NASA Technical Reports Server (NTRS)
Badger, Julia M.; Claunch, Charles; Mathis, Frank
2017-01-01
The Modular Autonomous Systems Technology (MAST) framework is a tool for building distributed, hierarchical autonomous systems. Originally intended for the autonomous monitoring and control of spacecraft, this framework concept provides support for variable autonomy, assume-guarantee contracts, and efficient communication between subsystems and a centralized systems manager. MAST was developed at NASA's Johnson Space Center (JSC) and has been applied to an integrated spacecraft example scenario.
From Here to Autonomicity: Self-Managing Agents and the Biological Metaphors that Inspire Them
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2005-01-01
We seek inspiration for self-managing systems from (obviously, pre-existing) biological mechanisms. Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward for integrating and designing reliable systems, while agent technologies have been identified as a key enabler for engineering autonomicity in systems. This paper looks at other biological metaphors such as reflex and healing, heart- beat monitors, pulse monitors and apoptosis for assisting in the realization of autonomicity.
Knowledge-based and integrated monitoring and diagnosis in autonomous power systems
NASA Technical Reports Server (NTRS)
Momoh, J. A.; Zhang, Z. Z.
1990-01-01
A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.
Gas House Autonomous System Monitoring
NASA Technical Reports Server (NTRS)
Miller, Luke; Edsall, Ashley
2015-01-01
Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.
NASA Technical Reports Server (NTRS)
Regalado Reyes, Bjorn Constant
2015-01-01
1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.
Grace, Sherry L; Taherzadeh, Golnoush; Jae Chang, Isaac Sung; Boger, Jennifer; Arcelus, Amaya; Mak, Susanna; Chessex, Caroline; Mihailidis, Alex
Technological advances are leading to the ability to autonomously monitor patient's health status in their own homes, to enable aging-in-place. To understand the perceptions of seniors with heart failure (HF) regarding smart-home systems to monitor their physiological parameters. In this qualitative study, HF outpatients were invited to a smart-home lab, where they completed a sequence of activities, during which the capacity of 5 autonomous sensing modalities was compared to gold standard measures. Afterwards, a semi-structured interview was undertaken. These were transcribed and analyzed using an interpretive-descriptive approach. Five themes emerged from the 26 interviews: (1) perceptions of technology, (2) perceived benefits of autonomous health monitoring, (3) disadvantages of autonomous monitoring, (4) lack of perceived need for continuous health monitoring, and (5) preferences for autonomous monitoring. Patient perception towards autonomous monitoring devices was positive, lending credence to zero-effort technology as a viable and promising approach. Copyright © 2017 Elsevier Inc. All rights reserved.
Amplifying human ability through autonomics and machine learning in IMPACT
NASA Astrophysics Data System (ADS)
Dzieciuch, Iryna; Reeder, John; Gutzwiller, Robert; Gustafson, Eric; Coronado, Braulio; Martinez, Luis; Croft, Bryan; Lange, Douglas S.
2017-05-01
Amplifying human ability for controlling complex environments featuring autonomous units can be aided by learned models of human and system performance. In developing a command and control system that allows a small number of people to control a large number of autonomous teams, we employ an autonomics framework to manage the networks that represent mission plans and the networks that are composed of human controllers and their autonomous assistants. Machine learning allows us to build models of human and system performance useful for monitoring plans and managing human attention and task loads. Machine learning also aids in the development of tactics that human supervisors can successfully monitor through the command and control system.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2009-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
An Autonomous Control System for an Intra-Vehicular Spacecraft Mobile Monitor Prototype
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Desiano, Salvatore D.; Gawdiak, Yuri; Nicewarner, Keith
2003-01-01
This paper presents an overview of an ongoing research and development effort at the NASA Ames Research Center to create an autonomous control system for an internal spacecraft autonomous mobile monitor. It primary functions are to provide crew support and perform intra- vehicular sensing activities by autonomously navigating onboard the International Space Station. We describe the mission roles and high-level functional requirements for an autonomous mobile monitor. The mobile monitor prototypes, of which two are operational and one is actively being designed, physical test facilities used to perform ground testing, including a 3D micro-gravity test facility, and simulators are briefly described. We provide an overview of the autonomy framework and describe each of its components, including those used for automated planning, goal-oriented task execution, diagnosis, and fault recovery. A sample mission test scenario is also described.
System for autonomous monitoring of bioagents
Langlois, Richard G.; Milanovich, Fred P.; Colston, Jr, Billy W.; Brown, Steve B.; Masquelier, Don A.; Mariella, Jr., Raymond P.; Venkateswaran, Kodomudi
2015-06-09
An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.
DOT National Transportation Integrated Search
2008-01-28
The Volpe Center designed, implemented, and deployed a Global Positioning System (GPS) Receiver Autonomous Integrity Monitoring (RAIM) prediction system in the mid 1990s to support both Air Force and Federal Aviation Administration (FAA) use of TSO C...
DualTrust: A Distributed Trust Model for Swarm-Based Autonomic Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiden, Wendy M.; Dionysiou, Ioanna; Frincke, Deborah A.
2011-02-01
For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, trust management is important for the acceptance of the mobile agent sensors and to protect the system from malicious behavior by insiders and entities that have penetrated network defenses. This paper examines the trust relationships, evidence, and decisions in a representative system and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and still serves to protect the swarm. We then propose the DualTrust conceptual trust model. By addressing themore » autonomic manager’s bi-directional primary relationships in the ACS architecture, DualTrust is able to monitor the trustworthiness of the autonomic managers, protect the sensor swarm in a scalable manner, and provide global trust awareness for the orchestrating autonomic manager.« less
Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A
2004-01-01
Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.
DEMONSTRATION OF AUTONOMOUS AIR MONITORING THROUGH ROBOTICS
This project included modifying an existing teleoperated robot to include autonomous navigation, large object avoidance, and air monitoring and demonstrating that prototype robot system in indoor and outdoor environments. An existing teleoperated "Surveyor" robot developed by ARD...
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
NASA Astrophysics Data System (ADS)
Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi
2012-06-01
This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.
DualTrust: A Trust Management Model for Swarm-Based Autonomic Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiden, Wendy M.
Trust management techniques must be adapted to the unique needs of the application architectures and problem domains to which they are applied. For autonomic computing systems that utilize mobile agents and ant colony algorithms for their sensor layer, certain characteristics of the mobile agent ant swarm -- their lightweight, ephemeral nature and indirect communication -- make this adaptation especially challenging. This thesis looks at the trust issues and opportunities in swarm-based autonomic computing systems and finds that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust management problem becomes much more scalable and stillmore » serves to protect the swarm. After analyzing the applicability of trust management research as it has been applied to architectures with similar characteristics, this thesis specifies the required characteristics for trust management mechanisms used to monitor the trustworthiness of entities in a swarm-based autonomic computing system and describes a trust model that meets these requirements.« less
NASA Technical Reports Server (NTRS)
Parish, David W.; Grabbe, Robert D.; Marzwell, Neville I.
1994-01-01
A Modular Autonomous Robotic System (MARS), consisting of a modular autonomous vehicle control system that can be retrofit on to any vehicle to convert it to autonomous control and support a modular payload for multiple applications is being developed. The MARS design is scalable, reconfigurable, and cost effective due to the use of modern open system architecture design methodologies, including serial control bus technology to simplify system wiring and enhance scalability. The design is augmented with modular, object oriented (C++) software implementing a hierarchy of five levels of control including teleoperated, continuous guidepath following, periodic guidepath following, absolute position autonomous navigation, and relative position autonomous navigation. The present effort is focused on producing a system that is commercially viable for routine autonomous patrolling of known, semistructured environments, like environmental monitoring of chemical and petroleum refineries, exterior physical security and surveillance, perimeter patrolling, and intrafacility transport applications.
System control of an autonomous planetary mobile spacecraft
NASA Technical Reports Server (NTRS)
Dias, William C.; Zimmerman, Barbara A.
1990-01-01
The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced.
Hardware design for the Autonomous Visibility Monitoring (AVM) observatory
NASA Technical Reports Server (NTRS)
Cowles, K.
1993-01-01
The hardware for the three Autonomous Visibility Monitoring (AVM) observatories was redesigned. Changes in hardware design include electronics components, weather sensors, and the telescope drive system. Operation of the new hardware is discussed, as well as some of its features. The redesign will allow reliable automated operation.
System and method of self-properties for an autonomous and automatic computer environment
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)
2010-01-01
Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
A Test-Bed Configuration: Toward an Autonomous System
NASA Astrophysics Data System (ADS)
Ocaña, F.; Castillo, M.; Uranga, E.; Ponz, J. D.; TBT Consortium
2015-09-01
In the context of the Space Situational Awareness (SSA) program of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. In order to fulfill all the security requirements for the TBT project, the use of a autonomous emergency system (AES) is foreseen to monitor the control system. The AES will monitor remotely the health of the observing system and the internal and external environment. It will incorporate both autonomous and interactive actuators to force the protection of the system (i.e., emergency dome close out).
NASA Astrophysics Data System (ADS)
Narici, L.; Baiocco, G.; Berrilli, F.; Giraudo, M.; Ottolenghi, A.; Rizzo, A.; Salina, G.
2018-02-01
Understand the relationship between SPE precursors, the related SPE radiation inside the Deep Space Gateway, and the associated risk levels, validating existing models, proposing countermeasures actions via a real time, autonomous intelligent system.
Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center
NASA Technical Reports Server (NTRS)
Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.
1995-01-01
The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.
NASA Astrophysics Data System (ADS)
Revin, A.; Dygalo, V.; Boyko, G.; Lyaschenko, M.; Dygalo, L.
2018-02-01
Possibilities of diagnosing of a technical condition of braking system of the autonomous vehicles with automated modules while in service are considered. The concept of sharing of onboard means and stands for diagnosing is presented.
A wireless smart sensor network for automated monitoring of cable tension
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo
2014-02-01
As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.
Mathematical model of unmanned aerial vehicle used for endurance autonomous monitoring
NASA Astrophysics Data System (ADS)
Chelaru, Teodor-Viorel; Chelaru, Adrian
2014-12-01
The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system, based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.
Small Autonomous Aircraft Servo Health Monitoring
NASA Technical Reports Server (NTRS)
Quintero, Steven
2008-01-01
Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.
Autonomous microfluidic system for phosphate detection.
McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot
2007-02-28
Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.
2015-09-17
turbines , SHM tools, maintenance scheduling, and performance of the SHM system determine the added value of the system of systems (A. Van Horenbeek...J. R., & Pintelon, L. (2013). Quantifying the added value of an imperfectly performing condition monitoring system— Application to a wind turbine ...INTEGRATED SYSTEMS HEALTH MANAGEMENT AS AN ENABLER FOR CONDITION BASED MAINTENANCE AND AUTONOMIC
Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C
2010-01-01
Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.
Development of autonomous gamma dose logger for environmental monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.
2012-03-15
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system ismore » totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify {sup 41}Ar, proving its utility for real-time plume tracking and source term estimation.« less
Development of autonomous gamma dose logger for environmental monitoring
NASA Astrophysics Data System (ADS)
Jisha, N. V.; Krishnakumar, D. N.; Surya Prakash, G.; Kumari, Anju; Baskaran, R.; Venkatraman, B.
2012-03-01
Continuous monitoring and archiving of background radiation levels in and around the nuclear installation is essential and the data would be of immense use during analysis of any untoward incidents. A portable Geiger Muller detector based autonomous gamma dose logger (AGDL) for environmental monitoring is indigenously designed and developed. The system operations are controlled by microcontroller (AT89S52) and the main features of the system are software data acquisition, real time LCD display of radiation level, data archiving at removable compact flash card. The complete system operates on 12 V battery backed up by solar panel and hence the system is totally portable and ideal for field use. The system has been calibrated with Co-60 source (8.1 MBq) at various source-detector distances. The system is field tested and performance evaluation is carried out. This paper covers the design considerations of the hardware, software architecture of the system along with details of the front-end operation of the autonomous gamma dose logger and the data file formats. The data gathered during field testing and inter comparison with GammaTRACER are also presented in the paper. AGDL has shown excellent correlation with energy fluence monitor tuned to identify 41Ar, proving its utility for real-time plume tracking and source term estimation.
Trust Management in Swarm-Based Autonomic Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiden, Wendy M.; Haack, Jereme N.; Fink, Glenn A.
2009-07-07
Reputation-based trust management techniques can address issues such as insider threat as well as quality of service issues that may be malicious in nature. However, trust management techniques must be adapted to the unique needs of the architectures and problem domains to which they are applied. Certain characteristics of swarms such as their lightweight ephemeral nature and indirect communication make this adaptation especially challenging. In this paper we look at the trust issues and opportunities in mobile agent swarm-based autonomic systems and find that by monitoring the trustworthiness of the autonomic managers rather than the swarming sensors, the trust managementmore » problem becomes much more scalable and still serves to protect the swarms. We also analyze the applicability of trust management research as it has been applied to architectures with similar characteristics. Finally, we specify required characteristics for trust management mechanisms to be used to monitor the trustworthiness of the entities in a swarm-based autonomic computing system.« less
The Design of an Autonomous Underwater Vehicle for Water Quality Monitoring
NASA Astrophysics Data System (ADS)
Li, Yulong; Liu, Rong; Liu, Shujin
2018-01-01
This paper describes the development of a civilian-used autonomous underwater vehicle (AUV) for water quality monitoring at reservoirs and watercourses that can obtain realtime visual and locational information. The mechanical design was completed with CAD software Solidworks. Four thrusters—two horizontal and two vertical—on board enable the vehicle to surge, heave, yaw, and pitch. A specialized water sample collection compartment is designed to perform water collection at target locations. The vehicle has a central controller—STM32—and a sub-coordinate controller—Arduino MEGA 2560—that coordinates multiple sensors including an inertial sensor, ultrasonic sensors, etc. Global Navigation Satellite System (GNSS) and the inertial sensor enable the vehicle’s localization. Remote operators monitor and control the vehicle via a host computer system. Operators choose either semi-autonomous mode in which they set target locations or manual mode. The experimental results show that the vehicle is able to perform well in either mode.
Autonomous Multi-sensor Coordination: The Science Goal Monitor
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha; Jung, John; Geiger, Jenny; Grosvenor, Sandy
2004-01-01
Next-generation science and exploration systems will employ new observation strategies that will use multiple sensors in a dynamic environment to provide high quality monitoring, self-consistent analyses and informed decision making. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing of earth phenomenon. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe the dynamic phenomena. The SGM system enables users to specify events of interest and how to react when an event is detected. The system monitors streams of data to identify occurrences of the key events previously specified by the scientist/user. When an event occurs, the system autonomously coordinates the execution of the users desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems Aqua/Terra spacecrafts MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM is being used to investigate forest fires, floods and volcanic eruptions. We are now identifying new earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.
System Engineering of Autonomous Space Vehicles
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis
2014-01-01
Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.
Automated Power Systems Management (APSM)
NASA Technical Reports Server (NTRS)
Bridgeforth, A. O.
1981-01-01
A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.
Monitoring fetal maturation—objectives, techniques and indices of autonomic function*
Hoyer, Dirk; Żebrowski, Jan; Cysarz, Dirk; Gonçalves, Hernâni; Pytlik, Adelina; Amorim-Costa, Célia; Bernardes, João; Ayres-de-Campos, Diogo; Witte, Otto W; Schleußner, Ekkehard; Stroux, Lisa; Redman, Christopher; Georgieva, Antoniya; Payne, Stephen; Clifford, Gari; Signorini, Maria G; Magenes, Giovanni; Andreotti, Fernando; Malberg, Hagen; Zaunseder, Sebastian; Lakhno, Igor; Schneider, Uwe
2017-01-01
Objective Monitoring the fetal behavior does not only have implications for acute care but also for identifying developmental disturbances that burden the entire later life. The concept, of ‘fetal programming’, also known as ‘developmental origins of adult disease hypothesis’, e.g. applies for cardiovascular, metabolic, hyperkinetic, cognitive disorders. Since the autonomic nervous system is involved in all of those systems, cardiac autonomic control may provide relevant functional diagnostic and prognostic information. Approach The fetal heart rate patterns (HRP) are one of the few functional signals in the prenatal period that relate to autonomic control and, therefore, is key to fetal autonomic assessment. The development of sensitive markers of fetal maturation and its disturbances requires the consideration of physiological fundamentals, recording technology and HRP parameters of autonomic control. Main Results Based on the ESGCO2016 special session on monitoring the fetal maturation we herein report the most recent results on: (i) functional fetal autonomic brain age score (fABAS), Recurrence Quantitative Analysis and Binary Symbolic Dynamics of complex HRP resolve specific maturation periods, (ii) magnetocardiography (MCG) based fABAS was validated for cardiotocography (CTG), (iii) 30 min recordings are sufficient for obtaining episodes of high variability, important for intrauterine growth restriction (IUGR) detection in handheld Doppler, (iv) novel parameters from PRSA to identify Intra IUGR fetuses, (v) evaluation of fetal electrocardiographic (ECG) recordings, (vi) correlation between maternal and fetal HRV is disturbed in pre-eclampsia. Significance The reported novel developments significantly extend the possibilities for the established CTG methodology. Novel HRP indices improve the accuracy of assessment due to their more appropriate consideration of complex autonomic processes across the recording technologies (CTG, handheld Doppler, MCG, ECG). The ultimate objective is their dissemination into routine practice and studies of fetal developmental disturbances with implications for programming of adult diseases. PMID:28186000
Automation study for space station subsystems and mission ground support
NASA Technical Reports Server (NTRS)
1985-01-01
An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.
Mostafa, Salama A; Mustapha, Aida; Mohammed, Mazin Abed; Ahmad, Mohd Sharifuddin; Mahmoud, Moamin A
2018-04-01
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls. Copyright © 2018 Elsevier B.V. All rights reserved.
The use of multisensor data for robotic applications
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Gonzalez, R. C.
1990-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is shown through two experiments involving a fluid interchange system and a module interchange system. In both cases, autonomous location of the mating element, autonomous location of the guiding light target, mating, and demating of the system were performed. Specifically, vision-driven techniques were implemented to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. The robotic system was also equipped with a force/torque sensor that continuously monitored the six components of force and torque exerted on the end effector. Using vision, force, torque, proximity, and touch sensors, the two experiments were completed successfully and autonomously.
An embedded wireless system for remote monitoring of bridges
NASA Astrophysics Data System (ADS)
Harms, T.; Bastianini, F.; Sedigh Sarvestani, S.
2008-03-01
This paper describes an autonomous embedded system for remote monitoring of bridges. Salient features of the system include ultra-low power consumption, wireless communication of data and alerts, and incorporation of embedded sensors that monitor various indicators of the structural health of a bridge, while capturing the state of its surrounding environment. Examples include water level, temperature, vibration, and acoustic emissions. Ease of installation, physical robustness, remote maintenance and calibration, and autonomous data communication make the device a self-contained solution for remote monitoring of structural health. The system addresses shortcomings present in centralized structural health monitoring systems, particularly their reliance on a laptop or handheld computer. The system has been field-tested to verify the accuracy of the collected data and dependability of communication. The sheer volume of data collected, and the regularity of its collection can enable accurate and precise assessment of the health of a bridge, guiding maintenance efforts and providing early warning of potentially dangerous events. In this paper, we present a detailed breakdown of the system's power requirements and the results of the initial field test.
Autonomous sensing of composites with carbon nanotubes for structural health monitoring
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi
2012-04-01
The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.
Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring
Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.
2008-01-01
In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of autonomously tasking the other. Sensor-web data acquisition and dissemination will be accomplished through the use of the Open Geospatial Consortium Sensorweb Enablement protocols. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform. ??2008 IEEE.
The NASA/Army Autonomous Rotorcraft Project
NASA Technical Reports Server (NTRS)
Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.
2002-01-01
An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.
Autonomous software: Myth or magic?
NASA Astrophysics Data System (ADS)
Allan, A.; Naylor, T.; Saunders, E. S.
2008-03-01
We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.
Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Hinchey, Mike; Sterritt, Roy
2005-01-01
Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring.
ERIC Educational Resources Information Center
Sanborn, Mark
2011-01-01
Wireless sensor networks (WSNs) represent a class of miniaturized information systems designed to monitor physical environments. These smart monitoring systems form collaborative networks utilizing autonomous sensing, data-collection, and processing to provide real-time analytics of observed environments. As a fundamental research area in…
Planning and Execution for an Autonomous Aerobot
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.
2010-01-01
The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.
Moiş, George Dan; Sanislav, Teodora; Folea, Silviu Corneliu; Zeadally, Sherali
2018-05-25
Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO₂ and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings.
Visual monitoring of autonomous life sciences experimentation
NASA Technical Reports Server (NTRS)
Blank, G. E.; Martin, W. N.
1987-01-01
The design and implementation of a computerized visual monitoring system to aid in the monitoring and control of life sciences experiments on board a space station was investigated. A likely multiprocessor design was chosen, a plausible life science experiment with which to work was defined, the theoretical issues involved in the programming of a visual monitoring system for the experiment was considered on the multiprocessor, a system for monitoring the experiment was designed, and simulations of such a system was implemented on a network of Apollo workstations.
Optimized Autonomous Space - In-situ Sensorweb: A new Tool for Monitoring Restless Volcanoes
NASA Astrophysics Data System (ADS)
Lahusen, R. G.; Kedar, S.; Song, W.; Chien, S.; Shirazi, B.; Davies, A.; Tran, D.; Pieri, D.
2007-12-01
An interagency team of earth scientists, space scientists and computer scientists are collaborating to develop a real-time monitoring system optimized for rapid deployment at restless volcanoes. The primary goals of this Optimized Autonomous Space In-situ Sensorweb (OASIS) are: 1) integrate complementary space and in-situ (ground-based) elements into an interactive, autonomous sensorweb; 2) advance sensorweb power and communication resource management technology; and 3) enable scalability for seamless infusion of future space and in-situ assets into the sensorweb. A prototype system will be deployed on Mount St. Helens by December 2009. Each node will include GPS, seismic, infrasonic and lightning (for ash plume detection) sensors plus autonomous decision making capabilities and interaction with EO-1 multi-spectral satellite. This three year project is jointly funded by NASA AIST program and USGS Volcano Hazards Program. Work has begun with a rigorous multi-disciplinary discussion and resulted in a system requirements document aimed to guide the design of OASIS and future networks and to achieve the project's stated goals. In this presentation we will highlight the key OASIS system requirements, their rationale and the physical and technical challenges they pose. Preliminary design decisions will be presented.
NASA Technical Reports Server (NTRS)
Lee, S. C.; Lollar, Louis F.
1988-01-01
The overall approach currently being taken in the development of AMPERES (Autonomously Managed Power System Extendable Real-time Expert System), a knowledge-based expert system for fault monitoring and diagnosis of space power systems, is discussed. The system architecture, knowledge representation, and fault monitoring and diagnosis strategy are examined. A 'component-centered' approach developed in this project is described. Critical issues requiring further study are identified.
An Optimized Autonomous Space In-situ Sensorweb (OASIS) for Volcano Monitoring
NASA Astrophysics Data System (ADS)
Song, W.; Shirazi, B.; Lahusen, R.; Chien, S.; Kedar, S.; Webb, F.
2006-12-01
In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, we are developing a prototype real-time Optimized Autonomous Space In-situ Sensorweb. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been in continuous eruption since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO- 1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real- time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be integrated such that each element is capable of triggering the other. Sensor-web data acquisition and dissemination will be accomplished through the use of SensorML language standards for geospatial information. The three-year project will demonstrate end-to-end system performance with the in-situ test-bed at Mount St. Helens and NASA's EO-1 platform.
Autonomous Cryogenic Load Operations: Knowledge-Based Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Schrading, J. Nicolas
2013-01-01
The Knowledge-Based Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20 years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in the system. As part of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display of the entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledge base, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.
Autonomous Cryogenic Load Operations: KSC Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Shrading, Nicholas J.
2012-01-01
The KSC Autonomous Test Engineer (KATE) program has a long history at KSC. Now a part of the Autonomous Cryogenic Load Operations (ACLO) mission, this software system has been sporadically developed over the past 20+ years. Originally designed to provide health and status monitoring for a simple water-based fluid system, it was proven to be a capable autonomous test engineer for determining sources of failure in. the system, As part.of a new goal to provide this same anomaly-detection capability for a complicated cryogenic fluid system, software engineers, physicists, interns and KATE experts are working to upgrade the software capabilities and graphical user interface. Much progress was made during this effort to improve KATE. A display ofthe entire cryogenic system's graph, with nodes for components and edges for their connections, was added to the KATE software. A searching functionality was added to the new graph display, so that users could easily center their screen on specific components. The GUI was also modified so that it displayed information relevant to the new project goals. In addition, work began on adding new pneumatic and electronic subsystems into the KATE knowledgebase, so that it could provide health and status monitoring for those systems. Finally, many fixes for bugs, memory leaks, and memory errors were implemented and the system was moved into a state in which it could be presented to stakeholders. Overall, the KATE system was improved and necessary additional features were added so that a presentation of the program and its functionality in the next few months would be a success.
Autonomous Multi-Sensor Coordination: The Science Goal Monitor
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Hess, Melissa; Jones, Jeremy
2004-01-01
Many dramatic earth phenomena are dynamic and coupled. In order to fully understand them, we need to obtain timely coordinated multi-sensor observations from widely dispersed instruments. Such a dynamic observing system must include the ability to Schedule flexibly and react autonomously to sciencehser driven events; Understand higher-level goals of a sciencehser defined campaign; Coordinate various space-based and ground-based resources/sensors effectively and efficiently to achieve goals. In order to capture transient events, such a 'sensor web' system must have an automated reactive capability built into its scientific operations. To do this, we must overcome a number of challenges inherent in infusing autonomy. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe dynamic phenomena. The SGM system enables users to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of data to identify occurrences of the key events previously specified by the scientisther. When an event occurs, the system autonomously coordinates the execution of the users' desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems' Aqua/Terra spacecrafts' MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM was used to investigate forest fires, floods and volcanic eruptions. We are now identifying new Earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.
Automated monitoring of medical protocols: a secure and distributed architecture.
Alsinet, T; Ansótegui, C; Béjar, R; Fernández, C; Manyà, F
2003-03-01
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
NASA Technical Reports Server (NTRS)
Sekiguchi, Chiharu
1993-01-01
In addition to health monitoring of the Japanese Payload Specialists (PS) during the flight, this investigation also focuses on the changes of cardiovascular hemodynamics during flight which will be conducted under the science collaboration with the Lower Body Negative Pressure (LBNP) Experiment of NASA. For the Japanese, this is an opportunity to examine firsthand the effects of microgravity of human physiology. We are particularly interested in the adaption process and how it relates to space motion sickness and cardiovascular deconditioning. By comparing data from our own experiment to data collected by others, we hope to understand the processes involved and find ways to avoid these problems for future Japanese astronauts onboard Space Station Freedom and other Japanese space ventures. The primary objective of this experiment is to monitor the health condition of Japanese Payload Specialists to maintain a good health status during and after space flight. The second purpose is to investigate the autonomic nervous system's response to space motion sickness. To achieve this, the function of the autonomic nervous system will be monitored using non-invasive techniques. Data obtained will be employed to evaluate the role of autonomic nervous system in space motion sickness and to predict susceptibility to space motion sickness. The third objective is evaluation of the adaption process of the cardiovascular system to microgravity. By observation of the hemodynamics using an echocardiogram we will gain insight on cardiovascular deconditioning. The last objective is to create a data base for use in the health care of Japanese astronauts by obtaining control data in experiment L-O in the SL-J mission.
Range Safety for an Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Lanzi, Raymond J.; Simpson, James C.
2010-01-01
The Range Safety Algorithm software encapsulates the various constructs and algorithms required to accomplish Time Space Position Information (TSPI) data management from multiple tracking sources, autonomous mission mode detection and management, and flight-termination mission rule evaluation. The software evaluates various user-configurable rule sets that govern the qualification of TSPI data sources, provides a prelaunch autonomous hold-launch function, performs the flight-monitoring-and-termination functions, and performs end-of-mission safing
Advanced Autonomous Systems for Space Operations
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.
2002-01-01
New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.
ICAROUS: Integrated Configurable Architecture for Unmanned Systems
NASA Technical Reports Server (NTRS)
Consiglio, Maria C.
2016-01-01
NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This video describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the auspices of the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and autonomous detect and avoid functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.
What the Academics Have to Do When Colleges in Kerala Become Autonomous
ERIC Educational Resources Information Center
Vilanilam, J. V.
2014-01-01
After reviewing the history and objectives of higher education briefly, the article suggests that teachers and managers in autonomous colleges have to give special emphasis to a new system of teaching and evaluation involving Syllabus Revision, Distribution of Course Formats in the very first class meeting, Monitoring of Lab and Library…
Immobile Robots: AI in the New Millennium
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Nayak, P. Pandurang
1996-01-01
A new generation of sensor rich, massively distributed, autonomous systems are being developed that have the potential for profound social, environmental, and economic change. These include networked building energy systems, autonomous space probes, chemical plant control systems, satellite constellations for remote ecosystem monitoring, power grids, biosphere-like life support systems, and reconfigurable traffic systems, to highlight but a few. To achieve high performance, these immobile robots (or immobots) will need to develop sophisticated regulatory and immune systems that accurately and robustly control their complex internal functions. To accomplish this, immobots will exploit a vast nervous system of sensors to model themselves and their environment on a grand scale. They will use these models to dramatically reconfigure themselves in order to survive decades of autonomous operations. Achieving these large scale modeling and configuration tasks will require a tight coupling between the higher level coordination function provided by symbolic reasoning, and the lower level autonomic processes of adaptive estimation and control. To be economically viable they will need to be programmable purely through high level compositional models. Self modeling and self configuration, coordinating autonomic functions through symbolic reasoning, and compositional, model-based programming are the three key elements of a model-based autonomous systems architecture that is taking us into the New Millennium.
Autonomic Computing: Panacea or Poppycock?
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2005-01-01
Autonomic Computing arose out of a need for a means to cope with rapidly growing complexity of integrating, managing, and operating computer-based systems as well as a need to reduce the total cost of ownership of today's systems. Autonomic Computing (AC) as a discipline was proposed by IBM in 2001, with the vision to develop self-managing systems. As the name implies, the influence for the new paradigm is the human body's autonomic system, which regulates vital bodily functions such as the control of heart rate, the body's temperature and blood flow-all without conscious effort. The vision is to create selfivare through self-* properties. The initial set of properties, in terms of objectives, were self-configuring, self-healing, self-optimizing and self-protecting, along with attributes of self-awareness, self-monitoring and self-adjusting. This self-* list has grown: self-anticipating, self-critical, self-defining, self-destructing, self-diagnosis, self-governing, self-organized, self-reflecting, and self-simulation, for instance.
2012-09-30
be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection. Assemble the system
2011-09-30
be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection. Assemble the system
Heart rate variability regression and risk of sudden unexpected death in epilepsy.
Galli, Alessio; Lombardi, Federico
2017-02-01
The exact mechanisms of sudden unexpected death in epilepsy remain elusive, despite there is consensus that SUDEP is associated with severe derangements in the autonomic control to vital functions as breathing and heart rate regulation. Heart rate variability (HRV) has been advocated as biomarker of autonomic control to the heart. Cardiac dysautonomia has been found in diseases where other branches of the autonomous nervous system are damaged, as Parkinson disease and multiple system atrophy. In this perspective, an impaired HRV not only is a risk factor for sudden cardiac death mediated by arrhythmias, but also a potential biomarker for monitoring a progressive decline of the autonomous nervous system. This slope may lead to an acute imbalance of the regulatory pathways of vital functions after seizure and then to SUDEP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advancing Autonomous Operations for Deep Space Vehicles
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard K.
2014-01-01
Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.
Secure VM for Monitoring Industrial Process Controllers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K
2011-01-01
In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicatedmore » host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.« less
Damage Detection and Verification System (DDVS) for In-Situ Health Monitoring
NASA Technical Reports Server (NTRS)
Williams, Martha K.; Lewis, Mark; Szafran, J.; Shelton, C.; Ludwig, L.; Gibson, T.; Lane, J.; Trautwein, T.
2015-01-01
Project presentation for Game Changing Program Smart Book Release. Detection and Verification System (DDVS) expands the Flat Surface Damage Detection System (FSDDS) sensory panels damage detection capabilities and includes an autonomous inspection capability utilizing cameras and dynamic computer vision algorithms to verify system health. Objectives of this formulation task are to establish the concept of operations, formulate the system requirements for a potential ISS flight experiment, and develop a preliminary design of an autonomous inspection capability system that will be demonstrated as a proof-of-concept ground based damage detection and inspection system.
Pelvic autonomic neuromonitoring: present reality, future prospects.
Skinner, Stanley A
2014-08-01
Currently, the means to assess the autonomic nervous system primarily depend on end organ functional measurement: intravesical pressure, skin resistance, and penile strain gauge tension, for example. None of these measures has been generally accepted in the operating room. Nevertheless, the segmental and peripheral pelvic autonomic nerve supply is placed at risk during both pelvic and lower spine surgery. In this difficult era of suboptimal post-prostatectomy outcomes, the urological literature does reveal the salutary development of safer dissection techniques about the peri-prostatic and cavernous plexus. Means of reliably specific nerve identification remain elusive. The need for actual nerve monitoring (not just identification) has only recently been proposed. Data from the animal lab reinforce an appreciation of the intimate and elegant interconnectedness of autonomic and somatic structures, particularly at the segmental level. Also, the biochemistry of erectile tissue engorgement (in both sexes) is very well understood (the electrophysiology increasingly so). Understanding these principles should permit parallel investigation and implementation of neurophysiological techniques which both identify and monitor pelvic autonomic function. The predicates for these proposed new approaches in the operating room are discussed in this review.
An autonomous unmanned aerial vehicle sensing system for structural health monitoring of bridges
NASA Astrophysics Data System (ADS)
Reagan, Daniel; Sabato, Alessandro; Niezrecki, Christopher; Yu, Tzuyang; Wilson, Richard
2016-04-01
As civil infrastructure (i.e. bridges, railways, and tunnels) continues to age; the frequency and need to perform inspection more quickly on a broader scale increases. Traditional inspection and monitoring techniques (e.g., visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, ultrasound, and ground penetrating radar) may produce inconsistent results, require lane closure, are labor intensive and time-consuming. Therefore, new structural health monitoring systems must be developed that are automated, highly accurate, minimally invasive, and cost effective. Three-dimensional (3D) digital image correlation (DIC) systems have the merits of extracting full-field strain, deformation, and geometry profiles. These profiles can then be stitched together to generate a complete integrity map of the area of interest. Concurrently, unmanned aerial vehicles (UAVs) have emerged as valuable resources for positioning sensing equipment where it is either difficult to measure or poses a risk to human safety. UAVs have the capability to expedite the optical-based measurement process, offer increased accessibility, and reduce interference with local traffic. Within this work, an autonomous unmanned aerial vehicle in conjunction with 3D DIC was developed for monitoring bridges. The capabilities of the proposed system are demonstrated in both laboratory measurements and data collected from bridges currently in service. Potential measurement influences from platform instability, rotor vibration and positioning inaccuracy are also studied in a controlled environment. The results of these experiments show that the combination of autonomous flight with 3D DIC and other non-contact measurement systems provides a valuable and effective civil inspection platform.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2012-01-01
The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.
An autonomous structural health monitoring system for Waiau interchange.
DOT National Transportation Integrated Search
2013-03-01
Bridge infrastructure is a critical element of the transportation system which makes maintaining its safety and : performance vital to a healthy society. However, the civil infrastructure systems in the United States are decaying : at an accelerated ...
NASA Technical Reports Server (NTRS)
Mckee, James W.
1990-01-01
This volume (2 of 4) contains the specification, structured flow charts, and code listing for the protocol. The purpose of an autonomous power system on a spacecraft is to relieve humans from having to continuously monitor and control the generation, storage, and distribution of power in the craft. This implies that algorithms will have been developed to monitor and control the power system. The power system will contain computers on which the algorithms run. There should be one control computer system that makes the high level decisions and sends commands to and receive data from the other distributed computers. This will require a communications network and an efficient protocol by which the computers will communicate. One of the major requirements on the protocol is that it be real time because of the need to control the power elements.
NASA Technical Reports Server (NTRS)
Quinn, Todd M.; Walters, Jerry L.
1991-01-01
Future space explorations will require long term human presence in space. Space environments that provide working and living quarters for manned missions are becoming increasingly larger and more sophisticated. Monitor and control of the space environment subsystems by expert system software, which emulate human reasoning processes, could maintain the health of the subsystems and help reduce the human workload. The autonomous power expert (APEX) system was developed to emulate a human expert's reasoning processes used to diagnose fault conditions in the domain of space power distribution. APEX is a fault detection, isolation, and recovery (FDIR) system, capable of autonomous monitoring and control of the power distribution system. APEX consists of a knowledge base, a data base, an inference engine, and various support and interface software. APEX provides the user with an easy-to-use interactive interface. When a fault is detected, APEX will inform the user of the detection. The user can direct APEX to isolate the probable cause of the fault. Once a fault has been isolated, the user can ask APEX to justify its fault isolation and to recommend actions to correct the fault. APEX implementation and capabilities are discussed.
2014-09-01
ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR
RIACS Workshop on the Verification and Validation of Autonomous and Adaptive Systems
NASA Technical Reports Server (NTRS)
Pecheur, Charles; Visser, Willem; Simmons, Reid
2001-01-01
The long-term future of space exploration at NASA is dependent on the full exploitation of autonomous and adaptive systems: careful monitoring of missions from earth, as is the norm now, will be infeasible due to the sheer number of proposed missions and the communication lag for deep-space missions. Mission managers are however worried about the reliability of these more intelligent systems. The main focus of the workshop was to address these worries and hence we invited NASA engineers working on autonomous and adaptive systems and researchers interested in the verification and validation (V&V) of software systems. The dual purpose of the meeting was to: (1) make NASA engineers aware of the V&V techniques they could be using; and (2) make the V&V community aware of the complexity of the systems NASA is developing.
Optimized autonomous space in-situ sensor web for volcano monitoring
Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.
2010-01-01
In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.
Task-level control for autonomous robots
NASA Technical Reports Server (NTRS)
Simmons, Reid
1994-01-01
Task-level control refers to the integration and coordination of planning, perception, and real-time control to achieve given high-level goals. Autonomous mobile robots need task-level control to effectively achieve complex tasks in uncertain, dynamic environments. This paper describes the Task Control Architecture (TCA), an implemented system that provides commonly needed constructs for task-level control. Facilities provided by TCA include distributed communication, task decomposition and sequencing, resource management, monitoring and exception handling. TCA supports a design methodology in which robot systems are developed incrementally, starting first with deliberative plans that work in nominal situations, and then layering them with reactive behaviors that monitor plan execution and handle exceptions. To further support this approach, design and analysis tools are under development to provide ways of graphically viewing the system and validating its behavior.
Seafloor Geodetic Monitoring of the Central Andean Subduction Zone: The Geosea Array
NASA Astrophysics Data System (ADS)
Kopp, H.; Lange, D.; Contreras Reyes, E.; Behrmann, J. H.; McGuire, J. J.; Flueh, E. R.
2014-12-01
Seafloor geodesy has been identified as one of the central tools in marine geosciences to monitor seafloor deformation at high resolution. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising a total of 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distance. Vertical motion is obtained from pressure gauges. Integrated inclinometers monitor station settlement in two horizontal directions. Travel time between instruments and the local water sound velocity will be recorded autonomously subsea without system or human intervention for up to 3.5 years. Data from the autonomous network on the seafloor can be retrieved via the integrated high-speed acoustic telemetry link without recovering the seafloor units. In late 2015 GeoSEA will be installed on the Iquique segment of the South America - Nazca convergent plate boundary to monitor crustal deformation. The Iquique seismic gap experienced the 2014 Mw 8.1 Pisagua earthquake, which apparently occurred within a local locking minimum. It is thus crucial to better resolve resolve strain in the forearc between the mainland and the trench in order to improve our understanding of forearc deformation required for hazard assessment. Mobile autonomous seafloor arrays for continuous measurement of active seafloor deformation in hazard zones have the potential to lead to transformative discoveries of plate boundary/fault zone tectonic processes and address a novel element of marine geophysical research.
Real time health monitoring and control system methodology for flexible space structures
NASA Astrophysics Data System (ADS)
Jayaram, Sanjay
This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.
Autonomous self-powered structural health monitoring system
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.
2010-03-01
Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.
Artificial Intelligence in Autonomous Telescopes
NASA Astrophysics Data System (ADS)
Mahoney, William; Thanjavur, Karun
2011-03-01
Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.
A Low-Cost, In Situ Resistivity and Temperature Monitoring System
We present a low-cost, reliable method for long-term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with close electrode spacing. Once i...
A wearable, low-power, health-monitoring instrumentation based on a Programmable System-on-Chip.
Massot, Bertrand; Gehin, Claudine; Nocua, Ronald; Dittmar, Andre; McAdams, Eric
2009-01-01
Improvement in quality and efficiency of health and medicine, at home and in hospital, has become of paramount importance. The solution of this problem would require the continuous monitoring of several key patient parameters, including the assessment of autonomic nervous system (ANS) activity using non-invasive sensors, providing information for emotional, sensorial, cognitive and physiological analysis of the patient. Recent advances in embedded systems, microelectronics, sensors and wireless networking enable the design of wearable systems capable of such advanced health monitoring. The subject of this article is an ambulatory system comprising a small wrist device connected to several sensors for the detection of the autonomic nervous system activity. It affords monitoring of skin resistance, skin temperature and heart activity. It is also capable of recording the data on a removable media or sending it to computer via a wireless communication. The wrist device is based on a Programmable System-on-Chip (PSoC) from Cypress: PSoCs are mixed-signal arrays, with dynamic, configurable digital and analogical blocks and an 8-bit Microcontroller unit (MCU) core on a single chip. In this paper we present first of all the hardware and software architecture of the device, and then results obtained from initial experiments.
Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James; Raitano, Paul; McNelis, Anne
2016-01-01
As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.
Integration for navigation on the UMASS mobile perception lab
NASA Technical Reports Server (NTRS)
Draper, Bruce; Fennema, Claude; Rochwerger, Benny; Riseman, Edward; Hanson, Allen
1994-01-01
Integration of real-time visual procedures for use on the Mobile Perception Lab (MPL) was presented. The MPL is an autonomous vehicle designed for testing visually guided behavior. Two critical areas of focus in the system design were data storage/exchange and process control. The Intermediate Symbolic Representation (ISR3) supported data storage and exchange, and the MPL script monitor provided process control. Resource allocation, inter-process communication, and real-time control are difficult problems which must be solved in order to construct strong autonomous systems.
NASA Astrophysics Data System (ADS)
Belyakov, Vladimir; Makarov, Vladimir; Zezyulin, Denis; Kurkin, Andrey; Pelinovsky, Efim
2015-04-01
Hazardous phenomena in the coastal zone lead to the topographic changing which are difficulty inspected by traditional methods. It is why those autonomous robots are used for collection of nearshore topographic and hydrodynamic measurements. The robot RTS-Hanna is well-known (Wubbold, F., Hentschel, M., Vousdoukas, M., and Wagner, B. Application of an autonomous robot for the collection of nearshore topographic and hydrodynamic measurements. Coastal Engineering Proceedings, 2012, vol. 33, Paper 53). We describe here several constructions of mobile systems developed in Laboratory "Transported Machines and Transported Complexes", Nizhny Novgorod State Technical University. They can be used in the field surveys and monitoring of wave regimes nearshore.
Considerations in the design of a communication network for an autonomously managed power system
NASA Technical Reports Server (NTRS)
Mckee, J. W.; Whitehead, Norma; Lollar, Louis
1989-01-01
The considerations involved in designing a communication network for an autonomously managed power system intended for use in space vehicles are examined. An overview of the design and implementation of a communication network implemented in a breadboard power system is presented. An assumption that the monitoring and control devices are distributed but physically close leads to the selection of a multidrop cable communication system. The assumption of a high-quality communication cable in which few messages are lost resulted in a simple recovery procedure consisting of a time out and retransmit process.
Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K
2008-01-01
A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.
APDS: the autonomous pathogen detection system.
Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M
2005-04-15
We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.
NASA Technical Reports Server (NTRS)
Cowings, P.; Toscano, W.; Taylor, B.; DeRoshia, C.; Kornilova, L.; Koslovskaya, I.; Miller, N.
1999-01-01
The broad objective of the research was to study individual characteristics of human adaptation to long duration spaceflight and possibilities of their correction using autonomic conditioning. The changes in autonomic state during adaptation to microgravity can have profound effects on the operational efficiency of crewmembers and may result in debilitating biomedical symptoms. Ground-based and inflight experiment results showed that certain responses of autonomic nervous system were correlated with, or consistently preceded, reports of performance decrements or the symptoms. Autogenic-Feedback-Training Exercise (AFTE) is a physiological conditioning method that has been used to train people to voluntary control several of their own physiological responses. The specific objectives were: 1) To study human autonomic nervous system (ANS) responses to sustained exposure to microgravity; 2) To study human behavior/performance changes related to physiology; 3) To evaluate the effectiveness of preflight autonomic conditioning (AFTE) for facilitating adaptation to space and readaptation to Earth; and 4) To archive these data for the NASA Life Sciences Data Archive and thereby make this information available to the international scientific community.
2016-07-27
ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Wireless Power Transfer , Structural Health Monitoring...efficient strongly coupled magnetic resonant systems, Wireless Power Transfer , (03 2014): 0. doi: 10.1017/wpt.2014.3 TOTAL: 1 Received Paper TOTAL...2016 Received Paper . Miniaturized Strongly Coupled Magnetic Resonant Systems for Wireless Power Transfer , 2016 IEEE Antennas Propagat. Society
Advances in Autonomous Systems for Missions of Space Exploration
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.
New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.
Autonomic functions in acrocyanosis assessed by heart rate variability
Yılmaz, Sedat; Yokuşoğlu, Mehmet; Çınar, Muhammet; Şimşek, İsmail; Baysan, Oben; Öz, Bilgehan Savaş; Erdem, Hakan; Pay, Salih; Dinç, Ayhan
2014-01-01
Objective To evaluate the autonomic activity of patients with acrocyanosis by using heart rate variability indices. Material and Methods The study group consisted of 24 patients with acrocyanosis and the control group contained 22 sex- and age-matched healthy subjects. All subjects underwent 24-hour Holter monitoring. Among the heart rate variability (HRV) parameters, time-domain and frequency-domain indices were analysed. Results The time-domain indices of HRV indicating global autonomic functions were found to be increased, and indices indicating parasympathetic activity showed a significant decrease in the patient group. Power-spectral analysis of HRV revealed that the low frequency and high frequency power were higher in the patient group than in controls. However, the ratio of Low Frequency/High Frequency was found to be lower in the patient group than in controls. Conclusion In acrocyanosis, both sympathetic and parasympathetic systems seem to be disrupted. Therefore, we may conclude that acrocyanosis may be resulted of systemic autonomic imbalance rather than pure sympathetic over-activation. Also, these results suggest that acrocyanosis is not a localised disorder; on the contrary, it is associated with various abnormalities of the systemic autonomic nervous system. PMID:27708866
APDS: Autonomous Pathogen Detection System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langlois, R G; Brown, S; Burris, L
An early warning system to counter bioterrorism, the Autonomous Pathogen Detection System (APDS) continuously monitors the environment for the presence of biological pathogens (e.g., anthrax) and once detected, it sounds an alarm much like a smoke detector warns of a fire. Long before September 11, 2001, this system was being developed to protect domestic venues and events including performing arts centers, mass transit systems, major sporting and entertainment events, and other high profile situations in which the public is at risk of becoming a target of bioterrorist attacks. Customizing off-the-shelf components and developing new components, a multidisciplinary team developed APDS,more » a stand-alone system for rapid, continuous monitoring of multiple airborne biological threat agents in the environment. The completely automated APDS samples the air, prepares fluid samples in-line, and performs two orthogonal tests: immunoassay and nucleic acid detection. When compared to competing technologies, APDS is unprecedented in terms of flexibility and system performance.« less
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Wangerud, K.; Mattson, E.; Ankeny, M.; Richardson, A.; Heath, G.
