Science.gov

Sample records for autonomous observing strategies

  1. Autonomous observing strategies for the ocean carbon cycle

    SciTech Connect

    Bishop, James K.; Davis, Russ E.

    2000-07-26

    Understanding the exchanges of carbon between the atmosphere and ocean and the fate of carbon delivered to the deep sea is fundamental to the evaluation of ocean carbon sequestration options. An additional key requirement is that sequestration must be verifiable and that environmental effects be monitored and minimized. These needs can be addressed by carbon system observations made from low-cost autonomous ocean-profiling floats and gliders. We have developed a prototype ocean carbon system profiler based on the Sounding Oceanographic Lagrangian Observer (SOLO; Davis et al., 1999). The SOLO/ carbon profiler will measure the two biomass components of the carbon system and their relationship to physical variables, such as upper ocean stratification and mixing. The autonomous observations within the upper 1500 m will be made on daily time scales for periods of months to seasons and will be carried out in biologically dynamic locations in the world's oceans that are difficult to access with ships (due to weather) or observe using remote sensing satellites (due to cloud cover). Such an observational capability not only will serve an important role in carbon sequestration research but will provide key observations of the global ocean's natural carbon cycle.

  2. Actions, Observations, and Decision-Making: Biologically Inspired Strategies for Autonomous Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Ippolito, Corey; Plice, Laura; Young, Larry A.; Lau, Benton

    2003-01-01

    This paper details the development and demonstration of an autonomous aerial vehicle embodying search and find mission planning and execution srrategies inspired by foraging behaviors found in biology. It begins by describing key characteristics required by an aeria! explorer to support science and planetary exploration goals, and illustrates these through a hypothetical mission profile. It next outlines a conceptual bio- inspired search and find autonomy architecture that implements observations, decisions, and actions through an "ecology" of producer, consumer, and decomposer agents. Moving from concepts to development activities, it then presents the results of mission representative UAV aerial surveys at a Mars analog site. It next describes hardware and software enhancements made to a commercial small fixed-wing UAV system, which inc!nde a ncw dpvelopnent architecture that also provides hardware in the loop simulation capability. After presenting the results of simulated and actual flights of bioinspired flight algorithms, it concludes with a discussion of future development to include an expansion of system capabilities and field science support.

  3. A Strategy to employ coordinated, autonomous Platforms for addressing long-term biochemical observing Tasks

    NASA Astrophysics Data System (ADS)

    Waldmann, H. C.; Montenegro, S.

    2016-02-01

    Autonomous platforms get a growing importance for ocean observing tasks in particular to enable long-term observing tasks. Employing the mobility of those platforms allows a targeted investigations of phenomena that up to now are mainly seen from satellite but are lacking detailed scrutiny. As part oft he national funded project ROBEX new operation concepts for mobile platforms are developed in particular a new type of underwater glider with larger payload capacity compared to legacy systems will be developed. First tests in the pool of a aparticular hull shape have led to a better understanding oft he hydrodynamic condition and an optomized hull design was derived from that. The WAVEGLIDER system of Liquid Robotics lends itsself to be used as a communication hub and a platform to track underwater vehicles. Therefore the combination of those systems are currently assessed in regard to a possible operation and its hard- and software implementation. A major issue ist o achieve a coordinated displacement of these completely decoupled systems. Issues on how to mitigate faulty mission runs, coping with low communication bandwidths, and ensuring adequate positioning information about the underwater glider have to be addressed. Robotic concepts known from terrestrial applications like for UAV systems are tested under the more stringent environmental conditions in ocean waters. With this combination of WAVEGLIDER and underwater glider it is planned to carry out long-term missions to investigate biochemical processes in the water column in particular to investigate the particle transport through the water column and the processes resulting from that. Concepts and first results of those tasks will be presented.

  4. Autonomous landmark tracking orbit determination strategy

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Cheng, Y.

    2003-01-01

    In this paper, an orbit determination strategy is described that is fully autonomous and relies on a computer-based crater detection and identification algorithm that is suitable for both automation of the ground based navigation system and autonomous spacecraft based navigation.

  5. A Diversified Investment Strategy Using Autonomous Agents

    NASA Astrophysics Data System (ADS)

    Barbosa, Rui Pedro; Belo, Orlando

    In a previously published article, we presented an architecture for implementing agents with the ability to trade autonomously in the Forex market. At the core of this architecture is an ensemble of classification and regression models that is used to predict the direction of the price of a currency pair. In this paper, we will describe a diversified investment strategy consisting of five agents which were implemented using that architecture. By simulating trades with 18 months of out-of-sample data, we will demonstrate that data mining models can produce profitable predictions, and that the trading risk can be diminished through investment diversification.

  6. Path planning strategies for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Gifford, Kevin Kent

    Several key issues involved with the planning and executing of optimally generated paths for autonomous vehicles are addressed. Two new path planning algorithms are developed, and examined, which effectively minimize replanning as unmapped hazards are encountered. The individual algorithms are compared via extensive simulation. The search strategy results are implemented and tested using the University of Colorado's autonomous vehicle test-bed, RoboCar, and results show the advantages of solving the single-destination all-paths problem for autonomous vehicle path planning. Both path planners implement a graph search methodology incorporating dynamic programming that solves the single-destination shortest-paths problem. Algorithm 1, termed DP for dynamic programming, searches a state space where each state represents a potential vehicle location in a breadth-first fashion expanding from the goal to all potential start locations in the state space. Algorithm 2, termed DP*, couples the heuristic search power of the well-known A* search procedure (Nilsson-80) with the dynamic programming principle applied to graph searching to efficiently make use of overlapping subproblems. DP* is the primary research contribution of the work contained within this thesis. The advantage of solving the single-destination shortest-paths problem is that the entire terrain map is solved in terms of reaching a specified goal. Therefore, if the robot is diverted from the pre-planned path, an alternative path is already computed. The search algorithms are extended to include a probabilistic approach using empirical loss functions to incorporate terrain map uncertainties into the path considering terrain planning process. The results show the importance of considering terrain uncertainty. If the map representation ignores uncertainty by marking any area with less than perfect confidence as unpassable or assigns it the worst case rating, then the paths are longer than intuitively necessary. A

  7. SVOM Observing Strategy

    NASA Astrophysics Data System (ADS)

    Lachaud, C.; SVOM Consortium

    2016-10-01

    We will present the observing strategy developed to optimize the scientific return of the SVOM mission. We will review the attitude law, the communication processes and the different observation programs (Core Program, ToO and General Program).

  8. Coordinating an Autonomous Earth-Observing Sensorweb

    NASA Technical Reports Server (NTRS)

    Sherwood, Robert; Cichy, Benjamin; Tran, Daniel; Chien, Steve; Rabideau, Gregg; Davies, Ashley; Castano, Rebecca; frye, Stuart; Mandl, Dan; Shulman, Seth; hide

    2006-01-01

    A system of software has been developed to coordinate the operation of an autonomous Earth-observing sensorweb. Sensorwebs are collections of sensor units scattered over large regions to gather data on spatial and temporal patterns of physical, chemical, or biological phenomena in those regions. Each sensor unit is a node in a data-gathering/ data-communication network that spans a region of interest. In this case, the region is the entire Earth, and the sensorweb includes multiple terrestrial and spaceborne sensor units. In addition to acquiring data for scientific study, the sensorweb is required to give timely notice of volcanic eruptions, floods, and other hazardous natural events. In keeping with the inherently modular nature of the sensory, communication, and data-processing hardware, the software features a flexible, modular architecture that facilitates expansion of the network, customization of conditions that trigger alarms of hazardous natural events, and customization of responses to alarms. The soft8 NASA Tech Briefs, July 2006 ware facilitates access to multiple sources of data on an event of scientific interest, enables coordinated use of multiple sensors in rapid reaction to detection of an event, and facilitates the tracking of spacecraft operations, including tracking of the acquisition, processing, and downlinking of requested data.

  9. A design strategy for autonomous systems

    NASA Technical Reports Server (NTRS)

    Forster, Pete

    1989-01-01

    Some solutions to crucial issues regarding the competent performance of an autonomously operating robot are identified; namely, that of handling multiple and variable data sources containing overlapping information and maintaining coherent operation while responding adequately to changes in the environment. Support for the ideas developed for the construction of such behavior are extracted from speculations in the study of cognitive psychology, an understanding of the behavior of controlled mechanisms, and the development of behavior-based robots in a few robot research laboratories. The validity of these ideas is supported by some simple simulation experiments in the field of mobile robot navigation and guidance.

  10. [Learning strategies of autonomous medical students].

    PubMed

    Márquez U, Carolina; Fasce H, Eduardo; Ortega B, Javiera; Bustamante D, Carolina; Pérez V, Cristhian; Ibáñez G, Pilar; Ortiz M, Liliana; Espinoza P, Camila; Bastías V, Nancy

    2015-12-01

    Understanding how autonomous students are capable of regulating their own learning process is essential to develop self-directed teaching methods. To understand how self-directed medical students approach learning in medical schools at University of Concepción, Chile. A qualitative and descriptive study, performed according to Grounded Theory guidelines, following Strauss & Corbin was performed. Twenty medical students were selected by the maximum variation sampling method. The data collection technique was carried out by a semi-structured thematic interview. Students were interviewed by researchers after an informed consent procedure. Data were analyzed by the open coding method using Atlas-ti 7.5.2 software. Self-directed learners were characterized by being good planners and managing their time correctly. Students performed a diligent selection of contents to study based on reliable literature sources, theoretical relevance and type of evaluation. They also emphasized the discussion of clinical cases, where theoretical contents can be applied. This modality allows them to gain a global view of theoretical contents, to verbalize knowledge and to obtain a learning feedback. The learning process of autonomous students is intentional and planned.

  11. Modeling and Control Strategies for Autonomous Robotic Systems

    DTIC Science & Technology

    1991-12-23

    Robotic Systems 12 PERSONAL AUTHOR(S) Roger W. Brockett A]&. TYPE Of REPORT 113b. TIME COVERD 114 DATt__Of RE PVRT (Year- month, Day) S.PAGE COUNT Final...NO. ACCESSION NO Reseaich Triangle Park, NC 27709-2211I I 11 TITLE (ir-’-4 Cae-unrv Canmuicauon) Modeling and Control Strategies for Autonomous

  12. Autonomous UAV persistent surveillance using bio-inspired strategies

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2012-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara, the Army Research Laboratory, the Engineer Research and Development Center, and IBM UK is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bioinspired techniques for autonomous search provide a novel strategy to detect, capture and fuse data from heterogeneous sensor networks. The bio-inspired algorithm is based on chemotaxis or the motion of bacteria seeking nutrients in their environment. Field tests of a bio-inspired system that routed UAVs were conducted in June 2011 at Camp Roberts, CA. The field test results showed that such a system can autonomously detect and locate the source of terrestrial events with very high accuracy and visually verify the event. In June 2011, field tests of the system were completed and include the use of multiple autonomously controlled UAVs, detection and disambiguation of multiple acoustic events occurring in short time frames, optimal sensor placement based on local phenomenology and the use of the International Technology Alliance (ITA) Sensor Network Fabric. The system demonstrated TRL 6 performance in the field at Camp Roberts.

  13. SSPARR: Development of an efficient autonomous sampling strategy

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.

    2013-12-01

    The Seafloor Sounding in Polar and Remote Regions (SSPARR) effort was launched in 2004 with funding from the US National Science Foundation (Anderson et al. 2005.) Experiments with a prototype were encouraging (Greenspan et al., 2012, Chayes et al. 2012) and we are proceeding toward building and testing units for deployment during the 2014 season season in ice covered parts of the Arctic ocean. The simplest operational mode for a SSPARR buoy will be to wake and sample on a fixed time interval. A slightly more complex mode will check the distance traveled since the pervious sounding and potentially return to sleep-mode if it has not traveled far enough to make a significant new measurement. We are developing a mode that will use a sampling strategy based on querying an on-board copy of the best available digital terrain model (DTM) e.g. IBCAO in the Arctic, to help decide if it is appropriate to turn on the echo sounder and make a new measurement. We anticipate that a robust strategy of this type will allow a buoy to operate substantially longer on a fixed battery size. Anderson, R., D. Chayes, et al. (2005). "Seafloor Soundings in Polar and Remote Regions - A new instrument for unattended bathymetric observations," Eos Trans. AGU 86(18): Abstract C43A-10. Greenspan, D., D. Porter, et al. (2012). "IBuoy: Expendable Echo Sounder Buoy with Satellite Telemetry." EOS Fall Meeting Supplement C13E-0660. Chayes, D. N., S. A. Goemmer, et al. (2012). "SSPARR-3: A cost-effective autonomous drifting echosounder." EOS Fall Meeting supplement C13E-0659.

  14. Autonomous Coordination of Science Observations Using Multiple Spacecraft

    NASA Technical Reports Server (NTRS)

    Estlin, Tara A.; Chien, Steve A.; Castano, Rebecca; Gaines, Daniel M.; Doubleday, Joshua R.; Schoolcraft, Joshua B.; Oyake, Amalaye; Vaughs, Ashton G.; Torgerson, Jordan L.; Granville, Charles

    2011-01-01

    This software provides capabilities for autonomous cross-cueing and coordinated observations between multiple orbital and landed assets. Previous work has been done in re-tasking a single Earth orbiter or a Mars rover in response to that craft detecting a science event. This work enables multiple spacecraft to communicate (over a network designed for deep-space communications) and autonomously coordinate the characterization of such a science event. This work investigates a new paradigm of space science campaigns where opportunistic science observations are autonomously coordinated among multiple spacecraft. In this paradigm, opportunistic science detections can be cued by multiple assets where a second asset is requested to take additional observations characterizing the identified surface feature or event. To support this new paradigm, an autonomous science system for multiple spacecraft assets was integrated with the Interplanetary Network DTN (Delay Tolerant Network) to provide communication between spacecraft assets. This technology enables new mission concepts that are not feasible with current technology. The ability to rapidly coordinate activities across spacecraft without requiring ground in the loop enables rapid reaction to dynamic events across platforms, such as a survey instrument followed by a targeted high resolution instrument, as well as regular simultaneous observations.

  15. Navigation strategies for multiple autonomous mobile robots moving in formation

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1991-01-01

    The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.

  16. Navigation strategies for multiple autonomous mobile robots moving in formation

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1991-01-01

    The problem of deriving navigation strategies for a fleet of autonomous mobile robots moving in formation is considered. Here, each robot is represented by a particle with a spherical effective spatial domain and a specified cone of visibility. The global motion of each robot in the world space is described by the equations of motion of the robot's center of mass. First, methods for formation generation are discussed. Then, simple navigation strategies for robots moving in formation are derived. A sufficient condition for the stability of a desired formation pattern for a fleet of robots each equipped with the navigation strategy based on nearest neighbor tracking is developed. The dynamic behavior of robot fleets consisting of three or more robots moving in formation in a plane is studied by means of computer simulation.

  17. Autonomous Flight Rules Concept: User Implementation Costs and Strategies

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Hilb, Robert

    2014-01-01

    The costs to implement Autonomous Flight Rules (AFR) were examined for estimates in acquisition, installation, training and operations. The user categories were airlines, fractional operators, general aviation and unmanned aircraft systems. Transition strategies to minimize costs while maximizing operational benefits were also analyzed. The primary cost category was found to be the avionics acquisition. Cost ranges for AFR equipment were given to reflect the uncertainty of the certification level for the equipment and the extent of existing compatible avionics in the aircraft to be modified.

  18. Autonomic nervous system correlates in movement observation and motor imagery

    PubMed Central

    Collet, C.; Di Rienzo, F.; El Hoyek, N.; Guillot, A.

    2013-01-01

    The purpose of the current article is to provide a comprehensive overview of the literature offering a better understanding of the autonomic nervous system (ANS) correlates in motor imagery (MI) and movement observation. These are two high brain functions involving sensori-motor coupling, mediated by memory systems. How observing or mentally rehearsing a movement affect ANS activity has not been extensively investigated. The links between cognitive functions and ANS responses are not so obvious. We will first describe the organization of the ANS whose main purposes are controlling vital functions by maintaining the homeostasis of the organism and providing adaptive responses when changes occur either in the external or internal milieu. We will then review how scientific knowledge evolved, thus integrating recent findings related to ANS functioning, and show how these are linked to mental functions. In turn, we will describe how movement observation or MI may elicit physiological responses at the peripheral level of the autonomic effectors, thus eliciting autonomic correlates to cognitive activity. Key features of this paper are to draw a step-by step progression from the understanding of ANS physiology to its relationships with high mental processes such as movement observation or MI. We will further provide evidence that mental processes are co-programmed both at the somatic and autonomic levels of the central nervous system (CNS). We will thus detail how peripheral physiological responses may be analyzed to provide objective evidence that MI is actually performed. The main perspective is thus to consider that, during movement observation and MI, ANS activity is an objective witness of mental processes. PMID:23908623

  19. Clinical laboratory evaluation of autoimmune autonomic ganglionopathy: Preliminary observations

    PubMed Central

    Goldstein, David S.; Holmes, Courtney; Imrich, Richard

    2014-01-01

    Several forms of chronic autonomic failure manifest as neurogenic orthostatic hypotension, including autoimmune autonomic ganglionopathy (AAG) and pure autonomic failure (PAF). AAG and PAF are thought to differ in pathogenesis, AAG reflecting decreased ganglionic neurotransmission due to circulating antibodies to the neuronal nicotinic receptor and PAF being a Lewy body disease with prominent loss of sympathetic noradrenergic nerves. AAG therefore would be expected to differ from PAF in terms of clinical laboratory findings indicating postganglionic noradrenergic denervation. Both diseases are rare. Here we report preliminary observations about clinical physiologic, neuropharmacologic, neurochemical, and neuroimaging data that seem to fit with the hypothesized pathogenetic difference between AAG and PAF. Patients with either condition have evidence of baroreflex–sympathoneural and baroreflex–cardiovagal failure. Both disorders feature low plasma levels of catecholamines during supine rest, but plasma levels of the other endogenous catechols, dihydroxyphenylalanine (DOPA), dihydroxyphenylacetic acid (DOPAC), and dihydroxyphenylglycol (DHPG), seem to be lower in PAF than in AAG, probably reflecting decreased norepinephrine synthesis and turnover in PAF, due to diffuse sympathetic noradrenergic denervation. PAF entails cardiac sympathetic denervation, whereas cardiac sympathetic neuroimaging by thoracic 6-[18F]fluorodopamine scanning indicates intact myocardial sympathetic innervation in AAG. PMID:19155193

  20. The Interaction of Motivation, Self-Regulatory Strategies, and Autonomous Learning Behavior in Different Learner Groups

    ERIC Educational Resources Information Center

    Kormos, Judit; Csizér, Kata

    2014-01-01

    Autonomous learning and effective self-regulatory strategies are increasingly important in foreign language learning; without these, students might not be able to exploit learning opportunities outside language classrooms. This study investigated the influence of motivational factors and self-regulatory strategies on autonomous learning behavior.…

  1. The Interaction of Motivation, Self-Regulatory Strategies, and Autonomous Learning Behavior in Different Learner Groups

    ERIC Educational Resources Information Center

    Kormos, Judit; Csizér, Kata

    2014-01-01

    Autonomous learning and effective self-regulatory strategies are increasingly important in foreign language learning; without these, students might not be able to exploit learning opportunities outside language classrooms. This study investigated the influence of motivational factors and self-regulatory strategies on autonomous learning behavior.…

  2. Autonomous observations of the ocean biological carbon pump

    SciTech Connect

    Bishop, James K.B.

    2009-03-01

    Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result, PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.

  3. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    PubMed

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  4. Maintaining Situation Awareness with Autonomous Airborne Observation Platforms

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Fitzgerald, Will

    2005-01-01

    Unmanned Aerial Vehicles (UAVs) offer tremendous potential as intelligence, surveillance and reconnaissance (ISR) platforms for early detection of security threats and for acquisition and maintenance of situation awareness in crisis conditions. However, using their capabilities effectively requires addressing a range of practical and theoretical problems. The paper will describe progress by the "Autonomous Rotorcraft Project," a collaborative effort between NASA and the U.S. Army to develop a practical, flexible capability for UAV-based ISR. Important facets of the project include optimization methods for allocating scarce aircraft resources to observe numerous, distinct sites of interest; intelligent flight automation software than integrates high-level plan generation capabilities with executive control, failure response and flight control functions; a system architecture supporting reconfiguration of onboard sensors to address different kinds of threats; and an advanced prototype vehicle designed to allow large-scale production at low cost. The paper will also address human interaction issues including an empirical method for determining how to allocate roles and responsibilities between flight automation and human operations.

  5. Recent Ship, Satellite and Autonomous Observations of Southern Ocean Eddies

    NASA Astrophysics Data System (ADS)

    Strutton, P. G.; Moreau, S.; Llort, J.; Phillips, H. E.; Patel, R.; Della Penna, A.; Langlais, C.; Lenton, A.; Matear, R.; Dawson, H.; Boyd, P. W.

    2016-12-01

    The Southern Ocean is the area of greatest uncertainty regarding the exchange of CO2 between the ocean and atmosphere. It is also a region of abundant energetic eddies that significantly impact circulation and biogeochemistry. In the Indian sector of the Southern Ocean, cyclonic eddies are unusual in that they are upwelling favorable, as for cyclonic eddies elsewhere, but during summer they are low in silicate and phytoplankton biomass. The reverse is true for anticyclonic eddies in that they have counter-intuitive positive chlorophyll anomalies in summer. Similar but less obvious patterns occur in the Pacific and Atlantic sectors. Using ship, satellite and autonomous observations in the region south of Australia, the physical and biogeochemical signatures of both types of eddies were documented in 2016. A cyclonic eddy that lived for seven weeks exhibited doming isopycnals indicative of upwelling. However, low surface silicate and chlorophyll concentrations appeared to be characteristic of surface waters to the south where the eddy formed. Higher chlorophyll was confined to filaments at the eddy edge. Surface nitrate and phosphate concentrations were more than sufficient for a bloom of non-siliceous phytoplankton to occur. Acoustic observations from a high resolution TRIAXUS transect through the eddy documented high zooplankton biomass in the upper 150m. It is hypothesized that a non-diatom bloom was prevented by grazing pressure, but light may have also been an important limiting resource in late summer (April). Two SOCCOM floats that were deployed in the eddy field continued to monitor the physics, nitrate and bio-optics through the transition to winter. These observations across complementary platforms have identified and then explained the reason for these unexpected biological anomalies in an energetic and globally important region of the global ocean. Understanding the role of eddies in this region will be critical to the representation of mesoscale

  6. Cooperative Autonomous Observation of Volcanic Environments with sUAS

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2015-12-01

    The Cooperative Autonomous Observing System Project (CAOS) at the MIT Earth Signals and Systems Group has developed methodology and systems for dynamically mapping coherent fluids such as plumes using small unmanned aircraft systems (sUAS). In the CAOS approach, two classes of sUAS, one remote the other in-situ, implement a dynamic data-driven mapping system by closing the loop between Modeling, Estimation, Sampling, Planning and Control (MESPAC). The continually gathered measurements are assimilated to produce maps/analyses which also guide the sUAS network to adaptively resample the environment. Rather than scan the volume in fixed Eulerian or Lagrangian flight plans, the adaptive nature of the sampling process enables objectives for efficiency and resilience to be incorporated. Modeling includes realtime prediction using two types of reduced models, one based on nowcasting remote observations of plume tracer using scale-cascaded alignment, and another based on dynamically-deformable EOF/POD developed for coherent structures. Ensemble-based Information-theoretic machine learning approaches are used for the highly non-linear/non-Gaussian state/parameter estimation, and for planning. Control of the sUAS is based on model reference control coupled with hierarchical PID. MESPAC is implemented in part on a SkyCandy platform, and implements an airborne mesh that provides instantaneous situational awareness and redundant communication to an operating fleet. SkyCandy is deployed on Itzamna Aero's I9X/W UAS with low-cost sensors, and is currently being used to study the Popocatepetl volcano. Results suggest that operational communities can deploy low-cost sUAS to systematically monitor whilst optimizing for efficiency/maximizing resilience. The CAOS methodology is applicable to many other environments where coherent structures are present in the background. More information can be found at caos.mit.edu.

  7. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.

  8. Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2001-01-01

    NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.

  9. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin; Bauer, Frank (Technical Monitor)

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Flight Dynamics Analysis Branch at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon, its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  10. Results Of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called Enhanced Formation Flying. To enable this technology, a team at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(trademark), its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  11. Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin; Bauer, Frank (Technical Monitor)

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Flight Dynamics Analysis Branch at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon, its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  12. Results Of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Hawkins, Albin

    2002-01-01

    NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called Enhanced Formation Flying. To enable this technology, a team at the Goddard Space Flight Center implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm, the onboard flight design and the validation results of this unique system. Results from fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(trademark), its ground-based predecessor used in operations, and the original standalone algorithm. Maneuvers discussed encompass reactionary, routine formation maintenance, and inclination control. Orbital data is also examined to verify that all formation flying requirements were met.

  13. An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei

    2016-01-01

    For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.

  14. Autonomous space systems control incorporating automated maneuvers strategies in the presence of parameters uncertainties.

    PubMed

    Mazinan, A H; Shakhesi, S

    2016-05-01

    The research attempts to deal with the autonomous space systems incorporating new automated maneuvers strategies in the presence of parameters uncertainties. The main subject behind the investigation is to realize the high-resolution small amplitude orbital maneuvers via the first control strategy. And subsequently to realize the large amplitude orbital maneuvers via the second control strategy, as well. There is a trajectory optimization to provide the three-axis referenced commends for the aforementioned overactuated autonomous space system to be able to transfer from the initial orbit to its final ones, in finite burn, as long as the uncertainties of key parameters of the system such as the thrust vector, the center of the gravity, the moments of the inertia and so on are taken into real consideration. The strategies performances are finally considered through a series of experiments and a number of benchmarks to be tangibly verified.

  15. Cooperative Autonomous Observation of Coherent Atmospheric Structures using Small Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Ravela, S.

    2014-12-01

    Mapping the structure of localized atmospheric phenomena, from sea breeze and shallow cumuli to thunderstorms and hurricanes, is of scientific interest. Low-cost small unmanned aircraft systems (sUAS) open the possibility for autonomous "instruments" to map important small-scale phenomena (kilometers, hours) and serve as a testbed for for much larger scales. Localized phenomena viewed as coherent structures interacting with their large-scale environment are difficult to map. As simple simulations show, naive Eulerian or Lagrangian strategies can fail in mapping localized phenomena. Model-based techniques are needed. Meteorological targeting, where supplementary UAS measurements additionally constrain numerical models is promising, but may require many primary measurements to be successful. We propose a new, data-driven, field-operable, cooperative autonomous observing system (CAOS) framework. A remote observer (on a UAS) tracks tracers to identify an apparent motion model over short timescales. Motion-based predictions seed MCMC flight plans for other UAS to gather in-situ data, which is fused with the remote measurements to produce maps. The tracking and mapping cycles repeat, and maps can be assimilated into numerical models for longer term forecasting. CAOS has been applied to study small scale emissions. At Popocatepetl, in collaboration with CENAPRED and IPN, it is being applied map the plume using remote IR/UV UAS and in-situ SO2 sensing, with additional plans for water vapor, the electric field and ash. The combination of sUAS with autonomy appears to be highly promising methodology for environmental mapping. For more information, please visit http://caos.mit.edu

  16. Enhanced Ocean Predictability Through Optimal Observing Strategies

    DTIC Science & Technology

    2003-09-30

    oceanographic applications. Second, use these methods to design optimal observing strategies with special emphasis on drifter deployments that achieve...to assess the predictability of the optimal deployment strategy . The original idea was to use ensemble methods for this analysis. However, a...Enhanced Ocean Predictability Through Optimal Observing Strategies PI: A. D. Kirwan, Jr. College of Marine Studies, University of Delaware

  17. Autonomous Learning and Metacognitive Strategies Essentials in ESP Class

    ERIC Educational Resources Information Center

    Ajideh, Parviz

    2009-01-01

    The reform in teaching and curriculum involves not only in the teaching content, but more so in teachers' methodology, the students' learning strategies and the changed relationship between students and teachers in the classroom setting. The purpose of this paper is to suggest that what is needed for ESP is a different orientation to English study…

  18. Innovative hazard detection and avoidance strategy for autonomous safe planetary landing

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang; Tao, Ting

    2016-09-01

    Autonomous hazard detection and avoidance (AHDA) is one of the key technologies for future safe planetary landing missions. In this paper, we address the latest progress on planetary autonomous hazard detection and avoidance technologies. First, the innovative autonomous relay hazard detection and avoidance strategy adopted in Chang'e-3 lunar soft landing mission and its flight results are reported in detail. Second, two new conceptual candidate schemes of hazard detection and avoidance are presented based on the Chang'e-3 AHDA system and the latest developing technologies for the future planetary missions, and some preliminary testing results are also given. Finally, the related supporting technologies for the two candidate schemes above are analyzed.

  19. Biologically Inspired Behavioral Strategies for Autonomous Aerial Explorers on Mars

    NASA Technical Reports Server (NTRS)

    Plice, Laura; Pisanich, Greg; Lau, Benton; Young, Larry A.

    2002-01-01

    The natural world is a rich source of problem- solving approaches. This paper discusses the feasibility and technical challenges underlying mimicking, or analogously adapting, biological behavioral strategies to mission/flight planning for aerial vehicles engaged in planetary exploration. Two candidate concepts based on natural resource utilization and searching behaviors are adapted io technological applications. Prototypes and test missions addressing the difficulties of implementation and their solutions are also described.

  20. Strategy in the Robotic Age: A Case for Autonomous Warfare

    DTIC Science & Technology

    2014-09-01

    British invented the tank and first employed it in battle , and British military thought surpassed all others in a conception of how to use such weapons...1914, the British introduced the tank onto the battlefield in September 1916 during the Battle of the Somme. A modern analyst might observe that The... tanks in battle , but they turned their back on any rigorous study to advance operating concepts for more than a decade. Even when a report was

  1. Autonomic cardiovascular modulation with three different anesthetic strategies during neurosurgical procedures.

    PubMed

    Guzzetti, S; Bassani, T; Latini, R; Masson, S; Barlera, S; Citerio, G; Porta, A

    2015-01-01

    Autonomic cardiovascular modulation during surgery might be affected by different anesthetic strategies. Aim of the present study was to assess autonomic control during three different anesthetic strategies in the course of neurosurgical procedures by the linear and non-linear analysis of two cardiovascular signals. Heart rate (EKG-RR intervals) and systolic arterial pressure (SAP) signals were analyzed in 93 patients during elective neurosurgical procedures at fixed points: anesthetic induction, dura mater opening, first and second hour of surgery, dura mater and skin closure. Patients were randomly assigned to three anesthetic strategies: sevoflurane+fentanyl (S-F), sevoflurane+remifentanil (S-R) and propofol+remifentanil (P-R). All the three anesthetic strategies were characterized by a reduction of RR and SAP variability. A more active autonomic sympathetic modulation, as ratio of low to high frequency spectral components of RR variability (LF/HF), was present in the P-R group vs. S-R group. This is confirmed by non-linear symbolic analysis of RR series and SAP variability analysis. In addition, an increased parasympathetic modulation was suggested by symbolic analysis of RR series during the second hour of surgery in S-F group. Despite an important reduction of cardiovascular signal variability, the analysis of RR and SAP signals were capable to detect information about autonomic control during anesthesia. Symbolic analysis (non-linear) seems to be able to highlight the differences of both the sympathetic (slow) and vagal (fast) modulation among anesthetics, while spectral analysis (linear) underlines the same differences but only in terms of balance between the two neural control systems.

  2. Autonomous Investigations of Marginal Ice Zone Processes- Changing Feedbacks and Observational Challenges

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2014-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) has profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g. the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters) and elevated surface wave energy that acts to deform and fracture sea ice, all of which grow in importance with increasing open water extent. Investigations of MIZ dynamics must resolve the short spatial and temporal scales associated with the processes that govern the exchange of momentum, heat and freshwater near the atmosphere-ice-ocean interface while also achieving the spatial scope and temporal persistence required to characterize how the balance of processes shifts as a function of evolving open water fraction and open water fetch to the south. The recent Office of Naval Research (ONR) Marginal Ice Zone program provides an example of how autonomous platforms can be applied to provide high-resolution measurements that extend from open water, through the MIZ and deep into ice-covered regions while providing persistence to quantify evolution over an entire summertime melt season. This talk will provide an overview of the strategy developed by the ONR MIZ team and highlight early results from the 2014 field program.

  3. Autonomous Investigations of Marginal Ice Zone Processes- Changing Feedbacks and Observational Challenges

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Doble, Martin; Maslowski, Wieslaw; Stanton, Tim; Timmermans, Mary-Louise; Thomson, Jim; Wilkinson, Jeremy

    2015-04-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g. the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters) and elevated surface wave energy that acts to deform and fracture sea ice, all of which grow in importance with increasing open water extent. Investigations of MIZ dynamics must resolve the short spatial and temporal scales associated with the processes that govern the exchange of momentum, heat and freshwater near the atmosphere-ice-ocean interface while also achieving the spatial scope and temporal persistence required to characterize how the balance of processes shifts as a function of evolving open water fraction and open water fetch to the south. The recent Office of Naval Research (ONR) Marginal Ice Zone program employed an integrated system of autonomous platforms to provide high-resolution measurements that extend from open water, through the MIZ and deep into ice-covered regions while providing persistence to quantify evolution over an entire summertime melt season. This presentation will provide an overview of the strategy developed by the ONR MIZ team and present early results from the 2014 field program.

  4. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.

    2013-12-01

    The high cost of acquiring geodetic data from the sea floor has limited the observations available to help us understand and model the behavior of seafloor geodetic processes. To address this problem, the Pacific GPS Facility at the University of Hawaii is developing a cost effective approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. There is a recognized need to vastly increase our underwater geodetic observing capacity. Most of the largest recorded earthquakes and most devastating tsunamis are generated at subduction zones underwater. Similarly, many volcanoes are partly (e.g. Santorini) or completely (e.g. Loihi) submerged, and are not well observed and understood. Furthermore, landslide features ring many ocean basins, and huge debris deposits surround many volcanic oceanic islands. Our approach will lower the cost of collecting sea-floor geodetic data, reducing the barriers preventing us from acquiring the information we need to observe and understand these types of structures and provide a direct societal benefit in improving hazard assessment. The capability is being developed by equipping one of the University of Hawaii Wave Gliders with an integrated acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, processing unit, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the sea floor to maintain a near-continuous stream of pressure and temperature data, but seafloor pressure data includes contribution from a variety of sources and on its own may not provide the accuracy required for geodetic investigations. Independent measurements of sea surface pressure and sea surface height can be used to remove these contributions from the observed sea floor pressure timeseries. We will integrate our seafloor pressure measurements with air

  5. Optimization of Planet Finder Observing Strategy

    NASA Astrophysics Data System (ADS)

    Sinukoff, E.

    2014-03-01

    We evaluate radial velocity observing strategies to be considered for future planethunting surveys with the Automated Planet Finder, a new 2.4-m telescope at Lick Observatory. Observing strategies can be optimized to mitigate stellar noise, which can mask and imitate the weak Doppler signals of low-mass planets. We estimate and compare sensitivities of 5 different observing strategies to planets around G2-M2 dwarfs, constructing RV noise models for each stellar spectral type, accounting for acoustic, granulation, and magnetic activity modes. The strategies differ in exposure time, nightly and monthly cadence, and number of years. Synthetic RV time-series are produced by injecting a planet signal onto the stellar noise, sampled according to each observing strategy. For each star and each observing strategy, thousands of planet injection recovery trials are conducted to determine the detection efficiency as a function of orbital period, minimum mass, and eccentricity. We find that 4-year observing strategies of 10 nights per month are sensitive to planets ~25-40% lower in mass than the corresponding 1 year strategies of 30 nights per month. Three 5-minute exposures spaced evenly throughout each night provide a 10% gain in sensitivity over the corresponding single 15-minute exposure strategies. All strategies are sensitive to planets of lowest mass around the modeled K7 dwarf. This study indicates that APF surveys adopting the 4-year strategies should detect Earth-mass planets on < 10-day orbits around quiet late-K dwarfs as well as > 1.6 Earth-mass planets in their habitable zones.

  6. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.

    2015-12-01

    The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce the costs of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Traditional ship-based methods of acquiring these measurements are often prohibitively expensive. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for the University of Hawaii Wave Glider which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider is able to interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of ocean bottom pressure and temperature data. The Wave Glider also functions as an integral part of the seafloor geodetic observing system, recording accurate sea surface elevations and barometric pressure; direct measurements of two of the primary sources of seafloor pressure change. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the results of our field tests and an assessment of our ability to determine cm-scale vertical seafloor motions by

  7. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.; Oshiro, J.

    2014-12-01

    The Pacific GPS Facility and the Field Robotics Laboratory at the University of Hawaii have developed an approach to significantly reduce costs below ship based methods of accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure. Our goal has been to reduce the primary barrier preventing us from acquiring the observations we need to understand geodetic processes, and the hazards they present, at subduction zones, submarine volcanoes, and subsea landslides. To this end, we have designed a payload package for one of the University of Hawaii Wave Gliders which incorporates an acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, meteorological sensors, processing computer, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the seafloor to maintain a near-continuous stream of pressure and temperature data. The seafloor geodetic monument seats a sensor capable of recording pressure, temperature, and sound velocity for a deployment duration of over 5 years with an acoustic modem for communications, and an integral acoustic release for recovery and replacement of batteries. The design of the geodetic monument allows for precise repositioning of the sensor to extend the pressure record beyond a single 5+ year deployment, and includes the capability to install a mobile pressure recorder for calibration of the linear drift of the continuous pressure sensor. We will present the design of the Wave Glider payload and seafloor geodetic monument, as well as a discussion of nearshore and offshore field tests and operational procedures. An assessment of our ability to determine cm-scale vertical seafloor motions will be made by integrating the seafloor pressure measurements recovered during field testing with independent measurements of sea surface pressure and sea surface height made by the sea surface payload.

  8. Enhanced Ocean Predictability Through Optimal Observing Strategies

    DTIC Science & Technology

    2016-06-14

    observation strategies that will maximize the capacity to predict mesoscale and submesoscale conditions so as to provide the best possible nowcasts and...forecasts of oceanic conditions . OBJECTIVES There are three tightly integrated objectives. The first is to focus both oceanographic and dynamical...systems approaches on developing optimal observing strategies. The common thread linking both approaches is Lagrangian data, so this phase of the work

  9. A Multirobot Path-Planning Strategy for Autonomous Wilderness Search and Rescue.

    PubMed

    Macwan, Ashish; Vilela, Julio; Nejat, Goldie; Benhabib, Beno

    2015-09-01

    This paper presents a novel strategy for the on-line planning of optimal motion-paths for a team of autonomous ground robots engaged in wilderness search and rescue (WiSAR). The proposed strategy, which forms part of an overall multirobot coordination (MRC) methodology, addresses the dynamic nature of WiSAR by: 1) planning initial, time-optimal, and piecewise polynomial paths for all robots; 2) implementing and regularly evaluating the optimality of the paths through a set of checks that gauge feasibility of path-completion within the available time; and 3) replanning paths, on-line, whenever deemed necessary. The fundamental principle of maintaining the optimal deployment of the robots throughout the search guides the MRC methodology. The proposed path-planning strategy is illustrated through a simulated realistic WiSAR example, and compared to an alternative, nonprobabilistic approach.

  10. Autonomous Glider Observations from the Oregon Shelf: The New Vagaries of Fortune

    NASA Astrophysics Data System (ADS)

    Shearman, R.; Barth, J. A.; Erofeev, A.; Rubiano-Gomez, L.; Brodersen, J.; Fortier, R.

    2008-12-01

    Since April 2006, we have maintained a small fleet of autonomous gliders, sampling cross-shelf transects of hydrography, currents and bio-optical properties within the central Oregon coastal ocean. The benefits of autonomous sampling are well known; the cost relative to comparable ship-time is minuscule, sampling is not curtailed by strong winds or large waves, and by maintaining a continuous presence in the ocean, the chances of observing intermittent, unpredictable (possibly important) processes are increased. For example, the ongoing observations off Oregon have found finescale structures composed of relatively warm, high- chlorophyll water subducting along the outcropping isopycnals of the seasonal upwelling front - consistent with the interactions between turbulent stresses and frontal dynamics seen at open ocean fronts. The subducting tongues of chlorophyll range from 2-20 m thick, can persist for more than 2 days, and extend 20 km or more offshore, offering a potentially new mechanism for thin-layer formation.

  11. Strategy application, observability, and the choice combinator.

    SciTech Connect

    Winter, Victor Lono

    2004-03-01

    In many strategic systems, the choice combinator provides a powerful mechanism for controlling the application of rules and strategies to terms. The ability of the choice combinator to exercise control over rewriting is based on the premise that the success and failure of strategy application can be observed. In this paper we present a higher-order strategic framework with the ability to dynamically construct strategies containing the choice combinator. To this framework, a combinator called hide is introduced that prevents the successful application of a strategy from being observed by the choice combinator. We then explore the impact of this new combinator on a real-world problem involving a restricted implementation of the Java Virtual Machine.

  12. VLBI2010: Networks and Observing Strategies

    NASA Technical Reports Server (NTRS)

    Petrachenko, Bill; Corey, Brian; Himwich, Ed; Ma, Chopo; Malkin, Zinovy; Niell, Arthur; Shaffer, David; Vandenberg, Nancy

    2004-01-01

    The Observing Strategies Sub-group of IVS's Working Group 3 has been tasked with producing a vision for the following aspects of geodetic VLBI: antenna-network structure and observing strategies; source strength/structure/distribution; frequency bands, RFI; and field system and scheduling. These are high level considerations that have far reaching impact since they significantly influence performance potential and also constrain requirements for a number of other \\VG3 sub-groups. The paper will present the status of the sub-group's work on these topics.

  13. Landing strategies in honeybees, and possible applications to autonomous airborne vehicles.

    PubMed

    Srinivasan, M V; Zhang, S; Chahl, J S

    2001-04-01

    Insects, being perhaps more reliant on image motion cues than mammals or higher vertebrates, are proving to be an excellent organism in which to investigate how information on optic flow is exploited to guide locomotion and navigation. This paper describes one example, illustrating how bees perform grazing landings on a flat surface. A smooth landing is achieved by a surprisingly simple and elegant strategy: image velocity is held constant as the surface is approached, thus automatically ensuring that flight speed is close to zero at touchdown. No explicit knowledge of flight speed or height above the ground is necessary. The feasibility of this landing strategy is tested by implementation in a robotic gantry, and its applicability to autonomous airborne vehicles is discussed.

  14. NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)

    NASA Technical Reports Server (NTRS)

    Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg

    2002-01-01

    NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.

  15. Earth Observations: Experiences from Various Communication Strategies

    NASA Astrophysics Data System (ADS)

    Lilja Bye, Bente

    2015-04-01

    With Earth observations and the Group of Earth Observations as the common thread, a variety of communication strategies have been applied showcasing the use of Earth observations in geosciences such as climate change, natural hazards, hydrology and more. Based on the experiences from these communication strategies, using communication channels ranging from popular articles in established media, video production, event-based material and social media, lessons have been learned both with respect to the need of capacity, skills, networks, and resources. In general it is not difficult to mobilize geoscientists willing to spend some time on outreach activities. Time for preparing and training is however scarce among scientists. In addition, resources to cover the various aspects of professional science outreach is far from abundant. Among the challenges is the connection between the scientific networks and media channels. Social media competence and capacity are also issues that needs to be addressed more explicitly and efficiently. An overview of the experiences from several types of outreach activities will be given along with some input on possible steps towards improved communication strategies. Steady development of science communication strategies continuously integrating trainging of scientists in use of new outreach tools such as web technology and social innovations for more efficient use of limited resources will remain an issue for the scientific community.

  16. Autonomous aerial observations to extend and complement the Earth Observing System: a science-driven systems-oriented approach

    NASA Astrophysics Data System (ADS)

    Sandford, Stephen P.; Harrison, F. W.; Langford, John; Johnson, James W.; Qualls, Garry; Emmitt, David; Jones, W. Linwood; Shugart, Herman H., Jr.

    2004-12-01

    The current Earth observing capability depends primarily on spacecraft missions and ground-based networks to provide the critical on-going observations necessary for improved understanding of the Earth system. Aircraft missions play an important role in process studies but are limited to relatively short-duration flights. Suborbital observations have contributed to global environmental knowledge by providing in-depth, high-resolution observations that space-based and in-situ systems are challenged to provide; however, the limitations of aerial platforms - e.g., limited observing envelope, restrictions associated with crew safety and high cost of operations have restricted the suborbital program to a supporting role. For over a decade, it has been recognized that autonomous aerial observations could potentially be important. Advances in several technologies now enable autonomous aerial observation systems (AAOS) that can provide fundamentally new observational capability for Earth science and applications and thus lead scientists and engineers to rethink how suborbital assets can best contribute to Earth system science. Properly developed and integrated, these technologies will enable new Earth science and operational mission scenarios with long term persistence, higher-spatial and higher-temporal resolution at lower cost than space or ground based approaches. This paper presents the results of a science driven, systems oriented study of broad Earth science measurement needs. These needs identify aerial mission scenarios that complement and extend the current Earth Observing System. These aerial missions are analogous to space missions in their complexity and potential for providing significant data sets for Earth scientists. Mission classes are identified and presented based on science driven measurement needs in atmospheric, ocean and land studies. Also presented is a nominal concept of operations for an AAOS: an innovative set of suborbital assets that

  17. An integrated design and fabrication strategy for entirely soft, autonomous robots

    NASA Astrophysics Data System (ADS)

    Wehner, Michael; Truby, Ryan L.; Fitzgerald, Daniel J.; Mosadegh, Bobak; Whitesides, George M.; Lewis, Jennifer A.; Wood, Robert J.

    2016-08-01

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  18. An integrated design and fabrication strategy for entirely soft, autonomous robots.

    PubMed

    Wehner, Michael; Truby, Ryan L; Fitzgerald, Daniel J; Mosadegh, Bobak; Whitesides, George M; Lewis, Jennifer A; Wood, Robert J

    2016-08-25

    Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

  19. Autonomous, high-resolution observations of particle flux in the oligotrophic ocean

    NASA Astrophysics Data System (ADS)

    Estapa, M. L.; Buesseler, K.; Boss, E.; Gerbi, G.

    2013-01-01

    Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers) have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous, profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Timeseries Study (BATS) and Oceanic Flux Program (OFP) sites. These observations illustrate strong variability in particle flux over very short (~1 day) timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap timeseries. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1-3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately-overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.

  20. Autonomous, high-resolution observations of particle flux in the oligotrophic ocean

    NASA Astrophysics Data System (ADS)

    Estapa, M. L.; Buesseler, K.; Boss, E.; Gerbi, G.

    2013-08-01

    Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers) have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Time-series Study (BATS) and Oceanic Flux Program (OFP) sites. These observations illustrate strong variability in particle flux over very short (~1-day) timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap time series. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1-3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.

  1. CEOS Strategy for Carbon Observations from Space

    NASA Astrophysics Data System (ADS)

    Wickland, Diane; Gobron, Nadine; Moore, Berrien; Nakajima, Masakatsu; Sathyendranath, Shubha; Plummer, Stephen; Schmullius, Christiane; Dubayah, Ralph

    The carbon cycle is central to the Earth system, and changes in the atmospheric concentrations of carbon dioxide (CO2) and methane (CH4) are primary drivers of global climate change. In order to respond to climate change, there are many things we need to measure and understand about carbon and its cycling through the land, oceans and inland waters, and atmosphere. Measurements of CO2 and CH4 in the atmosphere are needed to quantify changes in emissions and greenhouse forcings. Measurements of carbon stocks on the land and in the oceans and inland waters are needed to quantify carbon storage (i.e., sequestration) and monitor climate mitigation and carbon management effects. Observations of key carbon cycling processes are needed to explain how changes are occurring and to identify the causes and consequences. A complete, integrated understanding of the changing carbon cycle and the effects of attempts to manage carbon in the environment requires an observational system that addresses all components of the carbon cycle and is optimized to integrate the information obtained. In April 2014 the Committee on Earth Observation Satellites (CEOS) released the CEOS Strategy for Carbon Observations from Space. This report responds to the needs expressed in the 2010 Group on Earth Observations (GEO) Carbon Strategy and the ambitions therein for the realization of an Integrated Global Carbon Observing System. In this report, CEOS identifies what can be achieved by better coordination of existing and future capabilities as well as those improvements that require additional resources and/or mandates beyond the present capacity of space agencies. It will be used primarily by CEOS and its member agencies to guide future actions and to provide the basis for systematic monitoring and reporting of progress towards satisfying science’s and society’s carbon information needs. This paper will provide an overview of the CEOS Strategy for Carbon Observations from Space, including the

  2. Multidimensional analysis of autonomous aerial observation systems (AAOS) for scientific, civil, and defense applications

    NASA Astrophysics Data System (ADS)

    Hutchinson, Mark A.; Hamill, Doris L.; Harrison, F. W.; Yetter, Jeffrey A.; Lawrence, Roland W.; Healy, Edward A.; Wright, Henry S.

