architecture for autonomous microgrids

    DOEpatents

    Goldsmith, Steven Y.

    2015-09-29

    A computing architecture that facilitates autonomously controlling operations of a microgrid is described herein. A microgrid network includes numerous computing devices that execute intelligent agents, each of which is assigned to a particular entity (load, source, storage device, or switch) in the microgrid. The intelligent agents can execute in accordance with predefined protocols to collectively perform computations that facilitate uninterrupted control of the .

  18. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S., Jr.

    2013-01-01

    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  19. Subsurface Flow and Transport: A Stochastic Approach

    NASA Astrophysics Data System (ADS)

    Desbarats, Alexandre

    Anyone who has examined core or petrophysical logs from well bores has wondered at the rhythmic successions of sedimentary fades and has puzzled at their sudden disruption or reappearance. Such wonderment is no doubt shared by those who have stood at a quarry face gazing up at the intricate hierarchy of depositional patterns and the varied textures of sediments. A fortunate few have even slogged along a mine drift and observed at close hand the perplexing relationship between the geological fabric of a rock mass and occurrences of groundwater inflow. Happily, the heterogeneity of geological materials is now widely recognized and efforts over the last 20 years have been concerned with its incorporation into models of fluid flow and solute transport in the subsurface. These research efforts are, at least in part, driven by acute societal concerns over the contamination of groundwater resources and proposed plans for the disposal of nuclear and other toxic wastes in the subsurface.

  20. Microbial methanogenesis in subsurface oil and coal.

    PubMed

    Meslé, Margaux; Dromart, Gilles; Oger, Philippe

    2013-11-01

    It is now clear that active methanogens are present in the deep-subsurface. This paper reviews microbial population structures and the biodegradation of organic compounds to methane in situ within oil reservoirs and coal deposits. It summarizes our current knowledge of methanogenes and methanogenesis, fermenters, synthrophs and microbial metabolism of complex organic compounds in these two widely occurring organic-rich subsurface environments. This review is not intended to be an exhaustive report of microbial diversity. Rather, it illustrates the similarities and differences between the two environments with specific examples, from the nature of the organic molecules to the methanogenic metabolic pathways and the structure of the microbial populations to demonstrate that widely diverging microbial populations show surprisingly similar metabolic capabilities.

  1. Modeling gas transport in the Martian subsurface

    NASA Astrophysics Data System (ADS)

    Gloesener, Elodie; Karatekin, Özgür; Dehant, Véronique

    2015-04-01

    Modeling gas transport through Martian subsurface and outgassing processes is essential in the study of atmospheric evolution of Mars. We present an overview of gas transport in Martian soil focusing on water vapor and methane diffusion to explain the recent observations of methane in Martian atmosphere with a diffusive transport model. The range of parameters that have the largest effect on transport in Martian conditions is investigated. Among the possible sources of methane, clathrate hydrates destabilization is one potential mechanism. Hydrate stability zone in subsurface is also investigated. In 2016, ExoMars Trace Gas Orbiter (TGO) will have the capabilities to detect and characterize trace gases in Martian atmosphere and will bring additional information to validate the different possible outgassing scenarios.

  2. Spreadsheet log analysis in subsurface geology

    USGS Publications Warehouse

    Doveton, J.H.

    2000-01-01

    Most of the direct knowledge of the geology of the subsurface is gained from the examination of core and drill-cuttings recovered from boreholes drilled by the petroleum and water industries. Wireline logs run in these same boreholes generally have been restricted to tasks of lithostratigraphic correlation and thee location of hydrocarbon pay zones. However, the range of petrophysical measurements has expanded markedly in recent years, so that log traces now can be transformed to estimates of rock composition. Increasingly, logs are available in a digital format that can be read easily by a desktop computer and processed by simple spreadsheet software methods. Taken together, these developments offer accessible tools for new insights into subsurface geology that complement the traditional, but limited, sources of core and cutting observations.

  3. Cardiac autonomic nerve distribution and arrhythmia☆

    PubMed Central

    Liu, Quan; Chen, Dongmei; Wang, Yonggang; Zhao, Xin; Zheng, Yang

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia. DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation as the key words. SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included. MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated. RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system. CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in

  4. Spatiotemporal variability in peatland subsurface methane dynamics

    NASA Astrophysics Data System (ADS)

    Strack, M.; Waddington, J. M.

    2008-06-01

    Peatlands are large natural sources of atmospheric methane (CH4). While many studies have measured CH4 emissions to the atmosphere, less is known about the stock and residence time of subsurface CH4. In this study we examined dissolved CH4 concentration in near-surface peatland pore waters of a poor fen near Québec City, Canada, in order to (1) investigate the variability in and potential controls on these concentrations and (2) combine measured dissolved CH4 concentration with estimated bubble CH4 stock and measured CH4 fluxes to estimate the mean residence time of subsurface CH4. Concentrations ranged from 1 to 450 μM during both study seasons. Depth profiles were generally consistent at one location within the peatland throughout the sampling period but varied between locations. Patterns with depth were not well correlated to pore water pH or EC; however, changes in CH4 concentration through time in the upper 30 cm were related to temperature and water table at some locations. Depth profiles taken at 2- to 5-cm intervals revealed discrete concentration "spikes" which were often maintained throughout the season and are likely related to bubble CH4 dynamics. Estimated subsurface CH4 stocks indicate that even when relatively low bubble volume (5% of peat volume) is assumed, bubble CH4 accounted for greater than half of total stocks. Calculated mean residence times were 28-120 days. This implies that CH4 flux may lag changes in water table and temperature which happen on shorter timescales (hours or days). To improve our description of subsurface CH4 stocks, links between dissolved and bubble CH4 stocks and peatland CH4 residence time, coincident measurement of pore water CH4 concentrations, entrapped gas content and composition, diffusive CH4 flux, and ebullition are required.

  5. Drill Embedded Nanosensors For Planetary Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Li, Jing

    2014-01-01

    We have developed a carbon nanotube (CNT) sensor for water vapor detection under Martian Conditions and the miniaturized electronics can be embedded in the drill bit for collecting sensor data and transmit it to a computer wirelessly.This capability will enable the real time measurement of ice during drilling. With this real time and in-situ measurement, subsurface ice detection can be easy, fast, precise and low cost.

  6. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2006-10-17

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  7. Subsurface materials management and containment system

    DOEpatents

    Nickelson, Reva A.; Richardson, John G.; Kosteinik, Kevin M.; Sloan, Paul A.

    2004-07-06

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  8. Metalliferous Biosignatures for Deep Subsurface Microbial Activity

    NASA Astrophysics Data System (ADS)

    Parnell, John; Brolly, Connor; Spinks, Sam; Bowden, Stephen

    2016-03-01

    The interaction of microbes and metals is widely assumed to have occurred in surface or very shallow subsurface environments. However new evidence suggests that much microbial activity occurs in the deep subsurface. Fluvial, lacustrine and aeolian `red beds' contain widespread centimetre-scale reduction spheroids in which a pale reduced spheroid in otherwise red rocks contains a metalliferous core. Most of the reduction of Fe (III) in sediments is caused by Fe (III) reducing bacteria. They have the potential to reduce a range of metals and metalloids, including V, Cu, Mo, U and Se, by substituting them for Fe (III) as electron acceptors, which are all elements common in reduction spheroids. The spheroidal morphology indicates that they were formed at depth, after compaction, which is consistent with a microbial formation. Given that the consequences of Fe (III) reduction have a visual expression, they are potential biosignatures during exploration of the terrestrial and extraterrestrial geological record. There is debate about the energy available from Fe (III) reduction on Mars, but the abundance of iron in Martian soils makes it one of the most valuable prospects for life there. Entrapment of the microbes themselves as fossils is possible, but a more realistic target during the exploration of Mars would be the colour contrasts reflecting selective reduction or oxidation. This can be achieved by analysing quartz grains across a reduction spheroid using Raman spectroscopy, which demonstrates its suitability for life detection in subsurface environments. Microbial action is the most suitable explanation for the formation of reduction spheroids and may act as metalliferous biosignatures for deep subsurface microbial activity.

  9. Radionuclide Sensors for Subsurface Water Monitoring

    SciTech Connect

    Timothy DeVol

    2006-06-30

    Contamination of the subsurface by radionuclides is a persistent and vexing problem for the Department of Energy. These radionuclides must be measured in field studies and monitoed in the long term when they cannot be removed. However, no radionuclide sensors existed for groundwater monitoring prior to this team's research under the EMSP program Detection of a and b decays from radionuclides in water is difficult due to their short ranges in condensed media.

  10. Activation of Peroxymonosulfate by Subsurface Minerals

    NASA Astrophysics Data System (ADS)

    Yu, Miao; Teel, Amy L.; Watts, Richard J.

    2016-08-01

    In situ chemical oxidation (ISCO) has become a widely used technology for the remediation of soil and groundwater. Although peroxymonosulfate is not a common oxidant source for ISCO, its chemical structure is similar to the ISCO reagents hydrogen peroxide and persulfate, suggesting that peroxymonosulfate may have the beneficial properties of each of these oxidants. Peroxymonosulfate activation in the presence of subsurface minerals was examined as a basis for ISCO, and possible reactive species (hydroxyl radical, sulfate radical, and reductants + nucleophiles) generated in the mineral-activated peroxymonosulfate systems were investigated. Rates of peroxymonosulfate decomposition and generation rates of reactive species were studied in the presence of three iron oxides, one manganese oxide, and three soil fractions. The iron oxide hematite-activated peroxymonosulfate system most effectively degraded the hydroxyl radical probe nitrobenzene. Reductants + nucleophiles were not generated in mineral-activated peroxymonosulfate systems. Use of the probe compound anisole in conjunction with scavengers demonstrated that both sulfate radical and hydroxyl radical are generated in mineral-activated peroxymonosulfate systems. In order to confirm the activation of peroxymonosulfate by subsurface minerals, one natural soil and associated two soil fractions were evaluated as peroxymonosulfate catalysts. The natural soil did not effectively promote the generation of oxidants; however, the soil organic matter was found to promote the generation of reductants + nucleophiles. The results of this research show that peroxymonosulfate has potential as an oxidant source for ISCO applications, and would be most effective in treating halogenated contaminants when soil organic matter is present in the subsurface.

  11. Subsurface heat flow in an urban environment

    NASA Astrophysics Data System (ADS)

    Ferguson, Grant; Woodbury, Allan D.

    2004-02-01

    The subsurface temperature field beneath Winnipeg, Canada, is significantly different from that of the surrounding rural areas. Downward heat flow to depths as great as 130 m has been noted in some areas beneath the city and groundwater temperatures in a regional aquifer have risen by as much as 5°C in some areas. Numerical simulation of heat transport supports the conjecture that these temperature changes can be largely attributed to heat loss from buildings and the temperature at any given point is sensitive to the distance from and the age of any buildings. The effect is most noticable when buildings are closely spaced, which is typical of urban areas. Temperature measurements in areas more than a few hundred meters away from any heated structure were only a few tenths of a degree Celsius greater than those observed outside the city, suggesting that other reasons for increases in subsurface temperature, such as changes in surface cover or climate change, may be responsible for some of the some of the observed increase in temperatures. These sources of additional heat to the subsurface make it difficult to resolve information on past climates from temperatures measured in boreholes and monitoring wells. In some areas, the temperature increases may also have an impact on geothermal energy resources. This impact might be in the form of an increase in heat pump efficiency or in the case of the Winnipeg area, a decrease in the efficiency of direct use of groundwater for cooling.

  12. Hydrogen Utilization Potential in Subsurface Sediments.

    PubMed

    Adhikari, Rishi R; Glombitza, Clemens; Nickel, Julia C; Anderson, Chloe H; Dunlea, Ann G; Spivack, Arthur J; Murray, Richard W; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  13. Chemical inversion in the subsurface hydrosphere

    SciTech Connect

    Yezhov, Yu.A.

    1980-09-01

    A quite common nature of chemical inversion in subsurface hydrosphere is shown in examples of several oil- and gas-bearing regions of the USSR. In particular, when the data of sampling from deep wells of the Volgo-Urals, Mangyshlak, and Western Turkmenian regions were compared, it became obvious that the composite chemical profile of subsurface hydrosphere consists of a vertical alternation of three zones: of increasing (I-II-IIIa genetic types of subsurface waters), maximum (IIIb), and decreasing water mineralization (III'a-II'-I'). The depth of occurrence of the lower inversion branch of zonality depends on the geotectonic activity at depth. It is closer to the Earth's surface in regions of Alpine tectogenesis, whereas in regions of ancient folding it lies at great depths which have not yet been reached by most deep wells. The formation of the inversion zone in the Earth's crust is connected with penetration from below ascending demineralized fluids of sodium bicarbonate type (I'). The latter is due to the presence at great depths of large quantities of free carbonic acid which is involved in hydrolytic processes of decomposition of sodium-containing minerals and produces sodium-type waters.

  14. Resonant seismic emission of subsurface objects

    SciTech Connect

    Korneev, Valeri A.

    2009-04-15

    Numerical modeling results and field data indicate that some contrasting subsurface objects (such as tunnels, caves, pipes, filled pits, and fluid-filled fractures) are capable of generating durable resonant oscillations after trapping seismic energy. These oscillations consist of surface types of circumferential waves that repeatedly propagate around the object. The resonant emission of such trapped energy occurs primarily in the form of shear body waves that can be detected by remotely placed receivers. Resonant emission reveals itself in the form of sharp resonant peaks for the late parts of the records, when all strong direct and primary reflected waves are gone. These peaks were observed in field data for a buried barrel filled with water, in 2D finite-difference modeling results, and in the exact canonical solution for a fluid-filled sphere. A computed animation for the diffraction of a plane wave upon a low-velocity elastic sphere confirms the generation of resonances by durable surface waves. Resonant emission has characteristic quasi-hyperbolic traveltime patterns on shot gathers. The inversion of these patterns can be performed in the frequency domain after muting the strong direct and primary scattered waves. Subsurface objects can be detected and imaged at a single resonance frequency without an accurate knowledge of source trigger time. The imaging of subsurface objects requires information about the shear velocity distribution in an embedding medium, which can be done interactively during inversion.

  15. Subsurface barrier integrity verification using perfluorocarbon tracers

    SciTech Connect

    Sullivan, T.M.; Heiser, J.; Milian, L.; Senum, G.

    1996-12-01

    Subsurface barriers are an extremely promising remediation option to many waste management problems. Gas phase tracers include perfluorocarbon tracers (PFT`s) and chlorofluorocarbon tracers (CFC`s). Both have been applied for leak detection in subsurface systems. The focus of this report is to describe the barrier verification tests conducted using PFT`s and analysis of the data from the tests. PFT verification tests have been performed on a simulated waste pit at the Hanford Geotechnical facility and on an actual waste pit at Brookhaven National Laboratory (BNL). The objective of these tests were to demonstrate the proof-of-concept that PFT technology can be used to determine if small breaches form in the barrier and for estimating the effectiveness of the barrier in preventing migration of the gas tracer to the monitoring wells. The subsurface barrier systems created at Hanford and BNL are described. The experimental results and the analysis of the data follow. Based on the findings of this study, conclusions are offered and suggestions for future work are presented.

  16. Hydrogen Utilization Potential in Subsurface Sediments

    PubMed Central

    Adhikari, Rishi R.; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  17. Subsurface urban heat islands in German cities.

    PubMed

    Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp

    2013-01-01

    Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface.

  18. Chaotic neurodynamics for autonomous agents.

    PubMed

    Harter, Derek; Kozma, Robert

    2005-05-01

    Mesoscopic level neurodynamics study the collective dynamical behavior of neural populations. Such models are becoming increasingly important in understanding large-scale brain processes. Brains exhibit aperiodic oscillations with a much more rich dynamical behavior than fixed-point and limit-cycle approximation allow. Here we present a discretized model inspired by Freeman's K-set mesoscopic level population model. We show that this version is capable of replicating the important principles of aperiodic/chaotic neurodynamics while being fast enough for use in real-time autonomous agent applications. This simplification of the K model provides many advantages not only in terms of efficiency but in simplicity and its ability to be analyzed in terms of its dynamical properties. We study the discrete version using a multilayer, highly recurrent model of the neural architecture of perceptual brain areas. We use this architecture to develop example action selection mechanisms in an autonomous agent.

  19. Autonomous spacecraft maintenance study group

    NASA Technical Reports Server (NTRS)

    Marshall, M. H.; Low, G. D.

    1981-01-01

    A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.

  20. Autonomous spacecraft rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Almand, B. J.

    1985-01-01

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  1. Autonomous spacecraft rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  2. Evaluating Autonomous Ground-Robots

    DTIC Science & Technology

    2012-06-14

    executed o Time taken for computation of hazard detection (did robots ‘stop to think ’) o Number and nature of obstacles detected, avoided, etc o...Evaluating Autonomous Ground- Robots Anthony Finn 1 , Adam Jacoff 2 , Mike Del Rose 3 , Bob Kania 3 , Udam Silva 4 and Jon Bornstein 5...Abstract The robotics community benefits from common test methods and metrics of performance to focus their research. As a result, many performance

  3. Integrated System for Autonomous Science

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Robert; Tran, Daniel; Cichy, Benjamin; Davies, Ashley; Castano, Rebecca; Rabideau, Gregg; Frye, Stuart; Trout, Bruce; Shulman, Seth; Doggett, Thomas; Ip, Felipe; Greeley, Ron; Baker, Victor; Dohn, James; Boyer, Darrell

    2006-01-01

    The New Millennium Program Space Technology 6 Project Autonomous Sciencecraft software implements an integrated system for autonomous planning and execution of scientific, engineering, and spacecraft-coordination actions. A prior version of this software was reported in "The TechSat 21 Autonomous Sciencecraft Experiment" (NPO-30784), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 33. This software is now in continuous use aboard the Earth Orbiter 1 (EO-1) spacecraft mission and is being adapted for use in the Mars Odyssey and Mars Exploration Rovers missions. This software enables EO-1 to detect and respond to such events of scientific interest as volcanic activity, flooding, and freezing and thawing of water. It uses classification algorithms to analyze imagery onboard to detect changes, including events of scientific interest. Detection of such events triggers acquisition of follow-up imagery. The mission-planning component of the software develops a response plan that accounts for visibility of targets and operational constraints. The plan is then executed under control by a task-execution component of the software that is capable of responding to anomalies.

  4. Autonomic Computing: Panacea or Poppycock?

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    Autonomic Computing arose out of a need for a means to cope with rapidly growing complexity of integrating, managing, and operating computer-based systems as well as a need to reduce the total cost of ownership of today's systems. Autonomic Computing (AC) as a discipline was proposed by IBM in 2001, with the vision to develop self-managing systems. As the name implies, the influence for the new paradigm is the human body's autonomic system, which regulates vital bodily functions such as the control of heart rate, the body's temperature and blood flow-all without conscious effort. The vision is to create selfivare through self-* properties. The initial set of properties, in terms of objectives, were self-configuring, self-healing, self-optimizing and self-protecting, along with attributes of self-awareness, self-monitoring and self-adjusting. This self-* list has grown: self-anticipating, self-critical, self-defining, self-destructing, self-diagnosis, self-governing, self-organized, self-reflecting, and self-simulation, for instance.

  5. Semi autonomous mine detection system

    NASA Astrophysics Data System (ADS)

    Few, Doug; Versteeg, Roelof; Herman, Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude - from an autonomous robotic perspective - the rapid development and deployment of fieldable systems.

  6. Semi autonomous mine detection system

    SciTech Connect

    Douglas Few; Roelof Versteeg; Herman Herman

    2010-04-01

    CMMAD is a risk reduction effort for the AMDS program. As part of CMMAD, multiple instances of semi autonomous robotic mine detection systems were created. Each instance consists of a robotic vehicle equipped with sensors required for navigation and marking, a countermine sensors and a number of integrated software packages which provide for real time processing of the countermine sensor data as well as integrated control of the robotic vehicle, the sensor actuator and the sensor. These systems were used to investigate critical interest functions (CIF) related to countermine robotic systems. To address the autonomy CIF, the INL developed RIK was extended to allow for interaction with a mine sensor processing code (MSPC). In limited field testing this system performed well in detecting, marking and avoiding both AT and AP mines. Based on the results of the CMMAD investigation we conclude that autonomous robotic mine detection is feasible. In addition, CMMAD contributed critical technical advances with regard to sensing, data processing and sensor manipulation, which will advance the performance of future fieldable systems. As a result, no substantial technical barriers exist which preclude – from an autonomous robotic perspective – the rapid development and deployment of fieldable systems.

  7. Reactive transport benchmarks for subsurface environmental simulation

    SciTech Connect

    Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.

    2015-06-01

    Over the last 20 years, we have seen firsthand the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface applications it is being used to address. There is a growing reliance on reactive transport modeling (RTM) to address some of the most compelling issues facing our planet: climate change, nuclear waste management, contaminant remediation, and pollution prevention. While these issues are motivating the development of new and improved capabilities for subsurface environmental modeling using RTM (e.g., biogeochemistry from cell-scale physiology to continental-scale terrestrial ecosystems, nonisothermal multiphase conditions, coupled geomechanics), there remain longstanding challenges in characterizing the natural variability of hydrological, biological, and geochemical properties in subsurface environments and limited success in transferring models between sites and across scales. An equally important trend over the last 20 years is the evolution of modeling from a service sought out after data has been collected to a multifaceted research approach that provides (1) an organizing principle for characterization and monitoring activities; (2) a systematic framework for identifying knowledge gaps, developing and integrating new knowledge; and (3) a mechanistic understanding that represents the collective wisdom of the participating scientists and engineers. There are now large multidisciplinary projects where the research approach is model-driven, and the principal product is a holistic predictive simulation capability that can be used as a test bed for alternative conceptualizations of processes, properties, and conditions. Much of the future growth and expanded role for RTM will depend on its continued ability to exploit technological advancements in the earth and environmental sciences. Advances in measurement technology, particularly in molecular biology (genomics), isotope fractionation, and high

  8. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In

  9. Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Schrading, J. Nicolas

    2013-01-01

    The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  10. Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer

    NASA Technical Reports Server (NTRS)

    Shrading, Nicholas J.

    2012-01-01

    The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.

  11. Subsurface Tectonics and Pingos of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Skirvin, S.; Casavant, R.; Burr, D.

    2008-12-01

    We describe preliminary results of a two-phase study that investigated links between subsurface structural and stratigraphic controls, and distribution of hydrostatic pingos on the central coastal plain of Arctic Alaska. Our 2300 km2 study area is underlain by a complete petroleum system that supports gas, oil and water production from 3 of the largest oil fields in North America. In addition, gas hydrate deposits exist in this area within and just below the permafrost interval at depths of 600 to 1800 feet below sea level. Phase 1 of the study compared locations of subsurface faults and pingos for evidence of linkages between faulting and pingo genesis and distribution. Several hundred discrete fault features were digitized from published data and georeferenced in a GIS database. Fault types were determined by geometry and sense of slip derived from well log and seismic maps. More than 200 pingos and surface sediment type associated with their locations were digitized from regional surficial geology maps within an area that included wire line and seismic data coverage. Beneath the pingos lies an assemblage of high-angle normal and transtensional faults that trend NNE and NW; subsidiary trends are EW and NNW. Quaternary fault reactivation is evidenced by faults that displaced strata at depths exceeding 3000 meters below sea level and intersect near-surface units. Unpublished seismic images and cross-section analysis support this interpretation. Kinematics and distribution of reactivated faults are linked to polyphase deformational history of the region that includes Mesozoic rift events, succeeded by crustal shortening and uplift of the Brooks Range to the south, and differential subsidence and segmentation of a related foreland basin margin beneath the study area. Upward fluid migration, a normal process in basin formation and fault reactivation, may play yet unrecognized roles in the genesis (e.g. fluid charging) of pingos and groundwater hydrology. Preliminary

  12. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  13. Lethality and Autonomous Robots: An Ethical Stance

    DTIC Science & Technology

    2007-01-01

    Lethality and Autonomous Robots : An Ethical Stance Ronald C. Arkin and Lilia Moshkina College of Computing Georgia Institute of Technology Atlanta... autonomous robots that maintain an ethical infrastructure to govern their behavior will be referred to as humane-oids. 2. Understanding the Ethical...2007 4. TITLE AND SUBTITLE Lethality and Autonomous Robots : An Ethical Stance 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  14. Tele/Autonomous Robot For Nuclear Facilities

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Tso, Kam S.

    1994-01-01

    Fail-safe tele/autonomous robotic system makes it unnecessary for human technicians to enter nuclear-fuel-reprocessing facilities and other high-radiation or otherwise hazardous industrial environments. Used to carry out experiments as exchanging equipment modules, turning bolts, cleaning surfaces, and grappling turning objects by use of mixture of autonomous actions and teleoperation with either single arm or two cooperating arms. System capable of fully autonomous operation, teleoperation or shared control.

  15. Sustainable and Autonomic Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter

    2006-01-01

    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.

  16. Shallow Subsurface Structures of Volcanic Fissures

    NASA Astrophysics Data System (ADS)

    Parcheta, C. E.; Nash, J.; Mitchell, K. L.; Parness, A.