2005-05-01
The Ruby Gulch repository at the Gilt Edge Mine Superfund site is a capped waste rock repository. Early in the system design EPA and its subcontractor, Bureau of Reclamation, recognized the need for long-term monitoring system to provide information on the repository behavior with the following objectives: 1 Provide information on the integrity of the newly constructed surface cover and diversion system 2 Continually assess the waste's hydrological and geochemical behavior, such that rational decisions can be made for the operation of this cover and liner system 3 Easily access of information pertaining to the system performance to stakeholders 4 Integration of a variety of data sources to produce information which could be used to enhance future cover designs. Through discussions between EPA, the Bureau of Reclamation and Idaho National Laboratory a long-term monitoring system was designed and implemented allowing EPA to meet these objectives. This system was designed to provide a cost effective way to deal with massive amounts of data and information, subject to the following specifications: 1 Data acquisition should occur autonomously and automatically, 2 Data management, processing and presentation should be automated as much as possible, 3 Users should be able to access all data and information remotely through a web browser. The INL long-term monitoring system integrates the data from a set of 522 electrodes resistivity electrodes consisting of 462 surface electrodes and 60 borehole electrodes (in 4 wells with 15 electrodes each), an outflow meter at the toe of the repository, an autonomous, remotely accessible weather station, and four wells (average depths of 250 feet) with thermocouples, pressure transducers and sampling ports for water and air. The monitoring system has currently been in operation for over a year, and has collected data continuously over this period. Results from this system have shown both the diurnal variation in rockmass behavior, movement of water through the waste (allowing estimated in residence time) and are leading to a comprehensive model of the repository behavior. Due to the sheer volume of data, a user driven interface allows users to create their own views of the different datasets.
Autonomous power expert system
NASA Technical Reports Server (NTRS)
Walters, Jerry L.; Petrik, Edward J.; Roth, Mary Ellen; Truong, Long Van; Quinn, Todd; Krawczonek, Walter M.
1990-01-01
The Autonomous Power Expert (APEX) system was designed to monitor and diagnose fault conditions that occur within the Space Station Freedom Electrical Power System (SSF/EPS) Testbed. APEX is designed to interface with SSF/EPS testbed power management controllers to provide enhanced autonomous operation and control capability. The APEX architecture consists of three components: (1) a rule-based expert system, (2) a testbed data acquisition interface, and (3) a power scheduler interface. Fault detection, fault isolation, justification of probable causes, recommended actions, and incipient fault analysis are the main functions of the expert system component. The data acquisition component requests and receives pertinent parametric values from the EPS testbed and asserts the values into a knowledge base. Power load profile information is obtained from a remote scheduler through the power scheduler interface component. The current APEX design and development work is discussed. Operation and use of APEX by way of the user interface screens is also covered.
Multisensor robotic system for autonomous space maintenance and repair
NASA Technical Reports Server (NTRS)
Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.
1988-01-01
The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.
Hooke, Rebecca; Pearson, Andy; O'Hagan, John
2014-01-01
Terrestrial solar ultraviolet (UV) radiation has significant implications for human health and increasing levels are a key concern regarding the impact of climate change. Monitoring solar UV radiation at the earth's surface is therefore of increasing importance. A new prototype portable CCD (charge-coupled device) spectrometer-based system has been developed that monitors UV radiation (280-400 nm) levels at the earth's surface. It has the ability to deliver this information to the public in real time. Since the instrument can operate autonomously, it is called the Autonomous Portable Solar Ultraviolet Spectroradiometer (APSUS). This instrument incorporates an Ocean Optics QE65000 spectrometer which is contained within a robust environmental housing. The APSUS system can gather reliable solar UV spectral data from approximately April to October inclusive (depending on ambient temperature) in the UK. In this study the new APSUS unit and APSUS system are presented. Example solar UV spectra and diurnal UV Index values as measured by the APSUS system in London and Weymouth in the UK in summer 2012 are shown. © 2014 Crown copyright. Photochemistry and Photobiology © 2014 The American Society of Photobiology. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland and Public Health England.
Detecting submerged features in water: modeling, sensors, and measurements
NASA Astrophysics Data System (ADS)
Bostater, Charles R., Jr.; Bassetti, Luce
2004-11-01
It is becoming more important to understand the remote sensing systems and associated autonomous or semi-autonomous methodologies (robotic & mechatronics) that may be utilized in freshwater and marine aquatic environments. This need comes from several issues related not only to advances in our scientific understanding and technological capabilities, but also from the desire to insure that the risk associated with UXO (unexploded ordnance), related submerged mines, as well as submerged targets (such as submerged aquatic vegetation) and debris left from previous human activities are remotely sensed and identified followed by reduced risks through detection and removal. This paper will describe (a) remote sensing systems, (b) platforms (fixed and mobile, as well as to demonstrate (c) the value of thinking in terms of scalability as well as modularity in the design and application of new systems now being constructed within our laboratory and other laboratories, as well as future systems. New remote sensing systems - moving or fixed sensing systems, as well as autonomous or semi-autonomous robotic and mechatronic systems will be essential to secure domestic preparedness for humanitarian reasons. These remote sensing systems hold tremendous value, if thoughtfully designed for other applications which include environmental monitoring in ambient environments.
Ha, Unsoo; Lee, Yongsu; Kim, Hyunki; Roh, Taehwan; Bae, Joonsung; Kim, Changhyeon; Yoo, Hoi-Jun
2015-12-01
A multimodal mental management system in the shape of the wearable headband and earplugs is proposed to monitor electroencephalography (EEG), hemoencephalography (HEG) and heart rate variability (HRV) for accurate mental health monitoring. It enables simultaneous transcranial electrical stimulation (tES) together with real-time monitoring. The total weight of the proposed system is less than 200 g. The multi-loop low-noise amplifier (MLLNA) achieves over 130 dB CMRR for EEG sensing and the capacitive correlated-double sampling transimpedance amplifier (CCTIA) has low-noise characteristics for HEG and HRV sensing. Measured three-physiology domains such as neural, vascular and autonomic domain signals are combined with canonical correlation analysis (CCA) and temporal kernel canonical correlation analysis (tkCCA) algorithm to find the neural-vascular-autonomic coupling. It supports highly accurate classification with the 19% maximum improvement with multimodal monitoring. For the multi-channel stimulation functionality, after-effects maximization monitoring and sympathetic nerve disorder monitoring, the stimulator is designed as reconfigurable. The 3.37 × 2.25 mm(2) chip has 2-channel EEG sensor front-end, 2-channel NIRS sensor front-end, NIRS current driver to drive dual-wavelength VCSEL and 6-b DAC current source for tES mode. It dissipates 24 mW with 2 mA stimulation current and 5 mA NIRS driver current.
NASA Technical Reports Server (NTRS)
Ip, Felipe; Dohm, J. M.; Baker, V. R.; Castano, B.; Chien, S.; Cichy, B.; Davies, A. G.; Doggett, T.; Greeley, R.; Sherwood, R.
2005-01-01
NASA's New Millennium Program (NMP) Autonomous Sciencecraft Experiment (ASE) [1-3] has been successfully demonstrated in Earth-orbit. NASA has identified the development of an autonomously operating spacecraft as a necessity for an expanded program of missions exploring the Solar System. The versatile ASE spacecraft command and control, image formation, and science processing software was uploaded to the Earth Observer 1 (EO-1) spacecraft in early 2004 and has been undergoing onboard testing since May 2004 for the near real-time detection of surface modification related to transient geological and hydrological processes such as volcanism [4], ice formation and retreat [5], and flooding [6]. Space autonomy technology developed as part of ASE creates the new capability to autonomously detect, assess, react to, and monitor dynamic events such as flooding. Part of the challenge has been the difficulty to observe flooding in real time at sufficient temporal resolutions; more importantly, it is the large spatial extent of most drainage networks coupled with the size of the data sets necessary to be downlinked from satellites that make it difficult to monitor flooding from space. Below is a description of the algorithms (referred to as ASE Flood water Classifiers) used in tandem with the Hyperion spectrometer instrument on EO-1 to identify flooding and some of the test results.
Kneist, W; Kauff, D W; Koch, K P; Schmidtmann, I; Heimann, A; Hoffmann, K P; Lang, H
2011-01-01
Pelvic autonomic nerve preservation avoids postoperative functional disturbances. The aim of this feasibility study was to develop a neuromonitoring system with simultaneous intraoperative verification of internal anal sphincter (IAS) activity and intravesical pressure. 14 pigs underwent low anterior rectal resection. During intermittent bipolar electric stimulation of the inferior hypogastric plexus (IHP) and the pelvic splanchnic nerves (PSN), electromyographic signals of the IAS and manometry of the urinary bladder were observed simultaneously. Stimulation of IHP and PSN as well as simultaneous intraoperative monitoring could be realized with an adapted neuromonitoring device. Neurostimulation resulted in either bladder or IAS activation or concerted activation of both. Intravesical pressure increase as well as amplitude increase of the IAS neuromonitoring signal did not differ significantly between stimulation of IHP and PSN [6.0 cm H(2)O (interquartile range [IQR] 3.5-9.0) vs. 6.0 cm H(2)O (IQR 3.0-10.0) and 12.1 μV (IQR 3.0-36.7) vs. 40.1 μV (IQR 9.0-64.3)] (p > 0.05). Pelvic autonomic nerve stimulation with simultaneous intraoperative monitoring of IAS and bladder innervation is feasible. The method may enable neuromonitoring with increasing selectivity for pelvic autonomic nerve preservation. Copyright © 2011 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Leibold, P.; Brueckmann, W.; Schmidt, M.; Balushi, H. A.; Abri, O. A.
2017-12-01
Coastal aquifer systems are amongst the most precious and vulnerable water resources worldwide. While differing in lateral and vertical extent they commonly show a complex interaction with the marine realm. Excessive groundwater extraction can cause saltwater intrusion from the sea into the aquifers, having a strongly negative impact on the groundwater quality. While the reverse pathway, the discharge of groundwater into the sea is well understood in principle, it's mechanisms and quantities not well constrained. We will present a project that combines onshore monitoring and modeling of groundwater in the coastal plain of Salalah, Oman with an offshore autonomous robotic monitoring system, the Liquid Robotics Wave Glider. Eventually, fluxes detected by the Wave Glider system and the onshore monitoring of groundwater will be combined into a 3-D flow model of the coastal and deeper aquifers. The main tool for offshore SGD investigation project is a Wave Glider, an autonomous vehicle based on a new propulsion technology. The Wave Glider is a low-cost satellite-connected marine craft, consisting of a combination of a sea-surface and an underwater component which is propelled by the conversion of ocean wave energy into forward thrust. While the wave energy propulsion system is purely mechanical, electrical energy for onboard computers, communication and sensors is provided by photovoltaic cells. For the project the SGD Wave Glider is being equipped with dedicated sensors to measure temperature, conductivity, Radon isotope (222Rn, 220Rn) activity concentration as well as other tracers of groundwater discharge. Dedicated software using this data input will eventually allow the Wave Glider to autonomously collect information and actively adapt its search pattern to hunt for spatial and temporal anomalies. Our presentation will focus on the engineering and operational challenges ofdetecting submarine groundwater discharges with the Wave Glider system in the Bay of Salalah, Oman and solutions to overcome them.
Intelligent data reduction for autonomous power systems
NASA Technical Reports Server (NTRS)
Floyd, Stephen A.
1988-01-01
Since 1984 Marshall Space Flight Center was actively engaged in research and development concerning autonomous power systems. Much of the work in this domain has dealt with the development and application of knowledge-based or expert systems to perform tasks previously accomplished only through intensive human involvement. One such task is the health status monitoring of electrical power systems. Such monitoring is a manpower intensive task which is vital to mission success. The Hubble Space Telescope testbed and its associated Nickel Cadmium Battery Expert System (NICBES) were designated as the system on which the initial proof of concept for intelligent power system monitoing will be established. The key function performed by an engineer engaged in system monitoring is to analyze the raw telemetry data and identify from the whole only those elements which can be considered significant. This function requires engineering expertise on the functionality of the system, the mode of operation and the efficient and effective reading of the telemetry data. Application of this expertise to extract the significant components of the data is referred to as data reduction. Such a function possesses characteristics which make it a prime candidate for the application of knowledge-based systems' technologies. Such applications are investigated and recommendations are offered for the development of intelligent data reduction systems.
The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1
NASA Technical Reports Server (NTRS)
Lee, S. C.
1989-01-01
The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.
GPS/GLONASS RAIM augmentation to WAAS for CAT 1 precision approach
DOT National Transportation Integrated Search
1997-06-30
This paper deals with the potential use of Receiver Autonomous Integrity Monitoring @AIM) to supplement the FAAs Wide Area Augmentation System (WAAS). Integrity refers to the capability of a navigation or landing system to provide a timely warning...
Traveler Phase 1A Joint Review
NASA Technical Reports Server (NTRS)
St. John, Clint; Scofield, Jan; Skoog, Mark; Flock, Alex; Williams, Ethan; Guirguis, Luke; Loudon, Kevin; Sutherland, Jeffrey; Lehmann, Richard; Garland, Michael;
2017-01-01
The briefing contains the preliminary findings and suggestions for improvement of methods used in development and evaluation of a multi monitor runtime assurance architecture for autonomous flight vehicles. Initial system design, implementation, verification, and flight testing has been conducted. As of yet detailed data review is incomplete, and flight testing has been limited to initial monitor force fights. Detailed monitor flight evaluations have yet to be performed.
Autonomous Payload Operations Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Stetson, Howard K.; Deitsch, David K.; Cruzen, Craig A.; Haddock, Angie T.
2007-01-01
Operating the International Space Station (ISS) involves many complex crew tended, ground operated and combined systems. Over the life of the ISS program, it has become evident that by having automated and autonomous systems on board, more can be accomplished and at the same time reduce the workload of the crew and ground operators. Engineers at the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center in Huntsville Alabama, working in collaboration with The Charles Stark Draper Laboratory have developed an autonomous software system that uses the Timeliner User Interface Language and expert logic to continuously monitor ISS payload systems, issue commands and signal ground operators as required. This paper describes the development history of the system, its concept of operation and components. The paper also discusses the testing process as well as the facilities used to develop the system. The paper concludes with a description of future enhancement plans for use on the ISS as well as potential applications to Lunar and Mars exploration systems.
Monitoring Pest Insect Traps by Means of Low-Power Image Sensor Technologies
López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P.; Bonastre, Alberto; Serrano, Juan J.
2012-01-01
Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.). PMID:23202232
Monitoring pest insect traps by means of low-power image sensor technologies.
López, Otoniel; Rach, Miguel Martinez; Migallon, Hector; Malumbres, Manuel P; Bonastre, Alberto; Serrano, Juan J
2012-11-13
Monitoring pest insect populations is currently a key issue in agriculture and forestry protection. At the farm level, human operators typically must perform periodical surveys of the traps disseminated through the field. This is a labor-, time- and cost-consuming activity, in particular for large plantations or large forestry areas, so it would be of great advantage to have an affordable system capable of doing this task automatically in an accurate and a more efficient way. This paper proposes an autonomous monitoring system based on a low-cost image sensor that it is able to capture and send images of the trap contents to a remote control station with the periodicity demanded by the trapping application. Our autonomous monitoring system will be able to cover large areas with very low energy consumption. This issue would be the main key point in our study; since the operational live of the overall monitoring system should be extended to months of continuous operation without any kind of maintenance (i.e., battery replacement). The images delivered by image sensors would be time-stamped and processed in the control station to get the number of individuals found at each trap. All the information would be conveniently stored at the control station, and accessible via Internet by means of available network services at control station (WiFi, WiMax, 3G/4G, etc.).
Potential and challenges of body area networks for cardiac monitoring.
Gyselinckx, Bert; Penders, Julien; Vullers, Ruud
2007-01-01
This article gives an overview of results of the Human++ research program related to cardiac monitoring (http://www.imec-nl.nl/). This research aims to achieve highly miniaturized and nearly autonomous sensor systems that assist our health and comfort. It combines expertise in wireless ultra-low-power communications, packaging and 3D integration technologies, Micro Electro Mechanical Systems (MEMS) energy scavenging techniques, and low-power design techniques.
Autonomous measurements of bridge pier and abutment scour using motion-sensing radio transmitters.
DOT National Transportation Integrated Search
2010-01-01
Two portable Radio Frequency IDentification (RFID) systems (made by Texas Instruments and HiTAG) were developed and tested for bridge scour monitoring by the Department of Civil and Environmental Engineering at the University of Iowa. Both systems co...
USMC Ground Surveillance Robot (GSR): Lessons Learned
NASA Astrophysics Data System (ADS)
Harmon, S. Y.
1987-02-01
This paper describes the design of an autonomous vehicle and the lessons learned during the implementation of that complex robot. The major problems encountered to which solutions were found include sensor processing bandwidth limitations, coordination of the interactions between major subsystems, sensor data fusion and system knowledge representation. Those problems remaining unresolved include system complexity management, the lack of powerful system monitoring and debugging tools, exploratory implementation of a complex system and safety and testing issues. Many of these problems arose from working with underdeveloped and continuously evolving technology and will probably be resolved as the technological resources mature and stabilize. Unfortunately, other problems will continue to plague developers throughout the evolution of autonomous system technology.
An expert system/ion trap mass spectrometry approach for life support systems monitoring
NASA Technical Reports Server (NTRS)
Palmer, Peter T.; Wong, Carla M.; Yost, Richard A.; Johnson, Jodie V.; Yates, Nathan A.; Story, Michael
1992-01-01
Efforts to develop sensor and control system technology to monitor air quality for life support have resulted in the development and preliminary testing of a concept based on expert systems and ion trap mass spectrometry (ITMS). An ITMS instrument provides the capability to identify and quantitate a large number of suspected contaminants at trace levels through the use of a variety of multidimensional experiments. An expert system provides specialized knowledge for control, analysis, and decision making. The system is intended for real-time, on-line, autonomous monitoring of air quality. The key characteristics of the system, performance data and analytical capabilities of the ITMS instrument, the design and operation of the expert system, and results from preliminary testing of the system for trace contaminant monitoring are described.
Billeci, Lucia; Tonacci, Alessandro; Tartarisco, Gennaro; Narzisi, Antonio; Di Palma, Simone; Corda, Daniele; Baldus, Giovanni; Cruciani, Federico; Anzalone, Salvatore M.; Calderoni, Sara; Pioggia, Giovanni; Muratori, Filippo
2016-01-01
Autism Spectrum Disorders (ASD) are associated with physiological abnormalities, which are likely to contribute to the core symptoms of the condition. Wearable technologies can provide data in a semi-naturalistic setting, overcoming the limitations given by the constrained situations in which physiological signals are usually acquired. In this study an integrated system based on wearable technologies for the acquisition and analysis of neurophysiological and autonomic parameters during treatment is proposed and an application on five children with ASD is presented. Signals were acquired during a therapeutic session based on an imitation protocol in ASD children. Data were analyzed with the aim of extracting quantitative EEG (QEEG) features from EEG signals as well as heart rate and heart rate variability (HRV) from ECG. The system allowed evidencing changes in neurophysiological and autonomic response from the state of disengagement to the state of engagement of the children, evidencing a cognitive involvement in the children in the tasks proposed. The high grade of acceptability of the monitoring platform is promising for further development and implementation of the tool. In particular if the results of this feasibility study would be confirmed in a larger sample of subjects, the system proposed could be adopted in more naturalistic paradigms that allow real world stimuli to be incorporated into EEG/psychophysiological studies for the monitoring of the effect of the treatment and for the implementation of more individualized therapeutic programs. PMID:27445652
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
Recent UAS Developments: VTOL HQ-series Shipboard Recovery and Autonomous Monitoring with MicroQuads
NASA Astrophysics Data System (ADS)
Wardell, L. J.; Farber, A. M.; Douglas, J.
2017-12-01
Ocean research would benefit from reliable shipboard launch and recovery of small class UAS. The vertical take-off and landing (VTOL) system reduces equipment footprint without the need for launchers or recovery systems. The HQ-60 (Latitude Engineering) has demonstrated reliable ship take-off and recovery on a 10x10' area on the R/V Falkor (Schmidt Ocean Institute) and other research vessels. The HQ-60 recently set a record for longest time aloft for a VTOL aircraft, flying nearly 22.5 hours non-stop. To support close-range research, autonomous MicroQuads that "perch" in a protective box that also recharges the aircraft and transmits the data is in development. Recent MicroQuad work with developing high-resolution (<1cm) DEMs using on-board cameras has yielded promising results for the use of surface change detection. Recent USDA development targeted erosion monitoring with this system. The latest updates and testing results for both systems will be presented.
HRV Analysis to Identify Stages of Home-based Telerehabilitation Exercise.
Jeong, In Cheol; Finkelstein, Joseph
2014-01-01
Spectral analysis of heart rate variability (HRV) has been widely used to investigate activity of autonomous nervous system. Previous studies demonstrated potential of analysis of short-term sequences of heart rate data in a time domain for continuous monitoring of levels of physiological stress however the value of HRV parameters in frequency domain for monitoring cycling exercise has not been established. The goal of this study was to assess whether HRV parameters in frequency domain differ depending on a stage of cycling exercise. We compared major HRV parameters in high, low and very low frequency ranges during rest, height of exercise, and recovery during cycling exercise. Our results indicated responsiveness of frequency-domain indices to different phases of cycling exercise program and their potential in monitoring autonomic balance and stress levels as a part of a tailored home-based telerehabilitation program.
2006-09-01
automated agents , such as chatbots to acts as a relay between chatrooms and blogs or other systems. In particular, chatbots could be used to monitor...bandwidth connections and legacy systems. Chatbot Integration The use of connected autonomous agents that monitor chatrooms to allow users access...of Cell Phone GPS Tracking. .............84 Figure 35. Example of a Chatbot Creating a Blog Entry
Design and realization of an autonomous solar system
NASA Astrophysics Data System (ADS)
Gaga, A.; Diouri, O.; Es-sbai, N.; Errahimi, F.
2017-03-01
The aim of this work is the design and realization of an autonomous solar system, with MPPT control, a regulator charge/discharge of batteries, an H-bridge multi-level inverter with acquisition system and supervising based on a microcontroller. The proposed approach is based on developing a software platform in the LabVIEW environment which gives the system a flexible structure for controlling, monitoring and supervising the whole system in real time while providing power maximization and best quality of energy conversion from DC to AC power. The reliability of the proposed solar system is validated by the simulation results on PowerSim and experimental results achieved with a solar panel, a Lead acid battery, solar regulator and an H-bridge cascaded topology of single-phase inverter.
NASA Astrophysics Data System (ADS)
Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao
2018-03-01
The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.
Autonomous Energy Grids | Grid Modernization | NREL
control themselves using advanced machine learning and simulation to create resilient, reliable, and affordable optimized energy systems. Current frameworks to monitor, control, and optimize large-scale energy of optimization theory, control theory, big data analytics, and complex system theory and modeling to
Digital Autonomous Terminal Access Communication (DATAC) system
NASA Technical Reports Server (NTRS)
Novacki, Stanley M., III
1987-01-01
In order to accommodate the increasing number of computerized subsystems aboard today's more fuel efficient aircraft, the Boeing Co. has developed the DATAC (Digital Autonomous Terminal Access Control) bus to minimize the need for point-to-point wiring to interconnect these various systems, thereby reducing total aircraft weight and maintaining an economical flight configuration. The DATAC bus is essentially a local area network providing interconnections for any of the flight management and control systems aboard the aircraft. The task of developing a Bus Monitor Unit was broken down into four subtasks: (1) providing a hardware interface between the DATAC bus and the Z8000-based microcomputer system to be used as the bus monitor; (2) establishing a communication link between the Z8000 system and a CP/M-based computer system; (3) generation of data reduction and display software to output data to the console device; and (4) development of a DATAC Terminal Simulator to facilitate testing of the hardware and software which transfer data between the DATAC's bus and the operator's console in a near real time environment. These tasks are briefly discussed.
Launch Commit Criteria Monitoring Agent
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Dan A.; Kelly, Andrew O.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has developed and deployed a software agent to monitor the Space Shuttle's ground processing telemetry stream. The application, the Launch Commit Criteria Monitoring Agent, increases situational awareness for system and hardware engineers during Shuttle launch countdown. The agent provides autonomous monitoring of the telemetry stream, automatically alerts system engineers when predefined criteria have been met, identifies limit warnings and violations of launch commit criteria, aids Shuttle engineers through troubleshooting procedures, and provides additional insight to verify appropriate troubleshooting of problems by contractors. The agent has successfully detected launch commit criteria warnings and violations on a simulated playback data stream. Efficiency and safety are improved through increased automation.
Energy Systems Integration News | Energy Systems Integration Facility |
hierarchical control architecture that enables a hybrid control approach, where centralized control systems will be complemented by distributed control algorithms for solar inverters and autonomous control of ), involves developing a novel control scheme that provides system-wide monitoring and control using a small
NASA Astrophysics Data System (ADS)
Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.
2017-02-01
The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Han-Chung; Liu, Yung Y.; Lee, Hok L.
A system for monitoring a plurality radio frequency identification tags is described. The system uses at least one set of radio frequency identification tags. Each tag is attached to a container and includes several sensors for detecting physical conditions of said container. The system includes at least one autonomous intermediate reader in wireless communication with the frequency identification tags. The intermediate reader includes external wireless communication system, intermediate reader logic controller, and a self-contained rechargeable power supply. The system uses a central status reporting system in communication the intermediate reader.
A Forest Fire Sensor Web Concept with UAVSAR
NASA Astrophysics Data System (ADS)
Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.
2008-12-01
We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.
An autonomous structural health monitoring solution
NASA Astrophysics Data System (ADS)
Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew
2013-05-01
Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.
Quantitative sensing of bridges, railways, and tunnels with autonomous unmanned aerial vehicles.
DOT National Transportation Integrated Search
2017-05-04
Managing a growing population of deteriorated transportation infrastructure : systems (i.e. bridges, railways, tunnels) is one of biggest challenges faced by the nation. : Traditional inspection and monitoring techniques (e.g., visual inspection, mec...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... available from Douglas Christel, at the NMFS Northeast Regional Office at 55 Great Republic Drive..., autonomous vessel monitoring system; and adherence to all relevant minimum size, gear, bycatch, and other...
High level intelligent control of telerobotics systems
NASA Technical Reports Server (NTRS)
Mckee, James
1988-01-01
A high level robot command language is proposed for the autonomous mode of an advanced telerobotics system and a predictive display mechanism for the teleoperational model. It is believed that any such system will involve some mixture of these two modes, since, although artificial intelligence can facilitate significant autonomy, a system that can resort to teleoperation will always have the advantage. The high level command language will allow humans to give the robot instructions in a very natural manner. The robot will then analyze these instructions to infer meaning so that is can translate the task into lower level executable primitives. If, however, the robot is unable to perform the task autonomously, it will switch to the teleoperational mode. The time delay between control movement and actual robot movement has always been a problem in teleoperations. The remote operator may not actually see (via a monitor) the results of high actions for several seconds. A computer generated predictive display system is proposed whereby the operator can see a real-time model of the robot's environment and the delayed video picture on the monitor at the same time.
ICAROUS - Integrated Configurable Algorithms for Reliable Operations Of Unmanned Systems
NASA Technical Reports Server (NTRS)
Consiglio, María; Muñoz, César; Hagen, George; Narkawicz, Anthony; Balachandran, Swee
2016-01-01
NASA's Unmanned Aerial System (UAS) Traffic Management (UTM) project aims at enabling near-term, safe operations of small UAS vehicles in uncontrolled airspace, i.e., Class G airspace. A far-term goal of UTM research and development is to accommodate the expected rise in small UAS traffic density throughout the National Airspace System (NAS) at low altitudes for beyond visual line-of-sight operations. This paper describes a new capability referred to as ICAROUS (Integrated Configurable Algorithms for Reliable Operations of Unmanned Systems), which is being developed under the UTM project. ICAROUS is a software architecture comprised of highly assured algorithms for building safety-centric, autonomous, unmanned aircraft applications. Central to the development of the ICAROUS algorithms is the use of well-established formal methods to guarantee higher levels of safety assurance by monitoring and bounding the behavior of autonomous systems. The core autonomy-enabling capabilities in ICAROUS include constraint conformance monitoring and contingency control functions. ICAROUS also provides a highly configurable user interface that enables the modular integration of mission-specific software components.
Cost Effective Instrumentation for Developing Autonomous Groundwater Monitoring Networks
NASA Astrophysics Data System (ADS)
Viti, T. M.; Garmire, D. G.
2017-12-01
Despite a relatively poor understanding of Hawaiian groundwater systems, the State of Hawaii depends almost exclusively on groundwater for its public water supply. Ike Wai, an NSF funded project (EPSCoR Program Award OIA #1557349) at the University of Hawaii, aims to develop new groundwater models for Hawaii's aquifers, including water quality and transport processes. To better understand aquifer properties such as capacity and hydraulic conductivity, we are developing well-monitoring instruments that can autonomously record water parameters such as conductivity, temperature, and hydraulic head level, with sampling frequencies on the order of minutes. We are currently exploring novel methods and materials for solving classical design problems, such as applying dielectric spectroscopy techniques for measuring salinity, and using recycled materials for producing custom cable assemblies. System components are fabricated in house using rapid prototyping (e.g. 3D printing, circuit board milling, and laser cutting), and traditional manufacturing techniques. This approach allows us to produce custom components while minimizing development cost, and maximizing flexibility in the overall system's design.
Vital Signs Evaluation of Human Behaviour via an Autonomous Body Area Network System
NASA Astrophysics Data System (ADS)
Hussin, S.; Takayama, S.
2016-11-01
Enhancing Quality of Life (QOL) has long been an explicit and implicit goal for individuals, nations, and the world. QOL involves diverse multidimensional factors spanning wealth, physical health, social well-being, and international relationships. This study presents a definition of QOL combining the measurement of health-related QOL with an autonomous Body Area Network System (BANs). A method of evaluating vital signs is performed and linked to physical intensity assistance in exercise. Specifically, BAN acts as a supportive system which can assist a user in monitoring his or her body's parameters, providing real-time feedbacks and dynamically sharing information from any location to one or more users.
Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?
Sweet, Julia; Brzezinski, Mark A.; McNair, Heather M.; Passow, Uta
2016-01-01
Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification. PMID:27893739
Evaluating Carbonate System Algorithms in a Nearshore System: Does Total Alkalinity Matter?
Jones, Jonathan M; Sweet, Julia; Brzezinski, Mark A; McNair, Heather M; Passow, Uta
2016-01-01
Ocean acidification is a threat to many marine organisms, especially those that use calcium carbonate to form their shells and skeletons. The ability to accurately measure the carbonate system is the first step in characterizing the drivers behind this threat. Due to logistical realities, regular carbonate system sampling is not possible in many nearshore ocean habitats, particularly in remote, difficult-to-access locations. The ability to autonomously measure the carbonate system in situ relieves many of the logistical challenges; however, it is not always possible to measure the two required carbonate parameters autonomously. Observed relationships between sea surface salinity and total alkalinity can frequently provide a second carbonate parameter thus allowing for the calculation of the entire carbonate system. Here, we assessed the rigor of estimating total alkalinity from salinity at a depth <15 m by routinely sampling water from a pier in southern California for several carbonate system parameters. Carbonate system parameters based on measured values were compared with those based on estimated TA values. Total alkalinity was not predictable from salinity or from a combination of salinity and temperature at this site. However, dissolved inorganic carbon and the calcium carbonate saturation state of these nearshore surface waters could both be estimated within on average 5% of measured values using measured pH and salinity-derived or regionally averaged total alkalinity. Thus we find that the autonomous measurement of pH and salinity can be used to monitor trends in coastal changes in DIC and saturation state and be a useful method for high-frequency, long-term monitoring of ocean acidification.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... Great Republic Drive, Gloucester, MA 01930 (phone: (978) 281-9141, fax: (978) 281-9135, email: douglas..., autonomous vessel monitoring system; and adherence to all relevant minimum size, gear, bycatch, and other...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-14
... Regional Office at 55 Great Republic Drive, Gloucester, MA 01930 (phone: 978-281-9141, fax: 978-281-9135...; presence of an on-board observer; deployment of a functioning, autonomous vessel monitoring system...
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie; Stetson, Howard K.
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
(abstract) An Ada Language Modular Telerobot Task Execution System
NASA Technical Reports Server (NTRS)
Backes, Paul; Long, Mark; Steele, Robert
1993-01-01
A telerobotic task execution system is described which has been developed for space flight applications. The Modular Telerobot Task Execution System (MOTES) provides the remote site task execution capability in a local-remote telerobotic system. The system provides supervised autonomous control, shared control, and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion.
Alerting, orienting or executive attention networks: differential patters of pupil dilations
Geva, Ronny; Zivan, Michal; Warsha, Aviv; Olchik, Dov
2013-01-01
Attention capacities, alerting responses, orienting to sensory stimulation, and executive monitoring of performance are considered independent yet interrelated systems. These operations play integral roles in regulating the behavior of diverse species along the evolutionary ladder. Each of the primary attention constructs—alerting, orienting, and executive monitoring—involves salient autonomic correlates as evidenced by changes in reactive pupil dilation (PD), heart rate, and skin conductance. Recent technological advances that use remote high-resolution recording may allow the discernment of temporo-spatial attributes of autonomic responses that characterize the alerting, orienting, and executive monitoring networks during free viewing, irrespective of voluntary performance. This may deepen the understanding of the roles of autonomic regulation in these mental operations and may deepen our understanding of behavioral changes in verbal as well as in non-verbal species. The aim of this study was to explore differences between psychosensory PD responses in alerting, orienting, and executive conflict monitoring tasks to generate estimates of concurrent locus coeruleus (LC) noradrenergic input trajectories in healthy human adults using the attention networks test (ANT). The analysis revealed a construct-specific pattern of pupil responses: alerting is characterized by an early component (Pa), its acceleration enables covert orienting, and executive control is evidenced by a prominent late component (Pe). PD characteristics seem to be task-sensitive, allowing exploration of mental operations irrespective of conscious voluntary responses. These data may facilitate development of studies designed to assess mental operations in diverse species using autonomic responses. PMID:24133422
Humanoid Flight Metabolic Simulator Project
NASA Technical Reports Server (NTRS)
Ross, Stuart
2015-01-01
NASA's Evolvable Mars Campaign (EMC) has identified several areas of technology that will require significant improvements in terms of performance, capacity, and efficiency, in order to make a manned mission to Mars possible. These include crew vehicle Environmental Control and Life Support System (ECLSS), EVA suit Portable Life Support System (PLSS) and Information Systems, autonomous environmental monitoring, radiation exposure monitoring and protection, and vehicle thermal control systems (TCS). (MADMACS) in a Suit can be configured to simulate human metabolism, consuming crew resources (oxygen) in the process. In addition to providing support for testing Life Support on unmanned flights, MADMACS will also support testing of suit thermal controls, and monitor radiation exposure, body zone temperatures, moisture, and loads.
NASA Astrophysics Data System (ADS)
Abas, Faizulsalihin bin; Takayama, Shigeru
2015-02-01
This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.
Nurmi, Johanna; Hagger, Martin S; Haukkala, Ari; Araújo-Soares, Vera; Hankonen, Nelli
2016-04-01
This study tested the predictive validity of a multitheory process model in which the effect of autonomous motivation from self-determination theory on physical activity participation is mediated by the adoption of self-regulatory techniques based on control theory. Finnish adolescents (N = 411, aged 17-19) completed a prospective survey including validated measures of the predictors and physical activity, at baseline and after one month (N = 177). A subsample used an accelerometer to objectively measure physical activity and further validate the physical activity self-report assessment tool (n = 44). Autonomous motivation statistically significantly predicted action planning, coping planning, and self-monitoring. Coping planning and self-monitoring mediated the effect of autonomous motivation on physical activity, although self-monitoring was the most prominent. Controlled motivation had no effect on self-regulation techniques or physical activity. Developing interventions that support autonomous motivation for physical activity may foster increased engagement in self-regulation techniques and positively affect physical activity behavior.
Fernández Rodríguez, Silvia; Zorrilla Torras, Belén; Ramírez Fernández, Rosa; Alvarez Castillo, M Carmen; López-Gay Lucio, Dulce; Ibáñez Martín, Cosuelo; Bueno Vallejos, Rafael
2002-01-01
The Autonomous Community of Madrid Epidemiological Bulletin is the main communications link between epidemiological monitoring system and health care professionals. The purpose of this study is that of ascertaining the dissemination and opinion of this Autonomous Community of Madrid Epidemiological Bulletin among primary care physicians for the purpose of adapting this publication to its readers' interests. A telephone survey among primary care physicians in the Autonomous Community of Madrid, asking how often they read the Bulletin, the interest and usefulness of the information included in it. The sample size was estimated at 346 physicians. A two-stage sampling process was carried out-by cluster sampling in the first stage, randomly selecting 125 health care centers and 2.7 physicians per center, 17% being primary care team coordinators. A comparison is made of the results among physicians and coordinators by means of the Chi-square and Fisher's Exact Test method, with Epi-Info v.6. A total of 305 surveys were conducted (245 physicians and 60 coordinators). There was an awareness of the existence of the Autonomous Community of Madrid Epidemiological Bulletin on the part of 91.5% (CI 95%: 88.1-94.8), and 27.2% (CI 95%: 21.9-32.5) were familiar with more than 50% of the last issues published. A total of 92.4% (CI 95%: 89.4-95.8) considered the Bulletin to be interesting or highly interesting, grading its usefulness an average of 3.5 on a maximum scale of 5. Of the permanent sections, the most highly-valued was Epidemic Outbreaks, those reports related to meningococcal infection, tuberculosis and HIV/AIDS being the most highly-valued. The Autonomous Community of Madrid Epidemiological Bulletin is a publication which, although not widely-known by the primary care physicians in the Community, is well-valued when it is read, thus being a useful feedback tool within the Epidemiological Monitoring System.
NASA Astrophysics Data System (ADS)
Xu, Z.; Gannon, J. L.; Peek, T. A.; Lin, D.
2017-12-01
One space weather hazard is the Geomagnetically Induced Currents (GICs) in the electric power transmission systems, which is naturally induced geoelectric field during the geomagnetic disturbances (GMDs). GICs are a potentially catastrophic threat to bulk power systems. For instance, the Blackout in Quebec in March 1989 was caused by GMDs during a significant magnetic storm. To monitor the GMDs, the autonomous Space Hazard Monitor (SHM) system is developed recently. The system includes magnetic field measurement from magnetometers and geomagnetic field measurement from electrodes. In this presentation, we introduce the six sites of SHMs which have been deployed in the US continental regions. The data from the magnetometers are processed with the Multiple Observatory Geomagnetic Data Analysis Software (MOGDAS). And the statistical results are presented here. It reveals not only the impacts of space weather over US continental region but also the potential of improving instrumentation development to provide better space weather monitor.
Low Cost Real Time Autonomous Remote Monitoring Platform
NASA Astrophysics Data System (ADS)
Rodríguez, J. R.; Maldonado, P. M.; Pierson, J. J.; Harris, L.
2016-02-01
Environmental scientists have a need for gathering multiple parameters during specific time periods to answer their research questions. Most available monitoring systems are very expensive and closed systems, which limits the potential to scale up research projects. We developed a low cost, autonomous, real-time monitoring platform that is both open hardware/software and easy to build, deploy, manage and maintain. The hardware is built with off-the-shelf components and a credit card sized computer called Raspberry Pi, running an open source operating (Raspbian). The system runs off a set of batteries and a solar panel, which makes it ideal for remote locations. The software is divided into three parts: 1) a framework for abstracting the sensors (initializing, pooling and communications) designed in python and using a fully object-oriented design, making it easy for new sensor to be added with minimal code changes, 2) a web front end for managing the entire system, 3) a data store (database) framework for local and remote data retrieval and reporting services. Connectivity to the system can be accomplished through a Wi-Fi or cellular Internet connection. Scientists are being forced to do more with less, in response our platform will provide them with a flexible system that can improve the process of data gathering with an accessible, modular, low-cost, and efficient monitoring system. Currently, we have the required permits from the Department of Natural Resources in Puerto Rico to deploy the platform at the Laguna Grande Bioluminescence Lagoon in Fajardo, PR. This station will include probes for pH, DO, Conductivity and water temperature.
Autonomous System for Monitoring the Integrity of Composite Fan Housings
NASA Technical Reports Server (NTRS)
Qing, Xinlin P.; Aquino, Christopher; Kumar, Amrita
2010-01-01
A low-cost and reliable system assesses the integrity of composite fan-containment structures. The system utilizes a network of miniature sensors integrated with the structure to scan the entire structural area for any impact events and resulting structural damage, and to monitor degradation due to usage. This system can be used to monitor all types of composite structures on aircraft and spacecraft, as well as automatically monitor in real time the location and extent of damage in the containment structures. This diagnostic information is passed to prognostic modeling that is being developed to utilize the information and provide input on the residual strength of the structure, and maintain a history of structural degradation during usage. The structural health-monitoring system would consist of three major components: (1) sensors and a sensor network, which is permanently bonded onto the structure being monitored; (2) integrated hardware; and (3) software to monitor in-situ the health condition of in-service structures.
Autonomous stimulus triggered self-healing in smart structural composites
NASA Astrophysics Data System (ADS)
Norris, C. J.; White, J. A. P.; McCombe, G.; Chatterjee, P.; Bond, I. P.; Trask, R. S.
2012-09-01
Inspired by the ability of biological systems to sense and autonomously heal damage, this research has successfully demonstrated the first autonomous, stimulus triggered, self-healing system in a structural composite material. Both the sensing and healing mechanisms are reliant on microvascular channels incorporated within a laminated composite material. For the triggering mechanism, a single air filled vessel was pressurized, sealed and monitored. Upon drop weight impact (10 J), delamination and microcrack connectivity between the pressurized vessel and those open to ambient led to a pressure loss which, with the use of a suitable sensor, triggered a pump to deliver a healing agent to the damage zone. Using this autonomous healing approach, near full recovery of post-impact compression strength was achieved (94% on average). A simplified alternative system with healing agent continuously flowing through the vessels, akin to blood flow, was found to offer 100% recovery of the material’s virgin strength. Optical microscopy and ultrasonic C-scanning provided further evidence of large-scale infusion of matrix damage with the healing agent. The successful implementation of this bioinspired technology could substantially enhance the integrity and reliability of aerospace structures, whilst offering benefits through improved performance/weight ratios and extended lifetimes.
Security-Enhanced Autonomous Network Management
NASA Technical Reports Server (NTRS)
Zeng, Hui
2015-01-01
Ensuring reliable communication in next-generation space networks requires a novel network management system to support greater levels of autonomy and greater awareness of the environment and assets. Intelligent Automation, Inc., has developed a security-enhanced autonomous network management (SEANM) approach for space networks through cross-layer negotiation and network monitoring, analysis, and adaptation. The underlying technology is bundle-based delay/disruption-tolerant networking (DTN). The SEANM scheme allows a system to adaptively reconfigure its network elements based on awareness of network conditions, policies, and mission requirements. Although SEANM is generically applicable to any radio network, for validation purposes it has been prototyped and evaluated on two specific networks: a commercial off-the-shelf hardware test-bed using Institute of Electrical Engineers (IEEE) 802.11 Wi-Fi devices and a military hardware test-bed using AN/PRC-154 Rifleman Radio platforms. Testing has demonstrated that SEANM provides autonomous network management resulting in reliable communications in delay/disruptive-prone environments.
Autonomous Mission Manager for Rendezvous, Inspection and Mating
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
2003-01-01
To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Mathematical biomarkers for the autonomic regulation of cardiovascular system.
Campos, Luciana A; Pereira, Valter L; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia
2013-10-07
Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance.
Mathematical biomarkers for the autonomic regulation of cardiovascular system
Campos, Luciana A.; Pereira, Valter L.; Muralikrishna, Amita; Albarwani, Sulayma; Brás, Susana; Gouveia, Sónia
2013-01-01
Heart rate and blood pressure are the most important vital signs in diagnosing disease. Both heart rate and blood pressure are characterized by a high degree of short term variability from moment to moment, medium term over the normal day and night as well as in the very long term over months to years. The study of new mathematical algorithms to evaluate the variability of these cardiovascular parameters has a high potential in the development of new methods for early detection of cardiovascular disease, to establish differential diagnosis with possible therapeutic consequences. The autonomic nervous system is a major player in the general adaptive reaction to stress and disease. The quantitative prediction of the autonomic interactions in multiple control loops pathways of cardiovascular system is directly applicable to clinical situations. Exploration of new multimodal analytical techniques for the variability of cardiovascular system may detect new approaches for deterministic parameter identification. A multimodal analysis of cardiovascular signals can be studied by evaluating their amplitudes, phases, time domain patterns, and sensitivity to imposed stimuli, i.e., drugs blocking the autonomic system. The causal effects, gains, and dynamic relationships may be studied through dynamical fuzzy logic models, such as the discrete-time model and discrete-event model. We expect an increase in accuracy of modeling and a better estimation of the heart rate and blood pressure time series, which could be of benefit for intelligent patient monitoring. We foresee that identifying quantitative mathematical biomarkers for autonomic nervous system will allow individual therapy adjustments to aim at the most favorable sympathetic-parasympathetic balance. PMID:24109456
Developing a portable, autonomous aerosol backscatter lidar for network or remote operations
NASA Astrophysics Data System (ADS)
Strawbridge, K. B.
2013-03-01
Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operated continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd : YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an Internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.
Developing a portable, autonomous aerosol backscatter lidar for network or remote operations
NASA Astrophysics Data System (ADS)
Strawbridge, K. B.