    2004-12-01

    Better knowledge of the atmosphere, ocean and land are needed by a wide range of users spanning the scientific, civil and defense communities. Observations to provide this knowledge will require aerial systems with greater operational flexibility and lower life-cycle costs than are currently available. Persistent monitoring of severe storms, sampling and measurements of the Earth"s carbon cycle, wildfire monitoring/management, crop assessments, ozone and polar ice changes, and natural disaster response (communications and surveillance) are but a few applications where autonomous aerial observations can effectively augment existing measurement systems. User driven capabilities include high altitude, long range, long-loiter (days/weeks), smaller deployable sensor-ships for in-situ sampling, and sensors providing data with spectral bandwidth and high temporal and three-dimensional spatial resolution. Starting with user needs and considering all elements and activities required to acquire the needed observations leads to the definition of autonomous aerial observation systems (AAOS) that can significantly complement and extend the current Earth observation capability. In this approach, UAVs are viewed as only one, albeit important, element in a mission system and overall cost and performance for the user are the critical success factors. To better understand and meet the challenges of developing such AAOSs, a systems oriented multi-dimensional analysis has been performed that illuminates the enabling and high payoff investments that best address the needs of scientific, civil, and defense users of Earth observations. The analysis further identifies technology gaps and serves to illustrate how investments in a range of mission subsystems together can enable a new class of Earth observations.

  3. Autonomous Ice Mass Balance Observations for Changing Arctic Sea Ice Conditions

    NASA Astrophysics Data System (ADS)

    Whitlock, J. D.; Planck, C.; Perovich, D. K.; Richter-Menge, J.; Elder, B. C.; Polashenski, C.

    2016-12-01

    Results from observational data and predictive models agree: the state of the Arctic sea ice cover is in transition with a major shift from thick multiyear ice to thinner seasonal ice. The ice mass-balance represents the integration of all surface and ocean heat fluxes, and frequent temporal measurement can aid in attributing the impact of these forcing fluxes on the ice cover. Autonomous Ice Mass Balance buoys (IMB's) have proved to be important measurement tools allowing in situ, long-term data collection at multiple locations. Seasonal IMB's (SIMB's) are free floating versions of the IMB that allow data collection in thin ice and during times of transition. To accomplish this a custom computer was developed to integrate the scientific instruments, power management, and data communications while providing expanded autonomous functionality. This new design also allows for the easy incorporation of other sensors. Additionally, the latest generation of SIMB includes improvements to make it more stable, longer lasting, easier to deploy, and less expensive. Models can provide important insights as to where to deploy the sea ice mass balance buoys and what measurements are the most important. The resulting dataset from the buoys can be used to inform and assess model results.

  4. Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler

    NASA Astrophysics Data System (ADS)

    Campbell, R. W.

    2016-02-01

    As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North

  5. Risk-Free Volcano Observations Using an Unmanned Autonomous Helicopter: seismic observations near the active vent of Sakurajima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Yasuda, A.; Watanabe, A.; Takeo, M.; Honda, Y.; Kajiwara, K.; Kanda, W.; Iguchi, M.; Yanagisawa, T.

    2010-12-01

    Observations in the vicinity of summit area of active volcanoes are important not only for understanding physical processes in the volcanic conduit but also for eruption prediction and volcanic hazards mitigation. It is, however, challenging to install observation sensors near active vents because of the danger of sudden eruptions. We need safe and efficient ways of installing sensors near the summit of active volcanoes. We have been developing an volcano observation system based on an unmanned autonomous vehicle (UAV) for risk-free volcano observations. Our UAV is an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. The UAV is 3.6m long and weighs 84kg with maximum payload of 10kg. The UAV can aviate autonomously along a previously programmed path within a meter accuracy using real-time kinematics differential GPS equipment. The maximum flight time and distance from the operator are 90 minutes and 5km, respectively. We have developed various types of volcano observation techniques adequate for the UAV, such as aeromagnetic survey, taking infrared and visible images from onboard high-resolution cameras, volcanic ash sampling in the vicinity of active vents. Recently, we have developed an earthquake observation module (EOM), which is exclusively designed for the UAV installation in the vicinity of active volcanic vent. In order to meet the various requirements for UAV installation, the EOM is very compact, light-weight (5-6kg), and is solar-powered. It is equipped with GPS for timing, a communication device using cellular-phone network, and triaxial accelerometers. Our first application of the EOM installation using the UAV is one of the most active volcanoes in Japan, Sakurajima volcano. Since 2006, explosive eruptions have been continuing at the reopened Showa crater at the eastern flank near the summit of Sakurajima. Entering the area within 2 km from the active craters is prohibited, and thus there were no observation station in the vicinity

  6. Stability analysis of autonomous space systems in the presence of large disturbances: A Lyapunov-based constrained control strategy.

    PubMed

    Mazinan, A H

    2016-03-01

    The research addresses a Lyapunov-based constrained control strategy to deal with the autonomous space system in the presence of large disturbances. The aforementioned autonomous space system under control is first represented through a dynamics model and subsequently the proposed control strategy is fully investigated with a focus on the three-axis detumbling and the corresponding pointing mode control approaches. The three-axis detumbling mode control approach is designed to deal with the unwanted angular rates of the system to be zero, while the saturations of the actuators are taken into consideration. Moreover, the three-axis pointing mode control approach is designed in the similar state to deal with the rotational angles of the system to be desirable. The contribution of the research is mathematically made to propose a control law in connection with a new candidate of Lyapunov function to deal with the rotational angles and the related angular rates of the present autonomous space system with respect to state-of-the-art. A series of experiments are carried out to consider the efficiency of the proposed control strategy, as long as a number of benchmarks are realized in the same condition to verify and guarantee the strategy performance in both modes of control approaches.

  7. Using Autonomous Technologies to Expand Observations of Fish, Invertebrates, and their Associated Habitats.

    NASA Astrophysics Data System (ADS)

    Clarke, M. E. E.; Singh, H.; Fruh, E.; Anderson, J.; Whitmire, C.; Taylor, J.

    2016-02-01

    Traditional sampling gears such as bottom trawls cannot sample in the rugged, high-relief habitats in which many fish species often reside. This limits the information available to determine the population status of species in these habitats. In order to fill this gap, more efficient fishery independent methods to obtain fish and habitat information in untrawlable areas are needed. In addition, data on finer scale species-habitats associations will help inform ecosystem studies. We have employed a SeaBED type AUV in regional studies of fish, invertebrate and habitat distributions on the U.S. West Coast. The SeaBED AUV can be equipped with a variety of sensors, but strobe-lit digital cameras are the primary means of observation in our studies. Our studies have shown that a bottom tracking AUV can efficiently collect information on fish abundances that cannot be acquired with traditional techniques. Using the SeaBED AUV, we have successfully assessed fish abundances in a multitude of habitats of varying relief and complexity, while providing data on fine scale habitat associations. We have also conducted studies to assess the behavioral responses of fish to the AUV. It is important to understand these responses in order to determine the "catchability" of fish to the AUV and subsequently use the information collected to determine the absolute abundances of fish. Differences in both species composition as well as sizes of fish are evident between rocky habitats and lower-relief, trawlable areas. Fine scale analysis of fish and invertebrate distributions also show that fish may be associated with structure-forming invertebrates. In addition, we have used autonomous technologies to validate habitat information collected using acoustic methods. In conclusion, we will highlight the advantages and challenges of using autonomous technologies to conduct large scale surveys of fish and the benthos.

  8. Autonomous telemetry system by using mobile networks for a long-term seismic observation

    NASA Astrophysics Data System (ADS)

    Hirahara, S.; Uchida, N.; Nakajima, J.

    2012-04-01

    When a large earthquake occurs, it is important to know the detailed distribution of aftershocks immediately after the main shock for the estimation of the fault plane. The large amount of seismic data is also required to determine the three-dimensional seismic velocity structure around the focal area. We have developed an autonomous telemetry system using mobile networks, which is specialized for aftershock observations. Because the newly developed system enables a quick installation and real-time data transmission by using mobile networks, we can construct a dense online seismic network even in mountain areas where conventional wired networks are not available. This system is equipped with solar panels that charge lead-acid battery, and enables a long-term seismic observation without maintenance. Furthermore, this system enables a continuous observation at low costs with flat-rate or prepaid Internet access. We have tried to expand coverage areas of mobile communication and back up Internet access by configuring plural mobile carriers. A micro server embedded with Linux consists of automatic control programs of the Internet connection and data transmission. A status monitoring and remote maintenance are available via the Internet. In case of a communication failure, an internal storage can back up data for two years. The power consumption of communication device ranges from 2.5 to 4.0 W. With a 50 Ah lead-acid battery, this system continues to record data for four days if the battery charging by solar panels is temporarily unavailable.

  9. Autonomous Observational Platforms for Ocean Studies: Operation, Advantages of Sensor Technology and Data Management

    NASA Astrophysics Data System (ADS)

    Atamanchuk, D.; Lai, J.; Vining, M.; Kehoe, D.; Siddall, G.; Send, U.; Wallace, D.

    2016-02-01

    Ocean Science and Technology research group (CERC.OCEAN) at Dalhousie University focuses on new approaches in design and development of autonomous platforms to study biogeochemical and ecological changes in the world's oceans. The principal research regions included the Labrador Sea, the Northwest Atlantic between Halifax and Bermuda, and the coastal areas of Atlantic Canada. The need for improved constraints on the ocean's present and future carbon cycle is of high relevance for the Northwest Atlantic, which is recognized as a largest sink of carbon dioxide(CO2) through air-sea exchange and subsequent transport to deeper layers of the global ocean. With the use of novel sensor technology integrated into the designed platforms we are achieving a superior spatial and temporal resolution of observations. SeaCycler - a surface piercing mooring - was designed to endure year-long measurements in harsh conditions of the open ocean, like Labrador Sea, while making daily profiles of the upper 150m of the water column. Significant research efforts within CERC.OCEAN are dedicated for improving sensors' data outcome. This includes testing, calibration of the sensors, QC and postprocessing to assure reliable and trustworthy measurements. Examples and implication of the data from SeaCycler, and other platforms including buoys, and automonous Volunteer Observing Ship (VOS) flow-through system will be presented.

  10. Constraining the Biological Pump on Seasonal Scales through Autonomous Oxygen Observations from Profiling Floats

    NASA Astrophysics Data System (ADS)

    Bittig, H. C.; Claustre, H.; Koertzinger, A.

    2016-02-01

    Understanding the biological pump is limited by our knowledge of the governing processes and drivers as well as by the scarcity of data related to its function. Autonomous float observations can help mitigate both by providing a cost-efficient way to obtain in-situ observations at improved temporal and spatial scales compared to traditional sampling methods. Oxygen observations are especially suited for this purpose because of the tight coupling between the oxygen (O2) and carbon (C) cycle and the availability of a reliable and accurate O2 sensor technology.On seasonal scales, oxygen remineralization below the euphotic zone causes an accumulation of an O2 deficit which provides a quantitative estimate of the mesopelagic C flux and its attenuation. This approach is insensitive to single export events of fast-sinking, large particles. Instead, it integrates over short-term variability in the break-up/remineralization of small particles because of its cumulative nature. As such, it provides a valuable comparison with event-focused flux estimates from, e.g., particle-based measurements.Complementing the mesopelagic, net community production (NCP) in the surface and sub-surface provides a bound to export production. NCP can be derived from a timeseries of observed O2 profiles in conjunction with a simple 1D mixing and gas exchange model. The examples of mesopelagic C flux and surface NCP presented here are based on Bio-Argo floats deployed in the subpolar North Atlantic as well as in the North and South Atlantic subtropical gyres. In addition, they are used to illustrate the limits that ocean physics (e.g., deep vs. shallow winter mixing) sets to the applicability of above analyses.

  11. Water Cycle Multimission Observation Strategy (WACMOS)

    NASA Astrophysics Data System (ADS)

    Su, Z.

    2009-04-01

    To understand the role of the terrestrial hydrosphere-biosphere in Earth's climate system it is essential to be able to measure from space hydroclimatic variables, such as radiation, precipitation, evapotranspiration, soil moisture, clouds, water vapour, surface water and runoff, vegetation state, albedo and surface temperature, etc. Such measurements are required to further increase our understanding of the global climate and its variability, both spatially and temporally. Additionally, such observations advance our understanding of the coupling between terrestrial and atmospheric branches of the water cycle, and how this coupling may influence climate variability and predictability. To enhance the prediction of variations in the global water cycle, based on improved understanding of hydrological processes and its close linkage with the energy cycle and its sustained monitoring capability, is a key contribution to mitigation of water-related damages and sustainable human development. In many cases, the combination of space-based and high-resolution in situ data provides the essential information for effectively addressing water management issues (GEOSS 10-Year Implementation Plan - REFERENCE DOCUMENT, GEO 203-1). Recently the European Space Agency (ESA) has initiated, in its Support to Science Element programme, the Water Cycle Multimission Observation Strategy (WACMOS). WACMOS contributes to above described international efforts by supporting scientists in ESA member countries to develop and validate novel and improved multi-mission based products, and to enhance currently available global water datasets, so as to maximize the use of ESA data. In this context, the short term objectives of the project include: • Develop and validate a Product Portfolio of novel and/or improved multi-mission based geoinformation datasets at global and regional scales contributing to the objectives of the GEWEX program. WACMOS is focused on four Thematic Priorities described below

  12. Observations of the snow cover in the southern part of the Buryat Autonomous Soviet Socialist Republic

    NASA Technical Reports Server (NTRS)

    Nefedeva, Y. A.

    1985-01-01

    The characteristics of the snow cover, as a function of various natural factors, in sectors of the southern part of the Buryat Autonomous Soviet Socialist Republic were examined. The thawing process is also discussed.

  13. Transitioning Submersible Chemical Analyzer Technologies for Sustained, Autonomous Observations from Profiling Moorings, Gliders and other AUVs

    DTIC Science & Technology

    2008-01-01

    and deploying them on various autonomous underwater vehicle test platforms, such as the ORCAS IOPC profiler (URI), REMUS AUV, and Slocum coastal...ASA) to develop and demonstrate the technology to autonomously acquire and communicate real-time environmental data from the ORCAS profilers...was designed for deployment on URI’s ORCAS IOPC profiler (Figure 1). It was programmed to collect hourly nutrient profiles for a two week time

  14. Towards autonomic computing in machine vision applications: techniques and strategies for in-line 3D reconstruction in harsh industrial environments

    NASA Astrophysics Data System (ADS)

    Molleda, Julio; Usamentiaga, Rubén; García, Daniel F.; Bulnes, Francisco G.

    2011-03-01

    Nowadays machine vision applications require skilled users to configure, tune, and maintain. Because such users are scarce, the robustness and reliability of applications are usually significantly affected. Autonomic computing offers a set of principles such as self-monitoring, self-regulation, and self-repair which can be used to partially overcome those problems. Systems which include self-monitoring observe their internal states, and extract features about them. Systems with self-regulation are capable of regulating their internal parameters to provide the best quality of service depending on the operational conditions and environment. Finally, self-repairing systems are able to detect anomalous working behavior and to provide strategies to deal with such conditions. Machine vision applications are the perfect field to apply autonomic computing techniques. This type of application has strong constraints on reliability and robustness, especially when working in industrial environments, and must provide accurate results even under changing conditions such as luminance, or noise. In order to exploit the autonomic approach of a machine vision application, we believe the architecture of the system must be designed using a set of orthogonal modules. In this paper, we describe how autonomic computing techniques can be applied to machine vision systems, using as an example a real application: 3D reconstruction in harsh industrial environments based on laser range finding. The application is based on modules with different responsibilities at three layers: image acquisition and processing (low level), monitoring (middle level) and supervision (high level). High level modules supervise the execution of low-level modules. Based on the information gathered by mid-level modules, they regulate low-level modules in order to optimize the global quality of service, and tune the module parameters based on operational conditions and on the environment. Regulation actions involve

  15. Autonomous ocean observations beneath Pine Island Glacier Ice Shelf, West Antarctica

    NASA Astrophysics Data System (ADS)

    Dutrieux, P.; Jenkins, A.; Jacobs, S.; Heywood, K. J.

    2015-12-01

    Warm circumpolar deep water reaching 3.5ºC above the in situ freezing point pervasively fills a network of glacially carved troughs in the Amundsen sea, West Antarctica, and melts and thins neighbouring ice shelves, including Pine Island glacier Ice Shelf (PIIS). Hydrographic, current, and microstructure observations obtained in austral summer 2009 and 2014 by an autonomous underwater vehicle beneath the PIIS are used here to detail the complex ice-ocean interaction and resulting ocean circulation. The theoretical schematic of deeply incoming warm and saline water melting the grounding line and generating a buoyant plume upwelling along the ice draft is generally consistent with observations. The cavity beneath PIIS is clearly divided in two by a seabed ridge, constraining the oceanic circulation and water masses distribution. On the seaward side of the ridge, a thick warm deep water layer circulates cyclonically and is overlaid by a thin meltwater layer. Only intermediate depth waters are allowed to overflow from the ridge top into the inner cavity, where a much thinner warm water layer is now overlaid by a thicker meltwater layer. At the ice/ocean interface, melt induced freshening is forcing an upwelling which in turn injects cyclonic vorticity and participates in creating a vigorous cyclonic recirculation in the inner cavity. The top of the ridge, where warm waters overflow in the inner cavity, is a dynamical boundary characterized by northward along-ridge currents up to 0.2 m/s and enhanced shear, thermal gradient, and mixing. Observations at two points at the ice interface indicate that the ocean remains stratified within 2 meters of the ice.

  16. Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO) - A pioneering research facility in Cyprus

    NASA Astrophysics Data System (ADS)

    Lange, Manfred; Teller, Amit; Keleshis, Christos; Ioannou, Stelios; Philimis, Panayiotis; Lelieveld, Jos; Levin, Zev

    2010-05-01

    The use of Unmanned Aerial Systems (UASs) has increased dramatically in the recent decades. UASs are widely used for different civil applications such as land management, earth sciences, contaminant detection and monitoring and commercial use. The Autonomous Flying Platforms for Atmospheric and Earth Surface Observations project (APAESO) of the Energy, Environment and Water Research Center (EEWRC) at the Cyprus Institute is aimed at the dual purpose of carrying out atmospheric and earth-surface observations in the Mediterranean. The APAESO UAS platforms will provide the unique ability to produce 3D measurements for determining: physical, chemical and radiative atmospheric properties, aerosol and dust concentrations and atmospheric dynamics as well as 2D investigations into: surface morphology, vegetation and land use patterns, archaeological site reconnaissance, contaminant detection and ocean surface properties (biology, waves, currents) at high spatial resolution. Through a modular design philosophy, APAESO will be very adaptable for a variety of scientific investigations enabling scientific collaborations between the Cyprus Institute and national and international research organizations. The Cyprus Institute is currently procuring the "Cruiser", which is a medium size Unmanned Aerial Vehicle (UAV) that is capable of carrying a payload of up to 10 kg, fly to altitude of 5000 m AGL with an endurance of up to 10 hours. Within the next phase of the project, the "Cruiser" will be equipped with instruments for atmospheric and earth surface observations. The poster will present the different components of the project: the UAS platform, payload to be integrated and scientific challenges that we are about to tackle and solve.

  17. Subsurface observations of white shark Carcharodon carcharias predatory behaviour using an autonomous underwater vehicle.

    PubMed

    Skomal, G B; Hoyos-Padilla, E M; Kukulya, A; Stokey, R

    2015-12-01

    In this study, an autonomous underwater vehicle (AUV) was used to test this technology as a viable tool for directly observing the behaviour of marine animals and to investigate the behaviour, habitat use and feeding ecology of white sharks Carcharodon carcharias near Guadalupe Island off the coast of Mexico. During the period 31 October to 7 November 2013, six AUV missions were conducted to track one male and three female C. carcharias, ranging in estimated total length (LT ) from 3·9 to 5·7 m, off the north-east coast of Guadalupe Island. In doing so, the AUV generated over 13 h of behavioural data for C. carcharias at depths down to 90 m. The sharks remained in the area for the duration of each mission and moved through broad depth and temperature ranges from the surface to 163·8 m depth (mean ± S.D. = 112·5 ± 40·3 m) and 7·9-27·1° C (mean ± S.D. = 12·7 ± 2·9° C), respectively. Video footage and AUV sensor data revealed that two of the C. carcharias being tracked and eight other C. carcharias in the area approached (n = 17), bumped (n = 4) and bit (n = 9) the AUV during these tracks. This study demonstrated that an AUV can be used to effectively track and observe the behaviour of a large pelagic animal, C. carcharias. In doing so, the first observations of subsurface predatory behaviour were generated for this species. At its current state of development, this technology clearly offers a new and innovative tool for tracking the fine-scale behaviour of marine animals. © 2015 The Fisheries Society of the British Isles.

  18. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonality Retreating Marginal Ice Zone

    DTIC Science & Technology

    2016-12-30

    From - To) 12/30/2016 final 01-Nov-2011to 30-Sep-201 6 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Autonomous observations of the upper ocean ...designed to observe the seasonal evolution of the upper- ocean stratification. document the time-varying ocean currents and characterize the turbulent ice... ocean exchanges of heat, salt and momentum as the sea ice cover retreats poleward in spring/summer using Ice-Tethered Profilers with Velocity. A

  19. Anxiety during pregnancy and autonomic nervous system activity: A longitudinal observational and cross-sectional study.

    PubMed

    Mizuno, Taeko; Tamakoshi, Koji; Tanabe, Keiko

    2017-08-01

    To assess the longitudinal change in autonomic nervous system (ANS) activity during pregnancy and the association between anxiety during pregnancy and ANS activity. Pregnant Japanese women with a singleton fetus and normal pregnancy were recruited (n=65). ANS activity and anxiety were measured using a self-rating questionnaire at approximately 20, 30, and 36weeks of gestation. Very low (VLF) and high (HF) frequency bands of heart rate variability spectrums were used. Anxiety was assessed using the Japanese version of the State-Trait Anxiety Inventory. A score of 45 or more on trait-anxiety and the other represent the trait-anxiety group and the non- trait-anxiety group, respectively. The state-anxiety group and the non-state-anxiety group were defined in the same manner. Longitudinal observation of individual pregnant women indicated the significant increasing trend (p=0.002) of VLF power and the significant decreasing trend (p<0.001) of HF power during 20 to 36 gestation weeks. Compared with the non-trait-anxiety group, the trait-anxiety group had significantly lower VLF values at 20 gestational weeks (p=0.033) and had significantly lower HF values at 30 and 36 gestational weeks (p=0.015 and p=0.044, respectively). The increasing rate of VLF from 20 to 36 gestational weeks was higher among the trait-anxiety group. The same associations were observed between the state-anxiety and non-state-anxiety groups at 20 gestational weeks. Anxiety during pregnancy decreased heart rate variability. Anxiety in second trimester pregnancy promoted a subsequent increase in sympathetic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Autonomous Observations of the Heat and Mass Balance of Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.; Richter-Menge, J.; Arntsen, A. E.; Polashenski, C.; Elder, B. C.

    2014-12-01

    For the past decade the Arctic Observing Network included autonomous measurements of the mass balance of Arctic sea ice. A system of Ice Mass Balance (IMB) buoys measured time series of snow accumulation and ablation; ice growth and surface and bottom melt; and vertical profiles of air, snow, ice, and ocean temperature. The mass balance is the great integrator of heat and can be used to derive estimates of both the surface heat budget and ocean heat flux. Large spatial and interannual variations in surface and bottom melting are evident in the data record. For example, over the western Arctic the observed total summer surface melting ranges from as little as 0.05 m to over 0.75 m. Bottom melting exhibits an even more extreme range varying from 0.1 to 2.2 m. IMBs in the Beaufort Sea and Central Arctic during the summer of 2013 are selected for more detailed analysis, calculating the time series of net surface energy budget and of the ocean heat flux. Ice temperature profiles are used to determine internal melting of the ice. Results from these buoys are integrated with high resolution satellite imagery to examine the heat and mass balance on the aggregate scale. Incident solar radiation is obtained from reanalysis products and used to calculate solar heat input to leads and to the upper ocean. Floe perimeter, ice motion, and lead heat content are combined to estimate the amount of lateral melting. From this integrated analysis, summer ice losses due to surface, bottom, lateral, and internal melting are computed on the aggregate scale and compared regionally.

  1. Orbital Debris Detection and Tracking Strategies for the NASA/AFRL Meter Class Autonomous Telescope (MCAT)

    NASA Technical Reports Server (NTRS)

    Mulrooney, M.; Hickson, P.; Stansbery, Eugene G.

    2010-01-01

    MCAT (Meter-Class Autonomous Telescope) is a 1.3m f/4 Ritchey-Chr tien on a double horseshoe equatorial mount that will be deployed in early 2011 to the western pacific island of Legan in the Kwajalein Atoll to perform orbital debris observations. MCAT will be capable of tracking earth orbital objects at all inclinations and at altitudes from 200 km to geosynchronous. MCAT s primary objective is the detection of new orbital debris in both low-inclination low-earth orbits (LEO) and at geosynchronous earth orbit (GEO). MCAT was thus designed with a fast focal ratio and a large unvignetted image circle able to accommodate a detector sized to yield a large field of view. The selected primary detector is a close-cycle cooled 4Kx4K 15um pixel CCD camera that yields a 0.9 degree diagonal field. For orbital debris detection in widely spaced angular rate regimes, the camera must offer low read-noise performance over a wide range of framing rates. MCAT s 4-port camera operates from 100 kHz to 1.5 MHz per port at 2 e- and 10 e- read noise respectively. This enables low-noise multi-second exposures for GEO observations as well as rapid (several frames per second) exposures for LEO. GEO observations will be performed using a counter-sidereal time delay integration (TDI) technique which NASA has used successfully in the past. For MCAT the GEO survey, detection, and follow-up prediction algorithms will be automated. These algorithms will be detailed herein. For LEO observations two methods will be employed. The first, Orbit Survey Mode (OSM), will scan specific orbital inclination and altitude regimes, detect new orbital debris objects against trailed background stars, and adjust the telescope track to follow the detected object. The second, Stare and Chase Mode (SCM), will perform a stare, then detect and track objects that enter the field of view which satisfy specific rate and brightness criteria. As with GEO, the LEO operational modes will be fully automated and will be

  2. Research on long-term autonomous orbit determination for navigation constellation using inter-satellite orientation observation information

    NASA Astrophysics Data System (ADS)

    Li, Bo; Xu, Bo; Wang, Hai-Hong

    2009-12-01

    Long-term autonomous orbit determination is one of the key techniques of autonomous navigation for navigation constellation. Based only on cross-link range observation, which is not able to overcome the defect of entire constellation rotation and translation relative to inertial reference frame, the accuracy of autonomous orbit determination is reduced with time. In order to solve this problem, the approach of using inter-satellite orientation observation is put forward to estimate the constellation rotation and translation with the benefit of absolute position information provided by stars. In view of the fact that most navigation satellites moving in near circular orbits, and also in order to reduce the calculation burden of onboard computer, nonsingular orbital elements are chosen as state variables and analytical method is used to calculate the transition matrix in this paper. In addition, the extended Kalman filter is designed to fuse information of satellite dynamic model, cross-link range observation and inter-satellite orientation observation to determine the orbit. The simulation results based on the IGS Final Products of GPS constellation indicate that, at the certain error condition of range and orientation measurement, the URE of constellation is better than 2 meters within 120 days.

  3. Strategy for future space weather observational assets

    NASA Astrophysics Data System (ADS)

    Davies, Jackie; Bogdanova, Yulia; Harrison, Richard; Bisi, Mario; Hapgood, Mike

    2017-04-01

    Observations from an ad-hoc suite of mainly aging, scientific, space-borne assets currently underpin space weather forecasting capabilities world-wide. While efforts have begun to replace / supplement these assets - in particular with the recent launch of the DSCOVR spacecraft - it is widely accepted that there is an urgent need to accelerate these endeavours in order to mitigate the risk of losing these critical observations. It is hence opportune to critically review the possible options for the provision of space weather observations, particularly in terms of identifying the optimum vantage point(s) and the instrumentation that will provide the most beneficial measurements to support space weather prediction. Here we present the results of several recent European studies that aim to identify the best solution for space-based space weather monitoring - obviously within realistic financial constraints and bearing in mind the immediacy with which such a mission needs to be realised.

  4. Mission concept for the remote sensing of the cryosphere using autonomous aerial observation systems

    NASA Astrophysics Data System (ADS)

    Lawrence, Roland W.; Hilliard, Larry

    2004-12-01

    Improving the understanding of the Cryosphere and its impact on global hydrology is an important element of NASA"s Earth Science Enterprise (ESE). A Cold Land Processes Working Group (CLPWG) was formed by the NASA Terrestrial Hydrology Program to identify important science objectives necessary to address ESE priorities. These measurement objectives included Snow Water Equivalent (SWE), snow wetness, and freeze/thaw status of underlying soil. The spatial resolution requirement identified by the CLPWG was 100 m to 5000 m. Microwave sensors are well suited to measure these and other properties of interests to the study of the terrestrial cryosphere. It is well known that the EM properties of snow and soil at microwave frequencies are a strong function of the phase of water, i.e. ice/water. Further, both active and passive microwave sensors have demonstrated sensitivity to important properties of snowpack including, depth, density, wetness, crystal size, ice crust layer structure, and surface roughness. These sensors are also sensitive to the underlying soil state (frozen or thawed). Multiple microwave measurements including both active and passive sensors will likely be required to invert the effects of various snowpack characteristics, vegetation, and underlying soil properties to provide the desired characterization of the surface and meet the science needs required by the ESE. A major technology driver with respect to fully meeting these measurement needs is the 100 to 5000 m spatial resolution requirement. Meeting the threshold requirement of 5000 m at microwave frequencies from Low Earth Orbit is a technology challenge. The emerging capabilities of unmanned aircraft and particularly the system perspective of the Autonomous Aerial Observation Systems (AAOS) may provide high-fidelity/high-resolution measurements on regional scales or larger that could greatly improve our measurement capability. This paper explores a vehicle/sensor concept that could augment

  5. The Cubberley Conference and the Evolution of Observational Learning Strategies.

    ERIC Educational Resources Information Center

    Hosford, Ray E.

    1980-01-01

    Cubberley Conference at Stanford University was first major attempt to propose application of behavioral principles to counseling process. Evolution of one of these strategies, social modeling, and how this strategy fostered development of more specific observational learning techniques, such as self-observation and self-modeling, are discussed.…

  6. Optimal strategies for the control of autonomous vehicles in data assimilation

    NASA Astrophysics Data System (ADS)

    McDougall, D.; Moore, R. O.

    2017-08-01

    We propose a method to compute optimal control paths for autonomous vehicles deployed for the purpose of inferring a velocity field. In addition to being advected by the flow, the vehicles are able to effect a fixed relative speed with arbitrary control over direction. It is this direction that is used as the basis for the locally optimal control algorithm presented here, with objective formed from the variance trace of the expected posterior distribution. We present results for linear flows near hyperbolic fixed points.

  7. A comprehensive data qa/qc strategy for data from autonomous point sensors: design, implementation and examples

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.

    2007-12-01

    There is an exponential increase in the use of autonomous point sensors (sensors which collect and transmit data without any human intervention) across all of geosciences. Point sensors include both physical and chemical sensors. Such data is typically stored in relational databases, from which data is subsequently polled for a range of different purposes. One of the fundamental challenges for end users is to assess the confidence in specific measurements. Historically (when sensor owners, sensor installers, data managers and data users were associated with one research group or institution) there might have been an intuitive (if poorly quantifiable) feel for such confidence. However, in the current environment these roles are often filled by people who are geographically separated and in different organizations. In addition, while historically such data was subject to semi manual review, this is becoming less and less practical. Finally, there is more and more a desire to use data in near real time. Consequently, challenges exist on how to automate all aspects of data qa/qc and validation for autonomous sensors. Data validation can result either in a confidence range and/or a Boolean indicator (good/bad data). We have developed and implemented a comprehensive, multi level data validation strategy. This strategy progresses from analysis of the most recent data received from a sensor (typically one to hundreds of measurements) to an analysis of the recent data in the context of the historic data received from the sensor, to an analysis of data received by other sensors (which compares trends and patterns), to a simple model based analysis. The outcome of this analysis (which is performed as soon as new data arrives) results in a quality indicator which is made available to the user with the data. In this talk I will provide examples of this approach for a number of currently operating monitoring networks as well as a discussion on how to easily implement this

  8. Observation of response strategies in cycling time trials.

    PubMed

    DeFrancesco, C; DeSario, L F

    1995-08-01

    Athletes in sprint events use various mental and physical starting strategies prior to beginning a race. Included among these strategies are sensory-set and motor-set strategies. A sensory-set strategy is one in which the athlete concentrates on reacting as fast as possible to an auditory or visual stimulus. A motor-set strategy is one in which the athlete consciously attends to a component of a well-learned skill rather than to the stimulus which evokes the initiation of the skill. The purpose of this study was to observe differences in starting techniques of 20 championship cyclist responded significantly faster after the auditory stimulus and recorded faster 1/2-lap split times than 10 proficient cyclists. Strategy selection and use of elite cyclists should be investigated further to examine efficient starting strategies and procedures.

  9. Net community production from autonomous oxygen observations in the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Feen, M.; Estapa, M. L.

    2016-02-01

    Optical sensors on autonomous floats provide high-resolution profiles of oxygen concentration over time. Improved spatiotemporal resolution in our measurements of oxygen will allow for better estimates of net community production and a greater understanding of the biological pump. Two autonomous profiling floats (NAVIS BGCi, Sea-Bird) equipped with SBE-63 optodes to measure dissolved oxygen were deployed in the Sargasso Sea on a series of five Bermuda Atlantic Time-series Study (BATS) cruises from July 2013 to April 2014. In situ calibration of the oxygen sensors to Winkler titration bottle samples at BATS did not show systematic drift in the oxygen sensors over time. Calibrations were applied to determine oxygen concentrations in profiles collected in the Sargasso Sea at 1.5 to 2.5 day intervals over a year. Oxygen concentrations were used to quantify sub-mixed layer net community production. Changes in production rates from this study were compared with upper water column biology and particle flux measurements obtained independently from optical sensors on the profiling floats, allowing us to examine processes controlling carbon export into the deep ocean.

  10. A Behavior-Based Strategy for Single and Multi-Robot Autonomous Exploration

    PubMed Central

    Cepeda, Jesus S.; Chaimowicz, Luiz; Soto, Rogelio; Gordillo, José L.; Alanís-Reyes, Edén A.; Carrillo-Arce, Luis C.

    2012-01-01

    In this paper, we consider the problem of autonomous exploration of unknown environments with single and multiple robots. This is a challenging task, with several potential applications. We propose a simple yet effective approach that combines a behavior-based navigation with an efficient data structure to store previously visited regions. This allows robots to safely navigate, disperse and efficiently explore the environment. A series of experiments performed using a realistic robotic simulator and a real testbed scenario demonstrate that our technique effectively distributes the robots over the environment and allows them to quickly accomplish their mission in large open spaces, narrow cluttered environments, dead-end corridors, as well as rooms with minimum exits.

  11. Reading Strategies and Reading Diaries for Autonomous Learning in a Turkish Context

    ERIC Educational Resources Information Center

    Course, Simla

    2017-01-01

    This paper reports the findings of an action research that was conducted over the course of two years. The research investigated the role of using reading diaries and strategy instruction with English Language Teaching trainees to foster greater learner autonomy and looked into the language learning strategies used by these students. The findings…

  12. Strategies for Promoting Autonomous Reading Motivation: A Multiple Case Study Research in Primary Education

    ERIC Educational Resources Information Center

    De Naeghel, Jessie; Van Keer, Hilde; Vanderlinde, Ruben

    2014-01-01

    It is important to reveal strategies which foster students' reading motivation in order to break through the declining trend in reading motivation throughout children's educational careers. Consequently, the present study advances an underexposed field in reading motivation research by studying and identifying the strategies of teachers excellent…

  13. Autonomous navigation accuracy using simulated horizon sensor and sun sensor observations

    NASA Technical Reports Server (NTRS)

    Pease, G. E.; Hendrickson, H. T.

    1980-01-01

    A relatively simple autonomous system which would use horizon crossing indicators, a sun sensor, a quartz oscillator, and a microprogrammed computer is discussed. The sensor combination is required only to effectively measure the angle between the centers of the Earth and the Sun. Simulations for a particular orbit indicate that 2 km r.m.s. orbit determination uncertainties may be expected from a system with 0.06 deg measurement uncertainty. A key finding is that knowledge of the satellite orbit plane orientation can be maintained to this level because of the annual motion of the Sun and the predictable effects of Earth oblateness. The basic system described can be updated periodically by transits of the Moon through the IR horizon crossing indicator fields of view.

  14. Are young children able to learn exploratory strategies by observation?

    PubMed

    Foti, Francesca; Martone, Domenico; Orrù, Stefania; Montuori, Simone; Imperlini, Esther; Buono, Pasqualina; Petrosini, Laura; Mandolesi, Laura

    2017-07-20

    New competencies may be learned through active experience (experiential learning or learning by doing) or observation of others' experiences (learning by observation). Observing another person performing a complex action facilitates the observer's acquisition of the same action. The present research is aimed at analyzing if the observation of specific explorative strategies adopted in a constrained environment, such as the Radial Arm Maze (RAM), could help young children to explore the maze and to build a cognitive spatial map of the explored environment. To this aim young children were randomly assigned to three groups: children who performed the RAM task following the observation of an actor solving the same maze by putting into action a highly structured exploratory strategy; children who performed the RAM task following the observation of the actor solving the same maze by putting into action a less structured exploratory strategy; children who directly performed the RAM task without any observation. The main result of the present research is that the children who observed the highly structured and correct exploratory strategy spent less time, made fewer errors, exhibited a longer spatial span, and thus they explored the maze more efficiently than the children who directly performed the RAM task without any observation. This finding indicates that when the observed explorative procedure is structured, sequential and repetitive the action understanding and information storage processes are more effective. Importantly, the observation of specific spatial strategies helped the children to build the cognitive spatial map of the explored environment and consequently to acquire/enrich the declarative knowledge of the environment.

  15. Developing an instrument for identifying coping strategies used by the elderly to remain autonomous.

    PubMed

    Robichaud, Line; Lamarre, Caroline

    2002-10-01

    Behavioral or cognitive coping strategies may be defined as attitudes developed via life experience to minimize the functional impacts of an impairment or disability that thereby enable the elderly to continue participating in their social environment. The objective of this study was to develop an instrument that was capable of identifying the ways and methods used by the elderly whenever obstacles arise and to assess four psychometric qualities. The Inventory of Coping Strategies Used by the Elderly is a questionnaire that includes a list of almost 100 behavioral and cognitive strategies. It is based on two Likert scales: the frequency of use of a given strategy and the satisfaction felt by the person whenever he or she used the strategy in an everyday situation. Reliability analysis showed intraclass correlation coefficients of 0.80-0.89. Discriminant analysis showed that the inventory differentiated the seniors' club subjects from the other three groups. This first survey involved a sample of 64 subjects aged > or =65 yr, classified among four subgroups of different levels of autonomy. Content validation was performed with the assistance of four experts in gerontology and measurement and evaluation. Internal consistency analysis made it possible to select the items in relation to which items correlated most with the overall score from among the initial list of 114 items. This instrument will enable health professionals to familiarize themselves with the coping strategies of both normal seniors and those who are involved in the adaptation and rehabilitation process. When such strategies are lacking, action should be taken to develop or reinforce them to prevent the loss of autonomy.

  16. Development of an autonomous treatment planning strategy for radiation therapy with effective use of population-based prior data.

    PubMed

    Wang, Huan; Dong, Peng; Liu, Hongcheng; Xing, Lei

    2017-02-01

    Current treatment planning remains a costly and labor intensive procedure and requires multiple trial-and-error adjustments of system parameters such as the weighting factors and prescriptions. The purpose of this work is to develop an autonomous treatment planning strategy with effective use of prior knowledge and in a clinically realistic treatment planning platform to facilitate radiation therapy workflow. Our technique consists of three major components: (i) a clinical treatment planning system (TPS); (ii) a formulation of decision-function constructed using an assemble of prior treatment plans; (iii) a plan evaluator or decision-function and an outer-loop optimization independent of the clinical TPS to assess the TPS-generated plan and to drive the search toward a solution optimizing the decision-function. Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines for querying and interacting with the TPS. These subroutines are called back in the outer-loop optimization program to navigate the plan selection process through the solution space iteratively. The utility of the approach is demonstrated by using clinical prostate and head-and-neck cases. An autonomous treatment planning technique with effective use of an assemble of prior treatment plans is developed to automatically maneuver the clinical treatment planning process in the platform of a commercial TPS. The process mimics the decision-making process of a human planner and provides a clinically sensible treatment plan automatically, thus reducing/eliminating the tedious manual trial-and-errors of treatment planning. It is found that the prostate and head-and-neck treatment plans generated using the approach compare favorably with that used for the patients' actual treatments. Clinical inverse treatment planning process can be automated effectively with the guidance of an assemble of prior treatment plans. The approach has the potential to

  17. First observations of teleseismic P-waves with autonomous underwater robots: towards future global network of mobile seismometers

    NASA Astrophysics Data System (ADS)

    Sukhovich, Alexei; Nolet, Guust; Hello, Yann; Simons, Frederik; Bonnieux, Sébastien

    2013-04-01

    We report here the first successful observations of underwater acoustic signals generated by teleseismic P-waves recorded by autonomous robots MERMAID (short for Mobile Earthquake Recording in Marine Areas by Independent Divers). During 2011-2012 we have conducted three test campaigns for a total duration of about 8 weeks in the Ligurian Sea which have allowed us to record nine teleseismic events (distance more than 60 degree) of magnitudes higher than 6 and one closer event (distance 23 degree) of magnitude 5.5. Our results indicate that no simple relation exists between the magnitude of the source event and the signal-to-noise ratio (SNR) of the corresponding acoustic signals. Other factors, such as fault orientation and meteorological conditions, play an important role in the detectability of the seismic events. We also show examples of the events recorded during these test runs and how their frequency characteristics allow them to be recognized automatically by an algorithm based on the wavelet transform. We shall also report on more recent results obtained during the first fully autonomous run (currently ongoing) of the final MERMAID design in the Mediterranean Sea.

  18. Approaching Complexity through Planful Play: Kindergarten Children's Strategies in Constructing an Autonomous Robot's Behavior

    ERIC Educational Resources Information Center

    Levy, S. T.; Mioduser, D.

    2010-01-01

    This study investigates how young children master, construct and understand intelligent rule-based robot behaviors, focusing on their strategies in gradually meeting the tasks' complexity. The wider aim is to provide a comprehensive map of the kinds of transitions and learning that take place in constructing simple emergent behaviors, particularly…

  19. Approaching Complexity through Planful Play: Kindergarten Children's Strategies in Constructing an Autonomous Robot's Behavior

    ERIC Educational Resources Information Center

    Levy, S. T.; Mioduser, D.

    2010-01-01

    This study investigates how young children master, construct and understand intelligent rule-based robot behaviors, focusing on their strategies in gradually meeting the tasks' complexity. The wider aim is to provide a comprehensive map of the kinds of transitions and learning that take place in constructing simple emergent behaviors, particularly…

  20. The SETI Radio Observational Project - Strategy, instrumentation, and objectives

    NASA Technical Reports Server (NTRS)

    Edelson, R. E.; Gulkis, S.; Janssen, M. A.; Kuiper, T. B. H.; Morris, G. A.

    1978-01-01

    The paper describes strategies, tradeoffs, instrumentation, and overall objectives for the SETI Radio Observation Project. Novel approaches have been formulated in order to achieve coverage of the desirable frequency and spatial regimes (about 80% of the sky and in the frequency range of 1.4-25 GHz). A mixed strategy has been developed which uses the survey capability of small antennas and the sensitivity of modern maser amplifiers to achieve sensitivities comparable to those reached by previous observers, but with as much as 10,000 times the scope of both the frequency and spatial coverage possible to those experimenters.

  1. Autonomous and Autonomic Swarms

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    A watershed in systems engineering is represented by the advent of swarm-based systems that accomplish missions through cooperative action by a (large) group of autonomous individuals each having simple capabilities and no global knowledge of the group s objective. Such systems, with individuals capable of surviving in hostile environments, pose unprecedented challenges to system developers. Design and testing and verification at much higher levels will be required, together with the corresponding tools, to bring such systems to fruition. Concepts for possible future NASA space exploration missions include autonomous, autonomic swarms. Engineering swarm-based missions begins with understanding autonomy and autonomicity and how to design, test, and verify systems that have those properties and, simultaneously, the capability to accomplish prescribed mission goals. Formal methods-based technologies, both projected and in development, are described in terms of their potential utility to swarm-based system developers.

  2. Understanding Electrochemistry Concepts Using the Predict-Observe-Explain Strategy

    ERIC Educational Resources Information Center

    Karamustafaoglu, Sevilay; Mamlok-Naaman, Rachel

    2015-01-01

    The current study deals with freshman students who study at the Department of Science at the Faculty of Education. The aim of the study was to investigate the effect of teaching electrochemistry concepts using Predict-Observe-Explain (POE) strategy. The study was quasi-experimental design using 20 students each in the experimental group (EG) and…

  3. Understanding Electrochemistry Concepts Using the Predict-Observe-Explain Strategy

    ERIC Educational Resources Information Center

    Karamustafaoglu, Sevilay; Mamlok-Naaman, Rachel

    2015-01-01

    The current study deals with freshman students who study at the Department of Science at the Faculty of Education. The aim of the study was to investigate the effect of teaching electrochemistry concepts using Predict-Observe-Explain (POE) strategy. The study was quasi-experimental design using 20 students each in the experimental group (EG) and…

  4. Pedagogical strategies used in clinical medical education: an observational study.

    PubMed

    Nilsson, Maria Skyvell; Pennbrant, Sandra; Pilhammar, Ewa; Wenestam, Claes-Göran

    2010-01-28

    Clinical teaching is a complex learning situation influenced by the learning content, the setting and the participants' actions and interactions. Few empirical studies have been conducted in order to explore how clinical supervision is carried out in authentic situations. In this study we explore how clinical teaching is carried out in a clinical environment with medical students. Following an ethnographic approach looking for meaning patterns, similarities and differences in how clinical teachers manage clinical teaching; non-participant observations and informal interviews were conducted during a four month period 2004-2005. The setting was at a teaching hospital in Sweden. The participants were clinical teachers and their 4th year medical students taking a course in surgery. The observations were guided by the aim of the study. Observational notes and notes from informal interviews were transcribed after each observation and all data material was analysed qualitatively. Seven pedagogical strategies were found to be applied, namely: 1) Questions and answers, 2) Lecturing, 3) Piloting, 4) Prompting, 5) Supplementing, 6) Demonstrating, and 7) Intervening. This study contributes to previous research in describing a repertoire of pedagogical strategies used in clinical education. The findings showed that three superordinate qualitatively different ways of teaching could be identified that fit Ramsden's model. Each of these pedagogical strategies encompass different focus in teaching; either a focus on the teacher's knowledge and behaviour or the student's behaviour and understanding. We suggest that an increased awareness of the strategies in use will increase clinical teachers' teaching skills and the consequences they will have on the students' ability to learn. The pedagogical strategies need to be considered and scrutinized in further research in order to verify their impact on students' learning.