    2015-12-01

    Volcanic fissure vents are a difficult geologic feature to quantify. They are often too thin to document in detail with seismology or remote geophysical methods. Additionally, lava flows, lava drain back, or collapsed rampart blocks typically conceal a fissure's surface expression. For exposed fissures, quantifying the surface (let along sub0surface) geometric expression can become an overwhelming and time-consuming task given the non-uniform distribution of wall irregularities, drain back textures, and the larger scale sinuosity of the whole fissure system. We developed (and previously presented) VolcanoBot to acquire robust characteristic data of fissure geometries by going inside accessible fissures after an eruption ends and the fissure cools off to <50 C. Data from VolcanoBot documents the fissure conduit geometry with a near-IR structured light sensor, and reproduces the 3d structures to cm-scale accuracy. Here we present a comparison of shallow subsurface structures (<30 m depth) within the Mauna Ulu fissure system and their counterpart features at the vent-to-ground-surface interface. While we have not mapped enough length of the fissure to document sinuosity at depth, we see a self-similar pattern of irregularities on the fissure walls throughout the entire shallow subsurface, implying a fracture mechanical origin similar to faults. These irregularities are, on average, 1 m across and protrude 30 cm into the drained fissure. This is significantly larger than the 10% wall roughness addressed in the engineering literature on fluid dynamics, and implies that magma fluid dynamics during fissure eruptions are probably not as passive nor as simple as previously thought. In some locations, it is possible to match piercing points across the fissure walls, where the dike broke the wall rock in order to propagate upwards, yet in other locations there are erosional cavities, again, implying complex fluid dynamics in the shallow sub-surface during fissure eruptions.

  17. Noble gas fractionation during subsurface gas migration

    NASA Astrophysics Data System (ADS)

    Sathaye, Kiran J.; Larson, Toti E.; Hesse, Marc A.

    2016-09-01

    Environmental monitoring of shale gas production and geological carbon dioxide (CO2) storage requires identification of subsurface gas sources. Noble gases provide a powerful tool to distinguish different sources if the modifications of the gas composition during transport can be accounted for. Despite the recognition of compositional changes due to gas migration in the subsurface, the interpretation of geochemical data relies largely on zero-dimensional mixing and fractionation models. Here we present two-phase flow column experiments that demonstrate these changes. Water containing a dissolved noble gas is displaced by gas comprised of CO2 and argon. We observe a characteristic pattern of initial co-enrichment of noble gases from both phases in banks at the gas front, followed by a depletion of the dissolved noble gas. The enrichment of the co-injected noble gas is due to the dissolution of the more soluble major gas component, while the enrichment of the dissolved noble gas is due to stripping from the groundwater. These processes amount to chromatographic separations that occur during two-phase flow and can be predicted by the theory of gas injection. This theory provides a mechanistic basis for noble gas fractionation during gas migration and improves our ability to identify subsurface gas sources after post-genetic modification. Finally, we show that compositional changes due to two-phase flow can qualitatively explain the spatial compositional trends observed within the Bravo Dome natural CO2 reservoir and some regional compositional trends observed in drinking water wells overlying the Marcellus and Barnett shale regions. In both cases, only the migration of a gas with constant source composition is required, rather than multi-stage mixing and fractionation models previously proposed.

  18. Using Muons to Image the Subsurface.

    SciTech Connect

    Bonal, Nedra; Cashion, Avery Ted; Cieslewski, Grzegorz; Dorsey, Daniel J.; Foris, Adam; Miller, Timothy J.; Roberts, Barry L; Su, Jiann-Cherng; Dreesen, Wendi; Green, J. Andrew; Schwellenbach, David

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous . Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  19. Tree Distributions, Subsurface Characteristics and Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    Brunner, L.; Wallace, M. C.; Brush, G.

    2014-12-01

    This study examines the connection between vegetation and geologic, soil and hydrologic subsurface characteristics of a natural deciduous forest in Oregon Ridge Park, located in the Piedmont physiographic province in Maryland, USA. A preliminary study showed the relationship between nitrogen cycling and four different species occurring on a coarse grained schist and a fine grained schist. Mineralization values for Liriodendon tulipifera were positive on the coarser grained substrate and negative on the fine grained substrate. Nitrification values were positive on both substrates. Mineralization and nitrification values were both positive for Quercus prinus on both the coarse and fine substrates. Mineralization values for Acer rubrum were negative on the coarse substrate and positive on the finer substrate, while mineralization for Quercus rubra was negative on the coarse substrate and positive on the fine schist. Nitrification was positive for Q. rubra on the coarse schist and both positive and negative on the fine schist. Resistivity analyses were performed in collaboration with the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) along two perpendicular transects at the study site. This analysis provides indirect information on subsurface conductivity, with low resistivity being interpreted as subsurface water or clay. One transect crossed a valley with a first-order stream in the center, while the second transect was taken along the break and slope of the hillslope. All trees were identified and diameter at breast height (DBH) measured in sixty-three randomly located plots along both transects. A principle components analysis of all tree data showed four associations of species. The plots were labelled as to association. The position of the associations along the transects show a relationship between wet, dry and mesic associations with differences in transect resistivity.

  20. Surface modification by subsurface pressure induced diffusion

    SciTech Connect

    Zimmermann, Claus G.

    2012-01-23

    Polycrystalline Ag, covered with a nm thin siloxane layer, was irradiated with ultraviolet light in vacuum at 500 K. Ag particles of different aspect ratios, 50-1000 nm in size, formed on the surface, including a small fraction of nanorods. Pressurized water vapor bubbles are created in the subsurface region by hydrogen radicals photo-chemically released by the siloxane layer. They provide the driving force for a diffusive material flux along grain boundaries to the surface. This mechanism was modeled and found to agree with the experimental timescale: approximately 300 h are required for a 1000 nm particle to form.

  1. Transport of subsurface bacteria in porous media

    SciTech Connect

    Bales, R.C.; Arnold, R.G.; Gerba, C.P.

    1995-02-01

    The primary objective of this study was to develop tools with which to measure the advective transport of microorganisms through porous media. These tools were then applied to investigate the sorptive properties of representative microorganisms that were selected at random from the DOE`s deep subsurface collection of bacterial, maintained at Florida State University. The transport screening procedure that arose from this study was also used to investigate biological factors that affect the transport/sorption of biocolloids during their movement through porous media with the bulk advective flow.

  2. Airborne Electromagnetic Mapping of Subsurface Permafrost

    NASA Astrophysics Data System (ADS)

    Abraham, J. D.; Minsley, B. J.; Cannia, J. C.; Smith, B. D.; Walvoord, M. A.; Voss, C. I.; Jorgenson, T. T.; Wylie, B. K.; Anderson, L.

    2011-12-01

    Concerns over the impacts of climate change have recently energized research on the potential impacts thawing permafrost may have on groundwater flow, infrastructure, forest health, ecosystems, energy production, CO2 release, and contaminant transport. There is typically little knowledge about subsurface permafrost distributions, such as thickness and where groundwater-surface-water connections may occur through taliks. In June of 2010, the U.S. Geological Survey undertook an airborne electromagnetic (AEM) survey in the area of Fort Yukon, Alaska in order to map the 3-D distribution of permafrost and provide information for the development of groundwater models within the Yukon River Basin. Prior to the development of these models, information on areas of groundwater-surface water interaction was extremely limited. Lithology determined from a borehole drilled in Fort Yukon in 1994 agrees well with the resistivity depth sections inferred from the airborne survey. In addition to lithology, there a thermal imprint appears on the subsurface resistivity values. In the upper 20-50 m, the sections show continuous areas of high electrical resistivity, consistent with alluvial gravel deposits that are likely frozen. At depth, unfrozen gravel deposits have intermediate-to-high resistivity; frozen silts have intermediate resistivity; and unfrozen silts have low resistivity. Under the Yukon River and lakes where the subsurface is not frozen, zones of moderate resistivity intermix with areas of low resistivity. The areas of loess hills on the margins of the Yukon Flats have very-high electrical resistivity, indicating higher ice content, and are associated with the some of the greatest thickness of permafrost in the survey area. This work provides the first look into the 3-D distribution of permafrost in the areas around Fort Yukon and is a demonstration of the application of AEM to permafrost mapping. The AEM survey provides unprecedented 3-D images of subsurface electrical

  3. Detection of microbes in the subsurface

    NASA Technical Reports Server (NTRS)

    White, David C.; Tunlid, Anders

    1989-01-01

    The search for evidence of microbial life in the deep subsurface of Earth has implications for the Mars Rover Sampling Return Missions program. If suitably protected environments can be found on Mars then the instrumentation to detect biomarkers could be used to examine the molecular details. Finding a lipid in Martian soil would represent possibly the simplest test for extant or extinct life. A device that could do a rapid extraction possibly using the supercritical fluid technology under development now with a detection of the carbon content would clearly indicate a sample to be returned.

  4. Instrumented Moles for Planetary Subsurface Regolith Studies

    NASA Astrophysics Data System (ADS)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole

  5. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin; Karanikas, John Michael; Nguyen, Scott Vinh

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  6. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  7. Surface modification by subsurface pressure induced diffusion

    NASA Astrophysics Data System (ADS)

    Zimmermann, Claus G.

    2012-01-01

    Polycrystalline Ag, covered with a nm thin siloxane layer, was irradiated with ultraviolet light in vacuum at 500 K. Ag particles of different aspect ratios, 50-1000 nm in size, formed on the surface, including a small fraction of nanorods. Pressurized water vapor bubbles are created in the subsurface region by hydrogen radicals photo-chemically released by the siloxane layer. They provide the driving force for a diffusive material flux along grain boundaries to the surface. This mechanism was modeled and found to agree with the experimental timescale: approximately 300 h are required for a 1000 nm particle to form.

  8. Low temperature monitoring system for subsurface barriers

    DOEpatents

    Vinegar, Harold J.; McKinzie, II. Billy John

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  9. Public Health, Ethics, and Autonomous Vehicles.

    PubMed

    Fleetwood, Janet

    2017-04-01

    With the potential to save nearly 30 000 lives per year in the United States, autonomous vehicles portend the most significant advance in auto safety history by shifting the focus from minimization of postcrash injury to collision prevention. I have delineated the important public health implications of autonomous vehicles and provided a brief analysis of a critically important ethical issue inherent in autonomous vehicle design. The broad expertise, ethical principles, and values of public health should be brought to bear on a wide range of issues pertaining to autonomous vehicles.

  10. Autonomic Computing for Spacecraft Ground Systems

    NASA Technical Reports Server (NTRS)

    Li, Zhenping; Savkli, Cetin; Jones, Lori

    2007-01-01

    Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.

  11. Public Health, Ethics, and Autonomous Vehicles

    PubMed Central

    2017-01-01

    With the potential to save nearly 30 000 lives per year in the United States, autonomous vehicles portend the most significant advance in auto safety history by shifting the focus from minimization of postcrash injury to collision prevention. I have delineated the important public health implications of autonomous vehicles and provided a brief analysis of a critically important ethical issue inherent in autonomous vehicle design. The broad expertise, ethical principles, and values of public health should be brought to bear on a wide range of issues pertaining to autonomous vehicles. PMID:28207327

  12. General autonomic components of motion sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Suter, Steve; Toscano, William B.; Kamiya, Joe; Naifeh, Karen

    1986-01-01

    This report refers to a body of investigations directed toward the examination of autonomic nervous system responses to motion sickness. Heart rate, respiration rate, finger pulse volume, and basal skin resistance were measured on 127 men and women before, during, and after exposure to a nauseogenic rotating chair test. Significant changes in all autonomic responses were observed across the tests (p less than .05). Significant differences in autonomic responses among groups divided according to motion sickness susceptibility were also observed (p less than .05). Results suggest that the examination of autonomic responses as an objective indicator of motion sickness malaise is warranted and may contribute to the overall understanding of the syndrome.

  13. Information for Successful Interaction with Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Johnson, Kathy A.

    2003-01-01

    Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.

  14. Experimental validation of a sub-surface model of solar power for distributed marine sensor systems

    NASA Astrophysics Data System (ADS)

    Hahn, Gregory G.; Cantin, Heather P.; Shafer, Michael W.

    2016-04-01

    The capabilities of distributed sensor systems such as marine wildlife telemetry tags could be significantly enhanced through the integration of photovoltaic modules. Photovoltaic cells could be used to supplement the primary batteries for wildlife telemetry tags to allow for extended tag deployments, wherein larger amounts of data could be collected and transmitted in near real time. In this article, we present experimental results used to validate and improve key aspects of our original model for sub-surface solar power. We discuss the test methods and results, comparing analytic predictions to experimental results. In a previous work, we introduced a model for sub-surface solar power that used analytic models and empirical data to predict the solar irradiance available for harvest at any depth under the ocean's surface over the course of a year. This model presented underwater photovoltaic transduction as a viable means of supplementing energy for marine wildlife telemetry tags. The additional data provided by improvements in daily energy budgets would enhance the temporal and spatial comprehension of the host's activities and/or environments. Photovoltaic transduction is one method that has not been widely deployed in the sub-surface marine environments despite widespread use on terrestrial and avian species wildlife tag systems. Until now, the use of photovoltaic cells for underwater energy harvesting has generally been disregarded as a viable energy source in this arena. In addition to marine telemetry systems, photovoltaic energy harvesting systems could also serve as a means of energy supply for autonomous underwater vehicles (AUVs), as well as submersible buoys for oceanographic data collection.

  15. Crystal structure of laser-induced subsurface modifications in Si

    DOE PAGES

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; ...

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystalmore » structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.« less

  16. Crystal structure of laser-induced subsurface modifications in Si

    SciTech Connect

    Verburg, P. C.; Smillie, L. A.; Römer, G. R. B. E.; Haberl, B.; Bradby, J. E.; Williams, J. S.; Huis in ’t Veld, A. J.

    2015-06-04

    Laser-induced subsurface modification of dielectric materials is a well-known technology. Applications include the production of optical components and selective etching. In addition to dielectric materials, the subsurface modification technology can be applied to silicon, by employing near to mid-infrared radiation. An application of subsurface modifications in silicon is laser-induced subsurface separation, which is a method to separate wafers into individual dies. Other applications for which proofs of concept exist are the formation of waveguides and resistivity tuning. However, limited knowledge is available about the crystal structure of subsurface modifications in silicon. In this paper, we investigate the geometry and crystal structure of laser-induced subsurface modifications in monocrystalline silicon wafers. Finally, in addition to the generation of lattice defects, we found that transformations to amorphous silicon and Si-iii/Si-xii occur as a result of the laser irradiation.

  17. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George I.; Stetson, Howard K.

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  18. Autonomous Real Time Requirements Tracing

    NASA Technical Reports Server (NTRS)

    Plattsmier, George; Stetson, Howard

    2014-01-01

    One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the

  19. Autonomous sensor manager agents (ASMA)

    NASA Astrophysics Data System (ADS)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  20. The Autonomous Pathogen Detection System

    SciTech Connect

    Dzenitis, J M; Makarewicz, A J

    2009-01-13

    We developed, tested, and now operate a civilian biological defense capability that continuously monitors the air for biological threat agents. The Autonomous Pathogen Detection System (APDS) collects, prepares, reads, analyzes, and reports results of multiplexed immunoassays and multiplexed PCR assays using Luminex{copyright} xMAP technology and flow cytometer. The mission we conduct is particularly demanding: continuous monitoring, multiple threat agents, high sensitivity, challenging environments, and ultimately extremely low false positive rates. Here, we introduce the mission requirements and metrics, show the system engineering and analysis framework, and describe the progress to date including early development and current status.

  1. Autonomous Spacecraft Maintenance Study Group.

    DTIC Science & Technology

    1981-02-01

    ADOAIOO 318 JETOPROPULSION LAB PASADENA CA F/G 9/2 AUTONOMOUS SPACECRAFT MAINTENANCE STUDY GROUP(U) FEB 81 M H MARSHALL, G D LOW NAS7-100...for pUblio release AW AIR 1912a(T) D1etribution 13 Umlalt~ d , (7b). A. D . BLOSE -7 The research described in this pubi’cation was carried out by the Jet...Rettriek (Jill I Academic Assessment Committee iKDAMac (~jf.IIht~i~srtt D I I I I1. ), ’I ,lil I. I 1 i i t: c; Jill I h-0 K IfItt,1 fIIlkc I IV

  2. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  3. The subsurface origin of microbial life on the Earth.

    PubMed

    Trevors, J T

    2002-10-01

    Life on Earth can be divided into life on the surface made possible by photosynthesis and subsurface life with chemical energy as the driving force. An understanding of both environments is central to our understanding of the origin of life, the search for novel microbial species in the subsurface and for extraterrestrial life or life signatures. In this manuscript, the surface and subsurface worlds are examined with a focus on the origin or assembly of bacterial life.

  4. Evaluation of Subsurface Engineered Barriers at Waste Sites

    DTIC Science & Technology

    1998-08-01

    Evaluation of Subsurface Engineered Barriers at Waste Sites United States Environmental Protection Agency Office of Solid Waste and Emergency...of Subsurface Engineered Barriers at Waste Sites 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...1998 www.epa.gov clu-in.com EVALUATION OF SUBSURFACE ENGINEERED BARRIERS AT WASTE SITES i NOTICE This document was prepared for the U.S. Environmental

  5. Atmospheric energy for subsurface life on Mars?

    PubMed Central

    Weiss, Benjamin P.; Yung, Yuk L.; Nealson, Kenneth H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H2 and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H2 and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H2O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life. PMID:10660689

  6. The subsurface of Pluto from submillimetre observations

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Whitelaw, A. C. M.; Bendo, G. J.

    2015-04-01

    Surface areas on Pluto change in brightness and colour, at optical to infrared wavelengths, over time-scales as short as years. The subsurface contains a reservoir of frozen volatiles, but little is known about it because Pluto is out of reach for cm-radar. Here we present a 0.85 mm wavelength light curve of the Pluto system, from archival data taken in 1997 August with the SCUBA (Submillimetre Common-User Bolometer Array) camera on the James Clerk Maxwell Telescope (JCMT). This wavelength probes for the first time to just below the skin depth of thermal changes over Pluto's day. The light curve differs significantly from counterparts in the mid- to far-infrared, in a longitude range that is optically dark on Pluto's surface. An estimate from Herschel of the 0.5 mm flux in 2012 is comparable to the mean 0.45 mm flux from SCUBA in 1997, suggesting that layers centimetres below the surface have not undergone any gross temperature change. The longitudes that are relatively submillimetre-faint could have a different emissivity, perhaps with a subsurface layer richer in nitrogen or methane ices than at the surface. The Radio Science Experiment (REX) instrument on New Horizons may be able to constrain physical properties deeper down, as it looks back on Pluto's nightside after the 2015 July flyby.

  7. Phylogenetic relationships among subsurface microorganisms. Progress report

    SciTech Connect

    Nierzwicki-Bauer, S.A.

    1991-12-31

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  8. Human utilization of subsurface extraterrestrial environments.

    PubMed

    Boston, P J; Frederick, R D; Welch, S M; Werker, J; Meyer, T R; Sprungman, B; Hildreth-Werker, V; Thompson, S L; Murphy, D L

    2003-06-01

    Caves have been used in the ancient past as shelter or habitat by many organisms (including humans). Since antiquity, humans have explored caves for the minerals they contain and sometimes for ceremonial purposes. Over the past century, caves have become the target of increasing exploration, scientific research, and recreation. The use of caves on extraterrestrial bodies for human habitation has been suggested by several investigators. Lunar lava tube bases received early attention because lava tubes were clearly visible in lunar images from the Apollo Era. More recently, Mars Observer Camera data has shown us clear evidence of large tubes visible in a number of volcanic regions on Mars. The budding field of cave geomicrobiology has direct application to questions about subsurface life on other planets. Caves contain many unusual organisms making their living from unlikely materials like manganese, iron, and sulfur. This makes caves and other subsurface habitats prime targets for astrobiological missions to Mars and possibly other bodies. We present the results of a completed Phase I and on-going Phase II NASA Institute for Advanced Concepts (NIAC) study that intensively examines the possibilities of using extraterrestrial caves as both a resource for human explorers and as a highly promising scientific target for both robotic and future human missions to Mars and beyond.

  9. Atmospheric energy for subsurface life on Mars?

    NASA Technical Reports Server (NTRS)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  10. Atmospheric energy for subsurface life on Mars?

    PubMed

    Weiss, B P; Yung, Y L; Nealson, K H

    2000-02-15

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  11. Method and apparatus for subsurface exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian (Inventor)

    2002-01-01

    A subsurface explorer (SSX) for exploring beneath the terrestrial surface of planetary bodies such as the Earth, Mars, or comets. This exploration activity utilizes appropriate sensors and instrument to evaluate the composition, structure, mineralogy and possibly biology of the subsurface medium, as well as perhaps the ability to return samples of that medium back to the surface. The vehicle comprises an elongated skin or body having a front end and a rear end, with a nose piece at the front end for imparting force to composition material of the planetary body. Force is provided by a hammer mechanism to the back side of a nose piece from within the body of the vehicle. In the preferred embodiment, a motor spins an intermediate shaft having two non-uniform threads along with a hammer which engages these threads with two conical rollers. A brake assembly halts the rotation of the intermediate shaft, causing the conical roller to spin down the non-uniform thread to rapidly and efficiently convert the rotational kinetic energy of the hammer into translational energy.

  12. Improving subsurface hydrology in Earth System Models

    NASA Astrophysics Data System (ADS)

    Volk, J. M.; Clark, M. P.; Swenson, S. C.; Lawrence, D. M.; Tyler, S. W.

    2015-12-01

    Hydrologic processes that govern storage and transport of soil water and groundwater can have strong dynamic relationships with biogeochemical and atmospheric processes. This understanding has lead to a push to improve subsurface hydrologic parametrization in Earth System Models. Here we present results related to improving the implementation of soil moisture distribution, groundwater recharge/discharge, and subsurface drainage in the Community Land Model (CLM) which is the land surface model in the Community Earth System Model. First we identified geo-climatically different locations around the world to develop test cases. For each case we compare the vertical soil moisture distribution from the different implementations of 1D Richards equation, considering the boundary conditions, the treatment of the groundwater sink term, the vertical discretization, and the time stepping schemes. Generally, large errors in the hydrologic mass balance within the soil column occur when there is a large vertical gradient in soil moisture or when there is a shallow water table within a soil column. We then test the sensitivity of the algorithmic parameters that control temporal discretization and error tolerance of the adaptive time-stepping scheme to help optimize its computational efficiency. In addition, we vary the spatial discretization of soil layers (i.e. quantity of layers and their thicknesses) to better understand the sensitivity of vertical discretization of soil columns on soil moisture variability in ESMs. We present multivariate and multi-scale evaluation for the different model options and suggest ways to move forward with future model improvements.

  13. Subsurface Defect Detection in FRP Composites Using Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Halabe, U. B.; Vasudevan, A.; GangaRao, H. V. S.; Klinkhachorn, P.; Lonkar, G.

    2005-04-01

    This paper demonstrates the use of digital infrared thermography to detect subsurface defects such as debonds and delaminations in Fiber Reinforced Polymer (FRP) bridge decks. Simulated sub-surface debonds and delaminations were inserted between the wearing surface and the underlying FRP deck specimens. The infrared thermography technique was used to detect these embedded subsurface defects. The use of various cooling and heating methods, including solar radiation, was explored. Surface temperature-time curves were established for different types and sizes of subsurface defects.

  14. Modeling subsurface stormflow initiation in low-relief landscapes

    NASA Astrophysics Data System (ADS)

    Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.

    2015-04-01

    Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition

  15. Microbial communities in the deep subsurface

    NASA Astrophysics Data System (ADS)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  16. Mapping planetary caves with an autonomous, heterogeneous robot team

    NASA Astrophysics Data System (ADS)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  17. Multi-agent autonomous system

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)

    2010-01-01

    A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.

  18. Autonomous Robotic Inspection in Tunnels

    NASA Astrophysics Data System (ADS)

    Protopapadakis, E.; Stentoumis, C.; Doulamis, N.; Doulamis, A.; Loupos, K.; Makantasis, K.; Kopsiaftis, G.; Amditis, A.

    2016-06-01

    In this paper, an automatic robotic inspector for tunnel assessment is presented. The proposed platform is able to autonomously navigate within the civil infrastructures, grab stereo images and process/analyse them, in order to identify defect types. At first, there is the crack detection via deep learning approaches. Then, a detailed 3D model of the cracked area is created, utilizing photogrammetric methods. Finally, a laser profiling of the tunnel's lining, for a narrow region close to detected crack is performed; allowing for the deduction of potential deformations. The robotic platform consists of an autonomous mobile vehicle; a crane arm, guided by the computer vision-based crack detector, carrying ultrasound sensors, the stereo cameras and the laser scanner. Visual inspection is based on convolutional neural networks, which support the creation of high-level discriminative features for complex non-linear pattern classification. Then, real-time 3D information is accurately calculated and the crack position and orientation is passed to the robotic platform. The entire system has been evaluated in railway and road tunnels, i.e. in Egnatia Highway and London underground infrastructure.

  19. Autonomic reflexes in preterm infants.

    PubMed

    Lagercrantz, H; Edwards, D; Henderson-Smart, D; Hertzberg, T; Jeffery, H

    1990-01-01

    Some autonomic nervous reflexes often tested in adult medicine have been studied in 21 preterm infants (25-37 gestational weeks). The aim was to develop such tests for preterm infants and see if there were any differences in babies with recurrent apnea and bradycardia and babies who had been exposed to sympathicolytic drugs before birth. To test sympathetic nervous activity the peripheral vascular resistance was measured before and during 45 degrees of head-up tilting. To test parasympathetic nervous activity the degree of bradycardia was measured in response to cold face test (application of an ice-cube on the fore-head) and laryngeal stimulation with saline. Finally the heart rate changes after a sudden noise (85 dB) were studied as an indicator of both sympathetic and vagal activity. The peripheral resistance was found to be relatively low in these preterm infants, particularly in some infants tested at the postnatal age of about two months. Heart rate and mean blood pressure did not change during tilting, while the peripheral resistance increased significantly mainly due to lowered limb blood flow. The median decrease of the heart rate during the cold face test was 20.0% and during laryngeal receptor stimulation 23.7%. The sudden noise usually caused a biphasic heart rate response. An autonomic nervous reflex score was calculated and found to be negative (parasympathetic) in infants with recurrent prolonged apnea and bradycardia and positive in infants with clinical signs of increased sympathetic nervous activity.