2012-11-01
Lidar has the ability to detect the complex vertical structure of the atmosphere and can therefore identify the existence and extent of aerosols with high spatial and temporal resolution, making it well-suited for understanding atmospheric dynamics and transport processes. Environment Canada has developed a portable, autonomous lidar system that can be monitored remotely and operate continuously except during precipitation events. The lidar, housed in a small trailer, simultaneously emits two wavelengths of laser light (1064 nm and 532 nm) at energies of approximately 150 mJ/pulse/wavelength and detects the backscatter signal at 1064 nm and both polarizations at 532 nm. For laser energies of this magnitude, the challenge resides in designing a system that meets the airspace safety requirements for autonomous operations. Through the combination of radar technology, beam divergence, laser cavity interlocks and using computer log files, this risk was mitigated. A Continuum Inlite small footprint laser is the backbone of the system because of three design criteria: requiring infrequent flash lamp changes compared to previous Nd:YAG Q-switch lasers, complete software control capability and a built-in laser energy monitoring system. A computer-controlled interface was designed to monitor the health of the system, adjust operational parameters and maintain a climate-controlled environment. Through an internet connection, it also transmitted the vital performance indicators and data stream to allow the lidar profile data for multiple instruments from near ground to 15 km, every 10 s, to be viewed, in near real-time via a website. The details of the system design and calibration will be discussed and the success of the instrument as tested within the framework of a national lidar network dubbed CORALNet (Canadian Operational Research Aerosol Lidar Network). In addition, the transport of a forest fire plume across the country will be shown as evidenced by the lidar network, HYSPLIT back trajectories, MODIS imagery and CALIPSO overpasses.
Automation and robotics technology for intelligent mining systems
NASA Technical Reports Server (NTRS)
Welsh, Jeffrey H.
1989-01-01
The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.
NASA Astrophysics Data System (ADS)
Doubleday, J.; Behar, A.; Davies, A.; Mora-Vargas, A.; Tran, D.; Abtahi, A.; Pieri, D. C.; Boudreau, K.; Cecava, J.
2008-12-01
Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors were incorporated into expendable "Volcano Monitor" capsules and placed downwind of the Pu'u 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors were collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. When SO2 readings exceeded a predetermined threshold, the modem within the Volcano Monitor sent an alert to the Sensor Web, and triggered a request for prompt Earth Observing-1 (EO-1) spacecraft data acquisition. The Volcano Monitors were also triggered by the Sensor Web in response to an eruption detection by the MODIS instrument on Terra. During these pre- defined "critical events" the Sensor Web ordered the SO2 sensors within the Volcano Monitor to increase their sampling frequency to every 5 minutes (high power "burst mode"). Autonomous control of the sensors' sampling frequency enabled the Sensor Web to monitor and respond to rapidly evolving conditions, and allowed rapid compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1 and 5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We also especially thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable scientific guidance and logistical assistance.
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Cameron, Jonathan M.; Morfopoulos, Arin C.; Clouse, Daniel S.; Montgomery, James F.; Ansar, Adnan I.; Machuzak, Richard J.
2009-01-01
An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.
JPRS Report Science & Technology Japan Space Artificial Intelligence/Robotics/Automation Symposium.
1989-12-28
Kazuya Kaku, et al. ] 28 Spacecraft Automatic Monitoring System [Kazuya Kaku, et al. ] 36 Autonomous Space Robot, Related Computer ...type space vehicle Space station , orbital sup - lport systems Transport systems Ground Systems 1 et»*:«..,..... ri,(rn™ Communciations ...axis torque sensor. Motorola’s VME-10 is used as the computer . 5. Experimental Results To investigate the state of separation between the external
Near Field Communication-based telemonitoring with integrated ECG recordings.
Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G
2011-01-01
Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chelaru, Teodor-Viorel, E-mail: teodor.chelaru@upb.ro; Chelaru, Adrian, E-mail: achelaru@incas.ro
The paper purpose is to present some aspects regarding the control system of unmanned aerial vehicle - UAV, used to local observations, surveillance and monitoring interest area. The calculus methodology allows a numerical simulation of UAV evolution in bad atmospheric conditions by using nonlinear model, as well as a linear one for obtaining guidance command. The UAV model which will be presented has six DOF (degrees of freedom), and autonomous control system. This theoretical development allows us to build stability matrix, command matrix and control matrix and finally to analyse the stability of autonomous UAV flight. A robust guidance system,more » based on uncoupled state will be evaluated for different fly conditions and the results will be presented. The flight parameters and guidance will be analysed.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... Northeast Regional Office at 55 Great Republic Drive, Gloucester, MA 01930 (phone: 978- 281-9103, fax: 978..., autonomous vessel monitoring system; and adherence to all relevant minimum size, gear, bycatch, and other...
NASA Technical Reports Server (NTRS)
Otaguro, W. S.; Kesler, L. O.; Land, K. C.; Rhoades, D. E.
1987-01-01
An intelligent tracker capable of robotic applications requiring guidance and control of platforms, robotic arms, and end effectors has been developed. This packaged system capable of supervised autonomous robotic functions is partitioned into a multiple processor/parallel processing configuration. The system currently interfaces to cameras but has the capability to also use three-dimensional inputs from scanning laser rangers. The inputs are fed into an image processing and tracking section where the camera inputs are conditioned for the multiple tracker algorithms. An executive section monitors the image processing and tracker outputs and performs all the control and decision processes. The present architecture of the system is presented with discussion of its evolutionary growth for space applications. An autonomous rendezvous demonstration of this system was performed last year. More realistic demonstrations in planning are discussed.
Autonomous locomotion of capsule endoscope in gastrointestinal tract.
Yang, Sungwook; Park, Kitae; Kim, Jinseok; Kim, Tae Song; Cho, Il-Joo; Yoon, Eui-Sung
2011-01-01
Autonomous locomotion in gastrointestinal (GI) tracts is achieved with a paddling-based capsule endoscope. For this, a miniaturized encoder module was developed utilizing a MEMS fabrication technology to monitor the position of paddles. The integrated encoder module yielded the high resolution of 0.0025 mm in the linear motion of the paddles. In addition, a PID control method was implemented on a DSP to control the stroke of the paddles accurately. As a result, the average accuracy and the standard deviation were measured to be 0.037 mm and 0.025 mm by a laser position sensor for the repetitive measurements. The locomotive performance was evaluated via ex-vivo tests according to various strokes in paddling. In an in-vivo experiment with a living pig, the locomotion speed was improved by 58% compared with the previous control method relying on a given timer value for reciprocation of the paddles. Finally, the integrated encoder module and the control system allow consistent paddling during locomotion even under loads in GI tract. It provides the autonomous locomotion without intervention in monitoring and controlling the capsule endoscope.
A Novel Cloud-Based Service Robotics Application to Data Center Environmental Monitoring
Russo, Ludovico Orlando; Rosa, Stefano; Maggiora, Marcello; Bona, Basilio
2016-01-01
This work presents a robotic application aimed at performing environmental monitoring in data centers. Due to the high energy density managed in data centers, environmental monitoring is crucial for controlling air temperature and humidity throughout the whole environment, in order to improve power efficiency, avoid hardware failures and maximize the life cycle of IT devices. State of the art solutions for data center monitoring are nowadays based on environmental sensor networks, which continuously collect temperature and humidity data. These solutions are still expensive and do not scale well in large environments. This paper presents an alternative to environmental sensor networks that relies on autonomous mobile robots equipped with environmental sensors. The robots are controlled by a centralized cloud robotics platform that enables autonomous navigation and provides a remote client user interface for system management. From the user point of view, our solution simulates an environmental sensor network. The system can easily be reconfigured in order to adapt to management requirements and changes in the layout of the data center. For this reason, it is called the virtual sensor network. This paper discusses the implementation choices with regards to the particular requirements of the application and presents and discusses data collected during a long-term experiment in a real scenario. PMID:27509505
ERIC Educational Resources Information Center
Chen, Chih-Ming; Wang, Jung-Ying; Yu, Chih-Ming
2017-01-01
Rapid progress in information and communication technologies (ICTs) has fueled the popularity of e-learning. However, an e-learning environment is limited in that online instructors cannot monitor immediately whether students remain focus during online autonomous learning. Therefore, this study tries to develop a novel attention aware system (AAS)…
Smart sensor technology for advanced launch vehicles
NASA Astrophysics Data System (ADS)
Schoess, Jeff
1989-07-01
Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.
MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems
2007-05-03
34Parameter estimation for 3-parameter log-logistic distribution (LLD3) by Porne ", Parameter estimation for 3-parameter log-logistic distribu- tion...section V we physical security, air traffic control, traffic monitoring, andvidefaconu s cribedy. video surveillance, industrial automation etc. Each
Intelligent Hardware-Enabled Sensor and Software Safety and Health Management for Autonomous UAS
NASA Technical Reports Server (NTRS)
Rozier, Kristin Y.; Schumann, Johann; Ippolito, Corey
2015-01-01
Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and violations of safety or performance rules during the ight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the- y temporal and Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certi cation of ight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS). We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as a demonstration platform.
Estimation and Control for Autonomous Coring from a Rover Manipulator
NASA Technical Reports Server (NTRS)
Hudson, Nicolas; Backes, Paul; DiCicco, Matt; Bajracharya, Max
2010-01-01
A system consisting of a set of estimators and autonomous behaviors has been developed which allows robust coring from a low-mass rover platform, while accommodating for moderate rover slip. A redundant set of sensors, including a force-torque sensor, visual odometry, and accelerometers are used to monitor discrete critical and operational modes, as well as to estimate continuous drill parameters during the coring process. A set of critical failure modes pertinent to shallow coring from a mobile platform is defined, and autonomous behaviors associated with each critical mode are used to maintain nominal coring conditions. Autonomous shallow coring is demonstrated from a low-mass rover using a rotary-percussive coring tool mounted on a 5 degree-of-freedom (DOF) arm. A new architecture of using an arm-stabilized, rotary percussive tool with the robotic arm used to provide the drill z-axis linear feed is validated. Particular attention to hole start using this architecture is addressed. An end-to-end coring sequence is demonstrated, where the rover autonomously detects and then recovers from a series of slip events that exceeded 9 cm total displacement.
Whole-body cryostimulation increases parasympathetic outflow and decreases core body temperature.
Zalewski, Pawel; Bitner, Anna; Słomko, Joanna; Szrajda, Justyna; Klawe, Jacek J; Tafil-Klawe, Malgorzata; Newton, Julia L
2014-10-01
The cardiovascular, autonomic and thermal response to whole-body cryostimulation exposure are not completely known. Thus the aim of this study was to evaluate objectively and noninvasively autonomic and thermal reactions observed after short exposure to very low temperatures. We examined 25 healthy men with mean age 30.1 ± 3.7 years and comparable anthropomorphical characteristic. Each subject was exposed to cryotherapeutic temperatures in a cryogenic chamber for 3 min (approx. -120 °C). The cardiovascular and autonomic parameters were measured noninvasively with Task Force Monitor. The changes in core body temperature were determined with the Vital Sense telemetric measurement system. Results show that 3 min to cryotherapeutic temperatures causes significant changes in autonomic balance which are induced by peripheral and central blood volume changes. Cryostimulation also induced changes in core body temperature, maximum drop of core temperature was observed 50-60 min after the stimulation. Autonomic and thermal reactions to cryostimulation were observed up to 6 h after the exposure and were not harmful for examined subjects. Copyright © 2014 Elsevier Ltd. All rights reserved.
Overview of Intelligent Power Controller Development for the Deep Space Gateway
NASA Technical Reports Server (NTRS)
Csank, Jeffrey
2017-01-01
Intelligent, or autonomous, control of a spacecraft is an enabling technology that must be developed for deep space human exploration. NASAs current long term human space platform, the International Space Station, which is in Low Earth Orbit, is in almost continuous communication with ground based mission control. This allows near real-time control of all the vehicle core systems, including power, to be controlled by the ground. As focus shifts from Low Earth Orbit, communication time-lag and communication bandwidth limitations beyond geosynchronous orbit does not permit this type of operation. This presentation contains ongoing work at NASA to develop an architecture for autonomous power control and the vehicle manager which monitors, coordinates, and delegates to all the on-board subsystems to enable autonomous control of the complete spacecraft.
Atmospheric Visibility Monitoring for planetary optical communications
NASA Technical Reports Server (NTRS)
Cowles, Kelly
1991-01-01
The Atmospheric Visibility Monitoring project endeavors to improve current atmospheric models and generate visibility statistics relevant to prospective earth-satellite optical communications systems. Three autonomous observatories are being used to measure atmospheric conditions on the basis of observed starlight; these data will yield clear-sky and transmission statistics for three sites with high clear-sky probabilities. Ground-based data will be compared with satellite imagery to determine the correlation between satellite data and ground-based observations.
Monitoring Dissolved Oxygen in New Jersey Coastal Waters Using Autonomous Gliders
The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...
Field Assessment of the Village Green Project: An Autonomous Community Air Quality Monitoring System
Recent findings on air pollution levels in communities motivate new technologies to assess air pollution at finer spatial scale. The Village Green Project (VGP) is a novel approach using commercially-available technology for long-term community environments air pollution measure...
ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.
Xiao, Jian; Zou, Xiang; Xu, Wenyao
2017-09-26
"Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.
NASA Technical Reports Server (NTRS)
Rodriguez, Guillermo (Editor)
1990-01-01
Various papers on intelligent control and adaptive systems are presented. Individual topics addressed include: control architecture for a Mars walking vehicle, representation for error detection and recovery in robot task plans, real-time operating system for robots, execution monitoring of a mobile robot system, statistical mechanics models for motion and force planning, global kinematics for manipulator planning and control, exploration of unknown mechanical assemblies through manipulation, low-level representations for robot vision, harmonic functions for robot path construction, simulation of dual behavior of an autonomous system. Also discussed are: control framework for hand-arm coordination, neural network approach to multivehicle navigation, electronic neural networks for global optimization, neural network for L1 norm linear regression, planning for assembly with robot hands, neural networks in dynamical systems, control design with iterative learning, improved fuzzy process control of spacecraft autonomous rendezvous using a genetic algorithm.
Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela
2015-03-05
This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations.
Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela
2015-01-01
This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079
Intermediate Levels of Autonomy within the SSM/PMAD Breadboard
NASA Technical Reports Server (NTRS)
Dugal-Whitehead, Norma R.; Walls, Bryan
1995-01-01
The Space Station Module Power Management and Distribution (SSM/PMAD) bread-board is a test bed for the development of advanced power system control and automation. Software control in the SSM/PMAD breadboard is through co-operating systems, called Autonomous Agents. Agents can be a mixture of algorithmic software and expert systems. The early SSM/PMAD system was envisioned as being completely autonomous. It soon became apparent, though, that there would always be a need for human intervention, at least as long as a human interacts with the system in any way. In a system designed only for autonomous operation, manual intervention meant taking full control of the whole system, and loosing whatever expertise was in the system. Several methods for allowing humans to interact at an appropriate level of control were developed. This paper examines some of these intermediate modes of autonomy. The least humanly intrusive mode is simple monitoring. The ability to modify future behavior by altering a schedule involves high-level interaction. Modification of operating activities comes next. The coarsest mode of control is individual, unplanned operation of individual Power System components. Each of these levels is integrated into the SSM/PMAD breadboard, with support for the user (such as warnings of the consequences of control decisions) at every level.
G2 Autonomous Control for Cryogenic Delivery Systems
NASA Technical Reports Server (NTRS)
Dito, Scott J.
2014-01-01
The Independent System Health Management-Autonomous Control (ISHM-AC) application development for cryogenic delivery systems is intended to create an expert system that will require minimal operator involvement and ultimately allow for complete autonomy when fueling a space vehicle in the time prior to launch. The G2-Autonomous Control project is the development of a model, simulation, and ultimately a working application that will control and monitor the cryogenic fluid delivery to a rocket for testing purposes. To develop this application, the project is using the programming language/environment Gensym G2. The environment is an all-inclusive application that allows development, testing, modeling, and finally operation of the unique application through graphical and programmatic methods. We have learned G2 through training classes and subsequent application development, and are now in the process of building the application that will soon be used to test on cryogenic loading equipment here at the Kennedy Space Center Cryogenics Test Laboratory (CTL). The G2 ISHM-AC application will bring with it a safer and more efficient propellant loading system for the future launches at Kennedy Space Center and eventually mobile launches from all over the world.
2007 Beyond SBIR Phase II: Bringing Technology Edge to the Warfighter
2007-08-23
Systems Trade-Off Analysis and Optimization Verification and Validation On-Board Diagnostics and Self - healing Security and Anti-Tampering Rapid...verification; Safety and reliability analysis of flight and mission critical systems On-Board Diagnostics and Self - Healing Model-based monitoring and... self - healing On-board diagnostics and self - healing ; Autonomic computing; Network intrusion detection and prevention Anti-Tampering and Trust
2014-01-31
59 Figure 26. Raspberry Pi SBC... Raspberry Pi single compute board (SBC) (see section 3.3.1.2). These snoopers can intercept the serial data, decode the information, and retransmit the...data. The Raspberry Pi contains two serial ports that allow receiving, altering, and retransmitting of serial data. These monitor points will provide
Autonomous navigation and control of a Mars rover
NASA Technical Reports Server (NTRS)
Miller, D. P.; Atkinson, D. J.; Wilcox, B. H.; Mishkin, A. H.
1990-01-01
A Mars rover will need to be able to navigate autonomously kilometers at a time. This paper outlines the sensing, perception, planning, and execution monitoring systems that are currently being designed for the rover. The sensing is based around stereo vision. The interpretation of the images use a registration of the depth map with a global height map provided by an orbiting spacecraft. Safe, low energy paths are then planned through the map, and expectations of what the rover's articulation sensors should sense are generated. These expectations are then used to ensure that the planned path is correctly being executed.
NOAA Atmospheric, Marine and Arctic Monitoring Using UASs (including Rapid Response)
NASA Astrophysics Data System (ADS)
Coffey, J. J.; Jacobs, T.
2015-12-01
Unmanned systems have the potential to efficiently, effectively, economically, and safely bridge critical observation requirements in an environmentally friendly manner. As the United States' Atmospheric, Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Atmospheric, Marine and Arctic Monitoring Unmanned Aircraft System (UAS) strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. This includes the introduction of the Targeted Autonomous Insitu Sensing and Rapid Response (TAISRR) with UAS concept of operations. The presentation will also discuss the requisite UAS capabilities and our experience in using them.
Gajek, Jacek; Zyśko, Dorota; Halawa, Bogumił; Mazurek, Walentyna
2006-04-01
Tilt training is a new treatment for vasovagal syncope. Its therapeutic efficacy is thought to be the result of the desensitization of cardiopulmonary receptors, but it could be the influence of the tilt training on the activation of the autonomic nervous system as well. The study group consisted of 24 vasovagal patients (17 women and 7 men) aged 32.5 +/- 11.8 years. The diagnostic head-up tilt test was performed according to the Italian protocol with nitroglycerin if necessary. The monitoring head-up tilt test was performed according to the Westminster protocol without provocation, after 1 to 3 months of tilt training. Holter ECG recordings for HRV parameters (time and frequency domain) were obtained from selected 2-min intervals before, during and after the diagnostic and monitoring tilt test. The diagnostic test was positive in the passive phase in 6 and after provocation in 18 patients. During the training period no syncope occurred. Analysing the HRV parameters we demonstrated the following findings: I. mRR decreases immediately after assumption of a vertical position in both tests (diagnostic and monitoring) but in the diagnostic test its further decrease occurs earlier than in the monitoring test; 2. the absolute power of the HF component is greater in the early phase of tilt after tilt training than in the corresponding period in the diagnostic test. After a longer period of tilt training the activation of the sympathetic nervous system in response to the erect position is diminished.
ANITA Air Monitoring on the International Space Station: Results Compared to Other Measurements
NASA Technical Reports Server (NTRS)
Honne, A.; Schumann-Olsen, H.; Kaspersen, K.; Limero, T.; Macatangay, A.; Mosebach, H.; Kampf, D.; Mudgett, P. D.; James, J. T.; Tan, G.;
2009-01-01
ANITA (Analysing Interferometer for Ambient Air) is a flight experiment precursor for a permanent continuous air quality monitoring system on the ISS (International Space Station). For the safety of the crew, ANITA can detect and quantify quasi-online and simultaneously 33 gas compounds in the air with ppm or sub-ppm detection limits. The autonomous measurement system is based on FTIR (Fourier Transform Infra-Red spectroscopy). The system represents a versatile air quality monitor, allowing for the first time the detection and monitoring of trace gas dynamics in a spacecraft atmosphere. ANITA operated on the ISS from September 2007 to August 2008. This paper summarizes the results of ANITA s air analyses with emphasis on comparisons to other measurements. The main basis of comparison is NASA s set of grab samples taken onboard the ISS and analysed on ground applying various GC-based (Gas Chromatography) systems.
Advanced Approach of Multiagent Based Buoy Communication
Gricius, Gediminas; Drungilas, Darius; Dzemydiene, Dale
2015-01-01
Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys), which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information. PMID:26345197
Reconfigurable Autonomy for Future Planetary Rovers
NASA Astrophysics Data System (ADS)
Burroughes, Guy
Extra-terrestrial Planetary rover systems are uniquely remote, placing constraints in regard to communication, environmental uncertainty, and limited physical resources, and requiring a high level of fault tolerance and resistance to hardware degradation. This thesis presents a novel self-reconfiguring autonomous software architecture designed to meet the needs of extraterrestrial planetary environments. At runtime it can safely reconfigure low-level control systems, high-level decisional autonomy systems, and managed software architecture. The architecture can perform automatic Verification and Validation of self-reconfiguration at run-time, and enables a system to be self-optimising, self-protecting, and self-healing. A novel self-monitoring system, which is non-invasive, efficient, tunable, and autonomously deploying, is also presented. The architecture was validated through the use-case of a highly autonomous extra-terrestrial planetary exploration rover. Three major forms of reconfiguration were demonstrated and tested: first, high level adjustment of system internal architecture and goal; second, software module modification; and third, low level alteration of hardware control in response to degradation of hardware and environmental change. The architecture was demonstrated to be robust and effective in a Mars sample return mission use-case testing the operational aspects of a novel, reconfigurable guidance, navigation, and control system for a planetary rover, all operating in concert through a scenario that required reconfiguration of all elements of the system.
Agent Based Software for the Autonomous Control of Formation Flying Spacecraft
NASA Technical Reports Server (NTRS)
How, Jonathan P.; Campbell, Mark; Dennehy, Neil (Technical Monitor)
2003-01-01
Distributed satellite systems is an enabling technology for many future NASA/DoD earth and space science missions, such as MMS, MAXIM, Leonardo, and LISA [1, 2, 3]. While formation flying offers significant science benefits, to reduce the operating costs for these missions it will be essential that these multiple vehicles effectively act as a single spacecraft by performing coordinated observations. Autonomous guidance, navigation, and control as part of a coordinated fleet-autonomy is a key technology that will help accomplish this complex goal. This is no small task, as most current space missions require significant input from the ground for even relatively simple decisions such as thruster burns. Work for the NMP DS1 mission focused on the development of the New Millennium Remote Agent (NMRA) architecture for autonomous spacecraft control systems. NMRA integrates traditional real-time monitoring and control with components for constraint-based planning, robust multi-threaded execution, and model-based diagnosis and reconfiguration. The complexity of using an autonomous approach for space flight software was evident when most of its capabilities were stripped off prior to launch (although more capability was uplinked subsequently, and the resulting demonstration was very successful).
Ganne, Chaitanya; Talkad, Sathyaprabha N; Srinivas, Dwarakanath; Somanna, Sampath
2016-08-01
In this study, we intend to evaluate the autonomic changes occurring in neurosurgeons and thus the stress during microsurgical clipping of aneurysms. The aim of the current study is to evaluate the heart rate variability (HRV) of the neurosurgeons during microsurgical clipping of aneurysm by using continuous real time monitoring of the ECG intraoperatively. Lead II ECG was recorded using Bioharness(®) (Zephyr Technologies, Annapolis, MD) in 4 healthy neurosurgeons who performed 29 microsurgical clipping of aneurysms. ECG from 21 surgeries was analysed (LabChart(®) software, ADInstruments, Dunedin, New Zealand) across five stages: Baseline (BL), sylvian fissure dissection (SFD), perianeurysmal dissection (PAD), clipping of the aneurysm (CLIP) and haemostasis (HEMO). There was a reduction in TP and an increased LF/HF ratio in spite of suppression of both LF and HF powers. Contrary to the common understanding that the sympathetic limb of the autonomic system mostly mediates responses during stress and anxiety, we found that there was a significant contribution of the parasympathetic system too.
NASA Technical Reports Server (NTRS)
Proud, Ryan W.; Hart, Jeremy J.; Mrozinski, Richard B.
2003-01-01
The next-generation human spaceflight vehicle is in a unique position to realize the benefits of more than thirty years of technological advancements since the Space Shuttle was designed. Computer enhancements, the emergence of highly reliable decision-making algorithms, and an emphasis on efficiency make an increased use of autonomous systems highly likely. NASA is in a position to take advantage of these advances and apply them to the human spaceflight environment. One of the key paradigm shifts will be the shift, where appropriate, of monitoring, option development, decision-making, and execution responsibility from humans to an Autonomous Flight Management (AFM) system. As an effort to reduce risk for development of an AFM system, NASA engineers are developing a prototype to prove the utility of previously untested autonomy concepts. This prototype, called SMART (Spacecraft Mission Assessment and Replanning Tool), is a functionally decomposed flight management system with an appropriate level of autonomy for each of its functions. As the development of SMART began, the most important and most often asked question was, How autonomous should an AFM system be? A thorough study of the literature through 2002 surrounding autonomous systems has not yielded a standard method for designing a level of autonomy into either a crewed vehicle or an uncrewed vehicle. The current focus in the literature on defining autonomy is centered on developing IQ tests for built systems. The literature that was analyzed assumes that the goal of all systems is to strive for complete autonomy from human intervention, rather than identifying how autonomous each function within the system should have been. In contrast, the SMART team developed a method for determining the appropriate level of autonomy to be designed into each function within a system. This paper summarizes the development of the Level of Autonomy Assessment Tool and its application to the SMART project.
2010-03-01
allows the programmer to use the English language in an expressive manor while still maintaining the logical structure of a programming language ( Pressman ...and Choudhury Tanzeem. 2000. Face Recognition for Smart Environments, IEEE Computer, pp. 50–55. Pressman , Roger. 2010. Software Engineering A
Automated Power-Distribution System
NASA Technical Reports Server (NTRS)
Thomason, Cindy; Anderson, Paul M.; Martin, James A.
1990-01-01
Automated power-distribution system monitors and controls electrical power to modules in network. Handles both 208-V, 20-kHz single-phase alternating current and 120- to 150-V direct current. Power distributed to load modules from power-distribution control units (PDCU's) via subsystem distributors. Ring busses carry power to PDCU's from power source. Needs minimal attention. Detects faults and also protects against them. Potential applications include autonomous land vehicles and automated industrial process systems.
Autonomous Unmanned Helicopter System for Remote Sensing Missions in Unknown Environments
NASA Astrophysics Data System (ADS)
Merz, T.; Chapman, S.
2011-09-01
This paper presents the design of an autonomous unmanned helicopter system for low-altitude remote sensing. The proposed concepts and methods are generic and not limited to a specific helicopter. The development was driven by the need for a dependable, modular, and affordable system with sufficient payload capacity suitable for both research and real-world deployment. The helicopter can be safely operated without a backup pilot in a contained area beyond visual range. This enables data collection in inaccessible or dangerous areas. Thanks to its terrain following and obstacle avoidance capability, the system does not require a priori information about terrain elevation and obstacles. Missions are specified in state diagrams and flight plans. We present performance characteristics of our system and show results of its deployment in real-world scenarios. We have successfully completed several dozen infrastructure inspection missions and crop monitoring missions facilitating plant phenomics studies.
ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement
Xiao, Jian; Zou, Xiang
2017-01-01
“Smart Pavement” is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor—ePave—to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system’s performance and explore the trade-off. PMID:28954430
Looking inside the Ocean: Toward an Autonomous Imaging System for Monitoring Gelatinous Zooplankton
Corgnati, Lorenzo; Marini, Simone; Mazzei, Luca; Ottaviani, Ennio; Aliani, Stefano; Conversi, Alessandra; Griffa, Annalisa
2016-01-01
Marine plankton abundance and dynamics in the open and interior ocean is still an unknown field. The knowledge of gelatinous zooplankton distribution is especially challenging, because this type of plankton has a very fragile structure and cannot be directly sampled using traditional net based techniques. To overcome this shortcoming, Computer Vision techniques can be successfully used for the automatic monitoring of this group.This paper presents the GUARD1 imaging system, a low-cost stand-alone instrument for underwater image acquisition and recognition of gelatinous zooplankton, and discusses the performance of three different methodologies, Tikhonov Regularization, Support Vector Machines and Genetic Programming, that have been compared in order to select the one to be run onboard the system for the automatic recognition of gelatinous zooplankton. The performance comparison results highlight the high accuracy of the three methods in gelatinous zooplankton identification, showing their good capability in robustly selecting relevant features. In particular, Genetic Programming technique achieves the same performances of the other two methods by using a smaller set of features, thus being the most efficient in avoiding computationally consuming preprocessing stages, that is a crucial requirement for running on an autonomous imaging system designed for long lasting deployments, like the GUARD1. The Genetic Programming algorithm has been installed onboard the system, that has been operationally tested in a two-months survey in the Ligurian Sea, providing satisfactory results in terms of monitoring and recognition performances. PMID:27983638
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Designing an autonomous environment for mission critical operation of the EUVE satellite
NASA Technical Reports Server (NTRS)
Abedini, Annadiana; Malina, Roger F.
1994-01-01
Since the launch of NASA's Extreme Ultraviolet Explorer (EUVE) satellite in 1992, there has only been a handful of occurrences that have warranted manual intervention in the EUVE Science Operations Center (ESOC). So, in an effort to reduce costs, the current environment is being redesigned to utilize a combination of off-the-shelf packages and recently developed artificial intelligence (AI) software to automate the monitoring of the science payload and ground systems. The successful implementation of systemic automation would allow the ESOC to evolve from a seven day/week, three shift operation, to a seven day/week one shift operation. First, it was necessary to identify all areas considered mission critical. These were defined as follows: (1) The telemetry stream must be monitored autonomously and anomalies identified. (2) Duty personnel must be automatically paged and informed of the occurrence of an anomaly. (3) The 'basic' state of the ground system must be assessed. (4) Monitors should check that the systems and processes needed to continue in a 'healthy' operational mode are working at all times. (5) Network loads should be monitored to ensure that they stay within established limits. (6) Connectivity to Goddard Space Flight Center (GSFC) systems should be monitored as well, not just for connectivity of the network itself but also for the ability to transfer files. (7) All necessary peripheral devices should be monitored. This would include the disks, routers, tape drives, printers, tape carousel, and power supplies. (8) System daemons such as the archival daemon, the Sybase server, the payload monitoring software, and any other necessary processes should be monitored to ensure that they are operational. (9) The monitoring system needs to be redundant so that the failure of a single machine will not paralyze the monitors. (10) Notification should be done by means of looking though a table of the pager numbers for current 'on call' personnel. The software should be capable of dialing out to notify, sending email, and producing error logs. (11) The system should have knowledge of when real-time passes and tape recorder dumps will occur and should know that these passes and data transmissions are successful. Once the design criteria were established, the design team split into two groups: one that addressed the tracking, commanding, and health and safety of the science payload and another group that addressed the ground systems and communications aspects of the overall system.
Autonomic Intelligent Cyber Sensor to Support Industrial Control Network Awareness
Vollmer, Todd; Manic, Milos; Linda, Ondrej
2013-06-01
The proliferation of digital devices in a networked industrial ecosystem, along with an exponential growth in complexity and scope, has resulted in elevated security concerns and management complexity issues. This paper describes a novel architecture utilizing concepts of Autonomic computing and a SOAP based IF-MAP external communication layer to create a network security sensor. This approach simplifies integration of legacy software and supports a secure, scalable, self-managed framework. The contribution of this paper is two-fold: 1) A flexible two level communication layer based on Autonomic computing and Service Oriented Architecture is detailed and 2) Three complementary modules that dynamically reconfiguremore » in response to a changing environment are presented. One module utilizes clustering and fuzzy logic to monitor traffic for abnormal behavior. Another module passively monitors network traffic and deploys deceptive virtual network hosts. These components of the sensor system were implemented in C++ and PERL and utilize a common internal D-Bus communication mechanism. A proof of concept prototype was deployed on a mixed-use test network showing the possible real world applicability. In testing, 45 of the 46 network attached devices were recognized and 10 of the 12 emulated devices were created with specific Operating System and port configurations. Additionally the anomaly detection algorithm achieved a 99.9% recognition rate. All output from the modules were correctly distributed using the common communication structure.« less
[THE CORRECTION WITH NOOPHEN OF AUTONOMIC DYSFUNCTION IN YOUNG MEN WITH HYPERTENSION].
Knyazkova, I I; Kuzminova, N V; Osovskaya, N Yu
2015-01-01
The aim of this study was to investigate the influence of antihypertensive therapy with adding of gamma-amino-beta-phenylbutyric acid hydrochloride on the autonornic regulation of tcardiovascular system and the psychoemotional status in young men with hypertension. The study included 58 male with hypertension, aged 18-39 years (mean age 31.7 yearst 2.3 years), of them 28 patients (group I) administered beta-blocker and the other received a complex therapy which included beta-blocker and gamma-amino-beta-phenylbutyric acid hydrochiotide--Noofen ("OlainFarm", Latvia) 250 mg 3 times a day for 4 weeks. The control group consisted of 20 healthy indi&iduals aged 18-39 years (mean age 31.5 years +/- 2.5 years). The examination included of standard clinical; biochemical and instrumental investigatIons. We conducted a clinical measurement of blorid pressure, ambulatory blood pressure monitoring (ABPM), Doppler echocardiography, heart rate variability, autononlic symptoms questionnaire and Spielberger--Hanina Anxiety Scale. Analysis of circadian blbod pressure profile arid autonomic nervous system state in young men with hypertension, in spite of the short disenle history demonstratnl violations of the blood pressure circadian rhythm associated with the violation of the autonomic regulation of cardiovascular system as indreased sympathetic activity and decreased parasympathetic activity heart tate. In hypertensive patients with autonomic dysfunction we noted a reduction of level of mental health, which was reflected in an increase in'the number of people with high and moderate levels of reactive and personal anxiety It has been demonstratedthat the use of combination therapy with adding Noofen in young hypertensive men and autonomic dysfunction helped significantly improve the HRV parameters and restore autonomic balance on time parameters of heart rate variability reduced the level of reactive anxiety and imprdved the psychoemotional state.
NASA Astrophysics Data System (ADS)
Boudreau, K.; Cecava, J. R.; Behar, A.; Davies, A. G.; Tran, D. Q.; Abtahi, A. A.; Pieri, D. C.; Jpl Volcano Sensor Web Team, A
2007-12-01
Response time in acquiring sensor data in volcanic emergencies can be greatly improved through use of autonomous systems. For instance, ground-based observations and data processing applications of the JPL Volcano Sensor Web have promptly triggered spacecraft observations [e.g., 1]. The reverse command and information flow path can also be useful, using autonomous analysis of spacecraft data to trigger in situ sensors. In this demonstration project, SO2 sensors have been incorporated into expendable "Volcano Monitor" capsules to be placed downwind of the Pu'U 'O'o vent of Kilauea volcano, Hawai'i. In nominal (low) power conservation mode, data from these sensors are collected and transmitted every hour to the Volcano Sensor Web through the Iridium Satellite Network. If SO2 readings exceed a predetermined threshold, the modem within the Volcano Monitor sends an alert to the Sensor Web, triggering a request for prompt Earth Observing-1 ( EO-1) spacecraft data acquisition. During pre-defined "critical events" as perceived by multiple sensors (which could include both in situ and spaceborne devices), however, the Sensor Web can order the SO2 sensors within the Volcano Monitor to increase their sampling frequency to once per minute (high power "burst mode"). Autonomous control of the sensors' sampling frequency enables the Sensor Web to monitor and respond to rapidly evolving conditions before and during an eruption, and allows near real-time compilation and dissemination of these data to the scientific community. Reference: [1] Davies et al., (2006) Eos, 87, (1), 1&5. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. Support was provided by the NASA AIST program, the Idaho Space Grant Consortium, and the New Mexico Space Grant Program. We thank the personnel of the USGS Hawaiian Volcano Observatory for their invaluable assistance.
Stachowiak, Jeanne C; Shugard, Erin E; Mosier, Bruce P; Renzi, Ronald F; Caton, Pamela F; Ferko, Scott M; Van de Vreugde, James L; Yee, Daniel D; Haroldsen, Brent L; VanderNoot, Victoria A
2007-08-01
For domestic and military security, an autonomous system capable of continuously monitoring for airborne biothreat agents is necessary. At present, no system meets the requirements for size, speed, sensitivity, and selectivity to warn against and lead to the prevention of infection in field settings. We present a fully automated system for the detection of aerosolized bacterial biothreat agents such as Bacillus subtilis (surrogate for Bacillus anthracis) based on protein profiling by chip gel electrophoresis coupled with a microfluidic sample preparation system. Protein profiling has previously been demonstrated to differentiate between bacterial organisms. With the goal of reducing response time, multiple microfluidic component modules, including aerosol collection via a commercially available collector, concentration, thermochemical lysis, size exclusion chromatography, fluorescent labeling, and chip gel electrophoresis were integrated together to create an autonomous collection/sample preparation/analysis system. The cycle time for sample preparation was approximately 5 min, while total cycle time, including chip gel electrophoresis, was approximately 10 min. Sensitivity of the coupled system for the detection of B. subtilis spores was 16 agent-containing particles per liter of air, based on samples that were prepared to simulate those collected by wetted cyclone aerosol collector of approximately 80% efficiency operating for 7 min.
Bush, Nicole R; Caron, Zoe K; Blackburn, Katherine S; Alkon, Abbey
2016-02-25
The autonomic nervous system (ANS) consists of two branches, the parasympathetic and sympathetic nervous systems, and controls the function of internal organs (e.g., heart rate, respiration, digestion) and responds to everyday and adverse experiences (1). ANS measures in children have been found to be related to behavior problems, emotion regulation, and health (2-7). Therefore, understanding the factors that affect ANS development during early childhood is important. Both branches of the ANS affect young children's cardiovascular responses to stimuli and have been measured noninvasively, via external monitoring equipment, using valid and reliable measures of physiological change (8-11). However, there are few studies of very young children with simultaneous measures of the parasympathetic and sympathetic nervous systems, which limits understanding of the integrated functioning of the two systems. In addition, the majority of existing studies of young children report on infants' resting ANS measures or their reactivity to commonly used mother-child interaction paradigms, and less is known about ANS reactivity to other challenging conditions. We present a study design and standardized protocol for a non-invasive and rapid assessment of cardiac autonomic control in 18 month old children. We describe methods for continuous monitoring of the parasympathetic and sympathetic branches of the ANS under resting and challenge conditions during a home or laboratory visit and provide descriptive findings from our sample of 140 ethnically diverse toddlers using validated equipment and scoring software. Results revealed that this protocol can produce a range of physiological responses to both resting and developmentally challenging conditions, as indicated by changes in heart rate and indices of parasympathetic and sympathetic activity. Individuals demonstrated variability in resting levels, responses to challenges, and challenge reactivity, which provides additional evidence that this protocol is useful for the examination of ANS individual differences for toddlers.
Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults.
Luttmann-Gibson, Heike; Suh, Helen H; Coull, Brent A; Dockery, Douglas W; Sarnat, Stefanie Ebelt; Schwartz, Joel; Stone, Peter H; Gold, Diane R
2010-09-01
Short-term elevation of ambient particulate air pollution has been associated with autonomic dysfunction and increased systemic inflammation, but the interconnections between these pathways are not well understood. We examined the association between inflammation and autonomic dysfunction and effect modification of inflammation on the association between air pollution and heart rate variability (HRV) in elderly subjects. 25 elderly subjects in Steubenville, Ohio, were followed up to 24 times with repeated 30-min ECG Holter monitoring (545 observations). C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6), soluble inter-cellular adhesion molecule 1 (sICAM-1), and white blood cell and platelet counts were measured in peripheral blood samples collected in the first month of the study. Increased systemic inflammation was defined for subjects within the upper 20% of the distribution for each marker. A central ambient monitoring station provided daily fine particle (PM(2.5)) and sulphate (SO(4)(2-)) data. Linear mixed models were used to identify associations between inflammatory markers and HRV and to assess effect modification of the association between air pollution and HRV due to inflammatory status. A 5.8 mg/l elevation in CRP was associated with decreases of between -8% and -33% for time and frequency domain HRV outcomes. A 5.1 microg/m(3) increase in SO(4)(2-) on the day before the health assessment was associated with a decrease of -6.7% in the SD of normal RR intervals (SDNN) (95% CI -11.8% to -1.3%) in subjects with elevated CRP, but not in subjects with lower CRP (p value interaction=0.04), with similar findings for PM(2.5). Increased systemic inflammation is associated with autonomic dysfunction in the elderly. Air pollution effects on reduced SDNN are stronger in subjects with elevated systemic inflammation.
Case Study on the Maintenance of a Construction Monitoring Using USN-Based Data Acquisition
Kim, Sangyong; Shin, Yoonseok; Kim, Gwang-Hee
2014-01-01
In recent years, there has been an increasing interest in the adoption of emerging ubiquitous sensor network (USN) technologies for instrumentation within a variety of sustainability systems. USN is emerging as a sensing paradigm that is being newly considered by the sustainability management field as an alternative to traditional tethered monitoring systems. Researchers have been discovering that USN is an exciting technology that should not be viewed simply as a substitute for traditional tethered monitoring systems. In this study, we investigate how a movement monitoring measurement system of a complex building is developed as a research environment for USN and related decision-supportive technologies. To address the apparent danger of building movement, agent-mediated communication concepts have been designed to autonomously manage large volumes of exchanged information. In this study, we additionally detail the design of the proposed system, including its principles, data processing algorithms, system architecture, and user interface specifics. Results of the test and case study demonstrate the effectiveness of the USN-based data acquisition system for real-time monitoring of movement operations. PMID:25097890
Case study on the maintenance of a construction monitoring using USN-based data acquisition.
Kim, Sangyong; Shin, Yoonseok; Kim, Gwang-Hee
2014-01-01
In recent years, there has been an increasing interest in the adoption of emerging ubiquitous sensor network (USN) technologies for instrumentation within a variety of sustainability systems. USN is emerging as a sensing paradigm that is being newly considered by the sustainability management field as an alternative to traditional tethered monitoring systems. Researchers have been discovering that USN is an exciting technology that should not be viewed simply as a substitute for traditional tethered monitoring systems. In this study, we investigate how a movement monitoring measurement system of a complex building is developed as a research environment for USN and related decision-supportive technologies. To address the apparent danger of building movement, agent-mediated communication concepts have been designed to autonomously manage large volumes of exchanged information. In this study, we additionally detail the design of the proposed system, including its principles, data processing algorithms, system architecture, and user interface specifics. Results of the test and case study demonstrate the effectiveness of the USN-based data acquisition system for real-time monitoring of movement operations.
Near Field Communication-based telemonitoring with integrated ECG recordings
Morak, J.; Kumpusch, H.; Hayn, D.; Leitner, M.; Scherr, D.; Fruhwald, F.M.; Schreier, G.
2011-01-01
Objectives Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. Methods We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system’s technical feasibility, usability and patient’s adherence to twice daily usage. Results 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Conclusions Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients. PMID:23616890
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott;
2010-01-01
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm
Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis
2016-01-01
Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds. PMID:27827883
Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.
Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis
2016-11-03
Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds.
Droxidopa: a review of its use in symptomatic neurogenic orthostatic hypotension.
Keating, Gillian M
2015-02-01
The norepinephrine prodrug droxidopa (NORTHERA™) is approved in the US for the treatment of orthostatic dizziness, lightheadedness, or the 'feeling that you are about to black out' in adults with symptomatic neurogenic orthostatic hypotension associated with primary autonomic failure (e.g. Parkinson's disease, multiple system atrophy or pure autonomic failure), dopamine β-hydroxylase deficiency or nondiabetic autonomic neuropathy. This article reviews the clinical efficacy and tolerability of droxidopa in symptomatic neurogenic orthostatic hypotension, as well as summarizing its pharmacological properties. Oral droxidopa was effective in the shorter-term treatment of patients with symptomatic neurogenic orthostatic hypotension, with improvements seen in symptoms, the impact of symptoms on daily activities and standing systolic blood pressure. More data are needed to confirm the longer-term efficacy of droxidopa. Droxidopa was generally well tolerated, although patients should be monitored for supine hypertension.
Secure Autonomous Automated Scheduling (SAAS). Rev. 1.1
NASA Technical Reports Server (NTRS)
Walke, Jon G.; Dikeman, Larry; Sage, Stephen P.; Miller, Eric M.
2010-01-01
This report describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the UK-DMC, is used as the space-based sensor. The UK-DMC's availability is determined via machine-to-machine communications using SSTL's mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL's and Universal Space Network's (USN) ground assets. The availability and scheduling of USN's assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards
Orita, Makiko; Hayashida, Naomi; Shinkawa, Tetsuko; Kudo, Takashi; Koga, Mikitoshi; Togo, Michita; Katayama, Sotetsu; Hiramatsu, Kozaburo; Mori, Shunsuke; Takamura, Noboru
2012-07-01
Severely and multiply disabled children (SMDC) are frequently affected in more than one area of development, resulting in multiple disabilities. The aim of the study was to evaluate the efficacy of music therapy in SMDC using monitoring changes in the autonomic nervous system, by the frequency domain analysis of heart rate variability. We studied six patients with SMDC (3 patients with cerebral palsy, 1 patient with posttraumatic syndrome after head injury, 1 patient with herpes encephalitis sequelae, and 1 patient with Lennox-Gastaut syndrome characterized by frequent seizures, developmental delay and psychological and behavioral problems), aged 18-26 (mean 22.5 ± 3.5). By frequency domain method using electrocardiography, we measured the high frequency (HF; with a frequency ranging from 0.15 to 0.4 Hz), which represents parasympathetic activity, the low frequency/high frequency ratio, which represents sympathetic activity between the sympathetic and parasympathetic activities, and heart rate. A music therapist performed therapy to all patients through the piano playing for 50 min. We monitored each study participant for 150 min before therapy, 50 min during therapy, and 10 min after therapy. Interestingly, four of 6 patients showed significantly lower HF components during music therapy than before therapy, suggesting that these four patients might react to music therapy through the suppression of parasympathetic nervous activities. Thus, music therapy can suppress parasympathetic nervous activities in some patients with SMDC. The monitoring changes in the autonomic nervous activities could be a powerful tool for the objective evaluation of music therapy in patients with SMDC.
GPS/INS integration by functional partitioning
NASA Astrophysics Data System (ADS)
Diesel, John W.
It is shown that a GPS/INS system integrated by functional partitioning can satisfy all of the RTCA navigation requirements and goals. This is accomplished by accurately calibrating the INS using GPS after the inertial instruments are thermally stabilized and by exploiting the very slow subsequent error growth in the INS information. In this way, autonomous integrity monitoring can be achieved using only existing or presently planned systems.
Deep learning on temporal-spectral data for anomaly detection
NASA Astrophysics Data System (ADS)
Ma, King; Leung, Henry; Jalilian, Ehsan; Huang, Daniel
2017-05-01
Detecting anomalies is important for continuous monitoring of sensor systems. One significant challenge is to use sensor data and autonomously detect changes that cause different conditions to occur. Using deep learning methods, we are able to monitor and detect changes as a result of some disturbance in the system. We utilize deep neural networks for sequence analysis of time series. We use a multi-step method for anomaly detection. We train the network to learn spectral and temporal features from the acoustic time series. We test our method using fiber-optic acoustic data from a pipeline.