  5. Pedagogical strategies used in clinical medical education: an observational study

    PubMed Central

    2010-01-01

    Background Clinical teaching is a complex learning situation influenced by the learning content, the setting and the participants' actions and interactions. Few empirical studies have been conducted in order to explore how clinical supervision is carried out in authentic situations. In this study we explore how clinical teaching is carried out in a clinical environment with medical students. Methods Following an ethnographic approach looking for meaning patterns, similarities and differences in how clinical teachers manage clinical teaching; non-participant observations and informal interviews were conducted during a four month period 2004-2005. The setting was at a teaching hospital in Sweden. The participants were clinical teachers and their 4th year medical students taking a course in surgery. The observations were guided by the aim of the study. Observational notes and notes from informal interviews were transcribed after each observation and all data material was analysed qualitatively. Results Seven pedagogical strategies were found to be applied, namely: 1) Questions and answers, 2) Lecturing, 3) Piloting, 4) Prompting, 5) Supplementing, 6) Demonstrating, and 7) Intervening. Conclusions This study contributes to previous research in describing a repertoire of pedagogical strategies used in clinical education. The findings showed that three superordinate qualitatively different ways of teaching could be identified that fit Ramsden's model. Each of these pedagogical strategies encompass different focus in teaching; either a focus on the teacher's knowledge and behaviour or the student's behaviour and understanding. We suggest that an increased awareness of the strategies in use will increase clinical teachers' teaching skills and the consequences they will have on the students' ability to learn. The pedagogical strategies need to be considered and scrutinized in further research in order to verify their impact on students' learning. PMID:20105340

  6. Toward the Development of an Integrated Global Observing Strategy

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    In the current environment of stagnant or shrinking budgets for space research and exploration, nations can no longer afford to develop costly systems in a vacuum. Greater coordination of existing and planned systems, both among space agencies and between the space agencies and user communities, will enable the maximization of global investments in all areas of space-related research. In this manner, a group of space agencies has embarked on an initiative to link their activities in Earth observation with complementary observation programs. The goal of this initiative is to develop a comprehensive strategy for enhanced levels of support to scientific, operational and research communities. The space agencies, through the Committee on Earth Observation Satellites (CEOS), have embraced the concept of an Integrated Global Observing Strategy (IGOS), primarily in fulfillment of their own set of objectives and to derive greater benefit from both operating and planned Earth observing systems. Through working together, CEOS agencies are in a position to plan their Earth observation projects with the minimum of unnecessary overlap and to devise joint strategies for addressing serious gaps in their observation capabilities. Ultimately, an IGOS should be the joint product of all groups involved in the collection and analysis of both space-based and in-situ data. CEOS is actively seeking IGOS -related partnerships with the Global Climate, Global Ocean and Global Terrestrial Observing Systems, their intergovernmental Sponsors, the International Group of Funding Agencies for Global Change Research, and other scientific and user organizations including the International Geosphere-Biosphere Programme and the World Climate Research Programme.

  7. Toward the Development of an Integrated Global Observing Strategy

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    In the current environment of stagnant or shrinking budgets for space research and exploration, nations can no longer afford to develop costly systems in a vacuum. Greater coordination of existing and planned systems, both among space agencies and between the space agencies and user communities, will enable the maximization of global investments in all areas of space-related research. In this manner, a group of space agencies has embarked on an initiative to link their activities in Earth observation with complementary observation programs. The goal of this initiative is to develop a comprehensive strategy for enhanced levels of support to scientific, operational and research communities. The space agencies, through the Committee on Earth Observation Satellites (CEOS), have embraced the concept of an Integrated Global Observing Strategy (IGOS), primarily in fulfillment of their own set of objectives and to derive greater benefit from both operating and planned Earth observing systems. Through working together, CEOS agencies are in a position to plan their Earth observation projects with the minimum of unnecessary overlap and to devise joint strategies for addressing serious gaps in their observation capabilities. Ultimately, an IGOS should be the joint product of all groups involved in the collection and analysis of both space-based and in-situ data. CEOS is actively seeking IGOS -related partnerships with the Global Climate, Global Ocean and Global Terrestrial Observing Systems, their intergovernmental Sponsors, the International Group of Funding Agencies for Global Change Research, and other scientific and user organizations including the International Geosphere-Biosphere Programme and the World Climate Research Programme.

  8. The Wave Glider°: A New Autonomous Surface Vehicle to Augment MBARI's Growing Fleet of Ocean Observing Systems

    NASA Astrophysics Data System (ADS)

    Tougher, B. B.

    2011-12-01

    Monterey Bay Aquarium Research Institute's (MBARI) evolving fleet of ocean observing systems has made it possible to collect information and data about a wide variety of ocean parameters, enabling researchers to better understand marine ecosystems. In collaboration with Liquid Robotics Inc, the designer of the Wave Glider autonomous surface vehicle (ASV), MBARI is adding a new capability to its suite of ocean observing tools. This new technology will augment MBARI research programs that use satellites, ships, moorings, drifters, autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs) to improve data collection of temporally and spatially variable oceanographic features. The Wave Glider ASV derives its propulsion from wave energy, while sensors and communications are powered through the use of two solar panels and batteries, enabling it to remain at sea indefinitely. Wave Gliders are remotely controlled via real-time Iridium burst communications, which also permit real-time data telemetry. MBARI has developed Ocean Acidification (OA) moorings to continuously monitor the chemical and physical changes occurring in the ocean as a result of increased levels of atmospheric carbon dioxide (CO2). The moorings are spatially restricted by being anchored to the seafloor, so during the summer of 2011 the ocean acidification sensor suite designed for moorings was integrated into a Wave Glider ASV to increase both temporal and spatial ocean observation capabilities. The OA sensor package enables the measurement of parameters essential to better understanding the changing acidity of the ocean, specifically pCO2, pH, oxygen, salinity and temperature. The Wave Glider will also be equipped with a meteorological sensor suite that will measure air temperature, air pressure, and wind speed and direction. The OA sensor integration into a Wave Glider was part of MBARI's 2011 summer internship program. This project involved designing a new layout for the OA sensors

  9. Preparing for the future: a review of tools and strategies to support autonomous goal setting for children and youth with autism spectrum disorders.

    PubMed

    Hodgetts, Sandra; Park, Elly

    2017-03-01

    Despite recognized benefits, current clinical practice rarely includes direct input from children and youth with autism spectrum disorder (ASD) in setting rehabilitation goals. This study reviews tools and evidence-based strategies to assist with autonomous goal settings for children and youth with ASD. This study included two components: (1) A scoping review of existing tools and strategies to assist with autonomous goal setting in individuals with ASD and (2) a chart review of inter-disciplinary service plan goals for children and youth with ASD. Eleven data sources, evaluating five different tools to assist with autonomous goal setting for children and youth with ASD, were found. Three themes emerged from the integration of the scoping review and chart review, which are discussed in the paper: (1) generalizability of findings, (2) adaptations to support participation and (3) practice implications. Children and youth with ASD can participate in setting rehabilitation goals, but few tools to support their participation have been evaluated, and those tools that do exist do not align well with current services foci. Visual aids appear to be one effective support, but further research on effective strategies for meaningful engagement in autonomous goal setting for children and youth with ASD is warranted. Implications for rehabilitation Persons with ASD are less self-determined than their peers. Input into one's own rehabilitation goals and priorities is an important component of self-determination. Few tools exist to help engage children and youth with ASD in setting their own rehabilitation goals. An increased focus on identifying, developing and evaluating effective tools and strategies to facilitate engagement of children and youth with ASD in setting their own rehabilitation goals is warranted.

  10. Autonomous profiling float observations of the high-biomass plume downstream of the Kerguelen Plateau in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Grenier, M.; Della Penna, A.; Trull, T. W.

    2015-05-01

    Natural iron fertilisation from Southern Ocean islands results in high primary production and phytoplankton biomass accumulations readily visible in satellite ocean colour observations. These images reveal great spatial complexity with highly varying concentrations of chlorophyll, presumably reflecting both variations in iron supply and conditions favouring phytoplankton accumulation. To examine the second aspect, in particular the influences of variations in temperature and mixed layer depth, we deployed four autonomous profiling floats in the Antarctic Circumpolar Current near the Kerguelen Plateau in the Indian sector of the Southern Ocean. Each "bio-profiler" measured more than 250 profiles of temperature (T), salinity (S), dissolved oxygen, chlorophyll a (Chl a) fluorescence, and particulate backscattering (bbp) in the top 300 m of the water column, sampling up to 5 profiles per day along meandering trajectories extending up to 1000 km. Comparison of surface Chl a estimates (analogous to values from satellite images) with total water column inventories revealed largely linear relationships, suggesting that these images provide credible information on total and not just surface biomass spatial distributions. However, they also showed that physical mixed layer depths are often not a reliable guide to biomass distributions. Regions of very high Chl a accumulation (1.5-10 μg L-1) were associated predominantly with a narrow T-S class of surface waters. In contrast, waters with only moderate Chl a enrichments (0.5-1.5 μg L-1) displayed no clear correlation with specific water properties, including no dependence on mixed layer depth or the intensity of stratification. Geostrophic trajectory analysis suggests that both these observations can be explained if the main determinant of biomass in a given water parcel is the time since leaving the Kerguelen Plateau. One float became trapped in a cyclonic eddy, allowing temporal evaluation of the water column in early

  11. Autonomous profiling float observations of the high biomass plume downstream of the Kerguelen plateau in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Grenier, M.; Della Penna, A.; Trull, T. W.

    2014-12-01

    Natural iron fertilisation from Southern Ocean islands results in high primary production and phytoplankton biomass accumulations readily visible in satellite ocean colour observations. These images reveal great spatial complexity with highly varying concentrations of chlorophyll, presumably reflecting both variations in iron supply and conditions favouring phytoplankton accumulation. To examine the second aspect, in particular the influences of variations in temperature and stratification, we deployed four autonomous profiling floats in the Antarctic Circumpolar Current near the Kerguelen plateau in the Indian sector of the Southern Ocean. Each "bio-profiler" measured more than 250 profiles of temperature (T), salinity (S), dissolved oxygen, chlorophyll fluorescence (Chl a), and particle backscatter in the top 300 m of the water column, sampling up to 5 profiles per day along meandering trajectories extending up to 1000 km. Comparison of surface Chl a estimates (top 50 m depth; analogous to values from satellite images) with total water column inventories revealed largely linear relationships, suggesting that dilution of chlorophyll by mixed layer depth variations plays only a minor role in the spatial distributions observed by satellite, and correspondingly that these images provide credible information on total and not just surface biomass accumulations. Regions of very high Chl a accumulation (1.5-10 μg L-1) were associated predominantly with a narrow T-S class of surface waters, which appears to derive from the northern Kerguelen plateau. In contrast, waters with only moderate Chl a enrichments (0.5-1.5 μg L-1) displayed no clear correlation with water properties, including no dependence on mixed layer depth, suggesting a diversity of sources of iron and/or its efficient dispersion across filaments of the plume. The lack of dependence on mixed layer depth also indicates a limited influence on production by light limitation. One float became trapped in a

  12. Design considerations and strategies for lunar-based observations

    NASA Technical Reports Server (NTRS)

    Snoddy, William C.; Nein, Max E.; Hilchey, John D.

    1994-01-01

    This paper addresses the design considerations and strategies for astrophysical observations as key elements of an international solar system exploration program. Emphasis is placed on the technical and programmatic challenges and opportunities associated with an evolving program of lunar-based astronomy. Both robotic and human tended facilities are discussed ranging from relatively small meter-class transit telescopes to large interferometer and filled-aperture systems.

  13. Autonomous Observing and Control Systems for PAIRITEL, a 1.3m Infrared Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Bloom, J. S.; Starr, D. L.; Blake, C. H.; Skrutskie, M. F.; Falco, E. E.

    2006-07-01

    The Peters Automated Infrared Imaging Telescope (PAIRITEL) is the first meter-class telescope operating as a fully robotic IR imaging system. Dedicated in October 2004, PAIRITEL began regular observations in mid-December 2004 as part of a 1.5 year commissioning period. The system was designed to respond without human intervention to new gamma-ray burst transients: this milestone was finally reached on November 9, 2005 but the telescope had a number of semi-automated sub-10 minute responses throughout early commissioning. When not operating in Target of Opportunity mode, PAIRITEL performs a number of queue scheduled transient monitoring campaigns. To achieve this level of automation, we have developed communicating tools to connect the various sub-systems: an intelligent queue scheduling database, run-time configurable observation sequence software, a data reduction pipeline, and a master state machine which monitors and controls all functions within and affecting the observatory.

  14. Autonomous Observing and Planet Discovery with the Automated Planet Finder (APF)

    NASA Astrophysics Data System (ADS)

    Burt, Jennifer; Hanson, Russell; Holden, Bradford; Butler, R. Paul; Vogt, Steven S.; Laughlin, Greg

    2015-01-01

    The Automated Planet Finder (APF) is a dedicated, ground-based precision radial velocity facility located at Lick Observatory, operated by University of California Observatories (UCO). The 2.4-m telescope and accompanying high-resolution echelle spectrograph were specifically designed for the purpose of detecting planets in the habitable zone of low-mass stars. The telescope is operated every night (weather permitting) to achieve meaningful signal-to-noise gains from high cadence observing and to avoid the aliasing problems inherent to planets whose periods are close to the lunar month.The APF has been taking science quality data for over a year and has contributed to two planet discovery papers with data at a 1 m/s level of precision. The detection of these planets, especially the Uranus mass planet around GL687, indicates that the APF telescope is well suited to the discovery of low-mass planets orbiting low-mass stars in the as-yet relatively un-surveyed region of the sky near the north celestial pole.To take full advantage of the consistent influx of data it is necessary to analyze each night's results before deciding the next evening's targets. We are in the process of developing a fully automated reduction pipeline that will take data from raw FITS files to final radial velocity values and integrate those values into a master database. The database is then run through the publicly available Systemic console, a publically available software package for the analysis and combined multiparameter fitting of Doppler radial velocity observations. Systemic will re-calculate the possibility of planetary signals in the data and use this value, along with other considerations such as the star's brightness and chromospheric activity level, to assign it a priority rating for future observations.When the telescope is again on sky it uses a suite of stellar and atmospheric calibrations derived from the part year's observations to calculate the expected exposure time for

  15. Sensor Web Dynamic Measurement Techniques and Adaptive Observing Strategies

    NASA Technical Reports Server (NTRS)

    Talabac, Stephen J.

    2004-01-01

    Sensor Web observing systems may have the potential to significantly improve our ability to monitor, understand, and predict the evolution of rapidly evolving, transient, or variable environmental features and events. This improvement will come about by integrating novel data collection techniques, new or improved instruments, emerging communications technologies and protocols, sensor mark-up languages, and interoperable planning and scheduling systems. In contrast to today's observing systems, "event-driven" sensor webs will synthesize real- or near-real time measurements and information from other platforms and then react by reconfiguring the platforms and instruments to invoke new measurement modes and adaptive observation strategies. Similarly, "model-driven" sensor webs will utilize environmental prediction models to initiate targeted sensor measurements or to use a new observing strategy. The sensor web concept contrasts with today's data collection techniques and observing system operations concepts where independent measurements are made by remote sensing and in situ platforms that do not share, and therefore cannot act upon, potentially useful complementary sensor measurement data and platform state information. This presentation describes NASA's view of event-driven and model-driven Sensor Webs and highlights several research and development activities at the Goddard Space Flight Center.

  16. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  17. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  18. Aggregates and their distributions determined from LOPC observations made using an autonomous profiling float

    NASA Astrophysics Data System (ADS)

    Petrik, Colleen M.; Jackson, George A.; Checkley, David M., Jr.

    2013-04-01

    The vertical flux of particles in the ocean drives the movement of organic carbon to the deep ocean. We have been studying the distribution and flux of these particles using the SOLOPC, a profiling Lagrangian (SOLO) float with a Laser Optical Particle Counter (LOPC). We have been able to distinguish between aggregate-like and zooplankton-like particles with diameters >2mm but needed a way to separate the smaller particles into aggregates and zooplankton. Observations included a lognormal-shaped fraction in the normalized volume distribution similar to that observed in results for simulations of particles in the euphotic zone. By fitting a lognormal distribution to the volume spectrum of particles with diameters ≤2mm, we have been successful at making a separation of marine snow material from other, presumably living, particles. The particle volumes derived using the separations are positively correlated with fluorescence, particulate organic carbon, and the volume of larger particles classified as aggregate-like, which supports the conclusion that these particles are truly aggregates, in some cases derived from phytoplankton. The residual volumes (total less the above fit) are highly correlated with the volumes of large, zooplankton-like particles. Downward velocities of the aggregate fraction calculated from time series of particle profiles are consistent with previous estimates of particle settling rates (20-70md-1). We now have a tool to estimate aggregate distributions, properties, and vertical fluxes in the euphotic zone, including when and where they change.

  19. The National Space Weather Strategy: Policy on Observations

    NASA Astrophysics Data System (ADS)

    Murtagh, W. J.

    2016-12-01

    Ensuring that the United States is prepared to respond to and recover from severe space weather storms is a priority to the President and to this Administration. We cannot ignore the potential impact space weather may have on key infrastructures and technologies including aviation and satellite operations, the electric power grid, and GPS applications. These technologies form the very backbone of the critical technology infrastructure we rely on for so much of what we do today. In October 2015, OSTP Director John Holdren announced the release of the National Space Weather Strategy and the National Space Weather Action Plan. The Strategy identifies goals and establishes the principles that will guide efforts to develop national space-weather preparedness in both the near and long term, while the Action Plan identifies specific activities, outcomes, and timelines that the Federal government must pursue to be prepared for and resilient to future space-weather events. The Strategy recognizes that observations are the backbone of forecast and warning capabilities. The Strategy also recognized that to achieve a robust operational program for space-weather observations, the United States must: (1) establish and sustain a foundational set of observations; (2) when feasible and cost effective, use data from multiple sources, including international, Federal, State, and local governments, as well as from the academic and industry sectors; (3) ensure the continuity of critical data sources; (4) continue to support sensors for solar and space physics research; (5) ensure data-assimilation techniques are in place; and (6) maintain archives for ground- and space-based data, which are essential for model development and benchmarking. In this talk we explore elements in the Space Weather Action Plan that will ensure our Nation has the information we need to enhance resilience to the risk of space weather.

  20. The Fly's Eye camera system: new results with an autonomously observing telescope

    NASA Astrophysics Data System (ADS)

    Mészáros, L.; Pal, A.; Jaskó, A.; Csépány, G.; Mező, Gy.; Vida, K.; Oláh, K.

    2016-08-01

    The Fly's Eye camera system is a multiple-passband full-sky surveying instrument employing 19 wide-field cameras in a mosaic arrangement on a spherical frame. The cameras equipped with fast focal ratio lenses and Sloan filters. The cameras are supported by single mount while the sidereal tracking, i.e. the compensation for the apparent celestial rotation is performed by a hexapod mount. As discussed in our earlier design-related publications, this tracking is unavoidable when considering 0:3 gigapixel imaging, a field-of-view diameter of 120° and exposure times around a few minutes. With this camera system we intend to perform time-domain astronomy and observe several kind of astronomical phenomena based on variability.

  1. An autonomous drifting buoy system for long term pCO2 observation

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Fujiki, T.; Wakita, M.; Azetsu-Scott, K.; Watanabe, S.

    2009-04-01

    Many studies have been carried out around the world to understand what happens to carbon dioxide (CO2) once it is emitted into the atmosphere, and how it relates to long-term climate change. However, the sea surface pCO2 observations on volunteer observation ships and research vessels concentrated in the North Atlantic and North Pacific. To assess the spatial and temporal variations of surface pCO2 in the global ocean, new automated pCO2 sensor which can be used in platform systems such as buoys or moorings is strongly desired. We have been developing the small drifting buoy system (diameter 250-340 mm, length 470 mm, weight 15 kg) for pCO2 measurement, with the support of the Japan EOS Promotion Program (JEPP), the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The objective is to provide simplified, automated measurements of pCO2 over all the world's oceans, an essential factor in understanding how the ocean responds to climate change. The measurement principle for the pCO2 sensor is based on spectrophotometry (e.g. Lefèvre et al., 1993; Degrandpre et al., 1995). The CO2 in the surrounding seawater equilibrates with the indicator solution across the gas permeable membranes. The equilibration process causes a change of pH in the indicator solution, which results in the change of optical absorbance. The pCO2 is calculated from the optical absorbance of the pH indicator solution equilibrated with CO2 in seawater through a gas permeable membrane. In our analytical system, we used an amorphous fluoropolymer tubing form of AF-2400 by DuPontTM for the gas permeable membrane due to its high gas permeability coefficients. The measurement system of the sensor consisted mainly of a LED light source, optical fibers, a CCD detector, and a downsized PC. The measured data were transmitted to the laboratory by satellite communication (Argos system). In the laboratory experiment, we obtained a high response time (less than 2 minutes) and a precision

  2. Simultaneous Measurements of direct, semi-direct and indirect aerosol forcing with Stacked Autonomous UAVs: A New Observing Platform

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Roberts, G.; Ramana, M. V.; Corrigan, C.; Nguyen, H.

    2006-12-01

    We report here first time demonstration with three autonomously flying Unmanned Aerial Vehicles (UAVs) of cloudy sky albedo, transmission atmospheric solar absorption, aerosol and cloud droplet concentrations and number densities. From these direct measurements we derive the direct, semi-direct and the first indirect aerosol forcing. The observing system consisted of 3 light weight UAVs, instrumented with miniaturized instruments (Roberts et al, 2006; Ramana et al, 2006; Corrigan et al 2006) for measuring aerosol concentrations and size distribution, cloud microphysical properties, black carbon concentration and broad band and narrow band solar fluxes. The airborne measurements were validated and augmented by the Atmospheric Brown Clouds Maldives Climate Observatory (ABC_MCO) in the island of Hanimaadhoo in the N. Indian Ocean (Corrigan et al, 2006; Ramana and Ramanathan 2006). The campaign was conducted during March and early April of 2006 when this region is subject to long range transport of pollution from S. Asia. In the stacked 3_UAV configuration, one flew in the boundary layer below clouds to characterize the aerosols feeding the clouds and the transmission of solar radiation by the absorbing aerosol layer and clouds above; the second inside the trade cumulus clouds to directly observe the fully nucleated cloud drop size and concentrations and total liquid water content; and the third above the cloud to determine the incoming solar and the reflected solar radiation. The 3-UAVs were programmed to sample the same region(or clouds) within seconds of each other, thus providing unique insights into how aerosols and boundary layer dynamics modulate the cloud microphysics and thus the albedo and solar absorption of cloudy skies in the planet. The period of observations also included a major dust-soot event which revealed a large increase in atmospheric solar absorption. We will present results on how 3- dimensional clouds with absorbing aerosols modulate

  3. NX-2G : autonomous BBOBS-NX for a highly mobile broadband seismic observation at the seafloor

    NASA Astrophysics Data System (ADS)

    Shiobara, Hajime; Sugioka, Hiroko; Ito, Aki; Shinohara, Masanao

    2016-04-01

    We had developed the broadband ocean bottom seismometer (BBOBS) and its new generation system (BBOBS-NX), and, with them, several practical observations have been performed to create and establish a new category of the ocean floor broadband seismology, since 1999. Now, our BBOBS and BBOBS-NX data is proved to be at acceptable level for broadband seismic analyses. Especially, the BBOBS-NX is able to obtain the low noise horizontal data comparable to the land station in periods longer than 10 s, which is adequate for modern analyses of the mantle structure. Moreover, the BBOBS(T)-NX is under practical evaluation for the mobile tilt observation at the seafloor, which will enable dense geodetic monitoring. The BBOBS-NX system must be a powerful tool, although, the current system has intrinsic limitation in opportunity of observations due to the necessary use of the submersible vehicle for the deployment and recovery. If we can use this system with almost any kind of vessels, like as the BBOBS (self pop-up system), it should lead us a true breakthrough of seafloor observations in geodynamics. Hereafter, we call the new autonomous BBOBS-NX as NX-2G in short. There are two main problems to be cleared to realize the NX-2G system. The first one is a tilt of the sensor unit on landing, which is larger than the acceptable limit of the sensor (±8°) in 47 % after our 15 free-fall deployments of the BBOBS-NX. As we had no evidence at which moment the tilt occurred, so it was observed during the BBOBS-NX deployment in the last year by attaching a video camera and an acceleration logger those were originally developed for this purpose. The only one result shows that the tilt on landing seemed determined by the final posture of the BBOBS-NX system just before the penetration into the sediment. The second problem is a required force to extract the sensor unit from the sticky clay sediment, which was about 80 kgf in maximum with the current BBOBS-NX system from in-situ measurements

  4. A Strategy for Integrated Water Cycle Observations from Space

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Houser, P. R.

    2005-12-01

    The coupling of land surface hydrologic processes to atmospheric processes over a range of spatial and temporal scales is needed for understanding how atmosphere-land surface interactions operate and feed back onto the regional and larger scale climate system. An integral component of NASA's Global Water and Energy Cycle (GWEC) program and the World Climate Research is whether knowledge of land surface hydrologic states results in improved weather and short-term climate predictions. The inherent research strategy for NASA/GWEC and WCRP/GEWEX for investigating this is through the merging (assimilation) of remotely sensed observations of the surface hydrospheric state with process-based, terrestrial water and energy balance models. NASA assumes that remote sensing observations using current (TRMM, Terra, and Aqua) and planned (e.g. Global Precipitation Mission, HYDROS for surface soil moisture and freeze-thaw state, and possibly snow and surface water) platforms will provide sufficient estimates of surface hydrologic state variables. The extent to which this assumption can be realized remains an open question. The unmet needs facing the community in fully exploiting space-borne observations include: (i) having sufficiently accurate retrieval of physical surface states, including validation programs that can estimate retrieval error characteristics; (ii) overcoming satellite sensor programs that primarily focus on a single physical parameter; and (iii) having consistency between satellite observations and land surface models in terms of consistency in the retrieved variables as they relate to the spatial and temporal variability of the terrestrial hydrosphere. This presentation will offer a new vision for water cycle observation and modeling that has, at its core, the concept of integrated observations as opposed to isolated observations, and consistency between models and observations. By integrated observations, we mean the simultaneous retrieval of related water

  5. [Autonomic neuropathies].

    PubMed

    Siepmann, T; Penzlin, A I; Illigens, B M W

    2013-07-01

    Autonomic neuropathies are a heterogeneous group of diseases that involve damage of small peripheral autonomic Aδ- and C-fibers. Causes of autonomic nerve fiber damage are disorders such as diabetes mellitus and HIV-infection. Predominant symptoms of autonomic neuropathy are orthostatic hypotension, gastro-intestinal problems, urogenital dysfunction, and cardiac arrhythmia, which can severely impair the quality of life in affected patients. Furthermore, autonomic neuropathies can be induced by autoimmune diseases such as acute inflammatory demyelinating polyneuropathy, hereditary disorders such as the lysosomal storage disorder Fabry disease and hereditary sensory and autonomic neuropathies, as well as certain toxins and drugs. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Swift Multi-wavelength Observing Campaigns: Strategies and Outcomes

    NASA Technical Reports Server (NTRS)

    Krimm, Hans A.

    2007-01-01

    The Swift gamma-ray burst explorer has been operating since December 2004 as both a gamma-ray burst (GRB) monitor and telescope and a multi-wavelength observatory, covering the energy range from V band and near UV to hard X rays above 150 keV. It is designed to rapidly repoint to observe newly discovered GRBs, and this maneuverability, combined with an easily changed observing program, allows Swift to also be an effective multiwavelength observatory for non-GRB targets, both as targets of opportunity and pre-planned multi-wavelength observing campaigns. Blazars are particularly attractive targets for coordinated campaigns with TeV experiments since many blazars are bright in both the hard X-ray and TeV energy ranges. Successful coordinated campaigns have included observations of 3C454.3 during its 2005 outburst. The latest Swift funding cycles allow for non- GRB related observations to be proposed. The Burst Alert Telescope on Swift also serves as a hard X-ray monitor with a public web page that includes light curves for over 400 X-ray sources and is used to alert the astronomical community about increased activity from both known and newly discovered sources. This presentation mill include Swift capabilities, strategies and policies for coordinated multi-wavelength observations as well as discussion of the potential outcomes of such campaigns.

  7. A strategy for SETI observations at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Welch, W. J.

    1988-10-01

    It is proposed that the 100 foot diameter antenna at Los Canos, near Arecibo, should be used with the 1000-foot Arecibo telescope as an interferometer to reduce the effects of RF interference in SETI observations. A strategy is presented for using an interferometer either in parallel with a single detector at the large telescope, or in sequence to verify ETI detection. Examples of the nature of the interference which may be encountered at Arecibo are given from survey studies (Olson et al., 1988). It is shown that the multiplying detector can reduce the effects of RF interference by between 20 and 30 dB.

  8. Evaluating different strategies for estimating treatment effects in observational studies.

    PubMed

    Zagar, Anthony J; Kadziola, Zbigniew; Lipkovich, Ilya; Faries, Douglas E

    2017-01-01

    Since the introduction of the propensity score (PS), methods for estimating treatment effects with observational data have received growing attention in the literature. Recent research has added substantially to the number of available statistical approaches for controlling confounding in such analyses. However, researchers need guidance to decide on the optimal analytic strategy for any given scenario. To address this gap, we conducted simulations evaluating both well-established methods (regression, PS weighting, stratification, and matching) and more recently proposed approaches (tree-based methods, local control, entropy balancing, genetic matching, prognostic scoring). The simulation scenarios included tree-based and smooth regression models as true data-generation mechanisms. We evaluated an extensive number of analysis strategies combining different treatment choices and outcome models. Key findings include 1) the lack of a single best strategy across all potential scenarios; 2) the importance of appropriately addressing interactions in the treatment choice model and/or outcome model; and 3) a tree-structured treatment choice model and a polynomial outcome model with second-order interactions performed well. One limitation to this initial assessment is the lack of heterogeneous simulation scenarios allowing treatment effects to vary by patient.

  9. Autonomous Learner Model Resource Book

    ERIC Educational Resources Information Center

    Betts, George T.; Carey, Robin J.; Kapushion, Blanche M.

    2016-01-01

    "Autonomous Learner Model Resource Book" includes activities and strategies to support the development of autonomous learners. More than 40 activities are included, all geared to the emotional, social, cognitive, and physical development of students. Teachers may use these activities and strategies with the entire class, small groups, or…

  10. Autonomous Learner Model Resource Book

    ERIC Educational Resources Information Center

    Betts, George T.; Carey, Robin J.; Kapushion, Blanche M.

    2016-01-01

    "Autonomous Learner Model Resource Book" includes activities and strategies to support the development of autonomous learners. More than 40 activities are included, all geared to the emotional, social, cognitive, and physical development of students. Teachers may use these activities and strategies with the entire class, small groups, or…

  11. Analyzing Exoplanet Phase Curve Information Content: Toward Optimized Observing Strategies

    NASA Astrophysics Data System (ADS)

    Placek, Ben; Angerhausen, Daniel; Knuth, Kevin H.

    2017-10-01

    Secondary eclipses and phase curves reveal information about the reflectivity and heat distribution in exoplanet atmospheres. The phase curve is composed of a combination of reflected and thermally emitted light from the planet, and for circular orbits the phase curve peaks during the secondary eclipse or at an orbital phase of 0.5. Physical mechanisms have been discovered that shift the phase curve maximum of tidally locked close-in planets to the right, or left, of the secondary eclipse. These mechanisms include cloud formations and atmospheric superrotation, both of which serve to shift the thermally bright hot-spot or highly reflective bright spot of the atmosphere away from the sub-stellar point. Here, we present a methodology for optimizing observing strategies for both secondary eclipses and phase curves with the goal of maximizing the information gained about the planetary atmosphere while minimizing the (assumed) continuous observation time. We show that we can increase the duty cycle of observations aimed at the measurements of phase curve characteristics (amplitude, phase offset) by up to 50% for future platforms such as CHaracterising ExOPlanets Satellite (CHEOPS) and JWST. We apply this methodology to the test cases of the Spitzer phase curve of 55-Cancri-e, which displays an eastward shift in its phase curve maximum as well as model-generated observations of an ultra-short period planet observed with CHEOPS.

  12. Autonomous Undersea Observations

    DTIC Science & Technology

    2016-06-13

    from the outside world . The outside world would be either an adjacent node (e.g., a Seaweb node) or a surface buoy. The focus of this effort has...data snippets being sent to the outside world via acoustic telemetry. We have teamed with Webb Research to use their Slocum Glider as a data truck to

  13. Autonomous Observations of Coupled Physical-Biological Processes in the Ice-covered Arctic Ocean over Diel to Annual Scales

    NASA Astrophysics Data System (ADS)

    Laney, S. R.; Krishfield, R. A.; Toole, J. M.; Timmermans, M. L.

    2016-02-01

    In 2015 a five-year program was completed to outfit eight Ice-Tethered Profilers (ITPs) with novel bio-optical/biogeochemical sensor suites and deploy these in perennially ice-covered regions of the Arctic Ocean. This project represents an important new approach for obtaining biological and bio-physical observations, over diel to annual scales, in extremely difficult-to-sample under-ice ocean ecosystems such as in the Arctic Ocean. These ITPs, deployed in the central Arctic and Beaufort Gyre, carried sensors for chlorophyll fluorescence, optical scattering, CDOM fluorescence, and incident solar radiation in addition to a standard conductivity-temperature-depth sensor and dissolved oxygen. These systems have generated unique, long-term and high-resolution time series of under-ice irradiance, algal biomass, particulate scattering, and organic matter concentrations in the top 800m of the Arctic Ocean, with profiles conducted up to four times daily during most of the annual cycle. Two of these systems operated for twelve months, capturing the entire annual trend in bio-optical properties in the central Arctic Ocean and Beaufort Sea. These observations were used to estimate the timing and duration of the under-ice algal growing season, the subsequent export of particulate organic matter later in the season, the occurrence of intermittent physical perturbations that affect biological and bio-optical distributions (such as under-ice eddies), and the impact of long- and short-term fluctuations in under-ice insolation. Such high-resolution profiling in time enables a more accurate assessment of the timing and magnitude of such intermittent events, down to the time scale of less than a single day. These initial eight profilers provide some of the highest-resolution observations of basic seasonality in fundamental biological and bio-physical dynamics in perennially ice-covered regions of the Arctic Ocean, and demonstrate the utility of autonomous long-term observing in the

  14. Vagus nerve stimulation: state of the art of stimulation and recording strategies to address autonomic function neuromodulation

    NASA Astrophysics Data System (ADS)

    Guiraud, David; Andreu, David; Bonnet, Stéphane; Carrault, Guy; Couderc, Pascal; Hagège, Albert; Henry, Christine; Hernandez, Alfredo; Karam, Nicole; Le Rolle, Virginie; Mabo, Philippe; Maciejasz, Paweł; Malbert, Charles-Henri; Marijon, Eloi; Maubert, Sandrine; Picq, Chloé; Rossel, Olivier; Bonnet, Jean-Luc

    2016-08-01

    Objective. Neural signals along the vagus nerve (VN) drive many somatic and autonomic functions. The clinical interest of VN stimulation (VNS) is thus potentially huge and has already been demonstrated in epilepsy. However, side effects are often elicited, in addition to the targeted neuromodulation. Approach. This review examines the state of the art of VNS applied to two emerging modulations of autonomic function: heart failure and obesity, especially morbid obesity. Main results. We report that VNS may benefit from improved stimulation delivery using very advanced technologies. However, most of the results from fundamental animal studies still need to be demonstrated in humans.

  15. Mathematical strategies for filtering complex systems: Regularly spaced sparse observations

    SciTech Connect

    Harlim, J. Majda, A.J.

    2008-05-01

    Real time filtering of noisy turbulent signals through sparse observations on a regularly spaced mesh is a notoriously difficult and important prototype filtering problem. Simpler off-line test criteria are proposed here as guidelines for filter performance for these stiff multi-scale filtering problems in the context of linear stochastic partial differential equations with turbulent solutions. Filtering turbulent solutions of the stochastically forced dissipative advection equation through sparse observations is developed as a stringent test bed for filter performance with sparse regular observations. The standard ensemble transform Kalman filter (ETKF) has poor skill on the test bed and even suffers from filter divergence, surprisingly, at observable times with resonant mean forcing and a decaying energy spectrum in the partially observed signal. Systematic alternative filtering strategies are developed here including the Fourier Domain Kalman Filter (FDKF) and various reduced filters called Strongly Damped Approximate Filter (SDAF), Variance Strongly Damped Approximate Filter (VSDAF), and Reduced Fourier Domain Kalman Filter (RFDKF) which operate only on the primary Fourier modes associated with the sparse observation mesh while nevertheless, incorporating into the approximate filter various features of the interaction with the remaining modes. It is shown below that these much cheaper alternative filters have significant skill on the test bed of turbulent solutions which exceeds ETKF and in various regimes often exceeds FDKF, provided that the approximate filters are guided by the off-line test criteria. The skill of the various approximate filters depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a precise fashion elucidated here.

  16. Unraveling Tropical Mountain Hydroclimatology by Coupling Autonomous Sensor Observations and Climate Modeling: Llanganuco Valley, Cordillera Blanca, Peru.

    NASA Astrophysics Data System (ADS)

    Hellstrom, R. A.; Fernandez, A.; Mark, B. G.; Covert, J. M.

    2015-12-01

    Northern Peru will face critical water resource issues in the near future as permanent ice retreats. Much of current global and regional climate research neglects the meteorological forcing of lapse rates and valley wind dynamics on critical components of the Peruvian Andes' water-cycle. In 2004 and 2005 we installed an autonomous sensor network (ASN) within the glacierized Llanganuco Valley, Cordillera Blanca (9°S), consisting of discrete, cost-effective, automatic temperature loggers located along the valley axis and anchored by two automatic weather stations. Comparisons of these embedded atmospheric measurements from the ASN and climate modeling (CM) by dynamical downscaling using the Weather Research and Forecasting (WRF) model elucidate distinct diurnal and seasonal characteristics of the mountain valley winds and lapse rates. Wind, temperature, humidity, and cloud simulations by WRF suggest that thermally driven valley winds converging with easterly flow aloft enhance late afternoon and evening cloud development which helps explain detected nocturnal precipitation maxima measured by the ASN. We attribute sustained evapotranspiration (ET), as estimated by the FAO-56 Penman-Monteith model, to an abundance of glacial melt-water during the dry season and strong pre-noon solar heating during the wet season. Furthermore, the extreme diurnal variability of along-valley-axis lapse rates and valley wind detected from ground observations and confirmed by dynamical downscaling demonstrate the importance of realistic scale parameterizations of the boundary layer to improve regional CM projections in mountainous regions. Our findings portray ET as an integral yet poorly represented process in Andean hydroclimatology. We show that coupling ASN and CM can improve understanding of multi-scale atmospheric and associated hydrological processes in mountain valleys.

  17. The SMILE Mission: Orbit Design and Observation Strategy

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Yu, X. Z.; Wang, C.; Sun, T.; Han, J. W.; Rebuffat, D.; Escoubet, C. P.; Zhu, X. C.; Branduardi-Raymont, G.; Li, L.; Wei, F.; Dai, L.; Raab, W.

    2016-12-01

    SMILE is a 3-axis stabilized spacecraft composed of Payload Module, SerVice Module and Propulsion Module. It carries two remote sensing instruments, a Soft X-Ray Imager and a Ultraviolet Imager, and two in-situ instruments, a Light Ion Analyser and a Magnetometer. Its aim is to observe the Earth's global system responses to the solar wind and geomagnetic variations. SMILE will first be launched into a high inclination Low Earth Orbit (LEO) either by Soyuz dual launcher or Vega-C single launcher. Then the Propulsion Module will take the spacecraft into a polar highly elliptical orbit (HEO) with an altitude of 5000km×19Re. In the high inclination HEO, the X-Ray imager and UV imager will image the solar wind-magnetosphere coupling above 50000km, and the Light Ion Analyser and the Magnetometer will measure the plasma and magnetic field during the whole HEO orbit. This talk will present the HEO orbit optimized design, an overview of the preliminary design for the SMILE spacecraft, the observation strategy and observation time.

  18. Research on the strategies to optimize traditional Korean nationality village residential environment -- Taking the transformation of Chatiao Village in Antu County, Yanbian Korean Nationality Autonomous Prefecture as example

    NASA Astrophysics Data System (ADS)

    Chaoyang, Sun; Xin, Sui; Mo, Li; Yongqiang, Wang

    2017-04-01

    This research is aimed to make an in-depth research into the strategies and methods to protect and develop the residential environment in the villages and towns with minority group characteristics. In the research on the construction mode and optimization strategy of the residential environment of the original residents in Chatiao Village, Antu County, Korean Nationality Autonomous Prefecture, the contents of architecture and planning were used comprehensively with the philosophy of green design, sociology and economics being combined simultaneously to drive the humanistic and economic development in the minority areas at the same time of providing new employment opportunities and a comfortable residential environment for people, thus realizing the complete development of the characteristic villages in Chinese minority areas.

  19. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  20. Autonomic neuropathies

    NASA Technical Reports Server (NTRS)

    Low, P. A.

    1998-01-01

    A limited autonomic neuropathy may underlie some unusual clinical syndromes, including the postural tachycardia syndrome, pseudo-obstruction syndrome, heat intolerance, and perhaps chronic fatigue syndrome. Antibodies to autonomic structures are common in diabetes, but their specificity is unknown. The presence of autonomic failure worsens prognosis in the diabetic state. Some autonomic neuropathies are treatable. Familial amyloid polyneuropathy may respond to liver transplantation. There are anecdotal reports of acute panautonomic neuropathy responding to intravenous gamma globulin. Orthostatic hypotension may respond to erythropoietin or midodrine.

  1. Volcano Observations Using an Unmanned Autonomous Helicopter : seismic and GPS observations near the active summit area of Sakurajima and Kirishima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ohminato, T.; Kaneko, T.; Koyama, T.; Watanabe, A.; Takeo, M.; Iguchi, M.; Honda, Y.

    2012-04-01

    Observations in the vicinity of summit area of active volcanoes are very important from various viewpoints such as understanding physical processes in the volcanic conduit. It is, however, highly difficult to install observation sensors near active vents because of the risk of sudden eruptions. We have been developing a safe volcano observation system based on an unmanned aerial vehicle (UAV). As an UAV, we adopted an unmanned autonomous helicopter manufactured by Yamaha-Motor Co., Ltd. We have also developed earthquake observation modules and GPS receiver modules that are exclusively designed for UAV installation at summit areas of active volcanoes. These modules are light weight, compact size, and solar powered. For data transmission, a commercial cellular-phone network is used. Our first application of the sensor installation by the UAV is Sakurajima, one of the most active volcanos in Japan. In November 2009, 2010, and 2011, we installed up to four seismic sensors within 2km from the active summit crater. In the 2010 and 2011 operations, we succeeded in pulling up and collecting the sensor modules by using the UAV. In the 2011 experiment, we installed two GPS receivers near the summit area of Sakurajima volcano. We also applied the UAV installation to another active volcano, Shinmoedake in Kirishima volcano group. Since the sub-plinian eruption in February 2011, entering the area 3km from the summit of Shinmoe-dake has been prohibited. In May and November 2011, we installed seismic sensors and GPS receivers in the off-limit zone. Although the ground coupling of the seismic modules is not perfect due to the way they are installed, the signal-to-noise ratio of the seismic signals recorded by these modules is fairly good. Despite the low antenna height of 50 cm from the ground surface, the location errors in horizontal and vertical GPS components are 1cm and 3cm, respectively. For seismic signals associated with eruptions at Sakurajima from November 2010 to

  2. Intelligent Observation Strategies for Geosynchronous Remote Sensing for Natural Hazards

    NASA Astrophysics Data System (ADS)

    Moe, K.; Cappelaere, P. G.; Frye, S. W.; LeMoigne, J.; Mandl, D.; Flatley, T.; Geist, A.

    2015-12-01

    Geosynchronous satellites offer a unique perspective for monitoring environmental factors important to understanding natural hazards and supporting the disasters management life cycle, namely forecast, detection, response, recovery and mitigation. In the NASA decadal survey for Earth science, the GEO-CAPE mission was proposed to address coastal and air pollution events in geosynchronous orbit, complementing similar initiatives in Asia by the South Koreans and by ESA in Europe, thereby covering the northern hemisphere. In addition to analyzing the challenges of identifying instrument capabilities to meet the science requirements, and the implications of hosting the instrument payloads on commercial geosynchronous satellites, the GEO-CAPE mission design team conducted a short study to explore strategies to optimize the science return for the coastal imaging instrument. The study focused on intelligent scheduling strategies that took into account cloud avoidance techniques as well as onboard processing methods to reduce the data storage and transmission loads. This paper expands the findings of that study to address the use of intelligent scheduling techniques and near-real time data product acquisition of both the coastal water and air pollution events. The topics include the use of onboard processing to refine and execute schedules, to detect cloud contamination in observations, and to reduce data handling operations. Analysis of state of the art flight computing capabilities will be presented, along with an assessment of cloud detection algorithms and their performance characteristics. Tools developed to illustrate operational concepts will be described, including their applicability to environmental monitoring domains with an eye to the future. In the geostationary configuration, the payload becomes a networked "thing" with enough connectivity to exchange data seamlessly with users. This allows the full field of view to be sensed at very high rate under the

  3. Intelligent Observation Strategies for Geosynchronous Remote Sensing for Natural Hazards

    NASA Technical Reports Server (NTRS)

    Moe, Karen; Cappleare, Patrice; Frye, Stuart; LeMoigne, Jacqueline; Mandl, Daniel; Flatley, Thomas; Geist, Alessandro

    2015-01-01

    Geosynchronous satellites offer a unique perspective for monitoring environmental factors important to understanding natural hazards and supporting the disasters management life cycle, namely forecast, detection, response, recovery and mitigation. In the NASA decadal survey for Earth science, the GEO-CAPE mission was proposed to address coastal and air pollution events in geosynchronous orbit, complementing similar initiatives in Asia by the South Koreans and by ESA in Europe, thereby covering the northern hemisphere. In addition to analyzing the challenges of identifying instrument capabilities to meet the science requirements, and the implications of hosting the instrument payloads on commercial geosynchronous satellites, the GEO-CAPE mission design team conducted a short study to explore strategies to optimize the science return for the coastal imaging instrument. The study focused on intelligent scheduling strategies that took into account cloud avoidance techniques as well as onboard processing methods to reduce the data storage and transmission loads. This paper expands the findings of that study to address the use of intelligent scheduling techniques and near-real time data product acquisition of both the coastal water and air pollution events. The topics include the use of onboard processing to refine and execute schedules, to detect cloud contamination in observations, and to reduce data handling operations. Analysis of state of the art flight computing capabilities will be presented, along with an assessment of cloud detection algorithms and their performance characteristics. Tools developed to illustrate operational concepts will be described, including their applicability to environmental monitoring domains with an eye to the future. In the geostationary configuration, the payload becomes a networked thing with enough connectivity to exchange data seamlessly with users. This allows the full field of view to be sensed at very high rate under the control

  4. Matching Strategies for Observational Data with Multilevel Structure

    ERIC Educational Resources Information Center

    Steiner, Peter M.

    2011-01-01

    Given the different possibilities of matching in the context of multilevel data and the lack of research on corresponding matching strategies, the author investigates two main research questions. The first research question investigates the advantages and disadvantages of different matching strategies that can be pursued with multilevel data…

  5. Intrinsic cardiovascular autonomic regulatory system of astronauts exposed long-term to microgravity in space: observational study.

    PubMed

    Otsuka, Kuniaki; Cornelissen, Germaine; Kubo, Yutaka; Hayashi, Mitsutoshi; Yamamoto, Naomune; Shibata, Koichi; Aiba, Tatsuya; Furukawa, Satoshi; Ohshima, Hiroshi; Mukai, Chiaki

    2015-01-01

    The fractal scaling of the long-term heart rate variability (HRV) reflects the 'intrinsic' autonomic regulatory system. Herein, we examine how microgravity on the ISS affected the power-law scaling β (beta) of astronauts during a long-duration (about 6 months) spaceflight. Ambulatory electrocardiographic (ECG) monitoring was performed on seven healthy astronauts (5 men, 52.0±4.2 years of age) five times: before launch, 24±5 (F01) and 73±5 (F02) days after launch, 15±5 days before return (F03), and after return to Earth. The power-law scaling β was calculated as the slope of the regression line of the power density of the MEM spectrum versus frequency plotted on a log10-log10 scale in the range of 0.0001-0.01 Hz (corresponding to periods of 2.8 h to 1.6 min). β was less negative in space (-0.949±0.061) than on Earth (-1.163±0.075; P<0.025). The difference was more pronounced during the awake than during the rest/sleep span. The circadian amplitude and acrophase (phase of maximum) of β did not differ in space as compared with Earth. An effect of microgravity was detected within 1 month (F01) in space and continued throughout the spaceflight. The intrinsic autonomic regulatory system that protects life under serious environmental conditions on Earth is altered in the microgravity environment, with no change over the 6-month spaceflight. It is thus important to find a way to improve conditions in space and/or in terms of human physiology, not to compromise the intrinsic autonomic regulatory system now that plans are being made to inhabit another planet in the near future.

  6. Autonomous Optical Lunar Navigation

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; Crouse, Brian; D'souza, Chris

    2009-01-01

    The performance of optical autonomous navigation is investigated for low lunar orbits and for high elliptical lunar orbits. Various options for employing the camera measurements are presented and compared. Strategies for improving navigation performance are developed and applied to the Orion vehicle lunar mission

  7. Developing Autonomous Learners.

    ERIC Educational Resources Information Center

    Mulcahy, Robert F.