  20. Autonomous Lawnmower using FPGA implementation.

    NASA Astrophysics Data System (ADS)

    Ahmad, Nabihah; Lokman, Nabill bin; Helmy Abd Wahab, Mohd

    2016-11-01

    Nowadays, there are various types of robot have been invented for multiple purposes. The robots have the special characteristic that surpass the human ability and could operate in extreme environment which human cannot endure. In this paper, an autonomous robot is built to imitate the characteristic of a human cutting grass. A Field Programmable Gate Array (FPGA) is used to control the movements where all data and information would be processed. Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) is used to describe the hardware using Quartus II software. This robot has the ability of avoiding obstacle using ultrasonic sensor. This robot used two DC motors for its movement. It could include moving forward, backward, and turning left and right. The movement or the path of the automatic lawn mower is based on a path planning technique. Four Global Positioning System (GPS) plot are set to create a boundary. This to ensure that the lawn mower operates within the area given by user. Every action of the lawn mower is controlled by the FPGA DE' Board Cyclone II with the help of the sensor. Furthermore, Sketch Up software was used to design the structure of the lawn mower. The autonomous lawn mower was able to operate efficiently and smoothly return to coordinated paths after passing the obstacle. It uses 25% of total pins available on the board and 31% of total Digital Signal Processing (DSP) blocks.

  1. Structured control for autonomous robots

    SciTech Connect

    Simmons, R.G. . School of Computer Science)

    1994-02-01

    To operate in rich, dynamic environments, autonomous robots must be able to effectively utilize and coordinate their limited physical and occupational resources. As complexity increases, it becomes necessary to impose explicit constraints on the control of planning, perception, and action to ensure that unwanted interactions between behaviors do not occur. This paper advocates developing complex robot systems by layering reactive behaviors onto deliberative components. In this structured control approach, the deliberative components handle normal situations and the reactive behaviors, which are explicitly constrained as to when and how they are activated, handle exceptional situations. The Task Control Architecture (TCA) has been developed to support this approach. TCA provides an integrated set of control constructs useful for implementing deliberative and reactive behaviors. The control constructs facilitate modular and evolutionary system development: they are used to integrate and coordinate planning, perception, and execution, and to incrementally improve the efficiency and robustness of the robot systems. To date, TCA has been used in implementing a half-dozen mobile robot systems, including an autonomous six-legged rover and indoor mobile manipulator.

  2. Autonomous pathogen detection system 2001

    SciTech Connect

    Langlois, R G; Wang, A; Colston, B; Masquelier, D; Jones, L; Venkateswaran, K S; Nasarabadi, S; Brown, S; Ramponi, A; Milanovich, F P

    2001-01-09

    The objective of this project is to design, fabricate and field-demonstrate a fully Autonomous Pathogen Detector (identifier) System (APDS). This will be accomplished by integrating a proven flow cytometer and real-time polymerase chain reaction (PCR) detector with sample collection, sample preparation and fluidics to provide a compact, autonomously operating instrument capable of simultaneously detecting multiple pathogens and/or toxins. The APDS will be designed to operate in fixed locations, where it continuously monitors air samples and automatically reports the presence of specific biological agents. The APDS will utilize both multiplex immuno and nucleic acid assays to provide ''quasi-orthogonal'', multiple agent detection approaches to minimize false positives and increase the reliability of identification. Technical advancements across several fronts must first be made in order to realize the full extent of the APDS. Commercialization will be accomplished through three progressive generations of instruments. The APDS is targeted for domestic applications in which (1) the public is at high risk of exposure to covert releases of bioagent such as in major subway systems and other transportation terminals, large office complexes, and convention centers; and (2) as part of a monitoring network of sensors integrated with command and control systems for wide area monitoring of urban areas and major gatherings (e.g., inaugurations, Olympics, etc.). In this latter application there is potential that a fully developed APDS could add value to Defense Department monitoring architectures.

  3. Autonomous navigation of USAF spacecraft

    NASA Astrophysics Data System (ADS)

    Ferguson, J. R., Jr.

    1983-12-01

    The U. S. Air Force is developing satellite-borne sensors to enable autonomous navigation of spacecraft in the near future. This study compares the observations from several medium-accuracy space sensors, such as the existing telescopic space sextant, with those of future matrix-type sensors. The large field of view of matrix sensors will allow them to determine the Earth horizon to approximately an order of magnitude better than current infrared sensors by observing atmospheric refraction of stellar light. This horizon determination will give the matrix sensors an accuracy of less than 1 km. The limiting factor in Earth-horizon determination is the modeling of atmospheric refraction effects. For high-accuracy requirements (100 meters or less), the Global Positioning System (GPS) offers the only near-term solution. A relative navigation technique using range and Doppler data is proposed for autonomous navigation of the GPS satellites. The navigation accuracy of this technique is evaluated by consider covariance analysis and by processing corrupted data through a reduced-order onboard Sequentially Partitioned Algorithm. The algorithm is stable and for the GPS system produces in-plane accuracy of 40 meters over twenty days. However, out-of-plane motion is shown to be unobservable in the GPS-to-GPS tracking mode, and errors of up to 1.5 km over 60 days are experienced. For this reason, a supplemental transmitter on the ground or in a different orbit is recommended.

  4. Planning Flight Paths of Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli

    2009-01-01

    Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.

  5. Safe and Autonomous Drones for Urban Flight

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2016-01-01

    Autonomous vehicles are no longer futuristic technology; in fact, there are already cars with self-driving features on the road. Over the next five years, the connected vehicles will disrupt the entire automotive and UAS ecosystems. The industry will undergo fundamental change as semi-autonomous driving and flying emerges, followed by an eventual shift to full autonomy.

  6. Autonomous landmark tracking orbit determination strategy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Cheng, Y.

    2003-01-01

    In this paper, an orbit determination strategy is described that is fully autonomous and relies on a computer-based crater detection and identification algorithm that is suitable for both automation of the ground based navigation system and autonomous spacecraft based navigation.

  7. Autonomous Control of Space Reactor Systems

    SciTech Connect

    Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo; Xiaojia Xu; M.G. Na

    2007-11-30

    Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.

  8. Emergent Aerospace Designs Using Negotiating Autonomous Agents

    DTIC Science & Technology

    2000-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10521 TITLE: Emergent Aerospace Designs Using Negotiating Autonomous ...Optimisation of Flight Vehicles in a Concurrent Multi-Disciplinary Environment [la Conception et l’optimisation aerodynamiques des vehicules eriens dans un...ADP010499 thru AI W3SSIFIED 25-1 Emergent Aerospace Designs Using Negotiating Autonomous Agents Abhijit Deshmukh, Timothy Middelkoop University of

  9. Autonomic Physiological Response Patterns Related to Intelligence

    ERIC Educational Resources Information Center

    Melis, Cor; van Boxtel, Anton

    2007-01-01

    We examined autonomic physiological responses induced by six different cognitive ability tasks, varying in complexity, that were selected on the basis of on Guilford's Structure of Intellect model. In a group of 52 participants, task performance was measured together with nine different autonomic response measures and respiration rate. Weighted…

  10. Marriage Counseling: Definition of an Autonomous Profession.

    ERIC Educational Resources Information Center

    Linder, Steve

    Before a new autonomous profession can be established a national definition of marriage counseling must be recognized. This report is an attempt to define "marriage counseling" by presenting a brief history and by describing four sources of definitions of this profession. These sources define marriage counseling as an autonomous profession, as a…

  11. The DOE Subsurface (SubTER) Initiative: Revolutionizing Responsible use of the Subsurface for Energy Production and Storage

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Walck, M. C.; Blankenship, D.; Bonneville, A.; Bromhal, G. S.; Daley, T. M.; Pawar, R.; Polsky, Y.; Mattson, E.; Mellors, R. J.

    2015-12-01

    The subsurface supplies more than 80% of the U.S.'s total energy needs through geothermal and hydrocarbon strategies and also provides vast potential for safe storage of CO2 and disposal of nuclear waste. Responsible and efficient use of the subsurface poses many challenges, many of which require the capability to monitor and manipulate sub-surface stress, fractures, and fluid flow at all scales. Adaptive control of subsurface fractures and flow is a multi-disciplinary challenge that, if achieved, has the potential to transform all subsurface energy strategies. As part of the U.S. Department of Energy's SubTER (Subsurface Technology and Engineering Research development and demonstration) initiative, a multi-National Laboratory team is developing next-generation approaches that will allow for adaptive control of subsurface fractures and flow. SubTER has identified an initial suite of technical thrust areas to focus work, and has initiated a number of small projects. This presentation will describe early progress associated with the SubTER technical topic areas of wellbore integrity, subsurface stress and induced seismicity, permeability manipulation and new subsurface signals. It will also describe SubTER plans, and provide a venue to solicit suggestions and discuss potential partnerships associated with future research directions.

  12. Tropical Indian Ocean subsurface temperature variability and the forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Sayantani, Ojha; Gnanaseelan, C.

    2015-05-01

    The first two leading modes of interannual variability of sea surface temperature in the Tropical Indian Ocean (TIO) are governed by El Niño Southern Oscillation and Indian Ocean Dipole (IOD) respectively. TIO subsurface however does not co-vary with the surface. The patterns of the first mode of TIO subsurface temperature variability and their vertical structure are found to closely resemble the patterns of IOD and El Niño co-occurrence years. These co-occurrence years are characterized by a north-south subsurface dipole rather than a conventional IOD forced east-west dipole. This subsurface dipole is forced by wind stress curl anomalies, driven mainly by meridional shear in the zonal wind anomalies. A new subsurface dipole index (SDI) has been defined in this study to quantify the intensity of the north-south dipole mode. The SDI peaks during December to February (DJF), a season after the dipole mode index peaks. It is found that this subsurface north-south dipole is a manifestation of the internal mode of variability of the Indian Ocean forced by IOD but modulated by Pacific forcing. The seasonal evolution of thermocline, subsurface temperature and the corresponding leading modes of variability further support this hypothesis. Positive wind stress curl anomalies in the south and negative wind stress curl anomalies in the north of 5°S force (or intensify) downwelling and upwelling waves respectively during DJF. These waves induce strong subsurface warming in the south and cooling in the north (especially during DJF) and assist the formation and/or maintenance of the north-south subsurface dipole. A thick barrier layer forms in the southern TIO, supporting the long persistence of anomalous subsurface warming. To the best of our knowledge the existence of such north-south subsurface dipole in TIO is being reported for the first time.

  13. Autonomous power system intelligent diagnosis and control

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony

    1991-01-01

    The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.

  14. [Surgical therapy of the autonomous thyroid nodule].

    PubMed

    Zanella, E

    1993-12-01

    Indications for the surgical removal of autonomous nodule are mainly based upon the failure of therapeutical options. The histological definition may be advantageous for detecting the rare but possible association between autonomous goiter and carcinoma of the thyroid. In personal experience, based on 176 hyperfunctioning goiter (among which there were 40 cases of autonomous nodules) 6 carcinomas of the gland were observed, 2 of these were associated with autonomous nodules. The extension of thyroidectomy is related to the size of the adenomas considering the incidence of postoperative complications, very low for this type of surgery. Surgical treatment of autonomous nodules of the thyroid is a low risk surgery and is therefore suitable for the treatment of this disease.

  15. ASSESSMENT OF THE SUBSURFACE FATE OF MONOETHANOLAMINE

    SciTech Connect

    James A. Sorensen; John R. Gallagher; Lori G. Kays

    2000-05-01

    Burial of amine reclaimer unit sludges and system filters has resulted in contamination of soil at the CanOxy Okotoks decommissioned sour gas-processing plant with amines, amine byproducts, and salts. A three-phase research program was devised to investigate the natural attenuation process that controls the subsurface transport and fate of these contaminants and to apply the results toward the development of a strategy for the remediation of this type of contamination in soils. Phase I experimental activities examined interactions between monoethanolamine (MEA) and sediment, the biodegradability of MEA in soils at various concentrations and temperatures, and the biodegradability of MEA sludge contamination in a soil slurry bioreactor. The transport and fate of MEA in the subsurface was found to be highly dependant on the nature of the release, particularly MEA concentration and conditions of the subsurface environment, i.e., pH, temperature, and oxygen availability. Pure compound biodegradation experiments in soil demonstrated rapid biodegradation of MEA under aerobic conditions and moderate temperatures (>6 C). Phase II landfarming activities confirmed that these contaminants are readily biodegradable in soil under ideal laboratory conditions, yet considerable toxicity was observed in the remaining material. Examination of water extracts from the treated soil suggested that the toxicity is water-soluble. Phase II activities led to the conclusion that landfarming is not the most desirable bioremediation technique; however, an engineered biopile with a leachate collection system could remove the remaining toxic fraction from the soil. Phase III was initiated to conduct field-based experimental activities to examine the optimized remediation technology. A pilot-scale engineered biopile was constructed at a decommissioned gas-sweetening facility in Okotoks, Alberta, Canada. On the basis of a review of the analytical and performance data generated from soil and

  16. Detection of microbial Life in the Subsurface

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Dornmayr-Pfaffenhuemer, M.; Legat, A.; Gruber, C.; Weidler, G.; Gerbl, F.

    2007-08-01

    In recent years microbial communities were detected, which dwell in rocks, soil and caves deep below the surface of the Earth. This has led to a new view of the diversity of the terrestrial biosphere and of the physico-chemical boundaries for life. Two types of subterranean environments are Permo-Triassic salt sediments and thermal radioactive springs from igneous rocks in the Alps. Viable extremely halophilic archaea were isolated from ancient salt sediments which are estimated to be about 250 million years old (1). Chemotaxonomic and molecular characterization showed that they represent novel species, e. g. Halococcus salifodinae, Hcc. dombrowskiiand Halobacterium noricense. Simulation experiments with artificial halite suggested that these microorganisms probably survived while embedded in fluid inclusions. In the thermal springs, evidence for numerous novel microorganisms was found by 16S rDNA sequencing and probing for some metabolic genes; in addition, scanning electron microscopy of biofilms on the rock surfaces revealed great diversity of morphotypes (2). These communities appear to be active and growing, although their energy and carbon sources are entirely unknown. The characterization of subsurface inhabitants is of astrobiological relevance since extraterrestrial halite has been detected (3) and since microbial life on Mars, if existent, may have retreated into the subsurface. As a long-term goal, a thorough census of terrestrial microorganisms should be taken and their survival potential be determined in view of future missions for the search for extraterrestrial life, including planning precautions against possible forward contamination by space probes. (1) Fendrihan, S., Legat, A., Gruber, C., Pfaffenhuemer, M., Weidler, G., Gerbl, F., Stan-Lotter, H. (2006) Extremely halophilic archaea and the issue of long term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605. (2) Weidler, G.W., Dornmayr-Pfaffenhuemer, M., Gerbl

  17. Dysréflexie autonome

    PubMed Central

    Milligan, James; Lee, Joseph; McMillan, Colleen; Klassen, Hilary

    2012-01-01

    Résumé Objectif Sensibiliser davantage les médecins de famille à la dysréflexie autonome (DA) chez les patients victimes d’une lésion médullaire (LM) et proposer certaines interventions. Sources de l’information On a fait une recension dans MEDLINE de 1970 à juillet 2011 à l’aide des expressions en anglais autonomic dysreflexia et spinal cord injury, ainsi que family medicine ou primary care. On a aussi passé en revue et utilisé d’autres ressources et guides de pratique pertinents. Message principal Il arrive souvent que les médecins de famille ne se sentent pas confiants de traiter des patients ayant une LM dont les problèmes sont complexes et exigent beaucoup de temps. Les médecins de famille ont l’impression de n’avoir pas la formation nécessaire pour répondre à leurs besoins. Pourtant, ils offrent une composante essentielle des soins à de tels patients et il est important qu’ils comprennent les problèmes médicaux particuliers aux LM. La dysréflexie autonome est un important et fréquent problème potentiellement sérieux que connaissent mal de nombreux médecins de famille. Cet article passe en revue les signes et les symptômes de la DA et présente certaines options de prise en charge aiguë, ainsi que des stratégies de prévention à l’intention des médecins de famille. Conclusion Les médecins de famille devraient savoir quels patients traumatisés médullaires sont susceptibles d’avoir une DA et surveiller ceux qui sont touchés par ce problème. Une explication est donnée dans cet article quant à l’approche à suivre pour la prise en charge aiguë. Les médecins de famille jouent un rôle essentiel dans la prévention de la DA, notamment par l’éducation (du patient et des autres professionnels de la santé) et la consignation dans le dossier médical de stratégies comme les soins appropriés de la vessie, de l’intestin et de la peau, d’avertissements et de plans de prise en charge.

  18. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  19. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, James G.; Daily, William D.

    1994-01-01

    A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  20. Repository Subsurface Preliminary Fire Hazard Analysis

    SciTech Connect

    Richard C. Logan

    2001-07-30

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

  1. Solving subsurface structural problems using a computer

    SciTech Connect

    Witte, D.M. )

    1987-02-01

    Until recently, the solution of subsurface structural problems has required a combination of graphical construction, trigonometry, time, and patience. Recent advances in software available for both mainframe and microcomputers now reduce the time and potential error of these calculations by an order of magnitude. Software for analysis of deviated wells, three point problems, apparent dip, apparent thickness, and the intersection of two planes, as well as the plotting and interpretation of these data can be used to allow timely and accurate exploration or operational decisions. The available computer software provides a set of utilities, or tools, rather than a comprehensive, intelligent system. The burden for selection of appropriate techniques, computation methods, and interpretations still lies with the explorationist user.

  2. Joint inversion for mapping subsurface hydrologicalparameters

    SciTech Connect

    Tseng, Hung-Wen; Lee, Ki Ha

    2001-03-07

    Using electromagnetic (EM) and seismic travel time data and a least-square criteria, a two-dimensional joint inversion algorithm is under development to assess the feasibility of directly mapping subsurface hydrological properties in a crosswell setup. A simplified Archie's law combined with the time average equation relates the magnetic fields and seismic travel time to two hydrological parameters; rock porosity and pore fluid electrical conductivity. For simplicity, the hydrological parameter distributions are assumed to be two-dimensional. Preliminary results show that joint inversion does have better resolving power for the interpretation than using the EM method alone. Various inversion scenarios have been tested, and it has been found that alternately perturbing just one of the two parameters at each iteration gives the best data fit.

  3. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, J.G.; Daily, W.D.

    1994-07-05

    A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  4. Microfluidic adhesion induced by subsurface microstructures.

    PubMed

    Majumder, Abhijit; Ghatak, Animangsu; Sharma, Ashutosh

    2007-10-12

    Natural adhesives in the feet of different arthropods and vertebrates show strong adhesion as well as excellent reusability. Whereas the hierarchical structures on the surface are known to have a substantial effect on adhesion, the role of subsurface structures such as the network of microchannels has not been studied. Inspired by these bioadhesives, we generated elastomeric layers with embedded air- or oil-filled microchannels. These adhesives showed remarkable enhancement of adhesion ( approximately 30 times), which results from the crack-arresting properties of the microchannels, together with the surface stresses caused by the capillary force. The importance of the thickness of the adhesive layer, channel diameter, interchannel spacing, and vertical position within the adhesive has been examined for developing an optimal design of this microfluidic adhesive.

  5. Microwave radiometer for subsurface temperature measurement

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.

  6. Armored Enzyme Nanoparticles for Remediation of Subsurface

    SciTech Connect

    Grate, Jay W.

    2005-09-01

    The remediation of subsurface contaminants is a critical problem for the Department of Energy, other government agencies, and our nation. Severe contamination of soil and groundwater exists at several DOE sites due to various methods of intentional and unintentional release. Given the difficulties involved in conventional removal or separation processes, it is vital to develop methods to transform contaminants and contaminated earth/water to reduce risks to human health and the environment. Transformation of the contaminants themselves may involve conversion to other immobile species that do not migrate into well water or surface waters, as is proposed for metals and radionuclides; or degradation to harmless molecules, as is desired for organic contaminants. Transformation of contaminated earth (as opposed to the contaminants themselves) may entail reductions in volume or release of bound contaminants for remediation.

  7. Physiologically anaerobic microorganisms of the deep subsurface

    SciTech Connect

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  8. Letter report: Ari Patrinos -- Subsurface bioremediation

    SciTech Connect

    Happer, W.; MacDonald, G.J.; Ruderman, M.A.; Treiman, S.B.

    1995-07-26

    During the past summer, the authors had the opportunity to examine aspects of the remediation program of the Department of Energy (DOE). The most important conclusion that they have come to is that there is an urgent need to mount a comprehensive research program in remediation. It is also clear to them that DOE does not have the funding to carry out a program on the scale that is required. On the other hand, Environmental Management could very well fund such activities. They would hope that in the future there would be close collaboration between Environmental Management and Energy Research in putting together a comprehensive and well thought-out research program. Here, the authors comment on one aspect of remediation: subsurface bioremediation.

  9. Locating subsurface gravel with thermal imagery

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.; Clerke, William H.; Luepke, Douglas E.

    1986-01-01

    A method was discussed for using 6 band thermal imagery to locate subsurface gravel deposits in vegetated areas. Geologic history is reviewed to select potential areas of study. An overflight was made using a thermal scanner. The data were processed with a computerized system to delineate areas showing a quartz signature radiated by a gravel deposit. The method was developed during a search for gravel on National Forest land in Louisiana. Processed data from thermal imagery was compared with known gravel deposits and exploratory drill hole logs. A high correlation was noted for a wide range of deposits, from commercial pits to trace deposits only a foot thick. Overburden at these sites varied from zero to sixty feet, near the maximum annual penetration by the thermal wave. It was concluded that the method can be used to locate buried gravel deposits and that more time and effort are needed to verify the usefulness for developing gravel pits adjacent to proposed construction sites.

  10. Subsurface Controls on Habitability of Hydrothermal Waters

    NASA Astrophysics Data System (ADS)

    Fristad, K. E.; Som, S. M.; Hoehler, T. M.

    2014-12-01

    Liquid water alone does not make an environment habitable. Environmental settings dominated by water-rock reactions such as in hydrothermal vents and springs are natural targets for astrobiological investigation of waterworlds because the rich geochemical diversity at these locales provides abundant energy in solvent to support microbial life. Hydrogen oxidizers are of particular interest because H2-based metabolisms are widespread and deeply rooted throughout the phylogenetic tree of life, implying they may have emerged extremely early in the evolution, and possibly even the origin, of life on Earth and potentially any other rocky bodies bearing liquid water. Dihydrogen (H2) can be lithogenically produced by the hydrolytic oxidation of the ferrous iron component in Fe-bearing minerals as well as by radiolytic cleavage of water by α, β, or γ radiation produced during the decay of radioactive isotopes. Lithogenic H2 production mechanisms operate across a range of rock types, but the concentration of dissolved H2 available to life is controlled by a number of subsurface factors such as surface geometry, water to rock ratio, production rate, and fluid flux. These factors are often controlled by the larger geologic and structural context of a particular site. We present results of an ongoing project that surveys H2 concentrations from terrestrial hydrothermal waters in diverse chemical and physical settings. Aqueous H2 concentrations and potential subsurface controls are presented for sites across the western U.S. including Yellowstone National Park, Lassen Volcanic National Park, and Iceland. In coordination with field data, we also investigate the habitability of various sites numerically by coupling a geochemical model of water-rock interaction with that of single-cell methanogenesis and compute a habitability index for the given environment. In particular, we investigate the control that temperature, rock composition, water composition, and water to rock ratio

  11. Imaging the Subsurface with Upgoing Muons

    NASA Astrophysics Data System (ADS)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Accelerating Subsurface Transport Simulation on Heterogeneous Clusters

    SciTech Connect

    Villa, Oreste; Gawande, Nitin A.; Tumeo, Antonino

    2013-09-23

    Reactive transport numerical models simulate chemical and microbiological reactions that occur along a flowpath. These models have to compute reactions for a large number of locations. They solve the set of ordinary differential equations (ODEs) that describes the reaction for each location through the Newton-Raphson technique. This technique involves computing a Jacobian matrix and a residual vector for each set of equation, and then solving iteratively the linearized system by performing Gaussian Elimination and LU decomposition until convergence. STOMP, a well known subsurface flow simulation tool, employs matrices with sizes in the order of 100x100 elements and, for numerical accuracy, LU factorization with full pivoting instead of the faster partial pivoting. Modern high performance computing systems are heterogeneous machines whose nodes integrate both CPUs and GPUs, exposing unprecedented amounts of parallelism. To exploit all their computational power, applications must use both the types of processing elements. For the case of subsurface flow simulation, this mainly requires implementing efficient batched LU-based solvers and identifying efficient solutions for enabling load balancing among the different processors of the system. In this paper we discuss two approaches that allows scaling STOMP's performance on heterogeneous clusters. We initially identify the challenges in implementing batched LU-based solvers for small matrices on GPUs, and propose an implementation that fulfills STOMP's requirements. We compare this implementation to other existing solutions. Then, we combine the batched GPU solver with an OpenMP-based CPU solver, and present an adaptive load balancer that dynamically distributes the linear systems to solve between the two components inside a node. We show how these approaches, integrated into the full application, provide speed ups from 6 to 7 times on large problems, executed on up to 16 nodes of a cluster with two AMD Opteron 6272

  13. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  14. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  15. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  16. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  17. 10 CFR 39.45 - Subsurface tracer studies.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Subsurface tracer studies. 39.45 Section 39.45 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.45 Subsurface tracer studies. (a) The licensee shall require all personnel handling...