Autonomous mobile robot for radiologic surveys
Dudar, A.M.; Wagner, D.G.; Teese, G.D.
1994-06-28
An apparatus is described for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm. 5 figures.
Autonomous mobile robot for radiologic surveys
Dudar, Aed M.; Wagner, David G.; Teese, Gregory D.
1994-01-01
An apparatus for conducting radiologic surveys. The apparatus comprises in the main a robot capable of following a preprogrammed path through an area, a radiation monitor adapted to receive input from a radiation detector assembly, ultrasonic transducers for navigation and collision avoidance, and an on-board computer system including an integrator for interfacing the radiation monitor and the robot. Front and rear bumpers are attached to the robot by bumper mounts. The robot may be equipped with memory boards for the collection and storage of radiation survey information. The on-board computer system is connected to a remote host computer via a UHF radio link. The apparatus is powered by a rechargeable 24-volt DC battery, and is stored at a docking station when not in use and/or for recharging. A remote host computer contains a stored database defining paths between points in the area where the robot is to operate, including but not limited to the locations of walls, doors, stationary furniture and equipment, and sonic markers if used. When a program consisting of a series of paths is downloaded to the on-board computer system, the robot conducts a floor survey autonomously at any preselected rate. When the radiation monitor detects contamination, the robot resurveys the area at reduced speed and resumes its preprogrammed path if the contamination is not confirmed. If the contamination is confirmed, the robot stops and sounds an alarm.
Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System
NASA Technical Reports Server (NTRS)
Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.
2010-01-01
The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.
Human-Robot Control Strategies for the NASA/DARPA Robonaut
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Culbert, Chris J.; Ambrose, Robert O.; Huber, E.; Bluethmann, W. J.
2003-01-01
The Robotic Systems Technology Branch at the NASA Johnson Space Center (JSC) is currently developing robot systems to reduce the Extra-Vehicular Activity (EVA) and planetary exploration burden on astronauts. One such system, Robonaut, is capable of interfacing with external Space Station systems that currently have only human interfaces. Robonaut is human scale, anthropomorphic, and designed to approach the dexterity of a space-suited astronaut. Robonaut can perform numerous human rated tasks, including actuating tether hooks, manipulating flexible materials, soldering wires, grasping handrails to move along space station mockups, and mating connectors. More recently, developments in autonomous control and perception for Robonaut have enabled dexterous, real-time man-machine interaction. Robonaut is now capable of acting as a practical autonomous assistant to the human, providing and accepting tools by reacting to body language. A versatile, vision-based algorithm for matching range silhouettes is used for monitoring human activity as well as estimating tool pose.
A Real-Time Rover Executive based On Model-Based Reactive Planning
NASA Technical Reports Server (NTRS)
Bias, M. Bernardine; Lemai, Solange; Muscettola, Nicola; Korsmeyer, David (Technical Monitor)
2003-01-01
This paper reports on the experimental verification of the ability of IDEA (Intelligent Distributed Execution Architecture) effectively operate at multiple levels of abstraction in an autonomous control system. The basic hypothesis of IDEA is that a large control system can be structured as a collection of interacting control agents, each organized around the same fundamental structure. Two IDEA agents, a system-level agent and a mission-level agent, are designed and implemented to autonomously control the K9 rover in real-time. The system is evaluated in the scenario where the rover must acquire images from a specified set of locations. The IDEA agents are responsible for enabling the rover to achieve its goals while monitoring the execution and safety of the rover and recovering from dangerous states when necessary. Experiments carried out both in simulation and on the physical rover, produced highly promising results.
Towards an autonomous telescope system: the Test-Bed Telescope project
NASA Astrophysics Data System (ADS)
Racero, E.; Ocaña, F.; Ponz, D.; the TBT Consortium
2015-05-01
In the context of the Space Situational Awareness (SSA) programme of ESA, it is foreseen to deploy several large robotic telescopes in remote locations to provide surveillance and tracking services for man-made as well as natural near-Earth objects (NEOs). The present project, termed Telescope Test Bed (TBT) is being developed under ESA's General Studies and Technology Programme, and shall implement a test-bed for the validation of an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor NEO services. It is foreseen that this test-bed environment will be used to validate future prototype software systems as well as to evaluate remote monitoring and control techniques. The test-bed system will be capable to deliver astrometric and photometric data of the observed objects in near real-time. This contribution describes the current status of the project.
Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors.
Nguyen, Cuong M; Kota, Pavan Kumar; Nguyen, Minh Q; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J-C
2015-09-23
In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.
Microfluidics-based integrated airborne pathogen detection systems
NASA Astrophysics Data System (ADS)
Northrup, M. Allen; Alleman-Sposito, Jennifer; Austin, Todd; Devitt, Amy; Fong, Donna; Lin, Phil; Nakao, Brian; Pourahmadi, Farzad; Vinas, Mary; Yuan, Bob
2006-09-01
Microfluidic Systems is focused on building microfluidic platforms that interface front-end mesofluidics to handle real world sample volumes for optimal sensitivity coupled to microfluidic circuitry to process small liquid volumes for complex reagent metering, mixing, and biochemical analysis, particularly for pathogens. MFSI is the prime contractor on two programs for the US Department of Homeland Security: BAND (Bioagent Autonomous Networked Detector) and IBADS (Instantaneous Bio-Aerosol Detection System). The goal of BAND is to develop an autonomous system for monitoring the air for known biological agents. This consists of air collection, sample lysis, sample purification, detection of DNA, RNA, and toxins, and a networked interface to report the results. For IBADS, MFSI is developing the confirmatory device which must verify the presence of a pathogen with 5 minutes of an air collector/trigger sounding an alarm. Instrument designs and biological assay results from both BAND and IBADS will be presented.
Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors
Nguyen, Cuong M.; Kota, Pavan Kumar; Nguyen, Minh Q.; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J.-C.
2015-01-01
In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations. PMID:26404311
The Intelligent Control System and Experiments for an Unmanned Wave Glider.
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.
The Intelligent Control System and Experiments for an Unmanned Wave Glider
Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan
2016-01-01
The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956
Video Guidance, Landing, and Imaging system (VGLIS) for space missions
NASA Technical Reports Server (NTRS)
Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Flemming, J. C.
1975-01-01
The feasibility of an autonomous video guidance system that is capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was demonstrated. The system was breadboarded and "flown" on a physical simulator consisting of a control panel and monitor, a dynamic simulator, and a PDP-9 computer. The breadboard VGLIS consisted of an image dissector camera and the appropriate processing logic. Results are reported.
The coastal ocean is a highly variable system with processes that have significant implications on the hydrographic and oxygen characteristics of the water column. The spatial and temporal variability of these fields can cause dramatic changes to water quality and in turn the h...
Autonomic Recovery: HyperCheck: A Hardware-Assisted Integrity Monitor
2013-08-01
system (OS). HyperCheck leverages the CPU System Management Mode ( SMM ), present in x86 systems, to securely generate and transmit the full state of the...HyperCheck harnesses the CPU System Management Mode ( SMM ) which is present in all x86 commodity systems to create a snapshot view of the current state of the...protect the software above it. Our assumptions are that the attacker does not have physical access to the machine and that the SMM BIOS is locked and
Volcano Monitoring: A Case Study in Pervasive Computing
NASA Astrophysics Data System (ADS)
Peterson, Nina; Anusuya-Rangappa, Lohith; Shirazi, Behrooz A.; Song, Wenzhan; Huang, Renjie; Tran, Daniel; Chien, Steve; Lahusen, Rick
Recent advances in wireless sensor network technology have provided robust and reliable solutions for sophisticated pervasive computing applications such as inhospitable terrain environmental monitoring. We present a case study for developing a real-time pervasive computing system, called OASIS for optimized autonomous space in situ sensor-web, which combines ground assets (a sensor network) and space assets (NASA’s earth observing (EO-1) satellite) to monitor volcanic activities at Mount St. Helens. OASIS’s primary goals are: to integrate complementary space and in situ ground sensors into an interactive and autonomous sensorweb, to optimize power and communication resource management of the sensorweb and to provide mechanisms for seamless and scalable fusion of future space and in situ components. The OASIS in situ ground sensor network development addresses issues related to power management, bandwidth management, quality of service management, topology and routing management, and test-bed design. The space segment development consists of EO-1 architectural enhancements, feedback of EO-1 data into the in situ component, command and control integration, data ingestion and dissemination and field demonstrations.
A real-time measurement system for long-life flood monitoring and warning applications.
Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta
2012-01-01
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km(2) semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events.
A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications
Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta
2012-01-01
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events. PMID:22666028
Design and realization of an automatic weather station at island
NASA Astrophysics Data System (ADS)
Chen, Yong-hua; Li, Si-ren
2011-10-01
In this paper, the design and development of an automatic weather station monitoring is described. The proposed system consists of a set of sensors for measuring meteorological parameters (temperature, wind speed & direction, rain fall, visibility, etc.). To increase the reliability of the system, wind speed & direction are measured redundantly with duplicate sensors. The sensor signals are collected by the data logger CR1000 at several analog and digital inputs. The CR1000 and the sensors form a completely autonomous system which works with the other systems installed in the container. Communication with the master PC is accomplished over the method of Code Division Multiple Access (CDMA) with the Compact Caimore6550P CDMA DTU. The data are finally stored in tables on the CPU as well as on the CF-Card. The weather station was built as an efficient autonomous system which operates with the other systems to provide the required data for a fully automatic measurement system.
Space motion sickness: The sensory motor controls and cardiovascular correlation
NASA Astrophysics Data System (ADS)
Souvestre, Philippe A.; Blaber, Andrew P.; Landrock, Clinton K.
Background and PurposeSpace motion sickness (SMS) and related symptoms remain a major limiting factor in Space operations. A recent comprehensive literature review [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y] concluded that SMS does not represent a unique diagnostic entity, and there is no adequate predictor of SMS' susceptibility and severity. No countermeasure has been found reliable to prevent or treat SMS symptoms onset. Recent neurophysiological findings on sensory-motor controls monitoring [P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] and heart-rate variability (HRV) measurements relationship could explain post-flight orthostatic intolerance (PFOI) in astronauts [A.P. Blaber, R.L. Bondar, M.S. Kassam, Heart rate variability and short duration space flight: relationship to post-flight orthostatic intolerance, BMC Physiology 4 (2004) 6]. These two methodologies are generally overlooked in SMS' analysis. In this paper we present the case for a strong relationship between sensory-motor controls related symptoms, including orthostatic intolerance (OI) and SMS symptoms. MethodsThis paper expands on several previously published papers [J.R. Lackner, Z. DiZio, Space motion sickness, Experimental Brain Research 175 (2006) 377-399, doi 10.1007/s00221-006-0697-y; P.A. Souvestre, C. Landrock, Biomedical-performance monitoring and assessment of astronauts by means of an ocular vestibular monitoring system, Acta Astronautica, 60 (4-7) (2007) 313-321, doi:10.1016/j.actaastro.2006.08.013] along with an updated literature review. An analysis of a 10-year period clinical data from trauma patients experiencing postural deficiency syndrome (PDS) show assessment and monitoring techniques which successfully identify trauma impacts on core regulatory sensory motor and cognitive mechanisms. Static postural analysis provides specific central neurophysiological markers that can reliably identify PDS occurrence among classic peripheral musculoskeletal and spinal data [C. Landrock, P.A. Souvestre, Static postural analysis: a methodology to assess gravity related sensory motor controls' status for astronauts, 2006-01-2298, 36th SAE-ICES]. Many astronauts experience PFOI and recent research has implicated altered autonomic cardiovascular regulation caused by microgravity. HRV measurements have been used to determine if some pre-flight autonomic indicators relating to PFOI may exist by differentiating parasympathetic and sympathetic activity. ResultsThis review suggests a new approach to SMS mitigation based on specific neurophysiological assessment criteria. While SMS may not be a "unique diagnosis", it should be treated as result, or symptom of, the condition space adaptation syndrome (SAS), which can be shown to be a unique diagnosis. This methodology can identify and measure brain functional status in specific areas during pre-flight and post-flight examinations. This could provide further understanding on why, how and when SMS and PFOI might occur in Astronauts, and lead to criteria that predict susceptibility to SMS. An additional test component is presented that relates to using static central sensory-motor data towards understanding SMS and OI occurrence. Recent investigations indicate relationship between HRV autonomic indicators with Motion Sickness [B. Cheung, K. Hoffer, R. Heskin, A. Smith, Physiological and behavioral responses to an exposure to pitch illusion in the simulator, Aviation Space, 2004; Y. Yokota, M. Aoki, K. Mizuta, Y. Ito, N. Isu, Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects, Acta Oto-laryngological, 2005]. It is found that astronauts with lower sympatho-vagal balance and higher supine parasympathetic activity pre-flight may present with PFOI indicators. Not only HRV provides information on autonomic regulation, but HRV pattern appears to be chaotic and/or fractal. Beat-by-beat HRV yields fractal dimension of the cardiovascular control system [C.K. Peng, J. Mistus, J.M. Hausdorff, S. Havlin, H.E. Stanley, A.L. Goldberger, Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Physics Review Letters 70 (1999) 1343-1346]. Similar properties can be found in other physiological signals such as breathing intervals and gait pattern [N. Scafetta, R. Moon, B.J. West, Physiological signals and their fractal response to stress conditions, environmental changes and neurodegenerative diseases, in: Proceedings of The 25th Army Science Conference (ASC), Orlando, Florida, November 27-30, 2006]. ConclusionsA strong correlation between unmitigated SMS and PFOI related symptoms in astronauts has been presented. There is also strong correlation with PDS related symptoms, which can be accurately identified, measured, and monitored via a specific ocular-vestibular-postural monitoring system along with relevant clinical data. Along with the associated autonomic interactions detected by HRV, the fractal nature of the HRV data may provide useful information on the nature and complexity of central neural controls in relation to physiological [A.P. Blaber, R.L. Bondar, R. Freeman, Coarse grained spectral analysis of HR and BP variability in patients with autonomic failure, American Journal of Physiology 271 (1996) H1555-H1564] and mental stress [Y. Hoshikawa, Y. Yamamoto, Effects of Stroop color-word conflict test on the autonomic nervous system responses, American Journal of Physiology, 1997]. The data presented provide strong evidence that proper biomedical assessment methodologies employed with appropriate technology can lead to better understanding Astronauts' pre-flight and post-flight biomedical status, necessary to further human exploration in Space on a safe and successful path.
A method for diagnosing time dependent faults using model-based reasoning systems
NASA Technical Reports Server (NTRS)
Goodrich, Charles H.
1995-01-01
This paper explores techniques to apply model-based reasoning to equipment and systems which exhibit dynamic behavior (that which changes as a function of time). The model-based system of interest is KATE-C (Knowledge based Autonomous Test Engineer) which is a C++ based system designed to perform monitoring and diagnosis of Space Shuttle electro-mechanical systems. Methods of model-based monitoring and diagnosis are well known and have been thoroughly explored by others. A short example is given which illustrates the principle of model-based reasoning and reveals some limitations of static, non-time-dependent simulation. This example is then extended to demonstrate representation of time-dependent behavior and testing of fault hypotheses in that environment.
An ambulatory recording system for the assessment of autonomic changes across multiple days
NASA Astrophysics Data System (ADS)
Sollers, John J., III; Yonezawa, Yoshiharu; Silver, Rebecca A.; Merritt, Marcellus M.; Thayer, Julian F.
2005-05-01
Recent evidence indicates that poor autonomic regulation, indexed by decreased heart period variability (HPV), is associated with decreased working memory. HPV analyses are computed on the interbeat interval time series derived from the electrocardiogram (EKG). Unfortunately, the duration of the data collection and the issue of the size of ambulatory monitors with sufficient storage capacity for multi-day records is somewhat problematic. In the present paper we describe a system that allows for the collection of large amounts of high quality data using a small data collection device. The recording system consists of a miniature, single-module electrocardiogram-recording device. This module consists of an integrated three-electrode device that is attached to the chest of the subject. A low power 8-bit micro-controller detects the R-spike and stores the time between R-spikes in milliseconds on a 512 KB EEPROM. This system can record continuously for over four days. This system will allow the recording of cardio-dynamics in the field and provide highly reliable data across multiple days. The use of this device to assess physiological function in military operations would allow researchers to examine longer data records across several contexts and to understand the role of changes in autonomic function as they relate to performance.
Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.
2017-01-01
A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.
The Engineering Strong Ground Motion Network of the National Autonomous University of Mexico
NASA Astrophysics Data System (ADS)
Velasco Miranda, J. M.; Ramirez-Guzman, L.; Aguilar Calderon, L. A.; Almora Mata, D.; Ayala Hernandez, M.; Castro Parra, G.; Molina Avila, I.; Mora, A.; Torres Noguez, M.; Vazquez Larquet, R.
2014-12-01
The coverage, design, operation and monitoring capabilities of the strong ground motion program at the Institute of Engineering (IE) of the National Autonomous University of Mexico (UNAM) is presented. Started in 1952, the seismic instrumentation intended initially to bolster earthquake engineering projects in Mexico City has evolved into the largest strong ground motion monitoring system in the region. Today, it provides information not only to engineering projects, but also to the near real-time risk mitigation systems of the country, and enhances the general understanding of the effects and causes of earthquakes in Mexico. The IE network includes more than 100 free-field stations and several buildings, covering the largest urban centers and zones of significant seismicity in Central Mexico. Of those stations, approximately one-fourth send the observed acceleration to a processing center in Mexico City continuously, and the rest require either periodic visits for the manual recovery of the data or remote interrogation, for later processing and cataloging. In this research, we document the procedures and telecommunications systems used systematically to recover information. Additionally, we analyze the spatial distribution of the free-field accelerographs, the quality of the instrumentation, and the recorded ground motions. The evaluation criteria are based on the: 1) uncertainty in the generation of ground motion parameter maps due to the spatial distribution of the stations, 2) potential of the array to provide localization and magnitude estimates for earthquakes with magnitudes greater than Mw 5, and 3) adequacy of the network for the development of Ground Motion Prediction Equations due to intra-plate and intra-slab earthquakes. We conclude that the monitoring system requires a new redistribution, additional stations, and a substantial improvement in the instrumentation and telecommunications. Finally, we present an integral plan to improve the current network's monitoring capabilities.
Fletcher, Richard Ribon; Dobson, Kelly; Goodwin, Matthew S; Eydgahi, Hoda; Wilder-Smith, Oliver; Fernholz, David; Kuboyama, Yuta; Hedman, Elliott Bruce; Poh, Ming-Zher; Picard, Rosalind W
2010-03-01
Widespread use of affective sensing in healthcare applications has been limited due to several practical factors, such as lack of comfortable wearable sensors, lack of wireless standards, and lack of low-power affordable hardware. In this paper, we present a new low-cost, low-power wireless sensor platform implemented using the IEEE 802.15.4 wireless standard, and describe the design of compact wearable sensors for long-term measurement of electrodermal activity, temperature, motor activity, and photoplethysmography. We also illustrate the use of this new technology for continuous long-term monitoring of autonomic nervous system and motion data from active infants, children, and adults. We describe several new applications enabled by this system, discuss two specific wearable designs for the wrist and foot, and present sample data.
The Personal Satellite Assistant: An Internal Spacecraft Autonomous Mobile Monitor
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Gawdiak, Yuri; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper presents an overview of the research and development effort at the NASA Ames Research Center to create an internal spacecraft autonomous mobile monitor capable of performing intra-vehicular sensing activities by autonomously navigating onboard the International Space Station. We describe the capabilities, mission roles, rationale, high-level functional requirements, and design challenges for an autonomous mobile monitor. The rapid prototyping design methodology used, in which five prototypes of increasing fidelity are designed, is described as well as the status of these prototypes, of which two are operational and being tested, and one is actively being designed. The physical test facilities used to perform ground testing are briefly described, including a micro-gravity test facility that permits a prototype to propel itself in 3 dimensions with 6 degrees-of-freedom as if it were in an micro-gravity environment. We also describe an overview of the autonomy framework and its components including the software simulators used in the development process. Sample mission test scenarios are also described. The paper concludes with a discussion of future and related work followed by the summary.
The Jet Propulsion Laboratory shared control architecture and implementation
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad
1990-01-01
A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.
NASA Technical Reports Server (NTRS)
Tatara, J. D.; Perry, J. L.
2004-01-01
Monitoring the atmospheric composition of a crewed spacecraft cabin is central to successfully expanding the breadth and depth of first-hand human knowledge and understanding of space. Highly reliable technologies must be identified and developed to monitor atmospheric composition. This will enable crewed space missions that last weeks, months, and eventually years. Atmospheric composition monitoring is a primary component of any environmental control and life support system. Instrumentation employed to monitor atmospheric composition must be inexpensive, simple, and lightweight and provide robust performance. Such a system will ensure an environment that promotes human safety and health, and that the environment can be maintained with a high degree of confidence. Key to this confidence is the capability for any technology to operate autonomously, with little intervention from the crew or mission control personnel. A study has been conducted using technologies that, with further development, may reach these goals.
A field robot for autonomous laser-based N2O flux measurements
NASA Astrophysics Data System (ADS)
Molstad, Lars; Reent Köster, Jan; Bakken, Lars; Dörsch, Peter; Lien, Torgrim; Overskeid, Øyvind; Utstumo, Trygve; Løvås, Daniel; Brevik, Anders
2014-05-01
N2O measurements in multi-plot field trials are usually carried out by chamber-based manual gas sampling and subsequent laboratory-based gas chromatographic N2O determination. Spatial and temporal resolution of these measurements are commonly limited by available manpower. However, high spatial and temporal variability of N2O fluxes within individual field plots can add large uncertainties to time- and area-integrated flux estimates. Detailed mapping of this variability would improve these estimates, as well as help our understanding of the factors causing N2O emissions. An autonomous field robot was developed to increase the sampling frequency and to operate outside normal working hours. The base of this system was designed as an open platform able to carry versatile instrumentation. It consists of an electrically motorized platform powered by a lithium-ion battery pack, which is capable of autonomous navigation by means of a combined high precision real-time kinematic (RTK) GPS and an inertial measurement unit (IMU) system. On this platform an elevator is mounted, carrying a lateral boom with a static chamber on each side of the robot. Each chamber is equipped with a frame of plastic foam to seal the chamber when lowered onto the ground by the elevator. N2O flux from the soil covered by the two chambers is sequentially determined by circulating air between each chamber and a laser spectrometer (DLT-100, Los Gatos Research, Mountain View, CA, USA), which monitors the increase in N2O concentration. The target enclosure time is 1 - 2 minutes, but may be longer when emissions are low. CO2 concentrations are determined by a CO2/H2O gas analyzer (LI-840A, LI-COR Inc., Lincoln, NE, USA). Air temperature and air pressure inside both chambers are continuously monitored and logged. Wind speed and direction are monitored by a 3D sonic anemometer on top of the elevator boom. This autonomous field robot can operate during day and night time, and its working hours are only limited by the recharge time of the battery pack. It is therefore suited for field studies requiring high temporal and/or spatial resolution.
Smart Cruise Control: UAV sensor operator intent estimation and its application
NASA Astrophysics Data System (ADS)
Cheng, Hui; Butler, Darren; Kumar, Rakesh
2006-05-01
Due to their long endurance, superior mobility and the low risk posed to the pilot and sensor operator, UAVs have become the preferred platform for persistent ISR missions. However, currently most UAV based ISR missions are conducted through manual operation. Event the simplest tasks, such as vehicle tracking, route reconnaissance and site monitoring, need the sensor operator's undivided attention and constant adjustment of the sensor control. The lack of autonomous behaviour greatly limits of the effectiveness and the capability of UAV-based ISR, especially the use of a large number of UAVs simultaneously. Although fully autonomous UAV based ISR system is desirable, it is still a distant dream due to the complexity and diversity of combat and ISR missions. In this paper, we propose a Smart Cruise Control system that can learn UAV sensor operator's intent and use it to complete tasks automatically, such as route reconnaissance and site monitoring. Using an operator attention model, the proposed system can estimate the operator's intent from how they control the sensor (e.g. camera) and the content of the imagery that is acquired. Therefore, for example, from initially manually controlling the UAV sensor to follow a road, the system can learn not only the preferred operation, "tracking", but also the road appearance, "what to track" in real-time. Then, the learnt models of both road and the desired operation can be used to complete the task automatically. We have demonstrated the Smart Cruise Control system using real UAV videos where roads need to be tracked and buildings need to be monitored.
Development and Control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS)
NASA Astrophysics Data System (ADS)
Porter, Robert D.
2002-09-01
The objective of this thesis was to design, construct and develop the initial autonomous control algorithm for the NPS Planar Autonomous Docking Simulator (NPADS) The effort included hardware design, fabrication, installation and integration; mass property determination; and the development and testing of control laws utilizing MATLAB and Simulink for modeling and LabView for NPADS control, The NPADS vehicle uses air pads and a granite table to simulate a 2-D, drag-free, zero-g space environment, It is a completely self-contained vehicle equipped with eight cold-gas, bang-bang type thrusters and a reaction wheel for motion control, A 'star sensor' CCD camera locates the vehicle on the table while a color CCD docking camera and two robotic arms will locate and dock with a target vehicle, The on-board computer system leverages PXI technology and a single source, simplifying systems integration, The vehicle is powered by two lead-acid batteries for completely autonomous operation, A graphical user interface and wireless Ethernet enable the user to command and monitor the vehicle from a remote command and data acquisition computer. Two control algorithms were developed and allow the user to either control the thrusters and reaction wheel manually or simply specify a desired location and rotation angle,
Autonomic dysfunction with early respiratory syncytial virus-related infection.
Stock, Claire; Teyssier, Georges; Pichot, Vincent; Goffaux, Philippe; Barthelemy, Jean-Claude; Patural, Hugues
2010-08-25
Apparent life-threatening events (ALTE) and/or prolonged apnoea have been well-documented during respiratory syncytial virus (RSV) infection in infants less than 2 months of age but fundamental mechanisms remain unclear. The possibility of a central origin for the development of severe cardiac and respiratory events encouraged us, to explore the autonomic nervous system (ANS) profile of infected infants, since ANS activity may contribute to the constellation of symptoms observed during severe forms of RSV bronchiolitis. Eight infants (2 preterm and 6 full-term) less than 2 months of age and presenting with severe and apnoeic forms of RSV infection were evaluated using non-invasive electrophysiological monitoring obtained simultaneously for approximately 2 consecutive hours, including a quiet sleep period. Eight control subjects, paired for gestational and postnatal age, were also evaluated. ANS status was monitored using electrocardiogram recordings and quantified through a frequency-domain analysis of heart rate variability (HRV). This included sympathetic (VLF and LF) and parasympathetic (HF) indices as well as a measure of baroreflex sensitivity (BRS) obtained using non-invasive continuous arterial pressure. Regardless of gestational and postnatal age, heart rate variability components (Ptot, VLF, LF, and HF) and baroreflex components (alpha LF, alpha HF and sBR) were found to be significantly lower in the RSV-infected group than in the control group (p<0.05). RSV infection in neonates is associated with profound central autonomic dysfunction. The potentially fatal consequence stresses the importance of maintaining prolonged cardiopulmonary monitoring. Copyright 2010 Elsevier B.V. All rights reserved.
Use of Semi-Autonomous Tools for ISS Commanding and Monitoring
NASA Technical Reports Server (NTRS)
Brzezinski, Amy S.
2014-01-01
As the International Space Station (ISS) has moved into a utilization phase, operations have shifted to become more ground-based with fewer mission control personnel monitoring and commanding multiple ISS systems. This shift to fewer people monitoring more systems has prompted use of semi-autonomous console tools in the ISS Mission Control Center (MCC) to help flight controllers command and monitor the ISS. These console tools perform routine operational procedures while keeping the human operator "in the loop" to monitor and intervene when off-nominal events arise. Two such tools, the Pre-positioned Load (PPL) Loader and Automatic Operators Recorder Manager (AutoORM), are used by the ISS Communications RF Onboard Networks Utilization Specialist (CRONUS) flight control position. CRONUS is responsible for simultaneously commanding and monitoring the ISS Command & Data Handling (C&DH) and Communications and Tracking (C&T) systems. PPL Loader is used to uplink small pieces of frequently changed software data tables, called PPLs, to ISS computers to support different ISS operations. In order to uplink a PPL, a data load command must be built that contains multiple user-input fields. Next, a multiple step commanding and verification procedure must be performed to enable an onboard computer for software uplink, uplink the PPL, verify the PPL has incorporated correctly, and disable the computer for software uplink. PPL Loader provides different levels of automation in both building and uplinking these commands. In its manual mode, PPL Loader automatically builds the PPL data load commands but allows the flight controller to verify and save the commands for future uplink. In its auto mode, PPL Loader automatically builds the PPL data load commands for flight controller verification, but automatically performs the PPL uplink procedure by sending commands and performing verification checks while notifying CRONUS of procedure step completion. If an off-nominal condition occurs during procedure execution, PPL Loader notifies CRONUS through popup messages, allowing CRONUS to examine the situation and choose an option of how PPL loader should proceed with the procedure. The use of PPL Loader to perform frequent, routine PPL uplinks offloads CRONUS to better monitor two ISS systems. It also reduces procedure performance time and decreases risk of command errors. AutoORM identifies ISS communication outage periods and builds commands to lock, playback, and unlock ISS Operations Recorder files. Operation Recorder files are circular buffer files of continually recorded ISS telemetry data. Sections of these files can be locked from further writing, be played back to capture telemetry data that occurred during an ISS loss of signal (LOS) period, and then be unlocked for future recording use. Downlinked Operation Recorder files are used by mission support teams for data analysis, especially if failures occur during LOS. The commands to lock, playback, and unlock Operations Recorder files are encompassed in three different operational procedures and contain multiple user-input fields. AutoORM provides different levels of automation for building and uplinking the commands to lock, playback, and unlock Operations Recorder files. In its automatic mode, AutoORM automatically detects ISS LOS periods, then generates and uplinks the commands to lock, playback, and unlock Operations Recorder files when MCC regains signal with ISS. AutoORM also features semi-autonomous and manual modes which integrate CRONUS more into the command verification and uplink process. AutoORMs ability to automatically detect ISS LOS periods and build the necessary commands to preserve, playback, and release recorded telemetry data greatly offloads CRONUS to perform more high-level cognitive tasks, such as mission planning and anomaly troubleshooting. Additionally, since Operations Recorder commands contain numerical time input fields which are tedious for a human to manually build, AutoORM's ability to automatically build commands reduces operational command errors. PPL Loader and AutoORM demonstrate principles of semi-autonomous operational tools that will benefit future space mission operations. Both tools employ different levels of automation to perform simple and routine procedures, thereby offloading human operators to perform higher-level cognitive tasks. Because both tools provide procedure execution status and highlight off-nominal indications, the flight controller is able to intervene during procedure execution if needed. Semi-autonomous tools and systems that can perform routine procedures, yet keep human operators informed of execution, will be essential in future long-duration missions where the onboard crew will be solely responsible for spacecraft monitoring and control.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
Facility Monitoring: A Qualitative Theory for Sensor Fusion
NASA Technical Reports Server (NTRS)
Figueroa, Fernando
2001-01-01
Data fusion and sensor management approaches have largely been implemented with centralized and hierarchical architectures. Numerical and statistical methods are the most common data fusion methods found in these systems. Given the proliferation and low cost of processing power, there is now an emphasis on designing distributed and decentralized systems. These systems use analytical/quantitative techniques or qualitative reasoning methods for date fusion.Based on other work by the author, a sensor may be treated as a highly autonomous (decentralized) unit. Each highly autonomous sensor (HAS) is capable of extracting qualitative behaviours from its data. For example, it detects spikes, disturbances, noise levels, off-limit excursions, step changes, drift, and other typical measured trends. In this context, this paper describes a distributed sensor fusion paradigm and theory where each sensor in the system is a HAS. Hence, given the reach qualitative information from each HAS, a paradigm and formal definitions are given so that sensors and processes can reason and make decisions at the qualitative level. This approach to sensor fusion makes it possible the implementation of intuitive (effective) methods to monitor, diagnose, and compensate processes/systems and their sensors. This paradigm facilitates a balanced distribution of intelligence (code and/or hardware) to the sensor level, the process/system level, and a higher controller level. The primary application of interest is in intelligent health management of rocket engine test stands.
Earthwork haul-truck cycle-time monitoring : a case study.
DOT National Transportation Integrated Search
2016-03-01
Recent developments in autonomous technologies have motivated practitioners to adopt new technologies in highway and : earthwork construction projects. This project set out to (1) identify new and emerging autonomous earthwork technologies and : (2) ...
Toward autonomous rotorcraft flight in degraded visual environments: experiments and lessons learned
NASA Astrophysics Data System (ADS)
Stambler, Adam; Spiker, Spencer; Bergerman, Marcel; Singh, Sanjiv
2016-05-01
Unmanned cargo delivery to combat outposts will inevitably involve operations in degraded visual environments (DVE). When DVE occurs, the aircraft autonomy system needs to be able to function regardless of the obscurant level. In 2014, Near Earth Autonomy established a baseline perception system for autonomous rotorcraft operating in clear air conditions, when its m3 sensor suite and perception software enabled autonomous, no-hover landings onto unprepared sites populated with obstacles. The m3's long-range lidar scanned the helicopter's path and the perception software detected obstacles and found safe locations for the helicopter to land. This paper presents the results of initial tests with the Near Earth perception system in a variety of DVE conditions and analyzes them from the perspective of mission performance and risk. Tests were conducted with the m3's lidar and a lightweight synthetic aperture radar in rain, smoke, snow, and controlled brownout experiments. These experiments showed the capability to penetrate through mild DVE but the perceptual capabilities became degraded with the densest brownouts. The results highlight the need for not only improved ability to see through DVE, but also for improved algorithms to monitor and report DVE conditions.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Astrophysics Data System (ADS)
Alhorn, Dean C.
2005-02-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete sub-systems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
NASA Astrophysics Data System (ADS)
Ip, F.; Dohm, J. M.; Baker, V. R.; Castano, R.; Cichy, B.; Chien, S.; Davies, A.; Doggett, T.; Greeley, R.
2004-12-01
For the first time, a spacecraft has the ability to autonomously detect and react to flood events. Flood detection and the investigation of flooding dynamics in real time from space have never been done before at least not until now. Part of the challenge for the hydrological community has been the difficulty of obtaining cloud-free scenes from orbit at sufficient temporal and spatial resolutions to accurately assess flooding. In addition, the large spatial extent of drainage networks coupled with the size of the data sets necessary to be downlinked from satellites add to the difficulty of monitoring flooding from space. Technology developed as part of the Autonomous Sciencecraft Experiment (ASE) creates the new capability to autonomously detect, assess, and react to dynamic events, thereby enabling the monitoring of transient processes such as flooding in real time. In addition to being able to autonomously process the imaged data onboard the spacecraft for the first time and search the data for specific spectral features, the ASE Science Team has developed and tested change detection algorithms for the Hyperion spectrometer on EO-1. For flood events, if a change is detected in the onboard processed image (i.e. an increase in the number of ¡wet¡" pixels relative to a baseline image where the system is in normal flow condition or relatively dry), the spacecraft is autonomously retasked to obtain additional scenes. For instance, in February 2004 a rare flooding of the Australian Diamantina River was captured by EO-1. In addition, in August during ASE onboard testing a Zambezi River scene in Central Africa was successfully triggered by the classifier to autonomously take another observation. Yet another successful trigger-response flooding test scenario of the Yellow River in China was captured by ASE on 8/18/04. These exciting results pave the way for future smart reconnaissance missions of transient processes on Earth and beyond. Acknowledgments: We are grateful to the City of Tucson and Tucson Water for their support and cooperation.
Overview of the Autonomic Nervous System
... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...
The Standard Autonomous File Server, A Customized, Off-the-Shelf Success Story
NASA Technical Reports Server (NTRS)
Semancik, Susan K.; Conger, Annette M.; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
The Standard Autonomous File Server (SAFS), which includes both off-the-shelf hardware and software, uses an improved automated file transfer process to provide a quicker, more reliable, prioritized file distribution for customers of near real-time data without interfering with the assets involved in the acquisition and processing of the data. It operates as a stand-alone solution, monitoring itself, and providing an automated fail-over process to enhance reliability. This paper describes the unique problems and lessons learned both during the COTS selection and integration into SAFS, and the system's first year of operation in support of NASA's satellite ground network. COTS was the key factor in allowing the two-person development team to deploy systems in less than a year, meeting the required launch schedule. The SAFS system has been so successful; it is becoming a NASA standard resource, leading to its nomination for NASA's Software of the Year Award in 1999.
2012-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Autonomous Dirigible Airships: A Comparative Analysis...COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation...NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this report are
High job control enhances vagal recovery in media work.
Lindholm, Harri; Sinisalo, Juha; Ahlberg, Jari; Jahkola, Antti; Partinen, Markku; Hublin, Christer; Savolainen, Aslak
2009-12-01
Job strain has been linked to increased risk of cardiovascular diseases. In modern media work, time pressures, rapidly changing situations, computer work and irregular working hours are common. Heart rate variability (HRV) has been widely used to monitor sympathovagal balance. Autonomic imbalance may play an additive role in the development of cardiovascular diseases. To study the effects of work demands and job control on the autonomic nervous system recovery among the media personnel. From the cross-sectional postal survey of the employees in Finnish Broadcasting Company (n = 874), three age cohorts (n = 132) were randomly selected for an analysis of HRV in 24 h electrocardiography recordings. In the middle-aged group, those who experienced high job control had significantly better vagal recovery than those with low or moderate control (P < 0.01). Among young and ageing employees, job control did not associate with autonomic recovery. High job control over work rather than low demands seemed to enhance autonomic recovery in middle-aged media workers. This was independent of poor health habits such as smoking, physical inactivity or alcohol consumption.
Model-based reasoning for power system management using KATE and the SSM/PMAD
NASA Technical Reports Server (NTRS)
Morris, Robert A.; Gonzalez, Avelino J.; Carreira, Daniel J.; Mckenzie, F. D.; Gann, Brian
1993-01-01
The overall goal of this research effort has been the development of a software system which automates tasks related to monitoring and controlling electrical power distribution in spacecraft electrical power systems. The resulting software system is called the Intelligent Power Controller (IPC). The specific tasks performed by the IPC include continuous monitoring of the flow of power from a source to a set of loads, fast detection of anomalous behavior indicating a fault to one of the components of the distribution systems, generation of diagnosis (explanation) of anomalous behavior, isolation of faulty object from remainder of system, and maintenance of flow of power to critical loads and systems (e.g. life-support) despite fault conditions being present (recovery). The IPC system has evolved out of KATE (Knowledge-based Autonomous Test Engineer), developed at NASA-KSC. KATE consists of a set of software tools for developing and applying structure and behavior models to monitoring, diagnostic, and control applications.
2009-09-30
will take place off the island of El Hierro in the Canary Islands, a site with coastal resident populations of Blainville’s beaked whale, Mesoplodon...whales off El Hierro , Canary Islands” European Research on Cetaceans 22nd, Holland, April, 2008. [non-refereed] Beedholm K., Madsen P., Johnson M
2011-09-30
For beaked whales, field testing will take place off the island of El Hierro in the Canary Islands, a site with coastal resident populations of...beaked whales off El Hierro , Canary Islands,” European Research on Cetaceans 22nd. Holland, April, 2008. Baumgartner, M. F., and S. E. Mussoline
The Curiosity Mars Rover's Fault Protection Engine
NASA Technical Reports Server (NTRS)
Benowitz, Ed
2014-01-01
The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.
Teacher Researchers in Action Research in a Heavily Centralized Education System
ERIC Educational Resources Information Center
Kayaoglu, M. Naci
2015-01-01
Action research is characterized by a new paradigm of empowering teachers to monitor their own practices in a more autonomous manner with a vision of challenging and improving their own techniques of teaching through their own participatory research. Yet in spite of this apparently radical shift in the function of the teacher from the constant…
Trusted computation through biologically inspired processes
NASA Astrophysics Data System (ADS)
Anderson, Gustave W.
2013-05-01
Due to supply chain threats it is no longer a reasonable assumption that traditional protections alone will provide sufficient security for enterprise systems. The proposed cognitive trust model architecture extends the state-of-the-art in enterprise anti-exploitation technologies by providing collective immunity through backup and cross-checking, proactive health monitoring and adaptive/autonomic threat response, and network resource diversity.
Autonomous grain combine control system
Hoskinson, Reed L.; Kenney, Kevin L.; Lucas, James R.; Prickel, Marvin A.
2013-06-25
A system for controlling a grain combine having a rotor/cylinder, a sieve, a fan, a concave, a feeder, a header, an engine, and a control system. The feeder of the grain combine is engaged and the header is lowered. A separator loss target, engine load target, and a sieve loss target are selected. Grain is harvested with the lowered header passing the grain through the engaged feeder. Separator loss, sieve loss, engine load and ground speed of the grain combine are continuously monitored during the harvesting. If the monitored separator loss exceeds the selected separator loss target, the speed of the rotor/cylinder, the concave setting, the engine load target, or a combination thereof is adjusted. If the monitored sieve loss exceeds the selected sieve loss target, the speed of the fan, the size of the sieve openings, or the engine load target is adjusted.
Environmental monitoring using autonomous vehicles: a survey of recent searching techniques.
Bayat, Behzad; Crasta, Naveena; Crespi, Alessandro; Pascoal, António M; Ijspeert, Auke
2017-06-01
Autonomous vehicles are becoming an essential tool in a wide range of environmental applications that include ambient data acquisition, remote sensing, and mapping of the spatial extent of pollutant spills. Among these applications, pollution source localization has drawn increasing interest due to its scientific and commercial interest and the emergence of a new breed of robotic vehicles capable of operating in harsh environments without human supervision. The aim is to find the location of a region that is the source of a given substance of interest (e.g. a chemical pollutant at sea or a gas leakage in air) using a group of cooperative autonomous vehicles. Motivated by fast paced advances in this challenging area, this paper surveys recent advances in searching techniques that are at the core of environmental monitoring strategies using autonomous vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Niu, Gang; Jiang, Junjie; Youn, Byeng D; Pecht, Michael
2018-01-01
Autonomous vehicles are playing an increasingly importance in support of a wide variety of critical events. This paper presents a novel autonomous health management scheme on rail vehicles driven by permanent magnet synchronous motors (PMSMs). Firstly, the PMSMs are modeled based on first principle to deduce the initial profile of pneumatic braking (p-braking) force, then which is utilized for real-time demagnetization monitoring and degradation prognosis through similarity-based theory and generate prognosis-enhanced p-braking force strategy for final optimal control. A case study is conducted to demonstrate the feasibility and benefit of using the real-time prognostics and health management (PHM) information in vehicle 'drive-brake' control automatically. The results show that accurate demagnetization monitoring, degradation prognosis, and real-time capability for control optimization can be obtained, which can effectively relieve brake shoe wear. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Behavioral and autonomic thermoregulation in hamsters during microwave-induced heat exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, C.J.; Long, M.D.; Fehlner, K.S.
1984-01-01
Preferred ambient temperature (Ta) and ventilatory frequency were measured in free-moving hamsters exposed to 2450-MHz microwaves. A waveguide exposure system that permits continuous monitoring of the absorbed heat load accrued from microwave exposure was imposed with a longitudinal temperature gradient which allowed hamsters to select their preferred Ta. Ventilatory frequency was monitored remotely by analysing the rhythmic shifts in unabsorbed microwave energy passing down the waveguide. Without microwave exposure hamsters selected an average T2 of 30.2 C. This preferred Ta did not change until the rate of heat absorption (SAR) from microwave exposure exceeded approx. 2 W kg-1. In amore » separate experiment, a SAR of 2.0 W kg-1 at a Ta of 30C was shown to promote an average 0.5 C increase in colonic temperature. Hamsters maintained their ventilatory frequency at baseline levels by selecting a cooler Ta during microwave exposure. These data support previous studies suggesting that during thermal stress behavioral thermo-regulation (i.e. preferred Ta) takes prescedence over autonomic thermoregulation (i.e. ventilatory frequency). It is apparent that selecting a cooler Ta is a more efficient and/or effective than autonomic thermoregulation for dissipating a heat load accrued from microwave exposure.« less
Kajaia, T; Maskhulia, L; Chelidze, K; Akhalkatsi, V; Kakhabrishvili, Z
2017-03-01
Aim of the study was to compare the ANS functioning, as measured by heart rate variability (HRV), in athletes with non-functional overreaching (NFO) and overtraining syndrome (OTS) and in athletes without NFO/OTS. In 43 athletes with NFO/OTS, 40 athletes without NFO/OTS, as well as in 35 sedentary subjects the ANS function was evaluated with the Autonomic Balance Test, based on the HRV analysis of resting heart rate recordings. Results of the study show lower HRV and lower vagal influence along with increased sympathetic cardiovascular control in athletes with non-functional overreaching and particularly in athletes with overtraining, than in highly trained athletes without NFO/OTS. "Stress Response" in athletes with NFO, as well as in some athletes with OTS, showing sympathetic dominance, considered as a sign of physical or mental fatigue and chronic stress, whereas "Total Autonomic Dystonia" in most of the athletes with OTS (67%) reflects more advanced stage of maladaptation associated with depressed regulatory function of the ANS, both sympathetic, as well as vagal influences. Most frequently NFO and OTS were seen in wrestling, which needs further investigation and regular medical monitoring. Thus, results of the study show progression of autonomic imbalance and depression of regulatory function of the autonomic nervous system in athletes with OTS. The cardiac autonomic imbalance observed in overtrained athletes implies changes in HRV and therefore would consider that heart rate variability may provide useful information in detection of overtraining in athletes and can be a valuable adjacent tool for optimising athlete's training program as well as for timely diagnosis and prevention of progression of NFO/OTS.
La Fountaine, Michael F
2017-11-29
Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework to demonstrate the potential effects of concussive head trauma on corresponding outcome measurements. Evidence from experimental models will be used to describe abnormal cellular functions and provide a hypothetical mechanistic basis for the respective responses of the anatomical structures to concussive head trauma. When available, example observations from the human concussion literature will be presented to demonstrate the effects of concussive head trauma that may be related to anomalous activity in the respective anatomical structures of the autonomic nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.
2013-04-01
bioreactor systems, a microfluidic -based flexible fluid exchange patch was developed for porcine wound models. A novel design and fabrication process...to be established. 15. SUBJECT TERMS Biomask, burn injury, facial reconstruction, wound-healing, bioreactor, flexible microfluidic , and...and layers of facial skin using different cell types and matrices to produce a reliable, physiologic facial and skin construct to restore functional
Autonomous Systems and Robotics: 2000-2004
NASA Technical Reports Server (NTRS)
2004-01-01
This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies to monitor, maintain, and where possible, repair complex space systems. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.