    1991-01-01

    Defines the concept of autonomous learning. Presents the Strategies Program for Effective Learning/Thinking (SPELT), including its underlying assumptions, instructional model, teacher training procedures, research findings, and anticipated future development. Research results include implications for learning-disabled and gifted students. (KS)

  8. Autonomic neuropathies.

    PubMed

    Iodice, Valeria; Sandroni, Paola

    2014-10-01

    This article focuses on the most prevalent forms of autonomic neuropathies, but also discusses conditions such as focal and dysfunctional syndromes (altered autonomic function in the absence of structural lesions). The goal of this review is to allow the reader to promptly recognize these disorders, identify potentially reversible or treatable causes, and implement the appropriate treatment as well as supportive care. Secondary forms of autonomic neuropathies (eg, diabetes mellitus, amyloidosis) are much more common than primary forms, of which autoimmune ganglioneuropathies represent a major component. However, the spectrum of the latter is continuously evolving and has diagnostic and therapeutic implications. Testing modalities such as autonomic testing, serum autoimmune antibody testing, and skin biopsies are becoming more widely available. Autonomic neuropathies are relatively common conditions, and, because of the prognostic implications as well as impact on patient quality of life, they should be promptly recognized and treated aggressively. Testing is critical as other conditions may mimic autonomic neuropathies. Treatment is symptomatic in many cases, but specific therapies are also available in selected autonomic neuropathies.

  9. Cooperative Communication Strategies: Observations in a Black Community.

    ERIC Educational Resources Information Center

    Garner, Thurmon

    1983-01-01

    Examines two strategies which Blacks use to bring about cooperation in the Black community: (1) "indirection," which makes use of humorous messages, avoidance, and signifying to reduce conflicts, and (2) "neutralization," which involves the use of verbal justifications and excuses to stabilize situations in which disagreements may arise over…

  10. Cooperative Communication Strategies: Observations in a Black Community.

    ERIC Educational Resources Information Center

    Garner, Thurmon

    1983-01-01

    Examines two strategies which Blacks use to bring about cooperation in the Black community: (1) "indirection," which makes use of humorous messages, avoidance, and signifying to reduce conflicts, and (2) "neutralization," which involves the use of verbal justifications and excuses to stabilize situations in which disagreements may arise over…

  11. DEMO: The autonomous sciencecraft experiment onboard the EO-1 spacecraft

    NASA Technical Reports Server (NTRS)

    Tran, Daniel; Chien, Steve; Sherwood, Rob; Castano, Rebecca; Cichy, Benjamin; Davies, Ashley; Rabideau, Gregg

    2005-01-01

    The Autonomous Sciencecraft Experiment (ASE), currently flying onboard the Earth Observing-1 (EO-1) spacecraft, integrates several autonomy software technologies enabling autonomous science analysis and mission planning.

  12. Towards autonomous fuzzy control

    NASA Technical Reports Server (NTRS)

    Shenoi, Sujeet; Ramer, Arthur

    1993-01-01

    The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.

  13. Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

    NASA Astrophysics Data System (ADS)

    Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.

    2016-12-01

    Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.

  14. Software solution for autonomous observations with H2RG detectors and SIDECAR ASICs for the RATIR camera

    NASA Astrophysics Data System (ADS)

    Klein, Christopher R.; Kubánek, Petr; Butler, Nathaniel R.; Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Bloom, Joshua S.; Farah, Alejandro; Gehrels, Neil; Georgiev, Leonid; González, J. Jesús; Lee, William H.; Lotkin, Gennadiy N.; Moseley, Samuel H.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Robinson, Frederick D.; Román-Zúñiga, Carlos; Samuel, Mathew V.; Sparr, Leroy M.; Tucker, Corey; Watson, Alan M.

    2012-07-01

    The Reionization And Transients InfraRed (RATIR) camera has been built for rapid Gamma-Ray Burst (GRB) followup and will provide quasi-simultaneous imaging in ugriZY JH. The optical component uses two 2048 × 2048 pixel Finger Lakes Imaging ProLine detectors, one optimized for the SDSS u, g, and r bands and one optimized for the SDSS i band. The infrared portion incorporates two 2048 × 2048 pixel Teledyne HgCdTe HAWAII-2RG detectors, one with a 1.7-micron cutoff and one with a 2.5-micron cutoff. The infrared detectors are controlled by Teledyne's SIDECAR (System for Image Digitization Enhancement Control And Retrieval) ASICs (Application Specific Integrated Circuits). While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 (JWST ASIC Drive Electronics) interface card and IDE (Integrated Development Environment). Here we present a summary of the software developed to interface the RATIR detectors with Remote Telescope System, 2nd Version (RTS2) software. RTS2 is an integrated open source package for remote observatory control under the Linux operating system and will autonomously coordinate observatory dome, telescope pointing, detector, filter wheel, focus stage, and dewar vacuum compressor operations. Where necessary we have developed custom interfaces between RTS2 and RATIR hardware, most notably for cryogenic focus stage motor drivers and temperature controllers. All detector and hardware interface software developed for RATIR is freely available and open source as part of the RTS2 distribution.

  15. Situational Evidence: Strategies for Causal Reasoning From Observational Field Notes

    ERIC Educational Resources Information Center

    Katz, Jack

    2015-01-01

    There is unexamined potential for developing and testing rival causal explanations in the type of data that participant observation is best suited to create: descriptions of in situ social interaction crafted from the participants' perspectives. By intensively examining a single ethnography, we can see how multiple predictions can be derived from…

  16. LES ARM Symbiotic Simulation and Observation (LASSO) Implementation Strategy

    SciTech Connect

    Gustafson Jr., WI; Vogelmann, AM

    2015-09-01

    This document illustrates the design of the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) workflow to provide a routine, high-resolution modeling capability to augment the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s high-density observations. LASSO will create a powerful new capability for furthering ARM’s mission to advance understanding of cloud, radiation, aerosol, and land-surface processes. The combined observational and modeling elements will enable a new level of scientific inquiry by connecting processes and context to observations and providing needed statistics for details that cannot be measured. The result will be improved process understanding that facilitates concomitant improvements in climate model parameterizations. The initial LASSO implementation will be for ARM’s Southern Great Plains site in Oklahoma and will focus on shallow convection, which is poorly simulated by climate models due in part to clouds’ typically small spatial scale compared to model grid spacing, and because the convection involves complicated interactions of microphysical and boundary layer processes.

  17. Strategies GeoCape Intelligent Observation Studies @ GSFC

    NASA Technical Reports Server (NTRS)

    Cappelaere, Pat; Frye, Stu; Moe, Karen; Mandl, Dan; LeMoigne, Jacqueline; Flatley, Tom; Geist, Alessandro

    2015-01-01

    This presentation provides information a summary of the tradeoff studies conducted for GeoCape by the GSFC team in terms of how to optimize GeoCape observation efficiency. Tradeoffs include total ground scheduling with simple priorities, ground scheduling with cloud forecast, ground scheduling with sub-area forecast, onboard scheduling with onboard cloud detection and smart onboard scheduling and onboard image processing. The tradeoffs considered optimzing cost, downlink bandwidth and total number of images acquired.

  18. Microphysics of condensational clouds of Venus and observation strategy

    NASA Astrophysics Data System (ADS)

    Imamura, T.; Hashimoto, G.

    The variability of Venusian clouds in the tropics was studied by simultaneously solving advection and cloud microphysics equations, using a one-dimensional model that includes a weak upwelling representing the rising branch of Hadley circulation and also strong temporal winds. Cloud droplets in the upper cloud region are formed by the photochemical production of H2 SO4 vapor and eventually removed from the tropical atmosphere by Hadley circulation, whereas in the middle and lower cloud regions dynamical processes supply H2 SO4 vapor from below such that resultant droplets are large and fall against the upwelling. Within the latter condensational clouds, transient strong winds govern droplet growth and produce a variety of size distributions similar to those observed. Specifically, in an updraft, adiabatic expansion abruptly cools H2 SO4 vapor, thereby forcing the saturation pressure over condensation nuclei to transiently fall below the ambient H2 SO4 vapor pressure. Bare condensation nuclei may then overcome the Kelvin barrier and form middle-size droplets, that gradually merge into pre-existing larger size mode with a time constant of several hours. Such a temporal change in droplet size associated with each transient event would be detected if successive nightside images are acquired with short time intervals (<1 hr) at several wavelengths in the near-infrared window, since a near-infrared spectrum of Venus nightside is sensitive to the dominant droplet size. A Venus orbiter with high-apoapsis orbit will be suitable for such an observation.

  19. Autonomous Soaring

    NASA Technical Reports Server (NTRS)

    Lin, Victor P.

    2007-01-01

    This viewgraph presentation reviews the autonomous soaring flight of unmanned aerial vehicles (UAV). It reviews energy sources for UAVs, and two examples of UAV's that used alternative energy sources, and thermal currents for soaring. Examples of flight tests, plans, and results are given. Ultimately, the concept of a UAV harvesting energy from the atmosphere has been shown to be feasible with existing technology.

  20. Autonomous Observations of the Upper Ocean Stratification and Velocity Field about the Seasonally-Retreating Marginal Ice Zone

    DTIC Science & Technology

    2016-12-30

    designed to observe the seasonal evolution of the upper-ocean stratification , document the time-varying ocean currents and characterize the turbulent ice...Objectives As a contribution to the Marginal Ice Zone DRI, this research element was designed to observe the seasonal evolution of the upper...Postgraduate School doctoral candidate Shawn Gallaher (and his supervisors), the collective MIZ observations were used to quantify the evolution of the ice

  1. A Teaching Strategy for Developing the Power of Observation in Science Education

    ERIC Educational Resources Information Center

    Oguz-Unver, Ayse; Yurumezoglu, Kemal

    2009-01-01

    Despite the importance of observation in knowledge building, it has received less attention than experimental forms of inquiry in science education. Therefore, the aims of this study are to use observation strategies for developing the power of observation in science education and to develop student teachers' skills of observation process. The…

  2. The psychophysiology of parenting: Individual differences in autonomic reactivity to positive and negative mood inductions and observed parental affect during dyadic interactions with children.

    PubMed

    Connell, Arin M; Dawson, Glen C; Danzo, Sarah; McKillop, Hannah N

    2017-02-01

    Parenting is a complex activity driven, in part, by parental emotional and physiological responses. However, work examining the physiological underpinnings of parenting behavior is still in its infancy, and very few studies have examined such processes beyond early childhood. The current study examines associations between Autonomic Nervous System (ANS) indices of parents' physiological reactivity to positive and negative mood states and observed parental affect during a series of discussion tasks with their adolescent child. Respiratory Sinus Arrhythmia (RSA) was measured as an index of parasympathetic nervous system (PNS) activation while viewing film clips designed to induce neutral, sad, and amused mood states. Parental positive affect, anger, and distress were observed during a series of parent-child discussion tasks, which included an ambiguous discussion regarding adolescent growth, a conflict discussion, and a fun-activity planning discussion. Results supported the association between aspects of parental physiological reactivity and observed affect during dyadic interactions. Further, RSA interacted with maternal depression to predict observed positive affect, anger, and distress, although differences across tasks and specific emotions were found regarding the nature of the interaction effects. Overall, results suggest that such neurobiological processes may be particularly important predictors of parental behavior, particularly in at-risk populations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Identification and control integration strategies

    NASA Technical Reports Server (NTRS)

    Milman, Mark; Mettler, Edward; Bayard, David

    1988-01-01

    This paper describes an autonomous control concept for pointing and articulation of science instruments on the Eos (Earth observing system) NASA/NOAA platforms intended to be operational by the late 1990s. Key features of this concept include advanced control adaptation and tuning strategies which provide performance robustness over a wide range of system uncertainties and mission time criticality. System identification-control modification paradigms are synthesized to form an adaptation continuum over this extended regime of autonomous operations.

  4. Identification and control integration strategies

    NASA Technical Reports Server (NTRS)

    Milman, Mark; Mettler, Edward; Bayard, David

    1988-01-01

    This paper describes an autonomous control concept for pointing and articulation of science instruments on the Eos (Earth observing system) NASA/NOAA platforms intended to be operational by the late 1990s. Key features of this concept include advanced control adaptation and tuning strategies which provide performance robustness over a wide range of system uncertainties and mission time criticality. System identification-control modification paradigms are synthesized to form an adaptation continuum over this extended regime of autonomous operations.

  5. Autonomous software: Myth or magic?

    NASA Astrophysics Data System (ADS)

    Allan, A.; Naylor, T.; Saunders, E. S.

    2008-03-01

    We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.

  6. Autonomous Observations of the Upper Ocean Stratification and Velocity Fields About the Seasonally-Retreating Marginal Ice Zone

    DTIC Science & Technology

    2013-09-30

    Unit and Attitude Heading Reference System (IMU/AHRS). The former was motivated by analysis of prototype data that suggested that vortex shedding from...the standard MAVS transducer supports introduced noise into the velocity observations. The new design is optimized for a profiler that orients

  7. Autonomous vehicles

    SciTech Connect

    Meyrowitz, A.L.; Blidberg, D.R.; Michelson, R.C. |

    1996-08-01

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  8. Factors Associated with South Korean Early Childhood Educators' Observed Behavior Support Strategies

    ERIC Educational Resources Information Center

    Kim, Yeon Ha; Stormont, Melissa

    2012-01-01

    This study was an exploratory study of 34 South Korean early childhood educators' strategies for addressing behavior problems in natural settings. Factors related to teachers' strategy implementation were also explored. Four specific teacher behaviors were observed: precorrection, behavioral-specific praise, redirection, and reprimand/punishment.…

  9. Concurrent Validity of the Classroom Strategies Scale for Elementary School--Observer Form

    ERIC Educational Resources Information Center

    Reddy, Linda A.; Fabiano, Gregory A.; Dudek, Christopher M.

    2013-01-01

    The present study is an initial investigation of the concurrent validity of a new assessment, the Classroom Strategies Scale (CSS version 2.0) for Elementary School--Observer Form. The CSS assesses teachers' use of instructional and behavioral management strategies. In the present study, the CSS is compared to the Classroom Assessment Scoring…

  10. Concurrent Validity of the Classroom Strategies Scale for Elementary School--Observer Form

    ERIC Educational Resources Information Center

    Reddy, Linda A.; Fabiano, Gregory A.; Dudek, Christopher M.

    2013-01-01

    The present study is an initial investigation of the concurrent validity of a new assessment, the Classroom Strategies Scale (CSS version 2.0) for Elementary School--Observer Form. The CSS assesses teachers' use of instructional and behavioral management strategies. In the present study, the CSS is compared to the Classroom Assessment Scoring…

  11. Special Strategies Observation System-Revised: A Useful Tool for Educational Research and Evaluation

    ERIC Educational Resources Information Center

    Meehan, Merrill L.; Cowley, Kimberly S.; Finch, Nicole L.; Chadwick, Kristine L.; Ermolov, Lisa D.; Riffle, M. Joy S.

    2004-01-01

    A review of the critical literature provides a brief history of systematic observation of classroom behaviors, long valued as an important data collection method in educational research. Milestones in systematic observation of classrooms are traced back to 1914 and the development and use of the Special Strategies Observation System (SSOS) through…

  12. Autonomic Dysregulation in Multiple Sclerosis

    PubMed Central

    Pintér, Alexandra; Cseh, Domonkos; Sárközi, Adrienn; Illigens, Ben M.; Siepmann, Timo

    2015-01-01

    Multiple sclerosis (MS) is a chronic, progressive central neurological disease characterized by inflammation and demyelination. In patients with MS, dysregulation of the autonomic nervous system may present with various clinical symptoms including sweating abnormalities, urinary dysfunction, orthostatic dysregulation, gastrointestinal symptoms, and sexual dysfunction. These autonomic disturbances reduce the quality of life of affected patients and constitute a clinical challenge to the physician due to variability of clinical presentation and inconsistent data on diagnosis and treatment. Early diagnosis and initiation of individualized interdisciplinary and multimodal strategies is beneficial in the management of autonomic dysfunction in MS. This review summarizes the current literature on the most prevalent aspects of autonomic dysfunction in MS and provides reference to underlying pathophysiological mechanisms as well as means of diagnosis and treatment. PMID:26213927

  13. Autonomous control

    NASA Technical Reports Server (NTRS)

    Brown, Barbara

    1990-01-01

    KSC has been developing the Knowledge-Based Autonomous Test Engineer (KATE), which is a tool for performing automated monitoring, diagnosis, and control of electromechanical devices. KATE employs artificial intelligence computing techniques to perform these functions. The KATE system consists of a generic shell and a knowledge base. The KATE shell is the portion of the system which performs the monitoring, diagnosis, and control functions. It is generic in the sense that it is application independent. This means that the monitoring activity, for instance, will be performed with the same algorithms regardless of the particular physical device being used. The knowledge base is the portion of the system which contains specific functional and behavorial information about the physical device KATE is working with. Work is nearing completion on a project at KSC to interface a Texas Instruments Explorer running a LISP version of KATE with a Generic Checkout System (GCS) test-bed to control a physical simulation of a shuttle tanking system (humorously called the Red Wagon because of its color and mobility). The Autonomous Control System (ACS) project supplements and extends the KATE/GCS project by adding three other major activities. The activities include: porting KATE from the Texas Instruments Explorer machine to an Intel 80386-based UNIX workstation in the LISP language; rewriting KATE as necessary to run on the same 80386 workstation but in the Ada language; and investigating software and techniques to translate ANSI Standard Common LISP to Mil Standard Ada. Primary goals of this task are as follows: (1) establish the advantages of using expert systems to provide intelligent autonomous software for Space Station Freedom applications; (2) determine the feasibility of using Ada as the run-time environment for model-based expert systems; (3) provide insight into the advantages and disadvantagesof using LISP or Ada in the run-time environment for expert systems; and (4

  14. Determining best practices in reconnoitering sites for habitability potential on Mars using a semi-autonomous rover: A GeoHeuristic Operational Strategies Test

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Berger, J.; Cohen, B. A.; Hynek, B.; Schmidt, M. E.

    2017-03-01

    We tested science operations strategies developed for use in remote mobile spacecraft missions, to determine whether reconnoitering a site of potential habitability prior to in-depth study (a walkabout-first strategy) can be a more efficient use of time and resources than the linear approach commonly used by planetary rover missions. Two field teams studied a sedimentary sequence in Utah to assess habitability potential. At each site one team commanded a human "rover" to execute observations and conducted data analysis and made follow-on decisions based solely on those observations. Another team followed the same traverse using traditional terrestrial field methods, and the results of the two teams were compared. Test results indicate that for a mission with goals similar to our field case, the walkabout-first strategy may save time and other mission resources, while improving science return. The approach enabled more informed choices and higher team confidence in choosing where to spend time and other consumable resources. The walkabout strategy may prove most efficient when many close sites must be triaged to a smaller subset for detailed study or sampling. This situation would arise when mission goals include finding, identifying, characterizing or sampling a specific material, feature or type of environment within a certain area.

  15. INL Autonomous Navigation System

    SciTech Connect

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  16. The Therapy Process Observational Coding System for Child Psychotherapy Strategies Scale

    ERIC Educational Resources Information Center

    McLeod, Bryce D.; Weisz, John R.

    2010-01-01

    Most everyday child and adolescent psychotherapy does not follow manuals that document the procedures. Consequently, usual clinical care has remained poorly understood and rarely studied. The Therapy Process Observational Coding System for Child Psychotherapy-Strategies scale (TPOCS-S) is an observational measure of youth psychotherapy procedures…

  17. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  18. The Therapy Process Observational Coding System for Child Psychotherapy Strategies Scale

    ERIC Educational Resources Information Center

    McLeod, Bryce D.; Weisz, John R.

    2010-01-01

    Most everyday child and adolescent psychotherapy does not follow manuals that document the procedures. Consequently, usual clinical care has remained poorly understood and rarely studied. The Therapy Process Observational Coding System for Child Psychotherapy-Strategies scale (TPOCS-S) is an observational measure of youth psychotherapy procedures…

  19. Pharmacotherapy of autonomic failure

    PubMed Central

    Shibao, Cyndya; Okamoto, Luis; Biaggioni, Italo

    2012-01-01

    The clinical picture of autonomic failure is characterized by severe and disabling orthostatic hypotension. These disorders can develop as a result of damage of central neural pathways or peripheral autonomic nerves, caused either by a primary autonomic neurodegenerative disorder or secondary to systemic illness. Treatment should be focused on decreasing presyncopal symptoms instead of achieving blood pressure goals. Non-pharmacologic strategies such as physical counter-maneuvers, dietary changes (i.e. high salt diet, rapid water drinking or compression garments) are the first line therapy. Affected patients should be screened for co-morbid conditions such as post-prandial hypotension and supine hypertension that can worsen orthostatic hypotension if not treated. If symptoms are not controlled with these conservative measures the next step is to start pharmacological agents; these interventions should be aimed at increasing intravascular volume either by promoting water and salt retention (fludrocortisone) or by increasing red blood cell mass when anemia is present (recombinant erythropoietin). When pressor agents are needed, direct pressor agents (midodrine) or agents that potentiate sympathetic activity (atomoxetine, yohimbine, pyridostigmine) can be used. It is preferable to use short-acting pressor agents that can be taken on as needed basis in preparation for upright activities. PMID:21664375

  20. Examining Dynamical Processes of Tropical Mountain Hydroclimate, Particularly During the Wet Season, Through Integration of Autonomous Sensor Observations and Climate Modeling

    NASA Astrophysics Data System (ADS)

    Hellstrom, R. A.; Fernandez, A.; Mark, B. G.; Covert, J. M.

    2016-12-01

    Peru is facing imminent water resource issues as glaciers retreat and demand increases, yet limited observations and model resolution hamper understanding of hydrometerological processes on local to regional scales. Much of current global and regional climate studies neglect the meteorological forcing of lapse rates (LRs) and valley and slope wind dynamics on critical components of the Peruvian Andes' water-cycle, and herein we emphasize the wet season. In 2004 and 2005 we installed an autonomous sensor network (ASN) within the glacierized Llanganuco Valley, Cordillera Blanca (9°S), consisting of discrete, cost-effective, automatic temperature loggers located along the valley axis and anchored by two automatic weather stations. Comparisons of these embedded hydrometeorological measurements from the ASN and climate modeling by dynamical downscaling using the Weather Research and Forecasting model (WRF) elucidate distinct diurnal and seasonal characteristics of the mountain wind regime and LRs. Wind, temperature, humidity, and cloud simulations suggest that thermally driven up-valley and slope winds converging with easterly flow aloft enhance late afternoon and evening cloud development which helps explain nocturnal wet season precipitation maxima measured by the ASN. Furthermore, the extreme diurnal variability of along-valley-axis LR, and valley wind detected from ground observations and confirmed by dynamical downscaling demonstrate the importance of realistic scale parameterizations of the atmospheric boundary layer to improve regional climate model projections in mountainous regions. We are currently considering to use intermediate climate models such as ICAR to reduce computing cost and we continue to maintain the ASN in the Cordillera Blanca.

  1. Diabetic autonomic neuropathy.

    PubMed

    Freeman, Roy

    2014-01-01

    Diabetes mellitus is the commonest cause of an autonomic neuropathy in the developed world. Diabetic autonomic neuropathy causes a constellation of symptoms and signs affecting cardiovascular, urogenital, gastrointestinal, pupillomotor, thermoregulatory, and sudomotor systems. Several discrete syndromes associated with diabetes cause autonomic dysfunction. The most prevalent of these are: generalized diabetic autonomic neuropathy, autonomic neuropathy associated with the prediabetic state, treatment-induced painful and autonomic neuropathy, and transient hypoglycemia-associated autonomic neuropathy. These autonomic manifestations of diabetes are responsible for the most troublesome and disabling features of diabetic peripheral neuropathy and result in a significant proportion of the mortality and morbidity associated with the disease.

  2. Autonomous-Control Concept For Instrument Pointing System

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Milman, Mark H.; Bayard, David S.

    1990-01-01

    Integrated payload articulation and identification system (IPAIDS) is conceptual system to control aiming of instruments aboard spacecraft of proposed Earth Observation System (EOS). Principal features of concept include advanced control strategies intended to assure robustness of performance over wide range of uncertainties in characteristics of spacecraft and instrument system. Intended originally for application to spacecraft system, has potential utility on Earth for automatic control of autonomous (robotic) vehicles or of remote sensing systems.

  3. Using an autonomous passive acoustic observational system to monitor the environmental impact of the Gulf of Mexico oil spill on deep-diving marine mammals

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, N.; Ackleh, A.; Ma, B.; Tiemann, C.; Ioup, J. W.; Ioup, G. E.

    2012-12-01

    The Littoral Acoustic Demonstration Center (LADC) is a consortium of scientists from four universities and the U.S. Navy, which performs acoustic measurements and analysis in littoral waters. For the present work, six passive autonomous broadband acoustic sensors were deployed by LADC in the vicinity of the Deep Water Horizon oil spill site in the Northern Gulf of Mexico in fall 2010. The objective of the project is to assess long-term impact of the spill on the deep-diving residential population of marine mammals, particularly, sperm and beaked whales. Collected data were processed to detect, extract, and count acoustic signals produced by different types of marine mammals. As a next step, a statistical model which uses acoustic inputs was developed to estimate residential populations of different types of marine mammals at different distances from the spill site. The estimates were compared to population estimates from years prior to the spill, using pre-spill collected data in the area by LADC from 2001, 2002, and 2007. The results indicate different responses from sperm and beaked whales in the first months following the spill. A recently published article by our research group (Ackleh et al., J. Acoust. Soc. Am. 131, 2306-2314) provides a comparison of 2007 and 2010 estimates showing a decrease in acoustic activity and abundance of sperm whales at the 9-mile distant site, whereas acoustic activity and abundance at the 25-mile distant site has clearly increased. This may indicate that some sperm whales have relocated farther away from the spill subject to food source availability. The beaked whale population appears to return to 2007 numbers after the spill even at the closest 9-mile distant site. Several acoustically observed changes in the animals' habitat associated with the spill, such as anthropogenic noise level, prey presence, etc., can be connected with the observed population trends. Preliminary results for interpreting observed population trends will

  4. General autonomic components of motion sickness

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S.; Suter, Steve; Toscano, William B.; Kamiya, Joe; Naifeh, Karen

    1986-01-01

    This report refers to a body of investigations directed toward the examination of autonomic nervous system responses to motion sickness. Heart rate, respiration rate, finger pulse volume, and basal skin resistance were measured on 127 men and women before, during, and after exposure to a nauseogenic rotating chair test. Significant changes in all autonomic responses were observed across the tests (p less than .05). Significant differences in autonomic responses among groups divided according to motion sickness susceptibility were also observed (p less than .05). Results suggest that the examination of autonomic responses as an objective indicator of motion sickness malaise is warranted and may contribute to the overall understanding of the syndrome.

  5. Cardiac autonomic nerve distribution and arrhythmia☆

    PubMed Central

    Liu, Quan; Chen, Dongmei; Wang, Yonggang; Zhao, Xin; Zheng, Yang

    2012-01-01

    OBJECTIVE: To analyze the distribution characteristics of cardiac autonomic nerves and to explore the correlation between cardiac autonomic nerve distribution and arrhythmia. DATA RETRIEVAL: A computer-based retrieval was performed for papers examining the distribution of cardiac autonomic nerves, using heart, autonomic nerve, sympathetic nerve, vagus nerve, nerve distribution, rhythm and atrial fibrillation as the key words. SELECTION CRITERIA: A total of 165 studies examining the distribution of cardiac autonomic nerve were screened, and 46 of them were eventually included. MAIN OUTCOME MEASURES: The distribution and characteristics of cardiac autonomic nerves were observed, and immunohistochemical staining was applied to determine the levels of tyrosine hydroxylase and acetylcholine transferase (main markers of cardiac autonomic nerve distribution). In addition, the correlation between cardiac autonomic nerve distribution and cardiac arrhythmia was investigated. RESULTS: Cardiac autonomic nerves were reported to exhibit a disordered distribution in different sites, mainly at the surface of the cardiac atrium and pulmonary vein, forming a ganglia plexus. The distribution of the pulmonary vein autonomic nerve was prominent at the proximal end rather than the distal end, at the upper left rather than the lower right, at the epicardial membrane rather than the endocardial membrane, at the left atrium rather than the right atrium, and at the posterior wall rather than the anterior wall. The main markers used for cardiac autonomic nerves were tyrosine hydroxylase and acetylcholine transferase. Protein gene product 9.5 was used to label the immunoreactive nerve distribution, and the distribution density of autonomic nerves was determined using a computer-aided morphometric analysis system. CONCLUSION: The uneven distribution of the cardiac autonomic nerves is the leading cause of the occurrence of arrhythmia, and the cardiac autonomic nerves play an important role in

  6. Cost-efficient measurement strategies for posture observations based on video recordings.

    PubMed

    Mathiassen, Svend Erik; Liv, Per; Wahlström, Jens

    2013-07-01

    Assessment of working postures by observation is a common practice in ergonomics. The present study investigated whether monetary resources invested in a video-based posture observation study should preferably be spent in collecting many video recordings of the work and have them observed once by one observer, or in having multiple observers rate postures repeatedly from fewer videos. The study addressed this question from a practitioner's perspective by focusing two plausible scenarios: documenting the mean exposure of one individual, and of a specific occupational group. Using a data set of observed working postures among hairdressers, empirical values of posture variability, observer variability, and costs for recording and observing one video were entered into equations expressing the total cost of data collection and the information (defined as 1/SD) provided by the resulting estimates of two variables: percentage time with the arm elevated <15° and >90°. Sixteen measurement strategies involving 1-4 observers repeating their posture ratings 1-4 times were examined for budgets up to €2000. For both posture variables and in both the individual and group scenario, the most cost-efficient strategy at any specific budget was to engage 3-4 observers and/or having observer(s) rate postures multiple times each. Between 17% and 34% less information was produced when using the commonly practiced approach of having one observer rate a number of video recordings one time each. We therefore recommend observational posture assessment to be based on video recordings of work, since this allows for multiple observations; and to allocate monetary resources to repeated observations rather than many video recordings.

  7. Research on space-based optical surveillance's observation strategy of geostationary-orbit's pitch point region

    NASA Astrophysics Data System (ADS)

    Wang, Xue-ying; An, Wei; Wu, Yu-hao; Li, Jun

    2015-03-01

    In order to surveillance the geostationary (GEO) objects, including man-made satellites and space debris, more efficiently, a space-based optical surveillance system was designed in this paper. A strategy to observe the pinch point region was selected because of the GEO objects' dynamics features. That strategy affects the surveillance satellites orbital type and sensor pointing strategy. In order to minimize total surveillance satellites and the revisit time for GEO objects, a equation was set. More than 700 GEO objects' TLE from NASA's website are used for simulation. Results indicate that the revisit time of the surveillance system designed in this paper is less than 24 hours, more than 95% GEO objects can be observed by the designed system.

  8. Observing System Simulation Experiments for the assessment of temperature sampling strategies in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Raicich, F.; Rampazzo, A.

    2003-01-01

    For the first time in the Mediterranean Sea various temperature sampling strategies are studied and compared to each other by means of the Observing System Simulation Experiment technique. Their usefulness in the framework of the Mediterranean Forecasting System (MFS) is assessed by quantifying their impact in a Mediterranean General Circulation Model in numerical twin experiments via univariate data assimilation of temperature profiles in summer and winter conditions. Data assimilation is performed by means of the optimal interpolation algorithm implemented in the SOFA (System for Ocean Forecasting and Analysis) code. The sampling strategies studied here include various combinations of eXpendable BathyThermograph (XBT) profiles collected along Volunteer Observing Ship (VOS) tracks, Airborne XBTs (AXBTs) and sea surface temperatures. The actual sampling strategy adopted in the MFS Pilot Project during the Targeted Operational Period (TOP, winter-spring 2000) is also studied.

  9. A global logrank test for adaptive treatment strategies based on observational studies.

    PubMed

    Li, Zhiguo; Valenstein, Marcia; Pfeiffer, Paul; Ganoczy, Dara

    2014-02-28

    In studying adaptive treatment strategies, a natural question that is of paramount interest is whether there is any significant difference among all possible treatment strategies. When the outcome variable of interest is time-to-event, we propose an inverse probability weighted logrank test for testing the equivalence of a fixed set of pre-specified adaptive treatment strategies based on data from an observational study. The weights take into account both the possible selection bias in an observational study and the fact that the same subject may be consistent with more than one treatment strategy. The asymptotic distribution of the weighted logrank statistic under the null hypothesis is obtained. We show that, in an observational study where the treatment selection probabilities need to be estimated, the estimation of these probabilities does not have an effect on the asymptotic distribution of the weighted logrank statistic, as long as the estimation of the parameters in the models for these probabilities is n-consistent. Finite sample performance of the test is assessed via a simulation study. We also show in the simulation that the test can be pretty robust to misspecification of the models for the probabilities of treatment selection. The method is applied to analyze data on antidepressant adherence time from an observational database maintained at the Department of Veterans Affairs' Serious Mental Illness Treatment Research and Evaluation Center.

  10. Development and Construct Validity of the Classroom Strategies Scale-Observer Form

    ERIC Educational Resources Information Center

    Reddy, Linda A.; Fabiano, Gregory; Dudek, Christopher M.; Hsu, Louis

    2013-01-01

    Research on progress monitoring has almost exclusively focused on student behavior and not on teacher practices. This article presents the development and validation of a new teacher observational assessment (Classroom Strategies Scale) of classroom instructional and behavioral management practices. The theoretical underpinnings and empirical…

  11. Learning the Rules: Observation and Imitation of a Sorting Strategy by 36-Month-Old Children

    ERIC Educational Resources Information Center

    Williamson, Rebecca A.; Jaswal, Vikram K.; Meltzoff, Andrew N.

    2010-01-01

    Two experiments were used to investigate the scope of imitation by testing whether 36-month-olds can learn to produce a categorization strategy through observation. After witnessing an adult sort a set of objects by a visible property (their color; Experiment 1) or a nonvisible property (the particular sounds produced when the objects were shaken;…

  12. Development and Construct Validity of the Classroom Strategies Scale-Observer Form

    ERIC Educational Resources Information Center

    Reddy, Linda A.; Fabiano, Gregory; Dudek, Christopher M.; Hsu, Louis

    2013-01-01

    Research on progress monitoring has almost exclusively focused on student behavior and not on teacher practices. This article presents the development and validation of a new teacher observational assessment (Classroom Strategies Scale) of classroom instructional and behavioral management practices. The theoretical underpinnings and empirical…

  13. VIII. The observational strategy: What are the issues; What must be done?

    SciTech Connect

    Canavan, G.H.

    1997-03-01

    Throughout its development, the observational strategy of the Earth Observing System (EOS) and its precursor programs has been consistent with that of the Mission to Planet Earth (MTPE) to detect and quantify climate change, document natural climate variability, understand variation and change, determine the causes and impacts of stratospheric ozone depletion, determine the impact of change on ecosystems and mitigate them. Space based observation can contribute significantly to each of these objectives, although its contribution will have to be carefully integrated with aircraft, in situ, international and other contributions and carefully transitioned to long-term operational observations to achieve its maximum potential impact. The interaction between space ad in situ can be in calibration, in interpretation, or in suggesting ways to make important new measurements from space. In atmospheric chemistry is largely involves calibration and global surveys. In ecosystems it involves calibration of EOS and improved sensors. In seasonal to interannual change it involves the testing and calibration of new sensors. In decadal to century change it requires the invention of new sensors. These roles are complementary and reinforcing. Taking full advantage of the synergisms and tradeoffs between space- and ground-based measurements is a potential vehicle for major savings in what is effectively a constant resource program. This paper presents a discussion of the principles guiding the space-based observational strategy, and the interplay between spaced-based and in situ measurements. The paper then discusses international issues, how they might be addressed, and integrated space-based observational strategy.

  14. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  15. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; hide

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  16. The EO-1 Autonomous Science Agent Architecture

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Lee, Rachel; Mandl, Dan; Frye, Stuart; Trout, Bruce; Hengemihle, Jerry; D'Agostino, Jeff; Shulman, Seth; Ungar, Stephen; Brakke, Thomas; Boyer, Darrell; Van Gaasbeck, Jim; Greeley, Ronald; Doggett, Thomas; Baker, Victor; Dohm, James; Ip, Felipe

    2004-01-01

    An Autonomous Science Agent is currently flying onboard the Earth Observing One Spacecraft. This software enables the spacecraft to autonomously detect and respond to science events occurring on the Earth. The package includes software systems that perform science data analysis, deliberative planning, and run-time robust execution. Because of the deployment to a remote spacecraft, this Autonomous Science Agent has stringent constraints of autonomy, reliability, and limited computing resources. We describe these constraints and how they are reflected in our agent architecture.

  17. Pressure injury prevention strategies in acute medical inpatients: an observational study.

    PubMed

    Latimer, Sharon; Chaboyer, Wendy; Gillespie, Brigid

    2016-01-01

    Pressure injuries are a patient safety issue. Despite the suite of prevention strategies, sustained reductions in pressure injury prevalence rates have not been achieved. Generally, nurses are usually responsible for assessing patients' pressure injury risk, and then implementing appropriate prevention strategies. The study aim was to describe five planned and implemented pressure injury prevention strategies (risk assessment, management plan, support surface, repositioning, and education), and determine if a relationship existed between the planning and implementation of support surfaces and regular repositioning. An observational study collecting data using chart audits and semi-structured observations. Data were analysed using descriptive and inferential statistics. This study was set in four medical units across two Australian metropolitan hospitals. The sample comprised adult medical inpatients with reduced mobility. A subsample of participants assessed at pressure injury risk on admission was drawn from this sample. Participants were aged ≥18 years, had a hospital length of stay of ≥3 days prior to recruitment, provided an informed consent, and had reduced mobility. There was suboptimal planning and implementation of pressure injury prevention strategies for the sample and subsample. There was a significant relationship between planned and implemented support surfaces at both hospitals; however, no relationship existed between the planned and implemented of regular repositioning at either site. The planning and implementation of pressure injury strategies is haphazard. Patients received support surfaces; however, gaps exist in pressure injury risk assessment, management planning, regular repositioning, and patient education.

  18. Sampling strategies on Mars: Remote and not-so-remote observations from a surface rover

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1988-01-01

    The mobility and speed of a semi-autonomous Mars rover are of necessity limited by the need to think and stay out of trouble. This consideration makes it essential that the rover's travels be carefully directed to likely targets of interest for sampling and in situ study. Short range remote sensing conducted from the rover, based on existing technology, can provide significant information about the chemistry and mineralogy of surrounding rocks and soils in support of sampling efforts. These observations are of course of direct scientific importance as well. Because of the small number of samples actually to be returned to Earth, it is also important that candidate samples be analyzed aboard the rover so that diversity can be maximized. It is essential to perform certain types of analyses, such as those involving volatiles, prior to the thermal and physical shocks of the return trip to Earth. In addition, whatever measurements can be made of nonreturned samples will be important to enlarge the context of the detailed analyses to be performed later on the few returned samples. Some considerations related to these objectives are discussed.

  19. Elements of a new Global Water Strategy for the Group on Earth Observations

    NASA Astrophysics Data System (ADS)

    Lawford, Richard; Koike, Toshio; Ochiai, Osamu; Cripe, Douglas

    2013-04-01

    In order to address the need to review the scope and direction of GEO activities related to water and to provide guidance for the post-2015 GEO planning, the Integrated Global Water Cycle Observations (IGWCO) Community of Practice and the Committee on Earth Observation Satellites (CEOS) are working together to develop a strategy for GEO water activities over the next decade. This presentation will review the elements of the strategy which include topics as comprehensive as user needs and engagement, water cycle observational systems, assessment of water quality, data issues, interoperability and integration of water information systems and capacity building. Impediments in the flow of information and technological capabilities from the providers of new technologies, innovations and data products to the end users will be explored in terms of the nature of these impediments and how they can be overcome. To be successful in GEO's framework of volunteerism, the water strategy should build on activities that are on-going in related programmes at the international and national levels. In addition, implementation of the strategy will need to be supported through new initiatives and policies that promote greater integration. Suggestions for achieving these goals will be outlined at the end of the talk.

  20. A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy.

    PubMed

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments.

  1. A Dynamic Scheduling Method of Earth-Observing Satellites by Employing Rolling Horizon Strategy

    PubMed Central

    Dishan, Qiu; Chuan, He; Jin, Liu; Manhao, Ma

    2013-01-01

    Focused on the dynamic scheduling problem for earth-observing satellites (EOS), an integer programming model is constructed after analyzing the main constraints. The rolling horizon (RH) strategy is proposed according to the independent arriving time and deadline of the imaging tasks. This strategy is designed with a mixed triggering mode composed of periodical triggering and event triggering, and the scheduling horizon is decomposed into a series of static scheduling intervals. By optimizing the scheduling schemes in each interval, the dynamic scheduling of EOS is realized. We also propose three dynamic scheduling algorithms by the combination of the RH strategy and various heuristic algorithms. Finally, the scheduling results of different algorithms are compared and the presented methods in this paper are demonstrated to be efficient by extensive experiments. PMID:23690742

  2. Goal Reasoning for an Autonomous Squad Member

    DTIC Science & Technology

    2015-05-01

    robust and adaptive autonomous agent. 1. Introduction Robots are increasingly being added to teams to improve their ability to accomplish specific...Similarly, the Robotic Collaborative Technology Alliance Army Program calls for the research and development of perceptive, intelligent autonomous...the robot ). Thus, the situation-agnostic interpretation is integrated with other observations of the current environment. The modified

  3. A strategy for the observation of volcanism on Earth from space.

    PubMed

    Wadge, G

    2003-01-15

    Heat, strain, topography and atmospheric emissions associated with volcanism are well observed by satellites orbiting the Earth. Gravity and electromagnetic transients from volcanoes may also prove to be measurable from space. The nature of eruptions means that the best strategy for measuring their dynamic properties remotely from space is to employ two modes with different spatial and temporal samplings: eruption mode and background mode. Such observational programmes are best carried out at local or regional volcano observatories by coupling them with numerical models of volcanic processes. Eventually, such models could become multi-process, operational forecast models that assimilate the remote and other observables to constrain their uncertainties. The threat posed by very large magnitude explosive eruptions is global and best addressed by a spaceborne observational programme with a global remit.

  4. Apoptosis and Self-Destruct: A Contribution to Autonomic Agents?

    NASA Technical Reports Server (NTRS)

    Sterritt, Roy; Hinchey, Mike

    2004-01-01

    Autonomic Computing (AC), a self-managing systems initiative based on the biological metaphor of the autonomic nervous system, is increasingly gaining momentum as the way forward in designing reliable systems. Agent technologies have been identified as a key enabler for engineering autonomicity in systems, both in terms of retrofitting autonomicity into legacy systems and designing new systems. The AC initiative provides an opportunity to consider other biological systems and principles in seeking new design strategies. This paper reports on one such investigation; utilizing the apoptosis metaphor of biological systems to provide a dynamic health indicator signal between autonomic agents.

  5. Autonomous In-Situ Resources Prospector

    NASA Technical Reports Server (NTRS)

    Dissly, R. W.; Buehler, M. G.; Schaap, M. G.; Nicks, D.; Taylor, G. J.; Castano, R.; Suarez, D.

    2004-01-01

    This presentation will describe the concept of an autonomous, intelligent, rover-based rapid surveying system to identify and map several key lunar resources to optimize their ISRU (In Situ Resource Utilization) extraction potential. Prior to an extraction phase for any target resource, ground-based surveys are needed to provide confirmation of remote observation, to quantify and map their 3-D distribution, and to locate optimal extraction sites (e.g. ore bodies) with precision to maximize their economic benefit. The system will search for and quantify optimal minerals for oxygen production feedstock, water ice, and high glass-content regolith that can be used for building materials. These are targeted because of their utility and because they are, or are likely to be, variable in quantity over spatial scales accessible to a rover (i.e., few km). Oxygen has benefits for life support systems and as an oxidizer for propellants. Water is a key resource for sustainable exploration, with utility for life support, propellants, and other industrial processes. High glass-content regolith has utility as a feedstock for building materials as it readily sinters upon heating into a cohesive matrix more readily than other regolith materials or crystalline basalts. Lunar glasses are also a potential feedstock for oxygen production, as many are rich in iron and titanium oxides that are optimal for oxygen extraction. To accomplish this task, a system of sensors and decision-making algorithms for an autonomous prospecting rover is described. One set of sensors will be located in the wheel tread of the robotic search vehicle providing contact sensor data on regolith composition. Another set of instruments will be housed on the platform of the rover, including VIS-NIR imagers and spectrometers, both for far-field context and near-field characterization of the regolith in the immediate vicinity of the rover. Also included in the sensor suite are a neutron spectrometer, ground

  6. Autonomous In-Situ Resources Prospector

    NASA Technical Reports Server (NTRS)

    Dissly, R. W.; Buehler, M. G.; Schaap, M. G.; Nicks, D.; Taylor, G. J.; Castano, R.; Suarez, D.

    2004-01-01

    This presentation will describe the concept of an autonomous, intelligent, rover-based rapid surveying system to identify and map several key lunar resources to optimize their ISRU (In Situ Resource Utilization) extraction potential. Prior to an extraction phase for any target resource, ground-based surveys are needed to provide confirmation of remote observation, to quantify and map their 3-D distribution, and to locate optimal extraction sites (e.g. ore bodies) with precision to maximize their economic benefit. The system will search for and quantify optimal minerals for oxygen production feedstock, water ice, and high glass-content regolith that can be used for building materials. These are targeted because of their utility and because they are, or are likely to be, variable in quantity over spatial scales accessible to a rover (i.e., few km). Oxygen has benefits for life support systems and as an oxidizer for propellants. Water is a key resource for sustainable exploration, with utility for life support, propellants, and other industrial processes. High glass-content regolith has utility as a feedstock for building materials as it readily sinters upon heating into a cohesive matrix more readily than other regolith materials or crystalline basalts. Lunar glasses are also a potential feedstock for oxygen production, as many are rich in iron and titanium oxides that are optimal for oxygen extraction. To accomplish this task, a system of sensors and decision-making algorithms for an autonomous prospecting rover is described. One set of sensors will be located in the wheel tread of the robotic search vehicle providing contact sensor data on regolith composition. Another set of instruments will be housed on the platform of the rover, including VIS-NIR imagers and spectrometers, both for far-field context and near-field characterization of the regolith in the immediate vicinity of the rover. Also included in the sensor suite are a neutron spectrometer, ground

  7. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  8. Autonomous motivation, controlled motivation, and goal progress.

    PubMed

    Koestner, Richard; Otis, Nancy; Powers, Theodore A; Pelletier, Luc; Gagnon, Hugo

    2008-10-01

    Although the self-concordance of goals has been repeatedly shown to predict better goal progress, recent research suggests potential problems with aggregating autonomous and controlled motivations to form a summary index of self-concordance (Judge, Bono, Erez, & Locke, 2005). The purpose of the present investigation was to further examine the relations among autonomous motivation, controlled motivation, and goal progress to determine the relative importance of autonomous motivation and controlled motivation in the pursuit of personal goals. The results of three studies and a meta-analysis indicated that autonomous motivation was substantially related to goal progress whereas controlled motivation was not. Additionally, the relation of autonomous motivation to goal progress was shown to involve implementation planning. Together, the three studies highlight the importance for goal setters of having autonomous motivation and developing implementation plans, especially ones formulated in terms of approach strategies rather than avoidance strategies. The present research suggests that individuals pursuing goals should focus relatively greater attention on enhancing their autonomous motivation rather than reducing their controlled motivation.

  9. Autonomous spacecraft rendezvous and docking

    NASA Technical Reports Server (NTRS)

    Tietz, J. C.; Almand, B. J.

    1985-01-01

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  10. Autonomous spacecraft rendezvous and docking

    NASA Astrophysics Data System (ADS)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  11. The effect of learner's control of self-observation strategies on learning of front crawl.

    PubMed

    Marques, Priscila Garcia; Corrêa, Umberto Cesar

    2016-02-01

    This study investigated the effect of learner's control of self-observation strategies on motor skill learning. For this purpose, beginner and intermediate learner swimmers practised the front crawl. Seventy college students took part in this experiment. They comprised 40 novice learners, both male (n=19) and female (n=21), with an average age of 20.7 years (±0.44), and 30 intermediate learners, both male (n=17) and female (n=13), with an average age of 21.1 years (±0.86). The design involved a pretest (one day), four acquisition sessions (four days), and a retention test (one day). They were divided into three groups: (1) choice, which could choose to watch a video with their best or overall performance during practise; (2) yoked, which were paired to those of the choice group; and (3) control (did not watch any video). The measures included the performance of front crawl and self-efficacy. The results showed that: (1) beginners who chose a type of observation strategy had superior motor skill learning; (2) for intermediate learners, self-observation promoted better motor learning, regardless of the control of choices; (3) self-observation improved self-efficacy beliefs.