  18. Subsurface Mapping: A Question of Position and Interpretation

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2009-01-01

    This paper discusses the character and challenges inherent in the graphical portrayal of features in subsurface mapping. Subsurface structures are, by their nature, hidden and must be mapped based on drilling and/or geophysical data. Efficient use of graphical techniques is central to effectively communicating the results of expensive exploration…

  19. The distribution of subsurface damage in fused silica

    SciTech Connect

    Miller, P E; Suratwala, T I; Wong, L L; Feit, M D; Menapace, J A; Davis, P J; Steele, R A

    2005-11-21

    Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present following the shaping process. To successfully manage, and ultimately remove subsurface damage, understanding the distribution and character of fractures in the subsurface region introduced during fabrication process is important. We have characterized the depth and morphology of subsurface fractures present following fixed abrasive and loose abrasive grinding processes. At shallow depths lateral cracks and an overlapping series of trailing indentation fractures were found to be present. At greater depths, subsurface damage consists of a series of trailing indentation fractures. The area density of trailing fractures changes as a function of depth, however the length and shape of individual cracks remain nearly constant for a given grinding process. We have developed and applied a model to interpret the depth and crack length distributions of subsurface surface damage in terms of key variables including abrasive size and load.

  20. DEMONSTRATION BULLETIN: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM - BROWN & ROOT ENVIRONMENTAL

    EPA Science Inventory

    The Subsurface Volatilization and Ventilation System (SVVS*) is an in-situ vacuum extraction/air sparging and bioremediation technology for the treatment of subsurface organic contamination in soil and groundwater. The technology, developed by Billings and Associates, Inc., and o...

  1. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  2. 75 FR 1276 - Requirements for Subsurface Safety Valve Equipment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... Equipment AGENCY: Minerals Management Service (MMS), Interior. ACTION: Final rule. SUMMARY: The MMS is... Subsurface Safety Valve Equipment (API Spec 14A) into its regulations. The MMS is incorporating the Eleventh.../API Specification 14A, Specification for Subsurface Safety Valve Equipment, Eleventh Edition,...

  3. Subsurface banding poultry litter impacts greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact subsurface banding poultry litter (PL) has on greenhouse gas emissions is limited. Thus, a study was conducted in established bermudagrass pastures located in Coastal Plain and Piedmont regions to determine the effects subsurface applying PL has on soil flux using two different band spaci...

  4. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews

    NASA Technical Reports Server (NTRS)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.

    2010-01-01

    habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.

  5. Autonomous Guidance, Navigation and Control

    NASA Technical Reports Server (NTRS)

    Bordano, A. J.; Mcswain, G. G.; Fernandes, S. T.

    1991-01-01

    The NASA Autonomous Guidance, Navigation and Control (GN&C) Bridging program is reviewed to demonstrate the program plan and GN&C systems for the Space Shuttle. The ascent CN&C system is described in terms of elements such as the general-purpose digital computers, sensors for the navigation subsystem, the guidance-system software, and the flight-control subsystem. Balloon-based and lidar wind soundings are used for operations assessment on the day of launch, and the guidance software is based on dedicated units for atmospheric powered flight, vacuum powered flight, and abort-specific situations. Optimization of the flight trajectories is discussed, and flight-control responses are illustrated for wavelengths of 500-6000 m. Alternate sensors are used for load relief, and adaptive GN&C systems based on alternate gain synthesis are used for systems failures.

  6. Digital autonomous terminal access communications

    NASA Technical Reports Server (NTRS)

    Novacki, S.

    1987-01-01

    A significant problem for the Bus Monitor Unit is to identify the source of a given transmission. This problem arises from the fact that the label which identifies the source of the transmission as it is put into the bus is intercepted by the Digital Autonomous Terminal Access Communications (DATAC) terminal and removed from the transmission. Thus, a given subsystem will see only data associated with a label and never the identifying label itself. The Bus Monitor must identify the source of the transmission so as to be able to provide some type of error identification/location in the event that some problem with the data transmission occurs. Steps taken to alleviate this problem by modifications to the DATAC terminal are discussed.

  7. Next generation autonomous wheelchair control.

    PubMed

    Benson, John; Barrett, Steven

    2005-01-01

    Often times the physically challenged, limited to a wheelchair, also have difficulty with vision. In order to help, something must "see" for them. Therefore there must be some way for a wheelchair to know its environment, sense where it is, and where it must go. It also must be able to avoid any obstacles which are not normally part of the environment. An autonomous wheelchair will serve an important role by allowing users more freedom and independence. This design challenge is broken into four major steps: wheelchair control, environment recognition, route planning, and obstacle avoidance. The first step is to reverse engineer a wheelchair and rebuild the controls, which will be the main topic of discussion for this paper. Two big challenges with this step are high power motor control and joystick control. An H-bridge motor interface, controlled by a microprocessor, was designed for the motors. The joystick control is handled with the same microprocessor.

  8. Autonomous Medical Care for Exploration

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Polk, J. D.; Hines, John W.; Nall, Marsha M.

    2005-01-01

    The goal of Autonomous Medical Care (AMC) is to ensure a healthy, well-performing crew which is a primary need for exploration. The end result of this effort will be the requirements and design for medical systems for the CEV, lunar operations, and Martian operations as well as a ground-based crew health optimization plan. Without such systems, we increase the risk of medical events occurring during a mission and we risk being unable to deal with contingencies of illness and injury, potentially threatening mission success. AMC has two major components: 1) pre-flight crew health optimization and 2) in-flight medical care. The goal of pre-flight crew health optimization is to reduce the risk of illness occurring during a mission by primary prevention and prophylactic measures. In-flight autonomous medical care is the capability to provide medical care during a mission with little or no real-time support from Earth. Crew medical officers or other crew members provide routine medical care as well as medical care to ill or injured crew members using resources available in their location. Ground support becomes telemedical consultation on-board systems/people collect relevant data for ground support to review. The AMC system provides capabilities to incorporate new procedures and training and advice as required. The on-board resources in an autonomous system should be as intelligent and integrated as is feasible, but autonomous does not mean that no human will be involved. The medical field is changing rapidly, and so a challenge is to determine which items to pursue now, which to leverage other efforts (e.g. military), and which to wait for commercial forces to mature. Given that what is used for the CEV or the Moon will likely be updated before going to Mars, a critical piece of the system design will be an architecture that provides for easy incorporation of new technologies into the system. Another challenge is to determine the level of care to provide for each

  9. Testbed for an autonomous system

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok K.; Larsen, Ronald L.

    1989-01-01

    In previous works we have defined a general architectural model for autonomous systems, which can easily be mapped to describe the functions of any automated system (SDAG-86-01), and we illustrated that model by applying it to the thermal management system of a space station (SDAG-87-01). In this note, we will further develop that application and design the detail of the implementation of such a model. First we present the environment of our application by describing the thermal management problem and an abstraction, which was called TESTBED, that includes a specific function for each module in the architecture, and the nature of the interfaces between each pair of blocks.

  10. Autonomous Biological System (ABS) experiments.

    PubMed

    MacCallum, T K; Anderson, G A; Poynter, J E; Stodieck, L S; Klaus, D M

    1998-12-01

    Three space flight experiments have been conducted to test and demonstrate the use of a passively controlled, materially closed, bioregenerative life support system in space. The Autonomous Biological System (ABS) provides an experimental environment for long term growth and breeding of aquatic plants and animals. The ABS is completely materially closed, isolated from human life support systems and cabin atmosphere contaminants, and requires little need for astronaut intervention. Testing of the ABS marked several firsts: the first aquatic angiosperms to be grown in space; the first higher organisms (aquatic invertebrate animals) to complete their life cycles in space; the first completely bioregenerative life support system in space; and, among the first gravitational ecology experiments. As an introduction this paper describes the ABS, its flight performance, advantages and disadvantages.

  11. Autonomous navigation system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-08

    A robot platform includes perceptors, locomotors, and a system controller, which executes instructions for autonomously navigating a robot. The instructions repeat, on each iteration through an event timing loop, the acts of defining an event horizon based on the robot's current velocity, detecting a range to obstacles around the robot, testing for an event horizon intrusion by determining if any range to the obstacles is within the event horizon, and adjusting rotational and translational velocity of the robot accordingly. If the event horizon intrusion occurs, rotational velocity is modified by a proportion of the current rotational velocity reduced by a proportion of the range to the nearest obstacle and translational velocity is modified by a proportion of the range to the nearest obstacle. If no event horizon intrusion occurs, translational velocity is set as a ratio of a speed factor relative to a maximum speed.

  12. Machine intelligence for autonomous manipulation.

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1973-01-01

    Survey of the present technological development status of machine intelligence for autonomous manipulation in the U.S., Japan, USSR, and England. The extent of task-performance autonomy is examined that machine intelligence gives the manipulator by eliminating the need for a human operator to close continuously the control loop, or to rewrite control programs for each different task. Surveyed research projects show that the development of some advanced automation systems for manipulator control are within the state of the art. Yet, many more realistic breadboard systems and experimental work are needed before further progress can be made in the design of advanced automation systems for manipulator control suitable for new major practical applications. Specific research areas of promise are pointed out.

  13. Autonomous Infrastructure for Observatory Operations

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  14. APDS: Autonomous Pathogen Detection System

    SciTech Connect

    Langlois, R G; Brown, S; Burris, L; Colston, B; Jones, L; Makarewicz, T; Mariella, R; Masquelier, D; McBride, M; Milanovich, F; Masarabadi, S; Venkateswaran, K; Marshall, G; Olson, D; Wolcott, D

    2002-02-14

    An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS, a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.

  15. An Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  16. Wireless autonomous device data transmission

    NASA Technical Reports Server (NTRS)

    Sammel, Jr., David W. (Inventor); Cain, James T. (Inventor); Mickle, Marlin H. (Inventor); Mi, Minhong (Inventor)

    2013-01-01

    A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.

  17. Autonomous caregiver following robotic wheelchair

    NASA Astrophysics Data System (ADS)

    Ratnam, E. Venkata; Sivaramalingam, Sethurajan; Vignesh, A. Sri; Vasanth, Elanthendral; Joans, S. Mary

    2011-12-01

    In the last decade, a variety of robotic/intelligent wheelchairs have been proposed to meet the need in aging society. Their main research topics are autonomous functions such as moving toward some goals while avoiding obstacles, or user-friendly interfaces. Although it is desirable for wheelchair users to go out alone, caregivers often accompany them. Therefore we have to consider not only autonomous functions and user interfaces but also how to reduce caregivers' load and support their activities in a communication aspect. From this point of view, we have proposed a robotic wheelchair moving with a caregiver side by side based on the MATLAB process. In this project we discussing about robotic wheel chair to follow a caregiver by using a microcontroller, Ultrasonic sensor, keypad, Motor drivers to operate robot. Using camera interfaced with the DM6437 (Davinci Code Processor) image is captured. The captured image are then processed by using image processing technique, the processed image are then converted into voltage levels through MAX 232 level converter and given it to the microcontroller unit serially and ultrasonic sensor to detect the obstacle in front of robot. In this robot we have mode selection switch Automatic and Manual control of robot, we use ultrasonic sensor in automatic mode to find obstacle, in Manual mode to use the keypad to operate wheel chair. In the microcontroller unit, c language coding is predefined, according to this coding the robot which connected to it was controlled. Robot which has several motors is activated by using the motor drivers. Motor drivers are nothing but a switch which ON/OFF the motor according to the control given by the microcontroller unit.

  18. Radar based autonomous sensor module

    NASA Astrophysics Data System (ADS)

    Styles, Tim

    2016-10-01

    Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.

  19. Fuzzy logic path planning system for collision avoidance by an autonomous rover vehicle

    NASA Technical Reports Server (NTRS)

    Murphy, Michael G.

    1993-01-01

    The Space Exploration Initiative of the United States will make great demands upon NASA and its limited resources. One aspect of great importance will be providing for autonomous (unmanned) operation of vehicles and/or subsystems in space flight and surface exploration. An additional, complicating factor is that much of the need for autonomy of operation will take place under conditions of great uncertainty or ambiguity. Issues in developing an autonomous collision avoidance subsystem within a path planning system for application in a remote, hostile environment that does not lend itself well to remote manipulation by Earth-based telecommunications is addressed. A good focus is unmanned surface exploration of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. Four major issues addressed are (1) avoidance of a fuzzy moving obstacle; (2) backoff from a deadend in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system. Examples of the need for collision avoidance by an autonomous rover vehicle on the surface of Mars with a moving obstacle would be wind-blown debris, surface flow or anomalies due to subsurface disturbances, another vehicle, etc. The other issues of backoff, sensor fusion, and adaptive learning are important in the overall path planning system.

  20. Developing Ocean Subsurface Data Record from CALIPSO Depolarization Ratio Measurements

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Rodier, S. D.; Zhai, P.; Josset, D. B.; Omar, A. H.

    2012-12-01

    CALIOP, the dual wavelength, polarization sensitive lidar flying aboard the CALIPSO satellite, has been operating since June 2006 and is expected to continue for several more years. CALIOP's depolarization ratio is one of the best calibrated measurements made by the A-Train sensors. Over the life of the CALIPSO mission, the stability of the CALIOP depolarization ratio calibration has remained within 1%. CALIOP's depolarization ratio measurements can be used for studying changes in the backscatter of ocean subsurface particulates. The ocean surface/subsurface depolarization ratio measurements from CALIOP together with collocated A-train instruments can be used for estimating the subsurface particulate backscatter coefficient (bbp) and the cross polarization component of the column integrated ocean subsurface backscatter signal. To derive the cross component of inte¬grated ocean subsurface backscatter signal from the depolarization ratio of CALIOP integrated ocean surface/subsurface range bins, we need theoretical estimates of the ocean surface back¬scatter cross section, which can be derived accurately from CloudSat ocean surface backscatter measurements or from AMSR-E wind speeds. Using the CALIOP cross component of the integrated ocean subsurface backscatter together with diffuse attenuation coefficient derived from MODIS, bbp can be estimated. Preliminary CALIOP data analysis shows that in the Southern Oceans, ocean subsurface backscatter has increased by about 5% since the beginning of the CALIPSO mission in June 2006. This study will: (1) introduce the CALIPSO ocean subsurface backscatter data products; (2) assess the uncertainties in the data products and comparing with in situ optics measurements, radiative transfer modeling and aircraft lidar measurements; and (3) summarize the global and regional (e.g., Gulf of Mexico region) statistics and temporal variations of the ocean subsurface backscatter from CALIPSO measurements.

  1. The Autonomic Symptom Profile: a new instrument to assess autonomic symptoms

    NASA Technical Reports Server (NTRS)

    Suarez, G. A.; Opfer-Gehrking, T. L.; Offord, K. P.; Atkinson, E. J.; O'Brien, P. C.; Low, P. A.

    1999-01-01

    OBJECTIVE: To develop a new specific instrument called the Autonomic Symptom Profile to measure autonomic symptoms and test its validity. BACKGROUND: Measuring symptoms is important in the evaluation of quality of life outcomes. There is no validated, self-completed questionnaire on the symptoms of patients with autonomic disorders. METHODS: The questionnaire is 169 items concerning different aspects of autonomic symptoms. The Composite Autonomic Symptom Scale (COMPASS) with item-weighting was established; higher scores indicate more or worse symptoms. Autonomic function tests were performed to generate the Composite Autonomic Scoring Scale (CASS) and to quantify autonomic deficits. We compared the results of the COMPASS with the CASS derived from the Autonomic Reflex Screen to evaluate validity. RESULTS: The instrument was tested in 41 healthy controls (mean age 46.6 years), 33 patients with nonautonomic peripheral neuropathies (mean age 59.5 years), and 39 patients with autonomic failure (mean age 61.1 years). COMPASS scores correlated well with the CASS, demonstrating an acceptable level of content and criterion validity. The mean (+/-SD) overall COMPASS score was 9.8 (+/-9) in controls, 25.9 (+/-17.9) in the patients with nonautonomic peripheral neuropathies, and 52.3 (+/-24.2) in the autonomic failure group. Scores of symptoms of orthostatic intolerance and secretomotor dysfunction best predicted the CASS on multiple stepwise regression analysis. CONCLUSIONS: We describe a questionnaire that measures autonomic symptoms and present evidence for its validity. The instrument shows promise in assessing autonomic symptoms in clinical trials and epidemiologic studies.

  2. Development of Autonomous Drills for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Paulsen, G. L.; Mumm, E.; Kennedy, T.; Chu, P.; Davis, K.; Frader-Thompson, S.; Petrich, K.; Glass, B.

    2006-03-01

    Honeybee Robotics has developed science driven drill systems to allow scientific instruments direct access to the subsurface. Embedded drill segment electronics accommodate sensors and actuators for high rate data transmission to the surface.

  3. Current challenges in autonomous vehicle development

    NASA Astrophysics Data System (ADS)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  4. Management Approaches to Hypertension in Autonomic Failure

    PubMed Central

    Arnold, Amy C.; Biaggioni, Italo

    2013-01-01

    Purpose of Review Supine hypertension is a common finding in autonomic failure that can worsen orthostatic hypotension and predispose to end-organ damage. This review focuses on non-pharmacologic and pharmacologic approaches to manage hypertension in these patients, in the face of disabling orthostatic hypotension. Recent Findings The hypertension of autonomic failure can be driven by sympathetic dependent or independent mechanisms, depending on the site of autonomic lesions. Management of supine hypertension should include simple non-pharmacologic approaches including avoiding the supine position during the daytime and head-up tilt at night. Most patients, however, require pharmacologic treatment. Several antihypertensive therapies lower night-time pressure in autonomic failure, but none improve nocturnal volume depletion or morning orthostatic tolerance. Regardless, treatment may still be beneficial in some patients but must be determined on an individual basis, considering disease type and overnight monitoring. Further, doses must be carefully titrated as these patients are hypersensitive to depressor agents due to loss of baroreceptor reflexes. Summary Autonomic failure provides a unique opportunity to study blood pressure regulation independent of autonomic influences. Understanding mechanisms driving supine hypertension will have important implications for the treatment of autonomic failure and will improve our knowledge of cardiovascular regulation in other populations, including essential hypertension and elderly hypertensives with comorbid orthostatic hypotension. PMID:22801444

  5. Supervised autonomous robotic soft tissue surgery.

    PubMed

    Shademan, Azad; Decker, Ryan S; Opfermann, Justin D; Leonard, Simon; Krieger, Axel; Kim, Peter C W

    2016-05-04

    The current paradigm of robot-assisted surgeries (RASs) depends entirely on an individual surgeon's manual capability. Autonomous robotic surgery-removing the surgeon's hands-promises enhanced efficacy, safety, and improved access to optimized surgical techniques. Surgeries involving soft tissue have not been performed autonomously because of technological limitations, including lack of vision systems that can distinguish and track the target tissues in dynamic surgical environments and lack of intelligent algorithms that can execute complex surgical tasks. We demonstrate in vivo supervised autonomous soft tissue surgery in an open surgical setting, enabled by a plenoptic three-dimensional and near-infrared fluorescent (NIRF) imaging system and an autonomous suturing algorithm. Inspired by the best human surgical practices, a computer program generates a plan to complete complex surgical tasks on deformable soft tissue, such as suturing and intestinal anastomosis. We compared metrics of anastomosis-including the consistency of suturing informed by the average suture spacing, the pressure at which the anastomosis leaked, the number of mistakes that required removing the needle from the tissue, completion time, and lumen reduction in intestinal anastomoses-between our supervised autonomous system, manual laparoscopic surgery, and clinically used RAS approaches. Despite dynamic scene changes and tissue movement during surgery, we demonstrate that the outcome of supervised autonomous procedures is superior to surgery performed by expert surgeons and RAS techniques in ex vivo porcine tissues and in living pigs. These results demonstrate the potential for autonomous robots to improve the efficacy, consistency, functional outcome, and accessibility of surgical techniques.

  6. Autonomous motivation, controlled motivation, and goal progress.

    PubMed

    Koestner, Richard; Otis, Nancy; Powers, Theodore A; Pelletier, Luc; Gagnon, Hugo

    2008-10-01

    Although the self-concordance of goals has been repeatedly shown to predict better goal progress, recent research suggests potential problems with aggregating autonomous and controlled motivations to form a summary index of self-concordance (Judge, Bono, Erez, & Locke, 2005). The purpose of the present investigation was to further examine the relations among autonomous motivation, controlled motivation, and goal progress to determine the relative importance of autonomous motivation and controlled motivation in the pursuit of personal goals. The results of three studies and a meta-analysis indicated that autonomous motivation was substantially related to goal progress whereas controlled motivation was not. Additionally, the relation of autonomous motivation to goal progress was shown to involve implementation planning. Together, the three studies highlight the importance for goal setters of having autonomous motivation and developing implementation plans, especially ones formulated in terms of approach strategies rather than avoidance strategies. The present research suggests that individuals pursuing goals should focus relatively greater attention on enhancing their autonomous motivation rather than reducing their controlled motivation.

  7. Autonomous underwater pipeline monitoring navigation system

    NASA Astrophysics Data System (ADS)

    Mitchell, Byrel; Mahmoudian, Nina; Meadows, Guy

    2014-06-01

    This paper details the development of an autonomous motion-control and navigation algorithm for an underwater autonomous vehicle, the Ocean Server IVER3, to track long linear features such as underwater pipelines. As part of this work, the Nonlinear and Autonomous Systems Laboratory (NAS Lab) developed an algorithm that utilizes inputs from the vehicles state of the art sensor package, which includes digital imaging, digital 3-D Sidescan Sonar, and Acoustic Doppler Current Profilers. The resulting algorithms should tolerate real-world waterway with episodic strong currents, low visibility, high sediment content, and a variety of small and large vessel traffic.

  8. The NASA/Army Autonomous Rotorcraft Project

    NASA Technical Reports Server (NTRS)

    Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.

    2002-01-01

    An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.

  9. Development of Autonomous Aerobraking (Phase 1)

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Powell, Richard W.; Prince, Jill L.

    2012-01-01

    The NASA Engineering and Safety Center received a request from Mr. Daniel Murri (NASA Technical Fellow for Flight Mechanics) to develop an autonomous aerobraking capability. An initial evaluation for all phases of this assessment was approved to proceed at the NESC Review Board meeting. The purpose of phase 1 of this study was to provide an assessment of the feasibility of autonomous aerobraking. During this phase, atmospheric, aerodynamic, and thermal models for a representative spacecraft were developed for both the onboard algorithm known as Autonomous Aerobraking Development Software, and a ground-based "truth" simulation developed for testing purposes. The results of the phase 1 assessment are included in this report.

  10. Development of Autonomous Aerobraking - Phase 2

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.

    2013-01-01

    Phase 1 of the Development of Autonomous Aerobraking (AA) Assessment investigated the technical capability of transferring the processes of aerobraking maneuver (ABM) decision-making (currently performed on the ground by an extensive workforce and communicated to the spacecraft via the deep space network) to an efficient flight software algorithm onboard the spacecraft. This document describes Phase 2 of this study, which was a 12-month effort to improve and rigorously test the AA Development Software developed in Phase 1. Aerobraking maneuver; Autonomous Aerobraking; Autonomous Aerobraking Development Software; Deep Space Network; NASA Engineering and Safety Center

  11. PHM Enabled Autonomous Propellant Loading Operations

    NASA Technical Reports Server (NTRS)

    Walker, Mark; Figueroa, Fernando

    2017-01-01

    The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.

  12. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  13. Development of autonomous magnetometer rotorcraft for wide area assessment

    SciTech Connect

    Roelof Versteeg; Matt Anderson; Les Beard; Eric Corban; Darryl Curley; Jeff Gamey; Ross Johnson; Dwight Junkin; Mark McKay; Jared Salzmann; Mikhail Tchernychev; Suraj Unnikrishnan; Scott Vinson

    2010-04-01

    Large areas across the United States are potentially contaminated with UXO, with some ranges encompassing tens to hundreds of thousands of acres. Technologies are needed which will allow for cost effective wide area scanning with 1) near 100 % coverage and 2) near 100 % detection of subsurface ordnance or features indicative of subsurface ordnance. The current approach to wide area assessment is a multi-level one, in which medium - altitude fixed wing optical imaging is used for an initial site assessment. This assessment is followed with low altitude manned helicopter based magnetometry. Subsequent to this wide area assessment targeted surface investigations are performed using either towed geophysical sensor arrays or man portable sensors. In order to be an effective tool for small UXO detection, the sensing altitude for magnetic site investigations needs to be on the order of 1 – 3 meters. These altitude requirements mean that manned helicopter surveys will generally only be feasible in large, open and relatively flat terrains. While such surveys are effective in mapping large areas relatively fast there are substantial mobilization/demobilization, staffing and equipment costs associated with these surveys (resulting in costs of approximately $100-$150/acre). In addition, due to the low altitude there are substantial risks to pilots and equipment. Surface towed arrays provide high resolution maps but have other limitations, e.g. in their ability to navigate rough terrain effectively. There is thus a need for other systems which can be used for effective data collection. An UAV (Unmanned Aerial Vehicle) magnetometer platform is an obvious alternative. The motivation behind such a system is that it reduces risk to operators, is lower in initial and Operational and Maintenance (O&M) costs (and can thus potentially be applied to smaller sites) and has the potential of being more effective in terms of detection and possibly characterization (through the use of

  14. Development of a Commercially Viable, Modular Autonomous Robotic Systems for Converting any Vehicle to Autonomous Control

    NASA Technical Reports Server (NTRS)

    Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.

    1994-01-01

    A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.

  15. RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT

    SciTech Connect

    Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.

    2013-05-16

    Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this

  16. Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint

    NASA Astrophysics Data System (ADS)

    Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.

    2015-12-01

    A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.

  17. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry Todd

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.