Abboud, Talal; Bamsey, Matthew; Paul, Anna-Lisa; Graham, Thomas; Braham, Stephen; Noumeir, Rita; Berinstain, Alain; Ferl, Robert
2013-01-01
Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated. PMID:23486220
Software systems for operation, control, and monitoring of the EBEX instrument
NASA Astrophysics Data System (ADS)
Milligan, Michael; Ade, Peter; Aubin, François; Baccigalupi, Carlo; Bao, Chaoyun; Borrill, Julian; Cantalupo, Christopher; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grainger, Will; Hanany, Shaul; Hillbrand, Seth; Hubmayr, Johannes; Hyland, Peter; Jaffe, Andrew; Johnson, Bradley; Kisner, Theodore; Klein, Jeff; Korotkov, Andrei; Leach, Sam; Lee, Adrian; Levinson, Lorne; Limon, Michele; MacDermid, Kevin; Matsumura, Tomotake; Miller, Amber; Pascale, Enzo; Polsgrove, Daniel; Ponthieu, Nicolas; Raach, Kate; Reichborn-Kjennerud, Britt; Sagiv, Ilan; Tran, Huan; Tucker, Gregory S.; Vinokurov, Yury; Yadav, Amit; Zaldarriaga, Matias; Zilic, Kyle
2010-07-01
We present the hardware and software systems implementing autonomous operation, distributed real-time monitoring, and control for the EBEX instrument. EBEX is a NASA-funded balloon-borne microwave polarimeter designed for a 14 day Antarctic flight that circumnavigates the pole. To meet its science goals the EBEX instrument autonomously executes several tasks in parallel: it collects attitude data and maintains pointing control in order to adhere to an observing schedule; tunes and operates up to 1920 TES bolometers and 120 SQUID amplifiers controlled by as many as 30 embedded computers; coordinates and dispatches jobs across an onboard computer network to manage this detector readout system; logs over 3 GiB/hour of science and housekeeping data to an onboard disk storage array; responds to a variety of commands and exogenous events; and downlinks multiple heterogeneous data streams representing a selected subset of the total logged data. Most of the systems implementing these functions have been tested during a recent engineering flight of the payload, and have proven to meet the target requirements. The EBEX ground segment couples uplink and downlink hardware to a client-server software stack, enabling real-time monitoring and command responsibility to be distributed across the public internet or other standard computer networks. Using the emerging dirfile standard as a uniform intermediate data format, a variety of front end programs provide access to different components and views of the downlinked data products. This distributed architecture was demonstrated operating across multiple widely dispersed sites prior to and during the EBEX engineering flight.
NASA Technical Reports Server (NTRS)
Mullikin, Richard L.
1987-01-01
Control of on-orbit operation of a spacecraft requires retention and application of special purpose, often unique, knowledge of equipment and procedures. Real-time distributed expert systems (RTDES) permit a modular approach to a complex application such as on-orbit spacecraft support. One aspect of a human-machine system that lends itself to the application of RTDES is the function of satellite/mission controllers - the next logical step toward the creation of truly autonomous spacecraft systems. This system application is described.
Souza, Naiara M; Giacon, Thais R; Pacagnelli, Francis L; Barbosa, Marianne P C R; Valenti, Vitor E; Vanderlei, Luiz C M
2016-10-01
Autonomic diabetic neuropathy is one of the most common complications of type 1 diabetes mellitus, and studies using heart rate variability to investigate these individuals have shown inconclusive results regarding autonomic nervous system activation. Aims To investigate the dynamics of heart rate in young subjects with type 1 diabetes mellitus through nonlinear and linear methods of heart rate variability. We evaluated 20 subjects with type 1 diabetes mellitus and 23 healthy control subjects. We obtained the following nonlinear indices from the recurrence plot: recurrence rate (REC), determinism (DET), and Shanon entropy (ES), and we analysed indices in the frequency (LF and HF in ms2 and normalised units - nu - and LF/HF ratio) and time domains (SDNN and RMSSD), through analysis of 1000 R-R intervals, captured by a heart rate monitor. There were reduced values (p<0.05) for individuals with type 1 diabetes mellitus compared with healthy subjects in the following indices: DET, REC, ES, RMSSD, SDNN, LF (ms2), and HF (ms2). In relation to the recurrence plot, subjects with type 1 diabetes mellitus demonstrated lower recurrence and greater variation in their plot, inter-group and intra-group, respectively. Young subjects with type 1 diabetes mellitus have autonomic nervous system behaviour that tends to randomness compared with healthy young subjects. Moreover, this behaviour is related to reduced sympathetic and parasympathetic activity of the autonomic nervous system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzenitis, J. M.; Haigh, P.
This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL), and GE Ion Track, Inc. (GEIT) to develop a commercial prototype of the Autonomous Pathogen Detection System (APDS), an instrument that monitors the air for all three biological threat agents (bacteria, viruses and toxins). This was originally a one year CRADA project, with the cost of the work at LLNL being funded by the Department of Homeland Security's Office of National Laboratories. The original project consisted of five major tasks and deliverables. The CRADA was then amended, converting the CRADA from amore » programmatically funded CRADA to a funds-in CRADA, extending the project for an additional 14 months, and adding four new tasks and deliverable to the project.« less
Autonomous Mission Operations Roadmap
NASA Technical Reports Server (NTRS)
Frank, Jeremy David
2014-01-01
As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.
Cryosphere Sensor Webs With The Autonomous Sciencecraft Experiment
NASA Astrophysics Data System (ADS)
Scharenbroich, L.; Doggett, T.; Kratz, T.; Castano, R.; Chien, S.; Davies, A. G.; Tran, D.; Mazzoni, D.
2006-12-01
Autonomous sensor-webs are being deployed as part of the Autonomous Sciencecraft Experiment [1], whereby observations using the Hyperion instrument [2] on-board Earth Observing-1 (EO-1 are triggered by either ground sensors or by near-real-time analysis of data from other space-based sensors. In the realm of cryosphere monitoring, one sensor-web has been set up pairing EO-1 with a sensor buoy [3] deployed in Sparkling Lake, one of several lakes in northern Wisconsin monitored by University of Wisconsin's Trout Lake Station. A Support Vector Machine (SVM) classifier was trained on historical thermistor chain data with manually recorded ice-in and ice-out times and used to trigger Hyperion observations of the Trout Lake area during spring thaw and winter freeze in 2005. A second sensor-web is being developed using near-real time sea ice data products, based on Department of Defense meteorological satellites, available from the National Snow and Ice Data Center (NSIDC) [4]. Once operational, this sensor web will trigger Hyperion observations of pre-defined targets in the Arctic and Antarctic where regional resolution data shows sea ice formation or break up. [1] Chien et al. (2005), An autonomous earth-observing sensor-web, IEEE Intelligent Systems, [2] Pearlman et al. (2003), Hyperion, a space-based imaging spectrometer, IEEE Trans. Geosci. Rem. Sens., 41(6), [3] Kratz, T. et al. (in press) Toward a Global Lake Ecological Observatory Network, Proceedings of the Karelian Institute, [4] Cavalieri et al. (1999) Near real-time DMSP SSM/I daily polar gridded sea ice concentrations, National Snow and Ice Data Center. Digital Media.
Endsley, Mica R
2017-02-01
As autonomous and semiautonomous systems are developed for automotive, aviation, cyber, robotics and other applications, the ability of human operators to effectively oversee and interact with them when needed poses a significant challenge. An automation conundrum exists in which as more autonomy is added to a system, and its reliability and robustness increase, the lower the situation awareness of human operators and the less likely that they will be able to take over manual control when needed. The human-autonomy systems oversight model integrates several decades of relevant autonomy research on operator situation awareness, out-of-the-loop performance problems, monitoring, and trust, which are all major challenges underlying the automation conundrum. Key design interventions for improving human performance in interacting with autonomous systems are integrated in the model, including human-automation interface features and central automation interaction paradigms comprising levels of automation, adaptive automation, and granularity of control approaches. Recommendations for the design of human-autonomy interfaces are presented and directions for future research discussed.
Energy Autonomous Wireless Sensing System Enabled by Energy Generated during Human Walking
NASA Astrophysics Data System (ADS)
Kuang, Yang; Ruan, Tingwen; Chew, Zheng Jun; Zhu, Meiling
2016-11-01
Recently, there has been a huge amount of work devoted to wearable energy harvesting (WEH) in a bid to establish energy autonomous wireless sensing systems for a range of health monitoring applications. However, limited work has been performed to implement and test such systems in real-world settings. This paper reports the development and real-world characterisation of a magnetically plucked wearable knee-joint energy harvester (Mag-WKEH) powered wireless sensing system, which integrates our latest research progresses in WEH, power conditioning and wireless sensing to achieve high energy efficiency. Experimental results demonstrate that with walking speeds of 3∼7 km/h, the Mag-WKEH generates average power of 1.9∼4.5 mW with unnoticeable impact on the wearer and is able to power the wireless sensor node (WSN) with three sensors to work at duty cycles of 6.6%∼13%. In each active period of 2 s, the WSN is able to measure and transmit 482 readings to the base station.
2010-09-30
after each trial. For beaked whales, field testing will take place off the island of El Hierro in the Canary Islands, a site with coastal resident...Johnson, M., “Coastal habitat use by Cuvier´s and Blainville´s beaked whales off El Hierro , Canary Islands” European Research on Cetaceans 22nd
Effectiveness of Acupuncture in the Treatment of Gulf War Illness
2010-07-01
8217 heterogeneous presentation GWI neurological presentations ·A new disease for TCM ’Wei-zhang (Flaccidity Syndrome ) treatment of organophosphate...poisoning ·Bi Syndrome ’Autonomic Nervous System (ANS) dysregulation ’ Osher Research Center, Harvard Medical School F6 Study Methodology...Screener; Jessica Wolin, MD:Medical Monitor; Elaine Scarmoutzos, Project Coordinator; Christina Noonan , MAc., LicAc.: Research Assistant; Matthew Hitron
Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano — A Case Study
Mecocci, Alessandro; Abrardo, Andrea
2014-01-01
This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the “Rognosa” tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached. PMID:24394600
Czugala, Monika; Gorkin, Robert; Phelan, Thomas; Gaughran, Jennifer; Curto, Vincenzo Fabio; Ducrée, Jens; Diamond, Dermot; Benito-Lopez, Fernando
2012-12-07
This work describes the first use of a wireless paired emitter detector diode device (PEDD) as an optical sensor for water quality monitoring in a lab-on-a-disc device. The microfluidic platform, based on an ionogel sensing area combined with a low-cost optical sensor, is applied for quantitative pH and qualitative turbidity monitoring of water samples at point-of-need. The autonomous capabilities of the PEDD system, combined with the portability and wireless communication of the full device, provide the flexibility needed for on-site water testing. Water samples from local fresh and brackish sources were successfully analysed using the device, showing very good correlation with standard bench-top systems.
Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults
Luttmann-Gibson, Heike; Suh, Helen H; Coull, Brent A; Dockery, Douglas W; Sarnat, Stefanie Ebelt; Schwartz, Joel; Stone, Peter H; Gold, Diane R
2015-01-01
Objectives Short-term elevation of ambient particulate air pollution has been associated with autonomic dysfunction and increased systemic inflammation, but the interconnections between these pathways are not well understood. We examined the association between inflammation and autonomic dysfunction and effect modification of inflammation on the association between air pollution and heart rate variability (HRV) in elderly subjects. Methods 25 elderly subjects in Steubenville, Ohio, were followed up to 24 times with repeated 30-min ECG Holter monitoring (545 observations). C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6), soluble inter-cellular adhesion molecule 1 (sICAM-1), and white blood cell and platelet counts were measured in peripheral blood samples collected in the first month of the study. Increased systemic inflammation was defined for subjects within the upper 20% of the distribution for each marker. A central ambient monitoring station provided daily fine particle (PM2.5) and sulphate (SO42−) data. Linear mixed models were used to identify associations between inflammatory markers and HRV and to assess effect modification of the association between air pollution and HRV due to inflammatory status. Results A 5.8 mg/l elevation in CRP was associated with decreases of between −8% and −33% for time and frequency domain HRV outcomes. A 5.1 μg/m3 increase in SO42− on the day before the health assessment was associated with a decrease of −6.7% in the SD of normal RR intervals (SDNN) (95% CI −11.8% to −1.3%) in subjects with elevated CRP, but not in subjects with lower CRP (p value interaction=0.04), with similar findings for PM2.5. Conclusions Increased systemic inflammation is associated with autonomic dysfunction in the elderly. Air pollution effects on reduced SDNN are stronger in subjects with elevated systemic inflammation. PMID:20519749
A Robust Compositional Architecture for Autonomous Systems
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara
2006-01-01
Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.
Reulecke, S; Schulz, S; Bauer, R; Witte, H; Voss, A
2011-01-01
Newborn mammals suffering from moderate hypoxia during or after birth are able to compensate a transitory lack of oxygen by adaptation of their vital functions. However, limited information is available about bivariate couplings of the underlying complex processes controlled by the autonomic nervous system. In this study an animal model of seven newborn piglets (2-3 days old, 1.71 ± 0.15 kg) was used. The aim of this study was to analyze the cardiovascular and cardiorespiratory interactions of autonomous nervous system during sustained hypoxia and the interrelationship of these autonomic time series after induced reoxygenation. For this purpose we applied a new high resolution version of the nonlinear method of Joint Symbolic Dynamics (JSD) for analysis of couplings between heart rate and blood pressure and respiration rate time series, respectively. This new method is characterized by using three defined symbols (JSD3) instead of two and the application of thresholds for the symbol transformation. Our results demonstrate that in contrast to the traditional JSD the comparison of cardiovascular interactions reveals only significant differences between normoxic and hypoxic conditions using JSD3 whereas for cardiorespiratory interactions significant differences were revealed by indices from both JSD2 and JSD3 due to reoxygenation. These results suggest that the application of JSD3 reveals more detailed information about cardiovascular and cardiorespiratory interactions of autonomic regulation and might be useful for monitoring of critical human newborns.
NASA Astrophysics Data System (ADS)
Dafflon, Baptiste; Oktem, Rusen; Peterson, John; Ulrich, Craig; Tran, Anh Phuong; Romanovsky, Vladimir; Hubbard, Susan S.
2017-06-01
Coincident monitoring of the spatiotemporal distribution of and interactions between land, soil, and permafrost properties is important for advancing our understanding of ecosystem dynamics. In this study, a novel monitoring strategy was developed to quantify complex Arctic ecosystem responses to the seasonal freeze-thaw-growing season conditions. The strategy exploited autonomous measurements obtained through electrical resistivity tomography to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness, and soil dielectric permittivity. The spatially and temporally dense monitoring data sets revealed several insights about tundra system behavior at a site located near Barrow, AK. In the active layer, the soil electrical conductivity (a proxy for soil water content) indicated an increasing positive correlation with the green chromatic coordinate (a proxy for vegetation vigor) over the growing season, with the strongest correlation (R = 0.89) near the typical peak of the growing season. Soil conductivity and green chromatic coordinate also showed significant positive correlations with thaw depth, which is influenced by soil and surface properties. In the permafrost, soil electrical conductivity revealed annual variations in solute concentration and unfrozen water content, even at temperatures well below 0°C in saline permafrost. These conditions may contribute to an acceleration of long-term thaw in Coastal permafrost regions. Demonstration of this first aboveground and belowground geophysical monitoring approach within an Arctic ecosystem illustrates its significant potential to remotely "visualize" permafrost, soil, and vegetation ecosystem codynamics in high resolution over field relevant scales.
Evolution of the Hubble Space Telescope Safing Systems
NASA Technical Reports Server (NTRS)
Pepe, Joyce; Myslinski, Michael
2006-01-01
The Hubble Space Telescope (HST) was launched on April 24 1990, with an expected lifespan of 15 years. Central to the spacecraft design was the concept of a series of on-orbit shuttle servicing missions permitting astronauts to replace failed equipment, update the scientific instruments and keep the HST at the forefront of astronomical discoveries. One key to the success of the Hubble mission has been the robust Safing systems designed to monitor the performance of the observatory and to react to keep the spacecraft safe in the event of equipment anomaly. The spacecraft Safing System consists of a range of software tests in the primary flight computer that evaluate the performance of mission critical hardware, safe modes that are activated when the primary control mode is deemed inadequate for protecting the vehicle, and special actions that the computer can take to autonomously reconfigure critical hardware. The HST Safing System was structured to autonomously detect electrical power system, data management system, and pointing control system malfunctions and to configure the vehicle to ensure safe operation without ground intervention for up to 72 hours. There is also a dedicated safe mode computer that constantly monitors a keep-alive signal from the primary computer. If this signal stops, the safe mode computer shuts down the primary computer and takes over control of the vehicle, putting it into a safe, low-power configuration. The HST Safing system has continued to evolve as equipment has aged, as new hardware has been installed on the vehicle, and as the operation modes have matured during the mission. Along with the continual refinement of the limits used in the safing tests, several new tests have been added to the monitoring system, and new safe modes have been added to the flight software. This paper will focus on the evolution of the HST Safing System and Safing tests, and the importance of this evolution to prolonging the science operations of the telescope.
NASA Technical Reports Server (NTRS)
Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.
2004-01-01
This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.
Biologically-Inspired Concepts for Autonomic Self-Protection in Multiagent Systems
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2006-01-01
Biologically-inspired autonomous and autonomic systems (AAS) are essentially concerned with creating self-directed and self-managing systems based on metaphors &om nature and the human body, such as the autonomic nervous system. Agent technologies have been identified as a key enabler for engineering autonomy and autonomicity in systems, both in terms of retrofitting into legacy systems and in designing new systems. Handing over responsibility to systems themselves raises concerns for humans with regard to safety and security. This paper reports on the continued investigation into a strand of research on how to engineer self-protection mechanisms into systems to assist in encouraging confidence regarding security when utilizing autonomy and autonomicity. This includes utilizing the apoptosis and quiescence metaphors to potentially provide a self-destruct or self-sleep signal between autonomic agents when needed, and an ALice signal to facilitate self-identification and self-certification between anonymous autonomous agents and systems.
Towards autonomous environmental monitoring systems.
Sequeira, Margaret; Bowden, Michaela; Minogue, Edel; Diamond, Dermot
2002-02-11
The concept of micro total analysis systems (muTAS) or Lab-on-a-chip is based on the twin strategies of integration and miniaturisation that have been so successful in the electronics industry. This paper will look at the materials issues, particularly with respect to the new polymeric materials that are becoming available, and strategies for integrating optical (colorimetric) detection. The influence of breakthroughs in apparently unrelated areas on the range of chemistries that can be applied will be illustrated. For environmental monitoring, the further integration of wireless communications with micro-dimensioned analytical instruments and sensors will become the ultimate driving force. The emergence of these compact, self-sustaining, networked instruments will have enormous impact on all field-based environmental measurements.
NASA Technical Reports Server (NTRS)
Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)
1993-01-01
The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.
Autonomic predictors of recovery following surgery: A comparative study
Williamson, John B.; Lewis, Greg; Grippo, Angela J.; Lamb, Damon; Harden, Emily; Handleman, Mika; Lebow, Jocelyn; Carter, C. Sue; Porges, Stephen W.
2015-01-01
Although heart rate and temperature are continuously monitored in patients during recovery following surgery, measures that extract direct manifestations of neural regulation of autonomic circuits from the beat-to-beat heart rate may be more sensitive to outcome. We explore the relationship between features of autonomic regulation and survival in the prairie vole, a small mammal, with features of vagal regulation of the heart similar to humans. Cardiac vagal regulation is manifested in the beat-to-beat heart rate variability (HRV) pattern and can be quantified by extracting measures of the amplitude of periodic oscillations associated with spontaneous breathing. Thus, monitoring beat-to-beat heart rate patterns post-surgery in the prairie vole may provide an opportunity to dynamically assess autonomic adjustments during recovery. Surgeries to implant telemetry devices to monitor body temperature and continuous ECG in prairie voles are routinely performed in our laboratory. Ten of these implanted prairie voles died within 48 h post-surgery. To compare the post-surgery autonomic trajectories with typical surviving prairie voles, the post-surgery data from 17 surviving prairie voles were randomly selected. The data are reported hourly for 27 prairie voles between 6 and 14 h (1 h before the demise of the first subject) post-surgery. Receiver operator curves were calculated hourly for each variable to evaluate sensitivity in discriminating survival. The data illustrate that measures of HRV are the most sensitive indicators. These findings provide a foundation for investigating further neural mechanisms of cardiovascular function. PMID:20451468
Apoptosis and Self-Destruct: A Contribution to Autonomic Agents?
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2004-01-01
Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward in designing reliable systems. Agent technologies have been identified as a key enabler for engineering autonomicity in systems, both in terms of retrofitting autonomicity into legacy systems and designing new systems. The AC initiative provides an opportunity to consider other biological systems and principles in seeking new design strategies. This paper reports on one such investigation; utilizing the apoptosis metaphor of biological systems to provide a dynamic health indicator signal between autonomic agents.
Voluntary facial action generates emotion-specific autonomic nervous system activity.
Levenson, R W; Ekman, P; Friesen, W V
1990-07-01
Four experiments were conducted to determine whether voluntarily produced emotional facial configurations are associated with differentiated patterns of autonomic activity, and if so, how this might be mediated. Subjects received muscle-by-muscle instructions and coaching to produce facial configurations for anger, disgust, fear, happiness, sadness, and surprise while heart rate, skin conductance, finger temperature, and somatic activity were monitored. Results indicated that voluntary facial activity produced significant levels of subjective experience of the associated emotion, and that autonomic distinctions among emotions: (a) were found both between negative and positive emotions and among negative emotions, (b) were consistent between group and individual subjects' data, (c) were found in both male and female subjects, (d) were found in both specialized (actors, scientists) and nonspecialized populations, (e) were stronger when the voluntary facial configurations most closely resembled actual emotional expressions, and (f) were stronger when experience of the associated emotion was reported. The capacity of voluntary facial activity to generate emotion-specific autonomic activity: (a) did not require subjects to see facial expressions (either in a mirror or on an experimenter's face), and (b) could not be explained by differences in the difficulty of making the expressions or by differences in concomitant somatic activity.
de Wied, Minet; van Boxtel, Anton; Matthys, Walter; Meeus, Wim
2012-02-01
This study examined empathy-related responding in male adolescents with disruptive behavior disorder (DBD), high or low on callous-unemotional (CU) traits. Facial electromyographic (EMG) and heart rate (HR) responses were monitored during exposure to empathy-inducing film clips portraying sadness, anger or happiness. Self-reports were assessed afterward. In agreement with expectations, DBD adolescents with high CU traits showed significantly lower levels of empathic sadness than healthy controls across all response systems. Between DBD subgroups significant differences emerged at the level of autonomic (not verbal or facial) reactions to sadness, with high CU respondents showing less HR change from baseline than low CU respondents. The study also examined basal patterns of autonomic function. Resting HR was not different between groups, but resting respiratory sinus arrhythmia (RSA) was significantly lower in DBD adolescents with high CU traits compared to controls. Results support the notion that CU traits designate a distinct subgroup of DBD individuals.
Takakura, Isabela Thomaz; Hoshi, Rosangela Akemi; Santos, Márcio Antonio; Pivatelli, Flávio Correa; Nóbrega, João Honorato; Guedes, Débora Linhares; Nogueira, Victor Freire; Frota, Tuane Queiroz; Castelo, Gabriel Castro; Godoy, Moacir Fernandes de
2017-01-01
To evaluate a possible evolutionary post-heart transplant return of autonomic function using quantitative and qualitative information from recurrence plots. Using electrocardiography, 102 RR tachograms of 45 patients (64.4% male) who underwent heart transplantation and that were available in the database were analyzed at different follow-up periods. The RR tachograms were collected from patients in the supine position for about 20 minutes. A time series with 1000 RR intervals was analyzed, a recurrence plot was created, and the following quantitative variables were evaluated: percentage of determinism, percentage of recurrence, average diagonal length, Shannon entropy, and sample entropy, as well as the visual qualitative aspect. Quantitative and qualitative signs of heart rate variability recovery were observed after transplantation. There is evidence that autonomic innervation of the heart begins to happen gradually after transplantation. Quantitative and qualitative analyses of recurrence can be useful tools for monitoring cardiac transplant patients and detecting the gradual return of heart rate variability.
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
Wind Turbine Contingency Control Through Generator De-Rating
NASA Technical Reports Server (NTRS)
Frost, Susan; Goebel, Kai; Balas, Mark
2013-01-01
Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbines with contingency control to balance the trade-offs between maintaining system health and energy capture. The contingency control involves de-rating the generator operating point to achieve reduced loads on the wind turbine. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.
NASA Technical Reports Server (NTRS)
Guo, Daniel
2017-01-01
The NASA Platform for Autonomous Systems (NPAS) toolkit is currently being used at the NASA John C. Stennis Space Center (SSC) to develop the INSIGHT program, which will autonomously monitor and control the Nitrogen System of the High Pressure Gas Facility (HPGF) on site. The INSIGHT program is in need of generic timing capabilities in order to perform timing based actions such as pump usage timing and sequence step timing. The purpose of this project was to develop a timing module that could fulfill these requirements and be adaptable for expanded use in the future. The code was written in Gensym G2 software platform, the same as INSIGHT, and was written generically to ensure compatibility with any G2 program. Currently, the module has two timing capabilities, a stopwatch function and a countdown function. Although the module has gone through some functionality testing, actual integration of the module into NPAS and the INSIGHT program is contingent on the module passing later checks.
Bartur, Gadi; Vatine, Jean-Jacques; Raphaely-Beer, Noa; Peleg, Sara; Katz-Leurer, Michal
2014-09-01
The objective of this study is to assess the autonomic nerve heart rate regulation system at rest and its immediate response to paced breathing among patients with complex regional pain syndrome (CRPS) as compared with age-matched healthy controls. Quasiexperimental. Outpatient clinic. Ten patients with CRPS and 10 age- and sex-matched controls. Participants underwent Holter ECG (NorthEast Monitoring, Inc., Maynard, MA, USA) recording during rest and biofeedback-paced breathing session. Heart rate variability (HRV), time, and frequency measures were assessed. HRV and time domain values were significantly lower at rest among patients with CRPS as compared with controls. A significant association was noted between pain rank and HRV frequency measures at rest and during paced breathing; although both groups reduced breathing rate significantly during paced breathing, HRV time domain parameters increased only among the control group. The increased heart rate and decreased HRV at rest in patients with CRPS suggest a general autonomic imbalance. The inability of the patients to increase HRV time domain values during paced breathing may suggest that these patients have sustained stress response with minimal changeability in response to slow-paced breathing stimuli. Wiley Periodicals, Inc.
Motor-response learning at a process control panel by an autonomous robot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spelt, P.F.; de Saussure, G.; Lyness, E.
1988-01-01
The Center for Engineering Systems Advanced Research (CESAR) was founded at Oak Ridge National Laboratory (ORNL) by the Department of Energy's Office of Energy Research/Division of Engineering and Geoscience (DOE-OER/DEG) to conduct basic research in the area of intelligent machines. Therefore, researchers at the CESAR Laboratory are engaged in a variety of research activities in the field of machine learning. In this paper, we describe our approach to a class of machine learning which involves motor response acquisition using feedback from trial-and-error learning. Our formulation is being experimentally validated using an autonomous robot, learning tasks of control panel monitoring andmore » manipulation for effect process control. The CLIPS Expert System and the associated knowledge base used by the robot in the learning process, which reside in a hypercube computer aboard the robot, are described in detail. Benchmark testing of the learning process on a robot/control panel simulation system consisting of two intercommunicating computers is presented, along with results of sample problems used to train and test the expert system. These data illustrate machine learning and the resulting performance improvement in the robot for problems similar to, but not identical with, those on which the robot was trained. Conclusions are drawn concerning the learning problems, and implications for future work on machine learning for autonomous robots are discussed. 16 refs., 4 figs., 1 tab.« less
Autonomic Management of Application Workflows on Hybrid Computing Infrastructure
Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...
2011-01-01
In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less
2008-09-30
take place off the island of El Hierro in the Canary Islands, a site with coastal resident populations of Blainville’s beaked whale, Mesoplodon...M., “Coastal habitat use by Cuvier´s and Blainville´s beaked whales off El Hierro , Canary Islands” European Research on Cetaceans 22nd, Holland, April, 2008. [non-refereed] 5
INL Autonomous Navigation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
2005-03-30
The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.
Motivating and assisting physical exercise in independently living older adults: a pilot study.
Silveira, Patrícia; van het Reve, Eva; Daniel, Florian; Casati, Fabio; de Bruin, Eling D
2013-05-01
With age reaction time, coordination and cognition tend to deteriorate, which may lead to gait impairments, falls and injuries. To reduce this problem in elderly and to improve health, well-being and independence, regular balance and strength exercises are recommended. However, elderly face strong barriers to exercise. We developed Active Lifestyle, an IT-based system for active and healthy aging aiming at improving elderly's balance and strength. Active Lifestyle is a proactive training application, running on a tablet, which assists, monitors and motivates elderly to follow personalized training plans autonomously at home, while integrating them socially. The objective is to run a pilot study to investigate: (i) the feasibility of assisting the autonomous, physical training of independently living elderly with the Active Lifestyle system, (ii) the adherence of the participants to the training plans, and (iii) the effectiveness of the motivation instruments built into the system. After three introductory meetings, 13 elderly adults followed personalized two-weeks strength and balance training plans using the Active Lifestyle app autonomously at home. Questionnaires were used to assess the technological familiarity of the participants, the feasibility aspects of the physical intervention, and the effectiveness of the motivation instruments. Adherence to the exercise plan was evaluated using the performance data collected by the app during the study. A total of 13 participants were enrolled, of whom 11 (85%) completed the study (mean age 77 ± 7 years); predominantly females (55%), vocational educated (64%), and their past profession requiring moderate physical activity (64%). The Active Lifestyle app facilitated autonomous physical training at home (median=7 on a 7-point Likert scale), and participants expressed a high intention to use the app also after the end of the study (median=7). Adherence with the training plans was 73% (89% on the balance exercises and 60% on the strength exercises). The outcome from our questionnaires showed that without the app the participants did not feel motivated to perform exercises; with the support of the app they felt more motivated (median=6). Participants were especially motivated by being part of a virtual exercise group and by the capability to automatically monitor their performance (median=6 for both). This study shows that the Active Lifestyle app prototype has valuable potential to support physical exercise practice at home and it is worthwhile to further develop it into a more mature system. Furthermore, the results add to the knowledge base into mobile-based applications for elderly, in that it shows that elderly users can learn to work with mobile-based systems. The Active Lifestyle app proved viable to support and motivate independently living elderly to autonomously perform balance and strength exercises. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Duffy, G; Regan, F
2017-11-20
The demand for autonomous sensors for unattended, continuous nutrient monitoring in water is rapidly growing with the increasing need for more frequent and widespread environmental pollution monitoring. Legislative bodies, local authorities and industries all require frequent water quality monitoring, however, this is time and labour intensive, and an expensive undertaking. Autonomous sensors allow for frequent, unattended data collection. While this solves the time and labour intensive aspects of water monitoring, sensors can be very expensive. Development of low-cost sensors is essential to realise the concept of Internet of Things (IoT). However there is much work yet to be done in this field. This article reviews current literature on the research and development efforts towards deployable autonomous sensors for phosphorus (in the form of phosphate) and nitrogen (in the form of nitrate), with a focus on analytical performance and cost considerations. Additionally, some recent sensing approaches that could be automated in the future are included, along with an overview of approaches to monitoring both nutrients. These approaches are compared with standard laboratory methods and also with commercially available sensors for both phosphate and nitrate. Application of nutrient sensors in agriculture is discussed as an example of how sensor networks can provide improvements in decision making.
Central-Monitor Software Module
NASA Technical Reports Server (NTRS)
Bachelder, Aaron; Foster, Conrad
2005-01-01
One of the software modules of the emergency-vehicle traffic-light-preemption system of the two preceding articles performs numerous functions for the central monitoring subsystem. This module monitors the states of all units (vehicle transponders and intersection controllers): It provides real-time access to the phases of traffic and pedestrian lights, and maps the positions and states of all emergency vehicles. Most of this module is used for installation and configuration of units as they are added to the system. The module logs all activity in the system, thereby providing information that can be analyzed to minimize response times and optimize response strategies. The module can be used from any location within communication range of the system; with proper configuration, it can also be used via the Internet. It can be integrated into call-response centers, where it can be used for alerting emergency vehicles and managing their responses to specific incidents. A variety of utility subprograms provide access to any or all units for purposes of monitoring, testing, and modification. Included are "sniffer" utility subprograms that monitor incoming and outgoing data for accuracy and timeliness, and that quickly and autonomously shut off malfunctioning vehicle or intersection units.
Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.
Otsuka, Kuniaki; Cornelissen, Germaine; Kubo, Yutaka; Hayashi, Mitsutoshi; Yamamoto, Naomune; Shibata, Koichi; Aiba, Tatsuya; Furukawa, Satoshi; Ohshima, Hiroshi; Mukai, Chiaki
2015-01-01
The fractal scaling of the long-term heart rate variability (HRV) reflects the 'intrinsic' autonomic regulatory system. Herein, we examine how microgravity on the ISS affected the power-law scaling β (beta) of astronauts during a long-duration (about 6 months) spaceflight. Ambulatory electrocardiographic (ECG) monitoring was performed on seven healthy astronauts (5 men, 52.0±4.2 years of age) five times: before launch, 24±5 (F01) and 73±5 (F02) days after launch, 15±5 days before return (F03), and after return to Earth. The power-law scaling β was calculated as the slope of the regression line of the power density of the MEM spectrum versus frequency plotted on a log 10 -log 10 scale in the range of 0.0001-0.01 Hz (corresponding to periods of 2.8 h to 1.6 min). β was less negative in space (-0.949±0.061) than on Earth (-1.163±0.075; P <0.025). The difference was more pronounced during the awake than during the rest/sleep span. The circadian amplitude and acrophase (phase of maximum) of β did not differ in space as compared with Earth. An effect of microgravity was detected within 1 month (F01) in space and continued throughout the spaceflight. The intrinsic autonomic regulatory system that protects life under serious environmental conditions on Earth is altered in the microgravity environment, with no change over the 6-month spaceflight. It is thus important to find a way to improve conditions in space and/or in terms of human physiology, not to compromise the intrinsic autonomic regulatory system now that plans are being made to inhabit another planet in the near future.
Otsuka, Kuniaki; Cornelissen, Germaine; Kubo, Yutaka; Hayashi, Mitsutoshi; Yamamoto, Naomune; Shibata, Koichi; Aiba, Tatsuya; Furukawa, Satoshi; Ohshima, Hiroshi; Mukai, Chiaki
2015-01-01
The fractal scaling of the long-term heart rate variability (HRV) reflects the ‘intrinsic’ autonomic regulatory system. Herein, we examine how microgravity on the ISS affected the power-law scaling β (beta) of astronauts during a long-duration (about 6 months) spaceflight. Ambulatory electrocardiographic (ECG) monitoring was performed on seven healthy astronauts (5 men, 52.0±4.2 years of age) five times: before launch, 24±5 (F01) and 73±5 (F02) days after launch, 15±5 days before return (F03), and after return to Earth. The power-law scaling β was calculated as the slope of the regression line of the power density of the MEM spectrum versus frequency plotted on a log10–log10 scale in the range of 0.0001–0.01 Hz (corresponding to periods of 2.8 h to 1.6 min). β was less negative in space (−0.949±0.061) than on Earth (−1.163±0.075; P<0.025). The difference was more pronounced during the awake than during the rest/sleep span. The circadian amplitude and acrophase (phase of maximum) of β did not differ in space as compared with Earth. An effect of microgravity was detected within 1 month (F01) in space and continued throughout the spaceflight. The intrinsic autonomic regulatory system that protects life under serious environmental conditions on Earth is altered in the microgravity environment, with no change over the 6-month spaceflight. It is thus important to find a way to improve conditions in space and/or in terms of human physiology, not to compromise the intrinsic autonomic regulatory system now that plans are being made to inhabit another planet in the near future. PMID:28725718
Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I
2015-01-01
Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.
Instrumentation and Control Needs for Reliable Operation of Lunar Base Surface Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Turso, James; Chicatelli, Amy; Bajwa, Anupa
2005-01-01
As one of the near-term goals of the President's Vision for Space Exploration, establishment of a multi-person lunar base will require high-endurance power systems which are independent of the sun, and can operate without replenishment for several years. These requirements may be obtained using nuclear power systems specifically designed for use on the lunar surface. While it is envisioned that such a system will generally be supervised by humans, some of the evolutions required maybe semi or fully autonomous. The entire base complement for near-term missions may be less than 10 individuals, most or all of which may not be qualified nuclear plant operators and may be off-base for extended periods thus, the need for power system autonomous operation. Startup, shutdown, and load following operations will require the application of advanced control and health management strategies with an emphasis on robust, supervisory, coordinated control of, for example, the nuclear heat source, energy conversion plant (e.g., Brayton Energy Conversion units), and power management system. Autonomous operation implies that, in addition to being capable of automatic response to disturbance input or load changes, the system is also capable of assessing the status of the integrated plant, determining the risk associated with the possible actions, and making a decision as to the action that optimizes system performance while minimizing risk to the mission. Adapting the control to deviations from design conditions and degradation due to component failures will be essential to ensure base inhabitant safety and mission success. Intelligent decisions will have to be made to choose the right set of sensors to provide the data needed to do condition monitoring and fault detection and isolation because of liftoff weight and space limitations, it will not be possible to have an extensive set of instruments as used for earth-based systems. Advanced instrumentation and control technologies will be needed to enable this critical functionality of autonomous operation. It will be imperative to consider instrumentation and control requirements in parallel to system configuration development so as to identify control-related, as well as integrated system-related, problem areas early to avoid potentially expensive work-arounds . This paper presents an overview of the enabling technologies necessary for the development of reliable, autonomous lunar base nuclear power systems with an emphasis on system architectures and off-the-shelf algorithms rather than hardware. Autonomy needs are presented in the context of a hypothetical lunar base nuclear power system. The scenarios and applications presented are hypothetical in nature, based on information from open-literature sources, and only intended to provoke thought and provide motivation for the use of autonomous, intelligent control and diagnostics.
The Standard Autonomous File Server, a Customized, Off-the-Shelf Success Story
NASA Technical Reports Server (NTRS)
Semancik, Susan K.; Conger, Annette M.; Obenschain, Arthur F. (Technical Monitor)
2001-01-01
The Standard Autonomous File Server (SAFS), which includes both off-the-shelf hardware and software, uses an improved automated file transfer process to provide a quicker, more reliable, prioritized file distribution for customers of near real-time data without interfering with the assets involved in the acquisition and processing of the data. It operates as a stand-alone solution, monitoring itself, and providing an automated fail-over process to enhance reliability. This paper will describe the unique problems and lessons learned both during the COTS selection and integration into SAFS, and the system's first year of operation in support of NASA's satellite ground network. COTS was the key factor in allowing the two-person development team to deploy systems in less than a year, meeting the required launch schedule. The SAFS system his been so successful, it is becoming a NASA standard resource, leading to its nomination for NASA's Software or the Year Award in 1999.
Data Reduction and Control Software for Meteor Observing Stations Based on CCD Video Systems
NASA Technical Reports Server (NTRS)
Madiedo, J. M.; Trigo-Rodriguez, J. M.; Lyytinen, E.
2011-01-01
The SPanish Meteor Network (SPMN) is performing a continuous monitoring of meteor activity over Spain and neighbouring countries. The huge amount of data obtained by the 25 video observing stations that this network is currently operating made it necessary to develop new software packages to accomplish some tasks, such as data reduction and remote operation of autonomous systems based on high-sensitivity CCD video devices. The main characteristics of this software are described here.
Science Goal Monitor: Science Goal Driven Automation for NASA Missions
NASA Technical Reports Server (NTRS)
Koratkar, Anuradha; Grosvenor, Sandy; Jung, John; Pell, Melissa; Matusow, David; Bailyn, Charles
2004-01-01
Infusion of automation technologies into NASA s future missions will be essential because of the need to: (1) effectively handle an exponentially increasing volume of scientific data, (2) successfully meet dynamic, opportunistic scientific goals and objectives, and (3) substantially reduce mission operations staff and costs. While much effort has gone into automating routine spacecraft operations to reduce human workload and hence costs, applying intelligent automation to the science side, i.e., science data acquisition, data analysis and reactions to that data analysis in a timely and still scientifically valid manner, has been relatively under-emphasized. In order to introduce science driven automation in missions, we must be able to: capture and interpret the science goals of observing programs, represent those goals in machine interpretable language; and allow spacecrafts onboard systems to autonomously react to the scientist's goals. In short, we must teach our platforms to dynamically understand, recognize, and react to the scientists goals. The Science Goal Monitor (SGM) project at NASA Goddard Space Flight Center is a prototype software tool being developed to determine the best strategies for implementing science goal driven automation in missions. The tools being developed in SGM improve the ability to monitor and react to the changing status of scientific events. The SGM system enables scientists to specify what to look for and how to react in descriptive rather than technical terms. The system monitors streams of science data to identify occurrences of key events previously specified by the scientist. When an event occurs, the system autonomously coordinates the execution of the scientist s desired reactions. Through SGM, we will improve om understanding about the capabilities needed onboard for success, develop metrics to understand the potential increase in science returns, and develop an operational prototype so that the perceived risks associated with increased use of automation can be reduced.
Autonomous satellite command and control: A comparison with other military systems
NASA Technical Reports Server (NTRS)
Kruchten, Robert J.; Todd, Wayne
1988-01-01
Existing satellite concepts of operation depend on readily available experts and are extremely manpower intensive. Areas of expertise required include mission planning, mission data interpretation, telemetry monitoring, and anomaly resolution. The concepts of operation have envolved to their current state in part because space systems have tended to be treated more as research and development assets rather than as operational assets. These methods of satellite command and control will be inadequate in the future because of the availability, survivability, and capability of human experts. Because space systems have extremely high reliability and limited access, they offer challenges not found in other military systems. Thus, automation techniques used elsewhere are not necessarily applicable to space systems. A program to make satellites much more autonomous has been developed, using a variety of advanced software techniques. The problem the program is addressing, some possible solutions, the goals of the Rome Air Development Center (RADC) program, the rationale as to why the goals are reasonable, and the current program status are discussed. Also presented are some of the concepts used in the program and how they differ from more traditional approaches.
NASA Astrophysics Data System (ADS)
Pradeep, M. V. K.; Balbir, S. M. S.; Norani, M. M.
2016-11-01
Demand for electricity in Malaysia has seen a substantial hike in light of the nation's rapid economic development. The current method of generating electricity is through the combustion of fossil fuels which has led to the detrimental effects on the environment besides causing social and economic outbreaks due to its highly volatile prices. Thus the need for a sustainable energy source is paramount and one that is quickly gaining acceptance is solar energy. However, due to the various environmental and geographical factors that affect the generation of solar electricity, the capability of solar electricity generating system (SEGS) is unable to compete with the high conversion efficiencies of conventional energy sources. In order to effectively monitor SEGS, this study is proposing a performance monitoring system that is capable of detecting drops in the system's performance for parallel networks through a diagnostic mechanism. The performance monitoring system consists of microcontroller connected to relevant sensors for data acquisition. The acquired data is transferred to a microcomputer for software based monitoring and analysis. In order to enhance the interception of sunlight by the SEGS, a sensor based sun tracking system is interfaced to the same controller to allow the PV to maneuver itself autonomously to an angle of maximum sunlight exposure.
INTEGRATED MONITORING HARDWARE DEVELOPMENTS AT LOS ALAMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. PARKER; J. HALBIG; ET AL
1999-09-01
The hardware of the integrated monitoring system supports a family of instruments having a common internal architecture and firmware. Instruments can be easily configured from application-specific personality boards combined with common master-processor and high- and low-voltage power supply boards, and basic operating firmware. The instruments are designed to function autonomously to survive power and communication outages and to adapt to changing conditions. The personality boards allow measurement of gross gammas and neutrons, neutron coincidence and multiplicity, and gamma spectra. In addition, the Intelligent Local Node (ILON) provides a moderate-bandwidth network to tie together instruments, sensors, and computers.
RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds
NASA Technical Reports Server (NTRS)
2008-01-01
Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The fulfillment of the new US. National Vision for Space Exploration requires many new enabling technologies to accomplish the goal of utilizing space for commercial activities and for returning humans to the moon and extraterrestrial environments. Traditionally, flight structures are manufactured as complete systems and require humans to complete the integration and assembly in orbit. These structures are bulky and require the use of heavy launch vehicles to send the units to the desired location, e.g. International Space Station (ISS). This method requires a high degree of safety, numerous space walks and significant cost for the humans to perform the assembly in orbit. For example, for assembly and maintenance of the ISS, 52 Extravehicular Activities (EVA's) have been performed so far with a total EVA time of approximately 322 hours. Sixteen (16) shuttle flights haw been to the ISS to perform these activities with an approximate cost of $450M per mission. For future space missions, costs have to be reduced to reasonably achieve the exploration goals. One concept that has been proposed is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly operations. Assembly is autonomously performed when two components containing onboard electronics join after recognizing that the joint is appropriate and in the precise position and orientation required for assembly. The mechanism only activates when the specifications are correct and m a nominal range. After assembly, local sensors and electronics monitor the integrity of the joint for feedback to a master controller. To achieve this concept will require a shift in the methods for designing space structures. In addition, innovative techniques will be required to perform the assembly autonomously. Monitoring of the assembled joint will be necessary for safety and structural integrity. If a very large structure is to be assembled in orbit, then the number of integrity sensors will be significant. Thus simple, low cost sensors are integral to the success of this concept. This paper will address these issues and will propose a novel concept for assembling space structures autonomously. The paper will present Several autonomous assembly methods. Core technologies required to achieve in space assembly will be discussed and novel techniques for communicating, sensing, docking and assembly will be detailed. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Finally, these technologies can also be applied to other systems both on earth and extraterrestrial environments.
Minati, Ludovico; Grisoli, Marina; Franceschetti, Silvana; Epifani, Francesca; Granvillano, Alice; Medford, Nick; Harrison, Neil A; Piacentini, Sylvie; Critchley, Hugo D
2012-01-01
Adaptive behaviour requires an ability to obtain rewards by choosing between different risky options. Financial gambles can be used to study effective decision-making experimentally, and to distinguish processes involved in choice option evaluation from outcome feedback and other contextual factors. Here, we used a paradigm where participants evaluated 'mixed' gambles, each presenting a potential gain and a potential loss and an associated variable outcome probability. We recorded neural responses using autonomic monitoring, electroencephalography (EEG) and functional neuroimaging (fMRI), and used a univariate, parametric design to test for correlations with the eleven economic parameters that varied across gambles, including expected value (EV) and amount magnitude. Consistent with behavioural economic theory, participants were risk-averse. Gamble evaluation generated detectable autonomic responses, but only weak correlations with outcome uncertainty were found, suggesting that peripheral autonomic feedback does not play a major role in this task. Long-latency stimulus-evoked EEG potentials were sensitive to expected gain and expected value, while alpha-band power reflected expected loss and amount magnitude, suggesting parallel representations of distinct economic qualities in cortical activation and central arousal. Neural correlates of expected value representation were localized using fMRI to ventromedial prefrontal cortex, while the processing of other economic parameters was associated with distinct patterns across lateral prefrontal, cingulate, insula and occipital cortices including default-mode network and early visual areas. These multimodal data provide complementary evidence for distributed substrates of choice evaluation across multiple, predominantly cortical, brain systems wherein distinct regions are preferentially attuned to specific economic features. Our findings extend biologically-plausible models of risky decision-making while providing potential biomarkers of economic representations that can be applied to the study of deficits in motivational behaviour in neurological and psychiatric patients.