  12. Scientific Implications of the Modified Observing Strategy of the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    McEnery, Julie E.; Fermi-LAT Collaboration; Fermi-GBM Team

    2014-01-01

    Near the end of 2013 the Fermi Gamma-ray Space Telescope (Fermi) mission plans to change to a modified observing strategy designed to favor the Galactic center while maintaining full sky-survey capabilities. This change would have important implications for the science of the Fermi Large Area Telescope (Fermi-LAT). In particular, this change will 1) substantially increase the Fermi-LAT sensitivity to young pulsars in the inner Galaxy, 2) provide simultaneous observations of the Galactic center with a suite of other instruments that have extended observing campaigns of the expected disruption of the G2 gas cloud complex (see https://wiki.mpe.mpg.de/gascloud/ProposalList) , 3) double the rate of improvement of statistical power for of searches for spectral lines from the Galactic center. In this contribution we discuss these topics. We also investigate ways in which the modified observing strategy can induce systematic biases, and discuss how those biases can be studied and mitigated with studies of control samples of LAT data.

  13. The Gars Programme And The Integrated Global Observing Strategy For Geohazards

    NASA Astrophysics Data System (ADS)

    Marsh, S.; Paganini, M.; Missotten, R.; Palazzo, F.

    UNESCO and the IUGS have funded the Geological Applications of Remote Sensing Programme (GARS) since 1984. Its aim is to assess the value and utility of remotely sensed data for geoscience, whilst at the same time building capacity in developing countries. It has run projects in Africa on geological mapping, in Latin America on landslide hazards and in Asia on volcanic hazards. It is a main sponsor of the Integrated Global Observing Strategy (IGOS) for Geohazards. The societal impact of geological and related geophysical hazards is enormous. Every year volcanoes, earthquakes, landslides and subsidence claim thousands of lives, injure thousands more, devastate homes and destroy livelihoods. Damaged infrastructure and insurance premiums increase these costs. As population increases, more people live in hazardous areas and the impact grows. The World Summit on Sustainable Development recognised that systematic, joint international observations under initiatives like the Integrated Global Observing Strategy form the basis for an integrated approach to hazard mitigation and preparedness. In this context, the IGOS Partners developed this geohazards theme. Its goal is to integrate disparate, multidisciplinary, applied research into global, operational systems by filling gaps in organisation, observation and knowledge. It has four strategic objectives; building global capacity to mitigate geohazards; improving mapping, monitoring and forecasting, based on satellite and ground-based observations; increasing preparedness, using integrated geohazards information products and improved geohazards models; and promoting global take-up of local best practice in geohazards management. Gaps remain between what is known and the knowledge required to answer citizen's questions, what is observed and what must be observed to provide the necessary information for hazard mitigation and current data integration and the integration needed to make useful geohazard information products. An

  14. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation.

    PubMed

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-02-23

    This article investigates the dynamic topology control problemof satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites' relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime.

  15. Miniaturized autonomous robot

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidenori; Fukuda, Toshio

    1998-01-01

    Many projects developing the miniaturized autonomous robot have been carried out in the whole world. This paper deals with our challenges developing a miniaturized autonomous robot. The miniaturized autonomous robot is defined as the miniaturized closed-loop system with micro processor, microactuators and microsensors. We have developed the micro autonomous robotic system (MARS) consisting of the microprocessor, microsensors, microactuators, communication units and batteries. The MARS controls itself by the downloaded program supplied through the IR communication system. In this paper, we demonstrate several performance of the MARS, and discuss the properties of the miniaturized autonomous robot.

  16. Multi-scale hydrometeorological observation and modelling strategy for flash-flood understanding

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle

    2014-05-01

    Flash floods are a major natural hazard, especially in the Mediterranean region, but their predictability remains low due to high non-linearity in the hydrological response related to threshold effects and structured-heterogeneity at all scales. In this paper, we propose a coupled observation and modelling strategy aiming at improving the understanding of processes triggering flash floods. This strategy is illustrated for the Mediterranean area using two French catchments (Gard and Ardèche) larger than 2000 km². The experimental approach is based on the monitoring of nested spatial scales: 1/ the hillslope scale, where processes influencing the runoff generation and its concentration can be tackled; 2/ the small to medium catchment scale (1-100 km²) where the impact of the network structure and of the spatial variability of rainfall, landscape and initial soil moisture can be quantified; 3/ the larger scale (100-1000 km²) where the river routing and flooding processes become important. These observations are part of the HyMeX (Hydrological Cycle in the Mediterranean Experiment) Enhanced Observation Period (EOP) and lasts four years (2012-2015). In terms of hydrological modelling the objective is to set up models at the regional scale, while addressing small and generally ungauged catchments, which is the scale of interest for flooding risk assessment. Top-down and bottom-up approaches are combined and the models are used as "hypothesis testing" tools by coupling model development with data analyses, in order to incrementally evaluate the validity of model hypotheses. The paper focuses on the presentation of the experimental strategy and the instrumentation, with first results obtained during the first years of the experiment. The perspectives in terms of modelling are also presented.

  17. Self-selected conscious strategies do not modulate motor cortical output during action observation

    PubMed Central

    Obhi, Sukhvinder S.

    2015-01-01

    The human motor system is active not only when actions are performed but also when they are observed. Experimenters often manipulate aspects of the action or context to examine factors that influence this “mirror” response. However, little is known about the role of the observer's own top-down intentions and motivation. In this exploratory study, we investigated whether observers are able to exert conscious control over their mirror response, when they are explicitly instructed to either increase or decrease mirroring. Transcranial magnetic stimulation (TMS) was used to elicit motor-evoked potentials (MEPs) in a thumb abductor muscle as participants (n = 13) watched a video of a hand squeezing a rubber ball. The size of these MEPs, relative to the size of MEPs elicited during fixation cross observation, was taken as an index of mirroring. In an initial block of trials, participants were instructed to merely observe the actions presented. After the first block, the concept of mirroring was explained to the participants, and in the second and third blocks participants were instructed to either increase or decrease their mirror response. We did not instruct them about how to achieve this increase or decrease. Our results showed no difference in either facilitation or absolute motor excitability (i.e., nonnormalized MEP size) between the three blocks, indicating that individuals do not seem to be able to exert control over motor excitability during action observation, at least in the absence of a specific and maintained strategy. PMID:26311182

  18. Supporting Greenhouse Gas Management Strategies with Observations and Analysis - Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tarasova, O. A.

    2014-12-01

    Climate-change challenges facing society in the 21st century require an improved understanding of the global carbon-cycle and of the impacts and feedbacks of past, present, and future emissions of carbon-cycle gases. Global society faces a major challenge of reducing greenhouse gas emissions to virtually zero, most notably those of CO2, while at the same time facing variable and potentially overwhelming Earth System feedbacks. How it goes about this will depend upon the nature of impending international agreements, national laws, regional strategies, and social and economic forces. The challenge to those making observations to support, inform, or verify these reduction efforts, or to address potential Earth System feedbacks, lies in harmonizing a diverse array of observations and observing systems. Doing so is not trivial. Providing coherent, regional-scale information from these observations also requires improved modelling and ensemble reanalysis, but in the end such information must be relevant and reasonably certain. The challenge to us is to ensure a globally coherent observing and analysis system to supply the information that society will need to succeed. Policy-makers, scientists, government agencies, and businesses will need the best information available for decision-making and any observing and analysis system ultimately must be able to provide a coherent story over decades.

  19. Mid-Cretaceous charred fossil flowers reveal direct observation of arthropod feeding strategies

    PubMed Central

    Hartkopf-Fröder, Christoph; Rust, Jes; Wappler, Torsten; Friis, Else Marie; Viehofen, Agnes

    2012-01-01

    Although plant–arthropod relationships underpin the dramatic rise in diversity and ecological dominance of flowering plants and their associated arthropods, direct observations of such interactions in the fossil record are rare, as these ephemeral moments are difficult to preserve. Three-dimensionally preserved charred remains of Chloranthistemon flowers from the Late Albian to Early Cenomanian of Germany preserve scales of mosquitoes and an oribatid mite with mouthparts inserted into the pollen sac. Mosquitoes, which today are frequent nectar feeders, and the mite were feeding on pollen at the time wildfire consumed the flowers. These findings document directly arthropod feeding strategies and their role in decomposition. PMID:21900310

  20. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  1. The autonomic laboratory

    NASA Technical Reports Server (NTRS)

    Low, P. A.; Opfer-Gehrking, T. L.

    1999-01-01

    The autonomic nervous system can now be studied quantitatively, noninvasively, and reproducibly in a clinical autonomic laboratory. The approach at the Mayo Clinic is to study the postganglionic sympathetic nerve fibers of peripheral nerve (using the quantitative sudomotor axon reflex test [QSART]), the parasympathetic nerves to the heart (cardiovagal tests), and the regulation of blood pressure by the baroreflexes (adrenergic tests). Patient preparation is extremely important, since the state of the patient influences the results of autonomic function tests. The autonomic technologist in this evolving field needs to have a solid core of knowledge of autonomic physiology and autonomic function tests, followed by training in the performance of these tests in a standardized fashion. The range and utilization of tests of autonomic function will likely continue to evolve.

  2. [Feeding strategies of mothers of malnourished and eutrophic children: a qualitative study through videotaped observations].

    PubMed

    Perosa, Gimol Benzaquen; Carvalhaes, Maria Antonieta de Barros Leite; Benício, Maria Helena D'Aquino; Silveira, Flávia Cristina Pereira

    2011-11-01

    The scope of this study was to identify and compare maternal feeding strategies and characteristics of the interaction between mothers of malnourished and eutrophic children. Eight pairs of mother/malnourished child and eight pairs of mother/eutrophic child (aged between 9 to 24 months) living in poor inner areas, were videotaped during meals, at home. Through analysis of the videos, the strategies were identified and episodes qualitatively analyzed, according to the peculiar characteristics of the interaction, especially maternal responsivity. There were no significant differences in strategies used by the mothers of both groups. The observations of the episodes have shown that feeding a child is a highly interactive process, dependent upon the abilities and characteristics of both partners. The success of feeding appears to be associated with contextual conditions, maternal responsivity and also to the appetite and flexibility of the child. It is suggested that, in projects geared to malnourished children, besides supplements and feeding orientation, special attention be given to maternal self esteem and in helping mothers to deal with children suffering from loss of appetite.

  3. Solution of nonlinear finite difference ocean models by optimization methods with sensitivity and observational strategy analysis

    NASA Technical Reports Server (NTRS)

    Schroeter, Jens; Wunsch, Carl

    1986-01-01

    The paper studies with finite difference nonlinear circulation models the uncertainties in interesting flow properties, such as western boundary current transport, potential and kinetic energy, owing to the uncertainty in the driving surface boundary condition. The procedure is based upon nonlinear optimization methods. The same calculations permit quantitative study of the importance of new information as a function of type, region of measurement and accuracy, providing a method to study various observing strategies. Uncertainty in a model parameter, the bottom friction coefficient, is studied in conjunction with uncertain measurements. The model is free to adjust the bottom friction coefficient such that an objective function is minimized while fitting a set of data to within prescribed bounds. The relative importance of the accuracy of the knowledge about the friction coefficient with respect to various kinds of observations is then quantified, and the possible range of the friction coefficients is calculated.

  4. Solution of nonlinear finite difference ocean models by optimization methods with sensitivity and observational strategy analysis

    NASA Technical Reports Server (NTRS)

    Schroeter, Jens; Wunsch, Carl

    1986-01-01

    The paper studies with finite difference nonlinear circulation models the uncertainties in interesting flow properties, such as western boundary current transport, potential and kinetic energy, owing to the uncertainty in the driving surface boundary condition. The procedure is based upon nonlinear optimization methods. The same calculations permit quantitative study of the importance of new information as a function of type, region of measurement and accuracy, providing a method to study various observing strategies. Uncertainty in a model parameter, the bottom friction coefficient, is studied in conjunction with uncertain measurements. The model is free to adjust the bottom friction coefficient such that an objective function is minimized while fitting a set of data to within prescribed bounds. The relative importance of the accuracy of the knowledge about the friction coefficient with respect to various kinds of observations is then quantified, and the possible range of the friction coefficients is calculated.

  5. [Surgical therapy of the autonomous thyroid nodule].

    PubMed

    Zanella, E

    1993-12-01

    Indications for the surgical removal of autonomous nodule are mainly based upon the failure of therapeutical options. The histological definition may be advantageous for detecting the rare but possible association between autonomous goiter and carcinoma of the thyroid. In personal experience, based on 176 hyperfunctioning goiter (among which there were 40 cases of autonomous nodules) 6 carcinomas of the gland were observed, 2 of these were associated with autonomous nodules. The extension of thyroidectomy is related to the size of the adenomas considering the incidence of postoperative complications, very low for this type of surgery. Surgical treatment of autonomous nodules of the thyroid is a low risk surgery and is therefore suitable for the treatment of this disease.

  6. Evaluation of the implementation of the directly observed treatment strategy for tuberculosis in a large city.

    PubMed

    Lavôr, Débora Cristina Brasil da Silva; Pinheiro, Jair Dos Santos; Gonçalves, Maria Jacirema Ferreira

    2016-04-01

    To assess the degree of implementation of the Directly Observed Treatment, Short-course - DOTS for tuberculosis (TB) in a large city. Assessment of the implementation of the logic model, whose new cases of infectious pulmonary TB were recruited from specialized clinics and followed-up in basic health units. The judgment matrix covering the five components of the DOTS strategy were used. The result of the logic model indicates DOTS was partially implemented. In external, organizational and implementation contexts, the DOTS strategy was partially implemented; and, the effectiveness was not implemented. The partial implementation of the DOTS strategy in the city of Manaus did not reflect in TB control compliance, leading to low effectiveness of the program. Avaliar o grau de implantação da estratégia de tratamento diretamente observado (Directly Observed Treatment, Short-course - DOTS) para tuberculose (TB) em um município de grande porte. Avaliação de implantação por meio de modelo lógico, cujos casos novos de TB pulmonar bacilífera foram recrutados em ambulatórios especializados e acompanhados nas unidades básicas de saúde. Utilizou-se matriz de julgamento que abrange os cinco componentes da estratégia DOTS. O resultado do modelo lógico indica DOTS implantada parcialmente. Nos contextos externo, organizacional e de implantação, a estratégia DOTS está implantada parcialmente; e, na efetividade não está implantada. A implantação parcial da estratégia DOTS, na cidade de Manaus, reflete na não conformidade do controle da TB, levando à baixa efetividade do programa.

  7. Development and construct validity of the Classroom Strategies Scale-Observer Form.

    PubMed

    Reddy, Linda A; Fabiano, Gregory; Dudek, Christopher M; Hsu, Louis

    2013-12-01

    Research on progress monitoring has almost exclusively focused on student behavior and not on teacher practices. This article presents the development and validation of a new teacher observational assessment (Classroom Strategies Scale) of classroom instructional and behavioral management practices. The theoretical underpinnings and empirical basis for the instructional and behavioral management scales are presented. The Classroom Strategies Scale (CSS) evidenced overall good reliability estimates including internal consistency, interrater reliability, test-retest reliability, and freedom from item bias on important teacher demographics (age, educational degree, years of teaching experience). Confirmatory factor analyses (CFAs) of CSS data from 317 classrooms were carried out to assess the level of empirical support for (a) a 4 first-order factor theory concerning teachers' instructional practices, and (b) a 4 first-order factor theory concerning teachers' behavior management practice. Several fit indices indicated acceptable fit of the (a) and (b) CFA models to the data, as well as acceptable fit of less parsimonious alternative CFA models that included 1 or 2 second-order factors. Information-theory-based indices generally suggested that the (a) and (b) CFA models fit better than some more parsimonious alternative CFA models that included constraints on relations of first-order factors. Overall, CFA first-order and higher order factor results support the CSS-Observer Total, Composite, and subscales. Suggestions for future measurement development efforts are outlined.

  8. The Baker Observatory Robotic Autonomous Telescope

    NASA Astrophysics Data System (ADS)

    Reed, Mike D.; Thompson, Matthew A.; Hicks, L. L.; Baran, A. S.

    2011-03-01

    The objective of our project is to have an autonomous observatory to obtain long duration time-series observations of pulsating stars. Budget constraints dictate an inexpensive facility. In this paper, we discuss our solution.

  9. Autonomic nervous system activities during motor imagery in elite athletes.

    PubMed

    Oishi, Kazuo; Maeshima, Takashi

    2004-01-01

    Motor imagery (MI), a mental simulation of voluntary motor actions, has been used as a training method for athletes for many years. It is possible that MI techniques might similarly be useful as part of rehabilitative strategies to help people regain skills lost as a consequence of diseases or stroke. Mental activity and stress induce several different autonomic responses as part of the behavioral response to movement (e.g., motor anticipation) and as part of the central planning and preprogramming of movement. However, the interrelationships between MI, the autonomic responses, and the motor system have not yet been worked out. The authors compare a number of autonomic responses (respiration, heart rate, electro skin resistance) and motoneuron excitability (soleus H-reflex) in elite and nonelite speed skaters during MI. In contrast to the nonelite athletes, MI of elite speed skaters is characterized by larger changes in heart rate and respiration, a greater reliance on an internal perspective for MI, a more vivid MI, a more accurate correspondence between the MI and actual race times, and decreased motoneuron excitability. Two observations suggest that the changes in the autonomic responses and motoneuron excitability for the elite speed skaters are related to the effects of central motor programming: (1) there was no correlation between the autonomic responses for MI and those recorded during mental arithmetic; and (2) mental arithmetic did not significantly alter motoneuron activity. It is suggested that in elite speed skaters, the descending neural mechanisms that reduce motoneuron excitability are activated even when full, vivid MI is performed internally. These inhibitory responses of the motor system may enhance actual motor performance under conditions of remarkably high mental stress, such as that which occurs in the Olympic games.

  10. NASA's NI-SAR Observing Strategy and Data Availability for Agricultural Monitoring and Assessment

    NASA Astrophysics Data System (ADS)

    Siqueira, P.; Dubayah, R.; Kellndorfer, J. M.; Saatchi, S. S.; Chapman, B. D.

    2014-12-01

    The monitoring and characterization of global crop development by remote sensing is a complex task, in part, because of the time varying nature of the target and the diversity of crop types and agricultural practices that vary worldwide. While some of these difficulties are overcome with the availability of national and market-derived resources (e.g. publication of crop statistics by the USDA and FAO), monitoring by remote sensing has the ability of augmenting those resources to better identify changes over time, and to provide timely assessments for the current year's production. Of the remote sensing techniques that are used for agricultural applications, optical observations of NDVI from Landsat, AVHRR, MODIS and similar sensors have historically provided the majority of data that is used by the community. In addition, radiometer and radar sensors, are often used for estimating soil moisture and structural information for these agricultural regions. The combination of these remote sensing datasets and national resources constitutes the state of the art for crop monitoring and yield forecasts. To help improve these crop monitoring efforts in the future, the joint NASA-ISRO SAR mission known as NI-SAR is being planned for launch in 2020, and will have L- and S-band fully polarimetric radar systems, a fourteen day repeat period, and a swath width on the order of several hundred kilometers. To address the needs of the science and applications communities that NI-SAR will support, the systems observing strategy is currently being planned such that data rate and the system configuration will address the needs of the community. In this presentation, a description of the NI-SAR system will be given along with the currently planned observing strategy and derived products that will be relevant to the overall GEOGLAM initiative.

  11. The CEOS Global Observation Strategy for Disaster Risk Management: An Enterprise Architect's View

    NASA Astrophysics Data System (ADS)

    Moe, K.; Evans, J. D.; Frye, S.

    2013-12-01

    The Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS), on behalf of the Global Earth Observation System of Systems (GEOSS), is defining an enterprise architecture (known as GA.4.D) for the use of satellite observations in international disaster management. This architecture defines the scope and structure of the disaster management enterprise (based on disaster types and phases); its processes (expressed via use cases / system functions); and its core values (in particular, free and open data sharing via standard interfaces). The architecture also details how a disaster management enterprise describes, obtains, and handles earth observations and data products for decision-support; and how it draws on distributed computational services for streamlined operational capability. We have begun to apply this architecture to a new CEOS initiative, the Global Observation Strategy for Disaster Risk Management (DRM). CEOS is defining this Strategy based on the outcomes of three pilot projects focused on seismic hazards, volcanoes, and floods. These pilots offer a unique opportunity to characterize and assess the impacts (benefits / costs) of the GA.4.D architecture in practice. In particular, the DRM Floods Pilot is applying satellite-based optical and radar data to flood mitigation, warning, and response, including monitoring and modeling at regional to global scales. It is focused on serving user needs and building local institutional / technical capacity in the Caribbean, Southern Africa, and Southeast Asia. In the context of these CEOS DRM Pilots, we are characterizing where and how the GA.4D architecture helps participants to: - Understand the scope and nature of hazard events quickly and accurately - Assure timely delivery of observations into analysis, modeling, and decision-making - Streamline user access to products - Lower barriers to entry for users or suppliers - Streamline or focus field operations in

  12. Observing Strategy for the SDSS-IV/MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; Yan, Renbin; Bershady, Matthew A.; Bundy, Kevin; Cherinka, Brian; Drory, Niv; MacDonald, Nicholas; Sánchez-Gallego, José R.; Wake, David A.; Weijmans, Anne-Marie; Blanton, Michael R.; Klaene, Mark A.; Moran, Sean M.; Sanchez, Sebastian F.; Zhang, Kai

    2015-07-01

    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an integral-field spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). MaNGA’s 17 pluggable optical fiber-bundle integral field units (IFUs) will observe a sample of 10,000 nearby galaxies distributed throughout the SDSS imaging footprint (focusing particularly on the North Galactic Cap). In each pointing these IFUs are deployed across a 3° field; they yield spectral coverage 3600-10300 Å at a typical resolution R ˜ 2000, and sample the sky with 2″ diameter fiber apertures with a total bundle fill factor of 56%. Observing over such a large field and range of wavelengths is particularly challenging for obtaining uniform and integral spatial coverage and resolution at all wavelengths and across each entire fiber array. Data quality is affected by the IFU construction technique, chromatic and field differential refraction, the adopted dithering strategy, and many other effects. We use numerical simulations to constrain the hardware design and observing strategy for the survey with the aim of ensuring consistent data quality that meets the survey science requirements while permitting maximum observational flexibility. We find that MaNGA science goals are best achieved with IFUs composed of a regular hexagonal grid of optical fibers with rms displacement of 5 μm or less from their nominal packing position; this goal is met by the MaNGA hardware, which achieves 3 μm rms fiber placement. We further show that MaNGA observations are best obtained in sets of three 15 minute exposures dithered along the vertices of a 1.44 arcsec equilateral triangle; these sets form the minimum observational unit, and are repeated as needed to achieve a combined signal-to-noise ratio of 5 Å-1 per fiber in the r-band continuum at a surface brightness of 23 AB arcsec-2. In order to ensure uniform coverage and delivered image quality, we require that the

  13. Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles

    NASA Astrophysics Data System (ADS)

    Holland, K. T.; Calantoni, J.; Slocum, D.

    2016-02-01

    Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.

  14. Autonomic Ganglia: Target and Novel Therapeutic Tool

    PubMed Central

    Vernino, Steven; Sandroni, Paola; Singer, Wolfgang; Low, Phillip A.

    2009-01-01

    Nicotinic acetylcholine receptors (AChR) are ligand-gated cation channels that are present throughout the nervous system. The muscle AChR mediates transmission at the neuromuscular junction; antibodies against the muscle AChR are the cause of myasthenia gravis. The ganglionic (α3-type) neuronal AChR mediates fast synaptic transmission in sympathetic, parasympathetic, and enteric autonomic ganglia. Impaired cholinergic ganglionic synaptic transmission is one important cause of autonomic failure. Pharmacological enhancement of ganglionic synaptic transmission may be a novel way to improve autonomic function. Ganglionic AChR antibodies are found in patients with autoimmune autonomic ganglionopathy (AAG). Patients with AAG typically present with rapid onset of severe autonomic failure. Major clinical features include orthostatic hypotension, gastrointestinal dysmotility, anhidrosis, bladder dysfunction, and sicca symptoms. Impaired pupillary light reflex is often seen. Like myasthenia, AAG is an antibody-mediated neurological disorder. The disease can be reproduced in experimental animals by active immunization or passive antibody transfer. Patient may improve with plasma exchange treatment or other immunomodulatory treatment. Antibodies from patients with AAG inhibit ganglionic AChR currents. Other phenotypes of AAG are now recognized based on the results of antibody testing. These other presentations are generally associated with lower levels of ganglionic AChR antibodies. A chronic progressive form of AAG may resemble pure autonomic failure. Milder forms of dysautonomia, such as postural tachycardia syndrome, are associated with ganglionic AChR in 10–15% of cases. Since ganglionic synaptic transmission is a common pathway for all autonomic traffic, enhancement of autonomic function through inhibition of acetylcholinesterase is a potential specific therapeutic strategy for autonomic disorders. Increasing the strength of ganglionic transmission can ameliorate

  15. Intelligent Mobile Autonomous System

    DTIC Science & Technology

    1987-01-01

    jerk application. (c) Negative jerk application. Group (a). Application of positve jerk. Force is increased from initial value to force of resistance...fundamentals of the new emerging area of autonomous robotics . The goal of this research is to develop a theory of design and functioning of Intelligent...scientific research. This report contributes to a new rapidly developing area of autonomous robotics . Actual experience of dealing with autonomous robots (or

  16. Autonomic and EEG correlates of emotional imagery in subjects with different hypnotic susceptibility.

    PubMed

    Sebastiani, L; Simoni, A; Gemignani, A; Ghelarducci, B; Santarcangelo, E L

    2003-04-15

    The autonomic and EEG correlates of the response to a cognitive unpleasant stimulation (US) verbally administered to awake hypnotizable and non hypnotizable subjects were studied. They were compared with the values obtained during a resting condition immediately preceding the stimulus and with those produced by a cognitive neutral stimulation (NS), also administered after a basal resting period. Results showed hypnotic trait effects on skin resistance, heart and respiratory rate as well as on EEG theta, alpha, beta and gamma relative power changes. The autonomic and EEG patterns observed indicated different strategies in the task execution for hypnotizable and non hypnotizable subjects and a discrepancy between the autonomic and EEG changes associated to the US in susceptible subjects. Results support dissociation theories of hypnosis and suggest for hypnotizable persons an active mechanism of protection against cardiac hazard.

  17. A Topology Control Strategy with Reliability Assurance for Satellite Cluster Networks in Earth Observation

    PubMed Central

    Chen, Qing; Zhang, Jinxiu; Hu, Ze

    2017-01-01

    This article investigates the dynamic topology control problem of satellite cluster networks (SCNs) in Earth observation (EO) missions by applying a novel metric of stability for inter-satellite links (ISLs). The properties of the periodicity and predictability of satellites’ relative position are involved in the link cost metric which is to give a selection criterion for choosing the most reliable data routing paths. Also, a cooperative work model with reliability is proposed for the situation of emergency EO missions. Based on the link cost metric and the proposed reliability model, a reliability assurance topology control algorithm and its corresponding dynamic topology control (RAT) strategy are established to maximize the stability of data transmission in the SCNs. The SCNs scenario is tested through some numeric simulations of the topology stability of average topology lifetime and average packet loss rate. Simulation results show that the proposed reliable strategy applied in SCNs significantly improves the data transmission performance and prolongs the average topology lifetime. PMID:28241474

  18. Directly observed treatment, short-course strategy and multidrug-resistant tuberculosis: are any modifications required?

    PubMed Central

    Bastian, I.; Rigouts, L.; Van Deun, A.; Portaels, F.

    2000-01-01

    Multidrug-resistant tuberculosis (MDRTB) should be defined as tuberculosis with resistance to at least isoniazid and rifampicin because these drugs are the cornerstone of short-course chemotherapy, and combined isoniazid and rifampicin resistance requires prolonged treatment with second-line agents. Short-course chemotherapy is a key ingredient in the tuberculosis control strategy known as directly observed treatment, short-course (DOTS). For populations in which multidrug-resistant tuberculosis is endemic, the outcome of the standard short-course chemotherapy regimen remains uncertain. Unacceptable failure rates have been reported and resistance to additional agents may be induced. As a consequence there have been calls for well-functioning DOTS programmes to provide additional services in areas with high rates of multidrug-resistant tuberculosis. These "DOTS-plus for MDRTB programmes" may need to modify all five elements of the DOTS strategy: the treatment may need to be individualized rather than standardized; laboratory services may need to provide facilities for on-site culture and antibiotic susceptibility testing; reliable supplies of a wide range of expensive second-line agents would have to be supplied; operational studies would be required to determine the indications for and format of the expanded programmes; financial and technical support from international organizations and Western governments would be needed in addition to that obtained from local governments. PMID:10743297

  19. The Contribution of Earth Observation Technologies to Monitoring Strategies of Cultural Landscapes and Sites

    NASA Astrophysics Data System (ADS)

    Cuca, B.

    2017-08-01

    Coupling of Climate change effects with management and protection of cultural and natural heritage has been brought to the attention of policy makers since several years. On the worldwide level, UNESCO has identified several phenomena as the major geo-hazards possibly induced by climate change and their possible hazardous impact to natural and cultural heritage: Hurricane, storms; Sea-level rise; Erosion; Flooding; Rainfall increase; Drought; Desertification and Rise in temperature. The same document further referrers to satellite Remote Sensing (EO) as one of the valuable tools, useful for development of "professional monitoring strategies". More recently, other studies have highlighted on the impact of climate change effects on tourism, an economic sector related to build environment and traditionally linked to heritage. The results suggest that, in case of emergency the concrete threat could be given by the hazardous event itself; in case of ordinary administration, however, the threat seems to be a "hazardous attitude" towards cultural assets that could lead to inadequate maintenance and thus to a risk of an improper management of cultural heritage sites. This paper aims to illustrate potential benefits that advancements of Earth Observation technologies can bring to the domain of monitoring landscape heritage and to the management strategies, including practices of preventive maintenance. The attempt here is to raise awareness on the importance of integrating satellite remote sensing imagery and the deriving products with other geospatial information (even geo-referenced historic maps) for a more complete insight on the environmental dynamics of landscapes.

  20. Quantitative autonomic testing.

    PubMed

    Novak, Peter

    2011-07-19

    Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.

  1. A Study of the Relationships Between Perceived and Observed Science Teaching Strategies and Selected Classroom and Teacher Variables.

    ERIC Educational Resources Information Center

    Yeany, Russell H., Jr.; Cosgriff, Stephen J.

    Described is a study to determine the degree of relationship between selected classroom and teacher variables and science teaching strategies. The perceived strategies were recorded and measured by the Class Activity Checklist (CAC) which is a modification of the Science Class Activities Checklist (SCAC), (Yeany, 1974). The observed teacher…

  2. Self-calibration strategy for a LOFAR solar radio burst observation

    NASA Astrophysics Data System (ADS)

    Vocks, C.; Mann, G.; Breitling, F.

    2016-11-01

    The LOw Frequency ARray (LOFAR) is a novel radio interferometer consisting of a central core near Exloo in the Netherlands, remote stations in the Netherlands, and international stations. It observes in two frequency bands, the low band of 10-90 MHz and the high band of 110-250 MHz. The key science project ``Solar Physics and Space Weather with LOFAR'' aims at studying the solar activity and its influence on interplanetary space. Solar radio radiation in the low and high band emanates from the upper and middle corona, respectively. We present early commissioning observations of the Sun, that serendipitously include a weak radio burst. Since no external calibrator was observed, a self-calibration approach has to be used. This works well for the quiet Sun, but not for the burst data. We develop a self-calibration strategy for radio bursts, and discuss the general properties of such a self-calibration method. Our results lead to the conclusion that external calibrators with known source structure should generally be preferred.

  3. Optimization of Observation Strategy to Improve Re-entry Prediction of Objects in HEO

    NASA Astrophysics Data System (ADS)

    Rasotto, M.; Di Mauro, G.; Massari, M.; Di Lizia, P.; Armellin, R.; Funke, Q.; Flohrer, T.

    2016-09-01

    During the last decade the number of space debris moving on high elliptical orbit (HEO) has grown fast. Many of these resident space objects (RSO) consist of medium and large spent upper stages of launch vehicles, whose atmosphere re-entry might violate on-ground casualty risk constraints. Increasing the accuracy of re-entry predictions for this class of RSO is therefore a key issue to limit the hazards on the Earth assets. Traditional computational methods are mainly based on the exploitation of Two Line Elements (TLEs), provided by the United States Strategic Command (USSTRATCOM) and currently the only public data source available for these kind of analyses. TLE data however, are characterized by low accuracies, and in general come without any uncertainty information, thus limiting the achievable precision of the re-entry estimates. Better results on the other hand, can be obtained through the exploitation of observational data provided by one or more Earth sensors. Despite the benefits, this approach introduces a whole new set of complexities, mainly related with the design of proper observation campaigns. This paper presents a method based on evolutionary algorithms, for the optimization of observation strategies. The effectiveness of the proposed approach is demonstrated through dedicated examples, in which re-entry predictions, attainable with existing and ideal sensor architectures, are compared with corresponding results derived from TLE data.

  4. [A strategy for preventing health injuries due to observing the solar eclipse in Mexico].

    PubMed

    Juan-López, M; Peña-Corona, M P

    1993-01-01

    A total solar eclipse was watched by almost [corrected] 50 million people in the Mexican Republic on July 11, 1991. Cases of solar retinitis, which can even lead to permanent loss of visual function, have been reported in the international literature. The institutions of the National Health System employed a strategy for the prevention of risks and health damages caused by direct observation of the phenomenon, which implied the elaboration of a technical norm concerning the manufacturing of sun filters, the diffusion of preventive actions through the use of mass media, the detection and prompt care of cases and the establishment of an ophthalmologic care system and epidemiological surveillance system. The result was the detection of 21 moderate cases of solar retinitis, all of which recovered their full visual function after four months. The present article reports the implemented actions and the details of the cases.

  5. Observations of ozone formation in power plant plumes and implications for ozone control strategies.

    PubMed

    Ryerson, T B; Trainer, M; Holloway, J S; Parrish, D D; Huey, L G; Sueper, D T; Frost, G J; Donnelly, S G; Schauffler, S; Atlas, E L; Kuster, W C; Goldan, P D; Hubler, G; Meagher, J F; Fehsenfeld, F C

    2001-04-27

    Data taken in aircraft transects of emissions plumes from rural U.S. coal-fired power plants were used to confirm and quantify the nonlinear dependence of tropospheric ozone formation on plume NO(x) (NO plus NO(2)) concentration, which is determined by plant NO(x) emission rate and atmospheric dispersion. The ambient availability of reactive volatile organic compounds, principally biogenic isoprene, was also found to modulate ozone production rate and yield in these rural plumes. Differences of a factor of 2 or greater in plume ozone formation rates and yields as a function of NO(x) and volatile organic compound concentrations were consistently observed. These large differences suggest that consideration of power plant NO(x) emission rates and geographic locations in current and future U.S. ozone control strategies could substantially enhance the efficacy of NO(x) reductions from these sources.

  6. Predictive Validity of the Classroom Strategies Scale-Observer Form on Statewide Testing Scores: An Initial Investigation

    ERIC Educational Resources Information Center

    Reddy, Linda A.; Fabiano, Gregory A.; Dudek, Christopher M.; Hsu, Louis

    2013-01-01

    The present study examined the validity of a teacher observation measure, the Classroom Strategies Scale-Observer Form (CSS), as a predictor of student performance on statewide tests of mathematics and English language arts. The CSS is a teacher practice observational measure that assesses evidence-based instructional and behavioral management…

  7. Consistently modeling the same movement strategy is more important than model skill level in observational learning contexts.

    PubMed

    Buchanan, John J; Dean, Noah

    2014-02-01

    The experiment undertaken was designed to elucidate the impact of model skill level on observational learning processes. The task was bimanual circle tracing with a 90° relative phase lead of one hand over the other hand. Observer groups watched videos of either an instruction model, a discovery model, or a skilled model. The instruction and skilled model always performed the task with the same movement strategy, the right-arm traced clockwise and the left-arm counterclockwise around circle templates with the right-arm leading. The discovery model used several movement strategies (tracing-direction/hand-lead) during practice. Observation of the instruction and skilled model provided a significant benefit compared to the discovery model when performing the 90° relative phase pattern in a post-observation test. The observers of the discovery model had significant room for improvement and benefited from post-observation practice of the 90° pattern. The benefit of a model is found in the consistency with which that model uses the same movement strategy, and not within the skill level of the model. It is the consistency in strategy modeled that allows observers to develop an abstract perceptual representation of the task that can be implemented into a coordinated action. Theoretically, the results show that movement strategy information (relative motion direction, hand lead) and relative phase information can be detected through visual perception processes and be successfully mapped to outgoing motor commands within an observational learning context.

  8. Building up Autonomy through Reading Strategies (Formación en autonomía a través de estrategias de lectura)

    ERIC Educational Resources Information Center

    Izquierdo Castillo, Alexander; Jiménez Bonilla, Sonia

    2014-01-01

    This article reports on an action research project conducted with six ninth grade students in a rural public school in Colombia. The purpose of the study was to determine how the implementation of three reading strategies (skimming, scanning, and making predictions), when reading topics selected by learners, helps them to improve their reading…

  9. The MDS autonomous control architecture

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    We describe the autonomous control architecture for the JPL Mission Data System (MDS). MDS is a comprehensive new software infrastructure for supporting unmanned space exploration. The autonomous control architecture is one component of MDS designed to enable autonomous operations.

  10. The MDS autonomous control architecture

    NASA Technical Reports Server (NTRS)

    Gat, E.

    2000-01-01

    We describe the autonomous control architecture for the JPL Mission Data System (MDS). MDS is a comprehensive new software infrastructure for supporting unmanned space exploration. The autonomous control architecture is one component of MDS designed to enable autonomous operations.

  11. A novel space-based observation strategy for GEO objects based on daily pointing adjustment of multi-sensors

    NASA Astrophysics Data System (ADS)

    Hu, Yun-peng; Li, Ke-bo; Xu, Wei; Chen, Lei; Huang, Jian-yu

    2016-08-01

    Space-based visible (SBV) program has been proved to be with a large advantage to observe geosynchronous earth orbit (GEO) objects. With the development of SBV observation started from 1996, many strategies have come out for the purpose of observing GEO objects more efficiently. However it is a big challenge to visit all the GEO objects in a relatively short time because of the distribution characteristics of GEO belt and limited field of view (FOV) of sensor. And it's also difficult to keep a high coverage of the GEO belt every day in a whole year. In this paper, a space-based observation strategy for GEO objects is designed based on the characteristics of the GEO belt. The mathematical formula of GEO belt is deduced and the evolvement of GEO objects is illustrated. There are basically two kinds of orientation strategies for most observation satellites, i.e., earth-oriented and inertia-directional. Influences of both strategies to their own observation regions are analyzed and compared with each other. A passive optical instrument with daily attitude-adjusting strategies is proposed to increase the daily coverage rate of GEO objects in a whole year. Furthermore, in order to observe more GEO objects in a relatively short time, the strategy of a satellite with multi-sensors is proposed. The installation parameters between different sensors are optimized, more than 98% of GEO satellites can be observed every day and almost all the GEO satellites can be observed every two days with 3 sensors (FOV: 6° × 6°) on the satellite under the strategy of daily pointing adjustment in a whole year.

  12. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    NASA Technical Reports Server (NTRS)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; hide

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  13. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    NASA Technical Reports Server (NTRS)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; Moody, Dwight C.; Kern, Brian D.; Trauger, John T.; Serabyn, Eugene; Hamaguchi, Shoki; Oshiyama, Fumika

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  14. Observational Strategy of ACROSS towards the Time-evolving Natures in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Kumazawa, M.; Fujii, N.; Kasahara, J.

    2005-12-01

    ACROSS (Accurately Controlled, Routinely Operated Signal System) is aiming at the detection of very small changes in physical states in the lithosphere, particularly for the focal region of the anticipated huge earthquakes as demanded socially. Our technical challenge is to device an ideal methodology to enable us to acquire the ideal observation data towards the real understanding of the EarthOs interiors even under the inherent noise and physical limitations. We need light to illuminate the dark EarthOs interiors, eyes to observe them and a brain to interpret the result: The light should be designed well to be really coherent, the eyes with high fidelity should be accurately synchronized to the light transmission and the brain should be smart enough to evolve by itself. In order for the whole system to be robust against noise, we have to devise all that can be done. In addition, a significant demand is imposed onto us; non-destructiveness against our environment. The recent progress of technology makes it possible what was impossible several years, so that we try to find out the ideal way to go. We have spent about 10 years for developmental works, which started a moment before the disastrous Kobe earthquake of 1995. Now we believe that the background theory has been known in addition to some of the basic technology elements, whereas the user-friendly hardware and other auxiliary tools including practical theory and software have not been acquired yet. The examples of the field observation have started to accumulate for demonstration as reported by companion papers. The data acquired by ACROSS in seismology is not seismogram but tensor transfer function (Green function) in frequency domain. The data carry substantially new information with high quality and rigorous estimate of reliability. The availability of ACROSS would change the strategy for underground study in the coming years. We would like to call for your attention and discussion to the next way to go

  15. Simple autonomous Mars walker

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.

    1989-01-01

    Under a contract with NASA's Jet Propulsion Laboratory, Martin Marietta has developed several alternative rover concepts for unmanned exploration of the planet Mars. One of those concepts, the 'Walking Beam', is the subject of this paper. This concept was developed with the goal of achieving many of the capabilities of more sophisticated articulated-leg walkers with a much simpler, more robust, less computationally demanding and more power efficient design. It consists of two large-base tripods nested one within the other which alternately translate with respect to each other along a 5-meter beam to propel the vehicle. The semiautonomous navigation system relies on terrain geometry sensors and tacticle feedback from each foot to autonomously select a path which avoids hazards along a route designated from earth. Both mobility and navigation features of this concept are discussed including a top-level description of the vehicle's physical characteristics, deployment strategy, mobility elements, sensor suite, theory of operation, navigation and control processes, and estimated performance.

  16. Autonomous Work by Pupils.

    ERIC Educational Resources Information Center

    Marbeau, V.

    This monograph is a report on an international discussion of the desirability of autonomous work on the part of students. The rationale for autonomous work is twofold. First, this approach should lead the pupil to think about the learning process and take an active and responsible share in it. This will promote the development of personality by…

  17. Autonomous Science on the EO-1 Mission

    NASA Technical Reports Server (NTRS)

    Chien, S.; Sherwood, R.; Tran, D.; Castano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.; Burl, M.; Mandl, D.; hide

    2003-01-01

    In mid-2003, we will fly software to detect science events that will drive autonomous scene selectionon board the New Millennium Earth Observing 1 (EO-1) spacecraft. This software will demonstrate the potential for future space missions to use onboard decision-making to detect science events and respond autonomously to capture short-lived science events and to downlink only the highest value science data.

  18. Autonomous Science on the EO-1 Mission

    NASA Technical Reports Server (NTRS)

    Chien, S.; Sherwood, R.; Tran, D.; Castano, R.; Cichy, B.; Davies, A.; Rabideau, G.; Tang, N.; Burl, M.; Mandl, D.; Frye, S.; Hengemihle, J.; Agostino, J. D.; Bote, R.; Trout, B.; Shulman, S.; Ungar, S.; Gaasbeck, J. Van; Boyer, D.; Griffin, M.; Burke, H.; Greeley, R.; Doggett, T.; Williams, K.; Baker, V.

    2003-01-01

    In mid-2003, we will fly software to detect science events that will drive autonomous scene selectionon board the New Millennium Earth Observing 1 (EO-1) spacecraft. This software will demonstrate the potential for future space missions to use onboard decision-making to detect science events and respond autonomously to capture short-lived science events and to downlink only the highest value science data.

  19. Autonomous Gaussian Decomposition

    NASA Astrophysics Data System (ADS)

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Goss, W. M.; Dickey, John

    2015-04-01

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  20. AUTONOMOUS GAUSSIAN DECOMPOSITION

    SciTech Connect

    Lindner, Robert R.; Vera-Ciro, Carlos; Murray, Claire E.; Stanimirović, Snežana; Babler, Brian; Heiles, Carl; Hennebelle, Patrick; Dickey, John

    2015-04-15

    We present a new algorithm, named Autonomous Gaussian Decomposition (AGD), for automatically decomposing spectra into Gaussian components. AGD uses derivative spectroscopy and machine learning to provide optimized guesses for the number of Gaussian components in the data, and also their locations, widths, and amplitudes. We test AGD and find that it produces results comparable to human-derived solutions on 21 cm absorption spectra from the 21 cm SPectral line Observations of Neutral Gas with the EVLA (21-SPONGE) survey. We use AGD with Monte Carlo methods to derive the H i line completeness as a function of peak optical depth and velocity width for the 21-SPONGE data, and also show that the results of AGD are stable against varying observational noise intensity. The autonomy and computational efficiency of the method over traditional manual Gaussian fits allow for truly unbiased comparisons between observations and simulations, and for the ability to scale up and interpret the very large data volumes from the upcoming Square Kilometer Array and pathfinder telescopes.

  1. Multi-organ autonomic dysfunction in Parkinson disease

    PubMed Central

    2010-01-01

    Both pathologic and clinical studies of autonomic pathways have expanded the concept of Parkinson disease (PD) from a movement disorder to a multi-level widespread neurodegenerative process with non-motor features spanning several organ systems. This review integrates neuropathologic findings and autonomic physiology in PD as it relates to end organ autonomic function. Symptoms, pathology and physiology of the cardiovascular, skin/sweat gland, urinary, gastrointestinal, pupillary and neuroendocrine systems can be probed by autopsy, biopsy and non-invasive electrophysiological techniques in vivo which assess autonomic anatomy and function. There is mounting evidence that PD affects a chain of neurons in autonomic pathways. Consequently, autonomic physiology may serve as a window into non-motor PD progression and allow the development of mechanistically based treatment strategies for several non-motor features of PD. End-organ physiologic markers may be used to inform a model of PD pathophysiology and non-motor progression. PMID:20851033

  2. Autonomous multifunctional nanobrushes-autonomous materials

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Tius, Marcus A.

    2007-04-01

    In this work, taking advantage of carbon nanotubes' small size, and exceptional mechanical, chemical and electrical properties, we report on a series of nano-synthesis procedures that combine conventional chemical vapor deposition and selective substrate area growth followed by chemical functionalizations to fabricate functionalized nano-brushes from aligned carbon nanotube arrays and chemically selective functional groups. The high aspect ratio and small dimension, mechanical stability and flexibility, surface chemical and adhesive characteristics of carbon nanotubes provide opportunities to create nano-brushes with selected chemical functionalities. The nano-brushes are made from aligned multi-walled carbon nanotube bristles grafted onto long SiC fiber handles in various configurations and functionalized with various chemical functional groups. These nano-brushes can easily be manipulated physically, either manually or with the aid of motors. Here, we explain the autonomous characteristics of the functionalized nano-brushes employing functional chemical groups such that the nano-brush can potentially collect various metal particles, ions, and contaminants from liquid solutions and the air environment, autonomously. These functionalized multiwalled carbon nanotube based nano-brushes can work swiftly in both liquid and air environments. With surface modification and functionalization, the nanotube nano-brushes can potentially become a versatile nano-devices in many chemical and biological applications, where they can autonomously pick up the particles they encounter since they can be chemically programmed to function as Autonomous Chemical Nano Robots (ACNR).

  3. Assessing autonomic dysfunction in early diabetic neuropathy

    PubMed Central

    Zilliox, L.; Peltier, A.C.; Wren, P.A.; Anderson, A.; Smith, A.G.; Singleton, J.R.; Feldman, E.L.; Alexander, N.B.