  18. An introduction to autonomous control systems

    NASA Technical Reports Server (NTRS)

    Antsaklis, Panos J.; Passino, Kevin M.; Wang, S. J.

    1991-01-01

    The functions, characteristics, and benefits of autonomous control are outlined. An autonomous control functional architecture for future space vehicles that incorporates the concepts and characteristics described is presented. The controller is hierarchical, with an execution level (the lowest level), coordination level (middle level), and management and organization level (highest level). The general characteristics of the overall architecture, including those of the three levels, are explained, and an example to illustrate their functions is given. Mathematical models for autonomous systems, including 'logical' discrete event system models, are discussed. An approach to the quantitative, systematic modeling, analysis, and design of autonomous controllers is also discussed. It is a hybrid approach since it uses conventional analysis techniques based on difference and differential equations and new techniques for the analysis of the systems described with a symbolic formalism such as finite automata. Some recent results from the areas of planning and expert systems, machine learning, artificial neural networks, and the area restructurable controls are briefly outlined.

  19. A Primer on Autonomous Aerial Vehicle Design

    PubMed Central

    Coppejans, Hugo H. G.; Myburgh, Herman C.

    2015-01-01

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410

  20. A Primer on Autonomous Aerial Vehicle Design.

    PubMed

    Coppejans, Hugo H G; Myburgh, Herman C

    2015-12-02

    There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.

  1. Autonomic Closure for Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    King, Ryan; Hamlington, Peter; Dahm, Werner J. A.

    2015-11-01

    A new autonomic subgrid-scale closure has been developed for large eddy simulation (LES). The approach poses a supervised learning problem that captures nonlinear, nonlocal, and nonequilibrium turbulence effects without specifying a predefined turbulence model. By solving a regularized optimization problem on test filter scale quantities, the autonomic approach identifies a nonparametric function that represents the best local relation between subgrid stresses and resolved state variables. The optimized function is then applied at the grid scale to determine unknown LES subgrid stresses by invoking scale similarity in the inertial range. A priori tests of the autonomic approach on homogeneous isotropic turbulence show that the new approach is amenable to powerful optimization and machine learning methods and is successful for a wide range of filter scales in the inertial range. In these a priori tests, the autonomic closure substantially improves upon the dynamic Smagorinsky model in capturing the instantaneous, statistical, and energy transfer properties of the subgrid stress field.

  2. Autonomic arousal in cognitive conflict resolution.

    PubMed

    Kobayashi, Nobuhisa; Yoshino, Aihide; Takahashi, Yoshitomo; Nomura, Soichiro

    2007-03-30

    Although cognitive efforts were reported to elicit global autonomic arousal, which cognitive processes associate with autonomic arousal has not been clear. We investigated autonomic arousal using event-related skin conductance responses (SCRs) during the Stroop color-word task. After baseline SCR deflections were determined in each trial block, SCRs were compared between cognitive conflict conditions (incongruent vs. congruent stimuli), between tasks assigned (word reading vs. color naming), and between erroneous and correct responses. Baseline SCRs were significantly greater at the beginning of each trial block. SCRs were significantly greater with incongruent than congruent stimuli while SCRs differed little between word reading and color naming. SCRs were greater when responses were incorrect. The results suggested that autonomic arousal occurs during cognitive conflict resolution in addition to mental set adoption for a task and in error awareness.

  3. Autonomous Operations System: Development and Application

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  4. The Baker Observatory Robotic Autonomous Telescope

    NASA Astrophysics Data System (ADS)

    Reed, Mike D.; Thompson, Matthew A.; Hicks, L. L.; Baran, A. S.

    2011-03-01

    The objective of our project is to have an autonomous observatory to obtain long duration time-series observations of pulsating stars. Budget constraints dictate an inexpensive facility. In this paper, we discuss our solution.

  5. Autonomic Recovery after Long-Duration Spaceflight

    NASA Astrophysics Data System (ADS)

    Couckuyt, Kurt; Verheyden, Bart; Liu, Jiexin; Aubert, Andre E.

    2008-06-01

    In this study, the recovery of cardiovascular autonomic modulation after long-duration spaceflight (6 months) is evaluated over a period of 30 days. Results from long-duration spaceflight were compared with the results obtained in astronauts who spent about 10 days in space. It is expected that cardiovascular recovery after spaceflight takes longer when the time spent in weightlessness is extended. Six male astronauts who spent 6 months in space in the ISS participated in the study. It was found that after long duration spaceflight, there is a sympathetic autonomic dominance resulting in post-flight orthostatic tachycardia. Surprisingly, no differences were found in autonomic changes and post-flight recovery after long-duration spaceflight compared to post-flight autonomic control after short-duration spaceflight.

  6. System Engineering of Autonomous Space Vehicles

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis

    2014-01-01

    Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.

  7. Advancing Autonomous Operations Technologies for NASA Missions

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Thompson, Jerry T.

    2013-01-01

    This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies

  8. Comparative anatomy of the autonomic nervous system.

    PubMed

    Nilsson, Stefan

    2011-11-16

    This short review aims to point out the general anatomical features of the autonomic nervous systems of non-mammalian vertebrates. In addition it attempts to outline the similarities and also the increased complexity of the autonomic nervous patterns from fish to tetrapods. With the possible exception of the cyclostomes, perhaps the most striking feature of the vertebrate autonomic nervous system is the similarity between the vertebrate classes. An evolution of the complexity of the system can be seen, with the segmental ganglia of elasmobranchs incompletely connected longitudinally, while well developed paired sympathetic chains are present in teleosts and the tetrapods. In some groups the sympathetic chains may be reduced (dipnoans and caecilians), and have yet to be properly described in snakes. Cranial autonomic pathways are present in the oculomotor (III) and vagus (X) nerves of gnathostome fish and the tetrapods, and with the evolution of salivary and lachrymal glands in the tetrapods, also in the facial (VII) and glossopharyngeal (IX) nerves.

  9. Scanning Tunneling Microscopy methods for spectroscopic imaging of subsurface interfaces

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Kaiser, W. J.

    1988-01-01

    A new method for spatially-resolved, spectroscopic investigation of subsurface interface structure has been developed. The method, Ballistic Electron Emission Microscopy (BEEM), is based on Scanning Tunneling Microscopy (STM) techniques. BEEM combines STM vacuum tunneling with unique ballistic electron spectroscopy capabilities. BEEM enables, for the first time, direct imaging of subsurface interface electronic properties with nanometer spatial resolution. STM topographic images of surface structure and BEEM images of subsurface properties are obtained simultaneously. BEEM capabilities are demonstrated by investigation of important metal-semiconductor interfaces.

  10. Enhanced bioremediation of subsurface contamination: Enzyme recruitment and redesign

    SciTech Connect

    Brockman, F.J.; Ornstein, R.L.

    1991-12-01

    Subsurface systems containing radionuclide, heavy metal, and organic wastes must be carefully attended to avoid further impacts to the environment or exposures to human populations. It is appropriate, therefore, to invest in basic research to develop the requisite tools and methods for addressing complex cleanup problems. The rational modification of subsurface microoganisms by enzyme recruitment and enzyme design, in concert with engineered systems for delivery of microorganisms and nutrients to the contaminated zone, are potentially useful tools in the spectrum of approaches that will be required for successful remediation of deep subsurface contamination.

  11. Autonomous Science on the EO-1 Mission

    NASA Technical Reports Server (NTRS)

    Chien, S.; Sherwood, R.; Tran, D.; Castano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.; Burl, M.; Mandl, D.; Frye, S.; Hengemihle, J.; Agostino, J. D.; Bote, R.; Trout, B.; Shulman, S.; Ungar, S.; Gaasbeck, J. Van; Boyer, D.; Griffin, M.; Burke, H.; Greeley, R.; Doggett, T.; Williams, K.; Baker, V.

    2003-01-01

    In mid-2003, we will fly software to detect science events that will drive autonomous scene selectionon board the New Millennium Earth Observing 1 (EO-1) spacecraft. This software will demonstrate the potential for future space missions to use onboard decision-making to detect science events and respond autonomously to capture short-lived science events and to downlink only the highest value science data.

  12. Basic and Clinical Pharmacology of Autonomic Drugs

    PubMed Central

    Becker, Daniel E.

    2012-01-01

    Autonomic drugs are used clinically to either imitate or inhibit the normal functions of the sympathetic and parasympathetic nervous systems. A large number of additional drug classes also interact with these systems to produce a stunning number of possible side effects. This article reviews the basic function of the autonomic nervous system and the various drug classes that act within these neural synapses. PMID:23241039

  13. Precision Autonomous Landing Adaptive Control Experiment (PALACE)

    DTIC Science & Technology

    2006-11-01

    auto -land system requiring specially prepared and instrumented landing sites. These technologies often preclude UAVs from landing autonomously or...approach developed to achieve autonomous landing capabilities first uses passive stereo ranging to build a 3D terrain profile of the potential...landing site. The stereo ranging algorithm uses a pair of images from digital cameras mounted on the helicopter to build the 3D profile of the terrain

  14. Optimizing Safe Motion for Autonomous Vehicles

    DTIC Science & Technology

    1994-09-01

    k of the vehicle motion (dk/ds) as the only control variable for the vehicle where s is the length along the vehicle trajectory. Previous motion...function for vehicle motion control is demonstrated by algorithmic simulation and by usc on the autonomous mobile robot Yamabico 11I at the Naval...only control variable for the vehicle, where s is the length along the vehicle trajectory. Previous motion planning of the autonomous mobile robot

  15. The Secure, Transportable, Autonomous Reactor System

    SciTech Connect

    Brown, N.W.; Hassberger, J.A.; Smith, C.; Carelli, M.; Greenspan, E.; Peddicord, K.L.; Stroh, K.; Wade, D.C.; Hill, R.N.

    1999-05-27

    The Secure, Transportable, Autonomous Reactor (STAR) system is a development architecture for implementing a small nuclear power system, specifically aimed at meeting the growing energy needs of much of the developing world. It simultaneously provides very high standards for safety, proliferation resistance, ease and economy of installation, operation, and ultimate disposition. The STAR system accomplishes these objectives through a combination of modular design, factory manufacture, long lifetime without refueling, autonomous control, and high reliability.

  16. Tele-robotic/autonomous control using controlshell

    SciTech Connect

    Wilhelmsen, K.C.; Hurd, R.L.; Couture, S.

    1996-12-10

    A tele-robotic and autonomous controller architecture for waste handling and sorting has been developed which uses tele-robotics, autonomous grasping and image processing. As a starting point, prior work from LLNL and ORNL was restructured and ported to a special real-time development environment. Significant improvements in collision avoidance, force compliance, and shared control aspects were then developed. Several orders of magnitude improvement were made in some areas to meet the speed and robustness requirements of the application.

  17. Intelligent control system of autonomous objects

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.; Brezitskaya, V. V.; Prohorovich, G. A.

    2017-02-01

    This paper presents an intelligent control system of autonomous objects as framework. The intelligent control framework includes two different layers: a reflexive layer and a reactive layer. The proposed multiagent adaptive fuzzy neuronet combines low-level reaction with high-level reasoning in an intelligent control framework. The formed as the multiagent adaptive fuzzy neuronet the intelligent control system on the base of autonomous object’s state, creates the effective control signal under random perturbations.

  18. Implementation of Deconfliction in Multivehicle Autonomous Systems

    DTIC Science & Technology

    2010-01-01

    two fin -actuated vehicles was replaced with a remote control toy shark controlled by a human operator. The human operator drove the toy shark directly...Fig. 4 Vehicle Swarm Technology Laboratory (VSTL) developed by the Boeing Research and Technology group. 3.2 University of Washington Fin -Actuated...Autonomous Underwater Vehicles The UW testbed is composed of a set of three fin -actuated autonomous underwater vehi- cles (Fig. 6) operating in a

  19. JOMAR: Joint Operations with Mobile Autonomous Robots

    DTIC Science & Technology

    2015-12-21

    improvements in GPS- aided navigation. * A data-association algorithm with applications to target tracking and computer vision applications, named the...A characterization of Global Positioning System (GPS) noise models in the MaxMixture framework, allowing significant improvements in GPS- aided ...autonomous tractor operations,” Autonomous Robots, vol. 13, no. 1, pp. 87–104, 2002. [11] J. Kim and S. Sukkarieh, “SLAM aided GPS/INS navigation in GPS

  20. The DOE Subsurface Microbial Culture Collection (SMCC)

    SciTech Connect

    Balkwill, David L.

    2006-05-23

    The primary activities associated with maintenance of the Subsurface Microbial Culture Collection (SMCC) were designed to ensure that the collection served as a valuable resource to DOE-funded and other scientists, especially DOE-funded scientists associated with the NABIR Program. These activities were carried out throughout the period covered by this report and in-cluded: (1) assistance in the selection of cultures for research, (2) distribution of cultures and/or data on request, (3) incorporation of newly isolated microbial strains, (4) preservation of newly isolated strains, (5) partial characterization of newly isolated strains, (6) development and main-tenance of representative subsets of cultures, (6) screening of SMCC strains for specific charac-teristics, (7) phylogenetic characterization of SMCC strains, (8) development and maintenance of a SMCC website, (9) maintenance of the SMCC databases, (10) archiving of SMCC records, and (11) quality assurance/quality control (QA/QC) activities. We describe in the Final Technical Report our accomplishments related to these activities during the period covered by this report.

  1. Evidence for a subsurface ocean on Europa

    USGS Publications Warehouse

    Carr, M.H.; Belton, M.J.S.; Chapman, C.R.; Davies, M.E.; Geissler, P.; Greenberg, R.; McEwen, A.S.; Tufts, B.R.; Greeley, R.; Sullivan, R.; Head, J.W.; Pappalardo, R.T.; Klaasen, K.P.; Johnson, T.V.; Kaufman, J.; Senske, D.; Moore, J.; Neukum, G.; Schubert, G.; Burns, J.A.; Thomas, P.; Veverka, J.

    1998-01-01

    Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower- resolution observations of much larger regions suggest that the phenomena reported here are widespread.

  2. Geomechanics of subsurface water withdrawal and injection

    NASA Astrophysics Data System (ADS)

    Gambolati, Giuseppe; Teatini, Pietro

    2015-06-01

    Land subsidence and uplift, ground ruptures, and induced seismicity are the principal geomechanic effects of groundwater withdrawal and injection. The major environmental consequence of groundwater pumping is anthropogenic land subsidence. The first observation concerning land settlement linked to subsurface processes was made in 1926 by the American geologists Pratt and Johnson, who wrote that "the cause of subsidence is to be found in the extensive extraction of fluid from beneath the affected area." Since then, impressive progress has been made in terms of: (a) recognizing the basic hydrologic and geomechanic principles underlying the occurrence; (b) measuring aquifer compaction and ground displacements, both vertical and horizontal; (c) modeling and predicting the past and future event; and (d) mitigating environmental impact through aquifer recharge and/or surface water injection. The first milestone in the theory of pumped aquifer consolidation was reached in 1923 by Terzaghi, who introduced the principle of "effective intergranular stress." In the early 1970s, the emerging computer technology facilitated development of the first mathematical model of the subsidence of Venice, made by Gambolati and Freeze. Since then, the comprehension, measuring, and simulation of the occurrence have improved dramatically. More challenging today are the issues of ground ruptures and induced/triggered seismicity, which call for a shift from the classical continuum approach to discontinuous mechanics. Although well known for decades, anthropogenic land subsidence is still threatening large urban centers and deltaic areas worldwide, such as Bangkok, Jakarta, and Mexico City, at rates in the order of 10 cm/yr.

  3. Evidence for a subsurface ocean on Europa.

    PubMed

    Carr, M H; Belton, M J; Chapman, C R; Davies, M E; Geissler, P; Greenberg, R; McEwen, A S; Tufts, B R; Greeley, R; Sullivan, R; Head, J W; Pappalardo, R T; Klaasen, K P; Johnson, T V; Kaufman, J; Senske, D; Moore, J; Neukum, G; Schubert, G; Burns, J A; Thomas, P; Veverka, J

    1998-01-22

    Ground-based spectroscopy of Jupiter's moon Europa, combined with gravity data, suggests that the satellite has an icy crust roughly 150 km thick and a rocky interior. In addition, images obtained by the Voyager spacecraft revealed that Europa's surface is crossed by numerous intersecting ridges and dark bands (called lineae) and is sparsely cratered, indicating that the terrain is probably significantly younger than that of Ganymede and Callisto. It has been suggested that Europa's thin outer ice shell might be separated from the moon's silicate interior by a liquid water layer, delayed or prevented from freezing by tidal heating; in this model, the lineae could be explained by repetitive tidal deformation of the outer ice shell. However, observational confirmation of a subsurface ocean was largely frustrated by the low resolution (>2 km per pixel) of the Voyager images. Here we present high-resolution (54 m per pixel) Galileo spacecraft images of Europa, in which we find evidence for mobile 'icebergs'. The detailed morphology of the terrain strongly supports the presence of liquid water at shallow depths below the surface, either today or at some time in the past. Moreover, lower-resolution observations of much larger regions suggest that the phenomena reported here are widespread.

  4. Delineating groundwater and subsurface structures by

    NASA Astrophysics Data System (ADS)

    Araffa, Sultan Awad Sultan; Helaly, Ahmed S.; Khozium, Ashraf; Lala, Amir M. S.; Soliman, Shokry A.; Hassan, Noha M.

    2015-06-01

    Geophysical tools such as magnetic, gravity and electric resistivity have been used to delineate subsurface structures, groundwater aquifer around Cairo-Belbies Desert road. A dipole-dipole section was measured at the central part of the study area with 2100 m length and electrode spacing 50 m for greater penetration depth. The results of the inverse resistivity data indicate that the study area includes two groundwater aquifers at different depths. The shallow aquifer water is near the surface and the deep aquifer lies at depth of about 115 m and exhibits low resistivity values ranging from 20 to 100 ohm m. One hundred and fifty-two gravity stations were measured using Autograv gravimeter (CG3), different gravity corrections (drift, elevation and latitude corrections) were applied. The corrected data represented by Bouguer anomaly map were filtered into regional and residual gravity anomaly maps. The residual gravity map indicates that the area is dissected by many faults with NW-SE, N-S, E-W and NE-SW trends. One hundred and fifty-three ground magnetic measurements are collected using two Proton magnetometers (Envimag). The corrected magnetic data are represented by total magnetic intensity map that was reduced to the magnetic pole. 3D magnetic modeling was applied to detect the depth of basaltic sheet and basement complex. The results indicated that the elevation of upper surface of basalt is ranging from 148 to -153 m and the elevation of lower surface of basalt is ranging from 148 to 269 m.

  5. Subsurface Transport Over Multiple Phases Demonstration Software

    SciTech Connect

    2016-01-05

    The STOMP simulator is a suite of numerical simulators developed by Pacific Northwest National Laboratory for addressing problems involving coupled multifluid hydrologic, thermal, geochemical, and geomechanical processes in the subsurface. The simulator has been applied to problems concerning environmental remediation, environmental stewardship, carbon sequestration, conventional petroleum production, and the production of unconventional hydrocarbon fuels. The simulator is copyrighted by Battelle Memorial Institute, and is available outside of PNNL via use agreements. To promote the open exchange of scientific ideas the simulator is provided as source code. A demonstration version of the simulator has been developed, which will provide potential new users with an executable (not source code) implementation of the software royalty free. Demonstration versions will be offered via the STOMP website for all currently available operational modes of the simulator. The demonstration versions of the simulator will be configured with the direct banded linear system solver and have a limit of 1,000 active grid cells. This will provide potential new users with an opportunity to apply the code to simple problems, including many of the STOMP short course problems, without having to pay a license fee. Users will be required to register on the STOMP website prior to receiving an executable.

  6. Dissipation of anomalous pressures in the subsurface

    NASA Astrophysics Data System (ADS)

    Muggeridge, Ann; Abacioglu, Yafes; England, William; Smalley, Craig

    2004-11-01

    Zones of anomalous pressure, higher and lower than hydrostatic pressure, have been observed in many sedimentary basins around the world. These normally consist of groups of pressure compartments: volumes of higher-permeability rock surrounded on all sides by lower-permeability barriers. Knowledge of the timescales over which these abnormal pressures are maintained and the mechanisms by which they dissipate is critical for understanding how fluids, such as oil and gas, move in the subsurface. Existing analytic solutions investigate pressure dissipation through low-permeability barriers on top of or underneath an isolated pressure compartment. There are no analytic solutions describing pressure dissipation through lateral barriers, such as faults, or investigating the impact of groups of pressure compartments on the rate of pressure dissipation. This paper presents simple analytic models to investigate pressure dissipation through barriers, such as faults, forming the sides of pressure compartments. The timescales are compared with a solution for pressure dissipation through barriers on top of and underneath the compartment. It also investigates analytically the rate of pressure dissipation from groups of pressure compartments. Lateral seal permeabilities of 10-19 m2 may delay pressure equilibration for millions of years provided the compartment has a sufficiently high fluid storage capacity. Factors contributing toward a high fluid storage capacity include a high fluid compressibility (as is the case in hydrocarbon reservoirs) and a high porosity. The grouping of abnormally pressured compartments into "megacompartment complexes" may delay pressure dissipation for hundreds of millions of years.

  7. Phononic subsurface: Flow stabilization by crystals

    NASA Astrophysics Data System (ADS)

    Hussein, Mahmoud I.; Biringen, Sedat; Bilal, Osama R.; Kucala, Alec

    2015-11-01

    Flow control is a century-old problem where the goal is to alter a flow's natural state to achieve improved performance, such as delay of laminar-to-turbulent transition or reduction of drag in a fully developed turbulent flow. Meeting this goal promises to significantly reduce the dependence on fossil fuels for global transport. In this work, we show that phonon motion underneath a surface interacting with a flow may be tuned to cause the flow to stabilize, or destabilize, as desired. This concept is demonstrated by simulating a fully developed plane Poiseuille (channel) flow whereby a small portion of an otherwise rigid wall is replaced with a one-dimensional phononic crystal. A Tollmien-Schlichting (TS) wave is introduced to the flow as an evolving disturbance. Upon tuning the frequency-dependent phase and amplitude relations of the surface of the phononic crystal that interfaces with the flow, the TS wave is shown to stabilize, or destabilize, as needed. A theory of subsurface phonons is presented that provides an accurate prediction of this behavior without the need for a flow simulation. This represents an unprecedented capability to passively synchronize wave propagation across a fluid-structure interface and achieve favorable, and predictable, alterations to the flow properties. National Science Foundation, Grant No. 1131802.

  8. Monitoring of subsurface injection of wastes, Florida

    USGS Publications Warehouse

    Vecchioli, John

    1979-01-01

    Injection of waste liquids into Florida's subsurface is physically feasible in many places but should be accompanied by monitoring of the waste-receiving aquifer system in addition to the injection facility. Monitoring of the interaction of factors including hydrogeologic conditions, well construction, waste volumes and characteristics, and potable-water sources is desirable to assure that fresh-water resources are not being adversely affected. An effective aquifer-system monitoring program includes on-site wells located close to an injection well and open to the next-higher permeable stratum, satellite wells located hundreds to several thousands of feet from an injection well and open to the receiving aquifer, and regional wells located miles from individual injection wells and open to the receiving aquifer. An extensive aquifer-system monitoring program associated with two waste-injection facilities near Pensacola, Florida, has provided data which have aided hydrologists to understand the aquifer system's response to the injection and, accordingly, to evaluate the potential for affecting the area's fresh-water resources.

  9. Autonomic healing of polymer composites.

    PubMed

    White, S R; Sottos, N R; Geubelle, P H; Moore, J S; Kessler, M R; Sriram, S R; Brown, E N; Viswanathan, S

    2001-02-15

    Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).

  10. Autonomic and Coevolutionary Sensor Networking

    NASA Astrophysics Data System (ADS)

    Boonma, Pruet; Suzuki, Junichi

    (WSNs) applications are often required to balance the tradeoffs among conflicting operational objectives (e.g., latency and power consumption) and operate at an optimal tradeoff. This chapter proposes and evaluates a architecture, called BiSNET/e, which allows WSN applications to overcome this issue. BiSNET/e is designed to support three major types of WSN applications: , and hybrid applications. Each application is implemented as a decentralized group of, which is analogous to a bee colony (application) consisting of bees (agents). Agents collect sensor data or detect an event (a significant change in sensor reading) on individual nodes, and carry sensor data to base stations. They perform these data collection and event detection functionalities by sensing their surrounding network conditions and adaptively invoking behaviors such as pheromone emission, reproduction, migration, swarming and death. Each agent has its own behavior policy, as a set of genes, which defines how to invoke its behaviors. BiSNET/e allows agents to evolve their behavior policies (genes) across generations and autonomously adapt their performance to given objectives. Simulation results demonstrate that, in all three types of applications, agents evolve to find optimal tradeoffs among conflicting objectives and adapt to dynamic network conditions such as traffic fluctuations and node failures/additions. Simulation results also illustrate that, in hybrid applications, data collection agents and event detection agents coevolve to augment their adaptability and performance.

  11. Mechanical Autonomous Stochastic Heat Engine.

    PubMed

    Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara

    2016-07-01

    Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.