Asteroid Exploration with Autonomic Systems
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike
2004-01-01
NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.
Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae
Jia, Fei; Kacira, Murat; Ogden, Kimberly L.
2015-01-01
A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L−1 (1.51 × 108 cells·mL−1) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency. PMID:26364640
Fletcher, Richard Ribón; Amemori, Ken-ichi; Goodwin, Matthew; Graybiel, Ann M
2012-01-01
A portable system has been designed to enable remote monitoring of autonomic nervous system output in non-human primates for the purpose of studying neural function related to social behavior over extended periods of time in an ambulatory setting. In contrast to prior systems which only measure heart activity, are restricted to a constrained laboratory setting, or require surgical attachment, our system is comprised of a multi-sensor self-contained wearable vest that can easily be transferred from one subject to another. The vest contains a small detachable low-power electronic sensor module for measuring electrodermal activity (EDA), electrocardiography (ECG), 3-axis acceleration, and temperature. The wireless transmission is implemented using a standard Bluetooth protocol and a mobile phone, which enables freedom of movement for the researcher as well as for the test subject. A custom Android software application was created on the mobile phone for viewing and recording live data as well as creating annotations. Data from up to seven monkeys can be recorded simultaneously using the mobile phone, with the option of real-time upload to a remote web server. Sample data are presented from two rhesus macaque monkeys showing stimulus-induced response in the laboratory as well as long-term ambulatory data collected in a large monkey cage. This system enables new possibilities for studying underlying mechanisms between autonomic brain function and social behavior with connection to human research in areas such as autism, substance abuse, and mood disorders.
Why Computer-Based Systems Should be Autonomic
NASA Technical Reports Server (NTRS)
Sterritt, Roy; Hinchey, Mike
2005-01-01
The objective of this paper is to discuss why computer-based systems should be autonomic, where autonomicity implies self-managing, often conceptualized in terms of being self-configuring, self-healing, self-optimizing, self-protecting and self-aware. We look at motivations for autonomicity, examine how more and more systems are exhibiting autonomic behavior, and finally look at future directions.
Mission Operations with an Autonomous Agent
NASA Technical Reports Server (NTRS)
Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.
1998-01-01
The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.
Challenges in verification and validation of autonomous systems for space exploration
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Jonsson, Ari
2005-01-01
Space exploration applications offer a unique opportunity for the development and deployment of autonomous systems, due to limited communications, large distances, and great expense of direct operation. At the same time, the risk and cost of space missions leads to reluctance to taking on new, complex and difficult-to-understand technology. A key issue in addressing these concerns is the validation of autonomous systems. In recent years, higher-level autonomous systems have been applied in space applications. In this presentation, we will highlight those autonomous systems, and discuss issues in validating these systems. We will then look to future demands on validating autonomous systems for space, identify promising technologies and open issues.
Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control
NASA Astrophysics Data System (ADS)
Parker, Lynne E.; Pin, Francois G.
1988-10-01
The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.
NASA Astrophysics Data System (ADS)
Davies, A. G.; Chien, S. A.; Castano, R.; Tran, D. Q.; Scharenbroich, L. J.
2006-12-01
Mission science return is increased through use of onboard autonomy, and using disparate assets integrated into an autonomously-operating sensor web that can re-task these assets to rapidly obtain additional data. Software on spacecraft has been used to analyse data to detect dynamic events of high interest, such as on- going volcanic activity. This capability has been successfully demonstrated by the NASA New Millennium Program Autonomous Sciencecraft Experiment (ASE), on the Earth Observing 1 spacecraft in Earth-orbit [1-2]. The potential now exists for eruption parameters to be quantified onboard a spacecraft, using models that relate thermal emission to volumetric eruption rate. This promises a notification not only of on-going activity, but also the magnitude of the event, within a few hours of the original observation, a process that normally takes weeks. ASE/EO-1 is part of the JPL Volcano Sensor Web [3]. This autonomous system collates information of volcanic activity from numerous assets and retasks EO-1 to obtain observations as soon as practicable. The use of a ground-based planner allows rapid insertion or replacement of new observations, with no human intervention. Endusers are notified automatically by email. Spacecraft autonomy, involving automatic fault detection and mitigation, onboard processing of data, and replanning of observations, allows mission operations to break free from pre-ordained operations sequencing, necessary for studying dynamic volcanic processes on other bodies in the Solar System (e.g., Io and Enceladus). Onboard processing allows quantification of dynamic processes, improving both science content per returned byte and optimization of subsequent resource use. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. [1] Chien, S. et al. (2004) The EO-1 Autonomous Science Agent, Proceedings of the 2004 Conferences on Autonomous Agents and Multi-agent Systems (AAMAS), New York City, USA, July 2004. [2] Davies, A. G. et al. (2006) Monitoring active volcanism with the Autonomous Sciencecraft Experiment (ASE) on EO-1, RSE, 101, 427-446. [3] Davies, A. G. et al., (2006) Sensor Web enables rapid response to volcanic activity, Eos, 87, 1, 1&5.
NASA Astrophysics Data System (ADS)
Elefsiniotis, A.; Becker, Th.; Schmid, U.
2014-06-01
Wireless, energy-autonomous structural health-monitoring systems in aircraft have the potential of reducing total maintenance costs. Thermoelectric energy harvesting, which seems the best choice for creating truly autonomous health monitoring sensors, is the principle behind converting waste heat to useful electrical energy through the use of thermoelectric generators. To enhance the temperature difference across the two sides of a thermoelectric generator, i.e. increasing heat flux and energy production, a phase change material acting as thermal mass is attached on one side of the thermoelectric generators while the other side is placed on the aircraft structure. The application area under investigation for this paper is the pylon aft fairing, located near the engine of an aircraft, with temperatures reaching on the inside up to 350 °C. Given these harsh operational conditions, the performance of a device, containing erythritol as a phase change material, is evaluated. The harvested energy reaching values up to 81.4 J can be regulated by a power management module capable of storing the excess energy and recovering it from the medium powering a sensor node and a wireless transceiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaBrecque, Douglas; Brigham, Russell D.; Schmidt-Hattenburger, Conny
2017-05-01
The proposed system was designed to operate as a permanent, autonomous monitoring and data collection system that can provide much higher temporal data density than can be achieved economically with 3-Dimensional (3D) seismic surveys. It can operate over broad areas for long periods of time providing full 3D data sets on a monthly basis at a very low cost. By borrowing techniques commonly used in marine CSEM, structural information from background seismic surveys can be incorporated into the CSEM modeling to provide high resolution models of CO 2 progression within reservoirs. The system uses borehole-based vertical-electric-dipole sources placed at reservoirmore » depths in the formation. The electric and magnetic fields induced by this source are received on the surface using an array of stations. The project was conducted in three phases. Phase I demonstrated the feasibility of the system to collect static/reference data at the Ketzin CO 2 storage pilot site in Germany. In Phase I, numerical modeling was used to determine the optimal configurations and requirements for sensor sensitivity and data accuracy. Based on the model results, existing hardware and software were modified. The CSEM system was then field tested at the Ketzin site. The data were imaged and the results were compared with independent studies of the reservoir and overburden geo-electrical characteristics. Phase II demonstrated the ability to provide sensitive, cost-effective measurement of changes in reservoir properties and changes in the overlying formations using a second round of measurements at the Ketzin site. A prototype autonomous recording system was developed and tested as a subset of the measurement points. Phase III of the project quantified the advantages (and disadvantages) of the fully autonomous data collection subsystems by comparing them with repeated measurements made with mobile stations. The Phase III also provided an additional time point in measuring post-closure changes in and above the Ketzin CO 2 injection site. Validation of the CSEM field survey results were completed using a method such as other alternative and available field site data.« less
Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.
NASA Astrophysics Data System (ADS)
Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John
2010-05-01
An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.
Cortes-Donate, V E; Perez-Lorensu, P J; Garcia-Garcia, A; Asociacion de Monitorizacion Intraquirurgica Neurofisiologica Espanola Amine, Asociacion de Monitorizacion Intraquirurgica Neurofisiologica Espanola Amine; Sociedad Espanola de Neurofisiologia Clinica Senfc, Sociedad Espanola de Neurofisiologia Clinica Senfc; Grupo de Trabajo de Monitorizacion Neurofisiologica Intraoperatoria de la Senfc, Grupo de Trabajo de Monitorizacion Neurofisiologica Intraoperatoria de la Senfc
2018-05-01
Intraoperative neurophysiological monitoring (IONM) is nowadays another tool within the operating room that seeks to avoid neurological sequels derived from the surgical act. The Spanish Neurophysiological Intra-Surgical Monitoring Association (AMINE) in collaboration with the Spanish Society of Clinical Neurophysiology (SENFC), and the IONM Working Group of the SENFC has been collecting data in order to know the current situation of the IONM in Spain by hospitals, autonomous communities including the autonomous cities of Ceuta and Melilla, the opinions of the specialists in clinical neurophysiology involved in this topic and further forecasts regarding IONM. The data was gathered from November 2015 to May 2016 through telephone contact and/or email with specialists in clinical neurophysiology of the public National Health System, and through a computerized survey that also includes private healthcare centers. With the data obtained, from the perspective of AMINE and the SENFC we consider that nowadays the field of medicine covered by IONM is considerably large and it is foreseen that it will continue to grow. Therefore, a greater number of specialists in Clinical Neurophysiology will be required, as well as the need for specific training within the specialty that involves increasing the training period of MIRs based on competencies due to the increase in techniques/procedures, as well as its complexity.
Deployment of Autonomous Hydrophone Array in the Scotia Sea
2008-09-01
originated by the Clarence Island in the Bransfield strait near the Antarctic Peninsula (Figure 3). The signals originated from a 10x5 km iceberg ...Atlantic Ocean near the Antarctic Peninsula and the South Scotia Sea is a region where acoustic surveillance by International Monitoring System (IMS...study sound propagation through the Antarctic Convergence Zone (ACZ), as well as acoustic blockage and reflection caused by islands and associated
Monitoring Maritime Conditions with Unmanned Systems During Trident Warrior 2013
2014-01-01
Host- ing Autonomous Remote Craft or SHARC model ) that emit sounds and listen for reflected changes in response to ocean currents. Experiments tested...San Diego Scripps Institution of Oceanography were also deployed; these provided Acoustic Doppler Current Profiler (ADCP) 3D measurements of the...ocean currents as well as measurements of the surface meteorology . Figure 5(b) shows a schematic representa- tion of one wave glider and two ocean
NASA Technical Reports Server (NTRS)
2004-01-01
Topics covered include: 1) Advanced Signal Conditioners for Data-Acquisition Systems; 2) Downlink Data Multiplexer; 3) Viewing ISS Data in Real Time via the Internet; 4) Autonomous Environment-Monitoring Networks; 5) Readout of DSN Monitor Data; 6) Parallel-Processing Equalizers for Multi-Gbps Communications; 7) AIN-Based Packaging for SiC High-Temperature Electronics; 8) Software for Optimizing Quality Assurance of Other Software; 9) The TechSat 21 Autonomous Sciencecraft Experiment; 10) Software for Analyzing Laminar-to-Turbulent Flow Transitions; 11) Elastomer Filled With Single-Wall Carbon Nanotubes; 12) Modifying Ship Air-Wake Vortices for Aircraft Operations; 13) Strain-Gauge Measurement of Weight of Fluid in a Tank; 14) Advanced Docking System With Magnetic Initial Capture; 15) Blade-Pitch Control for Quieting Tilt-Rotor Aircraft; 16) Solar Array Panels With Dust-Removal Capability; 17) Aligning Arrays of Lenses and Single-Mode Optical Fibers; 18) Automatic Control of Arc Process for Making Carbon Nanotubes; 19) Curved-Focal-Plane Arrays Using Deformed-Membrane Photodetectors; 20) Role of Meteorology in Flights of a Solar-Powered Airplane; 21) Model of Mixing Layer With Multicomponent Evaporating Drops; 22) Solution-Assisted Optical Contacting; 23) Improved Discrete Approximation of Laplacian of Gaussian; 24) Utilizing Expert Knowledge in Estimating Future STS Costs; 25) Study of Rapid-Regression Liquefying Hybrid Rocket Fuels; and 26) More About the Phase-Synchronized Enhancement Method.
Catalogue Creation for Space Situational Awareness with Optical Sensors
NASA Astrophysics Data System (ADS)
Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B.
2016-09-01
In order to safeguard the continued use of space-based technologies, effective monitoring and tracking of man-made resident space objects (RSOs) is paramount. The diverse characteristics, behaviours and trajectories of RSOs make space surveillance a challenging application of the discipline that is tracking and surveillance. When surveillance systems are faced with non-canonical scenarios, it is common for human operators to intervene while researchers adapt and extend traditional tracking techniques in search of a solution. A complementary strategy for improving the robustness of space surveillance systems is to place greater emphasis on the anticipation of uncertainty. Namely, give the system the intelligence necessary to autonomously react to unforeseen events and to intelligently and appropriately act on tenuous information rather than discard it. In this paper we build from our 2015 campaign and describe the progression of a low-cost intelligent space surveillance system capable of autonomously cataloguing and maintaining track of RSOs. It currently exploits robotic electro-optical sensors, high-fidelity state-estimation and propagation as well as constrained initial orbit determination (IOD) to intelligently and adaptively manage its sensors in order to maintain an accurate catalogue of RSOs. In a step towards fully autonomous cataloguing, the system has been tasked with maintaining surveillance of a portion of the geosynchronous (GEO) belt. Using a combination of survey and track-refinement modes, the system is capable of maintaining a track of known RSOs and initiating tracks on previously unknown objects. Uniquely, due to the use of high-fidelity representations of a target's state uncertainty, as few as two images of previously unknown RSOs may be used to subsequently initiate autonomous search and reacquisition. To achieve this capability, particularly within the congested environment of the GEO-belt, we use a constrained admissible region (CAR) to generate a plausible estimate of the unknown RSO's state probability density function and disambiguate measurements using a particle-based joint probability data association (JPDA) method. Additionally, the use of alternative CAR generation methods, incorporating catalogue-based priors, is explored and tested. We also present the findings of two field trials of an experimental system that incorporates these techniques. The results demonstrate that such a system is capable of autonomously searching for an RSO that was briefly observed days prior in a GEO-survey and discriminating it from the measurements of other previously catalogued RSOs.
Development and Flight Testing of an Autonomous Landing Gear Health-Monitoring System
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Coffey, Neil C.; Gonzalez, Guillermo A.; Taylor, B. Douglas; Brett, Rube R.; Woodman, Keith L.; Weathered, Brenton W.; Rollins, Courtney H.
2003-01-01
Development and testing of an adaptable vehicle health-monitoring architecture is presented. The architecture is being developed for a fleet of vehicles. It has three operational levels: one or more remote data acquisition units located throughout the vehicle; a command and control unit located within the vehicle; and, a terminal collection unit to collect analysis results from all vehicles. Each level is capable of performing autonomous analysis with a trained expert system. Communication between all levels is done with wireless radio frequency interfaces. The remote data acquisition unit has an eight channel programmable digital interface that allows the user discretion for choosing type of sensors; number of sensors, sensor sampling rate and sampling duration for each sensor. The architecture provides framework for a tributary analysis. All measurements at the lowest operational level are reduced to provide analysis results necessary to gauge changes from established baselines. These are then collected at the next level to identify any global trends or common features from the prior level. This process is repeated until the results are reduced at the highest operational level. In the framework, only analysis results are forwarded to the next level to reduce telemetry congestion. The system's remote data acquisition hardware and non-analysis software have been flight tested on the NASA Langley B757's main landing gear. The flight tests were performed to validate the following: the wireless radio frequency communication capabilities of the system, the hardware design, command and control; software operation; and, data acquisition, storage and retrieval.
Autonomous Energy Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin D; Dall-Anese, Emiliano; Bernstein, Andrey
With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performancemore » while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.« less
Timeliner: Automating Procedures on the ISS
NASA Technical Reports Server (NTRS)
Brown, Robert; Braunstein, E.; Brunet, Rick; Grace, R.; Vu, T.; Zimpfer, Doug; Dwyer, William K.; Robinson, Emily
2002-01-01
Timeliner has been developed as a tool to automate procedural tasks. These tasks may be sequential tasks that would typically be performed by a human operator, or precisely ordered sequencing tasks that allow autonomous execution of a control process. The Timeliner system includes elements for compiling and executing sequences that are defined in the Timeliner language. The Timeliner language was specifically designed to allow easy definition of scripts that provide sequencing and control of complex systems. The execution environment provides real-time monitoring and control based on the commands and conditions defined in the Timeliner language. The Timeliner sequence control may be preprogrammed, compiled from Timeliner "scripts," or it may consist of real-time, interactive inputs from system operators. In general, the Timeliner system lowers the workload for mission or process control operations. In a mission environment, scripts can be used to automate spacecraft operations including autonomous or interactive vehicle control, performance of preflight and post-flight subsystem checkouts, or handling of failure detection and recovery. Timeliner may also be used for mission payload operations, such as stepping through pre-defined procedures of a scientific experiment.
Weiland, Mark A.; Deng, Z. Daniel; Seim, Tom A.; LaMarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, M. Brad
2011-01-01
In 2001 the U.S. Army Corps of Engineers, Portland District (OR, USA), started developing the Juvenile Salmon Acoustic Telemetry System, a nonproprietary sensing technology, to meet the needs for monitoring the survival of juvenile salmonids through eight large hydroelectric facilities within the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006, the Pacific Northwest National Laboratory began the development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in two or three dimensions for determining route of passage and behavior as the fish passed at the facility. The additional information on route of passage, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities through the FCRPS. PMID:22163918
Modular AUV System with Integrated Real-Time Water Quality Analysis.
Eichhorn, Mike; Ament, Christoph; Jacobi, Marco; Pfuetzenreuter, Torsten; Karimanzira, Divas; Bley, Kornelia; Boer, Michael; Wehde, Henning
2018-06-05
This paper describes the concept, the technical implementation and the practical application of a miniaturized sensor system integrated into an autonomous underwater vehicle (AUV) for real-time acquisition of water quality parameters. The main application field of the presented system is the analysis of the discharge of nitrates into Norwegian fjords near aqua farms. The presented system was developed within the research project SALMON (Sea Water Quality Monitoring and Management) over a three-year period. The development of the sensor system for water quality parameters represented a significant challenge for the research group, as it was to be integrated in the payload unit of the autonomous underwater vehicle in compliance with the underwater environmental conditions. The German company -4H- JENA engineering GmbH (4HJE), with experience in optical in situ-detection of nutrients, designed and built the measurement system. As a carrier platform, the remotely operated vehicle (ROV) "CWolf" from Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung - Institutsteil Angewandte Systemtechnik (IOSB-AST) modified to an AUV was deployed. The concept presented illustrates how the measurement system can be integrated easily into the vehicle with a minimum of hard- and software technical interfaces.
NASA Astrophysics Data System (ADS)
Kengne, J.; Jafari, S.; Njitacke, Z. T.; Yousefi Azar Khanian, M.; Cheukem, A.
2017-11-01
Mathematical models (ODEs) describing the dynamics of almost all continuous time chaotic nonlinear systems (e.g. Lorenz, Rossler, Chua, or Chen system) involve at least a nonlinear term in addition to linear terms. In this contribution, a novel (and singular) 3D autonomous chaotic system without linear terms is introduced. This system has an especial feature of having two twin strange attractors: one ordinary and one symmetric strange attractor when the time is reversed. The complex behavior of the model is investigated in terms of equilibria and stability, bifurcation diagrams, Lyapunov exponent plots, time series and Poincaré sections. Some interesting phenomena are found including for instance, period-doubling bifurcation, antimonotonicity (i.e. the concurrent creation and annihilation of periodic orbits) and chaos while monitoring the system parameters. Compared to the (unique) case previously reported by Xu and Wang (2014) [31], the system considered in this work displays a more 'elegant' mathematical expression and experiences richer dynamical behaviors. A suitable electronic circuit (i.e. the analog simulator) is designed and used for the investigations. Pspice based simulation results show a very good agreement with the theoretical analysis.
Review on energy harvesting for structural health monitoring in aeronautical applications
NASA Astrophysics Data System (ADS)
Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean
2015-11-01
This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.
AUV technology heads for new depths[Autonomous Underwater Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.
2000-04-01
High-tech unmanned submarine technologies initially developed by the US Navy are being adapted for a new role to assist the oil and gas industry's shift into deeper waters. To address the problem of costly data acquisition and inaccurate survey data, C and C Technologies of Lafayette, La., has hired Kongsberg Simrad to construct the Hugin 3000 deepwater autonomous underwater vehicle (AUV). As the technology is applied to energy exploration and production advances to meet the deepwater challenges beyond the continental shelf, AUVs will be increasingly employed, it is believed. The paper describes the Hugin project, unexpected situations, the vehicle positionmore » tracking system, vehicle operation and real-time data quality control, real-time data monitoring and control, Hugin field experience, and pipe route surveying.« less
Experiments in teleoperator and autonomous control of space robotic vehicles
NASA Technical Reports Server (NTRS)
Alexander, Harold L.
1991-01-01
A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.
NASA Technical Reports Server (NTRS)
Simmons, Reid; Apfelbaum, David
2005-01-01
Task Description Language (TDL) is an extension of the C++ programming language that enables programmers to quickly and easily write complex, concurrent computer programs for controlling real-time autonomous systems, including robots and spacecraft. TDL is based on earlier work (circa 1984 through 1989) on the Task Control Architecture (TCA). TDL provides syntactic support for hierarchical task-level control functions, including task decomposition, synchronization, execution monitoring, and exception handling. A Java-language-based compiler transforms TDL programs into pure C++ code that includes calls to a platform-independent task-control-management (TCM) library. TDL has been used to control and coordinate multiple heterogeneous robots in projects sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It has also been used in Brazil to control an autonomous airship and in Canada to control a robotic manipulator.
ERIC Educational Resources Information Center
Beck, Erwin; And Others
1991-01-01
Presents results of an experiment enabling students to develop their own cognitive and metacognitive strategies to promote autonomous learning in mathematical problem solving, knowledge acquisition, and written composition. Explains that students dealt with models of teachers' and classmates' cognitive performances and monitored their own…
As hypoxic water masses increase worldwide in duration and extent due to coastal eutrophication, advanced technology water quality monitoring by autonomous vehicles can increase our capability to document and respond to these environmental perturbations. We evaluated the use of a...
Conditions for Fully Autonomous Anticipation
NASA Astrophysics Data System (ADS)
Collier, John
2006-06-01
Anticipation allows a system to adapt to conditions that have not yet come to be, either externally to the system or internally. Autonomous systems actively control the conditions of their own existence so as to increase their overall viability. This paper will first give minimal necessary and sufficient conditions for autonomous anticipation, followed by a taxonomy of autonomous anticipation. In more complex systems, there can be semi-autonomous subsystems that can anticipate and adapt on their own. Such subsystems can be integrated into a system's overall autonomy, typically with greater efficiency due to modularity and specialization of function. However, it is also possible that semi-autonomous subsystems can act against the viability of the overall system, and have their own functions that conflict with overall system functions.
The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations
2017-06-09
Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence
Autonomic regulation of hepatic glucose production.
Bisschop, Peter H; Fliers, Eric; Kalsbeek, Andries
2015-01-01
Glucose produced by the liver is a major energy source for the brain. Considering its critical dependence on glucose, it seems only natural that the brain is capable of monitoring and controlling glucose homeostasis. In addition to neuroendocrine pathways, the brain uses the autonomic nervous system to communicate with peripheral organs. Within the brain, the hypothalamus is the key region to integrate signals on energy status, including signals from lipid, glucose, and hormone sensing cells, with afferent neural signals from the internal and external milieu. In turn, the hypothalamus regulates metabolism in peripheral organs, including the liver, not only via the anterior pituitary gland but also via multiple neuropeptidergic pathways in the hypothalamus that have been identified as regulators of hepatic glucose metabolism. These pathways comprise preautonomic neurons projecting to nuclei in the brain stem and spinal cord, which relay signals from the hypothalamus to the liver via the autonomic nervous system. The neuroendocrine and neuronal outputs of the hypothalamus are not separate entities. They appear to act as a single integrated regulatory system, far more subtle, and complex than when each is viewed in isolation. Consequently, hypothalamic regulation should be viewed as a summation of both neuroendocrine and neural influences. As a result, our endocrine-based understanding of diseases such as diabetes and obesity should be expanded by integration of neural inputs into our concept of the pathophysiological process. © 2014 American Physiological Society.
McCraty, Rollin; Atkinson, Mike; Stolc, Viktor; Alabdulgader, Abdullah A.; Vainoras, Alfonsas
2017-01-01
A coupling between geomagnetic activity and the human nervous system’s function was identified by virtue of continuous monitoring of heart rate variability (HRV) and the time-varying geomagnetic field over a 31-day period in a group of 10 individuals who went about their normal day-to-day lives. A time series correlation analysis identified a response of the group’s autonomic nervous systems to various dynamic changes in the solar, cosmic ray, and ambient magnetic field. Correlation coefficients and p values were calculated between the HRV variables and environmental measures during three distinct time periods of environmental activity. There were significant correlations between the group’s HRV and solar wind speed, Kp, Ap, solar radio flux, cosmic ray counts, Schumann resonance power, and the total variations in the magnetic field. In addition, the time series data were time synchronized and normalized, after which all circadian rhythms were removed. It was found that the participants’ HRV rhythms synchronized across the 31-day period at a period of approximately 2.5 days, even though all participants were in separate locations. Overall, this suggests that daily autonomic nervous system activity not only responds to changes in solar and geomagnetic activity, but is synchronized with the time-varying magnetic fields associated with geomagnetic field-line resonances and Schumann resonances. PMID:28703754
Fletcher, Richard Ribón; Tam, Sharon; Omojola, Olufemi; Redemske, Richard; Kwan, Joyce
2011-01-01
We present a wearable sensor platform designed for monitoring and studying autonomic nervous system (ANS) activity for the purpose of mental health treatment and interventions. The mobile sensor system consists of a sensor band worn on the ankle that continuously monitors electrodermal activity (EDA), 3-axis acceleration, and temperature. A custom-designed ECG heart monitor worn on the chest is also used as an optional part of the system. The EDA signal from the ankle bands provides a measure sympathetic nervous system activity and used to detect arousal events. The optional ECG data can be used to improve the sensor classification algorithm and provide a measure of emotional "valence." Both types of sensor bands contain a Bluetooth radio that enables communication with the patient's mobile phone. When a specific arousal event is detected, the phone automatically presents therapeutic and empathetic messages to the patient in the tradition of Cognitive Behavioral Therapy (CBT). As an example of clinical use, we describe how the system is currently being used in an ongoing study for patients with drug-addiction and post-traumatic stress disorder (PTSD).
NASA Astrophysics Data System (ADS)
Strack, K.; Davydycheva, S.; Hanstein, T.; Smirnov, M.
2017-07-01
Over the last 6 years we developed an array system for electromagnetic acquisition (magnetotelluric & long offset transient electromagnetics [LOTEM]) that includes microseismic acquisition. While predominantly used for magnetotellurics, we focus on the autonomous operation as reservoir monitoring system including a shallow borehole receiver and 100/150 KVA transmitter. A marine extension is also under development. For Enhanced Oil recovery (EOR), in addition to reservoir flood front movements, reservoir seal integrity has become an issue [1]. Seal integrity is best addressed with microseismics while the water flood front is best addressed with electromagnetics. Since the flooded reservoir is conductive and the hydrocarbon saturated part is resistive, you need both magnetic and electric fields. The fluid imaging is addressed using electromagnetics. To overcome the volume-focus inherent to electromagnetics a new methodology to focus the sensitivity under the receiver is proposed. Field data and 3D modeling confirm this could increase the efficiency of LOTEM to reservoir monitoring.
Frisby, June; Raftery, Declan; Kerry, Joe P; Diamond, Dermot
2005-06-01
This paper focuses on the development of a unique wireless pH and temperature monitoring system to assess pig meat quality. Pale, soft and exudative (PSE) pig meat continues to be a major problem in the pig meat industry today. The PSE condition in pork is related to a number of factors including genetics, pre-slaughter stress and insufficient chilling of pig carcasses, which cause a rapid rate of glycolysis post-mortem (<1h). As a result the pH drops to low levels while the muscle temperature is still high. A wireless dual channel system that monitors pH and temperature simultaneously has been developed to provide pH and temperature data of the carcass during the first 24h after slaughter. We have demonstrated that this approach can distinguish in real time, pH and temperature profiles that are 'non-normal', and identify carcasses that are PSE positive quickly and easily.
Autonomic Function in Infancy.
ERIC Educational Resources Information Center
Fox, Nathan A.; Fitzgerald, Hiram E.
1990-01-01
Reviews research that uses autonomic responses of human infants as dependent measures. Focuses on the history of research on the autonomic nervous system, measurement issues, and autonomic correlates of infant behavior and systems. (RJC)
Methods of determining complete sensor requirements for autonomous mobility
NASA Technical Reports Server (NTRS)
Curtis, Steven A. (Inventor)
2012-01-01
A method of determining complete sensor requirements for autonomous mobility of an autonomous system includes computing a time variation of each behavior of a set of behaviors of the autonomous system, determining mobility sensitivity to each behavior of the autonomous system, and computing a change in mobility based upon the mobility sensitivity to each behavior and the time variation of each behavior. The method further includes determining the complete sensor requirements of the autonomous system through analysis of the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior, wherein the relative magnitude of the change in mobility, the mobility sensitivity to each behavior, and the time variation of each behavior are characteristic of the stability of the autonomous system.
Ultrasonic wireless health monitoring
NASA Astrophysics Data System (ADS)
Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas
2006-03-01
The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data processing into an autonomous wireless receiver, in terms of reduction of the energy and memory costs.
NASA Technical Reports Server (NTRS)
Rios, Joseph
2016-01-01
Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated coverage. Both would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. UTM is creating an airspace management tool that allows the ATM system to accommodate the number of UAS that will operate in the low altitude airspace. The analogy is just because we have a car, whether its autonomous or someone is driving, does not diminish the need for a road or road signs or rules of the road.
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-04-09
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.
NASA Astrophysics Data System (ADS)
O'Connor, Sean M.; Zhang, Yilan; Lynch, Jerome; Ettouney, Mohammed; van der Linden, Gwen
2014-04-01
A worthy goal for the structural health monitoring field is the creation of a scalable monitoring system architecture that abstracts many of the system details (e.g., sensors, data) from the structure owner with the aim of providing "actionable" information that aids in their decision making process. While a broad array of sensor technologies have emerged, the ability for sensing systems to generate large amounts of data have far outpaced advances in data management and processing. To reverse this trend, this study explores the creation of a cyber-enabled wireless SHM system for highway bridges. The system is designed from the top down by considering the damage mechanisms of concern to bridge owners and then tailoring the sensing and decision support system around those concerns. The enabling element of the proposed system is a powerful data repository system termed SenStore. SenStore is designed to combine sensor data with bridge meta-data (e.g., geometric configuration, material properties, maintenance history, sensor locations, sensor types, inspection history). A wireless sensor network deployed to a bridge autonomously streams its measurement data to SenStore via a 3G cellular connection for storage. SenStore securely exposes the bridge meta- and sensor data to software clients that can process the data to extract information relevant to the decision making process of the bridge owner. To validate the proposed cyber-enable SHM system, the system is implemented on the Telegraph Road Bridge (Monroe, MI). The Telegraph Road Bridge is a traditional steel girder-concrete deck composite bridge located along a heavily travelled corridor in the Detroit metropolitan area. A permanent wireless sensor network has been installed to measure bridge accelerations, strains and temperatures. System identification and damage detection algorithms are created to automatically mine bridge response data stored in SenStore over an 18-month period. Tools like Gaussian Process (GP) regression are used to predict changes in the bridge behavior as a function of environmental parameters. Based on these analyses, pertinent behavioral information relevant to bridge management is autonomously extracted.
Development of Cloud-Based UAV Monitoring and Management System
Itkin, Mason; Kim, Mihui; Park, Younghee
2016-01-01
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation. PMID:27854267
Development of Cloud-Based UAV Monitoring and Management System.
Itkin, Mason; Kim, Mihui; Park, Younghee
2016-11-15
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation.
Skinner-Rusk unified formalism for higher-order systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2012-07-01
The Lagrangian-Hamiltonian unified formalism of R. Skinner and R. Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, first-order and higher-order field theories, and higher-order autonomous systems. In this work we present a generalization of this formalism for higher-order non-autonomous mechanical systems.
Assured Human-Autonomy Interaction through Machine Self-Confidence
NASA Astrophysics Data System (ADS)
Aitken, Matthew
Autonomous systems employ many layers of approximations in order to operate in increasingly uncertain and unstructured environments. The complexity of these systems makes it hard for a user to understand the systems capabilities, especially if the user is not an expert. However, if autonomous systems are to be used efficiently, their users must trust them appropriately. This purpose of this work is to implement and assess an 'assurance' that an autonomous system can provide to the user to elicit appropriate trust. Specifically, the autonomous system's perception of its own capabilities is reported to the user as the self-confidence assurance. The self-confidence assurance should allow the user to more quickly and accurately assess the autonomous system's capabilities, generating appropriate trust in the autonomous system. First, this research defines self-confidence and discusses what the self-confidence assurance is attempting to communicate to the user. Then it provides a framework for computing the autonomous system's self-confidence as a function of self-confidence factors which correspond to individual elements in the autonomous system's process. In order to explore this idea, self-confidence is implemented on an autonomous system that uses a mixed observability Markov decision process model to solve a pursuit-evasion problem on a road network. The implementation of a factor assessing the goodness of the autonomy's expected performance is focused on in particular. This work highlights some of the issues and considerations in the design of appropriate metrics for the self-confidence factors, and provides the basis for future research for computing self-confidence in autonomous systems.
Systems, methods and apparatus for quiesence of autonomic systems with self action
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided in which an autonomic unit or element is quiesced. A quiesce component of an autonomic unit can cause the autonomic unit to self-destruct if a stay-alive reprieve signal is not received after a predetermined time.
Remote real-time monitoring of subsurface landfill gas migration.
Fay, Cormac; Doherty, Aiden R; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O'Connor, Noel E; Smeaton, Alan F; Diamond, Dermot
2011-01-01
The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months.
Remote Real-Time Monitoring of Subsurface Landfill Gas Migration
Fay, Cormac; Doherty, Aiden R.; Beirne, Stephen; Collins, Fiachra; Foley, Colum; Healy, John; Kiernan, Breda M.; Lee, Hyowon; Maher, Damien; Orpen, Dylan; Phelan, Thomas; Qiu, Zhengwei; Zhang, Kirk; Gurrin, Cathal; Corcoran, Brian; O’Connor, Noel E.; Smeaton, Alan F.; Diamond, Dermot
2011-01-01
The cost of monitoring greenhouse gas emissions from landfill sites is of major concern for regulatory authorities. The current monitoring procedure is recognised as labour intensive, requiring agency inspectors to physically travel to perimeter borehole wells in rough terrain and manually measure gas concentration levels with expensive hand-held instrumentation. In this article we present a cost-effective and efficient system for remotely monitoring landfill subsurface migration of methane and carbon dioxide concentration levels. Based purely on an autonomous sensing architecture, the proposed sensing platform was capable of performing complex analytical measurements in situ and successfully communicating the data remotely to a cloud database. A web tool was developed to present the sensed data to relevant stakeholders. We report our experiences in deploying such an approach in the field over a period of approximately 16 months. PMID:22163975
Autonomic Computing for Spacecraft Ground Systems
NASA Technical Reports Server (NTRS)
Li, Zhenping; Savkli, Cetin; Jones, Lori
2007-01-01
Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.
Sensing, Control, and System Integration for Autonomous Vehicles: A Series of Challenges
NASA Astrophysics Data System (ADS)
Özgüner, Ümit; Redmill, Keith
One of the important examples of mechatronic systems can be found in autonomous ground vehicles. Autonomous ground vehicles provide a series of challenges in sensing, control and system integration. In this paper we consider off-road autonomous vehicles, automated highway systems and urban autonomous driving and indicate the unifying aspects. We specifically consider our own experience during the last twelve years in various demonstrations and challenges in attempting to identify unifying themes. Such unifying themes can be observed in basic hierarchies, hybrid system control approaches and sensor fusion techniques.
Optical Delineation of Benthic Habitat Using an Autonomous Underwater Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moline, Mark A.; Woodruff, Dana L.; Evans, Nathan R.
To improve understanding and characterization of coastal regions, there has been an increasing emphasis on autonomous systems that can sample the ocean on relevant scales. Autonomous underwater vehicles (AUVs) with active propulsion are especially well suited for studies of the coastal ocean because they are able to provide systematic and near-synoptic spatial observations. With this capability, science users are beginning to integrate sensor suits for a broad range of specific and often novel applications. Here, the relatively mature Remote Environmental Monitoring Units (REMUS) AUV system is configured with multi-spectral radiometers to delineate benthic habitat in Sequim Bay, WA. The vehiclemore » was deployed in a grid pattern along 5 km of coastline in depths from 30 to less than 2 meters. Similar to satellite and/or aerial remote sensing, the bandwidth ratios from the downward looking radiance sensor and upward looking irradiance sensor were used to identify beds of eelgrass on sub-meter scales. Strong correlations were found between the optical reflectance signals and the geo-referenced in situ data collected with underwater video within the grid. Results demonstrate the ability of AUVs to map littoral habitats at high resolution and highlight the overall utility of the REMUS vehicle for nearshore oceanography.« less
Zero-power autonomous buoyancy system controlled by microbial gas production
NASA Astrophysics Data System (ADS)
Wu, Peter K.; Fitzgerald, Lisa A.; Biffinger, Justin C.; Spargo, Barry J.; Houston, Brian H.; Bucaro, Joseph A.; Ringeisen, Bradley R.
2011-05-01
A zero-power ballast control system that could be used to float and submerge a device solely using a gas source was built and tested. This system could be used to convey sensors, data loggers, and communication devices necessary for water quality monitoring and other applications by periodically maneuvering up and down a water column. Operational parameters for the system such as duration of the submerged and buoyant states can be varied according to its design. The gas source can be of any origin, e.g., compressed air, underwater gas vent, gas produced by microbes, etc. The zero-power ballast system was initially tested using a gas pump and further tested using gas produced by Clostridium acetobutylicum. Using microbial gas production as the only source of gas and no electrical power during operation, the system successfully floated and submerged periodically with a period of 30 min for at least 24 h. Together with microbial fuel cells, this system opens up possibilities for underwater monitoring systems that could function indefinitely.
The evolution of automation and robotics in manned spaceflight
NASA Technical Reports Server (NTRS)
Moser, T. L.; Erickson, J. D.
1986-01-01
The evolution of automation on all manned spacecraft including the Space Shuttle is reviewed, and a concept for increasing automation and robotics from the current Shuttle Remote Manipulator System (RMS) to an autonomous system is presented. The requirements for robotic elements are identified for various functions on the Space Station, including extravehicular functions and functions within laboratory and habitation modules which expand man's capacity in space and allow selected teleoperation from the ground. The initial Space Station will employ a telerobot and necessary knowledge based systems as an advisory to the crew on monitoring, fault diagnosis, and short term planning and scheduling.
Animal model of neuropathic tachycardia syndrome
NASA Technical Reports Server (NTRS)
Carson, R. P.; Appalsamy, M.; Diedrich, A.; Davis, T. L.; Robertson, D.
2001-01-01
Clinically relevant autonomic dysfunction can result from either complete or partial loss of sympathetic outflow to effector organs. Reported animal models of autonomic neuropathy have aimed to achieve complete lesions of sympathetic nerves, but incomplete lesions might be more relevant to certain clinical entities. We hypothesized that loss of sympathetic innervation would result in a predicted decrease in arterial pressure and a compensatory increase in heart rate. Increased heart rate due to loss of sympathetic innervation is seemingly paradoxical, but it provides a mechanistic explanation for clinical autonomic syndromes such as neuropathic postural tachycardia syndrome. Partially dysautonomic animals were generated by selectively lesioning postganglionic sympathetic neurons with 150 mg/kg 6-hydroxydopamine hydrobromide in male Sprague-Dawley rats. Blood pressure and heart rate were monitored using radiotelemetry. Systolic blood pressure decreased within hours postlesion (Delta>20 mm Hg). Within 4 days postlesion, heart rate rose and remained elevated above control levels. The severity of the lesion was determined functionally and pharmacologically by spectral analysis and responsiveness to tyramine. Low-frequency spectral power of systolic blood pressure was reduced postlesion and correlated with the diminished tyramine responsiveness (r=0.9572, P=0.0053). The tachycardia was abolished by treatment with the beta-antagonist propranolol, demonstrating that it was mediated by catecholamines acting on cardiac beta-receptors. Partial lesions of the autonomic nervous system have been hypothesized to underlie many disorders, including neuropathic postural tachycardia syndrome. This animal model may help us better understand the pathophysiology of autonomic dysfunction and lead to development of therapeutic interventions.
Autonomous Assembly of Modular Structures in Space and on Extraterrestrial Locations
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.
2005-01-01
The new U.S. National Vision for Space Exploration requires many new enabling technologies to accomplish the goals of space commercialization and returning humans to the moon and extraterrestrial environments. Traditionally, flight elements are complete subsystems requiring humans to complete the integration and assembly. These bulky structures also require the use of heavy launch vehicles to send the units to a desired location. This philosophy necessitates a high degree of safety, numerous space walks at a significant cost. Future space mission costs must be reduced and safety increased to reasonably achieve exploration goals. One proposed concept is the autonomous assembly of space structures. This concept is an affordable, reliable solution to in-space and extraterrestrial assembly. Assembly is autonomously performed when two components join after determining that specifications are correct. Local sensors continue monitor joint integrity post assembly, which is critical for safety and structural reliability. Achieving this concept requires a change in space structure design philosophy and the development of innovative technologies to perform autonomous assembly. Assembly of large space structures will require significant numbers of integrity sensors. Thus simple, low-cost sensors are integral to the success of this concept. This paper addresses these issues and proposes a novel concept for assembling space structures autonomously. Core technologies required to achieve in space assembly are presented. These core technologies are critical to the goal of utilizing space in a cost efficient and safe manner. Additionally, these novel technologies can be applied to other systems both on earth and extraterrestrial environments.
Robust GPS autonomous signal quality monitoring
NASA Astrophysics Data System (ADS)
Ndili, Awele Nnaemeka
The Global Positioning System (GPS), introduced by the U.S. Department of Defense in 1973, provides unprecedented world-wide navigation capabilities through a constellation of 24 satellites in global orbit, each emitting a low-power radio-frequency signal for ranging. GPS receivers track these transmitted signals, computing position to within 30 meters from range measurements made to four satellites. GPS has a wide range of applications, including aircraft, marine and land vehicle navigation. Each application places demands on GPS for various levels of accuracy, integrity, system availability and continuity of service. Radio frequency interference (RFI), which results from natural sources such as TV/FM harmonics, radar or Mobile Satellite Systems (MSS), presents a challenge in the use of GPS, by posing a threat to the accuracy, integrity and availability of the GPS navigation solution. In order to use GPS for integrity-sensitive applications, it is therefore necessary to monitor the quality of the received signal, with the objective of promptly detecting the presence of RFI, and thus provide a timely warning of degradation of system accuracy. This presents a challenge, since the myriad kinds of RFI affect the GPS receiver in different ways. What is required then, is a robust method of detecting GPS accuracy degradation, which is effective regardless of the origin of the threat. This dissertation presents a new method of robust signal quality monitoring for GPS. Algorithms for receiver autonomous interference detection and integrity monitoring are demonstrated. Candidate test statistics are derived from fundamental receiver measurements of in-phase and quadrature correlation outputs, and the gain of the Active Gain Controller (AGC). Performance of selected test statistics are evaluated in the presence of RFI: broadband interference, pulsed and non-pulsed interference, coherent CW at different frequencies; and non-RFI: GPS signal fading due to physical blockage and multipath. Results are presented which verify the effectiveness of these proposed methods. The benefits of pseudolites in reducing service outages due to interference are demonstrated. Pseudolites also enhance the geometry of the GPS constellation, improving overall system accuracy. Designs for pseudolites signals, to reduce the near-far problem associated with pseudolite use, are also presented.
Agent Architectures for Compliance
NASA Astrophysics Data System (ADS)
Burgemeestre, Brigitte; Hulstijn, Joris; Tan, Yao-Hua
A Normative Multi-Agent System consists of autonomous agents who must comply with social norms. Different kinds of norms make different assumptions about the cognitive architecture of the agents. For example, a principle-based norm assumes that agents can reflect upon the consequences of their actions; a rule-based formulation only assumes that agents can avoid violations. In this paper we present several cognitive agent architectures for self-monitoring and compliance. We show how different assumptions about the cognitive architecture lead to different information needs when assessing compliance. The approach is validated with a case study of horizontal monitoring, an approach to corporate tax auditing recently introduced by the Dutch Customs and Tax Authority.
Autonomous Power System intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Autonomous power system intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke
2018-01-01
In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549
An Innovative Unmanned System for Advanced Environmental Monitoring: Design and Development
NASA Astrophysics Data System (ADS)
Marsella, Ennio; Giordano, Laura; Evangelista, Lorenza; Iengo, Antonio; di Filippo, Alessandro; Coppola, Aniello
2015-04-01
The paper summarizes the design and development of a new technology and tools for real-time coordination and control of unmanned vehicles for advanced environmental monitoring. A new Unmanned System has been developed at Institute for Coastal Marine Environmental - National Research Council (Italy), in the framework of two National Operational Programs (PON): Technological Platform for Geophysical and Environmental Marine Survey-PITAM and Integrated Systems and Technologies for Geophysical and Environmental Monitoring in coastal-marine areas-STIGEAC. In particular, the system includes one Unmanned Aerial Vehicle (UAV) and two Unmanned Marine Vehicles (UMV). Major innovations concern the implementation of a new architecture to control each drone and/or to allow the cooperation between heterogeneous vehicles, the integration of distributed sensing techniques and real-time image processing capabilities. Part of the research in these projects involves, therefore, an architecture, where the ground operator can communicate with the Unmanned Vehicles at various levels of abstraction using pointing devices and video viewing. In detail, a Ground Control Station (GCS) has been design and developed to allow the government in security of the drones within a distance up to twenty kilometers for air explorations and within ten nautical miles for marine activities. The Ground Control Station has the following features: 1. hardware / software system for the definition of the mission profiles; 3. autonomous and semi-autonomous control system by remote control (joystick or other) for the UAV and UMVs; 4. integrated control system with comprehensive visualization capabilities, monitoring and archiving of real-time data acquired from scientific payload; 5. open structure to future additions of systems, sensors and / or additional vehicles. In detail, the UAV architecture is a dual-rotor, with an endurance ranging from 55 to 200 minutes, depending on payload weight (maximum 26 kg) and wind conditions, and a capability to survey an area of up to 5x5 square kilometers. The UAV payload consists of three different types of sensors: a laser scanner, a thermal-camera and an integrated camera reflex with gimbal. The laser scanner has 10 mm survey-grade accuracy and a field of view up to 330°. The thermal-camera has a resolution 640x480 pixels and a thermal sensitivity <20 mK (at 30 °C), while the reflex is a 22.3 Megapixel full-frame sensor. In addition to the common applications, such as generating mapping, charting, and geodesy products, the system allows performing real-time survey and monitoring of different natural risk under dangerous condition. The system is, also, address to environmental risk monitoring and prevention, industrial activity and emergency interventions related to environmental crises (i.e. oil spills).