    2011-01-01

    Objective: Autonomic symptoms may occur frequently in diabetic and other neuropathies. There is a need to develop a simple instrument to measure autonomic symptoms in subjects with neuropathy and to test the validity of the instrument. Methods: The Survey of Autonomic Symptoms (SAS) consists of 11 items in women and 12 in men. Each item is rated by an impact score ranging from 1 (least severe) to 5 (most severe). The SAS was tested in observational studies and compared to a previously validated autonomic scale, the Autonomic Symptom Profile (ASP), and to a series of autonomic tests. Results: The SAS was tested in 30 healthy controls and 62 subjects with neuropathy and impaired glucose tolerance or newly diagnosed diabetes. An increased SAS score was associated with the previously validated ASP (rank order correlation = 0.68; p < 0.0001) and with quantitative measures of autonomic function: a reduced quantitative sudomotor axon reflex test sweat volume (0.31; p < 0.05) and an abnormal 30:15 ratio (0.53; p < 0.01). The SAS shows a high sensitivity and specificity (area under the receiver operating characteristic curve 0.828) that compares favorably with the ASP. The SAS scale domains had a good internal consistency and reliability (Cronbach α = 0.76). The SAS symptom score was increased in neuropathy (95% confidence interval [CI] 2.99–4.14) compared to control (95% CI 0.58–1.69; p < 0.0001) subjects. Conclusions: The SAS is a new, valid, easily administered instrument to measure autonomic symptoms in early diabetic neuropathy and would be of value in assessing neuropathic autonomic symptoms in clinical trials and epidemiologic studies. PMID:21422460

  4. ESA's STSE WACMOS Project: Towards a Water Cycle Multimission Observation Strategy

    NASA Astrophysics Data System (ADS)

    Fernández Prieto, Diego; Su, Bob

    2010-05-01

    synergic manner; • Develop robust methodologies to integrate and assimilate space observations and in situ measurements into advance coupled models being able to describe biophysical processes and interactions between ocean, land and atmosphere describing the water cycle and hydrological processes; In this context, the European Space Agency (ESA) in collaboration with the Global Energy and Water Experiment (GEWEX) of the World Climate Research Program (WCRP) launched the project Water Cycle Multi-mission Observation Strategy (WACMOS) early in 2009. The project, funded under the ESA's Support To Science Element, address the first of the above objectives. In particular, the project objective is twofold: • On the one hand, developing and validating a Product Portfolio of novel geo-information products responding to the GEWEX scientific priorities and exploiting the synergic capabilities between ESA EO data and other non-ESA missions. • Exploring and assessing different methodologies to exploit in a synergic manner different observations towards the development of long-term consistent datasets of key (essential) variables describing the water cycle. In this context, WACMOS is focused on four components of the above cycle that are also thematic priorities identified in close collaboration with the GEWEX scientific community: Evapotranspiration, soil moisture, clouds and water vapour. The product portfolio comprises: 1) AATSR-MERIS based evapotranspiration modelling approach; 2) Merged passive and active microwave first multi-decade soil moisture data set; 3) Novel MSG SEVIRI-SCIAMACHY cloud products and 4) Synergic SEVIRI-IASI and SEVIRI-MERIS water vapour products. In this paper, the methodologies and preliminary results of WACMOS are introduced. In the next phase of the project, consolidated methods, data products and validation results will be generated, so that a global water cycle product of evapotranpiration, soil moisture, clouds and water vapour with quantified

  5. Preparing for the WFIRST Microlensing Survey: Simulations, Requirements, Survey Strategies, and Precursor Observations

    NASA Astrophysics Data System (ADS)

    Gaudi, Bernard

    -fidelity estimates of the science yield of bound planets, free floating planets, and potentially habitable planets. Goal 3: We will perform trade studies to determine the effect of different mission architectures on the yield, and optimization studies to determine the effect of different survey strategies on the yield within a given mission architecture. These studies will include considerations of the field location, number of fields and cadences, and filter properties and filter cadence choices. Goal 4: We will determine the precision with which the parameters of the detected planetary systems can be determined using all available constraints, and in particular provide the survey strategies and instrument requirements to enable the measurement host star masses and distances. Goal 5: We will determine the hardware, software, and calibration requirements needed to achieve our primary science goals. Goal 6: We will identify and carry out (where possible) precursor observations needed to inform our survey strategy and data reduction methodologies, verify our science output, and maximize the WFIRST scientific return. Goal 7: Where applicable, we will begin development of data reduction and analysis tools, and work with members of the WFIRST Science Centers to ensure that these tools are applicable to microlensing. We will issue data challenges, both to verify our methodologies, but also to draw people to the microlensing field.

  6. Observing microscopic structures of a relativistic object using a time-stretch strategy

    PubMed Central

    Roussel, E.; Evain, C.; Le Parquier, M.; Szwaj, C.; Bielawski, S.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Ricaud, J.-P.; Cassinari, L.; Labat, M.; Couprie, M.-E; Roy, P.

    2015-01-01

    Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources. PMID:26020859

  7. Observing microscopic structures of a relativistic object using a time-stretch strategy

    NASA Astrophysics Data System (ADS)

    Roussel, E.; Evain, C.; Le Parquier, M.; Szwaj, C.; Bielawski, S.; Manceron, L.; Brubach, J.-B.; Tordeux, M.-A.; Ricaud, J.-P.; Cassinari, L.; Labat, M.; Couprie, M.-E.; Roy, P.

    2015-05-01

    Emission of light by a single electron moving on a curved trajectory (synchrotron radiation) is one of the most well-known fundamental radiation phenomena. However experimental situations are more complex as they involve many electrons, each being exposed to the radiation of its neighbors. This interaction has dramatic consequences, one of the most spectacular being the spontaneous formation of spatial structures inside electrons bunches. This fundamental effect is actively studied as it represents one of the most fundamental limitations in electron accelerators, and at the same time a source of intense terahertz radiation (Coherent Synchrotron Radiation, or CSR). Here we demonstrate the possibility to directly observe the electron bunch microstructures with subpicosecond resolution, in a storage ring accelerator. The principle is to monitor the terahertz pulses emitted by the structures, using a strategy from photonics, time-stretch, consisting in slowing-down the phenomena before recording. This opens the way to unpreceeded possibilities for analyzing and mastering new generation high power coherent synchrotron sources.

  8. Adverse Reactions Due to Directly Observed Treatment Strategy Therapy in Chinese Tuberculosis Patients: A Prospective Study

    PubMed Central

    Lv, Xiaozhen; Tang, Shaowen; Xia, Yinyin; Wang, Xiaomeng; Yuan, Yanli; Hu, Daiyu; Liu, Feiying; Wu, Shanshan; Zhang, Yuan; Yang, Zhirong; Tu, Dehua; Chen, Yixin; Deng, Peiyuan; Ma, Yu; Chen, Ru; Zhan, Siyan

    2013-01-01

    Background More than 1 million tuberculosis (TB) patients are receiving directly observed treatment strategy (DOTS) therapy in China every year. As to the profile of adverse drug reactions (ADRs) due to DOTS therapy, no consensus has been reached. There is no report regarding ADRs due to DOTS therapy with a large Chinese TB population. This study aimed to determine the incidence and prognosis of ADRs due to DOTS therapy, and to evaluate their impact on anti-TB treatment in China. Methods A prospective population-based cohort study was performed during 2007–2008. Sputum smear positive pulmonary TB patients who received DOTS therapy were included and followed up for six to nine months in 52 counties of four regions in China. The suspected ADRs were recorded and reviewed by Chinese State Food and Drug Administration. Results A total of 4304 TB patients were included in this study. 649 patients (15.08%) showed at least one ADR and 766 cases in total were detected. The incidence (count) of ADR based on affected organ was: liver dysfunction 6.34% (273), gastrointestinal disorders 3.74% (161), arthralgia 2.51% (108), allergic reactions 2.35% (101), neurological system disorders 2.04% (88), renal impairment 0.07% (3) and others 0.05% (2). Most cases of ADRs (95%) had a good clinical outcome, while two with hepatotoxicity and one with renal impairment died. Compared with patients without ADRs, patients with ADRs were more likely to have positive smear test results at the end of the intensive phase (adjusted OR, 2.00; 95%CI, 1.44–2.78) and unsuccessful anti-TB outcomes (adjusted OR, 2.58; 95%CI, 1.43–4.68). Conclusions The incidence of ADRs due to DOTS therapy was 15.08%. Those ADRs had a substantial impact on TB control in China. This highlighted the importance of developing strategies to ameliorate ADRs both to improve the quality of patient care and to control TB safely. PMID:23750225

  9. Autonomous Multi-sensor Coordination: The Science Goal Monitor

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Jung, John; Geiger, Jenny; Grosvenor, Sandy

    2004-01-01

    Next-generation science and exploration systems will employ new observation strategies that will use multiple sensors in a dynamic environment to provide high quality monitoring, self-consistent analyses and informed decision making. The Science Goal Monitor (SGM) is a prototype software tool being developed to explore the nature of automation necessary to enable dynamic observing of earth phenomenon. The tools being developed in SGM improve our ability to autonomously monitor multiple independent sensors and coordinate reactions to better observe the dynamic phenomena. The SGM system enables users to specify events of interest and how to react when an event is detected. The system monitors streams of data to identify occurrences of the key events previously specified by the scientist/user. When an event occurs, the system autonomously coordinates the execution of the users desired reactions between different sensors. The information can be used to rapidly respond to a variety of fast temporal events. Investigators will no longer have to rely on after-the-fact data analysis to determine what happened. Our paper describes a series of prototype demonstrations that we have developed using SGM and NASA's Earth Observing-1 (EO-1) satellite and Earth Observing Systems Aqua/Terra spacecrafts MODIS instrument. Our demonstrations show the promise of coordinating data from different sources, analyzing the data for a relevant event, autonomously updating and rapidly obtaining a follow-on relevant image. SGM is being used to investigate forest fires, floods and volcanic eruptions. We are now identifying new earth science scenarios that will have more complex SGM reasoning. By developing and testing a prototype in an operational environment, we are also establishing and gathering metrics to gauge the success of automating science campaigns.

  10. A Case for "Acquisitional Strategies": Some Methodological Observations on Investigation into Second Language Learners' Initial State.

    ERIC Educational Resources Information Center

    Polomska, Margaret

    1988-01-01

    An exploratory application of the "acquisitional strategies" framework investigated English-speaking language learners' acquisition of preposition stranding in Dutch. Interesting syntactic and morphological contrasts in both English and Dutch render the framework a valuable empirical tool for evaluating language acquisition strategies. (Author/CB)

  11. The observation of essential clinical strategies during an individual session of dialectical behavior therapy.

    PubMed

    Bedics, Jamie D; Korslund, Kathryn E; Sayrs, Jennifer H R; McFarr, Lynn M

    2013-09-01

    Dialectical behavior therapy (DBT; Linehan, 1993) is a comprehensive and principle-based cognitive-behavioral intervention initially developed for the treatment of suicidal behavior and later expanded to the treatment of borderline personality disorder and additional psychiatric disorders associated with emotion dysregulation. As a comprehensive treatment, DBT consists of multiple modalities of intervention that include individual therapy, skills training, telephone consultation, team consultation, and the structuring of ancillary treatments. In the present article, we review three essential strategies expected to occur during an individual session of DBT. The three strategies reviewed include structuring the content of the session, core strategies of problem solving and validation, and dialectical strategies and worldview. Associated research data and clinical examples are provided for each strategy. 2013 APA, all rights reserved

  12. Predictive validity of the classroom strategies scale-observer form on statewide testing scores: an initial investigation.

    PubMed

    Reddy, Linda A; Fabiano, Gregory A; Dudek, Christopher M; Hsu, Louis

    2013-12-01

    The present study examined the validity of a teacher observation measure, the Classroom Strategies Scale--Observer Form (CSS), as a predictor of student performance on statewide tests of mathematics and English language arts. The CSS is a teacher practice observational measure that assesses evidence-based instructional and behavioral management practices in elementary school. A series of two-level hierarchical generalized linear models were fitted to data of a sample of 662 third- through fifth-grade students to assess whether CSS Part 2 Instructional Strategy and Behavioral Management Strategy scale discrepancy scores (i.e., ∑ |recommended frequency--frequency ratings|) predicted statewide mathematics and English language arts proficiency scores when percentage of minority students in schools was controlled. Results indicated that the Instructional Strategy scale discrepancy scores significantly predicted mathematics and English language arts proficiency scores: Relatively larger discrepancies on observer ratings of what teachers did versus what should have been done were associated with lower proficiency scores. Results offer initial evidence of the predictive validity of the CSS Part 2 Instructional Strategy discrepancy scores on student academic outcomes. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. An expansion of glider observation strategies to systematically transmit and analyze preferred waypoints of underwater gliders

    NASA Astrophysics Data System (ADS)

    Smedstad, Lucy F.; Barron, Charlie N.; Bourg, Rachel N.; Brooking, Michael W.; Bryant, Danielle A.; Carr, Robert J.; Heaney, Kevin D.; Holmberg, Edward A.; Mask, Andrea C.; Mensi, Bryan L.

    2015-05-01

    The Glider Observation STrategies (GOST) system provides real-time assistance to ocean glider pilots by suggesting preferred ocean glider waypoints based on ocean forecasts and their uncertainties. Restrictions on waterspace, preferred operational areas, and other glider trajectories are also taken into account. Using existing operational regional Navy Coastal Ocean Model (RNCOM) output, demonstrations of glider waypoint calculation are ongoing in Navy operational areas. After the ocean forecast models and GOST components run at the Navy DoD Supercomputing Resource Center (Navy DSRC), GOST-suggested glider paths are transferred to the Glider Operations Center (GOC). The glider pilots at the GOC import this information into their Unmanned Systems Interface (USI), developed at the University of Washington, Applied Physics Laboratory (APL-UW) to evaluate the suggested glider paths, make adjustments, and update waypoints for the gliders. The waypoints being sent are visualized and analyzed using graphic capabilities to convey guidance uncertainty developed under a grant to the University of New Orleans (UNO) and added under the Environmental Measurements Path Planner (EMPath) system within GOST. USI forwards automatic messages from the gliders with recent glider location, speed, and depth to GOST for the next cycle. Over the course of these demonstrations, capabilities were added or modified including use of initial glider bearing, preferred path, refinement of glider turn frequency, correction of glider speed, and introduction of glider rendezvous locations. Automation has been added with help from the modeling group at the Naval Oceanographic Office (NAVOCEANO). GOST supports NAVOCEANO's ongoing efforts to direct and recover gliders, to safely navigate in changing ocean conditions, and to provide feedback to improve ocean model prediction.

  14. Autonomic Nervous System Disorders

    MedlinePlus

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart and ... blood vessels. When something goes wrong in this system, it can cause serious problems, including Blood pressure ...

  15. Autonomous parvovirus vectors.

    PubMed

    Maxwell, Ian H; Terrell, Kristina L; Maxwell, Françoise

    2002-10-01

    Parvoviruses are small, icosahedral viruses (approximately 25 nm) containing a single-strand DNA genome (approximately 5 kb) with hairpin termini. Autonomous parvoviruses (APVs) are found in many species; they do not require a helper virus for replication but they do require proliferating cells (S-phase functions) and, in some cases, tissue-specific factors. APVs can protect animals from spontaneous or experimental tumors, leading to consideration of these viruses, and vectors derived from them, as anticancer agents. Vector development has focused on three rodent APVs that can infect human cells, namely, LuIII, MVM, and H1. LuIII-based vectors with complete replacement of the viral coding sequences can direct transient or persistent expression of transgenes in cell culture. MVM-based and H1-based vectors with substitution of transgenes for the viral capsid sequences retain viral nonstructural (NS) coding sequences and express the NS1 protein. The latter serves to amplify the vector genome in target cells, potentially contributing to antitumor activity. APV vectors have packaging capacity for foreign DNA of approximately 4.8 kb, a limit that probably cannot be exceeded by more than a few percent. LuIII vectors can be pseudotyped with capsid proteins from related APVs, a promising strategy for controlling tissue tropism and circumventing immune responses to repeated administration. Initial success has been achieved in targeting such a pseudotyped vector by genetic modification of the capsid. Subject to advances in production and purification methods, APV vectors have potential as gene transfer agents for experimental and therapeutic use, particularly for cancer therapy. Copyright 2002 Elsevier Science (USA)

  16. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  17. Autonomous spacecraft design methodology

    SciTech Connect

    Divita, E.L.; Turner, P.R.

    1984-08-01

    A methodology for autonomous spacecraft design blends autonomy requirements with traditional mission requirements and assesses the impact of autonomy upon the total system resources available to support faulttolerance and automation. A baseline functional design can be examined for autonomy implementation impacts, and the costs, risk, and benefits of various options can be assessed. The result of the process is a baseline design that includes autonomous control functions.

  18. Evaluation of different processing strategies of Continuous GPS (CGPS) observations for landslide monitoring

    NASA Astrophysics Data System (ADS)

    Ferhat, Gilbert; Malet, Jean-Philippe; Ulrich, Patrice

    2015-04-01

    The objective of this work is to evaluate several processing strategies of satellite navigation systems observations for the near-real time characterization of landslide displacement from continuous dual-frequency and mono-frequency GPS receivers. By tracking the electromagnetic waves that the satellites are sending continuously, the navigation system can provide the antenna position (longitude, latitude, and height, or X, Y, Z coordinates). The use of the phase measurements allows determining the relative positions of points located as far as several hundred kilometres apart with an accuracy of 2-5 mm in horizontal and 5-10 mm in vertical. This accuracy allows the fast detection of small displacements and, thus the survey of the temporal evolution of crustal deformation and natural hazards (volcanoes, tectonic faults, ice glaciers, landslides). Since a few years, several CGPS (Continuous Global Positioning System) receivers have been installed on active landslides in France (e.g. La Clapière rockslide, Avignonet and Villerville rotational slides, Super-Sauze and La Valette mudslides). These landslides show very different displacement rates (ranging from a few centimetres to several meters per year) and different kinematic regimes (e.g. continuous displacement of nearly constant rate or succession of periods of acceleration/deceleration). All landslides are part of the French 'Observatory of Landslides' (OMIV), a collaborative structure aiming at collecting the same type of kinematic, hydrologic and seismic observations on landslides and at disseminating the data to the scientific community. For the monitoring of landslides where the required degree of accuracy in position is about a few mm, GPS has been mainly used for repeated measurements, as a complement to conventional geodetic methods. Permanent monitoring is still not usually performed operationally on landslides mostly because of the cost of the receivers compared to conventional deformation monitoring

  19. Can application and transfer of strategy be observed in low visibility condition?

    PubMed Central

    El Karoui, Imen; Christoforidis, Kalliopi

    2017-01-01

    It has been long assumed that cognitive control processes can only be applied on consciously visible stimuli, but empirical evidence is contradictory. In the present study, we investigated strategic adaptation to conflict both in unmasked and in low-visibility masked trials. Using a paradigm derived from the Stroop task, we studied the application of strategies, but also the transfer of a strategy developed in unmasked trials to masked trials, and the trial-to-trial dynamics of strategic processing. In unmasked trials, we found evidence of strategic adaptation to conflict, both in reaction times and in ERPs (N2 and P300). In masked trials we found no evidence of behavioral adaptation to conflict, but a modulation of the P300 was present in masked trials included in unmasked blocks, suggesting the existence of a transfer of strategy. Finally, trial-to-trial analyses in unmasked trials revealed a pattern suggestive of dynamic subjective adherence to the instructed strategy. PMID:28288178

  20. Can application and transfer of strategy be observed in low visibility condition?

    PubMed

    El Karoui, Imen; Christoforidis, Kalliopi; Naccache, Lionel

    2017-01-01

    It has been long assumed that cognitive control processes can only be applied on consciously visible stimuli, but empirical evidence is contradictory. In the present study, we investigated strategic adaptation to conflict both in unmasked and in low-visibility masked trials. Using a paradigm derived from the Stroop task, we studied the application of strategies, but also the transfer of a strategy developed in unmasked trials to masked trials, and the trial-to-trial dynamics of strategic processing. In unmasked trials, we found evidence of strategic adaptation to conflict, both in reaction times and in ERPs (N2 and P300). In masked trials we found no evidence of behavioral adaptation to conflict, but a modulation of the P300 was present in masked trials included in unmasked blocks, suggesting the existence of a transfer of strategy. Finally, trial-to-trial analyses in unmasked trials revealed a pattern suggestive of dynamic subjective adherence to the instructed strategy.

  1. Subversion of Cell-Autonomous Host Defense by Chlamydia Infection.

    PubMed

    Fischer, Annette; Rudel, Thomas

    2016-05-13

    Obligate intracellular bacteria entirely depend on the metabolites of their host cell for survival and generation of progeny. Due to their lifestyle inside a eukaryotic cell and the lack of any extracellular niche, they have to perfectly adapt to compartmentalized intracellular environment of the host cell and counteract the numerous defense strategies intrinsically present in all eukaryotic cells. This so-called cell-autonomous defense is present in all cell types encountering Chlamydia infection and is in addition closely linked to the cellular innate immune defense of the mammalian host. Cell type and chlamydial species-restricted mechanisms point a long-term evolutionary adaptation that builds the basis of the currently observed host and cell-type tropism among different Chlamydia species. This review will summarize the current knowledge on the strategies pathogenic Chlamydia species have developed to subvert and overcome the multiple mechanisms by which eukaryotic cells defend themselves against intracellular pathogens.

  2. Observer strategy and radiographic classification of healing after grafting of cystic defects in maxilla: a radiological appraisal.

    PubMed

    Kattimani, Vivekanand S; Bajantai, Nivedita V; Sriram, Sanjay Krishna; Sriram, Roopa Rani; Rao, V K Prabhakar; Desai, Priti D

    2013-03-01

    The aim is to radiographically quantify the bone density and relate the same with observer strategy in the bone healing. To assess pattern of bone regeneration following grafting of defects with hydroxyapatite after apicoectomy/cystic enucleation. An observer strategy involving trained and experienced examiners used in large series of cases, evaluated radiographically over a period of 1 year with intervals. The cases were grouped into different categories depending on (1) surgical site outline merging with material margin, (2) internal portion of surgical site (i.e. bone formation characteristics) and (3) density of surgical site. The radiographs examined by blind process and the findings were tabulated. Operating surgeon (oral surgeon) has done the interpretation of data to create observer strategy of grafting cases. The outline of the defect was changed, partly reduced and completely absent along with remodeling, which showed ground glass, specular or trabecular pattern of bone over a time with increasing density correlating bone regeneration within a short duration. The applied strategy and classification are recommended for follow-up studies. In this study the characteristics of the new bone formation were also delineated. This strategy is helpful for follow-up studies; implant procedures and so; to know quality and condition of bone after treatment.

  3. Diabetic autonomic neuropathy.

    PubMed

    Vinik, Aaron I; Erbas, Tomris

    2013-01-01

    Autonomic neuropathy, once considered to be the Cinderella of diabetes complications, has come of age. The autonomic nervous system innervates the entire human body, and is involved in the regulation of every single organ in the body. Thus, perturbations in autonomic function account for everything from abnormalities in pupillary function to gastroparesis, intestinal dysmotility, diabetic diarrhea, genitourinary dysfunction, amongst others. "Know autonomic function and one knows the whole of medicine!" It is now becoming apparent that before the advent of severe pathological damage to the autonomic nervous system there may be an imbalance between the two major arms, namely the sympathetic and parasympathetic nerve fibers that innervate the heart and blood vessels, resulting in abnormalities in heart rate control and vascular dynamics. Cardiac autonomic neuropathy (CAN) has been linked to resting tachycardia, postural hypotension, orthostatic bradycardia and orthostatic tachycardia (POTTS), exercise intolerance, decreased hypoxia-induced respiratory drive, loss of baroreceptor sensitivity, enhanced intraoperative or perioperative cardiovascular lability, increased incidence of asymptomatic ischemia, myocardial infarction, and decreased rate of survival after myocardial infarction and congestive heart failure. Autonomic dysfunction can affect daily activities of individuals with diabetes and may invoke potentially life-threatening outcomes. Intensification of glycemic control in the presence of autonomic dysfunction (more so if combined with peripheral neuropathy) increases the likelihood of sudden death and is a caveat for aggressive glycemic control. Advances in technology, built on decades of research and clinical testing, now make it possible to objectively identify early stages of CAN with the use of careful measurement of time and frequency domain analyses of autonomic function. Fifteen studies using different end points report prevalence rates of 1% to 90

  4. An observational study of Australian private practice physiotherapy consultations to explore the prescription of self-management strategies.

    PubMed

    Peek, Kerry; Carey, Mariko; Mackenzie, Lisa; Sanson-Fisher, Robert

    2017-02-03

    The aim of the study was to explore the types of self-management strategies prescribed; the number of strategies and the overall length of time allocated to self-management prescription, by consultation type and by injury location, in physiotherapy consultations. A cross-sectional, observational study of 113 physiotherapist-patient consultations was undertaken. Regression analyses were used to determine whether consultation type and injury location were associated with the number of strategies prescribed and the length/fraction of time spent on self-management. A total of 108 patients (96%) were prescribed at least one self-management strategy - commonly exercise and advice. The mean length of time spent on self-management was 5.80 min. Common injury locations were the neck (n = 40) and lower back (n = 39). No statistically significant associations were observed between consultation type or injury location for either outcome (number of strategies and the length/fraction of time allocated to self-management prescription). Physiotherapists regularly spend time prescribing self-management strategies such as exercise, advice, and the use of heat or ice to patients receiving treatment linked to a range of injury locations. This suggests that self-management is considered to be an important adjunct to in-clinic physiotherapy. The practice implications of this are that clinicians should reflect on how self-management strategies can be used to maximize patient outcomes, and whether the allocation of consultation time to self-management is likely to optimize patient adherence to each strategy. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Autonomic cardiac innervation

    PubMed Central

    Hasan, Wohaib

    2013-01-01

    Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.   Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory

  6. Toward an Autonomous Telescope Network: the TBT Scheduler

    NASA Astrophysics Data System (ADS)

    Racero, E.; Ibarra, A.; Ocaña, F.; de Lis, S. B.; Ponz, J. D.; Castillo, M.; Sánchez-Portal, M.

    2015-09-01

    Within the ESA SSA program, it is foreseen to deploy several robotic telescopes to provide surveillance and tracking services for hazardous objects. The TBT project will procure a validation platform for an autonomous optical observing system in a realistic scenario, consisting of two telescopes located in Spain and Australia, to collect representative test data for precursor SSA services. In this context, the planning and scheduling of the night consists of two software modules, the TBT Scheduler, that will allow the manual and autonomous planning of the night, and the control of the real-time response of the system, done by the RTS2 internal scheduler. The TBT Scheduler allocates tasks for both telescopes without human intervention. Every night it takes all the inputs needed and prepares the schedule following some predefined rules. The main purpose of the scheduler is the distribution of the time for follow-up of recently discovered targets and surveys. The TBT Scheduler considers the overall performance of the system, and combine follow-up with a priori survey strategies for both kind of objects. The strategy is defined according to the expected combined performance for both systems the upcoming night (weather, sky brightness, object accessibility and priority). Therefore, TBT Scheduler defines the global approach for the network and relies on the RTS2 internal scheduler for the final detailed distribution of tasks at each sensor.

  7. Autonomic disturbances in narcolepsy.

    PubMed

    Plazzi, Giuseppe; Moghadam, Keivan Kaveh; Maggi, Leonardo Serra; Donadio, Vincenzo; Vetrugno, Roberto; Liguori, Rocco; Zoccoli, Giovanna; Poli, Francesca; Pizza, Fabio; Pagotto, Uberto; Ferri, Raffaele

    2011-06-01

    Narcolepsy is a clinical condition characterized mainly by excessive sleepiness and cataplexy. Hypnagogic hallucinations and sleep paralysis complete the narcoleptic tetrad; disrupted night sleep, automatic behaviors and weight gain are also usual complaints. Different studies focus on autonomic changes or dysfunctions among narcoleptic patients, such as pupillary abnormalities, fainting spells, erectile dysfunction, night sweats, gastric problems, low body temperature, systemic hypotension, dry mouth, heart palpitations, headache and extremities dysthermia. Even if many studies lack sufficient standardization or their results have not been replicated, a non-secondary involvement of the autonomic nervous system in narcolepsy is strongly suggested, mainly by metabolic and cardiovascular findings. Furthermore, the recent discovery of a high risk for overweight and for metabolic syndrome in narcoleptic patients represents an important warning for clinicians in order to monitor and follow them up for their autonomic functions. We review here studies on autonomic functions and clinical disturbances in narcoleptic patients, trying to shed light on the possible contribute of alterations of the hypocretin system in autonomic pathophysiology.

  8. Observational learning by individuals with autism: a review of teaching strategies.

    PubMed

    Plavnick, Joshua B; Hume, Kara A

    2014-05-01

    Observational learning is the process used to explain the acquisition of novel behaviors or performance of previously acquired behaviors under novel conditions after observing the behavior of another person and the consequences that follow the behavior. Many learners with autism do not attend to environmental stimuli at a level sufficient to learn a range of prosocial behaviors through observation of others. Modeling, group or dyadic instruction, and explicit observation training can improve the extent to which individuals with autism learn through observation. This article reviews previous research that involved observational learning by individuals with autism and outlines future research that could benefit instructional practices.

  9. Teaching Classroom Videorecording Analysis to Graduate Students: Strategies for Observation and Improvement

    ERIC Educational Resources Information Center

    Cahalan, James M.

    2013-01-01

    Videorecording analysis can help improve the teaching of college literature and other subjects. Here, I concentrate on specific analytical strategies that I have been teaching my graduate students since 1994, and I cite my students (including their graphical charts) to illustrate what important lessons they have learned through careful study of…

  10. Drug Control: Observations on Elements of the Federal Drug Control Strategy. Report to Congressional Requesters.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC. General Government Div.

    Although the United States government invests vast sums of money in the war on drugs, the availability of drugs and the number of persons using illegal drugs are still serious problems. Information that Congress can use in improving drug control strategies is provided here. Some of the report's highlights include current research on promising…

  11. Teaching Classroom Videorecording Analysis to Graduate Students: Strategies for Observation and Improvement

    ERIC Educational Resources Information Center

    Cahalan, James M.

    2013-01-01

    Videorecording analysis can help improve the teaching of college literature and other subjects. Here, I concentrate on specific analytical strategies that I have been teaching my graduate students since 1994, and I cite my students (including their graphical charts) to illustrate what important lessons they have learned through careful study of…

  12. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  13. Examining the effectiveness of parental strategies to overcome bedwetting: an observational cohort study.

    PubMed

    Grzeda, Mariusz T; Heron, Jon; Tilling, Kate; Wright, Anne; Joinson, Carol

    2017-07-13

    To examine whether a range of common strategies used by parents to overcome bedwetting in 7½-year-old children (including lifting, restricting drinks before bedtime, regular daytime toilet trips, rewards, showing displeasure and using protection pants) are effective in reducing the risk of bedwetting at 9½ years. Prospective cohort study. General community. The starting sample included 1258 children (66.7% boys and 33.2% girls) who were still bedwetting at 7½ years. Risk of bedwetting at 9½ years. Using propensity score-based methods, we found that two of the parental strategies used at 7½ years were associated with an increased risk of bedwetting at 9½ years, after adjusting the model for child and family variables and other parental strategies: lifting (risk difference=0.106 (95% CI 0.009 to 0.202), ie, there is a 10.6% (0.9% to 20.2%) increase in risk of bedwetting at 9½ years among children whose parents used lifting compared with children whose parents did not use this strategy) and restricting drinks before bedtime (0.123 (0.021 to 0.226)). The effect of using the other parental strategies was in either direction (an increase or decrease in the risk of bedwetting at 9½ years), for example, showing displeasure (-0.052 (-0.214 to 0.110)). When we re-analysed the data using multivariable regression analysis, the results were mostly consistent with the propensity score-based methods. These findings provide evidence that common strategies used to overcome bedwetting in 7½-year-olds are not effective in reducing the risk of bedwetting at 9½ years. Parents should be encouraged to seek professional advice for their child's bedwetting rather than persisting with strategies that may be ineffective. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Autonomic dysfunction in multiple sclerosis.

    PubMed

    Racosta, Juan Manuel; Kimpinski, Kurt; Morrow, Sarah Anne; Kremenchutzky, Marcelo

    2015-12-01

    Autonomic dysfunction is a prevalent and significant cause of disability among patients with multiple sclerosis. Autonomic dysfunction in multiple sclerosis is usually explained by lesions within central nervous system regions responsible for autonomic regulation, but novel evidence suggests that other factors may be involved as well. Additionally, the interactions between the autonomic nervous system and the immune system have generated increased interest about the role of autonomic dysfunction in the pathogenesis of multiple sclerosis. In this paper we analyze systematically the most relevant signs and symptoms of autonomic dysfunction in MS, considering separately their potential causes and implications.

  15. Autonomic regulation in Fragile X Syndrome

    PubMed Central

    Heilman, Keri J.; Harden, Emily R.; Zageris, Danielle M.; Berry-Kravis, Elizabeth; Porges, Stephen W.

    2011-01-01

    Autonomic reactivity was studied in individuals with fragile X syndrome (FXS), a genetic disorder partially characterized by abnormal social behavior. Relative to age-matched controls, the FXS group had faster baseline heart rate and lower amplitude respiratory sinus arrhythmia (RSA). In contrast to the typically developing controls, there was a decrease in RSA with age within the FXS group. Moreover, within the FXS group heart rate did not slow with age. The FXS group also responded with an atypical increase in RSA to the social challenge, while the control group reduced RSA. In a subset of the FXS group, the autonomic profile did not change following 2 months and 1 year of lithium treatment. The observed indices of atypical autonomic regulation, consistent with the Polyvagal Theory, may contribute to the deficits in social behavior and social communication observed in FXS. PMID:21547900

  16. Autonomous Vehicles: Disengagements, Accidents and Reaction Times

    PubMed Central

    Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566

  17. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    PubMed

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  18. Autonomous Locator of Thermals (ALOFT) Autonomous Soaring Algorithm

    DTIC Science & Technology

    2015-04-03

    could exploit naturally occurring convective thermal updrafts for extending the endurance of an unmanned aerial vehicle (UAV). Essentially, the...1 AUTONOMOUS LOCATOR OF THERMALS (ALOFT) AUTONOMOUS SOARING ALGORITHM INTRODUCTION The increasing use of unmanned aerial

  19. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  20. Autonomous surveillance for biosecurity.

    PubMed

    Jurdak, Raja; Elfes, Alberto; Kusy, Branislav; Tews, Ashley; Hu, Wen; Hernandez, Emili; Kottege, Navinda; Sikka, Pavan

    2015-04-01

    The global movement of people and goods has increased the risk of biosecurity threats and their potential to incur large economic, social, and environmental costs. Conventional manual biosecurity surveillance methods are limited by their scalability in space and time. This article focuses on autonomous surveillance systems, comprising sensor networks, robots, and intelligent algorithms, and their applicability to biosecurity threats. We discuss the spatial and temporal attributes of autonomous surveillance technologies and map them to three broad categories of biosecurity threat: (i) vector-borne diseases; (ii) plant pests; and (iii) aquatic pests. Our discussion reveals a broad range of opportunities to serve biosecurity needs through autonomous surveillance. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1986-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  2. Architecture of autonomous systems

    NASA Technical Reports Server (NTRS)

    Dikshit, Piyush; Guimaraes, Katia; Ramamurthy, Maya; Agrawala, Ashok; Larsen, Ronald L.

    1989-01-01

    Automation of Space Station functions and activities, particularly those involving robotic capabilities with interactive or supervisory human control, is a complex, multi-disciplinary systems design problem. A wide variety of applications using autonomous control can be found in the literature, but none of them seem to address the problem in general. All of them are designed with a specific application in mind. In this report, an abstract model is described which unifies the key concepts underlying the design of automated systems such as those studied by the aerospace contractors. The model has been kept as general as possible. The attempt is to capture all the key components of autonomous systems. With a little effort, it should be possible to map the functions of any specific autonomous system application to the model presented here.

  3. Autonomous and controlled motivation for eating disorders treatment: baseline predictors and relationship to treatment outcome.

    PubMed

    Carter, Jacqueline C; Kelly, Allison C

    2015-03-01

    This study aimed to identify baseline predictors of autonomous and controlled motivation for treatment (ACMT) in a transdiagnostic eating disorder sample, and to examine whether ACMT at baseline predicted change in eating disorder psychopathology during treatment. Participants were 97 individuals who met DSM-IV-TR criteria for an eating disorder and were admitted to a specialized intensive treatment programme. Self-report measures of eating disorder psychopathology, ACMT, and various psychosocial variables were completed at the start of treatment. A subset of these measures was completed again after 3, 6, 9, and 12 weeks of treatment. Multiple regression analyses showed that baseline autonomous motivation was higher among patients who reported more self-compassion and more received social support, whereas the only baseline predictor of controlled motivation was shame. Multilevel modelling revealed that higher baseline autonomous motivation predicted faster decreases in global eating disorder psychopathology, whereas the level of controlled motivation at baseline did not. The current findings suggest that developing interventions designed to foster autonomous motivation specifically and employing autonomy supportive strategies may be important to improving eating disorders treatment outcome. The findings of this study suggest that developing motivational interventions that focus specifically on enhancing autonomous motivation for change may be important for promoting eating disorder recovery. Our results lend support for the use of autonomy supportive strategies to strengthen personally meaningful reasons to achieve freely chosen change goals in order to enhance treatment for eating disorders. One study limitation is that there were no follow-up assessments beyond the 12-week study and we therefore do not know whether the relationships that we observed persisted after treatment. Another limitation is that this was a correlational study and it is therefore important

  4. Autonomous electrochromic assembly

    SciTech Connect

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  5. Action plans and coping strategies in elderly COPD patients influence the result of pulmonary rehabilitation: an observational study.

    PubMed

    Russo, Patrizia; Prinzi, Giulia; Kisialiou, Aliaksei; Cardaci, Vittorio; Stirpe, Emanuele; Conti, Vittoria; Fini, Massimo; Bonassi, Stefano

    2017-04-14

    COPD management needs a comprehensive assessment of clinical features (symptoms severity, co-morbidities) together with life-style, behavioural, socio-economic and multi-omics parameters. Among the other issues, psycho-cognitive assessment plays a critical role. Coping strategies are used to manage psychological stress. To evaluate the association between coping strategies and outcome of Pulmonary Rehabilitation (PR). Observational study. Inpatients comprehensive 3 weeks PR programme. Seventy-six patients, 70 years or older affected by COPD GOLD 3-4. Disease-specific status was examined using the Medical Research Council Dyspnea Scale, St. George's Respiratory Questionnaire, Maugeri Respiratory Failure, Borg And Barthel Scales. Cognitive And Psychological Clinical Alterations/Disorders Using: Mini-Mental State Examination; Montreal Cognitive Assessment; Center for Epidemiologic Studies Depression Scale; Zung Self-Rating Anxiety Scale. Quality of Life Using Activities of Daily Living; Instrumental Activities of Daily Living; 36-Item Short Form Health Survey General and Mental Health. Functional exercise capacity was measured at baseline and after PR using the Six-Minute Walking Test (6MWT). Coping strategies were measured with the Brief COPE. Internal consistency was determined examining Cronbach's α values. Concurrent validity was determined by examining Spearman r correlations between the single-item and multi-items. Brief-COPE scores after PR between patients who had a different response to respiratory outcomes was evaluated using Student's t and Mann-Whitney U tests. The change in distance (Delta6MWD) between final and baseline value in meters was positively associated with Self-distraction, Active Coping, and Planning strategies. Respiratory disease-specific health status outcomes, as well as the presence of use of long-term oxygen therapy, were not associated with coping strategies. Self-distraction and Planning strategies are associated to the success of

  6. A Review of Cardiovascular Autonomic Control in Cluster Headache.

    PubMed

    Barloese, Mads C J

    2016-02-01

    This review aims to evaluate existing literature concerning cardiovascular autonomic function and CH. Suggestions about future research are offered and known difficulties in investigating the autonomic nervous system in cluster headache are discussed. Little is known of the pathophysiological mechanisms behind cluster headache. Cranial autonomic features are an inherent and diagnostic feature; however, a number of studies and clinical observations support the involvement of systemic autonomic control in its pathophysiology. Further, cluster headache attacks are apparently more easily triggered during periods of parasympathetic dominance. A better understanding of this interaction may provide insight into central autonomic regulation and its role in cluster headache. A PubMed search was performed in April 2015 using the search terms "cluster headache," "cardiovascular," "autonomic nervous system," and "cardiac." References of identified articles were also searched for relevant articles. Studies were included if they contained data on cardiovascular or autonomic responses to autonomic tests, induced or spontaneous attacks. In total, 22 studies investigating cardiac autonomic control in cluster headache were identified. Three overall categories of investigations exist: (1) Those studying changes in heart rate, blood pressure, and electrocardiographic changes; (2) those employing various clinical autonomic tests; and finally (3) those using spectral and nonlinear analysis of heart rate variability. Although not completely congruent, overall, results suggest ictal hyperactivation of the parasympathetic branch and a sympathetic deficit. Subclinical autonomic dysregulation is also present in the pain-free state. Cardiac autonomic control is subclinically affected in cluster headache. The changes could be attributed to the suggested central dysregulation present in this disorder. © 2015 American Headache Society.

  7. Observation

    ERIC Educational Resources Information Center

    Helfrich, Shannon

    2016-01-01

    Helfrich addresses two perspectives from which to think about observation in the classroom: that of the teacher observing her classroom, her group, and its needs, and that of the outside observer coming into the classroom. Offering advice from her own experience, she encourages and defends both. Do not be afraid of the disruption of outside…

  8. Observations

    ERIC Educational Resources Information Center

    Joosten, Albert Max

    2016-01-01

    Joosten begins his article by telling us that love and knowledge together are the foundation for our work with children. This combination is at the heart of our observation. With this as the foundation, he goes on to offer practical advice to aid our practice of observation. He offers a "List of Objects of Observation" to help guide our…

  9. Observational Learning by Individuals with Autism: A Review of Teaching Strategies

    ERIC Educational Resources Information Center

    Plavnick, Joshua B.; Hume, Kara A.

    2014-01-01

    Observational learning is the process used to explain the acquisition of novel behaviors or performance of previously acquired behaviors under novel conditions after observing the behavior of another person and the consequences that follow the behavior. Many learners with autism do not attend to environmental stimuli at a level sufficient to learn…

  10. Observational Learning by Individuals with Autism: A Review of Teaching Strategies

    ERIC Educational Resources Information Center

    Plavnick, Joshua B.; Hume, Kara A.

    2014-01-01

    Observational learning is the process used to explain the acquisition of novel behaviors or performance of previously acquired behaviors under novel conditions after observing the behavior of another person and the consequences that follow the behavior. Many learners with autism do not attend to environmental stimuli at a level sufficient to learn…

  11. Autonomous navigation of USAF spacecraft

    NASA Astrophysics Data System (ADS)

    Ferguson, J. R., Jr.

    1983-12-01

    The U. S. Air Force is developing satellite-borne sensors to enable autonomous navigation of spacecraft in the near future. This study compares the observations from several medium-accuracy space sensors, such as the existing telescopic space sextant, with those of future matrix-type sensors. The large field of view of matrix sensors will allow them to determine the Earth horizon to approximately an order of magnitude better than current infrared sensors by observing atmospheric refraction of stellar light. This horizon determination will give the matrix sensors an accuracy of less than 1 km. The limiting factor in Earth-horizon determination is the modeling of atmospheric refraction effects. For high-accuracy requirements (100 meters or less), the Global Positioning System (GPS) offers the only near-term solution. A relative navigation technique using range and Doppler data is proposed for autonomous navigation of the GPS satellites. The navigation accuracy of this technique is evaluated by consider covariance analysis and by processing corrupted data through a reduced-order onboard Sequentially Partitioned Algorithm. The algorithm is stable and for the GPS system produces in-plane accuracy of 40 meters over twenty days. However, out-of-plane motion is shown to be unobservable in the GPS-to-GPS tracking mode, and errors of up to 1.5 km over 60 days are experienced. For this reason, a supplemental transmitter on the ground or in a different orbit is recommended.

  12. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  13. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  14. Learning for autonomous navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Autonomous off-road navigation of robotic ground vehicles has important applications on Earth and in space exploration. Progress in this domain has been retarded by the limited lookahead range of 3-D sensors and by the difficulty of preprogramming systems to understand the traversability of the wide variety of terrain they can encounter.

  15. Micro autonomous robotic system

    NASA Astrophysics Data System (ADS)

    Ishihara, Hidenori; Fukuda, Toshio

    1995-12-01

    This paper deals with the structural proposal of the micro autonomous robotic system, and shows the design of the prototype. We aim at developing the micro robot, which autonomously acts based on its detection, in order to propose a solution to constitute the micro autonomous robotic system. However, as miniaturizing the size, the number of the sensors gets restricted and the information from them becomes lack. Lack of the information makes it difficult to realize an intelligence of quality. Because of that, the micro robotic system needs to develop the simple algorithm. In this paper, we propose the simply logical algorithms to control the actuator, and show the performance of the micro robot controlled by them, and design the Micro Line Trace Robot, which dimension is about 1 cm cube and which moves along the black line on the white-colored ground, and the programmable micro autonomous robot, which dimension is about 2 cm cube and which performs according to the program optionally.

  16. Autonomous data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  17. Diabetic autonomic neuropathy.

    PubMed

    Vinik, Aaron I; Maser, Raelene E; Mitchell, Braxton D; Freeman, Roy

    2003-05-01

    Diabetic autonomic neuropathy (DAN) is a serious and common complication of diabetes. Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of DAN has not been fully appreciated. The reported prevalence of DAN varies widely depending on the cohort studied and the methods of assessment. In randomly selected cohorts of asymptomatic individuals with diabetes, approximately 20% had abnormal cardiovascular autonomic function. DAN frequently coexists with other peripheral neuropathies and other diabetic complications, but DAN may be isolated, frequently preceding the detection of other complications. Major clinical manifestations of DAN include resting tachycardia, exercise intolerance, orthostatic hypotension, constipation, gastroparesis, erectile dysfunction, sudomotor dysfunction, impaired neurovascular function, "brittle diabetes," and hypoglycemic autonomic failure. DAN may affect many organ systems throughout the body (e.g., gastrointestinal [GI], genitourinary, and cardiovascular). GI disturbances (e.g., esophageal enteropathy, gastroparesis, constipation, diarrhea, and fecal incontinence) are common, and any section of the GI tract may be affected. Gastroparesis should be suspected in individuals with erratic glucose control. Upper-GI symptoms should lead to consideration of all possible causes, including autonomic dysfunction. Whereas a radiographic gastric emptying study can definitively establish the diagnosis of gastroparesis, a reasonable approach is to exclude autonomic dysfunction and other known causes of these upper-GI symptoms. Constipation is the most common lower-GI symptom but can alternate with episodes of diarrhea. Diagnostic approaches should rule out autonomic dysfunction and the well-known causes such as neoplasia. Occasionally, anorectal manometry and other specialized tests typically performed by the gastroenterologist may be helpful. DAN is also

  18. Software Architecture for Autonomous Spacecraft

    NASA Technical Reports Server (NTRS)

    Shih, Jimmy S.

    1997-01-01

    The thesis objective is to design an autonomous spacecraft architecture to perform both deliberative and reactive behaviors. The Autonomous Small Planet In-Situ Reaction to Events (ASPIRE) project uses the architecture to integrate several autonomous technologies for a comet orbiter mission.

  19. Planning and Execution for an Autonomous Aerobot

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.

    2010-01-01

    The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.

  20. Lessons Learned from Autonomous Sciencecraft Experiment

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Sherwood, Rob; Tran, Daniel; Cichy, Benjamin; Rabideau, Gregg; Castano, Rebecca; Davies, Ashley; Mandl, Dan; Frye, Stuart; Trout, Bruce; hide

    2005-01-01

    An Autonomous Science Agent has been flying onboard the Earth Observing One Spacecraft since 2003. This software enables the spacecraft to autonomously detect and responds to science events occurring on the Earth such as volcanoes, flooding, and snow melt. The package includes AI-based software systems that perform science data analysis, deliberative planning, and run-time robust execution. This software is in routine use to fly the EO-l mission. In this paper we briefly review the agent architecture and discuss lessons learned from this multi-year flight effort pertinent to deployment of software agents to critical applications.

  1. Clarifying Observed Relationships Between Protective Behavioral Strategies and Alcohol Outcomes: The Importance of Response Options

    PubMed Central

    Braitman, Abby L.; Henson, James M.; Carey, Kate B.

    2015-01-01

    Protective behavioral strategies (PBS), or harm-reduction behaviors that can potentially reduce alcohol consumption or associated problems, have been assessed in varied ways throughout the literature. Existing scales vary in focus (i.e., broad vs. narrow), and importantly, in response options (i.e., absolute frequency vs. contingent frequency). Absolute frequency conflates PBS use with number of drinking occasions, resulting in inconsistencies in the relationship between PBS use and alcohol outcomes, whereas contingent frequency is less precise, which could reduce power. The current study proposes the use of absolute frequencies to maximize precision, with an adjustment for number of drinking days to extricate PBS use from drinking occasions, resulting in a contingent score. Study 1 examined the associations between PBS subscales using the Strategy Questionnaire (Sugarman & Carey, 2007) and alcohol outcomes, finding that in raw score form the association between PBS and typical alcohol outcomes varied greatly from significantly positive to significantly negative, but adjusted score relationships were all consistent with harm reduction perspectives. In addition, curvilinear relationships with typical alcohol use were eliminated using the score adjustment, resulting in linear associations. Study 2 confirmed the findings from Study 1 with a more precise timeframe, additional alcohol assessments, and heavier college drinkers. The relationships between alcohol outcomes and PBS in raw score form were again varied, but became consistently negative using the score adjustment. Researchers examining PBS and related constructs should consider modifying current scales to include a precise frequency response scale that is adjusted to account for number of drinking occasions. PMID:25180560

  2. Evaluating Emissions Inventory Improvements Using Observations and the CMAQ Model: Impacts on Air Quality Attainment Strategies

    NASA Astrophysics Data System (ADS)

    Ring, A.; Anderson, D. C.; He, H.; Vinciguerra, T.; Goldberg, D. L.; Ehrman, S.; Dickerson, R. R.; Salawitch, R. J.; Canty, T.