  12. Is acting on delusions autonomous?

    PubMed Central

    2013-01-01

    In this paper the question of autonomy in delusional disorders is investigated using a phenomenological approach. I refer to the distinction between freedom of intentional action, and freedom of the will, and develop phenomenological descriptions of lived autonomy, taking into account the distinction between a pre-reflective and a reflective type. Drawing on a case report, I deliver finely-grained phenomenological descriptions of lived autonomy and experienced self-determination when acting on delusions. This analysis seeks to demonstrate that a person with delusions can be described as responsible for her behaviour on a ‘framed’ level (level of freedom of intentional action), even though she is not autonomous on a higher (‘framing’) level (level of freedom of the will), if, and only if, the goods of agency for herself and others are respected. In these cases the person with delusions is very nearly comparable to people in love, who are also not free to choose their convictions, and who could also be rightly held responsible for the behaviour flowing from their convictions. PMID:24125114

  13. Software for Autonomous Spacecraft Maneuvers

    NASA Technical Reports Server (NTRS)

    Bristow, John; Folta, Dave; Hawkins, Al; Dell, Greg

    2004-01-01

    The AutoCon computer programs facilitate and accelerate the planning and execution of orbital control maneuvers of spacecraft while analyzing and resolving mission constraints. AutoCon-F is executed aboard spacecraft, enabling the spacecraft to plan and execute maneuvers autonomously; AutoCon-G is designed for use on the ground. The AutoCon programs utilize advanced techniques of artificial intelligence, including those of fuzzy logic and natural-language scripting, to resolve multiple conflicting constraints and automatically plan maneuvers. These programs can be used to satisfy requirements for missions that involve orbits around the Earth, the Moon, or any planet, and are especially useful for missions in which there are requirements for frequent maneuvers and for resolution of complex conflicting constraints. During operations, the software targets new trajectories, places and sizes maneuvers, and controls spacecraft burns. AutoCon-G provides a userfriendly graphical interface, and can be used effectively by an analyst with minimal training. AutoCon-F reduces latency and supports multiple-spacecraft and formation-flying missions. The AutoCon architecture supports distributive processing, which can be critical for formation- control missions. AutoCon is completely object-oriented and can easily be enhanced by adding new objects and events. AutoCon-F was flight demonstrated onboard GSFC's EO-1 spacecraft flying in formation with Landsat-7.

  14. Development of autonomous triggering instrumentation

    NASA Astrophysics Data System (ADS)

    Watkins, Steve E.; Swift, Theresa M.; Fonda, James W.

    2008-03-01

    Triggering instrumentation for autonomous monitoring of load-induced strain is described for economical, fast bridge inspection. The development addresses one aspect for the management of transportation infrastructure - bridge monitoring and inspection. The objectives are to provide quantitative performance information from a load test, to minimize the setup time at the bridge, and to minimize the closure time to traffic. Multiple or networked measurements can be made for a prescribed loading sequence. The proposed smart system consists of in-situ strain sensors, an embedded data acquisition module, and a measurement triggering system. A companion control unit is mounted on the truck serving as the load. As the truck moves to the proper position, the desired measurement is automatically relayed back to the control unit. In this work, the testing protocol is developed and the performance parameters for the triggering and data acquisition are measured. The test system uses a dedicated wireless sensor mote and an infrared positioning system. The electronic procedure offers improvements in available information and economics.

  15. Semi-Autonomous Vehicle Project

    NASA Technical Reports Server (NTRS)

    Stewart, Christopher

    2016-01-01

    The primary objective this summer is "evaluating standards for wireless architecture for the internet of things". The Internet of Things is the network of physical objects or "things" embedded with electronics, software, sensors and network connectivity which enables these objects to collect and exchange data and make decisions based on said data. This was accomplished by creating a semi-autonomous vehicle that takes advantage of multiple sensors, cameras, and onboard computers and combined them with a mesh network which enabled communication across large distances with little to no interruption. The mesh network took advantage of what is known as DTN - Disruption Tolerant Networking which according to NASA is the new communications protocol that is "the first step towards interplanetary internet." The use of DTN comes from the fact that it will store information if an interruption in communications is detected and even forward that information via other relays within range so that the data is not lost. This translates well into the project because as the car moves further away from whatever is sending it commands (in this case a joystick), the information can still be forwarded to the car with little to no loss of information thanks to the mesh nodes around the driving area.

  16. Autonomous navigation of USAF spacecraft

    NASA Astrophysics Data System (ADS)

    Ferguson, J. R., Jr.

    Observations from several medium-accuracy space sensors, such as the existing telescopic space sextant are compared with those of future matrix-type sensors. The large field of view of matrix sensors should permit determining the Earth horizon to approximately an order of magnitude better than current infrared sensors by observing atmospheric refraction of stellar light. This horizon determination will give the matrix sensors an accuracy of less than 1 km. The limiting factor in Earth-horizon determination is the modeling of atmospheric refraction effects. For high-accuracy requirements (100 meters or less), the Global Positioning System (GPS) offers the only near-term solution. A relative navigation technique using range and Doppler data is proposed for autonomous navigation of the GPS satellites. The navigation accuracy of this technique is evaluated by considering covariance analysis and by processing corrupted data through a reduced-order onboard sequentially partitioned algorithm. The algorithm is stable and for the GPS system produces in-plane accuracy of 40 meters over twenty days. However, out-of-plane motion is shown to be unobservable in the GPS-to-GPS tracking mode, and errors of up to 1.5 km over 60 days are experienced. For this reason, a supplemental transmitter on the ground or in a different orbit is recommended.

  17. Mechanical Autonomous Stochastic Heat Engine

    NASA Astrophysics Data System (ADS)

    Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara

    2016-07-01

    Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.

  18. Advancing Autonomous Operations for Deep Space Vehicles

    NASA Technical Reports Server (NTRS)

    Haddock, Angie T.; Stetson, Howard K.

    2014-01-01

    Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.

  19. The role of autonomic testing in syncope.

    PubMed

    Jones, Pearl K; Gibbons, Christopher H

    2014-09-01

    Syncope is a common presenting complaint in both the inpatient and outpatient settings. The main goals in the clinical evaluation of syncope are to identify an underlying etiology, to stratify risk and to guide plans for therapeutic intervention. Testing begins with an initial electrocardiogram to screen for any cardiac rhythm abnormalities. Heart rate variability to paced breathing provides a standard measure of cardiac parasympathetic function and offers clues towards an autonomic cause of syncope. A Valsalva maneuver is used to evaluate for parasympathetic dysfunction through the Valsalva ratio. In addition, sympathetic adrenergic function is assessed through evaluation of blood pressure response during the Valsalva maneuver. Abnormalities to the Valsalva maneuver can suggest clues towards an autonomic cause of syncope. Head-up tilt table testing is an important part of the autonomic evaluation of patients with syncope, and can be diagnostic for many disorders that result in syncope including orthostatic hypotension, neurally mediated syncope, postural tachycardia syndrome or delayed orthostatic hypotension. Autonomic function testing provides a safe and controlled environment for evaluation of patients, and plays a pivotal role in the diagnosis of syncope, particularly in challenging cases. While the initial clinical evaluation of syncope involves a detailed history and physical examination; in situations where the diagnosis is unknown, the addition of autonomic testing is complementary and can lead to identification of autonomic causes of syncope.

  20. Autonomous control systems - Architecture and fundamental issues

    NASA Technical Reports Server (NTRS)

    Antsaklis, P. J.; Passino, K. M.; Wang, S. J.

    1988-01-01

    A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).

  1. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  2. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    NASA Technical Reports Server (NTRS)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  3. From surface to subsurface and back again: the contribution of subsurface particle motion to surface armoring

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Jerolmack, D. J.; Ortiz, C. P.; Houssais, M.

    2015-12-01

    Armoring is the development of a coarse surface layer of sediments on a river bed, which overlies a smaller and typically more heterogeneous substrate. All existing models for this phenomenon are predicated on the idea that armoring develops due to size-selective transport and kinetic sieving at the surface of the granular bed. Here examine the development of armoring in the absence of size-selective surface transport, and demonstrate that subsurface particle movement can create an armored surface layer. We first conduct experiments in a laminar and annular flume, over a range of Shields stresses, with bimodal and refractive index-matched spherical sediments; this allows us to image the internal motion of the granular bed that is sheared from above by a viscous oil. Fluid-driven particle motion of the surface layer results in granular shear, that drives motion deep into the bed. This subsurface motion causes an upward migration of coarser particles, at a rate that is proportional to the granular shear rate. Comparison of experimental results to an existing continuum-granular flow model suggest that armoring in our bed-load exeriments is entirely consistent with shear-induced segregation in dry avalanches - but is slower. There is no size-selective transport at the surface in the experiments, as the annular flume is mass conserving and all particles move as bed load; this was confirmed by observation. To probe the granular physics of armor development further, we perform numerical simulations using a discrete element model (DEM) of granular flow, with and without damping. Simulations reproduce salient features of the experiments, and indicate that armoring is robust but that the rate of segregation is related to the degree of viscous damping. We posit that subsurface granular flow is an important and perhaps dominant contributor to surface armoring in rivers. More generally, this work shows how information is transferred from the surface to the subsurface and back

  4. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  5. Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive

    NASA Technical Reports Server (NTRS)

    DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.

    2000-01-01

    Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.

  6. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    EPA Science Inventory

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  7. A hydrogen-based subsurface microbial community dominated by methanogens

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; O'Neill, Kathleen; Bradley, Paul M.; Methé, Barbara A.; Ciufo, Stacy A.; Knobel, LeRoy L.; Lovley, Derek R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  8. A hydrogen-based subsurface microbial community dominated by methanogens.

    PubMed

    Chapelle, Francis H; O'Neill, Kathleen; Bradley, Paul M; Methé, Barbara A; Ciufo, Stacy A; Knobel, LeRoy L; Lovley, Derek R

    2002-01-17

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  9. SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT

    EPA Science Inventory

    This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...

  10. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  11. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings

    EPA Pesticide Factsheets

    This revised version of the User's Guide corresponds with the release of Version 3.1 of the Johnson and Ettinger (1991) model (J E) spreadsheets for estimating subsurface vapor intrusion into buildings.

  12. SOLID OXYGEN SOURCE FOR BIOREMEDIATION IN SUBSURFACE SOILS

    EPA Science Inventory

    Sodium percarbonate was encapsulated in poly(vinylidene chloride) to determine its potential as a slow-release oxygen source for biodegradation of contaminan ts in subsurface soils. In laboratory studies under aqueous conditions, the encapsulated sodium percarbonate was estimate...

  13. Autonomous Commanding of the WIRE Spacecraft

    NASA Technical Reports Server (NTRS)

    Prior, Mike; Walyus, Keith; Saylor, Rick

    1999-01-01

    This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They

  14. DWH MC 252: Subsurface Oil Transport

    NASA Astrophysics Data System (ADS)

    Beegle-Krause, C. J.; Boyer, T.; Murray, D.

    2010-12-01

    , previous research and modeling were combined to tell the story of the DWH MC 252 from the subsurface perspective. The Comprehensive Deepwater Oil and Gas model (CDOG, Yapa and Xie, 2005), and the General NOAA Operational Modeling Environment (GNOME, Beegle-Krause, 1999) were used with the NOAA Gulf of Mexico Model nowcast/forecast model to understand the 3D evolution of the subsurface spill. Model/observational comparisons are favorable, though limitations of the available models are apparent. Historical perspective on Thunder Horse (a deepwater well incident that was a dress-rehearsal for the DWH MC 252, Beegle-Krause and Walton, 2004), transitioning models from research to operations, and research needs will also be discussed.

  15. Signal Processing Techniques for a Planetary Subsurface Radar Onboard Satellite

    NASA Astrophysics Data System (ADS)

    Yagitani, S.; Ishikawa, T.; Nagano, I.; Kojima, H.; Matsumoto, H.

    2001-12-01

    We are developing a satellite-borne HF ( ~ 10 MHz) radar system to be used to investigate planetary subsurface layered structures. Before deciding the design of a high-performance subsurface radar system, in this study we calculate the propagation and reflection characteristics of various HF radar pulses through subsurface layer models, in order to examine the wave forms and frequencies of the radar pulses suitable to discriminate and pick up weak subsurface echoes buried in stronger surface reflection and scattering echoes. In the numerical calculations the wave form of a transmitted radar pulse is first Fourier-transformed into a number of elementary plane waves having different frequencies, for each of which the propagation and reflection characteristics through subsurface layer models are calculated by a full wave analysis. Then the wave form of the reflected radar echo is constructed by synthesizing all of the elementary plane waves. As the transmitted pulses, we use several different types of wave form modulation to realize the radar pulse compression to improve the signal-to-noise (S/N) ratio and time resolution of the subsurface echoes: the linear FM chirp (conventional), the M (maximal-length) sequence and the complementary sequences. We will discuss the characteristics of these pulse compression techniques, such as the improvement in the S/N ratio and the time resolution to identify the subsurface echoes. We will also present the possibility of applying the Multiple Signal Classification (MUSIC) method to further improve both the S/N ratio and time resolution to extract the weaker subsurface echoes.

  16. Remote sensing of subsurface water temperature by Raman scattering

    NASA Technical Reports Server (NTRS)

    Leonard, D. A.; Caputo, B.; Hoge, F. E.

    1979-01-01

    The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.

  17. Monitoring the subsurface with quasi-static deformation

    SciTech Connect

    Sneider, Roel; Spetzler, Hartmut

    2013-09-06

    This project consisted of three sub-projects that are all aimed at monitoring the subsurface with geophysical methods. The objectives of these sub-projects are: to investigate the use of seismic waves for remote monitoring of temperature changes in the Yucca Mountain nuclear repository; to investigate the use of measured changes in the tidal tilt as a diagnostic for the infiltration of fluids in the subsurface; and to extract the electrostatic response from dynamic field fluctuations.

  18. Paracetamol removal in subsurface flow constructed wetlands

    NASA Astrophysics Data System (ADS)

    Ranieri, Ezio; Verlicchi, Paola; Young, Thomas M.

    2011-07-01

    SummaryIn this study two pilot scale Horizontal Subsurface Flow Constructed Wetlands (HSFCWs) near Lecce, Italy, planted with different macrophytes ( Phragmites australis and Typha latifolia) and an unplanted control were assessed for their effectiveness in removing paracetamol. Residence time distributions (RTDs) for the two beds indicated that the Typha bed was characterized by a void volume fraction (porosity) of 0.16 and exhibited more ideal plug flow behavior (Pe = 29.7) than the Phragmites bed (Pe = 26.7), which had similar porosity. The measured hydraulic residence times in the planted beds were 35.8 and 36.7 h when the flow was equal to 1 m 3/d. The Phragmites bed exhibited a range of paracetamol removals from 51.7% for a Hydraulic Loading Rate (HLR) of 240 mm/d to 87% with 120 mm/d HLR and 99.9% with 30 mm/d. The Typha bed showed a similar behavior with percentages of removal slightly lower, ranging from 46.7% (HLR of 240 mm/d) to >99.9% (hydraulic loading rate of 30 mm/d). At the same HLR values the unplanted bed removed between 51.3% and 97.6% of the paracetamol. In all three treatments the paracetamol removal was higher with flow of 1 m 3/d and an area of approx. 7.5 m 2 (half bed) than in the case of flow equal to 0.5 m 3/d with a surface treatment of approx. 3.75 m 2. A first order model for paracetamol removal was evaluated and half lives of 5.16 to 10.2 h were obtained.

  19. Magnetotelluric Sensor Development for Planetary Subsurface Exploration

    NASA Astrophysics Data System (ADS)

    Fuqua, H.; Delory, G. T.; De Pater, I.; Grimm, R. E.

    2012-12-01

    Electromagnetic (EM) Sounding is a powerful geophysical investigation technique capable of constraining planetary subsurface structure, including core size, mantle and crustal temperature profiles, and the distribution of electrical conductivity at depth. Natural sources of EM activity, including solar wind turbulence and plasma waves, can induce electric and magnetic fields in the Moon and other small bodies. These induced fields respond according to the electrical conductivity as a function of skin depth of the body in question. In a branch of EM Sounding known as Magnetotellurics (MT), measurements of the horizontal electric and magnetic fields at the planetary surface are inverted to produce constraints on the interior. MT is particularly worthwhile in that geophysically meaningful results can be obtained from a single station, thus avoiding network mission architectures. While surface magnetic field measurements were taken on the Moon during the Apollo era, to date no measurements of the surface horizontal electric field have been attempted. However electric field measurements on the lunar surface should be feasible given their long successful history on spacecraft missions in similar environments. Building upon the heritage of electric field sensor technology at the UC Berkeley Space Sciences Laboratory, we describe a development plan for this instrument from component level to a fully functional instrument assembly for use in EM sounding, highlighting operational requirements, science capabilities, required testing, anticipated results and challenges to overcome. Upon development, this lander electric field sensor will enable future MT surveys on the Moon, and will provide a new exploration method for other small airless bodies from a single station.

  20. Seismic Imaging of Open Subsurface Fractures

    NASA Astrophysics Data System (ADS)

    Myers, S. C.; Pitarka, A.; Matzel, E.; Aguiar, A. C.

    2015-12-01

    Injection of high-pressure fluid into the subsurface is proven to stimulate geothermal, oil, and gas production by opening cracks that increase permeability. The effectiveness of increasing permeability by high-pressure injection has been revolutionized by the introduction of "proppants" into the injected fluid to keep cracks open after the pressure of the stimulation activity ends. The network of fractures produced during stimulation is most commonly inferred by the location of micro-earthquakes. However, existing (closed) fractures may open aseismically, so the whole fracture network may not be imaged by micro-seismic locations alone. Further, whether all new fractures remain open and for how long remains unclear. Open cracks, even fluid-filled cracks, scatter seismic waves because traction forces are not transmitted across the gap. Numerical simulation confirms that an open crack with dimensions on the order of 10 meters can scatter enough seismic energy to change the coda of seismic signals. Our simulations show that changes in seismic coda due to newly opened fractures are only a few percent of peak seismogram amplitudes, making signals from open cracks difficult to identify. We are developing advanced signal processing methods to identify candidate signals that originate from open cracks. These methods are based on differencing seismograms that are recorded before and after high-pressure fluid injection events to identify changes in the coda. The origins of candidate signals are located using time-reversal techniques to determine if the signals are indeed associated with a coherent structure. The source of scattered energy is compared to micro-seismic event locations to determine whether cracks opened seismically or aseismically. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675612.

  1. Controls on Microbial Transport in Subsurface Sediments

    NASA Astrophysics Data System (ADS)

    Szecsody, J. E.

    2005-12-01

    Laboratory-scale measurements of microbial transport indicate that most microbes attach to subsurface sediments. Given this attachment, it is unclear how microbes are transported significant distances in deep aquifers. It was hypothesized that attachment/detachment mechanisms are dynamic responses to nutrient availability, so that transport is dependent upon the presence/absence of electron donors and acceptors. For one microbial isolate of the Shewanella strain CN-32 there was high attachment in the presence of both electron donor and acceptor, and very little attachment if no donor or acceptor were present. In addition, CN-32 exhibited chemotatic movement through electron donor/acceptor gradients. A series of batch, 1-D homogeneous, 1-D heterogeneous, and 2-D heterogeneous experiments were conducted to quantify CN-32 Monod parameters and to assess the relative importance of simple attachment/detachment steps, dynamic growth/detachment steps, and chemotaxis. Three models included dual Monod kinetics for a single electron donor (lactate), two electron acceptors (dissolved oxygen and nitrate), and either: a) constant microbial attachment (adsorption), b) attachment linked to the presence of electron donor/acceptor, or c) chemotaxis. Simulations of batch experiments using quantified Monod parameters could not predict 1-D experimental results without accounting for microbial attachment. With constant input of electron donor/acceptors, microbial attachment could be well approximated assuming constant microbial adsorption. However, advection of input pulses of electron donor/acceptors resulted in much further downgradient migration, which could be simulated assuming an empirical growth/detachment reaction. The 2-D experimental system with microbes that received input pulses of electron donor/acceptors (idealized representation of an aquifer) showed that that both chemotaxis and the dynamic growth/detachment mechanisms were needed to approximate microbial movement over

  2. Subsurface void detection using seismic tomographic imaging

    SciTech Connect

    Gritto, Roland

    2003-06-26

    Tomographic imaging has been widely used in scientific and medical fields to remotely image media in a nondestructive way. This paper introduces a spectrum of seismic imaging applications to detect and characterize voids in coal mines. The application of seismic waves to detect changes in coal relies on two types of waves: body waves refracted along the interface between coal and bedrock (i.e., refracted P-waves) and channel waves that propagate directly through the coal (dispersive wave trains of the Rayleigh or Love type). For example, a P-wave tomography study to find underlying old mine workings in a coal mine in England, produced velocity patterns that revealed increases in velocity where high stress concentrations occur in the rock, which are most likely connected to old pillars left in support of the old working areas. At the same time, low velocities were found in areas of low stress concentrations, which are related to roof collapses indicating the locations of mined areas below. The application of channel wave tomography to directly image the presence of gaseous CO{sub 2} in a low velocity oil reservoir showed that the injected CO{sub 2} followed an ancient flow channel in the reservoir migrating from the injector to the producer well. The study showed how channel waves are preferable over refracted P-waves, as the latter were only marginally affected by the presence of the gas in the low-velocity channel. Similar approaches show great promise for the detection of voids in coal mines. Finally, a newly developed technique, based on scattering theory, revealed that the location and the size of a subsurface cavity could be accurately determined even in the presence of strong correlated and uncorrelated noise.

  3. Autonomous Rovers for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Anderson, Corin; Bresina, John; Golden, Keith; Smith, David E.; Smith, Trey; Washington, Richard; Koga, Dennis (Technical Monitor)

    1999-01-01

    Rovers will play a critical role in the exploration of Mars. Near-term mission plans call for long traverses over unknown terrain, robust navigation and instrument placement, and reliable operations for extended periods of time. Longer-term missions may visit multiple science sites in a single day and perform opportunistic science data collection, as well as complex scouting, construction, and maintenance tasks in preparation for an eventual human presence. The Pathfinder mission demonstrated the potential for robotic Mars exploration but at the same time indicated the need for more rover autonomy. The highly ground-intensive control with infrequent communication and high latency limited the effectiveness of the Sojourner rover. When failures occurred, Sojourner often sat idle for extended periods of time, awaiting further commands from earth. In future missions, the tasks will be more complex and extended; hence there will be even more situations where things do not go exactly as planned. Significant advances in rover autonomy are needed to cope with increasing task complexity and greater execution uncertainty. Towards this end, we have designed an on-board executive architecture that incorporates robust operation, resource utilization, and failure recovery. In addition, we have designed ground tools to produce and refine contingent schedules that take advantage of the on-board architecture's flexible execution characteristics. Together, the on-board executive and the ground tools constitute an integrated rover autonomy architecture. This work draws from our experience with the Deep Space One autonomy experiment, with enhancements to ensure robust operation in the face of the unpredictable, complex environment that the rover will encounter on Mars. The rover autonomy architecture is currently being developed and deployed on the Marsokhod rover platform at NASA Ames Research Center. The capabilities of the rover autonomy architecture to support autonomous

  4. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  5. Improved autonomous star identification algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Li-Yan; Xu, Lu-Ping; Zhang, Hua; Sun, Jing-Rong

    2015-06-01

    The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014_CXJJ-DH_12), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB141303 and 201413B), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), and the Xi’an Science and Technology Plan, China (Grant. No CXY1350(4)).

  6. Bifurcation and Enhancement of Autonomous-Non-Autonomous Retrotransposon Partnership through LTR Swapping in Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although non-autonomous LTR-retrotransposons lacking significant protein coding domains have been identified in eukaryotes, how they interact with their autonomous partners to maintain transpositional activity during host genome evolution is poorly understood. We performed a comprehensive analysis o...

  7. Active fungi amidst a marine subsurface RNA paleome

    NASA Astrophysics Data System (ADS)

    Orsi, W.; Biddle, J.; Edgcomb, V.

    2012-12-01

    The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Since extracellular DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA signatures by amplicon pyrosequencing, metazoan, plant, and diatom rRNA signatures were recovered from marine sediments up to 2.7 million years old, suggesting that rRNA may be much more stable than previously considered in the marine subsurface. This finding confirms the concept of a paleome, extending it to include rRNA. Within the same dataset, unique profiles of fungi were found across a range of marine subsurface provinces exhibiting statistically significant correlations with total organic carbon (TOC), sulfide, and dissolved inorganic carbon (DIC). Sequences from metazoans, plants and diatoms showed different correlation patterns, consistent with a depth-controlled paleome. The fungal correlations with geochemistry allow the inference that some fungi are active and adapted for survival in the marine subsurface. A metatranscriptomic analysis of fungal derived mRNA confirms that fungi are metabolically active and utilize a range of organic and inorganic substrates in the marine subsurface.

  8. Autonomic cardiac innervation: development and adult plasticity.

    PubMed

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these "non-classical" cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  9. Drilling systems for extraterrestrial subsurface exploration.

    PubMed

    Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C

    2008-06-01

    Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.

  10. 30 CFR 250.119 - Will MMS approve subsurface gas storage?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Will MMS approve subsurface gas storage? 250....119 Will MMS approve subsurface gas storage? The Regional Supervisor may authorize subsurface storage...: (a) Show that the subsurface storage of gas will not result in undue interference with...

  11. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    DOEpatents

    Versteeg, Roelof J.; Few, Douglas A.; Kinoshita, Robert A.; Johnson, Douglas; Linda, Ondrej

    2015-12-15

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  12. Real time explosive hazard information sensing, processing, and communication for autonomous operation

    DOEpatents

    Versteeg, Roelof J; Few, Douglas A; Kinoshita, Robert A; Johnson, Doug; Linda, Ondrej

    2015-02-24

    Methods, computer readable media, and apparatuses provide robotic explosive hazard detection. A robot intelligence kernel (RIK) includes a dynamic autonomy structure with two or more autonomy levels between operator intervention and robot initiative A mine sensor and processing module (ESPM) operating separately from the RIK perceives environmental variables indicative of a mine using subsurface perceptors. The ESPM processes mine information to determine a likelihood of a presence of a mine. A robot can autonomously modify behavior responsive to an indication of a detected mine. The behavior is modified between detection of mines, detailed scanning and characterization of the mine, developing mine indication parameters, and resuming detection. Real time messages are passed between the RIK and the ESPM. A combination of ESPM bound messages and RIK bound messages cause the robot platform to switch between modes including a calibration mode, the mine detection mode, and the mine characterization mode.