Autonomous support for microorganism research in space
NASA Astrophysics Data System (ADS)
Fleet, M. L.; Smith, J. D.; Klaus, D. M.; Luttges, M. W.
1993-02-01
A preliminary design for performing on orbit, autonomous research on microorganisms and cultured cells/tissues is presented. The payload is designed to be compatible with the COMercial Experiment Transporter (COMET), an orbiter middeck locker interface and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with in-flight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibrations, and radiation are provided for environmental regulation and experimental data collection. Additional data acquisition includes optical density measurement, microscopy, video, and film photography. On-board data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, research opportunities are explored to illustrate hardware versatility and function. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.
Adapting the Law of Armed Conflict to Autonomous Weapon Systems
2014-01-01
ORGANIZATION NAME(S) AND ADDRESS(ES) U. S. Naval War College,Newport,RI,02841 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...3. Kenneth Anderson & Matthew Waxman, Op-Ed, Killer Robots and the Laws of War, WALL STREET JOURNAL, Nov. 4, 2013, at A19...future, see Werner J. A. Dahm, Op-Ed, Killer Drones Are Science Fiction, WALL STREET JOURNAL (Feb. 15, 2012), http://online.wsj.com/news/articles
Axelrod, Felicia B
2013-03-01
Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.
A quadcopter with heterogeneous sensors for autonomous bridge inspection.
DOT National Transportation Integrated Search
2014-02-01
Continuously monitoring a bridges health by sensor technologies has been widely used to maintain the operation of : a : roadwork while protecting public users safety. However, monitoring and inspecting numerous bridges in a state is a labor : -...
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.
2006-01-01
The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits with minimal impact on IVA operators and ground controllers, the Mini AERCam system architecture incorporates intelligent systems attributes that support various autonomous capabilities. 1) A robust command sequencer enables task-level command scripting. Command scripting is employed for operations such as automatic inspection scans over a region of interest, and operator-hands-off automated docking. 2) A system manager built on the same expert-system software as the command sequencer provides detection and smart-response capability for potential system-level anomalies, like loss of communications between the Free Flyer and control station. 3) An AERCam dynamics manager provides nominal and off-nominal management of guidance, navigation, and control (GN&C) functions. It is employed for safe trajectory monitoring, contingency maneuvering, and related roles. This paper will describe these architectural components of Mini AERCam autonomy, as well as the interaction of these elements with a human operator during supervised autonomous control.
Autonomous and Autonomic Swarms
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy
2005-01-01
A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.
Decentralized DC Microgrid Monitoring and Optimization via Primary Control Perturbations
NASA Astrophysics Data System (ADS)
Angjelichinoski, Marko; Scaglione, Anna; Popovski, Petar; Stefanovic, Cedomir
2018-06-01
We treat the emerging power systems with direct current (DC) MicroGrids, characterized with high penetration of power electronic converters. We rely on the power electronics to propose a decentralized solution for autonomous learning of and adaptation to the operating conditions of the DC Mirogrids; the goal is to eliminate the need to rely on an external communication system for such purpose. The solution works within the primary droop control loops and uses only local bus voltage measurements. Each controller is able to estimate (i) the generation capacities of power sources, (ii) the load demands, and (iii) the conductances of the distribution lines. To define a well-conditioned estimation problem, we employ decentralized strategy where the primary droop controllers temporarily switch between operating points in a coordinated manner, following amplitude-modulated training sequences. We study the use of the estimator in a decentralized solution of the Optimal Economic Dispatch problem. The evaluations confirm the usefulness of the proposed solution for autonomous MicroGrid operation.
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Nicewarner, Keith
2006-01-01
We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault.
Autonomic Nervous System Disorders
Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...
Matsui, Takemi; Shinba, Toshikazu; Sun, Guanghao
2018-02-01
12.6% of major depressive disorder (MDD) patients have suicide intent, while it has been reported that 43% of patients did not consult their doctors for MDD, automated MDD screening is eagerly anticipated. Recently, in order to achieve automated screening of MDD, biomarkers such as multiplex DNA methylation profiles or physiological method using near infra-red spectroscopy (NIRS) have been studied, however, they require inspection using 96-well DNA ELIZA kit after blood sampling or significant cost. Using a single-lead electrocardiography (ECG), we developed a high-precision MDD screening system using transient autonomic responses induced by dual mental tasks. We developed a novel high precision MDD screening system which is composed of a single-lead ECG monitor, analogue to digital (AD) converter and a personal computer with measurement and analysis program written by LabView programming language. The system discriminates MDD patients from normal subjects using heat rate variability (HRV)-derived transient autonomic responses induced by dual mental tasks, i.e. verbal fluency task and random number generation task, via linear discriminant analysis (LDA) adopting HRV-related predictor variables (hear rate (HR), high frequency (HF), low frequency (LF)/HF). The proposed system was tested for 12 MDD patients (32 ± 15 years) under antidepressant treatment from Shizuoka Saiseikai General Hospital outpatient unit and 30 normal volunteers (37 ± 17 years) from Tokyo Metropolitan University. The proposed system achieved 100% sensitivity and 100% specificity in classifying 42 examinees into 12 MDD patients and 30 normal subjects. The proposed system appears promising for future HRV-based high-precision and low-cost screening of MDDs using only single-lead ECG.
Fanciulli, Alessandra; Jordan, Jens; Biaggioni, Italo; Calandra-Buonaura, Giovanna; Cheshire, William P; Cortelli, Pietro; Eschlboeck, Sabine; Grassi, Guido; Hilz, Max J; Kaufmann, Horacio; Lahrmann, Heinz; Mancia, Giuseppe; Mayer, Gert; Norcliffe-Kaufmann, Lucy; Pavy-Le Traon, Anne; Raj, Satish R; Robertson, David; Rocha, Isabel; Struhal, Walter; Thijs, Roland; Tsioufis, Konstantinos P; van Dijk, J Gert; Wenning, Gregor K
2018-05-15
Patients suffering from cardiovascular autonomic failure often develop neurogenic supine hypertension (nSH), i.e., high blood pressure (BP) in the supine position, which falls in the upright position owing to impaired autonomic regulation. A committee was formed to reach consensus among experts on the definition and diagnosis of nSH in the context of cardiovascular autonomic failure. As a first and preparatory step, a systematic search of PubMed-indexed literature on nSH up to January 2017 was performed. Available evidence derived from this search was discussed in a consensus expert round table meeting in Innsbruck on February 16, 2017. Statements originating from this meeting were further discussed by representatives of the American Autonomic Society and the European Federation of Autonomic Societies and are summarized in the document presented here. The final version received the endorsement of the European Academy of Neurology and the European Society of Hypertension. In patients with neurogenic orthostatic hypotension, nSH is defined as systolic BP ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg, measured after at least 5 min of rest in the supine position. Three severity degrees are recommended: mild, moderate and severe. nSH may also be present during nocturnal sleep, with reduced-dipping, non-dipping or rising nocturnal BP profiles with respect to mean daytime BP values. Home BP monitoring and 24-h-ambulatory BP monitoring provide relevant information for a customized clinical management. The establishment of expert-based criteria to define nSH should standardize diagnosis and allow a better understanding of its epidemiology, prognosis and, ultimately, treatment.
The Visual Representation and Acquisition of Driving Knowledge for Autonomous Vehicle
NASA Astrophysics Data System (ADS)
Zhang, Zhaoxia; Jiang, Qing; Li, Ping; Song, LiangTu; Wang, Rujing; Yu, Biao; Mei, Tao
2017-09-01
In this paper, the driving knowledge base of autonomous vehicle is designed. Based on the driving knowledge modeling system, the driving knowledge of autonomous vehicle is visually acquired, managed, stored, and maintenanced, which has vital significance for creating the development platform of intelligent decision-making systems of automatic driving expert systems for autonomous vehicle.
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.
2012-12-01
Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the use of UAS on oceanographic research vessels is just beginning. We report on several initial field efforts which demonstrated that UAS improve spatial and temporal mapping of ocean features, as well as monitoring marine mammal populations, ocean color, sea ice and wave fields and air-sea gas exchange. These studies however also confirm the challenges for shipboard computer systems ingesting and archiving UAS high resolution video, SAR and lidar data. We describe the successful inclusion of DTN communications for: 1) passing video data between two UAS or a UAS and ship; 2) for inclusion of ASVs as communication nodes for AUVs; as well as, 3) enabling extension of adaptive sampling software from AUVs and ASVs to include UAS. In conclusion, we describe how autonomous sampling systems may be best integrated into shipboard oceanographic vessel research to provide new and more comprehensive time-space ocean and atmospheric data collection that is important not only for scientific study, but also for sustainable ocean management, including emergency response capabilities. The recent examples of such integrated studies highlighted confirm ocean and atmospheric studies can more cost-effectively pursued, and in some cases only accomplished, by combining underwater, surface and aircraft autonomous systems with research vessel operations.
Observing Active Volcanism on Earth and Beyond With an Autonomous Science Investigation Capability
NASA Astrophysics Data System (ADS)
Davies, A. G.; Mjolsness, E. D.; Fink, W.; Castano, R.; Park, H. G.; Zak, M.; Burl, M. C.
2001-12-01
Operational constraints imposed by restricted downlink and long communication delays make autonomous systems a necessity for exploring dynamic processes in the Solar System and beyond. Our objective is to develop an onboard, modular, automated science analysis tool that will autonomously detect unexpected events, identify rare events at predicted sites, quantify the processes under study, and prioritize the science data and analyses as they are collected. A primary target for this capability is terrestrial active volcanism. Our integrated, science-driven command and control package represents the next stage of the automatic monitoring of volcanic activity pioneered by GOES. The resulting system will maximize science return from day-to-day instrument use and provide immediate reaction to capture the fullest information from infrequent events. For example, a sensor suite consisting of a Galileo-like multi-filter visible wavelength camera and an infrared spectrometer, can acquire high-spatial resolution data of eruptions of lava and volcanic plumes and identify large concentrations of volcanic SO2. After image/spectrum formation, software is applied to the data which is capable of change detection (in the visible and infrared), feature identification (both in imagery and spectra), and novelty detection. In this particular case, the latter module detects change in the parameter space of an advanced multi-component black-body volcanic thermal emission model by means of a novel technique called the "Grey-Box" method which analyzes time series data through a combination of deterministic and stochastic models. This approach can be demonstrated using data obtained by the Galileo spacecraft of ionian volcanism. The system autonomously identifies the most scientifically important targets and prioritizes data and analyses for return. All of these techniques have been successfully demonstrated in laboratory experiments, and are ready to be tested in an operational environment. After identification of a target of interest, an onboard planner prioritizes resources to obtain the best possible dataset of the identified process. We emphasize that the software is modular. The change detection and feature identification modules can be applied to any imaged dataset, and are not confined to volcanic targets. Applications are therefore widespread, across all NASA Enterprises. Examples include detection and quantification of extraterrestrial volcanism (Io, Triton), the monitoring of features in planetary atmospheres (Earth, Gas Giants), the ebb and flow of ices (Earth, Mars), asteriod, comet and supernova detection, change detection in magnetic fields, and identification of structure within radio outbursts.
Developing psychophysiological profiles for monitoring stress
NASA Astrophysics Data System (ADS)
Moldow, Roberta L.; Bergen, Michael T.; Belin, Kari; Bululu, Luba; Couso, Olivita; McLaughlin, Joselyn; Short, Kenneth R.; Servatius, Richard J.
2006-05-01
Training prepares first responders for disasters including terrorist attacks. To train effectively it should be as realistic as possible and elicit the stress response. We are developing a profile that will be a marker for intensity of stress as well as differentiate stress from exertion. We have monitored stress during several training scenarios for different groups including civilian SWAT teams and the military. In addition, we can monitor stress to exposure to nonlethal weapons. We have monitored stress during exposure to blunt impact using a paintball paradigm. We have measured salivary substances (such as cortisol and DHEA [markers for the hypothalamic-pituitary-adrenal axis]) and amylase [marker for the sympathetic branch of the autonomic nervous system], physiological parameters (such as activity and heart rate), and neuropsychological assessment tools (such as Borg's perceived exertion scale, Spielberger's STAI and Thayer's ADC). With these neuroendocrine, physiological and behavioral indices in hand, we are poised to examine stress induction in preparedness in trainees.
Autonomous control systems - Architecture and fundamental issues
NASA Technical Reports Server (NTRS)
Antsaklis, P. J.; Passino, K. M.; Wang, S. J.
1988-01-01
A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).
2014-09-01
High Fructose Corn Syrup Diluted 1 to 10 percent by weight 50 to 500 mg/l Slow Release Whey (fresh/powered) Dissolved (powdered form) or injected...the assessment of remedial progress and functioning. This project also addressed several high priority needs from the Navy Environmental Quality...memory high -performance computing systems. For instance, as of March 2012 the code has been successfully executed on 2 cpu’s for an inversion problem
Experiences with a Decade of Wireless Sensor Networks in Mountain Cryosphere Research
NASA Astrophysics Data System (ADS)
Beutel, Jan
2017-04-01
Research in geoscience depends on high-quality measurements over long periods of time in order to understand processes and to create and validate models. The promise of wireless sensor networks to monitor autonomously at unprecedented spatial and temporal scale motivated the use of this novel technology for studying mountain permafrost in the mid 2000s. Starting from a first experimental deployment to investigate the thermal properties of steep bedrock permafrost in 2006 on the Jungfraujoch, Switzerland at 3500 m asl using prototype wireless sensors the PermaSense project has evolved into a multi-site and multi-discipline initiative. We develop, deploy and operate wireless sensing systems customized for long-term autonomous operation in high-mountain environments. Around this central element, we develop concepts, methods and tools to investigate and to quantify the connection between climate, cryosphere (permafrost, glaciers, snow) and geomorphodynamics. In this presentation, we describe the concepts and system architecture used both for the wireless sensor network as well as for data management and processing. Furthermore, we will discuss the experience gained in over a decade of planning, installing and operating large deployments on field sites spread across a large part of the Swiss and French Alps and applications ranging from academic, experimental research campaigns, long-term monitoring and natural hazard warning in collaboration with government authorities and local industry partners. Reference http://www.permasense.ch Online Open Data Access http://data.permasense.ch
The Role of Satellite Data for the National Forest Monitoring Systems in the Context of REDD+
NASA Astrophysics Data System (ADS)
Jonckheere, Inge
2012-04-01
Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. “REDD+” goes beyond deforestation and forest degradation, and includes the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. In the framework of getting countries ready for REDD+, the UN-REDD Programme assists developing countries to prepare and implement national REDD+ strategies. For the monitoring, reporting and verification (MRV), FAO supports the countries to develop national forest monitoring systems (NFMS) based on satellite data that allow for credible MRV of REDD+ activities through time. The UN-REDD Programme through a joint effort of FAO and Brazil's National Space Agency, INPE, is supporting countries to develop cost- effective, robust and compatible national monitoring and MRV systems, providing tools, methodologies, training and knowledge sharing that help countries to strengthen their technical and institutional capacity for effective MRV systems. The Brazilian forest monitoring system, TerraAmazon, which is used as a multi-user basis, allows countries to adapt it to country needs. With the technical assistance of FAO, INPE and other stakeholders, the countries will set up an autonomous operational satellite forest monitoring systems. A beta version and the methodologies of the system for DRC and PNG are launched in Durban (SA) during COP 17, while Paraguay, Zambia and Viet Nam are in development in 2012.
Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike
2004-01-01
To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.
NASA Astrophysics Data System (ADS)
Kozłowski, S. K.; Sybilski, P. W.; Konacki, M.; Pawłaszek, R. K.; Ratajczak, M.; Hełminiak, K. G.; Litwicki, M.
2017-10-01
We present the design and commissioning of Project Solaris, a global network of autonomous observatories. Solaris is a Polish scientific undertaking aimed at the detection and characterization of circumbinary exoplanets and eclipsing binary stars. To accomplish this, a network of four fully autonomous observatories has been deployed in the Southern Hemisphere: Solaris-1 and Solaris-2 in the South African Astronomical Observatory in South Africa; Solaris-3 in Siding Spring Observatory in Australia; and Solaris-4 in Complejo Astronomico El Leoncito in Argentina. The four stations are nearly identical and are equipped with 0.5-m Ritchey-Crétien (f/15) or Cassegrain (f/9, Solaris-3) optics and high-grade 2 K × 2 K CCD cameras with Johnson and Sloan filter sets. We present the design and implementation of low-level security; data logging and notification systems; weather monitoring components; all-sky vision system, surveillance system; and distributed temperature and humidity sensors. We describe dedicated grounding and lighting protection system design and robust fiber data transfer interfaces in electrically demanding conditions. We discuss the outcomes of our design, as well as the resulting software engineering requirements. We describe our system’s engineering approach to achieve the required level of autonomy, the architecture of the custom high-level industry-grade software that has been designed and implemented specifically for the use of the network. We present the actual status of the project and first photometric results; these include data and models of already studied systems for benchmarking purposes (Wasp-4b, Wasp-64b, and Wasp-98b transits, PG 1663-018, an eclipsing binary with a pulsator) as well J024946-3825.6, an interesting low-mass binary system for which a complete model is provided for the first time.
KAM tori and whiskered invariant tori for non-autonomous systems
NASA Astrophysics Data System (ADS)
Canadell, Marta; de la Llave, Rafael
2015-08-01
We consider non-autonomous dynamical systems which converge to autonomous (or periodic) systems exponentially fast in time. Such systems appear naturally as models of many physical processes affected by external pulses. We introduce definitions of non-autonomous invariant tori and non-autonomous whiskered tori and their invariant manifolds and we prove their persistence under small perturbations, smooth dependence on parameters and several geometric properties (if the systems are Hamiltonian, the tori are Lagrangian manifolds). We note that such definitions are problematic for general time-dependent systems, but we show that they are unambiguous for systems converging exponentially fast to autonomous. The proof of persistence relies only on a standard Implicit Function Theorem in Banach spaces and it does not require that the rotations in the tori are Diophantine nor that the systems we consider preserve any geometric structure. We only require that the autonomous system preserves these objects. In particular, when the autonomous system is integrable, we obtain the persistence of tori with rational rotational. We also discuss fast and efficient algorithms for their computation. The method also applies to infinite dimensional systems which define a good evolution, e.g. PDE's. When the systems considered are Hamiltonian, we show that the time dependent invariant tori are isotropic. Hence, the invariant tori of maximal dimension are Lagrangian manifolds. We also obtain that the (un)stable manifolds of whiskered tori are Lagrangian manifolds. We also include a comparison with the more global theory developed in Blazevski and de la Llave (2011).
Situated Agents and Humans in Social Interaction for Elderly Healthcare: From Coaalas to AVICENA.
Gómez-Sebastià, Ignasi; Moreno, Jonathan; Álvarez-Napagao, Sergio; Garcia-Gasulla, Dario; Barrué, Cristian; Cortés, Ulises
2016-02-01
Assistive Technologies (AT) are an application area where several Artificial Intelligence techniques and tools have been successfully applied to support elderly or impeded people on their daily activities. However, approaches to AT tend to center in the user-tool interaction, neglecting the user's connection with its social environment (such as caretakers, relatives and health professionals) and the possibility to monitor undesired behaviour providing both adaptation to a dynamic environment and early response to potentially dangerous situations. In previous work we have presented COAALAS, an intelligent social and norm-aware device for elderly people that is able to autonomously organize, reorganize and interact with the different actors involved in elderly-care, either human actors or other devices. In this paper we put our work into context, by first examining what are the desirable properties of such a system, analysing the state-of-the-art on the relevant topics, and verifying the validity of our proposal in a larger context that we call AVICENA. AVICENA's aim is develop a semi-autonomous (collaborative) tool to promote monitored, intensive, extended and personalized therapeutic regime adherence at home based on adaptation techniques.
Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Zornetzer, Steve; Gage, Douglas
2005-01-01
Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.
NASA Astrophysics Data System (ADS)
Mehne, P.; Lickert, F.; Bäumker, E.; Kroener, M.; Woias, P.
2016-11-01
In this paper we will first present the measurement of temperatures on different positions at a diesel-powered car. As a result, several locations are identified as suitable to implement a wireless sensor node powered by thermal energy harvesting. Based on the data gained a thermoelectric generator (TEG) has been selected, and measurements of energy generation have been performed. Further, a complete energy-autonomous wireless sensor node was designed, including the TEG with its mounting bracket, an electronic power management, and a Bluetooth Low Energy (BLE) sensor node. Based on temperature differences from -10 K up to 75.3 K occurring in test drives, a low power set up was chosen to achieve a system startup time below 10 minutes and to ensure service even under difficult ambient conditions, like high ambient temperatures or a slow movement of the car in stocking traffic. 2 minutes after starting the engine a power about of 10 mW is available from the chosen TEG, and in peak the power exceeds 1 W. In a 50 minute test drive it was possible to generate 650 J of energy. This information was used to develop the complete system, demonstrating the opportunity to deploy energy-autonomous wireless sensor nodes in a car, e.g. for exhaust gas monitoring. The system is used to gather sensor data, like temperature and humidity, and transmits data successfully via BLE to a prepared main node based on a Raspberry Pi.
Sustainable and Autonomic Space Exploration Missions
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Sterritt, Roy; Rouff, Christopher; Rash, James L.; Truszkowski, Walter
2006-01-01
Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies.
Unexploded Ordnance Characterization And Detection in Muddy Estuarine Environments
NASA Astrophysics Data System (ADS)
Trembanis, A. C.; DuVal, C.
2017-12-01
There is recognized need for better quantitative understanding of the impact of coastal environments on UXO mobility, burial, and detection. Current efforts are underway to address aspects of UXO mobility and detection in sandy coastal areas. However, a significant data gap has been identified regarding UXO in shallow, muddy environments; 139 Formally Used Defense Sites (FUDS), in U.S. tidal waters alone, have been identified as containing muddy sediments. This study works to address this data gap. Using a shallow estuarine site in the Delaware Bay, this study 1) monitors the mobility and behavior of sensor-integrated surrogate munitions in muddy environments using a high-accuracy acoustic positioning system, 2) directly observes surrogate munition response to hydrodynamic forcing through instrumented bottom frame time-lapse hydrodynamic data and sonar imagery, and 3) monitors site changes through repetitive site surveying autonomous underwater vehicle (AUV) using both sonar and magnetometry. Surrogate UXO, modified with acoustic tracking devices and inertial motion units (IMU), are being deployed at a previously characterized muddy estuarine site. The surrogates are being monitored for changes in mobility and burial using the VEMCO positioning system, an off-the-shelf acoustic positioning system that is capable of tracking the position of multiple acoustic tags with accuracies down to 10 cm. Concurrently, time-series acoustic imagery and hydrodynamic sensors are being deployed to characterize UXO response to varied hydrodynamic conditions and compared to site-wide surrogate behavior. A series of repetitive surveys are being conducted using a magnetometer specifically designed for UXO detection on an autonomous underwater vehicle (AUV). Survey results will be compared to long-term acoustic positioning of the surrogate UXO to determine the effectiveness of the magnetometer for efficiently and effectively locating UXO in shallow, muddy environments. Additionally, this study will help inform parameters for UXO mobility and behavior in storms and muddy environments for integration into existing expert system models of UXO burial and mobility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.
2011-05-26
The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system formore » deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.« less
Automating a spacecraft electrical power system using expert systems
NASA Technical Reports Server (NTRS)
Lollar, L. F.
1991-01-01
Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.
A GPS-based Real-time Road Traffic Monitoring System
NASA Astrophysics Data System (ADS)
Tanti, Kamal Kumar
In recent years, monitoring systems are astonishingly inclined towards ever more automatic; reliably interconnected, distributed and autonomous operation. Specifically, the measurement, logging, data processing and interpretation activities may be carried out by separate units at different locations in near real-time. The recent evolution of mobile communication devices and communication technologies has fostered a growing interest in the GIS & GPS-based location-aware systems and services. This paper describes a real-time road traffic monitoring system based on integrated mobile field devices (GPS/GSM/IOs) working in tandem with advanced GIS-based application software providing on-the-fly authentications for real-time monitoring and security enhancement. The described system is developed as a fully automated, continuous, real-time monitoring system that employs GPS sensors and Ethernet and/or serial port communication techniques are used to transfer data between GPS receivers at target points and a central processing computer. The data can be processed locally or remotely based on the requirements of client’s satisfaction. Due to the modular architecture of the system, other sensor types may be supported with minimal effort. Data on the distributed network & measurements are transmitted via cellular SIM cards to a Control Unit, which provides for post-processing and network management. The Control Unit may be remotely accessed via an Internet connection. The new system will not only provide more consistent data about the road traffic conditions but also will provide methods for integrating with other Intelligent Transportation Systems (ITS). For communication between the mobile device and central monitoring service GSM technology is used. The resulting system is characterized by autonomy, reliability and a high degree of automation.
Real Time Space Weather Support for Chandra X-ray Observatory Operations
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Miller, J. Scott; Minow, Joseph I.; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz, Douglas A.
2012-01-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (less than 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.
Real Time Space Weather Support for Chandra X-Ray Observatory Operations
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.
2012-01-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data sources that are used to protect the ACIS detector system from space weather events.
Real Time Space Weather Support for Chandra X-ray Observatory Operations
NASA Astrophysics Data System (ADS)
O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.
2012-12-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra's high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.
NASA Astrophysics Data System (ADS)
Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hitoshi; Saito, Shutaro; Lee, Sangkyun; Tara, Kenji; Kato, Masafumi; Jamali Hondori, Ehsan; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami
2017-04-01
Within the EEZ of Japan, numerous surveys exploring ocean floor resources have been conducted. The exploration targets are gas hydrates, mineral resources (manganese, cobalt or rare earth) and especially seafloor massive sulphide (SMS) deposits. These resources exist in shallow subsurface areas in deep waters (>1500m). For seismic explorations very high resolution images are required. These cannot be effectively obtained with conventional marine seismic techniques. Therefore we have been developing autonomous seismic survey systems which record the data close to the seafloor to preserve high frequency seismic energy. Very high sampling rate (10kHz) and high accurate synchronization between recording systems and shot time are necessary. We adopted Cs-base atomic clock considering its power consumption. At first, we developed a Vertical Cable Seismic (VCS) system that uses hydrophone arrays moored vertically from the ocean bottom to record close to the target area. This system has been successfully applied to SMS exploration. Specifically it fixed over known sites to assess the amount of reserves with the resultant 3D volume. Based on the success of VCS, we modified the VCS system to use as a more efficient deep-tow seismic survey system. Although there are other examples of deep-tow seismic systems, signal transmission cables present challenges in deep waters. We use our autonomous recording system to avoid these problems. Combining a high frequency piezoelectric source (Sub Bottom Profiler:SBP) that automatically shots with a constant interval, we achieve the high resolution deep-tow seismic without data transmission/power cable to the board. Although the data cannot be monitored in real-time, the towing system becomes very simple. We have carried out survey trial, which showed the systems utility as a high-resolution deep-tow seismic survey system. Furthermore, the frequency ranges of deep-towed source (SBP) and surface towed sparker are 700-2300Hz and 10-200Hz respectively. Therefore we can use these sources simultaneously and distinguish the records of each source in the data processing stage. We have developed new marine seismic survey systems with autonomous recording for the exploration of the ocean floor resources. The applications are vertical cable seismic (VCS) and deep-tow seismic (ACS). These enable us the recording close to the seafloor and give the high resolution results with a simple, cost-effective configuration.
Development and evaluation of an ambulatory stress monitor based on wearable sensors.
Choi, Jongyoon; Ahmed, Beena; Gutierrez-Osuna, Ricardo
2012-03-01
Chronic stress is endemic to modern society. However, as it is unfeasible for physicians to continuously monitor stress levels, its diagnosis is nontrivial. Wireless body sensor networks offer opportunities to ubiquitously detect and monitor mental stress levels, enabling improved diagnosis, and early treatment. This article describes the development of a wearable sensor platform to monitor a number of physiological correlates of mental stress. We discuss tradeoffs in both system design and sensor selection to balance information content and wearability. Using experimental signals collected from the wearable sensor, we describe a selected number of physiological features that show good correlation with mental stress. In particular, we propose a new spectral feature that estimates the balance of the autonomic nervous system by combining information from the power spectral density of respiration and heart rate variability. We validate the effectiveness of our approach on a binary discrimination problem when subjects are placed under two psychophysiological conditions: mental stress and relaxation. When used in a logistic regression model, our feature set is able to discriminate between these two mental states with a success rate of 81% across subjects. © 2012 IEEE
Lessons Learned in the Livingstone 2 on Earth Observing One Flight Experiment
NASA Technical Reports Server (NTRS)
Hayden, Sandra C.; Sweet, Adam J.; Shulman, Seth
2005-01-01
The Livingstone 2 (L2) model-based diagnosis software is a reusable diagnostic tool for monitoring complex systems. In 2004, L2 was integrated with the JPL Autonomous Sciencecraft Experiment (ASE) and deployed on-board Goddard's Earth Observing One (EO-1) remote sensing satellite, to monitor and diagnose the EO-1 space science instruments and imaging sequence. This paper reports on lessons learned from this flight experiment. The goals for this experiment, including validation of minimum success criteria and of a series of diagnostic scenarios, have all been successfully net. Long-term operations in space are on-going, as a test of the maturity of the system, with L2 performance remaining flawless. L2 has demonstrated the ability to track the state of the system during nominal operations, detect simulated abnormalities in operations and isolate failures to their root cause fault. Specific advances demonstrated include diagnosis of ambiguity groups rather than a single fault candidate; hypothesis revision given new sensor evidence about the state of the system; and the capability to check for faults in a dynamic system without having to wait until the system is quiescent. The major benefits of this advanced health management technology are to increase mission duration and reliability through intelligent fault protection, and robust autonomous operations with reduced dependency on supervisory operations from Earth. The work-load for operators will be reduced by telemetry of processed state-of-health information rather than raw data. The long-term vision is that of making diagnosis available to the onboard planner or executive, allowing autonomy software to re-plan in order to work around known component failures. For a system that is expected to evolve substantially over its lifetime, as for the International Space Station, the model-based approach has definite advantages over rule-based expert systems and limit-checking fault protection systems, as these do not scale well. The model-based approach facilitates reuse of the L2 diagnostic software; only the model of the system to be diagnosed and telemetry monitoring software has to be rebuilt for a new system or expanded for a growing system. The hierarchical L2 model supports modularity and expendability, and as such is suitable solution for integrated system health management as envisioned for systems-of-systems.
Cybersecurity for aerospace autonomous systems
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2015-05-01
High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.
Insights into the background of autonomic medicine.
Laranjo, Sérgio; Geraldes, Vera; Oliveira, Mário; Rocha, Isabel
2017-10-01
Knowledge of the physiology underlying the autonomic nervous system is pivotal for understanding autonomic dysfunction in clinical practice. Autonomic dysfunction may result from primary modifications of the autonomic nervous system or be secondary to a wide range of diseases that cause severe morbidity and mortality. Together with a detailed history and physical examination, laboratory assessment of autonomic function is essential for the analysis of various clinical conditions and the establishment of effective, personalized and precise therapeutic schemes. This review summarizes the main aspects of autonomic medicine that constitute the background of cardiovascular autonomic dysfunction. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
Using oblique digital photography for alluvial sandbar monitoring and low-cost change detection
Tusso, Robert B.; Buscombe, Daniel D.; Grams, Paul E.
2015-01-01
The maintenance of alluvial sandbars is a longstanding management interest along the Colorado River in Grand Canyon. Resource managers are interested in both the long-term trend in sandbar condition and the short-term response to management actions, such as intentional controlled floods released from Glen Canyon Dam. Long-term monitoring is accomplished at a range of scales, by a combination of annual topographic survey at selected sites, daily collection of images from those sites using novel, autonomously operating, digital camera systems (hereafter referred to as 'remote cameras'), and quadrennial remote sensing of sandbars canyonwide. In this paper, we present results from the remote camera images for daily changes in sandbar topography.
Nuclear rocket propulsion. NASA plans and progress, FY 1991
NASA Technical Reports Server (NTRS)
Clark, John S.; Miller, Thomas J.
1991-01-01
NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space explorer initiative (SEI) human and robotic missions to the moon and Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.
Near-space flight of a correlated photon system
Tang, Zhongkan; Chandrasekara, Rakhitha; Sean, Yau Yong; Cheng, Cliff; Wildfeuer, Christoph; Ling, Alexander
2014-01-01
We report the successful test flight of a device for generating and monitoring correlated photon pairs under near-space conditions up to 35.5 km altitude. Data from ground based qualification tests and the high altitude experiment demonstrate that the device continues to operate even under harsh environmental conditions. The design of the rugged, compact and power-efficient photon pair system is presented. This design enables autonomous photon pair systems to be deployed on low-resource platforms such as nanosatellites hosting remote nodes of a quantum key distribution network. These results pave the way for tests of entangled photon technology in low earth orbit. PMID:25219935
Nuclear rocket propulsion: NASA plans and progress - FY 1991
NASA Technical Reports Server (NTRS)
Clark, John S.; Miller, Thomas J.
1991-01-01
NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for space exploration initiative (SEI) human and robotic missions to the Moon and to Mars. An interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. The activities of the project planning team in FY 1990 and 1991 are summarized. The progress to date is discussed, and the project plan is reviewed. Critical technology issues were identified and include: (1) nuclear fuel temperature, life, and reliability; (2) nuclear system ground test; (3) safety; (4) autonomous system operation and health monitoring; and (5) minimum mass and high specific impulse.
Towards autonomous fuzzy control
NASA Technical Reports Server (NTRS)
Shenoi, Sujeet; Ramer, Arthur
1993-01-01
The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.
Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.
NASA Astrophysics Data System (ADS)
Pampalone, Vincenzo; Milici, Barbara
2015-12-01
The drone Ecomapper AUV (Autonomous Underwater Vehicle) is a rare example of highly technological instrument in the environmental coastal monitoring field. The YSI EcoMapper is a one-man deployable, Autonomous Underwater Vehicle (AUV) designed to collect bathymetry and water quality data. The submarine-like vehicle follows a programmed course and employs sensors mounted in the nose to record pertinent information. Once the vehicle has started its mission, it operates independently of the user and utilizes GPS waypoints navigation to complete its programmed course. Throughout the course, the vehicle constantly steers toward the line drawn in the mission planning software (VectorMap), essentially following a more accurate road of coordinates instead of transversing waypoint-to-waypoint. It has been equipped with a Doppler Velocity Log (DVL) to increase its underwater navigation accuracy. Potential EcoMapper applications include baseline environmental mapping in freshwater, estuarine or near-coastal environments, bathymetric mapping, dissolved oxygen studies, event monitoring (algal blooms, storm impacts, low dissolved oxygen), non-point source studies, point-source dispersion mapping, security, search & rescue, inspection, shallow water mapping, thermal dissipation mapping of cooling outfalls, trace-dye studies. The AUV is used in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. The ecomapper allows for a simultaneous data collection of water quality and bathymetric data providing a complete environmental mapping system of the Harbour.
NASA Astrophysics Data System (ADS)
Close, Dan; Webb, James; Ripp, Steven; Patterson, Stacey; Sayler, Gary
2012-06-01
Traditionally, human toxicant bioavailability screening has been forced to proceed in either a high throughput fashion using prokaryotic or lower eukaryotic targets with minimal applicability to humans, or in a more expensive, lower throughput manner that uses fluorescent or bioluminescent human cells to directly provide human bioavailability data. While these efforts are often sufficient for basic scientific research, they prevent the rapid and remote identification of potentially toxic chemicals required for modern biosecurity applications. To merge the advantages of high throughput, low cost screening regimens with the direct bioavailability assessment of human cell line use, we re-engineered the bioluminescent bacterial luciferase gene cassette to function autonomously (without exogenous stimulation) within human cells. Optimized cassette expression provides for fully endogenous bioluminescent production, allowing continuous, real time monitoring of the bioavailability and toxicology of various compounds in an automated fashion. To access the functionality of this system, two sets of bioluminescent human cells were developed. The first was programed to suspend bioluminescent production upon toxicological challenge to mimic the non-specific detection of a toxicant. The second induced bioluminescence upon detection of a specific compound to demonstrate autonomous remote target identification. These cells were capable of responding to μM concentrations of the toxicant n-decanal, and allowed for continuous monitoring of cellular health throughout the treatment process. Induced bioluminescence was generated through treatment with doxycycline and was detectable upon dosage at a 100 ng/ml concentration. These results demonstrate that leveraging autonomous bioluminescence allows for low-cost, high throughput direct assessment of toxicant bioavailability.
Design of an accurate wireless data logger for vibration analysis with Android interface.
Blanco, J R; Menéndez, J; Ferrero, F J; Campo, J C; Valledor, M
2016-12-01
In this work a new accurate wireless data logger using the Android interface was developed to monitor vibrations at low-cost. The new data logger is completely autonomous and extremely reduced in size. This instrument enables data collection wirelessly and the ability to display it on any tablet or smartphone with operating system Android. The prototype allows the monitoring of any industrial system with minimal investment in material and installation costs. The data logger is capable of making 12.8 kSPS enough to sample up to 5 kHz signals. The basic specification of the data logger includes a high resolution 1-axis piezoelectric accelerometer with a working range of ±30 G. In addition to the acceleration measurements, temperature can also be recorded. The data logger was tested during a 6-month period in industrial environments. The details of the specific hardware and software design are described. The proposed technology can be easily transferred to many other areas of industrial monitoring.
Autonomous detection of ISO fade point with color laser printers
NASA Astrophysics Data System (ADS)
Yan, Ni; Maggard, Eric; Fothergill, Roberta; Jessome, Renee J.; Allebach, Jan P.
2015-01-01
Image quality assessment is a very important field in image processing. Human observation is slow and subjective, it also requires strict environment setup for the psychological test 1. Thus developing algorithms to match desired human experiments is always in need. Many studies have focused on detecting the fading phenomenon after the materials are printed, that is to monitor the persistence of the color ink 2-4. However, fading is also a common artifact produced by printing systems when the cartridges run low. We want to develop an automatic system to monitor cartridge life and report fading defects when they appear. In this paper, we first describe a psychological experiment that studies the human perspective on printed fading pages. Then we propose an algorithm based on Color Space Projection and K-means clustering to predict the visibility of fading defects. At last, we integrate the psychological experiment result with our algorithm to give a machine learning tool that monitors cartridge life.
Prediction of autonomic dysreflexia during urodynamics: a prospective cohort study.
Walter, Matthias; Knüpfer, Stephanie C; Cragg, Jacquelyn J; Leitner, Lorenz; Schneider, Marc P; Mehnert, Ulrich; Krassioukov, Andrei V; Schubert, Martin; Curt, Armin; Kessler, Thomas M
2018-04-13
Autonomic dysreflexia is a severe and potentially life-threatening condition in patients with spinal cord injury, as it can lead to myocardial ischemia, brain hemorrhage, or even death. Urodynamic investigation is the gold standard to assess neurogenic lower urinary tract dysfunction due to spinal cord injury and reveal crucial pathological findings, such as neurogenic detrusor overactivity. However, neurogenic detrusor overactivity and urodynamic investigation are known to be leading triggers of autonomic dysreflexia. Therefore, we aimed to determine predictors of autonomic dysreflexia in individuals with spinal cord injury during urodynamic investigation. This prospective cohort study included 300 patients with spinal cord injuries and complete datasets of continuous non-invasive cardiovascular monitoring, recorded during same session repeat urodynamic investigation. We used logistic regression to reveal predictors of autonomic dysreflexia during urodynamic investigation. We found that level of injury and presence of neurogenic detrusor overactivity were the only two independent significant predictors for autonomic dysreflexia during urodynamic investigation. A lesion at spinal segment T6 or above (odds ratio (OR) 5.5, 95% CI 3.2-9.4) compared to one at T7 or below, and presence of neurogenic detrusor overactivity (OR 2.7, 95% confidence interval (CI) 1.4-4.9) were associated with a significant increased odds of autonomic dysreflexia during urodynamic investigation. Both odds persisted after adjustment for age, sex, and completeness and stage of injury (adjusted OR (AOR) 6.6, 95% CI 3.8-11.7, and AOR 2.2, 95% CI 1.1-4.5, respectively). Further stratification by lesion level showed level-dependent significantly increased adjusted odds of autonomic dysreflexia, i.e., from C1-C4 (AOR 16.2, 95% CI 5.9-57.9) to T4-T6 (AOR 2.6, 95% CI 1.3-5.2), compared to lesions at T7 or below. In patients with neurogenic lower urinary tract dysfunction due to spinal cord injury, autonomic dysreflexia is independently predicted by lesion level and presence of neurogenic detrusor overactivity. Considering the health risks associated with autonomic dysreflexia, such as seizures, stroke, retinal bleeding, or even death, we recommend both continuous cardiovascular monitoring during urodynamic investigation in all spinal cord-injured patients with emphasis on those with cervical lesions, and appropriate neurogenic detrusor overactivity treatment to reduce the probability of potentially life-threatening complications. ClinicalTrials.gov, NCT01293110 .
On-Orbit Measurements of the ISS Atmosphere by the Vehicle Cabin Atmosphere Monitor
NASA Technical Reports Server (NTRS)
Darrach, M. R.; Chutjian, A.; Bornstein, B. J.; Croonquist, A. P.; Garkanian, V.; Haemmerle, V. R.; Hofman, J.; Heinrichs, W. M.; Karmon, D.; Kenny, J.;
2011-01-01
We report on trace gas and major atmospheric constituents results obtained by the Vehicle Cabin Atmosphere Monitor (VCAM) during operations aboard the International Space Station (ISS). VCAM is an autonomous environmental monitor based on a miniature gas chromatograph/mass spectrometer. It was flown to the ISS on shuttle mission STS-131 and commenced operations on 6/10/10. VCAM provides measurements of ppb-to-ppm levels of volatile trace-gas constituents, and of the atmospheric major constituents (nitrogen, oxygen, argon, and carbon dioxide) in a space vehicle or station. It is designed to operate autonomously and maintenance-free, approximately once per day, with a self-contained gas supply sufficient for a one-year lifetime. VCAM is designed to detect and identify 90% of the target compounds at their 180-day Spacecraft Maximum Allowable Concentration levels.
Intelligent computer-aided training and tutoring
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen; Savely, Robert T.
1991-01-01
Specific autonomous training systems based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground-based support personnel that demonstrate an alternative to current training systems are described. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer-Aided Training (ICAT) systems would provide, for the trainee, much of the same experience that could be gained from the best on-the-job training. By integrating domain expertise with a knowledge of appropriate training methods, an ICAT session should duplicate, as closely as possible, the trainee undergoing on-the-job training in the task environment, benefitting from the full attention of a task expert who is also an expert trainer. Thus, the philosophy of the ICAT system is to emulate the behavior of an experienced individual devoting his full time and attention to the training of a novice - proposing challenging training scenarios, monitoring and evaluating the actions of the trainee, providing meaningful comments in response to trainee errors, responding to trainee requests for information, giving hints (if appropriate), and remembering the strengths and weaknesses displayed by the trainee so that appropriate future exercises can be designed.
Baptiste Dafflon; Rusen Oktem; John Peterson; Craig Ulrich; Anh Phuong Tran; Vladimir Romanovsky; Susan Hubbard
2017-05-10
The dataset contains measurements obtained through electrical resistivity tomography (ERT) to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness and soil dielectric permittivity.
Information for Successful Interaction with Autonomous Systems
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Johnson, Kathy A.
2003-01-01
Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.
Autonomous Real Time Requirements Tracing
NASA Technical Reports Server (NTRS)
Plattsmier, George I.; Stetson, Howard K.
2014-01-01
One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto-Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner- TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders
Autonomous Real Time Requirements Tracing
NASA Technical Reports Server (NTRS)
Plattsmier, George; Stetson, Howard
2014-01-01
One of the more challenging aspects of software development is the ability to verify and validate the functional software requirements dictated by the Software Requirements Specification (SRS) and the Software Detail Design (SDD). Insuring the software has achieved the intended requirements is the responsibility of the Software Quality team and the Software Test team. The utilization of Timeliner-TLX(sup TM) Auto- Procedures for relocating ground operations positions to ISS automated on-board operations has begun the transition that would be required for manned deep space missions with minimal crew requirements. This transition also moves the auto-procedures from the procedure realm into the flight software arena and as such the operational requirements and testing will be more structured and rigorous. The autoprocedures would be required to meet NASA software standards as specified in the Software Safety Standard (NASASTD- 8719), the Software Engineering Requirements (NPR 7150), the Software Assurance Standard (NASA-STD-8739) and also the Human Rating Requirements (NPR-8705). The Autonomous Fluid Transfer System (AFTS) test-bed utilizes the Timeliner-TLX(sup TM) Language for development of autonomous command and control software. The Timeliner-TLX(sup TM) system has the unique feature of providing the current line of the statement in execution during real-time execution of the software. The feature of execution line number internal reporting unlocks the capability of monitoring the execution autonomously by use of a companion Timeliner-TLX(sup TM) sequence as the line number reporting is embedded inside the Timeliner-TLX(sup TM) execution engine. This negates I/O processing of this type data as the line number status of executing sequences is built-in as a function reference. This paper will outline the design and capabilities of the AFTS Autonomous Requirements Tracker, which traces and logs SRS requirements as they are being met during real-time execution of the targeted system. It is envisioned that real time requirements tracing will greatly assist the movement of autoprocedures to flight software enhancing the software assurance of auto-procedures and also their acceptance as reliable commanders.
NASA Technical Reports Server (NTRS)
Kumar, Arun; Levin, Edwin; Cowings, Patricia; Toscano, William B.
2015-01-01
In space, there is a need to monitor astronauts' vital signs and assess their readiness to perform specific tasks during a mission. Currently, NASA does not have the capability to noninvasively monitor crew for extended periods of time. The Canadian Space Agency is working with the Psychophysiology Lab at NASA ARC to determine if the Astroskin could be used as a solution to this problem. Astroskin, a commercially available garment with built-in biosensors, can be comfortably worn under clothing or a spacesuit and relay information to the crewman's own mobile device. Data can also be sent wirelessly to the on-board Exploration Medical System. To determine if Astroskin meets requirements for health monitoring, it must first be validated in spaceflight analog environments. In the current study Astroskin data will be compared to traditional biomedical instrument measures of electrocardiography (ECG), respiration rate, and systolic blood pressure. The data will be recorded during Autogenic Feedback Training Exercise (AFTE), which is a type of physiological self-regulation training designed for astronauts. The data will also be recorded during simulations of the Orion spacecraft re-entry. The results to date suggest that Astroskin is a suitable ambulatory monitoring system that allows astronauts to self-diagnose and self-regulate adverse autonomic nervous system responses to sustained exposure to microgravity of spaceflight.