    2016-12-01

    The Environmental Protection Agency (EPA) monitors and regulates surface ozone, which has a primary attainment standard of 70 ppb over an 8-hour average. In this analysis, we investigate the representation of emissions sectors, such as large commercial marine vessels, within the Community Multiscale Air Quality (CMAQ) model, an EPA approved regulatory air quality model used by state agencies and research institutions to develop ozone attainment strategies. We compare model output for June, July, and August 2011 with surface ozone data from the EPA Air Quality Sites (AQS) in order to examine various model scenarios and improve the representation of emissions within CMAQ. Satellite data from the Ozone Monitoring Instrument (OMI) for summer 2011 are used to further investigate how well CMAQ is able to capture the non-linear production of surface ozone. Additionally, we test how improvements to the model framework influence the effectiveness of a future attainment strategy for June, July and August 2018. Further work will use geostationary satellite data to develop a top-down emissions inventory that can capture the diurnal variation of important ozone precursors.

  3. Field observations and management strategy for hot spring wastewater in Wulai area, Taiwan.

    PubMed

    Lin, J Y; Chen, C F; Lei, F R; Hsieh, C D

    2010-01-01

    Hot springs are important centers for recreation and tourism. However, the pollution that may potentially be caused by hot spring wastewater has rarely been discussed. More than half of Taiwan's hot springs are located in areas where the water quality of water bodies is to be protected, and untreated wastewater could pollute the receiving water bodies. In this study, we investigate hot spring wastewater in the Wulai area, one of Taiwan's famous hot spring resorts. Used water from five hot spring hotels was sampled and ten sampling events were carried out to evaluate the changes in the quality of used water in different seasons, at different periods of the week, and from different types of hotels. The concentrations of different pollutants in hot spring wastewater were found to exhibit wide variations, as follows: COD, 10-250 mg/L; SS, N.D.-93 mg/L; NH(3)-N, 0.01-1.93 mg/L; TP, 0.01-0.45 mg/L; and E. coli, 10-27,500 CFU/100 mL. The quality of hot spring wastewater depends on the operation of public pools, because this affects the frequency of supplementary fresh water and the outflow volume. Two management strategies, namely, onsite treatment systems and individually packaged treatment equipment, are considered, and a multi-objective optimization model is used to determine the optimal strategy.

  4. Strategy

    DTIC Science & Technology

    1997-11-12

    a local mutation—can send the system into convulsions of growth or collapse. One of the most interesting things about complex systems is that they...over the course of decades and centuries and may be imperceptible to the outside observer. As such, na- tional character can be looked upon as a norm or

  5. E-Predict: a computational strategy for species identification based on observed DNA microarray hybridization patterns.

    PubMed

    Urisman, Anatoly; Fischer, Kael F; Chiu, Charles Y; Kistler, Amy L; Beck, Shoshannah; Wang, David; DeRisi, Joseph L

    2005-01-01

    DNA microarrays may be used to identify microbial species present in environmental and clinical samples. However, automated tools for reliable species identification based on observed microarray hybridization patterns are lacking. We present an algorithm, E-Predict, for microarray-based species identification. E-Predict compares observed hybridization patterns with theoretical energy profiles representing different species. We demonstrate the application of the algorithm to viral detection in a set of clinical samples and discuss its relevance to other metagenomic applications.

  6. Interdisciplinary Applications of Autonomous Observation Systems

    DTIC Science & Technology

    2008-01-01

    sampling for ground- truth data: vertical profiles of irradiance, fluorescence, spectral backscatter, dissolved and particulate absorption; and samples for...chlorophyll, HPLC pigments, nutrients and particulate and dissolved absorption. A new optical profiler was assembled, tested and deployed for...studies of optical properties; it includes fast sensors for temperature and conductivity, plus oxygen , backscatter, three types of fluorescence, a

  7. Current desires of conspecific observers affect cache-protection strategies in California scrub-jays and Eurasian jays.

    PubMed

    Ostojić, Ljerka; Legg, Edward W; Brecht, Katharina F; Lange, Florian; Deininger, Chantal; Mendl, Michael; Clayton, Nicola S

    2017-01-23

    Many corvid species accurately remember the locations where they have seen others cache food, allowing them to pilfer these caches efficiently once the cachers have left the scene [1]. To protect their caches, corvids employ a suite of different cache-protection strategies that limit the observers' visual or acoustic access to the cache site [2,3]. In cases where an observer's sensory access cannot be reduced it has been suggested that cachers might be able to minimise the risk of pilfering if they avoid caching food the observer is most motivated to pilfer [4]. In the wild, corvids have been reported to pilfer others' caches as soon as possible after the caching event [5], such that the cacher might benefit from adjusting its caching behaviour according to the observer's current desire. In the current study, observers pilfered according to their current desire: they preferentially pilfered food that they were not sated on. Cachers adjusted their caching behaviour accordingly: they protected their caches by selectively caching food that observers were not motivated to pilfer. The same cache-protection behaviour was found when cachers could not see on which food the observers were sated. Thus, the cachers' ability to respond to the observer's desire might have been driven by the observer's behaviour at the time of caching. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Using observational data to emulate a randomized trial of dynamic treatment-switching strategies: an application to antiretroviral therapy.

    PubMed

    Cain, Lauren E; Saag, Michael S; Petersen, Maya; May, Margaret T; Ingle, Suzanne M; Logan, Roger; Robins, James M; Abgrall, Sophie; Shepherd, Bryan E; Deeks, Steven G; John Gill, M; Touloumi, Giota; Vourli, Georgia; Dabis, François; Vandenhende, Marie-Anne; Reiss, Peter; van Sighem, Ard; Samji, Hasina; Hogg, Robert S; Rybniker, Jan; Sabin, Caroline A; Jose, Sophie; Del Amo, Julia; Moreno, Santiago; Rodríguez, Benigno; Cozzi-Lepri, Alessandro; Boswell, Stephen L; Stephan, Christoph; Pérez-Hoyos, Santiago; Jarrin, Inma; Guest, Jodie L; D'Arminio Monforte, Antonella; Antinori, Andrea; Moore, Richard; Campbell, Colin Nj; Casabona, Jordi; Meyer, Laurence; Seng, Rémonie; Phillips, Andrew N; Bucher, Heiner C; Egger, Matthias; Mugavero, Michael J; Haubrich, Richard; Geng, Elvin H; Olson, Ashley; Eron, Joseph J; Napravnik, Sonia; Kitahata, Mari M; Van Rompaey, Stephen E; Teira, Ramón; Justice, Amy C; Tate, Janet P; Costagliola, Dominique; Sterne, Jonathan Ac; Hernán, Miguel A

    2016-12-01

    When a clinical treatment fails or shows suboptimal results, the question of when to switch to another treatment arises. Treatment switching strategies are often dynamic because the time of switching depends on the evolution of an individual's time-varying covariates. Dynamic strategies can be directly compared in randomized trials. For example, HIV-infected individuals receiving antiretroviral therapy could be randomized to switching therapy within 90 days of HIV-1 RNA crossing above a threshold of either 400 copies/ml (tight-control strategy) or 1000 copies/ml (loose-control strategy). We review an approach to emulate a randomized trial of dynamic switching strategies using observational data from the Antiretroviral Therapy Cohort Collaboration, the Centers for AIDS Research Network of Integrated Clinical Systems and the HIV-CAUSAL Collaboration. We estimated the comparative effect of tight-control vs. loose-control strategies on death and AIDS or death via inverse-probability weighting. Of 43 803 individuals who initiated an eligible antiretroviral therapy regimen in 2002 or later, 2001 met the baseline inclusion criteria for the mortality analysis and 1641 for the AIDS or death analysis. There were 21 deaths and 33 AIDS or death events in the tight-control group, and 28 deaths and 41 AIDS or death events in the loose-control group. Compared with tight control, the adjusted hazard ratios (95% confidence interval) for loose control were 1.10 (0.73, 1.66) for death, and 1.04 (0.86, 1.27) for AIDS or death. Although our effective sample sizes were small and our estimates imprecise, the described methodological approach can serve as an example for future analyses.

  9. Observation

    ERIC Educational Resources Information Center

    Patell, Hilla

    2016-01-01

    In order to achieve the goal of observation, preparation of the adult, the observer, is necessary. This preparation, says Hilla Patell, requires us to "have an appreciation of the significance of the child's spontaneous activities and a more thorough understanding of the child's needs." She discusses the growth of both the desire to…

  10. Observation

    ERIC Educational Resources Information Center

    Kripalani, Lakshmi A.

    2016-01-01

    The adult who is inexperienced in the art of observation may, even with the best intentions, react to a child's behavior in a way that hinders instead of helping the child's development. Kripalani outlines the need for training and practice in observation in order to "understand the needs of the children and...to understand how to remove…

  11. Clarifying observed relationships between protective behavioral strategies and alcohol outcomes: The importance of response options.

    PubMed

    Braitman, Abby L; Henson, James M; Carey, Kate B

    2015-06-01

    Protective behavioral strategies (PBS), or harm-reduction behaviors that can potentially reduce alcohol consumption or associated problems, have been assessed in varied ways throughout the literature. Existing scales vary in focus (i.e., broad vs. narrow), and importantly, in response options (i.e., absolute frequency vs. contingent frequency). Absolute frequency conflates PBS use with number of drinking occasions, resulting in inconsistencies in the relationship between PBS use and alcohol outcomes, whereas contingent frequency is less precise, which could reduce power. The current study proposes the use of absolute frequencies to maximize precision, with an adjustment for number of drinking days to extricate PBS use from drinking occasions, resulting in a contingent score. Study 1 examined the associations between PBS subscales using the Strategy Questionnaire (Sugarman & Carey, 2007) and alcohol outcomes, finding that in raw score form the association between PBS and typical alcohol outcomes varied greatly from significantly positive to significantly negative, but adjusted score relationships were all consistent with harm reduction perspectives. In addition, curvilinear relationships with typical alcohol use were eliminated using the score adjustment, resulting in linear associations. Study 2 confirmed the findings from Study 1 with a more precise timeframe, additional alcohol assessments, and heavier college drinkers. The relationships between alcohol outcomes and PBS in raw score form were again varied, but became consistently negative using the score adjustment. Researchers examining PBS and related constructs should consider modifying current scales to include a precise frequency response scale that is adjusted to account for number of drinking occasions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  12. Impact of ventilation strategies during chest compression. An experimental study with clinical observations.

    PubMed

    Cordioli, Ricardo L; Lyazidi, Aissam; Rey, Nathalie; Granier, Jean-Max; Savary, Dominique; Brochard, Laurent; Richard, Jean-Christophe M

    2016-01-15

    The optimal ventilation strategy during cardiopulmonary resuscitation (CPR) is unknown. Chest compression (CC) generates circulation, while during decompression, thoracic recoil generates negative pressure and venous return. Continuous flow insufflation of oxygen (CFI) allows noninterrupted CC and generates positive airway pressure (Paw). The main objective of this study was to assess the effects of positive Paw compared with the current recommended ventilation strategy on intrathoracic pressure (P(IT)) variations, ventilation, and lung volume. In a mechanical model, allowing compression of the thorax below an equilibrium volume mimicking functional residual capacity (FRC), CC alone or with manual bag ventilation were compared with two levels of Paw with CFI. Lung volume change below FRC at the end of decompression and P(IT), as well as estimated alveolar ventilation, were measured during the bench study. Recordings were obtained in five cardiac arrest patients to confirm the bench findings. Lung volume was continuously below FRC, and as a consequence P(IT) remained negative during decompression in all situations, including with positive Paw. Compared with manual bag or CC alone, CFI with positive Paw limited the fall in lung volume and resulted in larger positive and negative P(IT) variations. Positive Paw with CFI significantly augmented ventilation induced by CC. Recordings in patients confirmed a major loss of lung volume below FRC during CPR, even with positive Paw. Compared with manual bag ventilation, positive Paw associated with CFI limits the loss in lung volume, enhances CC-induced positive P(IT), maintains negative P(IT) during decompression, and generates more alveolar ventilation.

  13. A Proposed Strategy for the U.S. to Develop and Maintain a Mainstream Capability Suite ("Warehouse") for Automated/Autonomous Rendezvous and Docking in Low Earth Orbit and Beyond

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje S.; Stillwater, Ryan A.; Babula, Maria; Moreau, Michael C.; Riedel, J. Ed; Mrozinski, Richard B.; Bradley, Arthur; Bryan, Thomas C.

    2012-01-01

    The ability of space assets to rendezvous and dock/capture/berth is a fundamental enabler for numerous classes of NASA fs missions, and is therefore an essential capability for the future of NASA. Mission classes include: ISS crew rotation, crewed exploration beyond low-Earth-orbit (LEO), on-orbit assembly, ISS cargo supply, crewed satellite servicing, robotic satellite servicing / debris mitigation, robotic sample return, and robotic small body (e.g. near-Earth object, NEO) proximity operations. For a variety of reasons to be described, NASA programs requiring Automated/Autonomous Rendezvous and Docking/Capture/Berthing (AR&D) capabilities are currently spending an order-of-magnitude more than necessary and taking twice as long as necessary to achieve their AR&D capability, "reinventing the wheel" for each program, and have fallen behind all of our foreign counterparts in AR&D technology (especially autonomy) in the process. To ensure future missions' reliability and crew safety (when applicable), to achieve the noted cost and schedule savings by eliminate costs of continually "reinventing the wheel ", the NASA AR&D Community of Practice (CoP) recommends NASA develop an AR&D Warehouse, detailed herein, which does not exist today. The term "warehouse" is used herein to refer to a toolbox or capability suite that has pre-integrated selectable supply-chain hardware and reusable software components that are considered ready-to-fly, low-risk, reliable, versatile, scalable, cost-effective, architecture and destination independent, that can be confidently utilized operationally on human spaceflight and robotic vehicles over a variety of mission classes and design reference missions, especially beyond LEO. The CoP also believes that it is imperative that NASA coordinate and integrate all current and proposed technology development activities into a cohesive cross-Agency strategy to produce and utilize this AR&D warehouse. An initial estimate indicates that if NASA

  14. U.S. Geological Survey Water science strategy--observing, understanding, predicting, and delivering water science to the nation

    USGS Publications Warehouse

    Evenson, Eric J.; Orndorff, Randall C.; Blome, Charles D.; Böhlke, John Karl; Hershberger, Paul K.; Langenheim, V.E.; McCabe, Gregory J.; Morlock, Scott E.; Reeves, Howard W.; Verdin, James P.; Weyers, Holly S.; Wood, Tamara M.

    2013-01-01

    This report expands the Water Science Strategy that began with the USGS Science Strategy, “Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017” (U.S. Geological Survey, 2007). This report looks at the relevant issues facing society and develops a strategy built around observing, understanding, predicting, and delivering water science for the next 5 to 10 years by building new capabilities, tools, and delivery systems to meet the Nation’s water-resource needs. This report begins by presenting the vision of water science for the USGS and the societal issues that are influenced by, and in turn influence, the water resources of our Nation. The essence of the Water Science Strategy is built on the concept of “water availability,” defined as spatial and temporal distribution of water quantity and quality, as related to human and ecosystem needs, as affected by human and natural influences. The report also describes the core capabilities of the USGS in water science—the strengths, partnerships, and science integrity that the USGS has built over its 134-year history. Nine priority actions are presented in the report, which combine and elevate the numerous specific strategic actions listed throughout the report. Priority actions were developed as a means of providing the audience of this report with a list for focused attention, even if resources and time limit the ability of managers to address all of the strategic actions in the report.

  15. Instrumental strategy: A stage in students' consultation skills training? Observations and reflections on students' communication in general practice consultations.

    PubMed

    Wahlqvist, Mats; Mattsson, Bengt; Dahlgren, Gösta; Hartwig-Ericsson, Monica; Henriques, Betty; Hamark, Bengt; Hösterey-Ugander, Ulrika

    2005-09-01

    To explore and examine students' abilities to communicate with patients during a general practice course in the final year of the curriculum and to analyse and consider this experience in relation to earlier consultation training. General practice courses in the undergraduate curriculum. Qualitative data analysis was used. A special focus-group interview of experienced supervisors was performed and analysed (editing analysis). Credibility of data was tested at local seminars and conferences. Authors' experiences of observing student consultations over many years were also used. A main theme, 'open invitation', emerged based on categories 'initially attentive' and 'listening attitude'. In contrast, the second main theme was 'instrumental strategy', based on the following categories: 'one-sided collection of medical facts' and 'relationship-building lost'. The students also had difficulties in devoting attention to patients' life experiences. An hourglass metaphor of students' and young physicians' progression of communication strategies is presented. The narrow part of the hourglass corresponds to an instrumental strategy at the end of undergraduate clinical education. An instrumental strategy may be a stage in student's consultation learning progression that interferes with communication training. A question is raised: is training of a patient-centred approach throughout the clinical curriculum needed for optimal development of consultation skills? Further research is needed to test this hypothesis.

  16. The Asian Dust and Aerosol Lidar Observation Network (AD-NET): Strategy and Progress

    NASA Astrophysics Data System (ADS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Higurashi, Akiko; Jin, Yoshitaka

    2016-06-01

    We have operated a ground-based lidar network AD-Net using dual wavelength (532, 1064nm) depolarization Mie lidar continuously and observed movement of Asian dust and air pollution aerosols in East Asia since 2001. This lidar network observation contributed to understanding of the occurrence and transport mechanisms of Asian dust, validation of chemical transport models, data assimilation and epidemiologic studies. To better understand the optical and microphysical properties, externally and internally mixing states, and the movements of Asian dust and airpollution aerosols, we go forward with introducing a multi-wavelength Raman lidar to the AD-Net and developing a multi-wavelength technique of HSRL in order to evaluate optical concentrations of more aerosol components. We will use this evolving AD-Net for validation of Earth-CARE satellite observation and data assimilation to evaluate emissions of air pollution and dust aerosols in East Asia. We go forward with deploying an in-situ instrument polarization optical particle counter (POPC), which can measure size distributions and non-sphericity of aerosols, to several main AD-Net sites and conducting simultaneous observation of POPC and lidar to clarify internally mixed state of Asian dust and air pollution aerosols transported from the Asian continent to Japan.

  17. Strategies for Enhancing the Impact of Post-Observation Feedback for Teachers

    ERIC Educational Resources Information Center

    Myung, Jeannie; Martinez, Krissia

    2013-01-01

    Across the country, districts are committing to observing, assessing, and giving feedback to teachers multiple times a year. Currently, school systems are dedicating an enormous amount of effort to accumulating data on teachers, but the field still has a lot to learn about how best to use data to support the improvement of teaching. This brief,…

  18. Observing Strategies for Focused Orbital Debris Surveys Using the Magellan Telescope

    NASA Technical Reports Server (NTRS)

    Frith, James; Seitzer, Patrick; Anz-Meador, Phillip; Cowardin, Heather; Lederer, Susan; Matney, Mark; Buckalew, Brent; Barker, Ed

    2017-01-01

    A breakup of the Titan 3C-17 Transtage rocket body was reported to have occurred on June 4th, 2014 at 02:38 UT by the Space Surveillance Network (SSN). Five objects were associated with this breakup and this is the fourth breakup known for this class of object. There are likely many more objects associated with this event that are not within the Space Surveillance Network's ability to detect and have not been catalogued. Several months after the breakup, observing time was obtained on the Magellan Baade 6.5 meter telescope to be used for observations of geosynchronous (GEO) space debris targets. Using the NASA Standard Satellite Breakup Model (SSBM), a simulated debris cloud of the recent Transtage breakup was produced and propagated forward in time. This provided right ascension, declination, and tracking rate predictions for where debris associated with this breakup may be more likely to be found in the sky over Magellan for our observing run. Magellan observations were then optimized using the angles and tracking rates from the model predictions to focus the search for Transtage debris. Data were collected and analysed and preliminary comparisons made between the number of objects detected and the number expected from the model. We present our results here.

  19. Observing the Interstellar Neutral He Gas Flow with a Variable IBEX Pointing Strategy

    NASA Astrophysics Data System (ADS)

    Leonard, T.; Moebius, E.; Bzowski, M.; Fuselier, S. A.; Heirtzler, D.; Kubiak, M. A.; Kucharek, H.; Lee, M. A.; McComas, D. J.; Schwadron, N.; Wurz, P.

    2015-12-01

    The Interstellar Neutral (ISN) gas flow can be observed at Earth's orbit due to the motion of the solar system relative to the surrounding interstellar gas. Since He is minimally influenced by ionization and charge exchange, the ISN He flow provides a sample of the pristine interstellar environment. The Interstellar Boundary Explorer (IBEX) has observed the ISN gas flow over the past 7 years from a highly elliptical orbit around the Earth. IBEX is a Sun-pointing spinning spacecraft with energetic neutral atom (ENA) detectors observing perpendicular to the spacecraft spin axis. Due to the Earth's orbital motion around the Sun, it is necessary for IBEX to perform spin axis pointing maneuvers every few days to maintain a sunward pointed spin axis. The IBEX operations team has successfully pointed the spin axis in a variety of latitude orientations during the mission, including in the ecliptic during the 2012 and 2013 seasons, about 5 degrees below the ecliptic during the 2014 season, and recently about 5 degrees above the ecliptic during the 2015 season, as well as optimizing observations with the spin axis pointed along the Earth-Sun line. These observations include a growing number of measurements near the perihelion of the interstellar atom trajectories, which allow for an improved determination of the ISN He bulk flow longitude at Earth orbit. Combining these bulk flow measurements with an analytical model (Lee et al. 2012 ApJS, 198, 10) based upon orbital mechanics improves the knowledge of the narrow ISN parameter tube, obtained with IBEX, which couples the interstellar inflow longitude, latitude, speed, and temperature.

  20. Impact of Different Data Assimilation Strategies for SMOS Observations on Flood Forecasting Accuracy

    NASA Astrophysics Data System (ADS)

    Pauwels, V. R. N.; Verhoest, N.; Lievens, H.; Martens, B.; van Den Berg, M. J.; Al-Bitar, A.; Merlin, O.; Kumar Tomer, S.; Cabot, F.; Kerr, Y. H.; Pan, M.; Wood, E. F.; Drusch, M.; Hendricks Franssen, H. J.; Vereecken, H.; De Lannoy, G. J. M.; Dumedah, G.; Walker, J. P.

    2014-12-01

    During the last decade, significant efforts have been directed towards establishing and improving flood forecasting systems for large river basins. Examples include the European Flood Alert System, and the Bureau of Meteorology Flood Warning Systems in Australia. A number of attempts have also been made to increase the accuracy of the forecasted flood volumes from these systems. One attractive way in which this can be achieved is to use remotely sensed surface soil moisture contents to constrain the hydrologic model predictions. Satellite missions such as SMOS can provide very useful information on the wetness conditions of these basins, which in many cases is an important initial condition for discharge generation. Assimilation of these satellite data is thus a logical way to proceed. We will present results from two different assimilation strategies for the Murray-Darling basin in Australia using the Variable Infiltration Capacity (VIC) model. Firstly, the SMOS soil moisture data are assimilated into the hydrologic model at their original spatial resolution. As the spatial resolution of the remote sensing data (25 km) is coarser than the spatial resolution of the model (10 km), a multiscale data assimilation algorithm needs to be implemented. Secondly, the SMOS data are downscaled to the model resolution, prior to their assimilation. In this presentation, the impact of the assimilation of both products on the accuracy of the forecasted flood volumes is assessed.

  1. Observations of asexual reproductive strategies in Antarctic hexactinellid sponges from ROV video records

    NASA Astrophysics Data System (ADS)

    Teixidó, Núria; Gili, Josep-Maria; Uriz, María-J.; Gutt, Julian; Arntz, Wolf E.

    2006-04-01

    Hexactinellid sponges are one of the structuring taxa of benthic communities on the Weddell Sea shelf (Antarctica). However, little is known about their reproduction patterns (larval development, release, settlement, and recruitment), particularly in relation to sexual and asexual processes in sponge populations. Video stations obtained during several expeditions covering a wide depth range and different areas recorded a high frequency of asexual reproductive strategies (ARS) (bipartition and budding) among hexactinellids. Analysis of seabed video strips between 108 and 256 m depth, representing an area of 1400 m 2, showed that about 28% of these sponges exhibited ARS. The Rossella nuda type dominated most of the video stations and exhibited the highest proportion of budding (35%). This proportion increased with the size class. Size class >20 cm exhibited in all the stations a mean value of 8.3±0.7 (SE) for primary and of 2.5±0.2 (SE) for secondary propagules per sponge, respectively. Results from a shallow station (Stn 059, 117 m depth) showed the highest relative abundance of R. nuda type and budding (>20 cm ˜72%, 10-20 cm ˜60%, 5-10 cm ˜12%, and <5 cm ˜3%). A potential influence of iceberg scouring disturbance on the occurrence of budding and number of propagules also was investigated. We conclude that asexual reproduction in hexactinellid sponges may be more frequent than has been thought before and it may greatly influence the genetic structure of populations.

  2. Autonomous Orbit Navigator Development, Using GPS, Applied to Autonomous Orbit Control

    NASA Astrophysics Data System (ADS)

    Galski, Roberto Luiz

    2002-01-01

    The appearance of modem global positioning systems motivated the study and development of precise and robust systems for autonomous orbit determination of artificial satellites. These systems maintain, independently from human intervention from the ground, a precise knowledge of the satellite orbital state, through the processing of the information, autonomously generated on-board, by a receiver of the positioning system used. One of the major motivations for the research and development of autonomous navigators, is the availability of real time information about the position and velocity of the satellite, required, for instance, in earth observation missions, for interpretation and analysis of the generated images. The appearance of global positioning systems and the consequent development of autonomous navigators, by making available onboard space vehicles, updated orbit estimations, with good accuracy level, made feasible the research and development of orbit autonomous control procedures. It allowed the orbital maneuvers execution process to be performed in a way totally independent from ground human intervention. Whereas the satellite attitude control reached a high level of autonomy, due to the fact that the attitude measurements are, in general, naturally generated on-board the spacecraft, the orbit control is still now almost totally planned and executed from ground commanded actions. The proposed work consists of the study, development, simulation and analysis of a simplified navigator coupled to an autonomous orbit control system, applied to the China-Brazil Earth Resources Satellites (CBERS). At first, an autonomous orbit determination procedure is developed and analyzed. Its objective is to improve the coarse geometric solution provided by Global Positioning System (GPS) receivers. This will be done by directly using this solution as input (observation) for a real time Kalman filtering process. The orbital state vector will be extended in order to

  3. On the strategy of future observations and modeling of the Beta Lyr system

    NASA Technical Reports Server (NTRS)

    Hubeny, I.; Harmanec, P.; Shore, S. N.

    1994-01-01

    Beta Lyr is an enigmatic object. Despite several decades of concentrated observational and theoretical effort, our understanding of the system is still rather poor. We discuss two existing structural models of the system, the massive torus model of Wilson (1981), and the low mass accretion disk model of Hubeny & Plavec (1991). In particular, we answer recent criticism of the low mass disk model expressed by the proponents of the massive disk hypothesis. We show that although both theories have a large degree of internal consistency, there are several serious physical objections against the massive disk model. In particular, such a model requires unrealistically low viscosity (large Reynolds number). Moreover, such massive disk is likely to be dynamically unstable. Finally, we propose several observational and theoretical approaches that could lead to construction of a more physically realistic model of the Beta Lyr system.

  4. The detection of planetary systems from Space Station - A star observation strategy

    NASA Technical Reports Server (NTRS)

    Mascy, Alfred C.; Nishioka, Ken; Jorgensen, Helen; Swenson, Byron L.

    1987-01-01

    A 10-20-yr star-observation program for the Space Station Astrometric Telescope Facility (ATF) is proposed and evaluated by means of computer simulations. The primary aim of the program is to detect stars with planetary systems by precise determination of their motion relative to reference stars. The designs proposed for the ATF are described and illustrated; the basic parameters of the 127 stars selected for the program are listed in a table; spacecraft and science constraints, telescope slewing rates, and the possibility of limiting the program sample to stars near the Galactic equator are discussed; and the effects of these constraints are investigated by simulating 1 yr of ATF operation. Viewing all sky regions, the ATF would have 81-percent active viewing time, observing each star about 200 times (56 h) per yr; only small decrements in this performance would result from limiting the viewing field.

  5. Autonomic Dysfunction in Early Breast Cancer: Incidence, Clinical Importance, and Underlying Mechanisms

    PubMed Central

    Lakoski, Susan G.; Jones, Lee W.; Krone, Ronald J.; Stein, Phyllis K.; Scott, Jessica M.

    2015-01-01

    Autonomic dysfunction represents a loss of normal autonomic control of the cardiovascular system associated with both sympathetic nervous system overdrive and reduced efficacy of the parasympathetic nervous system. Autonomic dysfunction is a strong predictor of future coronary heart disease, vascular disease and sudden cardiac death. In the current review, we will discuss the clinical importance of autonomic dysfunction as a cardiovascular risk marker among breast cancer patients. We will review the effects of antineoplastic therapy on autonomic function, as well as discuss secondary exposures, such as psychological stress, sleep disturbances, weight gain/metabolic derangements, and loss of cardiorespiratory fitness which may negatively impact autonomic function in breast cancer patients. Lastly, we review potential strategies to improve autonomic function in this population. The perspective can help guide new therapeutic interventions to promote longevity and cardiovascular health among breast cancer survivors. PMID:26299219

  6. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  7. Mobile Autonomous Humanoid Assistant

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  8. The autonomous sciencecraft constellations

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2003-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. In this paper we discuss how these AI technologies are synergistically integrated in a hybrid multi-layer control architecture to enable a virtual spacecraft science agent. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  9. Trigeminal autonomic cephalgias

    PubMed Central

    2012-01-01

    Summary points 1. Trigeminal autonomic cephalgias (TACs) are headaches/facial pains classified together based on:a suspected common pathophysiology involving the trigeminovascular system, the trigeminoparasympathetic reflex and centres controlling circadian rhythms;a similar clinical presentation of trigeminal pain, and autonomic activation. 2. There is much overlap in the diagnostic features of individual TACs. 3. In contrast, treatment response is relatively specific and aids in establishing a definitive diagnosis. 4. TACs are often presentations of underlying pathology; all patients should be imaged. 5. The aim of the article is to provide the reader with a broad introduction to, and an overview of, TACs. The reading list is extensive for the interested reader. PMID:26516482

  10. Mobile Autonomous Humanoid Assistant

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Ambrose, R. O.; Tyree, K. S.; Goza, S. M.; Huber, E. L.

    2004-01-01

    A mobile autonomous humanoid robot is assisting human co-workers at the Johnson Space Center with tool handling tasks. This robot combines the upper body of the National Aeronautics and Space Administration (NASA)/Defense Advanced Research Projects Agency (DARPA) Robonaut system with a Segway(TradeMark) Robotic Mobility Platform yielding a dexterous, maneuverable humanoid perfect for aiding human co-workers in a range of environments. This system uses stereo vision to locate human team mates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form human assistant behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.

  11. A strategy for merging objective estimates of global daily precipitation from gauge observations, satellite estimates, and numerical predictions

    NASA Astrophysics Data System (ADS)

    Nie, Suping; Wu, Tongwen; Luo, Yong; Deng, Xueliang; Shi, Xueli; Wang, Zaizhi; Liu, Xiangwen; Huang, Jianbin

    2016-07-01

    This paper describes a strategy for merging daily precipitation information from gauge observations, satellite estimates (SEs), and numerical predictions at the global scale. The strategy is designed to remove systemic bias and random error from each individual daily precipitation source to produce a better gridded global daily precipitation product through three steps. First, a cumulative distribution function matching procedure is performed to remove systemic bias over gauge-located land areas. Then, the overall biases in SEs and model predictions (MPs) over ocean areas are corrected using a rescaled strategy based on monthly precipitation. Third, an optimal interpolation (OI)-based merging scheme (referred as the HL-OI scheme) is used to combine unbiased gauge observations, SEs, and MPs to reduce random error from each source and to produce a gauge—satellite-model merged daily precipitation analysis, called BMEP-d (Beijing Climate Center Merged Estimation of Precipitation with daily resolution), with complete global coverage. The BMEP-d data from a four-year period (2011-14) demonstrate the ability of the merging strategy to provide global daily precipitation of substantially improved quality. Benefiting from the advantages of the HL-OI scheme for quantitative error estimates, the better source data can obtain more weights during the merging processes. The BMEP-d data exhibit higher consistency with satellite and gauge source data at middle and low latitudes, and with model source data at high latitudes. Overall, independent validations against GPCP-1DD (GPCP one-degree daily) show that the consistencies between BMEP-d and GPCP-1DD are higher than those of each source dataset in terms of spatial pattern, temporal variability, probability distribution, and statistical precipitation events.

  12. Latest Sea-Operations in the Macaronesian region with Unmanned Autonomous Marine Gliding Vehicles

    NASA Astrophysics Data System (ADS)

    Barrera, Carlos; Lorenzo, Alvaro; Viera, Josue; Morales, Tania; Vega, Daura; Rueda, Maria Jose; Llinas, Octavio

    2013-04-01

    Current advances on key marine technology fields provide nowadays a broad range of autonomous unmanned platforms addressed for an efficient and cost-effective ocean observation, with a suitable level of success in terms of endurance, reliability and useful gathered information. In this context, a multidisciplinary family of unmanned autonomous vehicles addressed to monitor both coastal and open-ocean areas plays a relevant role. During the last month, some of the newest unmanned gliding vehicle technologies have been tested within the context of the Oceanic Platform of the Canary Islands (PLOCAN) in varied operational scenarios aiming different technical and scientific purposes, all of them joined in direct partnership with the company provider and other R&D institutions in some cases. Among others, representative examples in this way are the missions under the name Challenger One, Vulcano and SB02 through surface and underwater gliding vehicles, performed mostly in the surrounding subtropical waters of the ESTOC site observatory in the Canary Islands archipelago. The main gathered operational and scientific results from these missions are presented in this work as a sign of new ocean observing technologies within the framework of the Macaronesian Marine and Maritime Observation Strategy (R3M) and linked with the current European rules programs and projects in this field. Keywords: autonomous vehicle, gliders, R3M, ocean observatory, monitoring, marine robotics, ESTOC,

  13. Advanced Hydraulic Tomography Analysis Strategies--A Numerical Study based on Field Observations

    NASA Astrophysics Data System (ADS)

    Tso, C. M.; Yeh, T. J.

    2013-12-01

    This report presents a discussion on some of the unexplored issues pertaining to the application of hydraulic tomography to interpret pumping test data collected in the field. Using numerical experiments, we probe at a few new strategies to analyze pumping test results for multi-layer aquifers. First of all, we study the averaging of heads over packer intervals of a wellbore. How does the length of the packers reduce the resolution of the estimated hydraulic conductivity (K) field? Next we investigate the effect of using hard data (a.k.a. primary information or K measurements) conditioning on the estimated K field. Does the conditioning constrain the solution better and if so, by how much? Then we examine the effect of initial guess of K field on the inversion results. Currently, our hydraulic tomography approach (SSLE (Yeh and Liu (2000) and SimSLE (Xiang et al. (2009)) assumes a homogeneous K field as initial guess by default. What if we use a random field as initial guess? What about assigning different zones in the domain and designate different homogenous initial guess values to each of them? Finally, updating and storing the covariance matrix heavily consumes computation time during the inversion process and can sometimes be prohibiting when solving large problems. In fact, it is often the most time-consuming part of the hydraulic tomography analysis. We study the effects on the hydraulic tomography results of (1) whether updating the covariance matrix after each iteration and (2) whether storing the full matrix or diagonal terms only. The investigation outlined above will shed light on the development of more effective and reliable hydraulic tomography analysis practices and algorithms.

  14. Autonomous power expert system

    NASA Technical Reports Server (NTRS)

    Ringer, Mark J.; Quinn, Todd M.

    1990-01-01

    The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control technologies to the Space Station Freedom Electrical Power Systems (SSF/EPS). The objectives of the program are to establish artificial intelligence/expert system technology paths, to create knowledge based tools with advanced human-operator interfaces, and to integrate and interface knowledge-based and conventional control schemes. This program is being developed at the NASA-Lewis. The APS Brassboard represents a subset of a 20 KHz Space Station Power Management And Distribution (PMAD) testbed. A distributed control scheme is used to manage multiple levels of computers and switchgear. The brassboard is comprised of a set of intelligent switchgear used to effectively switch power from the sources to the loads. The Autonomous Power Expert System (APEX) portion of the APS program integrates a knowledge based fault diagnostic system, a power resource scheduler, and an interface to the APS Brassboard. The system includes knowledge bases for system diagnostics, fault detection and isolation, and recommended actions. The scheduler autonomously assigns start times to the attached loads based on temporal and power constraints. The scheduler is able to work in a near real time environment for both scheduling and dynamic replanning.

  15. Monitoring wildfires using an autonomous aerial system (AAS)

    NASA Astrophysics Data System (ADS)

    Levine, Joel S.; Ambrosia, Vincent; Brass, James A.; Davis, Richard E.; Dull, Charles W.; Greenfield, Paul H.; Harrison, F. W.; Killough, Brian D.; Kist, Edward H.; Pinto, Joseph P.; Stover, Gregory; Tappan, Nina D.; Wegener, Steve S.

    2004-12-01

    The environmental and health effects of wildfires are discussed. The monitoring of wildfires from aircraft using remote sensing techniques is reviewed. A future autonomous aerial observing system for fire monitoring is described.

  16. The impact of aircraft digital weather data in an adaptive observation strategy to improve the ensemble prediction of hurricanes

    NASA Astrophysics Data System (ADS)

    Bensman, Edward Leroy

    Modern meteorological data assimilation techniques and ensemble weather prediction methods involve the minimization of error variance. Both of these techniques are used here to assess the impact of assimilating digital aircraft weather data, in an adaptive observation strategy, to improve hurricane forecasting. Many operational and research centers utilize ensemble prediction systems to improve their weather forecasts. This study utilizes a Monte Carlo technique to randomly generate a series of 50 separate perturbed model states. These ``random'' perturbations are scaled to the typical error values observed daily in meteorology. From the family of 50 ensemble members a field of sea level pressure variance, at the 48-hour forecast point, is calculated using deviations of the 50 members from the control (unperturbed state). The bull's eye of maximum error variance is then backward correlated to various meteorological fields such as temperature, wind and humidity at the 24-hour point of the forecast. The areas of highest correlation represent model sensitivity to random error growth and thus targets for intensive observations. In August and September of 1998, a team of scientists participated in a NASA-sponsored field campaign termed the Third Convection and Moisture Experiment (CAMEX-3). The purpose was to conduct an intensive study of Atlantic hurricanes. The CAMEX-3 data were utilized in this research to assess the impact of targeted observations on subsequent forecasts. Specifically, a series of experiments were conducted utilizing: all of the CAMEX-3 data, a portion just over the model-sensitive target areas, and from a random selection of data throughout the near-storm environment. These data were assimilated using both a multivariate optimal interpolation technique and a 4-dimensional variational assimilation method. Results from these experiments showed that these data, once assimilated into the model's initial state, improved subsequent hurricane forecasts

  17. Evaluating the autonomic nervous system in patients with laryngopharyngeal reflux.

    PubMed

    Huang, Wan-Ju; Shu, Chih-Hung; Chou, Kun-Ta; Wang, Yi-Fen; Hsu, Yen-Bin; Ho, Ching-Yin; Lan, Ming-Ying

    2013-06-01

    The pathogenesis of laryngopharyngeal reflux (LPR) remains unclear. It is linked to but distinct from gastroesophageal reflux disease (GERD), which has been shown to be related to disturbed autonomic regulation. The aim of this study is to investigate whether autonomic dysfunction also plays a role in the pathogenesis of LPR. Case-control study. Tertiary care center. Seventeen patients with LPR and 19 healthy controls, aged between 19 and 50 years, were enrolled in the study. The patients were diagnosed with LPR if they had a reflux symptom index (RSI) ≥ 13 and a reflux finding score (RFS) ≥ 7. Spectral analysis of heart rate variability (HRV) analysis was used to assess autonomic function. Anxiety and depression levels measured by the Beck Anxiety Inventory (BAI) and Beck Depression Inventory II (BDI-II) were also conducted. In HRV analysis, high frequency (HF) represents the parasympathetic activity of the autonomic nervous system, whereas low frequency (LF) represents the total autonomic activity. There were no significant differences in the LF power and HF power between the 2 groups. However, significantly lower HF% (P = .003) and a higher LF/HF ratio (P = .012) were found in patients with LPR, who demonstrated poor autonomic modulation and higher sympathetic activity. Anxiety was also frequently observed in the patient group. The study suggests that autonomic dysfunction seems to be involved in the pathogenesis of LPR. The potential beneficial effect of autonomic nervous system modulation as a therapeutic modality for LPR merits further investigation.

  18. Strategies to design and place towers for long-term ecological observations at continental scale

    NASA Astrophysics Data System (ADS)

    Luo, H.; Loescher, H. W.; Ayres, E.; Clement, R.

    2010-12-01

    There are numerous tower-based measurements applied in ecological science worldwide. National Ecological Observatory Network (NEON) is designing a tower-based method at 60 sites continental wide to measure abiotic drivers of ecological change, carbon and energy fluxes, and to specifically provide ecological connectively to measurements of organism ecology and connectively to remote sensed data products. Several issues come to bear when designing an infrastructure that has to accommodate different suites of measurements that have various requirements, i.e., micrometeorological, scalar flux measurements, atmospheric chemistry and boundary layer properties, and have to be objectively placed across the entire range of climate and ecosystem structures found in North America. Here, we present a comprehensive strategy that combines wind roses, footprint models, ecosystem structure, vegetation and soil maps, as well as ‘eyes on’ site visits to design and place a tower. This methodology is being used to examine the 60 preliminary tower designs in the largest ecological observatory in the world today to optimize the long-term representative measurements over the ecosystems of interests. We found that some preliminary site designs do not meet our tower science requirements due to an inadequate fetch for prevailing wind directions, extent of ecosystems boundaries, or concerns of edge effects. In these cases, the tower location shall be either micro-sited at the current locale, or moved and relocated to a different site altogether. After site specific characterization, we also found that some designed tower heights could not access the well mixed surface layer above canopy and had to be extended in design. Because wind comes from all direction at some sites, presents a particular challenge to orient a square tower. In all cases, we optimized the tower orientation to acquire the most amounts of valid data. To avoid the effects of flow distortion on measurements, the boom

  19. Strategies for Human Tumor Virus Discoveries: From Microscopic Observation to Digital Transcriptome Subtraction

    PubMed Central

    Mirvish, Ezra D.; Shuda, Masahiro

    2016-01-01

    Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Feng et al. (2007) developed digital transcriptome subtraction (DTS), an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV) from Merkel cell carcinoma. Here, we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV. PMID:27242703

  20. Observational strategies for varying constants with ESPRESSO and ELT-HIRES .

    NASA Astrophysics Data System (ADS)

    Pedrosa, P. O. J.; Leite, A. C. O.; Martins, C. J. A. P.

    The observational evidence for the acceleration of the universe demonstrates that canonical theories of cosmology and particle physics are incomplete, if not incorrect. Several few-sigma hints of new physics, discussed in this workshop, are arguably smoke without a smoking gun. Forthcoming high-resolution ultra-stable spectrographs will play a crucial role in this quest for new physics, by enabling a new generation of precision consistency tests. Here we focus on astrophysical tests of the stability of nature's fundamental couplings, discussing the improvements that can be expected with ESPRESSO and ELT-HIRES and their impact on fundamental cosmology. We find that the current E-ELT configuration has the potential to constrain dark energy more strongly than standard surveys with thousands of low-redshift (z<2) supernovas.

  1. Space-based Doppler lidar sampling strategies: Algorithm development and simulated observation experiments

    NASA Technical Reports Server (NTRS)

    Emmitt, G. D.; Wood, S. A.; Morris, M.

    1990-01-01

    Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.

  2. Nest guarding from observation blinds: strategy for improving Puerto Rican parrot nest success

    USGS Publications Warehouse

    Lindsey, G.D.

    1992-01-01

    The effectiveness of 17 yr of nestguarding from observation blinds for increasing reproductive success of the endangered Puerto Rican Parrot (Amazona vittata) is described. As personnel and time allowed, active nests were guarded part-time during the nest site exploration and selection s stage of the breeding cycle, and part-time to full-time when a nest contained eggs or chicks. Biologists identified nine categories of threat to the success of parrot nests. Since 1973, a minimum of 20 nests, which otherwise would have failed, successfully produced fledglings as a direct result of nest guarding and intervention. Nest success averaged 66% with nest guarding compared to an estimated 38% without guarding. Nest guarding from blinds can help maintain a wild population of a critically endangered species while other management techniques are being developed to stimulate population growth.

  3. The development of teleological versus mentalizing observational learning strategies in infancy.

    PubMed

    Gergely, György

    2003-01-01

    The author introduces the concept of mentalization as a central interpretative mechanism of social reality testing. It is argued that developmentally the emergence of this mentalizing capacity to interpret other people's actions in terms of their causal intentional mind states (such as beliefs, desires, intentions, and emotions) is preceded by an earlier, nonmentalistic, teleological action interpretational system that represents others' actions in terms of their concrete and visible outcomes. Then the early psychosocial determinants of the developmental unfolding of our mentalizing capacity are considered from the points of view of attachment theory and developmental psychopathology. It is argued that, in severely dysfunctional (neglecting, abusive, and/or dissociative) caregiving environments, the development of mentalization becomes inhibited and results in a predominantly teleological, nonmentalistic interpretation of intimate attachment relationships that is a core feature of certain developmental psychopathologies such as borderline personality disorder. The normal developmental shift from a teleological to a mentalistic mode of action interpretation is illustrated in terms of recently discovered qualitative changes in imitative and observational learning styles during infancy. It is hypothesized that these changes are related to the infant's developing capacity to interpret the communicative-referential behavioral cues that frame the caregiver's infant-directed actions as signaling a cooperative and benevolent mentalistic attitude toward the baby. In closing, it is proposed that the hypothesized role of severely dysfunctional attachment environments in inhibiting the establishment of mentalization skills could be directly tested in early development in the domain of observational learning. It is predicted that differential patterns of "teleological emulation" versus "mentalistic imitative learning" will be found in infants raised in severely dysfunctional

  4. Knowledge-based and integrated monitoring and diagnosis in autonomous power systems

    NASA Technical Reports Server (NTRS)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A new technique of knowledge-based and integrated monitoring and diagnosis (KBIMD) to deal with abnormalities and incipient or potential failures in autonomous power systems is presented. The KBIMD conception is discussed as a new function of autonomous power system automation. Available diagnostic modelling, system structure, principles and strategies are suggested. In order to verify the feasibility of the KBIMD, a preliminary prototype expert system is designed to simulate the KBIMD function in a main electric network of the autonomous power system.

  5. Autonomous rough terrain navigation - Lessons learned

    NASA Technical Reports Server (NTRS)

    Miller, David P.

    1991-01-01

    Because of light-time delays, a planetary rover located on Mars or beyond will probably need to be able to navigate autonomously, in order to do significant exploration. Recent work at JPL has explored several different autonomous navigation strategies. This work includes highly deliberative methods that require large amounts of computation and internal storage but yield very planful behavior to more reactive systems that require less resources but whose behavior is more difficult to model. This paper briefly presents these methods, the results from experiments both in simulation and in the field, and some conclusions on the value of different approaches, and their possible impact on the structure of the robot and the mission architecture.

  6. Modelling progressive autonomic failure in MSA: where are we now?

    PubMed

    Stemberger, Sylvia; Wenning, Gregor K

    2011-05-01

    Multiple system atrophy (MSA) is a fatal late-onset α-synucleinopathy that presents with features of ataxia, Parkinsonism, and pyramidal dysfunction in any combination. Over the last decade, efforts have been made to develop preclinical MSA testbeds for novel interventional strategies. The main focus has been on murine analogues of MSA-linked motor features and their underlying brainstem, cerebellar and basal ganglia pathology. Although progressive autonomic failure (AF) is a prominent clinical feature of patients with MSA, reflecting a disruption of both central and peripheral autonomic networks controlling cardiovascular, respiratory, urogenital, gastrointestinal and sudomotor functions, attempts of modelling this aspect of the human disease have been limited. However, emerging evidence suggests that AF-like features may occur in transgenic MSA models reflecting α-synucleinopathy lesions in distributed autonomic networks. Further research is needed to fully characterize both autonomic and motor features in optimized preclinical MSA models.