  13. Autoimmune autonomic ganglionopathy with reversible cognitive impairment

    PubMed Central

    Gibbons, Christopher H.; Centi, Justin; Vernino, Steven; Freeman, Roy

    2012-01-01

    Background Autoimmune autonomic ganglionopathy (AAG) is a rare disorder of antibody mediated impaired transmission across the autonomic ganglia resulting in severe autonomic failure. Some patients with AAG report cognitive impairment of unclear etiology despite treatment of autonomic symptoms. Objectives To investigate the relationship between orthostatic hypotension, antibody titers and cognitive impairment in patients with AAG. Design Prospective cohort. Setting Academic medical center. Participants Three patients with AAG underwent neuropsychological testing before and after cycles of plasma exchange in both the seated and standing position to determine the effects of orthostatic hypotension and antibody titers on cognition. Main Outcome Measures Patient responses to neuropsychological tests were measured by percent change from baseline in the seated and standing positions pre- and post-plasma exchange to determine the effects of orthostatic hypotension and antibody titers on cognition. Results Orthostatic hypotension and elevated antibody titer were associated independently with neuropsychological impairment (P<0.05), particularly in domains of executive function, sustained attention, and working memory. Cognitive dysfunction improved, even in the seated normotensive position, after plasmapheresis and consequent reduction in antibody levels. Conclusion The data presented in this study demonstrate reversible cognitive impairment is independently associated with both orthostatic hypotension and elevated nicotinic acetylcholine receptor autoantibodies thereby expanding the clinical spectrum of autonomic ganglionopathy and, in so doing, providing an additional treatable cause of cognitive impairment. PMID:22158721

  14. Autonomous Vehicles: Disengagements, Accidents and Reaction Times

    PubMed Central

    Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566

  15. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    PubMed

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  16. Intercellular Genomics of Subsurface Microbial Colonies

    SciTech Connect

    Ortoleva, Peter; Tuncay, Kagan; Gannon, Dennis; Meile, Christof

    2007-02-14

    This report summarizes progress in the second year of this project. The objective is to develop methods and software to predict the spatial configuration, properties and temporal evolution of microbial colonies in the subsurface. To accomplish this, we integrate models of intracellular processes, cell-host medium exchange and reaction-transport dynamics on the colony scale. At the conclusion of the project, we aim to have the foundations of a predictive mathematical model and software that captures the three scales of these systems – the intracellular, pore, and colony wide spatial scales. In the second year of the project, we refined our transcriptional regulatory network discovery (TRND) approach that utilizes gene expression data along with phylogenic similarity and gene ontology analyses and applied it successfully to E.coli, human B cells, and Geobacter sulfurreducens. We have developed a new Web interface, GeoGen, which is tailored to the reconstruction of microbial TRNs and solely focuses on Geobacter as one of DOE’s high priority microbes. Our developments are designed such that the frameworks for the TRND and GeoGen can readily be used for other microbes of interest to the DOE. In the context of modeling a single bacterium, we are actively pursuing both steady-state and kinetic approaches. The steady-state approach is based on a flux balance that uses maximizing biomass growth rate as its objective, subjected to various biochemical constraints, for the optimal values of reaction rates and uptake/release of metabolites. For the kinetic approach, we use Karyote, a rigorous cell model developed by us for an earlier DOE grant and the DARPA BioSPICE Project. We are also investigating the interplay between bacterial colonies and environment at both pore and macroscopic scales. The pore scale models use detailed representations for realistic porous media accounting for the distribution of grain size whereas the macroscopic models employ the Darcy-type flow

  17. Geophysical subsurface imaging and interface identification.

    SciTech Connect

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in physical space. While

  18. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    orthogonal transmission surveys to detect and locate the object. Furthermore, we showed that ambient noise recordings may generate data with sufficient signal-to-noise ratio to successfully detect and locate subsurface voids. Being able to use ambient noise recordings would eliminate the need to employ active seismic sources that are time consuming and more expensive to operate.

  19. A power autonomous monopedal robot

    NASA Astrophysics Data System (ADS)

    Krupp, Benjamin T.; Pratt, Jerry E.

    2006-05-01

    We present the design and initial results of a power-autonomous planar monopedal robot. The robot is a gasoline powered, two degree of freedom robot that runs in a circle, constrained by a boom. The robot uses hydraulic Series Elastic Actuators, force-controllable actuators which provide high force fidelity, moderate bandwidth, and low impedance. The actuators are mounted in the body of the robot, with cable drives transmitting power to the hip and knee joints of the leg. A two-stroke, gasoline engine drives a constant displacement pump which pressurizes an accumulator. Absolute position and spring deflection of each of the Series Elastic Actuators are measured using linear encoders. The spring deflection is translated into force output and compared to desired force in a closed loop force-control algorithm implemented in software. The output signal of each force controller drives high performance servo valves which control flow to each of the pistons of the actuators. In designing the robot, we used a simulation-based iterative design approach. Preliminary estimates of the robot's physical parameters were based on past experience and used to create a physically realistic simulation model of the robot. Next, a control algorithm was implemented in simulation to produce planar hopping. Using the joint power requirements and range of motions from simulation, we worked backward specifying pulley diameter, piston diameter and stroke, hydraulic pressure and flow, servo valve flow and bandwidth, gear pump flow, and engine power requirements. Components that meet or exceed these specifications were chosen and integrated into the robot design. Using CAD software, we calculated the physical parameters of the robot design, replaced the original estimates with the CAD estimates, and produced new joint power requirements. We iterated on this process, resulting in a design which was prototyped and tested. The Monopod currently runs at approximately 1.2 m/s with the weight of all

  20. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius

  1. Scenario simulation based assessment of subsurface energy storage

    NASA Astrophysics Data System (ADS)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  2. How does subsurface characterization affect simulations of hyporheic exchange?

    PubMed

    Ward, Adam S; Gooseff, Michael N; Singha, Kamini

    2013-01-01

    We investigated the role of increasingly well-constrained geologic structures in the subsurface (i.e., subsurface architecture) in predicting streambed flux and hyporheic residence time distribution (RTD) for a headwater stream. Five subsurface realizations with increasingly resolved lithological boundaries were simulated in which model geometries were based on increasing information about flow and transport using soil and geologic maps, surface observations, probing to depth to refusal, seismic refraction, electrical resistivity (ER) imaging of subsurface architecture, and time-lapse ER imaging during a solute tracer study. Particle tracking was used to generate RTDs for each model run. We demonstrate how improved characterization of complex lithological boundaries and calibration of porosity and hydraulic conductivity affect model prediction of hyporheic flow and transport. Models using hydraulic conductivity calibrated using transient ER data yield estimates of streambed flux that are three orders of magnitude larger than uncalibrated models using estimated values for hydraulic conductivity based on values published for nearby hillslopes (10(-4) vs. 10(-7) m(2)/s, respectively). Median residence times for uncalibrated and calibrated models are 10(3) and 10(0) h, respectively. Increasingly well-resolved subsurface architectures yield wider hyporheic RTDs, indicative of more complex hyporheic flowpath networks and potentially important to biogeochemical cycling. The use of ER imaging to monitor solute tracers informs subsurface structure not apparent from other techniques, and helps to define transport properties of the subsurface (i.e., hydraulic conductivity). Results of this study demonstrate the value of geophysical measurements to more realistically simulate flow and transport along hyporheic flowpaths.

  3. Autonomic regulation in Fragile X Syndrome

    PubMed Central

    Heilman, Keri J.; Harden, Emily R.; Zageris, Danielle M.; Berry-Kravis, Elizabeth; Porges, Stephen W.

    2011-01-01

    Autonomic reactivity was studied in individuals with fragile X syndrome (FXS), a genetic disorder partially characterized by abnormal social behavior. Relative to age-matched controls, the FXS group had faster baseline heart rate and lower amplitude respiratory sinus arrhythmia (RSA). In contrast to the typically developing controls, there was a decrease in RSA with age within the FXS group. Moreover, within the FXS group heart rate did not slow with age. The FXS group also responded with an atypical increase in RSA to the social challenge, while the control group reduced RSA. In a subset of the FXS group, the autonomic profile did not change following 2 months and 1 year of lithium treatment. The observed indices of atypical autonomic regulation, consistent with the Polyvagal Theory, may contribute to the deficits in social behavior and social communication observed in FXS. PMID:21547900

  4. Trigeminal autonomic cephalalgias. Part 2: Paroxysmal hemicrania.

    PubMed

    Klasser, Gary D; Balasubramaniam, Ramesh

    2007-11-01

    Paroxysmal hemicrania (PH) is characterized by severe, strictly unilateral pain attacks lasting 2 to 30 minutes localized to orbital, supraorbital, and temporal areas accompanied by ipsilateral autonomic features. It represents 1 of 3 primary headaches classified as trigeminal autonomic cephalalgias. Although PH is rare, patients may present to dental offices seeking relief for their pain. It is important for oral health care providers to recognize PH and render an accurate diagnosis. This will avoid the pitfall of implementing unnecessary and inappropriate traditional dental treatments in hopes of alleviating this neurovascular pain. This is part 2 of a review on trigeminal autonomic cephalalgias and focuses on PH. Aspects of PH including epidemiology, genetics, pathophysiology, clinical presentation, classification and variants, diagnosis, medical management, and dental considerations are discussed.

  5. Autonomous decision making and moral capacities.

    PubMed

    Moser, Albine; Houtepen, Rob; van der Bruggen, Harry; Spreeuwenberg, Cor; Widdershoven, Guy

    2009-03-01

    This article examines how people with type 2 diabetes perceive autonomous decision making and which moral capacities they consider important in diabetes nurses' support of autonomous decision making. Fifteen older adults with type 2 diabetes were interviewed in a nurse-led unit. First, the data were analysed using the grounded theory method. The participants described a variety of decision-making processes in the nurse and family care-giver context. Later, descriptions of the decision-making processes were analysed using hermeneutic text interpretation. We suggest first- and second-order moral capacities that nurses specializing in diabetes need to promote the autonomous decision making of their patients. We recommend nurses to engage in ongoing, interactive reflective practice to further develop these moral capacities.

  6. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  7. On-Orbit Autonomous Assembly from Nanosatellites

    NASA Technical Reports Server (NTRS)

    Murchison, Luke S.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The On-Orbit Autonomous Assembly from Nanosatellites (OAAN) project will demonstrate autonomous control algorithms for rendezvous and docking maneuvers; low-power reconfigurable magnetic docking technology; and compact, lightweight and inexpensive precision relative navigation using carrier-phase differential (CD) GPS with a three-degree of freedom ground demonstration. CDGPS is a specific relative position determination method that measures the phase of the GPS carrier wave to yield relative position data accurate to.4 inch (1 centimeter). CDGPS is a technology commonly found in the surveying industry. The development and demonstration of these technologies will fill a current gap in the availability of proven autonomous rendezvous and docking systems for small satellites.

  8. Software control architecture for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Nelson, Michael L.; DeAnda, Juan R.; Fox, Richard K.; Meng, Xiannong

    1999-07-01

    The Strategic-Tactical-Execution Software Control Architecture (STESCA) is a tri-level approach to controlling autonomous vehicles. Using an object-oriented approach, STESCA has been developed as a generalization of the Rational Behavior Model (RBM). STESCA was initially implemented for the Phoenix Autonomous Underwater Vehicle (Naval Postgraduate School -- Monterey, CA), and is currently being implemented for the Pioneer AT land-based wheeled vehicle. The goals of STESCA are twofold. First is to create a generic framework to simplify the process of creating a software control architecture for autonomous vehicles of any type. Second is to allow for mission specification system by 'anyone' with minimal training to control the overall vehicle functionality. This paper describes the prototype implementation of STESCA for the Pioneer AT.

  9. Effect of Extent of Natural Subsurface Bioreduction on Fe-mineralogy of Subsurface Sediments

    SciTech Connect

    Kukkadapu, Ravi K.; Qafoku, Nikolla; Arey, Bruce W.; Resch, Charles T.; Long, Philip E.

    2010-05-16

    Naturally bioreduced zones with considerable sorbed U were recently identified at a former U mining and processing site at Rifle, CO, USA. Most of the sorbed U appears to be associated with Fe minerals. Variably reduced sediment samples were analyzed by suite of techniques, primarily by room temperature Mössbauer spectroscopy. Fe-oxides of different types and crystallinity, and Fe(II)/Fe(III)-containing clays are dominant in all the sediments. The amounts of poorly crystalline Fe(III)-oxide, however, was lower in the reduced samples. In addition, framboidal pyrites with sorbed U were common in the highly reduced sediments. Overall, the information gained from this work may help develop design field strategies for immobilization and stabilization of U(VI) in contaminated subsurface environments.

  10. Design of an autonomous exterior security robot

    NASA Technical Reports Server (NTRS)

    Myers, Scott D.

    1994-01-01

    This paper discusses the requirements and preliminary design of robotic vehicle designed for performing autonomous exterior perimeter security patrols around warehouse areas, ammunition supply depots, and industrial parks for the U.S. Department of Defense. The preliminary design allows for the operation of up to eight vehicles in a six kilometer by six kilometer zone with autonomous navigation and obstacle avoidance. In addition to detection of crawling intruders at 100 meters, the system must perform real-time inventory checking and database comparisons using a microwave tags system.

  11. Light sailboats: Laser driven autonomous microrobots

    NASA Astrophysics Data System (ADS)

    Búzás, Anrdás; Kelemen, Lóránd; Mathesz, Anna; Oroszi, László; Vizsnyiczai, Gaszton; Vicsek, Tamás; Ormos, Pál

    2012-07-01

    We introduce a system of light driven microscopic autonomous moving particles that move on a flat surface. The design is simple, yet effective: Micrometer sized objects with wedge shape are produced by photopolymerization, and they are covered with a reflective surface. When the area of motion is illuminated perpendicularly from above, the light is deflected to the side by the wedge shaped objects, in the direction determined by the position and orientation of the particles. The momentum change during reflection provides the driving force for an effectively autonomous motion. The system is an efficient tool to study self propelled microscopic robots.

  12. NEURON: Enabling Autonomicity in Wireless Sensor Networks

    PubMed Central

    Zafeiropoulos, Anastasios; Gouvas, Panagiotis; Liakopoulos, Athanassios; Mentzas, Gregoris; Mitrou, Nikolas

    2010-01-01

    Future Wireless Sensor Networks (WSNs) will be ubiquitous, large-scale networks interconnected with the existing IP infrastructure. Autonomic functionalities have to be designed in order to reduce the complexity of their operation and management, and support the dissemination of knowledge within a WSN. In this paper a novel protocol for energy efficient deployment, clustering and routing in WSNs is proposed that focuses on the incorporation of autonomic functionalities in the existing approaches. The design of the protocol facilitates the design of innovative applications and services that are based on overlay topologies created through cooperation among the sensor nodes. PMID:22399931

  13. Self-propelled autonomous nanomotors meet microfluidics.

    PubMed

    Kherzi, Bahareh; Pumera, Martin

    2016-10-14

    Self-propelled autonomous nano/micromotors are in the forefront of current materials science and technology research. These small machines convert chemical energy from the environment into propulsion, and they can move autonomously in the environment and are capable of chemotaxis or magnetotaxis. They can be used for drug delivery, microsurgeries or environmental remediation. It is of immense interest from a future biomedical application point of view to understand the motion of the nano/micromotors in microfluidic channels. In this minireview, we review the progress on the use of nano/micromotors in microfluidic channels and lab-on-chip devices.

  14. CMU's autonomous helicopter explores new territory.

    NASA Astrophysics Data System (ADS)

    Charles, J.

    1998-10-01

    In the summer of 1998, several members of Carnegie Mellon University's (CMUs) Autonomous Helicopter Project team joined NASA on a multidisciplinary expedition to the Canadian Arctic's Haughton Crater. NASA was willing to travel to such a remote corner of the globe because of its similarity to an even more remote locale - Mars. Researchers are studying the 23-million-year-old meteorite impact crater in the hope of learning more about Mars's environment. While there, they also tested a number of technologies that will enable future exploration of Mars, including CMU's autonomous helicopter.

  15. Autonomous Landing and Hazard Avoidance Technology (ALHAT)

    NASA Technical Reports Server (NTRS)

    Epp, Chirold

    2007-01-01

    This viewgraph presentation reviews the work towards technology that will result in an autonomous landing on the lunar surface, that will avoid the hazards of lunar landing. In October 2005, the Exploration Systems Mission Directorate at NASA Headquarters assigned the development of new technologies to support the return to the moon. One of these was Autonomous Precision Landing and Hazard Detection and Avoidance Technology now known as ALHAT ALHAT is a lunar descent and landing GNC technology development project led by Johnson Space Center (JSC) with team members from Langley Research Center (LaRC), Jet Propulsion Laboratory (JPL), Draper Laboratories (CSDL) and the Applied Physics Laboratory (APL)

  16. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  17. Autonomous scheduling technology for Earth orbital missions

    NASA Technical Reports Server (NTRS)

    Srivastava, S.

    1982-01-01

    The development of a dynamic autonomous system (DYASS) of resources for the mission support of near-Earth NASA spacecraft is discussed and the current NASA space data system is described from a functional perspective. The future (late 80's and early 90's) NASA space data system is discussed. The DYASS concept, the autonomous process control, and the NASA space data system are introduced. Scheduling and related disciplines are surveyed. DYASS as a scheduling problem is also discussed. Artificial intelligence and knowledge representation is considered as well as the NUDGE system and the I-Space system.

  18. Sensorpedia: Information Sharing Across Autonomous Sensor Systems

    SciTech Connect

    Gorman, Bryan L; Resseguie, David R; Tomkins-Tinch, Christopher H

    2009-01-01

    The concept of adapting social media technologies is introduced as a means of achieving information sharing across autonomous sensor systems. Historical examples of interoperability as an underlying principle in loosely-coupled systems is compared and contrasted with corresponding tightly-coupled, integrated systems. Examples of ad hoc information sharing solutions based on Web 2.0 social networks, mashups, blogs, wikis, and data tags are presented and discussed. The underlying technologies of these solutions are isolated and defined, and Sensorpedia is presented as a formalized application for implementing sensor information sharing across large-scale enterprises with incompatible autonomous sensor systems.

  19. [Management of autonomic dysfunction in Parkinson's disease].

    PubMed

    Crespo-Burillo, José A; Alarcia-Alejos, Raquel

    2015-04-16

    Autonomic dysfunction is a common manifestation in patients with in Parkinson's disease, which can sometimes precede motor impairment. It can be expressed as orthostatic and postprandial hypotension, supine hypertension, hypersalivation, constipation, delayed gastric emptying, dyshidrosis, bladder and sexual dysfunction. It impairs the quality of life of patients and complicates the management of motor symptoms. Evidence available to treat complications is low. Our aim is to review the pathophysiology and clinical features of autonomic dysfunction in Parkinson's disease and provide a practical approach to handling the available evidence.

  20. Knowledge-based Autonomous Test Engineer (KATE)

    NASA Technical Reports Server (NTRS)

    Parrish, Carrie L.; Brown, Barbara L.

    1991-01-01

    Mathematical models of system components have long been used to allow simulators to predict system behavior to various stimuli. Recent efforts to monitor, diagnose, and control real-time systems using component models have experienced similar success. NASA Kennedy is continuing the development of a tool for implementing real-time knowledge-based diagnostic and control systems called KATE (Knowledge based Autonomous Test Engineer). KATE is a model-based reasoning shell designed to provide autonomous control, monitoring, fault detection, and diagnostics for complex engineering systems by applying its reasoning techniques to an exchangeable quantitative model describing the structure and function of the various system components and their systemic behavior.

  1. [Mobile autonomous robots-Possibilities and limits].

    PubMed

    Maehle, E; Brockmann, W; Walthelm, A

    2002-02-01

    Besides industrial robots, which today are firmly established in production processes, service robots are becoming more and more important. They shall provide services for humans in different areas of their professional and everyday environment including medicine. Most of these service robots are mobile which requires an intelligent autonomous behaviour. After characterising the different kinds of robots the relevant paradigms of intelligent autonomous behaviour for mobile robots are critically discussed in this paper and illustrated by three concrete examples of robots realized in Lübeck. In addition a short survey of actual kinds of surgical robots as well as an outlook to future developments is given.

  2. Microbial iron-redox cycling in subsurface environments.

    PubMed

    Roden, Eric E

    2012-12-01

    In addition to its central role in mediating electron-transfer reactions within all living cells, iron undergoes extracellular redox transformations linked to microbial energy generation through utilization of Fe(II) as a source of chemical energy or Fe(III) as an electron acceptor for anaerobic respiration. These processes permit microbial populations and communities to engage in cyclic coupled iron oxidation and reduction within redox transition zones in subsurface environments. In the present paper, I review and synthesize a few case studies of iron-redox cycling in subsurface environments, highlighting key biochemical aspects of the extracellular iron-redox metabolisms involved. Of specific interest are the coupling of iron oxidation and reduction in field and experimental systems that model redox gradients and fluctuations in the subsurface, and novel pathways and organisms involved in the redox cycling of insoluble iron-bearing minerals. These findings set the stage for rapid expansion in our knowledge of the range of extracellular electron-transfer mechanisms utilized by subsurface micro-organisms. The observation that closely coupled oxidation and reduction of iron can take place under conditions common to the subsurface motivates this expansion in pursuit of molecular tools for studying iron-redox cycling communities in situ.

  3. Lower-Temperature Subsurface Layout and Ventilation Concepts

    SciTech Connect

    Christine L. Linden; Edward G. Thomas

    2001-06-20

    This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M&O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management.

  4. Scale invariance of subsurface flow patterns and its limitation

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Winkler, G.; Birk, S.

    2016-05-01

    Preferential flow patterns in the subsurface are of great importance for the availability and the quality of water resources. However, knowledge of their spatial structure is still behind their importance, so that understanding the nature of preferential flow patterns is a major issue in subsurface hydrology. Comparing the statistics of river catchment sizes and spring discharges, we found that the morphology of preferential subsurface flow patterns is probably scale invariant and similar to that of dendritic river networks. This result is not limited to karstic aquifers where the occurrence of dendritic structures has been known at least qualitatively for a long time. The scale invariance even seems to be independent of the lithology of the aquifer. However, scale invariance of river patterns seems to be only limited by the continental scale, while scale invariance of subsurface flow patterns breaks down at much smaller scales. The upper limit of scale invariance in subsurface flow patterns is highly variable. We found a range from thousands of square kilometers for limestone aquifers down to less than 1 km2 in the weathered zone and debris accumulations of crystalline rocks.

  5. Plasmid incidence in bacteria from deep subsurface sediments

    SciTech Connect

    Fredrickson, J.K.; Hicks, R.J.; Li, S.W.; Brockman, F.J. )

    1988-12-01

    Bacteria were isolated from deep terrestrial subsurface sediments underlying the coastal plain of South Carolina. A total of 163 isolates from deep sediments, surface soil, and return drill muds were examined for plasmid DNA content and resistance to the antibiotics penicillin, ampicillin, carbenicillin, streptomycin, kanamycin, and tetracycline. MICs of Cu{sup 2+}, Cr{sup 3+}, and Hg{sup 2+} for each isolate were also determined. The overall frequency of plasmid occurrence in the subsurface bacteria was 33%. Resistance was most frequent to penicillin (70% of all isolates), ampicillin (49%), and carbenicillin (32%) and was concluded to be related to the concentrations of the individual antibiotics in the disks used for assaying resistance and to the production of low levels of {beta}-lactamase. The frequencies of resistance to penicillin and ampicillin were significantly greater for isolates bearing plasmids than for plasmidless isolates; however, resistance was not transferable to penicillin-sensitive Escherichia coli. Hybridization of subsurface bacterial plasmids and chromosomal DNA with a whole-TOL-plasmid (pWWO) probe revealed some homology of subsurface bacterial plasmid and chromosomal DNAs, indicating a potential for those bacterial to harbor catabolic genes on plasmids or chromosomes. The incidences of antibiotic resistance and MICs of metals for subsurface bacteria were significantly different from those drill mud bacteria, ruling out the possibility that bacteria from sediments were derived from drill muds.

  6. Nematoda from the terrestrial deep subsurface of South Africa

    NASA Astrophysics Data System (ADS)

    Borgonie, G.; García-Moyano, A.; Litthauer, D.; Bert, W.; Bester, A.; van Heerden, E.; Möller, C.; Erasmus, M.; Onstott, T. C.

    2011-06-01

    Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.

  7. Integrated Surface/subsurface flow modeling in PFLOTRAN

    SciTech Connect

    Painter, Scott L

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  8. Hard-real-time resource management for autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  9. Why Computer-Based Systems Should be Autonomic

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2005-01-01

    The objective of this paper is to discuss why computer-based systems should be autonomic, where autonomicity implies self-managing, often conceptualized in terms of being self-configuring, self-healing, self-optimizing, self-protecting and self-aware. We look at motivations for autonomicity, examine how more and more systems are exhibiting autonomic behavior, and finally look at future directions.