NASA Astrophysics Data System (ADS)
Tolmasov, Michael; Barbiro-Michaely, Efrat; Mayevsky, Avraham
2007-02-01
Under body O II imbalance, the Autonomic Nervous System is responsible for redistribution of blood flow with preference to the most vital organs (brain, heart), while the less vital organs (intestine, GI tract) are hypoperfused. The aim of this study was to develop and use an animal model for real time monitoring of tissue viability in the brain, and the small intestine, under various levels of oxygen and blood supply. Male Wistar rats were anesthetized, the brain cortex and intestinal serosa were exposed and connected by optical fibers to the Multi-Site Multi-Parametric (MSMP) monitoring system. Tissue blood flow (TBF) and mitochondrial NADH redox state were monitored simultaneously in the two organs. The rats were subjected to short anoxia, 20 minutes hypoxia or epinephrine (2& 8μg/kg I.V.). Under oxygen deficiency, cerebral blood flow (CBF) was elevated, whereas intestinal TBF was reduced. Mitochondrial NADH was significantly elevated in both organs. Systemic injection of Adrenaline showed a dose-depended increase in systemic blood pressure and CBF response whereas, intestinal TBF similarly decreased in both doses. In addition, NADH was elevated (reduced form) in the intestine whereas oxidation was observed in the brain. In conclusion, our preliminary results may imply the ability of using of the MSMP for monitoring non-vital organs in order to detect early changes in the balance between oxygen supply and demand in the body.
Autonomous Navigation Using Celestial Objects
NASA Technical Reports Server (NTRS)
Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne
1999-01-01
In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.
Unified formalism for higher order non-autonomous dynamical systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2012-03-01
This work is devoted to giving a geometric framework for describing higher order non-autonomous mechanical systems. The starting point is to extend the Lagrangian-Hamiltonian unified formalism of Skinner and Rusk for these kinds of systems, generalizing previous developments for higher order autonomous mechanical systems and first-order non-autonomous mechanical systems. Then, we use this unified formulation to derive the standard Lagrangian and Hamiltonian formalisms, including the Legendre-Ostrogradsky map and the Euler-Lagrange and the Hamilton equations, both for regular and singular systems. As applications of our model, two examples of regular and singular physical systems are studied.
Fiber-optically sensorized composite wing
NASA Astrophysics Data System (ADS)
Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George
2014-04-01
Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.
Melcher, Anthony A; Horsburgh, Jeffery S
2017-06-01
Water quality in urban streams and stormwater systems is highly dynamic, both spatially and temporally, and can change drastically during storm events. Infrequent grab samples commonly collected for estimating pollutant loadings are insufficient to characterize water quality in many urban water systems. In situ water quality measurements are being used as surrogates for continuous pollutant load estimates; however, relatively few studies have tested the validity of surrogate indicators in urban stormwater conveyances. In this paper, we describe an observatory aimed at demonstrating the infrastructure required for surrogate monitoring in urban water systems and for capturing the dynamic behavior of stormwater-driven pollutant loads. We describe the instrumentation of multiple, autonomous water quality and quantity monitoring sites within an urban observatory. We also describe smart and adaptive sampling procedures implemented to improve data collection for developing surrogate relationships and for capturing the temporal and spatial variability of pollutant loading events in urban watersheds. Results show that the observatory is able to capture short-duration storm events within multiple catchments and, through inter-site communication, sampling efforts can be synchronized across multiple monitoring sites.
Nano-Enriched and Autonomous Sensing Framework for Dissolved Oxygen.
Shehata, Nader; Azab, Mohammed; Kandas, Ishac; Meehan, Kathleen
2015-08-14
This paper investigates a nano-enhanced wireless sensing framework for dissolved oxygen (DO). The system integrates a nanosensor that employs cerium oxide (ceria) nanoparticles to monitor the concentration of DO in aqueous media via optical fluorescence quenching. We propose a comprehensive sensing framework with the nanosensor equipped with a digital interface where the sensor output is digitized and dispatched wirelessly to a trustworthy data collection and analysis framework for consolidation and information extraction. The proposed system collects and processes the sensor readings to provide clear indications about the current or the anticipated dissolved oxygen levels in the aqueous media.
Structural health monitoring system for bridges based on skin-like sensor
NASA Astrophysics Data System (ADS)
Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd
2017-09-01
Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.
Oosterwijck, Jessica Van; Marusic, Uros; De Wandele, Inge; Paul, Lorna; Meeus, Mira; Moorkens, Greta; Lambrecht, Luc; Danneels, Lieven; Nijs, Jo
2017-03-01
Patients with myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are unable to activate brain-orchestrated endogenous analgesia (or descending inhibition) in response to exercise. This physiological impairment is currently regarded as one factor explaining post-exertional malaise in these patients. Autonomic dysfunction is also a feature of ME/CFS. This study aims to examine the role of the autonomic nervous system in exercise-induced analgesia in healthy people and those with ME/CFS, by studying the recovery of autonomic parameters following aerobic exercise and the relation to changes in self-reported pain intensity. A controlled experimental study. The study was conducted at the Human Physiology lab of a University. Twenty women with ME/CFS- and 20 healthy, sedentary controls performed a submaximal bicycle exercise test known as the Aerobic Power Index with continuous cardiorespiratory monitoring. Before and after the exercise, measures of autonomic function (i.e., heart rate variability, blood pressure, and respiration rate) were performed continuously for 10 minutes and self-reported pain levels were registered. The relation between autonomous parameters and self-reported pain parameters was examined using correlation analysis. Some relationships of moderate strength between autonomic and pain measures were found. The change (post-exercise minus pre-exercise score) in pain severity was correlated (r = .580, P = .007) with the change in diastolic blood pressure in the healthy group. In the ME/CFS group, positive correlations between the changes in pain severity and low frequency (r = .552, P = .014), and between the changes in bodily pain and diastolic blood pressure (r = .472, P = .036), were seen. In addition, in ME/CHFS the change in headache severity was inversely correlated (r = -.480, P = .038) with the change in high frequency heart rate variability. Based on the cross-sectional design of the study, no firm conclusions can be drawn on the causality of the relations. Reduced parasympathetic reactivation during recovery from exercise is associated with the dysfunctional exercise-induced analgesia in ME/CFS. Poor recovery of diastolic blood pressure in response to exercise, with blood pressure remaining elevated, is associated with reductions of pain following exercise in ME/CFS, suggesting a role for the arterial baroreceptors in explaining dysfunctional exercise-induced analgesia in ME/CFS patients.Key words: Aerobic exercise, aerobic power index, autonomic nervous system, exercise-induced analgesia, exercise-induced hypoalgesia, fibromyalgia, heart rate variability, stress-induced analgesia, pain.
Engineering Review of ANCAUS/AVATAR: An Enabling Technology for the Autonomous Land Systems Program?
2003-12-01
technology for future Autonomous Land System (ALS) autonomous vehicles . Since 1989, forward thinking engineering has characterized the history of ANC/EUS and...technology for future autonomous vehicles and that; (2) ALS should adopt commercial/open source technology to support a new ALS architecture and (3) ALS
Autonomous Agents: The Origins and Co-Evolution of Reproducing Molecular Systems
NASA Technical Reports Server (NTRS)
Kauffman, Stuart
1999-01-01
The central aim of this award concerned an investigation into, and adequate formulation of, the concept of an "autonomous agent." If we consider a bacterium swimming upstream in a glucose gradient, we are willing to say of the bacterium that it is going to get food. That is, we are willing, and do, describe the bacterium as acting on its own behalf in an environment. All free living cells are, in this sense, autonomous agents. But the bacterium is "just" a set of molecules. We define an autonomous agent as a physical system able to act on its own behalf in an environment, then ask, "What must a physical system be to be an autonomous agent?" The tentative definition for a molecular autonomous agent is that it must be self-reproducing and carry out at least one thermodynamic work cycle. The work carried out in this grant involved, among other features, the development of a detailed model of a molecular autonomous agent, and study of the kinetics of this system. In particular, a molecular autonomous agent must, by the above tentative definition, not only reproduce, but must carry out at least one work cycle. I took, as a simple example of a self-reproducing molecular system, the single-stranded DNA hexamer 3'CCGCGG5' which can line up and ligate its two complementary trimers, 5'CCG3' and 5'CGG3'. But the two ligated trimers constitute the same molecular sequence in the 3' to 5' direction as the initial hexamer, hence this system is autocatalytic. On the other hand the above system is not yet an autonomous agent. At the minimum, autonomous agents, as I have defined them, are a new class of chemical reaction network. At a maximum, they may constitute a proper definition of life itself.
Learning Agents for Autonomous Space Asset Management (LAASAM)
NASA Astrophysics Data System (ADS)
Scally, L.; Bonato, M.; Crowder, J.
2011-09-01
Current and future space systems will continue to grow in complexity and capabilities, creating a formidable challenge to monitor, maintain, and utilize these systems and manage their growing network of space and related ground-based assets. Integrated System Health Management (ISHM), and in particular, Condition-Based System Health Management (CBHM), is the ability to manage and maintain a system using dynamic real-time data to prioritize, optimize, maintain, and allocate resources. CBHM entails the maintenance of systems and equipment based on an assessment of current and projected conditions (situational and health related conditions). A complete, modern CBHM system comprises a number of functional capabilities: sensing and data acquisition; signal processing; conditioning and health assessment; diagnostics and prognostics; and decision reasoning. In addition, an intelligent Human System Interface (HSI) is required to provide the user/analyst with relevant context-sensitive information, the system condition, and its effect on overall situational awareness of space (and related) assets. Colorado Engineering, Inc. (CEI) and Raytheon are investigating and designing an Intelligent Information Agent Architecture that will provide a complete range of CBHM and HSI functionality from data collection through recommendations for specific actions. The research leverages CEI’s expertise with provisioning management network architectures and Raytheon’s extensive experience with learning agents to define a system to autonomously manage a complex network of current and future space-based assets to optimize their utilization.
Moszkowski, Tomasz; Kauff, Daniel W; Wegner, Celine; Ruff, Roman; Somerlik-Fuchs, Karin H; Kruger, Thilo B; Augustyniak, Piotr; Hoffmann, Klaus-Peter; Kneist, Werner
2018-03-01
Neurophysiologic monitoring can improve autonomic nerve sparing during critical phases of rectal cancer surgery. To develop a system for extracorporeal stimulation of sacral nerve roots. Dedicated software controlled a ten-electrode stimulation array by switching between different electrode configurations and current levels. A built-in impedance and current level measurement assessed the effectiveness of current injection. Intra-anal surface electromyography (sEMG) informed on targeting the sacral nerve roots. All tests were performed on five pig specimens. During switching between electrode configurations, the system delivered 100% of the set current (25 mA, 30 Hz, 200 μs cathodic pulses) in 93% of 250 stimulation trains across all specimens. The impedance measured between single stimulation array contacts and corresponding anodes across all electrode configurations and specimens equaled 3.7 ± 2.5 kΩ. The intra-anal sEMG recorded a signal amplitude increase as previously observed in the literature. When the stimulation amplitude was tested in the range from 1 to 21 mA using the interconnected contacts of the stimulation array and the intra-anal anode, the impedance remained below 250 Ω and the system delivered 100% of the set current in all cases. Intra-anal sEMG showed an amplitude increase for current levels exceeding 6 mA. The system delivered stable electric current, which was proved by built-in impedance and current level measurements. Intra-anal sEMG confirmed the ability to target the branches of the autonomous nervous system originating from the sacral nerve roots. Stimulation outside of the operative field during rectal cancer surgery is feasible and may improve the practicality of pelvic intraoperative neuromonitoring.
Tissue modification with feedback: the smart scalpel
NASA Astrophysics Data System (ADS)
Sebern, Elizabeth L.; Brenan, Colin J. H.; Anderson, R. Rox; Hunter, Ian W.
1998-10-01
While feedback control is widespread throughout many engineering fields, there are almost no examples of surgical instruments that utilize a real-time detection and intervention strategy. This concept of closed loop feedback can be applied to the development of autonomous or semi- autonomous minimally invasive robotic surgical systems for efficient excision or modification of diseased tissue. Spatially localized regions of the tissue are first probed to distinguish pathological from healthy tissue based on differences in histochemical and morphological properties. Energy is directed to only the diseased tissue, minimizing collateral damage by leaving the adjacent healthy tissue intact. Continuous monitoring determines treatment effectiveness and, if needed, enables real-time treatment modifications to produce optimal therapeutic outcomes. The present embodiment of this general concept is a microsurgical instrument we call the Smart Scalpel, designed to treat skin angiodysplasias such as port wine stains. Other potential Smart Scalpel applications include psoriasis treatment and early skin cancer detection and intervention.
2011-05-27
CAPE CANAVERAL, Fla. -- University students monitor their team's remote controlled or autonomous excavator, called a lunabot, as it is maneuvered in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-27
CAPE CANAVERAL, Fla. -- University students monitor their team's remote controlled or autonomous excavator, called a lunabot, as it is maneuvered in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-28
CAPE CANAVERAL, Fla. -- University students monitor their team's remote controlled or autonomous excavator, called a lunabot, as it is maneuvered in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jack Pfaller
2011-05-26
CAPE CANAVERAL, Fla. -- University students monitor their team's remote controlled or autonomous excavator, called a lunabot, as it is maneuvered in a "sand box" of ultra-fine simulated lunar soil during NASA's second annual Lunabotics Mining Competition at the Kennedy Space Center Visitor Complex in Florida. Thirty-six teams of undergraduate and graduate students from the United States, Bangladesh, Canada, Colombia and India will participate in NASA's Lunabotics Mining Competition May 26 - 28 at the agency's Kennedy Space Center in Florida. The competition is designed to engage and retain students in science, technology, engineering and mathematics (STEM). Teams will maneuver their remote controlled or autonomous excavators, called lunabots, in about 60 tons of ultra-fine simulated lunar soil, called BP-1. The competition is an Exploration Systems Mission Directorate project managed by Kennedy's Education Division. The event also provides a competitive environment that could result in innovative ideas and solutions for NASA's future excavation of the moon. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Sybilski, Piotr W.; Pawłaszek, Rafał; Kozłowski, Stanisław K.; Konacki, Maciej; Ratajczak, Milena; Hełminiak, Krzysztof G.
2014-07-01
We present the software solution developed for a network of autonomous telescopes, deployed and tested in Solaris Project. The software aims to fulfil the contemporary needs of distributed autonomous observatories housing medium sized telescopes: ergonomics, availability, security and reusability. The datafication of such facilities seems inevitable and we give a preliminary study of the challenges and opportunities waiting for software developers. Project Solaris is a global network of four 0.5 m autonomous telescopes conducting a survey of eclipsing binaries in the Southern Hemisphere. The Project's goal is to detect and characterise circumbinary planets using the eclipse timing method. The observatories are located on three continents, and the headquarters coordinating and monitoring the network is in Poland. All four are operational as of December 2013.
Autonomous Buoyed Environmental Measurement System (ABES)
1997-09-30
GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND... ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S...azimuth and dip of the Earth’s magnetic field. It is a 3-V device, available in 16-pin small outline integrated circuit ( SOIC ) form factor. Cost is $4
Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation.
Marturi, Naresh; Dembélé, Sounkalo; Piat, Nadine
2014-01-01
As an imaging system, scanning electron microscope (SEM) performs an important role in autonomous micro-nanomanipulation applications. When it comes to the sub micrometer range and at high scanning speeds, the images produced by the SEM are noisy and need to be evaluated or corrected beforehand. In this article, the quality of images produced by a tungsten gun SEM has been evaluated by quantifying the level of image signal-to-noise ratio (SNR). In order to determine the SNR, an efficient and online monitoring method is developed based on the nonlinear filtering using a single image. Using this method, the quality of images produced by a tungsten gun SEM is monitored at different experimental conditions. The derived results demonstrate the developed method's efficiency in SNR quantification and illustrate the imaging quality evolution in SEM. © 2014 Wiley Periodicals, Inc.
Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries
USDA-ARS?s Scientific Manuscript database
Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...
Shift work is associated with reduced heart rate variability among men but not women.
Hulsegge, Gerben; Gupta, Nidhi; Proper, Karin I; van Lobenstein, Natasja; IJzelenberg, Wilhelmina; Hallman, David M; Holtermann, Andreas; van der Beek, Allard J
2018-05-01
Imbalance in the autonomic nervous system due to a disrupted circadian rhythm may be a cause of shift work-related cardiovascular diseases. We aimed to determine the association between shift work and cardiac autonomic activity in blue-collar workers. The study included 665 blue-collar workers aged 18-68 years in different occupations from two Danish cohort studies. Time and frequency domain parameters of heart rate variability (HRV) were measured during sleep using the Actiheart monitor, and used as markers of cardiac autonomic function. Multiple linear regression analyses were used to investigate differences in HRV between day and shift workers. Shift workers had no significantly different HRV parameters than day workers, except for a lower VLF (B: 0.21; 95% CI: -0.36-0.05). The lower VLF was only present among non-night shift workers (p < 0.05) and not among night shift workers (p > 0.05). Results differed significantly by gender (p for interaction < 0.10): among men, shift work was negatively associated with RMSSD (B: -7.83; 95% CI: -14.28-1.38), SDNN (B: -7.0; 95% CI: -12.27-1.78), VLF (B: -0.27; 95% CI: -0.46-0.09) and Total Power (B: -0.61; 95% CI: -1.20-0.03), while among women, shift work was only associated with the LF/HF ratio (B: -0.29; 95% CI: -0.54-0.03). Shift work was particularly associated with lower HRV during sleep among men. This indicates that shift work causes imbalance in the autonomic nervous system among men, which might increase their risk of cardiovascular diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Autonomous smart sensor network for full-scale structural health monitoring
NASA Astrophysics Data System (ADS)
Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.
2010-04-01
The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.
NASA Astrophysics Data System (ADS)
Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.
2009-12-01
Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.
Personal coronary risk profiles modify autonomic nervous system responses to air pollution.
Chen, Jiu-Chiuan; Stone, Peter H; Verrier, Richard L; Nearing, Bruce D; MacCallum, Gail; Kim, Jee-Young; Herrick, Robert F; You, Jinhong; Zhou, Haibo; Christiani, David C
2006-11-01
We investigated whether PM2.5-mediated autonomic modulation depends on individual coronary risk profiles. Five-minute average heart rate (HR) and heart rate variability (HRV, including standard deviation of normal-to-normal intervals [SDNN], square root of the mean squared differences of successive NN intervals [rMSSD], high frequency [HF]) were measured from 24-hour ambulatory electrocardiograms, and personal PM(2.5) exposures were monitored in a prospective study of 10 male boilermakers (aged 34.3 +/- 8.1 years). We used the Framingham score to classify individuals into low (score = 1-3) and high (score = 5-6) risk categories. Mixed-effect models were used for statistical analyses. Each 1-mg/m(3) increase in the preceding 4-hour moving average PM(2.5) was associated with HR increase (5.3 beats/min) and HRV reduction (11.7%, confidence interval [CI] = 6.2-17.1% for SDNN; 11.1%, CI = 3.1-19.1% for rMSSD; 16.6%, CI = 1.5-31.7% for HF). Greater responses (2- to 4-fold differences) were observed in high-risk subjects than in low-risk subjects. Our study suggests that adverse autonomic responses to metal particulate are aggravated in workers with higher coronary risk profiles.
Systems, methods and apparatus for quiesence of autonomic safety devices with self action
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic environmental safety device may be quiesced. In at least one embodiment, a method for managing an autonomic safety device, such as a smoke detector, based on functioning state and operating status of the autonomic safety device includes processing received signals from the autonomic safety device to obtain an analysis of the condition of the autonomic safety device, generating one or more stay-awake signals based on the functioning status and the operating state of the autonomic safety device, transmitting the stay-awake signal, transmitting self health/urgency data, and transmitting environment health/urgency data. A quiesce component of an autonomic safety device can render the autonomic safety device inactive for a specific amount of time or until a challenging situation has passed.
Digital autonomous terminal access communications
NASA Technical Reports Server (NTRS)
Novacki, S.
1987-01-01
A significant problem for the Bus Monitor Unit is to identify the source of a given transmission. This problem arises from the fact that the label which identifies the source of the transmission as it is put into the bus is intercepted by the Digital Autonomous Terminal Access Communications (DATAC) terminal and removed from the transmission. Thus, a given subsystem will see only data associated with a label and never the identifying label itself. The Bus Monitor must identify the source of the transmission so as to be able to provide some type of error identification/location in the event that some problem with the data transmission occurs. Steps taken to alleviate this problem by modifications to the DATAC terminal are discussed.
NASA Technical Reports Server (NTRS)
Mellstrom, J. A.; Smyth, P.
1991-01-01
The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.
Demagnetization monitoring and life extending control for permanent magnet-driven traction systems
NASA Astrophysics Data System (ADS)
Niu, Gang; Liu, Senyi
2018-03-01
This paper presents a novel scheme of demagnetization monitoring and life extending control for traction systems driven by permanent magnet synchronous motors (PMSMs). Firstly, the offline training is carried to evaluate fatigue damage of insulated gate bipolar transistors (IGBTs) under different flux loss based on first-principle modeling. Then an optimal control law can be extracted by turning down the power distribution factor of the demagnetizing PMSM until all damages of IGBTs turn to balance. Next, the similarity-based empirical modeling is employed to online estimate remaining flux of PMSMs, which is used to update the power distribution factor by referring the optimal control law for the health-oriented autonomous control. The proposed strategy can be demonstrated by a case study of traction drive system coupled with dual-PMSMs. Compared with traditional control strategy, the results show that the novel scheme can not only guarantee traction performance but also extend remaining useful life (RUL) of the system after suffering demagnetization fault.
Neurotechnology for monitoring and restoring sensory, motor, and autonomic functions
NASA Astrophysics Data System (ADS)
Wu, Pae C.; Knaack, Gretchen; Weber, Douglas J.
2016-05-01
The rapid and exponential advances in micro- and nanotechnologies over the last decade have enabled devices that communicate directly with the nervous system to measure and influence neural activity. Many of the earliest implementations focused on restoration of sensory and motor function, but as knowledge of physiology advances and technology continues to improve in accuracy, precision, and safety, new modes of engaging with the autonomic system herald an era of health restoration that may augment or replace many conventional pharmacotherapies. DARPA's Biological Technologies Office is continuing to advance neurotechnology by investing in neural interface technologies that are effective, reliable, and safe for long-term use in humans. DARPA's Hand Proprioception and Touch Interfaces (HAPTIX) program is creating a fully implantable system that interfaces with peripheral nerves in amputees to enable natural control and sensation for prosthetic limbs. Beyond standard electrode implementations, the Electrical Prescriptions (ElectRx) program is investing in innovative approaches to minimally or non-invasively interface with the peripheral nervous system using novel magnetic, optogenetic, and ultrasound-based technologies. These new mechanisms of interrogating and stimulating the peripheral nervous system are driving towards unparalleled spatiotemporal resolution, specificity and targeting, and noninvasiveness to enable chronic, human-use applications in closed-loop neuromodulation for the treatment of disease.
Sabharwal, Rasna; Chapleau, Mark W
2014-04-01
New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of LV dysfunction and higher mortality in Sgcd-/- mice. Treatment of Sgcd-/- mice with the angiotensin type 1 receptor blocker losartan for 8-9 weeks, beginning at 3 weeks of age, decreased fibrosis and oxidative stress in skeletal muscle, increased locomotor activity and prevented autonomic dysfunction. Chronic infusion of the counter-regulatory peptide angiotensin-(1-7) resulted in similar protection. We conclude that activation of the renin-angiotensin system, at a young age, contributes to skeletal muscle and autonomic dysfunction in muscular dystrophy. We speculate that the latter is mediated via abnormal sensory nerve and/or cytokine signalling from dystrophic skeletal muscle to the brain and contributes to age-related LV dysfunction, dilated cardiomyopathy, arrhythmias and premature death. Therefore, correcting the early autonomic dysregulation and renin-angiotensin system activation may provide a novel therapeutic approach in muscular dystrophy.
Young athletes' awareness and monitoring of anti-doping in daily life: Does motivation matter?
Chan, D K C; Donovan, R J; Lentillon-Kaestner, V; Hardcastle, S J; Dimmock, J A; Keatley, D A; Hagger, M S
2015-12-01
This study was a preliminarily investigation into the prevention of unintentional doping on the basis of self-determination theory (SDT). Specifically, we examined the relationship between athletes' motives for doping avoidance and their behavior when offered an unfamiliar food product. Participants were young Australian athletes (n = 410) that were offered a free lollipop prior to completing a questionnaire. It was noted whether participants refused to take or eat the lollipop and whether they read the ingredients of the lollipop. The questionnaire assessed autonomous and controlled forms of motivation, amotivation, doping intentions, and adherence regarding doping avoidance behaviors. The results showed that young athletes who adopted controlled reasons to avoid doping in sport (e.g., not getting caught) tended to report higher adherence to behaviors related to avoiding and monitoring banned substances, whereas those who adopted autonomous reasons (e.g., anti-doping being consistent with life goals) appeared to be more willing to read the ingredients of the provided food. The significant interaction effect between autonomous and controlled motivation indicated that autonomous motivation was more predictive to doping intention for athletes with low controlled motivation. It is concluded that SDT may help understand the motivational processes of the prevention of unintentional doping in sport. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Stocker, Abigail; Abell, Thomas L.; Rashed, Hani; Kedar, Archana; Boatright, Ben; Chen, Jiande
2016-01-01
Background Disorders of nausea, vomiting, abdominal pain, and related problems often are manifestations of gastrointestinal, neuromuscular, and/or autonomic dysfunction. Many of these patients respond to neurostimulation, either gastric electrical stimulation or electroacupuncture. Both of these therapeutic techniques appear to influence the autonomic nervous system which can be evaluated directly by traditional testing and indirectly by heart rate variability. Methods We studied patients undergoing gastric neuromodulation by both systemic autonomic testing (39 patients, six males and 33 females, mean age 38 years) and systemic autonomic testing and heart rate variability (35 patients, seven males and 28 females, mean age 37 years) testing before and after gastric neuromodulation. We also performed a pilot study using both systemic autonomic testing and heart rate variability in a small number of patients (five patients, all females, mean age 48.6 years) with diabetic gastroparesis at baseline to compare the two techniques at baseline. Systemic autonomic testing and heart rate variability were performed with standardized techniques and gastric electrical stimulation was performed as previously described with electrodes implanted serosally in the myenteric plexus. Results Both systemic autonomic testing and heart rate variability measures were often abnormal at baseline and showed changes after gastric neuromodulation therapy in two groups of symptomatic patients. Pilot data on a small group of similar patients with systemic automatic nervous measures and heart rate variability showed good concordance between the two techniques. Conclusions Both traditional direct autonomic measures and indirect measures such as heart rate variability were evaluated, including a pilot study of both methods in the same patient group. Both appear to be useful in evaluation of patients at baseline and after stimulation therapies; however, a future full head-to-head comparison is warranted. PMID:27785318
Automatic outdoor monitoring system for photovoltaic panels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefancich, Marco; Simpson, Lin; Chiesa, Matteo
Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum powermore » point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.« less
Automatic outdoor monitoring system for photovoltaic panels.
Stefancich, Marco; Simpson, Lin; Chiesa, Matteo
2016-05-01
Long-term acquisition of solar panel performance parameters, for panels operated at maximum power point in their real environment, is of critical importance in the photovoltaic research sector. However, few options exist for the characterization of non-standard panels such as concentrated photovoltaic systems, heavily soiled or shaded panels or those operating under non-standard spectral illumination; certainly, it is difficult to find such a measurement system that is flexible and affordable enough to be adopted by the smaller research institutes or universities. We present here an instrument aiming to fill this gap, autonomously tracking and maintaining any solar panel at maximum power point while continuously monitoring its operational parameters and dissipating the produced energy without connection to the power grid. The instrument allows periodic acquisition of current-voltage curves to verify the employed maximum power point tracking approach. At the same time, with hardware schematics and software code being provided, it provides a flexible open development environment for the monitoring of non-standard generators like concentrator photovoltaic systems and to test novel power tracking approaches. The key issues, and the corresponding solutions, encountered in the design are analyzed in detail and the relevant schematics presented.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo
2018-05-01
Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.
NASA Astrophysics Data System (ADS)
Wuyts, Floris; Clement, Gilles; Naumov, Ivan; Kornilova, Ludmila; Glukhikh, Dmitriy; Hallgren, Emma; MacDougall, Hamish; Migeotte, Pierre-Francois; Delière, Quentin; Weerts, Aurelie; Moore, Steven; Diedrich, Andre
In 13 cosmonauts, the vestibulo-autonomic reflex was investigated before and after 6 months duration spaceflight. Cosmonauts were rotated on the mini-centrifuge VVIS, which is installed in Star City. Initially, this mini-centrifuge flew on board of the Neurolab mission (STS-90), and served to generate intermittent artificial gravity during that mission, with apparent very positive effects on the preservation of the orthostatic tolerance upon return to earth in the 4 crew members that were subjected to the rotations in space. The current experiments SPIN and GAZE-SPIN are control experiments to test the hypothesis that intermittent artificial gravity in space can serve as a counter measure against several deleterious effects of microgravity. Additionally, the effect of microgravity on the gaze holding system is studied as well. Cosmonauts from a long duration stay in the International Space Station were tested on the VVIS (1 g centripetal interaural acceleration; consecutive right-ear-out anti-clockwise and left-ear-out clockwise measurement) on 5 different days. Two measurements were scheduled about one month and a half prior to launch and the remaining three immediately after their return from space (typically on R+2, R+4, R+9; R = return day from space). The ocular counter roll (OCR) as a measure of otolith function was measured on before, during and after the rotation in the mini centrifuge, using infrared video goggles. The perception of verticality was monitored using an ultrasound system. Gaze holding was tested before, during and after rotation. After the centrifugation part, the crew was installed on a tilt table, and instrumented with several cardiovascular recording equipment (ECG, continuous blood pressure monitoring, respiratory monitoring), as well as with impedance measurement devices to investigate fluid redistribution throughout the operational tilt test. To measure heart rate variability parameters, imposed breathing periods were included in the test protocol. The subjects were subjected to a passive tilt test of 60 degrees, during 15 minutes. The results show that cosmonauts clearly have a statistically significantly reduced ocular counter rolling during rotation upon return from space, when compared to the pre-flight condition, indicating a reduced sensitivity of the otolith system to gravito intertial acceleration. None of the subjects fainted or even approached presyncope. However, the resistance in the calf, measured with the impedance method, showed a significant increased pooling in the lower limbs. Additionally, this was statistically significantly correlated (p=0.024) with a reduced otolith response, when comparing for each subject the vestibular and autonomic data. This result shows that the vestibulo-autonomic reflex is reduced after 6 months of spaceflight. When compared with Neurolab, the otolith response in the current group of crew members that were not subjected to in-flight centrifugation is significantly reduced, corroborating the hypothesis that in-flight artificial gravity may be of great importance to mitigate the deleterious effects of microgravity. Projects are funded by PRODEX-BELSPO, ESA, IBMP
Biologically inspired autonomous structural materials with controlled toughening and healing
NASA Astrophysics Data System (ADS)
Garcia, Michael E.; Sodano, Henry A.
2010-04-01
The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return the system to its original operating state. The entire system will effectively detect, self toughen, and subsequently heal damage as biological materials such as bone does.
The nature of the autonomic dysfunction in multiple system atrophy
NASA Technical Reports Server (NTRS)
Parikh, Samir M.; Diedrich, Andre; Biaggioni, Italo; Robertson, David
2002-01-01
The concept that multiple system atrophy (MSA, Shy-Drager syndrome) is a disorder of the autonomic nervous system is several decades old. While there has been renewed interest in the movement disorder associated with MSA, two recent consensus statements confirm the centrality of the autonomic disorder to the diagnosis. Here, we reexamine the autonomic pathophysiology in MSA. Whereas MSA is often thought of as "autonomic failure", new evidence indicates substantial persistence of functioning sympathetic and parasympathetic nerves even in clinically advanced disease. These findings help explain some of the previously poorly understood features of MSA. Recognition that MSA entails persistent, constitutive autonomic tone requires a significant revision of our concepts of its diagnosis and therapy. We will review recent evidence bearing on autonomic tone in MSA and discuss their therapeutic implications, particularly in terms of the possible development of a bionic baroreflex for better control of blood pressure.
Akaeda, H; Nagai, K; Okuda, Y; Shinoto, M; Okuda, H
1981-06-01
In usual medical consultation, we have been met a lot of female patients suffering from disturbances of autonomic nervous system such as headache, shoulder-ache and so on. Experiments were designed to elucidate whether or not these disturbances of autonomic nervous system were induced by inflammation and accelerated by stimulant diets. Functions of autonomic nervous system were examined by lipolysis in rat epididymal adipose tissue which was partly controlled by sympathetic nervous system. It was found that free fatty acid release from the epididymal adipose tissue was considerably elevated by inflammation which was formed in abdominal wall or in abdominal cavity or oral administration of stimulant diets such as red pepper and white pepper, and that such elevation of lipolysis was significantly reduced by resection of the autonomic nerve. These results indicated that the inflammation and the stimulant diets induced excitement of sympathetic nerve which controlled the epididymal adipose tissue. Experiments were now in progress to clarify relationship between such excitement of sympathetic nervous system induced by the inflammation or by the stimulant diet and irregular complaints due to disturbances of autonomic nervous system.
Opportunity Science Using the Juno Magnetometer Investigation Star Trackers
NASA Astrophysics Data System (ADS)
Joergensen, J. L.; Connerney, J. E.; Bang, A. M.; Denver, T.; Oliversen, R. J.; Benn, M.; Lawton, P.
2013-12-01
The magnetometer experiment onboard Juno is equipped with four non-magnetic star tracker camera heads, two of which reside on each of the magnetometer sensor optical benches. These are located 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. The star tracker, collectively referred to as the Advanced Stellar Compass (ASC), provides high accuracy attitude information for the magnetometer sensors throughout science operations. The star tracker camera heads are pointed +/- 13 deg off the spin vector, in the anti-sun direction, imaging a 13 x 20 deg field of view every ¼ second as Juno rotates at 1 or 2 rpm. The ASC is a fully autonomous star tracker, producing a time series of attitude quaternions for each camera head, utilizing a suite of internal support functions. These include imaging capabilities, autonomous object tracking, automatic dark-sky monitoring, and related capabilities; these internal functions may be accessed via telecommand. During Juno's cruise phase, this capability can be tapped to provide unique science and engineering data available along the Juno trajectory. We present a few examples of the JUNO ASC opportunity science here. As the Juno spacecraft approached the Earth-Moon system for the close encounter with the Earth on October 9, 2013, one of the ASC camera heads obtained imagery of the Earth-Moon system while the other three remained in full science (attitude determination) operation. This enabled the first movie of the Earth and Moon obtained by a spacecraft flying past the Earth in gravity assist. We also use the many artificial satellites in orbit about the Earth as calibration targets for the autonomous asteroid detection system inherent to the ASC autonomous star tracker. We shall also profile the zodiacal dust disk, using the interstellar image data, and present the outlook for small asteroid body detection and distribution being performed during Juno's passage from Earth flyby to Jovian orbit insertion.
NASA Astrophysics Data System (ADS)
McGillivary, P. A.; Borges de Sousa, J.; Wackowski, S.; Walker, G.
2011-12-01
Small remotely piloted aircraft have recently been used for maritime remote sensing, including launch and retrieval operations from land, ships and sea ice. Such aircraft can also function to collect and communicate data from other ocean observing system platforms including moorings, tagged animals, drifters, autonomous surface vessels (ASVs), and autonomous underwater vessels (AUVs). The use of small remotely piloted aircraft (or UASs, unmanned aerial systems) with a combination of these capabilities will be required to monitor the vast areas of the open ocean, as well as in harsh high-latitude ecosystems. Indeed, these aircraft are a key component of planned high latitude maritime domain awareness environmental data collection capabilities, including use of visible, IR and hyperspectral sensors, as well as lidar, meteorological sensors, and interferometric synthetic aperture radars (ISARs). We here first describe at-sea demonstrations of improved reliability and bandwidth of communications from ocean sensors on autonomous underwater vehicles to autonomous surface vessels, and then via remotely piloted aircraft to shore, ships and manned aircraft using Delay and Disruption Tolerant (DTN) communication protocols. DTN enables data exchange in communications-challenged environments, such as remote regions of the ocean including high latitudes where low satellite angles and auroral disturbances can be problematic. DTN provides a network architecture and application interface structured around optionally-reliable asynchronous message forwarding, with limited expectations of end-to-end connectivity and node resources. This communications method enables aircraft and surface vessels to function as data mules to move data between physically disparate nodes. We provide examples of the uses of this communication protocol for environmental data collection and data distribution with a variety of different remotely piloted aircraft in a coastal ocean environment. Next, we highlight use in the arctic of two different small remotely piloted aircraft (ScanEagle and RAVEN) for remote sensing of ice and ocean conditions as well as surveys of marine mammals. Finally, we explain how these can be used in future networked environments with DTN support not only for the collection of ocean and ice data for maritime domain awareness, but also for monitoring oil spill dynamics in high latitude environments, including spills in and under sea ice. The networked operation of heterogeneous air and ocean vehicle systems using DTN communications methods can provide unprecedented levels of spatial-temporal sampling resolution important to improving arctic remote sensing and maritime domain awareness capabilities.
Computer system evolution requirements for autonomous checkout of exploration vehicles
NASA Technical Reports Server (NTRS)
Davis, Tom; Sklar, Mike
1991-01-01
This study, now in its third year, has had the overall objective and challenge of determining the needed hooks and scars in the initial Space Station Freedom (SSF) system to assure that on-orbit assembly and refurbishment of lunar and Mars spacecraft can be accomplished with the maximum use of automation. In this study automation is all encompassing and includes physical tasks such as parts mating, tool operation, and human visual inspection, as well as non-physical tasks such as monitoring and diagnosis, planning and scheduling, and autonomous visual inspection. Potential tasks for automation include both extravehicular activity (EVA) and intravehicular activity (IVA) events. A number of specific techniques and tools have been developed to determine the ideal tasks to be automated, and the resulting timelines, changes in labor requirements and resources required. The Mars/Phobos exploratory mission developed in FY89, and the Lunar Assembly/Refurbishment mission developed in FY90 and depicted in the 90 Day Study as Option 5, have been analyzed in detailed in recent years. The complete methodology and results are presented in FY89 and FY90 final reports.
NASA Astrophysics Data System (ADS)
Braun, Dieter; Möller, Friederike M.; Krammer, Hubert
2013-03-01
Central to the understanding of living systems is the interplay between DNA/RNA and proteins. Known as Eigen paradox, proteins require genetic information while proteins are needed for the replication of genes. RNA world scenarios focus on a base by base replication disconnected from translation. Here we used strategies from DNA machines to demonstrate a tight connection between a basic replication mechanism and translation. A pool of hairpin molecules replicate a two-letter code. The replication is thermally driven: the energy and negative entropy to drive replication is initially stored in metastable hairpins by kinetic cooling. Both are released by a highly specific and exponential replication reaction that is solely implemented by base hybridization. The duplication time is 30s. The reaction is monitored by fluorescence and described by a detailed kinetic model. The RNA hairpins usetransfer RNA sequences and the replication is driven by the simple disequilibrium setting of a thermal gradient The experiments propose a physical rather than a chemical scenario for the autonomous replication of protein encoding information. Supported by the NanoSystems Initiative Munich and ERC.
Lagrangian-Hamiltonian unified formalism for autonomous higher order dynamical systems
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2011-09-01
The Lagrangian-Hamiltonian unified formalism of Skinner and Rusk was originally stated for autonomous dynamical systems in classical mechanics. It has been generalized for non-autonomous first-order mechanical systems, as well as for first-order and higher order field theories. However, a complete generalization to higher order mechanical systems is yet to be described. In this work, after reviewing the natural geometrical setting and the Lagrangian and Hamiltonian formalisms for higher order autonomous mechanical systems, we develop a complete generalization of the Lagrangian-Hamiltonian unified formalism for these kinds of systems, and we use it to analyze some physical models from this new point of view.
NASA Astrophysics Data System (ADS)
Lenka, Bichitra Kumar; Banerjee, Soumitro
2018-03-01
We discuss the asymptotic stability of autonomous linear and nonlinear fractional order systems where the state equations contain same or different fractional orders which lie between 0 and 2. First, we use the Laplace transform method to derive some sufficient conditions which ensure asymptotic stability of linear fractional order systems. Then by using the obtained results and linearization technique, a stability theorem is presented for autonomous nonlinear fractional order system. Finally, we design a control strategy for stabilization of autonomous nonlinear fractional order systems, and apply the results to the chaotic fractional order Lorenz system in order to verify its effectiveness.
HYDROBS: a long-term autonomous mooring for passive acoustic monitoring
NASA Astrophysics Data System (ADS)
Hello, Y.; Royer, J. Y.; Yegikyan, M.
2017-12-01
Passive acoustics proves an effective way for monitoring the low-level seismic activity of the ocean floor and low-frequency sounds from the ocean (baleen whales, sea-state, icebergs). Networks of synchronized autonomous hydrophones have thus been commonly deployed in the world ocean to monitor large sections of mid-oceanic ridges. HYDROBS is an improved system that meet two requirements: an easy access to the data collected by the instruments together with long-term deployments - up to 4 consecutive years - reducing the need of large vessels capable of yearly mooring operations in open seas. The system has two components: a data logger, up-to-date but similar to previous systems, and three messengers, releasable on demand to collect the data. The mooring line itself is classical, with an expandable weight at the sea-bottom to maintain the mooring, an acoustic release to free the mooring line for recovery, a line adjustable to the seafloor depth, and an immerged buoy, holding the acquisition system, to maintain the sensors at a constant depth and to bring the mooring line to the surface for its recovery. The data logger is based on a low-power microprocessor, an A/D-32bit convertor sampling at 250Hz, a 10-8 real time clock and SD card storage. Lithium batteries provide 3-4 years of autonomy. Acoustic communications with the surface-ship provide control over all functionalities at deployment and a health bulletin on demand. The 3 shuttles, encapsulated in 13" glass spheres, use the same CPU board and clock as the main station. Data transfer from the data logger to the shuttles is wireless (1Mbit/s digital inductive through water). Data are duplicated once per day on shuttles N and N+1 for redundancy. Prior to their release by acoustic command, the shuttles are synchronized with the master clock. At sea-surface, shuttles (as the main unit) look for GPS time and calculate their clock drift. So, the master clock drift can be monitored over time at every shuttle release until its final recovery. Shuttles and main unit are located on the sea-surface by AIS. Iridium communications can also be set to warn the user of a false release. A non-specialist can thus easily handle a shuttle recovery from a ship of opportunity. With 4-channels, this system is also suitable to monitor other parameters in the water column, continuously and over long periods.
SeaRover: An Emerging Technology for Sea Surface Sensor Networks
NASA Astrophysics Data System (ADS)
Fong, T.; Kudela, R.; Curcio, J.; Davidson, K.; Darling, D.; Kirkwood, B.
2005-12-01
Introduction - SeaRover is envisioned as an autonomous surface vehicle (ASV) for coastal operations. It is intended to lower the cost of existing marine survey applications while enabling new science missions. The current conceptual design is a small vehicle with hull and propulsion system optimized to eliminate cavitation and EM noise. SeaRover will make significant advances over existing platforms by providing longer duration science missions, better positioning and mission control, larger power budgets for instrumentation and significantly lower operational costs than existing vehicles. Science Enabled by SeaRover - SeaRover's unique design and autonomous capability provides several advantages compared to traditional autonomous underwater vehicles (AUV's) and crewed surface vessels: (1) Near surface sampling: SeaRover can sample within the top 1-2 meters. This is difficult to do with crewed vessels because of draft and perturbations from the hull. (2) Adaptive monitoring of dynamic events: SeaRover will be capable of intelligent decision making, as well as real-time remote control. This will enable highly-responsive autonomous tracking of moving phenomena (e.g., algal bloom). (3) Long term monitoring: SeaRover can be deployed for extended periods of time, allowing it to be used for longitudinal baseline studies. SeaRover will represent an advance over existing platforms in terms of: (1) Mobility: operational range from 10-1000 km, GPS accuracy, trajectory control with meter precision, and launch in hours. (2) Duration: from days up to months. (3) Payload and Power: accommodate approximately 100 kg for a 6m hull. Its surface design will allow access to wind and sun energy. (4) Communication: radio, wireless, satellite, direct data return. (5) Operational Cost: target costs are $2K/day (24 hour operation), with no onboard operator. (6) Recovery/Reusability: autonomous return to safe harbor provides sample return and on-base maintenance. Large science and power payload simplifies instrument design and integration. Enabling Technology for SeaRover - SeaRover's capabilities are made possible by advances in technologies developed during NASA planetary exploration missions: (1) Adaptive control (2) Automated data analysis (3) Communications management (4) Computer vision (5) Interactive 3D User Interfaces (6) Intelligent energy management (7) Long-duration operations planning (8) Multi-vehicle coordinated action As an example of what SeaRover could be used for, we envision augmenting existing monthly monitoring cruises in Monterey Bay with a SeaRover. Each month, the Center for Integrated Marine Technology (UC-Santa Cruz) conducts shipboard surveys of Monterey Bay. This requires 2-3 full days of ship time (weather dependent), 14 scientists, and 2 crew members. Operations are currently limited by sea-state, transit speed, and cost. SeaRover could provide all of the underway measurements and some of the hydrographic station measurements faster, more frequently, and for a fraction of the cost.
Papousek, Ilona; Roessler, Andreas; Hinghofer-Szalkay, Helmut; Lang, Uwe; Kolovetsiou-Kreiner, Vassiliki
2013-01-01
Background The autonomic nervous system plays a central role in the functioning of systems critical for the homeostasis maintenance. However, its role in the cardiovascular adaptation to pregnancy-related demands is poorly understood. We explored the maternal cardiovascular systems throughout pregnancy to quantify pregnancy-related autonomic nervous system adaptations. Methodology Continuous monitoring of heart rate (R-R interval; derived from the 3-lead electrocardiography), blood pressure, and thoracic impedance was carried out in thirty-six women at six time-points throughout pregnancy. In order to quantify in addition to the longitudinal effects on baseline levels throughout gestation the immediate adaptive heart rate and blood pressure changes at each time point, a simple reflex test, deep breathing, was applied. Consequently, heart rate variability and blood pressure variability in the low (LF) and high (HF) frequency range, respiration and baroreceptor sensitivity were analyzed in resting conditions and after deep breathing. The adjustment of the rhythms of the R-R interval, blood pressure and respiration partitioned for the sympathetic and the parasympathetic branch of the autonomic nervous system were quantified by the phase synchronization index γ, which has been adopted from the analysis of weakly coupled chaotic oscillators. Results Heart rate and LF/HF ratio increased throughout pregnancy and these effects were accompanied by a continuous loss of baroreceptor sensitivity. The increases in heart rate and LF/HF ratio levels were associated with an increasing decline in the ability to flexibly respond to additional demands (i.e., diminished adaptive responses to deep breathing). The phase synchronization index γ showed that the observed effects could be explained by a decreased coupling of respiration and the cardiovascular system (HF components of heart rate and blood pressure). Conclusions/Significance The findings suggest that during the course of pregnancy the individual systems become increasingly independent to meet the increasing demands placed on the maternal cardiovascular and respiratory system. PMID:23577144