  10. SUBSURFACE BARRIER VALIDATION WITH THE SEAFACE SYSTEM

    SciTech Connect

    Sandra Dalvit Dunn

    1997-11-30

    The overall objective of the effort was to develop and demonstrate an integrated methodology and field system to evaluate the integrity of in situ, impermeable barriers constructed in the vadose zone. An autonomous, remotely accessible, automatic monitoring and analysis system was designed and fabricated. It was thoroughly tested under field conditions, and was able to function as designed throughout the test period. Data inversion software was developed with enhanced capabilities over the previous prototype version, and integrated with the monitoring system for real time operation. Analytical simulations were performed to determine the inversion code's sensitivity to model parameters. Numerical simulations were performed to better understand how typical field conditions differ from the ideal model(s) which are used (or have been developed for use) in the inversion code and to further validate the flux limited forward model developed for use with the system. Results from the analytical and numerical assessment of the inversion code showed that the SEAtrace{trademark} approach could locate leaks within 0.4 to 1.2 m. Leak size determination was less accurate, but produced results within a factor of 3 to 8 for leaks in the 2.5 to 10 cm diameter range. The smallest engineered leak in the test 1.1 cm diameter, could be located but its size estimate was high by a factor of 30. Data analysis was performed automatically after each gas scan was completed, yielding results in less than thirty minutes, although the bulk of the results reported required post test data analysis to remove effects of high background concentrations. The field test of the integrated system was problematic, primarily due to unanticipated, unintentional leaks formed in the impermeable liner. The test facility constructed to proof the system was ambitious, initially having 11 engineered leaks of various dimensions that could be independently operated. While a great deal of care went into the

  11. A subsurface add-on for standard atomic force microscopes.

    PubMed

    Verbiest, G J; van der Zalm, D J; Oosterkamp, T H; Rost, M J

    2015-03-01

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  12. Debates - Stochastic subsurface hydrology from theory to practice: Introduction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar

    2016-12-01

    This paper introduces the papers in the "Debates - Stochastic Subsurface Hydrology from Theory to Practice" series. Beginning in the 1970s, the field of stochastic subsurface hydrology has been an active field of research, with over 3500 journal publications, of which over 850 have appeared in Water Resources Research. We are fortunate to have insightful contributions from four groups of distinguished authors who discuss the reasons why the advanced research framework established in stochastic subsurface hydrology has not impacted the practice of groundwater flow and transport modeling and design significantly. There is reasonable consensus that a community effort aimed at developing "toolboxes" for applications of stochastic methods will make them more accessible and encourage practical applications.

  13. Preliminary Results of Lightning Based Subsurface Conductivity Imaging

    NASA Astrophysics Data System (ADS)

    Strauss, D.; Linscott, I.; Inan, U. S.

    2009-12-01

    Manmade sources in the VLF frequency band have been successfully employed in controlled source electromagnetic methods since the 1970's. We demonstrate that natural sources primarily from lightning at these frequencies offer a comparable and promising source for subsurface geophysical imaging. Radio atmospherics, commonly known as 'sferics,' are an abundant source of broadband (1-30kHz), impulsive signals for probing the surface of the earth. We show that simultaneous measurement of three orthogonal components of the time-varying magnetic field using a network of Stanford-developed ELF/VLF receivers provides a promising dataset for specifying subsurface material properties. Conductive anomalies in the subsurface have been observed to produce anomalous magnetic field response that fits in a perturbation model of the Earth-Ionosphere waveguide model of propagation at VLF frequencies. We present here the initial findings of the simultaneous collection of thousands of sferics in three distinct geologic settings in Western Nevada, Kansas, and Idaho.

  14. An Improved ERT Approach for the Investigation of Subsurface Structures

    NASA Astrophysics Data System (ADS)

    Lu, De-Bao; Wang, Feng; Chen, Xiao-Dong; Ou, Jian; Wang, Hui

    2017-01-01

    The joint use of multiple geophysical data types has been proven to be a powerful tool to both improve subsurface imaging and help in the interpretation process. The main goal of this paper is to develop a multi-geophysical approach for subsurface experimental investigations in which seismic data are used to improve electrical resistivity tomography quality. The basic philosophy of the method is that seismic travel time data will be used to construct the prior model for the resistivity inversion. Synthetic data were employed to demonstrate the improvements enabled by the use of this strategy. Afterwards, the scheme was applied successfully on field data from northwestern China. The outcomes reveal that the multi-geophysical approach improves the interpretation of the subsurface over a single source.

  15. Correct use of cone penetrometer sensors to predict subsurface conditions

    SciTech Connect

    Walker, J.L.; Rose, C.M.; Armstrong, S.C.; Burton, J.C.

    1997-09-01

    When cone penetrometer testing (CPT) technology is used with in-situ sensors and probes to characterize subsurface conditions in environmental investigations, each sensor must be calibrated with high quality, site specific data to establish essential interpretation criteria. Mechanical, geophysical, and chemical sensor data collected for a site in South Carolina without such controls were misleading. Core logs obtained subsequently had major lithologic discrepancies with the soil classification based on the CPT sensor data. In addition, detailed core sampling and laboratory analysis showed that the sensor data on chemical contaminants included false positive and false negative results. In contrast, for a site in Nebraska, CPT data calibrated with high quality site controls provided a detailed interpretation of subsurface conditions relevant to contaminant fate and transport. On the basis of the work in Nebraska, Argonne scientists are continuing to develop criteria to improve the interpretation of complex subsurface stratigraphy.

  16. The Mojave vadose zone: a subsurface biosphere analogue for Mars.

    PubMed

    Abbey, William; Salas, Everett; Bhartia, Rohit; Beegle, Luther W

    2013-07-01

    If life ever evolved on the surface of Mars, it is unlikely that it would still survive there today, but as Mars evolved from a wet planet to an arid one, the subsurface environment may have presented a refuge from increasingly hostile surface conditions. Since the last glacial maximum, the Mojave Desert has experienced a similar shift from a wet to a dry environment, giving us the opportunity to study here on Earth how subsurface ecosystems in an arid environment adapt to increasingly barren surface conditions. In this paper, we advocate studying the vadose zone ecosystem of the Mojave Desert as an analogue for possible subsurface biospheres on Mars. We also describe several examples of Mars-like terrain found in the Mojave region and discuss ecological insights that might be gained by a thorough examination of the vadose zone in these specific terrains. Examples described include distributary fans (deltas, alluvial fans, etc.), paleosols overlain by basaltic lava flows, and evaporite deposits.

  17. A subsurface add-on for standard atomic force microscopes

    SciTech Connect

    Verbiest, G. J.; Zalm, D. J. van der; Oosterkamp, T. H.; Rost, M. J.

    2015-03-15

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  18. How to Access and Sample the Deep Subsurface of Mars

    NASA Technical Reports Server (NTRS)

    Briggs, G.; Blacic, J.; Dreesen, D.; Mockler, T.

    2000-01-01

    We are developing a technology roadmap to support a series of Mars lander missions aimed at successively deeper and more comprehensive explorations of the Martian subsurface. The proposed mission sequence is outlined. Key to this approach is development of a drilling and sampling technology robust and flexible enough to successfully penetrate the presently unknown subsurface geology and structure. Martian environmental conditions, mission constraints of power and mass and a requirement for a high degree of automation all limit applicability of many proven terrestrial drilling technologies. Planetary protection and bioscience objectives further complicate selection of candidate systems. Nevertheless, recent advances in drilling technologies for the oil & gas, mining, underground utility and other specialty drilling industries convinces us that it will be possible to meet science and operational objectives of Mars subsurface exploration.

  19. A Hybrid Approach for Fault Detection in Autonomous Physical Agents

    DTIC Science & Technology

    2014-05-01

    A Hybrid Approach for Fault Detection in Autonomous Physical Agents Eliahu Khalastchi, Meir Kalech, Lior Rokach Information Systems Engineering...Experimentation Keywords Fault detection, Model-Based Diagnosis , Robotics, UAV. 1. INTRODUCTION Autonomous physical agents such as Unmanned Vehicles (UVs...then a crash. To continue operate autonomously, the agent must have an accurate fault detection mechanism. Upon fault detection a diagnosis process

  20. Laboratory Experimentation of Autonomous Spacecraft Docking Using Cooperative Vision Navigation

    DTIC Science & Technology

    2005-12-01

    EXPERIMENTATION OF AUTONOMOUS SPACECRAFT DOCKING USING COOPERATIVE VISION NAVIGATION by David A. Friedman December 2005 Thesis Advisor...Experimentation of Autonomous Spacecraft Docking Using Cooperative Vision Navigation 6. AUTHOR(S) David A. Friedman 5. FUNDING NUMBERS 7...distribution is unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) On-orbit, autonomous docking and spacecraft servicing are key areas

  1. Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles via Relays

    DTIC Science & Technology

    2012-06-01

    2012-10 DOCTORAL DISSERTATION by Chris Murphy June 2012 Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles via Relays MIT...MIT/WHO I 2012-10 Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles via Relays by Chris Murphy Massachusetts...States Government. This thesis should be cited as: Chris Murphy, 2012. Progressively Communicating Rich Telemetry from Autonomous Underwater Vehicles

  2. Control algorithms for autonomous robot navigation

    SciTech Connect

    Jorgensen, C.C.

    1985-09-20

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced.

  3. Measures of Autonomic Nervous System Regulation

    DTIC Science & Technology

    2011-04-01

    Cortisol Galvanic Skin Response (GSR) Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based...Salivary Amylase Galvanic Skin Response Vascular Gastrointestinal The ANS Measures Table in Appendix A provides a summary of over fifty tools...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement

  4. Autonomic Modification of Intestinal Smooth Muscle Contractility

    ERIC Educational Resources Information Center

    Montgomery, Laura E. A.; Tansey, Etain A.; Johnson, Chris D.; Roe, Sean M.; Quinn, Joe G.

    2016-01-01

    Intestinal smooth muscle contracts rhythmically in the absence of nerve and hormonal stimulation because of the activity of pacemaker cells between and within the muscle layers. This means that the autonomic nervous system modifies rather than initiates intestinal contractions. The practical described here gives students an opportunity to observe…

  5. A Multifunctional Coating for Autonomous Corrosion Control

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  6. Autonomous Soaring: The Montague Cross Country Challenge

    NASA Astrophysics Data System (ADS)

    Edwards, Daniel J.

    A novel method was developed for locating and allowing gliders to stay in thermals (convective updrafts). The method was applied to a 5 kg, glider, called ALOFT (autonomous locator of thermals), that was entered in the 2008 Montague Cross-Country Challenge held on 13-15 June 2008 in Montague, California. In this competition, RC (remote controlled) gliders in the 5 kg class competed on the basis of speed and distance. ALOFT was the first known autonomously soaring aircraft to enter a soaring competition and its entry provided a valuable comparison between the effectiveness of manual soaring and autonomous soaring. ALOFT placed third in the competition in overall points, outperforming manually-flown aircraft in its ability to center and utilize updrafts, especially at higher altitudes and in the presence of wind, to fly more optimal airspeeds, and to fly directly between turn points. The results confirm that autonomous soaring is a bona fide engineering sub-discipline, which is expected to be of interest to engineers who might find this has some utility in the aviation industry.

  7. Love alters autonomic reactivity to emotions.

    PubMed

    Schneiderman, Inna; Zilberstein-Kra, Yael; Leckman, James F; Feldman, Ruth

    2011-12-01

    Periods of bond formation are accompanied by physiological and emotional changes, yet, little is known about the effects of falling in love on the individual's physiological response to emotions. We examined autonomic reactivity to the presentation of negative and positive films in 112 young adults, including 57 singles and 55 new lovers who began a romantic relationship 2.5 months prior to the experiment Autonomic reactivity was measured by Respiratory Sinus Arrhythmia (RSA) to two baseline emotionally neutral films, two negative films, and two positive films. Results demonstrated that RSA in singles decreased during the presentation of negative emotions, indicating physiological stress response. However, no such decrease was found among new lovers, pointing to more optimal vagal regulation during the period of falling in love. Autonomic reactivity, indexed by RSA decrease from the positive to the negative films, was greater among singles as compared to lovers, suggesting that love buffers against autonomic stress and facilitates emotion regulation. Findings suggest that vagal regulation may be one mechanism through which love and attachment reduce stress and promote well-being and health.

  8. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    DTIC Science & Technology

    2015-10-01

    develop from 1) aberrant plasticity and 2) the loss of tonic input onto sympathetic preganglionic neurons (SPN) in the spinal cord that drive...life. Another cause of autonomic dysreflexia is aberrant plasticity of spinal circuits that increase activity of the sympathetic preganglionic neurons...modulatory circuitry and pharmacological mitigation of hyperexcitability resulting from aberrant plasticity will result in greater mitigation of

  9. Autonomic adjustments to exercise in humans.

    PubMed

    Fisher, James P; Young, Colin N; Fadel, Paul J

    2015-04-01

    Autonomic nervous system adjustments to the heart and blood vessels are necessary for mediating the cardiovascular responses required to meet the metabolic demands of working skeletal muscle during exercise. These demands are met by precise exercise intensity-dependent alterations in sympathetic and parasympathetic nerve activity. The purpose of this review is to examine the contributions of the sympathetic and parasympathetic nervous systems in mediating specific cardiovascular and hemodynamic responses to exercise. These changes in autonomic outflow are regulated by several neural mechanisms working in concert, including central command (a feed forward mechanism originating from higher brain centers), the exercise pressor reflex (a feed-back mechanism originating from skeletal muscle), the arterial baroreflex (a negative feed-back mechanism originating from the carotid sinus and aortic arch), and cardiopulmonary baroreceptors (a feed-back mechanism from stretch receptors located in the heart and lungs). In addition, arterial chemoreceptors and phrenic afferents from respiratory muscles (i.e., respiratory metaboreflex) are also capable of modulating the autonomic responses to exercise. Our goal is to provide a detailed review of the parasympathetic and sympathetic changes that occur with exercise distinguishing between the onset of exercise and steady-state conditions, when appropriate. In addition, studies demonstrating the contributions of each of the aforementioned neural mechanisms to the autonomic changes and ensuing cardiac and/or vascular responses will be covered.

  10. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.

  11. The Baker Observatory Robotic Autonomous Telescope

    NASA Astrophysics Data System (ADS)

    Hicks, L. L.; Reed, M. D.; Thompson, M. A.; Gilker, J. T.

    We describe the Baker Observatory Robotic Autonomous Telescope project. The hardware includes a 16 inch Meade LX-200 telescope, an AstroHaven 7 feet dome, an Apogee U47 CCD camera and filter wheel, a Boltwood Cloud Sensor II, and various other minor hardware. We are implementing RTS2 for the Telescope Control System and incorporating custom drivers for ancillary systems.

  12. Shipboard Landing Challenges for Autonomous Parafoils

    DTIC Science & Technology

    2011-05-01

    nimble operations in challenging terrain such as the mountainous regions of Afghanistan . Potential exists for the same sort of revolutionary changes...Autonomous Aerial Payload Delivery System “ Blizzard ”,” Proceedings of the 21st Aerodynamic Delivery Systems Technology Conference, AIAA, Dublin, Ireland, 23–26 May 2011. 10 American Institute of Aeronautics and Astronautics

  13. Autonomous biomorphic robots as platforms for sensors

    SciTech Connect

    Tilden, M.; Hasslacher, B.; Mainieri, R.; Moses, J.

    1996-10-01

    The idea of building autonomous robots that can carry out complex and nonrepetitive tasks is an old one, so far unrealized in any meaningful hardware. Tilden has shown recently that there are simple, processor-free solutions to building autonomous mobile machines that continuously adapt to unknown and hostile environments, are designed primarily to survive, and are extremely resistant to damage. These devices use smart mechanics and simple (low component count) electronic neuron control structures having the functionality of biological organisms from simple invertebrates to sophisticated members of the insect and crab family. These devices are paradigms for the development of autonomous machines that can carry out directed goals. The machine then becomes a robust survivalist platform that can carry sensors or instruments. These autonomous roving machines, now in an early stage of development (several proof-of-concept prototype walkers have been built), can be developed so that they are inexpensive, robust, and versatile carriers for a variety of instrument packages. Applications are immediate and many, in areas as diverse as prosthetics, medicine, space, construction, nanoscience, defense, remote sensing, environmental cleanup, and biotechnology.

  14. Autonomous Learning from a Social Cognitive Perspective

    ERIC Educational Resources Information Center

    Ponton, Michael K.; Rhea, Nancy E.

    2006-01-01

    The current perspective of autonomous learning defines it as the agentive exhibition of resourcefulness, initiative, and persistence in self-directed learning. As a form of human agency, it has been argued in the literature that this perspective should be consistent with Bandura's (1986) Social Cognitive Theory (SCT). The purpose of this article…

  15. Microbial Diversity and Heterogeneity in Sandy Subsurface Soils

    PubMed Central

    Zhou, Jizhong; Xia, Beicheng; Huang, Heshu; Palumbo, Anthony V.; Tiedje, James M.

    2004-01-01

    Microbial community diversity and heterogeneity in saturated and unsaturated subsurface soils from Abbott's Pit in Virginia (1.57, 3.25, and 4.05 m below surface) and Dover Air Force Base in Delaware (6.00 and 7.50 m below surface) were analyzed using a culture-independent small-subunit (SSU) rRNA gene (rDNA)-based cloning approach. Four to six dominant operational taxonomic units (OTUs) were identified in 33 to 100 unique SSU rDNA clones (constituting about 40 to 50% of the total number of SSU rDNA clones in the clone library) from the saturated subsurface samples, whereas no dominant OTUs were observed in the unsaturated subsurface sample. Less than 10% of the clones among samples from different depths at the same location were identical, and the proportion of overlapping OTUs was lower for the samples that were vertically far apart than for adjacent samples. In addition, no OTUs were shared between the Abbott's Pit and Dover samples. The majority of the clones (80%) had sequences that were less than 5% different from those in the current databases. Phylogenetic analysis indicated that most of the bacterial clones were affiliated with members of the Proteobacteria family (90%), gram-positive bacteria (3%), and members of the Acidobacteria family (3%). Principal component analysis revealed that samples from different geographic locations were well separated and that samples from the same location were closely grouped together. In addition, the nonsaturated subsurface samples from Abbott's Pit clustered together and were well separated from the saturated subsurface soil sample. Finally, the overall diversity of the subsurface samples was much lower than that of the corresponding surface soil samples. PMID:15006798

  16. Nested investigation of subsurface connectivity between hillslopes and streams

    NASA Astrophysics Data System (ADS)

    Beiter, Daniel; Blume, Theresa; Weiler, Markus

    2016-04-01

    The high spatial variability of the subsurface, and thereby the spatial variability of its hydrological characteristics, still pose a great challenge to in-depth understanding and prediction of subsurface flow and the mechanisms that dynamically connect hillslopes and streams. Even though physical processes in porous media are theoretically very well understood, predicting hillslopes' responses to a specific (precipitation) event can be very intricate, due to the structural heterogeneity of real hillslope-stream systems. In the here presented study (carried out as part of the Catchments As Organized Systems (CAOS) research unit) we assess the linkage between hillslopes and streams via subsurface flow paths. This linkage can also be called "Connectivity", which describes separate regions within a certain catchment as being in a linked state - or not - via water flux. We focus our experimental efforts on several hillslopes with differing geological and morphological properties and seek for indications of connectivity at the hillslope/stream reach scale. These hillslopes are instrumented with soil moisture sensors and observation wells measuring shallow groundwater levels, electric conductivity and temperature continuously. This gives us a first indication of subsurface storage fluctuations and hillslope responses. This setup is extended at selected sites by additional observation wells and electrical resistivity tomography (ERT) transects which are measured in time lapse mode. Hillslope scale forced flow through experiments, where subsurface water flux is induced from upslope, will give an indication for a potential maximum of connectivity in a more or less controlled, yet real, environment. First results of these experiments are reported alongside with response patterns to natural rainfall events. The aim is to identify hydrological and morphological controls on subsurface connectivity depending on the site's characteristics, the system's current state and the

  17. Subsurface Event Detection and Classification Using Wireless Signal Networks

    PubMed Central

    Yoon, Suk-Un; Ghazanfari, Ehsan; Cheng, Liang; Pamukcu, Sibel; Suleiman, Muhannad T.

    2012-01-01

    Subsurface environment sensing and monitoring applications such as detection of water intrusion or a landslide, which could significantly change the physical properties of the host soil, can be accomplished using a novel concept, Wireless Signal Networks (WSiNs). The wireless signal networks take advantage of the variations of radio signal strength on the distributed underground sensor nodes of WSiNs to monitor and characterize the sensed area. To characterize subsurface environments for event detection and classification, this paper provides a detailed list and experimental data of soil properties on how radio propagation is affected by soil properties in subsurface communication environments. Experiments demonstrated that calibrated wireless signal strength variations can be used as indicators to sense changes in the subsurface environment. The concept of WSiNs for the subsurface event detection is evaluated with applications such as detection of water intrusion, relative density change, and relative motion using actual underground sensor nodes. To classify geo-events using the measured signal strength as a main indicator of geo-events, we propose a window-based minimum distance classifier based on Bayesian decision theory. The window-based classifier for wireless signal networks has two steps: event detection and event classification. With the event detection, the window-based classifier classifies geo-events on the event occurring regions that are called a classification window. The proposed window-based classification method is evaluated with a water leakage experiment in which the data has been measured in laboratory experiments. In these experiments, the proposed detection and classification method based on wireless signal network can detect and classify subsurface events. PMID:23202191

  18. Combined Geothermal Potential of Subsurface Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2016-04-01

    The subsurface urban heat island (SUHI) can be seen as a geothermal potential in form of elevated groundwater temperatures caused by anthropogenic heat fluxes into the subsurface. In this study, these fluxes are quantified for an annual timeframe in two German cities, Karlsruhe and Cologne. Our two-dimensional (2D) statistical analytical model determines the renewable and sustainable geothermal potential caused by six vertical anthropogenic heat fluxes into the subsurface: from (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that at present 2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of heat are annually transported into the shallow groundwater of Karlsruhe and Cologne, respectively, due to anthropogenic heat fluxes into the subsurface. This is sufficient to sustainably cover 32% and 9% of the annual residential space heating demand of Karlsruhe and Cologne, respectively. However, most of the discussed anthropogenic fluxes into the subsurface are conductive heat fluxes and therefore dependent on the groundwater temperature itself. Accordingly, a decrease in groundwater temperature back to its natural (rural) state, achieved through the use of geothermal heat pumps, will increase these fluxes and with them the sustainable potential. Hence, we propose the introduction of a combined geothermal potential that maximizes the sustainability of urban shallow geothermal energy use and the efficiency of shallow geothermal systems by balancing groundwater temperature with anthropogenic heat fluxes into the subsurface. This will be a key element in the development of a demand-oriented, cost-efficient geothermal management tool with an additional focus on the sustainability of the urban heat sources.

  19. Lipids biomarkers of the deep terrestrial subsurface biosphere

    NASA Astrophysics Data System (ADS)

    Osburn, M. R.; Momper, L.; Schubotz, F.; Summons, R. E.; Amend, J.

    2014-12-01

    Lipid biomarkers are key tools for the interpretation of past and present environments, and specifically, intact polar lipids (IPLs) reflect contributions from the living biosphere. While several studies have documented intact polar lipid (IPL) distributions in the marine subsurface, the organic geochemistry of terrestrial subsurface communities remains poorly characterized. Here we present IPL distributions from a portal into deep terrestrial biosphere, the former Homestake Mine, SD USA. Interpretation of IPL distributions can be hampered by a lack of comparative pure culture information or comparative molecular and geochemical data, thus we performed IPL analysis in conjunction with detailed geochemistry and DNA sequencing. A large diversity of lipid structures is observed including phospholipids, aminolipids, glycolipids, GDGTs, and a number of unidentified compounds. Variability in lipid distributions is not random with individual samples clustering based on physical and geochemical parameters. For instance, biofilm samples contain abundant aminolipids relative to filtered subsurface fluid samples. Does this difference reflect phosphorus scarcity in the biofilms, or production of aminolipids by specific microbial phyla? Using comparative analysis between the IPL, molecular, and geochemical datasets we address this, and similar questions, as well as identify potential microbial sources of unknown biomarkers. In the case of the aminolipids, we observe strong covariation between the lipid distribution and that of the bacteroidetes, epsilonproteobacteria, and spirochaetes, but no correlation with P concentration. We can also extend this comparison globally; asking how similar IPL distributions of the deep terrestrial subsurface are previously studied sites. A surprising finding from this work is the total lack of similarity between deep marine and terrestrial subsurface sites. This contribution will help to define the phylogenetic and geochemical mechanisms driving

  20. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SUBSURFACE EXPORATORY STUDIES FACILITY

    SciTech Connect

    W.J. Clark

    1999-06-28

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), the Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift Starter Tunnel (to approximate ECRB Station 0+26 m), and ancillary test and operation support areas in the TS Loop. This evaluation applies to the construction, operation, and maintenance of these excavations. A more detailed description of these items is provided in Section 6.0. Testing activities are not evaluated in this DIE. Certain construction activities with respect to testing activities are evaluated; but the testing activities themselves are not evaluated. The DIE for ESF Subsurface Testing Activities (BAJ3000000-01717-2200-00011 Rev 01) (CRWMS M&O 1998a) evaluates Subsurface ESF Testing activities. The construction, operation, and maintenance of the TS Loop niches and alcove slot cuts is evaluated herein and is also discussed in CRWMS M&O 1998a. The construction, operation, and maintenance of the Busted Butte subsurface test area in support of the Unsaturated Zone (UZ) Transport Test is evaluated in CRWMS M&O 1998a. Potential test-to-test interference and the waste isolation impacts of testing activities are evaluated in the ESF Subsurface Testing Activities DIE and other applicable evaluation(s) for the Job Package (JP), Test Planning Package (TPP), and/or Field Work Package (FWP). The objectives of this DIE are to determine whether the Subsurface ESF TS Loop and associated excavations, including activities associated with their construction and operation, potentially impact site characterization testing or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified. The validity and veracity of the individual tests, including data collection, are the responsibility