  7. Cardiovascular Autonomic Dysfunction in Chronic Kidney Disease: a Comprehensive Review.

    PubMed

    Salman, Ibrahim M

    2015-08-01

    Cardiovascular autonomic dysfunction is a major complication of chronic kidney disease (CKD), likely contributing to the high incidence of cardiovascular mortality in this patient population. In addition to adrenergic overdrive in affected individuals, clinical and experimental evidence now strongly indicates the presence of impaired reflex control of both sympathetic and parasympathetic outflow to the heart and vasculature. Although the principal underlying mechanisms are not completely understood, potential involvements of altered baroreceptor, cardiopulmonary, and chemoreceptor reflex function, along with factors including but not limited to increased renin-angiotensin-aldosterone system activity, activation of the renal afferents and cardiovascular structural remodeling have been suggested. This review therefore analyzes potential mechanisms underpinning autonomic imbalance in CKD, covers results accumulated thus far on cardiovascular autonomic function studies in clinical and experimental renal failure, discusses the role of current interventional and therapeutic strategies in ameliorating autonomic deficits associated with chronic renal dysfunction, and identifies gaps in our knowledge of neural mechanisms driving cardiovascular disease in CKD.

  8. Autonomous assistance navigation for robotic wheelchairs in confined spaces.

    PubMed

    Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F

    2010-01-01

    In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work.

  9. Strategies for the implementation of a European Volcano Observations Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Puglisi, Giuseppe

    2015-04-01

    Active volcanic areas in Europe constitute a direct threat to millions of people on both the continent and adjacent islands. Furthermore, eruptions of "European" volcanoes in overseas territories, such as in the West Indies, an in the Indian and Pacific oceans, can have a much broader impacts, outside Europe. Volcano Observatories (VO), which undertake volcano monitoring under governmental mandate and Volcanological Research Institutions (VRI; such as university departments, laboratories, etc.) manage networks on European volcanoes consisting of thousands of stations or sites where volcanological parameters are either continuously or periodically measured. These sites are equipped with instruments for geophysical (seismic, geodetic, gravimetric, electromagnetic), geochemical (volcanic plumes, fumaroles, groundwater, rivers, soils), environmental observations (e.g. meteorological and air quality parameters), including prototype deployment. VOs and VRIs also operate laboratories for sample analysis (rocks, gases, isotopes, etc.), near-real time analysis of space-borne data (SAR, thermal imagery, SO2 and ash), as well as high-performance computing centres; all providing high-quality information on the current status of European volcanoes and the geodynamic background of the surrounding areas. This large and high-quality deployment of monitoring systems, focused on a specific geophysical target (volcanoes), together with the wide volcanological phenomena of European volcanoes (which cover all the known volcano types) represent a unique opportunity to fundamentally improve the knowledge base of volcano behaviour. The existing arrangement of national infrastructures (i.e. VO and VRI) appears to be too fragmented to be considered as a unique distributed infrastructure. Therefore, the main effort planned in the framework of the EPOS-PP proposal is focused on the creation of services aimed at providing an improved and more efficient access to the volcanological facilities

  10. Observations on different resin strategies for affinity purification mass spectrometry of a tagged protein.

    PubMed

    Mali, Sujina; Moree, Wilna J; Mitchell, Morgan; Widger, William; Bark, Steven J

    2016-12-15

    Co-affinity purification mass spectrometry (CoAP-MS) is a highly effective method for identifying protein complexes from a biological sample and inferring important interactions, but the impact of the solid support is usually not considered in design of such experiments. Affinity purification (AP) experiments typically utilize a bait protein expressing a peptide tag such as FLAG, c-Myc, HA or V5 and high affinity antibodies to these peptide sequences to facilitate isolation of a bait protein to co-purify interacting proteins. We observed significant variability for isolation of tagged bait proteins between Protein A/G Agarose, Protein G Dynabeads, and AminoLink resins. While previous research identified the importance of tag sequence and their location, crosslinking procedures, reagents, dilution, and detergent concentrations, the effect of the resin itself has not been considered. Our data suggest the type of solid support is important and, under the conditions of our experiments, AminoLink resin provided a more robust solid-support platform for AP-MS.

  11. A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning

    SciTech Connect

    Ryu, Won -Hee; Gittleson, Forrest S.; Li, Jinyang; Tong, Xiao; Taylor, Andre D.

    2016-06-21

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. Lastly, the influence of the catalyst position on product composition is further verified by ex situ Xray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.

  12. A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning

    DOE PAGES

    Ryu, Won -Hee; Gittleson, Forrest S.; Li, Jinyang; ...

    2016-06-21

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O2 cells by characterizing products that grow from the electrode surface. Morphological andmore » structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. Lastly, the influence of the catalyst position on product composition is further verified by ex situ Xray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.« less

  13. A new design strategy for observing lithium oxide growth-evolution interactions using geometric catalyst positioning

    SciTech Connect

    Ryu, Won -Hee; Gittleson, Forrest S.; Li, Jinyang; Tong, Xiao; Taylor, Andre D.

    2016-06-21

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. Lastly, the influence of the catalyst position on product composition is further verified by ex situ Xray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.

  14. A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning.

    PubMed

    Ryu, Won-Hee; Gittleson, Forrest S; Li, Jinyang; Tong, Xiao; Taylor, André D

    2016-08-10

    Understanding the catalyzed formation and evolution of lithium-oxide products in Li-O2 batteries is central to the development of next-generation energy storage technology. Catalytic sites, while effective in lowering reaction barriers, often become deactivated when placed on the surface of an oxygen electrode due to passivation by solid products. Here we investigate a mechanism for alleviating catalyst deactivation by dispersing Pd catalytic sites away from the oxygen electrode surface in a well-structured anodic aluminum oxide (AAO) porous membrane interlayer. We observe the cross-sectional product growth and evolution in Li-O2 cells by characterizing products that grow from the electrode surface. Morphological and structural details of the products in both catalyzed and uncatalyzed cells are investigated independently from the influence of the oxygen electrode. We find that the geometric decoration of catalysts far from the conductive electrode surface significantly improves the reaction reversibility by chemically facilitating the oxidation reaction through local coordination with PdO surfaces. The influence of the catalyst position on product composition is further verified by ex situ X-ray photoelectron spectroscopy and Raman spectroscopy in addition to morphological studies.

  15. Postures, typing strategies, and gender differences in mobile device usage: an observational study.

    PubMed

    Gold, J E; Driban, J B; Thomas, N; Chakravarty, T; Channell, V; Komaroff, E

    2012-03-01

    Mobile device text messaging and other typing is rapidly increasing worldwide. A checklist was utilized to characterize joint postures and typing styles in individuals appearing to be of college age (n = 859) while typing on their mobile devices in public. Gender differences were also ascertained. Almost universally, observed subjects had a flexed neck (91.0%, n = 782), and a non-neutral typing-side wrist (90.3%, n = 776). A greater proportion of males had protracted shoulders (p < 0.01, χ(2) test), while a greater proportion of females had a typing-side inner elbow angle of <90°, particularly while standing (p = 0.03, χ(2) test). 46.1% of subjects typed with both thumbs (two hands holding the mobile device). Just over one-third typed with their right thumb (right hand holding the mobile device). No difference in typing styles between genders was found. Future research should determine whether the non-neutral postures identified may be associated with musculoskeletal disorders. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Autonomous Control and Diagnostics of Space Reactor Systems

    SciTech Connect

    Upadhyaya, B.R.; Xu, X.; Perillo, S.R.P.; Na, M.G.

    2006-07-01

    This paper describes three key features of the development of an autonomous control strategy for space reactor systems. These include the development of a reactor simulation model for transient analysis, development of model-predictive control as part of the autonomous control strategy, and a fault detection and isolation module. The latter is interfaced with the control supervisor as part of a hierarchical control system. The approach has been applied to the nodal model of the SP-100 reactor with a thermo-electric generator. The results of application demonstrate the effectiveness of the control approach and its ability to reconfigure the control mode under fault conditions. (authors)

  17. Autonomous Infrastructure for Observatory Operations

    NASA Astrophysics Data System (ADS)

    Seaman, R.

    This is an era of rapid change from ancient human-mediated modes of astronomical practice to a vision of ever larger time domain surveys, ever bigger "big data", to increasing numbers of robotic telescopes and astronomical automation on every mountaintop. Over the past decades, facets of a new autonomous astronomical toolkit have been prototyped and deployed in support of numerous space missions. Remote and queue observing modes have gained significant market share on the ground. Archives and data-mining are becoming ubiquitous; astroinformatic techniques and virtual observatory standards and protocols are areas of active development. Astronomers and engineers, planetary and solar scientists, and researchers from communities as diverse as particle physics and exobiology are collaborating on a vast range of "multi-messenger" science. What then is missing?

  18. Field geologic observation and sample collection strategies for planetary surface exploration: Insights from the 2010 Desert RATS geologist crewmembers

    NASA Astrophysics Data System (ADS)

    Hurtado, José M.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W.

    2013-10-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  19. Spontaneous Resolution of Chronic Subdural Hematoma : Close Observation as a Treatment Strategy

    PubMed Central

    Kim, Hyung Chan; Yoo, Dong Soo; Lee, Sang-Koo

    2016-01-01

    Objective Chronic subdural hematoma (cSDH) is common condition in neurosurgical field. It is difficult to select the treatment modality between the surgical method and the conservative method when patients have no or mild symptoms. The purpose of this study is to provide a suggestion that the patients could be cured with conservative treatment modality. Methods We enrolled 16 patients who had received conservative treatment for cSDH without special medications which could affect hematoma resolution such as mannitol, steroids, tranexamic acid and angiotensin converting enzyme inhibitors. The patients were classified according to the Markwalder's Grading Scale. Results Among these 16 patients, 13 (81.3%) patients showed spontaneously resolved cSDH and 3 (18.7%) patients received surgery due to symptom aggravation and growing hematoma. They were categorized into two groups based on whether they were cured with conservative treatment or not. The first group was the spontaneous resolution group. The second group was the progression-surgery group. The mean hematoma volume in the spontaneous resolution group was 43.1 mL. The mean degree of midline shift in the spontaneous resolution group was 5.3 mm. The mean hematoma volume in the progression-surgery group was 62.0 mL. The mean degree of midline shift in the second group was 6 mm. Conclusion We suggest that the treatment modality should be determined according to the patient's symptoms and clinical condition and close observation could be performed in patients who do not have any symptoms or in patients who have mild to moderate headache without neurological deterioration. PMID:27847578

  20. Tobacco price boards as a promotional strategy-a longitudinal observational study in Australian retailers.

    PubMed

    Bayly, Megan; Scollo, Michelle; White, Sarah; Lindorff, Kylie; Wakefield, Melanie

    2017-07-22

    Price boards in tobacco retailers are one of the few forms of tobacco promotion remaining in Australia. This study aimed to examine how these boards were used to promote products over a period of rapidly rising taxes. Observations were made in a panel of 350 stores in Melbourne, Australia, in November of 2013 (just before) and in 2014 and 2015 (after 12.5% increases in tobacco duty). Fieldworkers unobtrusively noted the presence and characteristics of price boards, and the brand name, size and price of the product at the top of each board. Price boards were common in all store types apart from newsagent/lottery agents. The characteristics of the top-listed product changed notably over time: premium brands accounted for 66% of top-listed products in 2013, significantly declining to 43% in 2015, while packs of 20 cigarettes increased in prominence from 32% to 45%. The prevalence of packs of 20 cigarettes in budget market segments tripled from 2013 (13%) and 2014 (11%) to 32% in 2015, with no change in the proportion of packs that were under $A20 from 2014 (37%) to 2015 (36%). The rate of increase in the average price of the top-listed pack correspondingly flattened from 2014 to 2015 compared with 2013-2014. Price boards promote tobacco products in ways that undermine the effectiveness of tax policy as a means of discouraging consumption. Communication to consumers about prices should be restricted to information sheets provided to adult smokers on request at the point of sale. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Spirituality and Autonomic Cardiac Control

    PubMed Central

    Berntson, Gary G.; Norman, Greg J.; Hawkley, Louise C.; Cacioppo, John T.

    2009-01-01

    Background Spirituality has been suggested to be associated with positive health, but potential biological mediators have not been well characterized. Purpose and Methods The present study examined, in a population based sample of middle-aged and older adults, the potential relationship between spirituality and patterns of cardiac autonomic control, which may have health significance. Measures of parasympathetic (high-frequency heart rate variability) and sympathetic (pre-ejection period) cardiac control were obtained from a representative sample of 229 participants. Participants completed questionnaires to assess spirituality (closeness to and satisfactory relation with God). Personality, demographic, anthropometric, health behavior, and health status information was also obtained. A series of multivariate regression models was used to examine the relations between spirituality, the autonomic measures, and two derived indexes-- cardiac autonomic balance (CAB, reflecting parasympathetic to sympathetic balance) and cardiac autonomic regulation (CAR, reflecting total autonomic control). Results Spirituality, net of demographics or other variables, was found to be associated with enhanced parasympathetic as well as sympathetic cardiac control (yielding a higher CAR); but was not associated with CAB. Although the number of cases was small (N=11), both spirituality and CAR were significant negative predictors of the prior occurrence of a myocardial infarction. Conclusions In a population based sample, spirituality appears to be associated with a specific pattern of cardiac autonomic regulation, characterized by a high level of cardiac autonomic control, irrespective of the relative contribution of the two autonomic branches. This pattern of autonomic control may have health significance. PMID:18357497

  2. Cardiovascular manifestations of autonomic epilepsy.

    PubMed

    Freeman, Roy

    2006-02-01

    Cardiovascular autonomic manifestations of seizures occur frequently in the epileptic population. Common manifestations include alterations in heart rate and rhythm, blood pressure, ECG changes and chest pain. The neuroanatomical and neurophysiological underpinnings of these autonomic manifestations are not been fully elucidated. Diagnostic confusion may arise when ictal symptoms are confined to the autonomic nervous system; conversely, such symptoms in association with convulsions or altered consciousness are more readily recognized as concomitant ictal features. Awareness of the diverse autonomic manifestations of epilepsy will enhance diagnosis and lead to more effective therapy of these patients.

  3. Autonomous Space Shuttle

    NASA Technical Reports Server (NTRS)

    Siders, Jeffrey A.; Smith, Robert H.

    2004-01-01

    The continued assembly and operation of the International Space Station (ISS) is the cornerstone within NASA's overall Strategic P an. As indicated in NASA's Integrated Space Transportation Plan (ISTP), the International Space Station requires Shuttle to fly through at least the middle of the next decade to complete assembly of the Station, provide crew transport, and to provide heavy lift up and down mass capability. The ISTP reflects a tight coupling among the Station, Shuttle, and OSP programs to support our Nation's space goal . While the Shuttle is a critical component of this ISTP, there is a new emphasis for the need to achieve greater efficiency and safety in transporting crews to and from the Space Station. This need is being addressed through the Orbital Space Plane (OSP) Program. However, the OSP is being designed to "complement" the Shuttle as the primary means for crew transfer, and will not replace all the Shuttle's capabilities. The unique heavy lift capabilities of the Space Shuttle is essential for both ISS, as well as other potential missions extending beyond low Earth orbit. One concept under discussion to better fulfill this role of a heavy lift carrier, is the transformation of the Shuttle to an "un-piloted" autonomous system. This concept would eliminate the loss of crew risk, while providing a substantial increase in payload to orbit capability. Using the guidelines reflected in the NASA ISTP, the autonomous Shuttle a simplified concept of operations can be described as; "a re-supply of cargo to the ISS through the use of an un-piloted Shuttle vehicle from launch through landing". Although this is the primary mission profile, the other major consideration in developing an autonomous Shuttle is maintaining a crew transportation capability to ISS as an assured human access to space capability.

  4. Collaborating with Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette

    2015-01-01

    With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.

  5. Experiments in autonomous robotics

    SciTech Connect

    Hamel, W.R.

    1987-01-01

    The Center for Engineering Systems Advanced Research (CESAR) is performing basic research in autonomous robotics for energy-related applications in hazardous environments. The CESAR research agenda includes a strong experimental component to assure practical evaluation of new concepts and theories. An evolutionary sequence of mobile research robots has been planned to support research in robot navigation, world sensing, and object manipulation. A number of experiments have been performed in studying robot navigation and path planning with planar sonar sensing. Future experiments will address more complex tasks involving three-dimensional sensing, dexterous manipulation, and human-scale operations.

  6. Autonomous mobile robot teams

    NASA Technical Reports Server (NTRS)

    Agah, Arvin; Bekey, George A.

    1994-01-01

    This paper describes autonomous mobile robot teams performing tasks in unstructured environments. The behavior and the intelligence of the group is distributed, and the system does not include a central command base or leader. The novel concept of the Tropism-Based Cognitive Architecture is introduced, which is used by the robots in order to produce behavior transforming their sensory information to proper action. The results of a number of simulation experiments are presented. These experiments include worlds where the robot teams must locate, decompose, and gather objects, and defend themselves against hostile predators, while navigating around stationary and mobile obstacles.

  7. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  8. Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects

    NASA Astrophysics Data System (ADS)

    Dumusque, X.; Udry, S.; Lovis, C.; Santos, N. C.; Monteiro, M. J. P. F. G.

    2011-01-01

    Context. Stellar noise produced by oscillations, granulation phenomena (granulation, mesogranulation, and supergranulation), and activity affects radial velocity measurements. The signature of the corresponding effect in radial velocity is small, around the meter-per-second, but already too large for the detection of Earth-mass planets in habitable zones. Aims: We address the important role played by observational strategies in averaging out the radial velocity signature of stellar noise. We also derive the planetary mass detection limits expected in the presence of stellar noise. Methods: We start with HARPS asteroseismology measurements for four stars (β Hyi, α Cen A, μ Ara, and τ Ceti) available in the ESO archive and very precise measurements of α Cen B. This sample covers different spectral types from G2 to K1 and different evolutionary stages, from subgiant to dwarf stars. Since data span between 5 and 8 days, only stellar noise sources with timescales shorter than this time span will be extracted from these observations. Therefore, we are able to study oscillation modes and granulation phenomena without being significantly affected by activity noise present on longer timescales. For those five stars, we generate synthetic radial velocity measurements after fitting the corresponding models of stellar noise in Fourier space. These measurements allow us to study the radial velocity variation due to stellar noise for different observational strategies as well as the corresponding planetary mass detection limits. Results: Applying three measurements per night of 10 min exposure each, 2 h apart, seems to most efficiently average out the stellar noise considered. For quiet K1V stars such as α Cen B, this strategy allows us to detect planets of about three times the mass of Earth with an orbital period of 200 days, corresponding to the habitable zone of the star. Moreover, our simulations suggest that planets smaller than typically 5 M⊕ can be detected with

  9. Cell-autonomous and non-cell-autonomous toxicity in polyglutamine diseases.

    PubMed

    Sambataro, Fabio; Pennuto, Maria

    2012-05-01

    Polyglutamine diseases are neurodegenerative disorders caused by expansion of polyglutamine tracts in the coding regions of specific genes. One of the most important features of polyglutamine diseases is that, despite the widespread and in some cases ubiquitous expression of the polyglutamine proteins, specific populations of neurons degenerate in each disease. This finding has led to the idea that polyglutamine diseases are cell-autonomous diseases, in which selective neuronal dysfunction and death result from damage caused by the mutant protein within the targeted neuronal population itself. Development of animal models for conditional expression of polyglutamine proteins, along with new pharmacologic manipulation of polyglutamine protein expression and toxicity, has led to a remarkable change of the current view of polyglutamine diseases as cell-autonomous disorders. It is becoming evident that toxicity in the neighboring non-neuronal cells contributes to selective neuronal damage. This observation implies non-cell-autonomous mechanisms of neurodegeneration in polyglutamine diseases. Here, we describe cell-autonomous and non-cell-autonomous mechanisms of polyglutamine disease pathogenesis, including toxicity in neurons, skeletal muscle, glia, germinal cells, and other cell types.

  10. Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers

    NASA Technical Reports Server (NTRS)

    Hurtado, Jose M., Jr.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W., Jr.

    2012-01-01

    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.

  11. DEMO: the Autonomous Sciencecraft Experiment onboard the EO-1 spacecraft

    NASA Technical Reports Server (NTRS)

    Tran, Daniel; Chien, Steve; Sherwood, Rob; Castano, Rebecca; Cichy, Benjamin; Davies, Ashley; Rabideau, Gregg

    2004-01-01

    The Autonomous Sciencececraft Experiment (ASE), currently flying onboard the Earth Observing-1 (EO-1) spacecraft, integrates several autnomoy software technologies enabling autnomous science analysis and mission planning. The experiment demonstrates the potential for future space missions to use onboard decision-making to respond autonomously to capture short-lived science phenomena. The AAAI software demonstration will consist of two sections: a real-time display of an ASE-commanded ground contact from the EO-1 spacecraft, and a simulation of the full ASE autonomous science-response scenario.

  12. Analytic Prediction of Emergent Dynamics for Autonomous Negotiating Team (ANT) Systems

    DTIC Science & Technology

    2003-11-01

    leading to case -based negotiation. In this work, autonomous negotiating systems are composed of logically separated software agents that control...by gained experience. A case -based negotiation strategy is presented that allows self-organized scheduling of the tasks. The mathematics...Organizing Missions for Autonomous Resources Using Case -Based Negotiation 3 2.1 Introduction

  13. Autonomous Power: From War to Peace in the I-Robot Millennium

    DTIC Science & Technology

    2015-02-25

    operationalization of autonomous power at highest intergovernmental level. 15. SUBJECT TERMS: Autonomy, National Power, Artificial Intelligence 16. SECURITY...strategy for applying ways and means outstrips desired ends, the resulting outcome is risk. Autonomous power, the fruitful combination of artificial ... artificial speciation and successfully created novel species, contributing innumerable benefits to mankind and the world. In the not too distant

  14. When continuous observations just won't do: developing accurate and efficient sampling strategies for the laying hen.

    PubMed

    Daigle, Courtney L; Siegford, Janice M

    2014-03-01

    Continuous observation is the most accurate way to determine animals' actual time budget and can provide a 'gold standard' representation of resource use, behavior frequency, and duration. Continuous observation is useful for capturing behaviors that are of short duration or occur infrequently. However, collecting continuous data is labor intensive and time consuming, making multiple individual or long-term data collection difficult. Six non-cage laying hens were video recorded for 15 h and behavioral data collected every 2 s were compared with data collected using scan sampling intervals of 5, 10, 15, 30, and 60 min and subsamples of 2 second observations performed for 10 min every 30 min, 15 min every 1 h, 30 min every 1.5 h, and 15 min every 2 h. Three statistical approaches were used to provide a comprehensive analysis to examine the quality of the data obtained via different sampling methods. General linear mixed models identified how the time budget from the sampling techniques differed from continuous observation. Correlation analysis identified how strongly results from the sampling techniques were associated with those from continuous observation. Regression analysis identified how well the results from the sampling techniques were associated with those from continuous observation, changes in magnitude, and whether a sampling technique had bias. Static behaviors were well represented with scan and time sampling techniques, while dynamic behaviors were best represented with time sampling techniques. Methods for identifying an appropriate sampling strategy based upon the type of behavior of interest are outlined and results for non-caged laying hens are presented.

  15. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  16. Autonomic Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.; Miller, N. E.

    1994-01-01

    The purpose of this report is to describe how changes in autonomic nervous system responses may be used as an index of individual differences in adaptational capacity to space flight. During two separate Spacelab missions, six crewmembers wore an ambulatory monitoring system which enabled continuous recording of their physiological responses for up to twelve hours a day for 3 to 5 mission days. The responses recorded were electrocardiography, respiration wave form, skin conductance level, hand temperature, blood flow to the hands and triaxial accelerations of the head and upper body. Three of these subjects had been given training, before the mission, in voluntary control of these autonomic responses as a means of facilitating adaptation to space. Three of these subjects served as Controls, i.e., did not receive this training but took anti-motion sickness medication. Nearly 300 hours of flight data are summarized. These data were examined using time-series analyses, spectral analyses of heart rate variability, and analyses of variance. Information was obtained on responses to space motion sickness, inflight medications, circadian rhythm, workload and fatigue. Preliminary assessment was made on the effectiveness of self-regulation training as a means of facilitating adaptation, with recommendations for future flights.

  17. Autonomous mobile communication relays

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoa G.; Everett, Hobart R.; Manouk, Narek; Verma, Ambrish

    2002-07-01

    Maintaining a solid radio communication link between a mobile robot entering a building and an external base station is a well-recognized problem. Modern digital radios, while affording high bandwidth and Internet-protocol-based automatic routing capabilities, tend to operate on line-of-sight links. The communication link degrades quickly as a robot penetrates deeper into the interior of a building. This project investigates the use of mobile autonomous communication relay nodes to extend the effective range of a mobile robot exploring a complex interior environment. Each relay node is a small mobile slave robot equipped with sonar, ladar, and 802.11b radio repeater. For demonstration purposes, four Pioneer 2-DX robots are used as autonomous mobile relays, with SSC-San Diego's ROBART III acting as the lead robot. The relay robots follow the lead robot into a building and are automatically deployed at various locations to maintain a networked communication link back to the remote operator. With their on-board external sensors, they also act as rearguards to secure areas already explored by the lead robot. As the lead robot advances and RF shortcuts are detected, relay nodes that become unnecessary will be reclaimed and reused, all transparent to the operator. This project takes advantage of recent research results from several DARPA-funded tasks at various institutions in the areas of robotic simulation, ad hoc wireless networking, route planning, and navigation. This paper describes the progress of the first six months of the project.

  18. Nemesis Autonomous Test System

    NASA Technical Reports Server (NTRS)

    Barltrop, Kevin J.; Lee, Cin-Young; Horvath, Gregory A,; Clement, Bradley J.

    2012-01-01

    A generalized framework has been developed for systems validation that can be applied to both traditional and autonomous systems. The framework consists of an automated test case generation and execution system called Nemesis that rapidly and thoroughly identifies flaws or vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on the test equipment side, a "war game" is conducted between a system and its complementary nemesis. The end result of the war games is a collection of scenarios that reveals any undesirable behaviors of the system under test. The software provides a reusable framework to evolve test scenarios using genetic algorithms using an operation model of the system under test. It can automatically generate and execute test cases that reveal flaws in behaviorally complex systems. Genetic algorithms focus the exploration of tests on the set of test cases that most effectively reveals the flaws and vulnerabilities of the system under test. It leverages advances in state- and model-based engineering, which are essential in defining the behavior of autonomous systems. It also uses goal networks to describe test scenarios.

  19. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  20. Autonomic Responses to Microgravity

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.; Miller, N. E.

    1994-01-01

    The purpose of this report is to describe how changes in autonomic nervous system responses may be used as an index of individual differences in adaptational capacity to space flight. During two separate Spacelab missions, six crewmembers wore an ambulatory monitoring system which enabled continuous recording of their physiological responses for up to twelve hours a day for 3 to 5 mission days. The responses recorded were electrocardiography, respiration wave form, skin conductance level, hand temperature, blood flow to the hands and triaxial accelerations of the head and upper body. Three of these subjects had been given training, before the mission, in voluntary control of these autonomic responses as a means of facilitating adaptation to space. Three of these subjects served as Controls, i.e., did not receive this training but took anti-motion sickness medication. Nearly 300 hours of flight data are summarized. These data were examined using time-series analyses, spectral analyses of heart rate variability, and analyses of variance. Information was obtained on responses to space motion sickness, inflight medications, circadian rhythm, workload and fatigue. Preliminary assessment was made on the effectiveness of self-regulation training as a means of facilitating adaptation, with recommendations for future flights.

  1. Learning for Autonomous Navigation

    NASA Technical Reports Server (NTRS)

    Angelova, Anelia; Howard, Andrew; Matthies, Larry; Tang, Benyang; Turmon, Michael; Mjolsness, Eric

    2005-01-01

    Robotic ground vehicles for outdoor applications have achieved some remarkable successes, notably in autonomous highway following (Dickmanns, 1987), planetary exploration (1), and off-road navigation on Earth (1). Nevertheless, major challenges remain to enable reliable, high-speed, autonomous navigation in a wide variety of complex, off-road terrain. 3-D perception of terrain geometry with imaging range sensors is the mainstay of off-road driving systems. However, the stopping distance at high speed exceeds the effective lookahead distance of existing range sensors. Prospects for extending the range of 3-D sensors is strongly limited by sensor physics, eye safety of lasers, and related issues. Range sensor limitations also allow vehicles to enter large cul-de-sacs even at low speed, leading to long detours. Moreover, sensing only terrain geometry fails to reveal mechanical properties of terrain that are critical to assessing its traversability, such as potential for slippage, sinkage, and the degree of compliance of potential obstacles. Rovers in the Mars Exploration Rover (MER) mission have got stuck in sand dunes and experienced significant downhill slippage in the vicinity of large rock hazards. Earth-based off-road robots today have very limited ability to discriminate traversable vegetation from non-traversable vegetation or rough ground. It is impossible today to preprogram a system with knowledge of these properties for all types of terrain and weather conditions that might be encountered.

  2. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  3. Variation in the functioning of autonomous self-pollination, pollinator services and floral traits in three Centaurium species

    PubMed Central

    Brys, Rein; Jacquemyn, Hans

    2011-01-01

    Background and Aims Reproductive assurance through autonomous selfing is thought to be one of the main advantages of self-fertilization in plants. Floral mechanisms that ensure autonomous seed set are therefore more likely to occur in species that grow in habitats where pollination is scarce and/or unpredictable. Methods Emasculation and pollen supplementation experiments were conducted under laboratory conditions to investigate the capacity for, and timing of autonomous selfing in three closely related Centaurium species (Centaurium erythraea, C. littorale and C. pulchellum). In addition, observations of flower visitors were combined with emasculation and pollen addition experiments in natural populations to investigate the degree of pollinator limitation and pollination failure and to assess the extent to which autonomous selfing conferred reproductive assurance. Results All three species were capable of autonomous selfing, although this capacity differed significantly between species (index of autonomous selfing 0·55 ± 0·06, 0·68 ± 0·09 and 0·92 ± 0·03 for C. erythraea, C. littorale and C. pulchellum, respectively). The efficiency and timing of autogamous selfing was primarily associated with differences in the degree of herkogamy and dichogamy. The number of floral visitors showed significant interspecific differences, with 1·6 ± 0·6, 5·4 ± 0·6 and 14·5 ± 2·1 floral visitors within a 2 × 2 m2 plot per 20-min observation period, for C. pulchellum, C. littorale and C. erythraea, respectively. Concomitantly, pollinator failure was highest in C. pulchellum and lowest in C. erythraea. Nonetheless, all three study species showed very low levels of pollen limitation (index of pollen limitation 0·14 ± 0·03, 0·11 ± 0·03 and 0·09 ± 0·02 for C. erythraea, C. littorale and C. pulchellum, respectively), indicating that autonomous selfing may guarantee reproductive assurance. Conclusions These findings show that limited availability of pollinators

  4. Unmanned air vehicle: autonomous takeoff and landing

    NASA Astrophysics Data System (ADS)

    Lim, K. L.; Gitano-Briggs, Horizon Walker

    2009-12-01

    UAVs are increasing in popularity and sophistication due to the demonstrated performance which cannot be attained by manned aircraft1. These developments have been made possible by development of sensors, instrumentation, telemetry and controls during the last few decades. UAVs are now common in areas such as aerial observation and as communication relays3. Most UAVs, however, are still flown by a human pilot via remote control from a ground station. Even the existing autonomous UAVs often require a human pilot to handle the most difficult tasks of take off and landing2 (TOL). This is mainly because the navigation of the airplane requires observation, constant situational assessment and hours of experience from the pilot himself4. Therefore, an autonomous takeoff and landing system (TLS) for UAVs using a few practical design rules with various sensors, instrumentation, etc has been developed. This paper details the design and modeling of the UAV TLS. The model indicates that the UAV's TLS shows promising stability.

  5. Unmanned air vehicle: autonomous takeoff and landing

    NASA Astrophysics Data System (ADS)

    Lim, K. L.; Gitano-Briggs, Horizon Walker

    2010-03-01

    UAVs are increasing in popularity and sophistication due to the demonstrated performance which cannot be attained by manned aircraft1. These developments have been made possible by development of sensors, instrumentation, telemetry and controls during the last few decades. UAVs are now common in areas such as aerial observation and as communication relays3. Most UAVs, however, are still flown by a human pilot via remote control from a ground station. Even the existing autonomous UAVs often require a human pilot to handle the most difficult tasks of take off and landing2 (TOL). This is mainly because the navigation of the airplane requires observation, constant situational assessment and hours of experience from the pilot himself4. Therefore, an autonomous takeoff and landing system (TLS) for UAVs using a few practical design rules with various sensors, instrumentation, etc has been developed. This paper details the design and modeling of the UAV TLS. The model indicates that the UAV's TLS shows promising stability.

  6. Satisfaction of patients with directly observed treatment strategy in Addis Ababa, Ethiopia: A mixed-methods study.

    PubMed

    Getahun, Belete; Nkosi, Zethu Zerish

    2017-01-01

    Directly observed treatment, short course (DOTS) strategy has been a cornerstone for Tuberculosis (TB) control programs in developing countries. However, in Ethiopia satisfaction level of patients' with TB with the this strategy is not well understood. Therefore, the study aimed to assess the satisfaction level of patients with TB with the DOTS. Explanatory sequential mixed method design was carried out in Addis Ababa, Ethiopia. Interviewer-administered questionnaire with 601 patients with TB who were on follow-up was employed in the quantitative approach. In the qualitative approach telephonic-interview with 25 persons lost to follow-up and focus group discussions with 23 TB experts were conducted. Sixty seven percent of respondent was satisfied with the DOTS. Rural residency (AOR = 3.4, 95% CI 1.6, 7.6), having TB symptoms (AOR = 0.6, 95% CI 0.4, 0.94) and treatment supporter (AOR = 4.3, 95%CI 2.7, 6.8) were associated with satisfaction with DOTS. In qualitative finding, all persons lost to follow-up were dissatisfied while TB experts enlightened lack of evidence to affirm the satisfaction level of patients with DOTS. Explored factors contributing to satisfaction include: on time availability of health care providers, DOTS service delivery process, general condition of health care facilities, nutritional support and transportation. DOTS is limited to satisfy patients with TB and lacks a consistent system that determines the satisfaction level of patients with TB. Therefore, DOTS strategy needs to have a system to captures patients' satisfaction level to respond on areas that need progress to improve DOTS service quality.

  7. Satisfaction of patients with directly observed treatment strategy in Addis Ababa, Ethiopia: A mixed-methods study

    PubMed Central

    Getahun, Belete; Nkosi, Zethu Zerish

    2017-01-01

    Background Directly observed treatment, short course (DOTS) strategy has been a cornerstone for Tuberculosis (TB) control programs in developing countries. However, in Ethiopia satisfaction level of patients’ with TB with the this strategy is not well understood. Therefore, the study aimed to assess the satisfaction level of patients with TB with the DOTS. Method Explanatory sequential mixed method design was carried out in Addis Ababa, Ethiopia. Interviewer-administered questionnaire with 601 patients with TB who were on follow-up was employed in the quantitative approach. In the qualitative approach telephonic-interview with 25 persons lost to follow-up and focus group discussions with 23 TB experts were conducted. Result Sixty seven percent of respondent was satisfied with the DOTS. Rural residency (AOR = 3.4, 95% CI 1.6, 7.6), having TB symptoms (AOR = 0.6, 95% CI 0.4, 0.94) and treatment supporter (AOR = 4.3, 95%CI 2.7, 6.8) were associated with satisfaction with DOTS. In qualitative finding, all persons lost to follow-up were dissatisfied while TB experts enlightened lack of evidence to affirm the satisfaction level of patients with DOTS. Explored factors contributing to satisfaction include: on time availability of health care providers, DOTS service delivery process, general condition of health care facilities, nutritional support and transportation. Conclusion DOTS is limited to satisfy patients with TB and lacks a consistent system that determines the satisfaction level of patients with TB. Therefore, DOTS strategy needs to have a system to captures patients’ satisfaction level to respond on areas that need progress to improve DOTS service quality. PMID:28182754

  8. Awareness and Responsibility in Autonomous Weapons Systems

    NASA Astrophysics Data System (ADS)

    Bhuta, Nehal; Rotolo, Antonino; Sartor, Giovanni

    The following sections are included: * Introduction * Why Computational Awareness is Important in Autonomous Weapons * Flying Drones and Other Autonomous Weapons * The Impact of Autonomous Weapons Systems * From Autonomy to Awareness: A Perspective from Science Fiction * Summary and Conclusions

  9. Some observations on overwintering sites of adult Culex quinquefasciatus (Diptera: Culicidae) and strategies followed under natural and seminatural conditions.

    PubMed

    Thareja, V; Singh, Rangoli; Singha Naorem, Anjana

    2016-01-01

    Field population of adult Culex quinquefasciatus Say, landed in December, congregated and overwintered in indoor artificial sites in Delhi. Repeated sampling strategy by individually collecting the adults was adopted to study their overwintering strategies for 4 years (December to April). They remained vagile and readily repopulated the resting sites after the removal of samples. A large percentage of females was fertile, unfed and nulliparous indicating that reproduction ceased in them. Adult survival was significantly prolonged to a maximum of 3 months under natural conditions. Gonotrophic cycle also got prolonged. Close to quitting, they became gravid and left in April without oviposition. No adults were observed on the sites for the rest of the year. Oviposition was induced in the blood-engorged females when provided with food, water and outdoor conditions. Oviposition might have been induced directly by water and food provided them energy under seminatural conditions. Eggs were laid singly or in the form of rafts, and the number in both the cases was low. Singly laid eggs did not hatch, and in rafts, hatching was ~80 %. Winter conditions seemed to strongly impact fertility, blood feeding, fecundity, oviposition behaviour, egg hatchability and longevity. Use of the overwintering sites as biological tool, as a part of environmental control in IPM, is suggested for organising antivector measures during winter. There is a need of exploring and creating more sites of this kind.

  10. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  11. Expanded Perspectives on Autonomous Learners

    ERIC Educational Resources Information Center

    Oxford, Rebecca L.

    2015-01-01

    This paper explores two general perspectives on autonomous learners: psychological and sociocultural. These perspectives introduce a range of theoretically grounded facets of autonomous learners, facets such as the self-regulated learner, the emotionally intelligent learner, the self-determined learner, the mediated learner, the socioculturally…

  12. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  13. Asteroid Exploration with Autonomic Systems

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Rash, James; Rouff, Christopher; Hinchey, Mike

    2004-01-01

    NASA is studying advanced technologies for a future robotic exploration mission to the asteroid belt. The prospective ANTS (Autonomous Nano Technology Swarm) mission comprises autonomous agents including worker agents (small spacecra3) designed to cooperate in asteroid exploration under the overall authoriq of at least one ruler agent (a larger spacecraft) whose goal is to cause science data to be returned to Earth. The ANTS team (ruler plus workers and messenger agents), but not necessarily any individual on the team, will exhibit behaviors that qualify it as an autonomic system, where an autonomic system is defined as a system that self-reconfigures, self-optimizes, self-heals, and self-protects. Autonomic system concepts lead naturally to realistic, scalable architectures rich in capabilities and behaviors. In-depth consideration of a major mission like ANTS in terms of autonomic systems brings new insights into alternative definitions of autonomic behavior. This paper gives an overview of the ANTS mission and discusses the autonomic properties of the mission.

  14. Increasing community capacity for participatory evaluation of healthy eating and active living strategies through direct observations and environmental audits.

    PubMed

    Kemner, Allison L; Stachecki, Jessica R; Bildner, Michele E; Brennan, Laura K

    2015-01-01

    Local partnerships from the Healthy Kids, Healthy Communities initiative elected to participate in enhanced evaluation trainings to collect data through environmental audits and direct observations as well as to build their evaluation capacity. Environmental audit and direct observation tools and protocols were adapted for the relevant healthy eating and active living policy and environmental change approaches being conducted by the Healthy Kids, Healthy Communities partnerships. Customized trainings were conducted by the evaluation team to increase capacity and understanding for evaluation activities. A total of 87 trainings were conducted by the evaluation team in 31 Healthy Kids, Healthy Communities community partnerships. Data were collected for a total of 41 environmental audits and 17 direct observations. Community case examples illustrate how these trainings developed evaluation capacity. For instance, youth from one community presented environmental audit findings to local elected officials. The 31 partnerships participating in the community-based evaluation efforts resulted in 164 individuals trained in collecting context-specific data to assess the impact of healthy eating and active living policy and environmental strategies designed to create community change.

  15. Automatic learning by an autonomous mobile robot

    SciTech Connect

    de Saussure, G.; Spelt, P.F.; Killough, S.M.; Pin, F.G.; Weisbin, C.R.

    1989-01-01

    This paper describes recent research in automatic learning by the autonomous mobile robot HERMIES-IIB at the Center for Engineering Systems Advanced Research (CESAR). By acting on the environment and observing the consequences during a set of training examples, the robot learns a sequence of successful manipulations on a simulated control panel. The robot learns to classify panel configurations in order to deal with new configurations that are not part of the original training set. 5 refs., 2 figs.

  16. Simulations of imaging extended sources using the GMRT and the U-GMRT - Implications to observing strategies

    NASA Astrophysics Data System (ADS)

    Deo, Deepak Kumar; Kale, Ruta

    2017-09-01

    Astrophysical sources such as radio halos and relics in galaxy clusters, supernova remnants and radio galaxies have angular sizes from a few to several 10s of arcminutes. In radio interferometric imaging of such sources, the largest angular size of the source that can be imaged is limited by the shortest projected baseline towards the source. It is essential to determine the limitations of the recovery of the extended features on various angular scales in order to interpret the radio image. We simulated observations of a model extended source of Gaussian shape with the Giant Metrewave Radio Telescope (GMRT) using Common Astronomy Software Applications (CASA). The recovery in flux density and in morphology of the model source was quantified in a variety of observing cases with changing source properties and the uv-coverage. If 𝜃 l a r is the largest angular scale sampled in an observation with the GMRT, then > 80% recovery of a source of size 0.3 × 𝜃 l a r is possible. The upgraded GMRT (U-GMRT) providing 200 MHz instantaneous bandwidth between 300 - 500 MHz will allow a factor of two better recovery of a source of size 𝜃 l a r as compared to the GMRT at 300 MHz with 33 MHz bandwidth. We provide quantitative estimates for the improvement in extended source recovery in observations at low elevations and long durations. The presented simulations can be carried out for future radio telescopes such as the Square Kilometre Array (SKA) for optimisation of observing strategies to image extended radio sources.

  17. Progression of cardiovascular autonomic dysfunction in Holmes-Adie syndrome.

    PubMed

    Guaraldi, P; Mathias, C J

    2011-09-01

    The Holmes-Adie Syndrome (HAS) is a disorder of unknown aetiology comprising unilateral or bilateral tonic pupils with near light dissociation and tendon areflexia. Although considered to be benign, troublesome symptoms may result from autonomic disturbances, affecting vasomotor, sudomotor and respiratory function. It is unclear if the autonomic manifestations of the disease remain stable or progress, as longitudinal studies with detailed autonomic assessments have not been described. The authors report four HAS patients studied at intervals over 16, 8, 4 and 2 years with cardiovascular autonomic tests (head-up tilt, isometric exercise, mental arithmetic, cutaneous cold, deep breathing, Valsalva manoeuvre and standing). In each, there was progression of cardiovascular autonomic deficits with time, accompanied by symptomatic worsening. These observations in HAS, for the first time, indicate progression of cardiovascular autonomic dysfunction of clinical significance. This has a number of implications, including those relating to aetiology and prognosis. The authors recommend regular clinical and laboratory follow-up, especially of cardiovascular autonomic function, in patients with HAS.

  18. A two-stage strategy to accommodate general patterns of confounding in the design of observational studies

    PubMed Central

    Haneuse, Sebastien; Schildcrout, Jonathan; Gillen, Daniel

    2012-01-01

    Accommodating general patterns of confounding in sample size/power calculations for observational studies is extremely challenging, both technically and scientifically. While employing previously implemented sample size/power tools is appealing, they typically ignore important aspects of the design/data structure. In this paper, we show that sample size/power calculations that ignore confounding can be much more unreliable than is conventionally thought; using real data from the US state of North Carolina, naive calculations yield sample size estimates that are half those obtained when confounding is appropriately acknowledged. Unfortunately, eliciting realistic design parameters for confounding mechanisms is difficult. To overcome this, we propose a novel two-stage strategy for observational study design that can accommodate arbitrary patterns of confounding. At the first stage, researchers establish bounds for power that facilitate the decision of whether or not to initiate the study. At the second stage, internal pilot data are used to estimate key scientific inputs that can be used to obtain realistic sample size/power. Our results indicate that the strategy is effective at replicating gold standard calculations based on knowing the true confounding mechanism. Finally, we show that consideration of the nature of confounding is a crucial aspect of the elicitation process; depending on whether the confounder is positively or negatively associated with the exposure of interest and outcome, naive power calculations can either under or overestimate the required sample size. Throughout, simulation is advocated as the only general means to obtain realistic estimates of statistical power; we describe, and provide in an R package, a simple algorithm for estimating power for a case–control study. PMID:22130627

  19. A two-stage strategy to accommodate general patterns of confounding in the design of observational studies.

    PubMed

    Haneuse, Sebastien; Schildcrout, Jonathan; Gillen, Daniel

    2012-04-01

    Accommodating general patterns of confounding in sample size/power calculations for observational studies is extremely challenging, both technically and scientifically. While employing previously implemented sample size/power tools is appealing, they typically ignore important aspects of the design/data structure. In this paper, we show that sample size/power calculations that ignore confounding can be much more unreliable than is conventionally thought; using real data from the US state of North Carolina, naive calculations yield sample size estimates that are half those obtained when confounding is appropriately acknowledged. Unfortunately, eliciting realistic design parameters for confounding mechanisms is difficult. To overcome this, we propose a novel two-stage strategy for observational study design that can accommodate arbitrary patterns of confounding. At the first stage, researchers establish bounds for power that facilitate the decision of whether or not to initiate the study. At the second stage, internal pilot data are used to estimate key scientific inputs that can be used to obtain realistic sample size/power. Our results indicate that the strategy is effective at replicating gold standard calculations based on knowing the true confounding mechanism. Finally, we show that consideration of the nature of confounding is a crucial aspect of the elicitation process; depending on whether the confounder is positively or negatively associated with the exposure of interest and outcome, naive power calculations can either under or overestimate the required sample size. Throughout, simulation is advocated as the only general means to obtain realistic estimates of statistical power; we describe, and provide in an R package, a simple algorithm for estimating power for a case-control study.

  20. [Changes observed in three quality indicators after the implementation of improvement strategies in the respiratory intensive care unit].

    PubMed

    Álvarez Maldonado, Pablo; Cueto Robledo, Guillermo; Cicero Sabido, Raúl

    2015-04-01

    To compare the results of quality monitoring after the implementation of improvement strategies in the respiratory intensive care unit (RICU). A prospective, comparative, longitudinal and interventional study was carried out. The RICU of Hospital General de México (Mexico). All patients admitted to the RICU from March 2012 to March 2013. An evidence-based bundle of interventions was implemented in order to reduce the ratios of three quality indicators: non-planned extubation (NPE), reintubation, and ventilator-associated pneumonia (VAP). NPE, reintubation and VAP ratios. A total of 232 patients were admitted, with a mean age of 49.5±17.8years; 119 (50.5%) were woman. The mean Simplified Acute Physiology Score (SAPS-3) was 49.8±17, and the mean Sequential Organ Failure Assessment (SOFA) score was 5.3±4.1. The mortality rate in the RICU was 38.7%. The standardized mortality ratio was 1.50 (95%CI: 1.20-1.84). An improved ratio was observed for reintubation and NPE indicators compared to the ratios of the previous 2011 cohort: 1.6% vs. 7% (P=.02) and 8.1 vs. 17 episodes per 1000 days of mechanical ventilation (P=.04), respectively. A worsened VAP ratio was observed: 18.4 vs. 15.1 episodes per 1000 days of mechanical ventilation (P=.5). Quality improvement is feasible with the identification of areas of opportunity and the implementation of strategies. Nevertheless, the implementation of a bundle of preventive measures in itself does not guarantee improvements. Copyright © 2013 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.

  1. Linking tree size distribution to active remote sensing parameters: consequences for observation strategies and impacts on biomass retrieval (Invited)

    NASA Astrophysics Data System (ADS)

    Pinto, N.; Simard, M.; Behrman, K. D.; Keitt, T. H.

    2010-12-01

    Vegetation 3D structure measurements from active remote sensing (i.e. lidar and radar) are usually averaged and reported at the regional level. However, environmental gradients and disturbance can structure vegetation patterns at multiple scales. Thus, a critical challenge in designing global observation strategies is to obtain confidence intervals on vegetation parameters as a function of biome, sensor, and resolution of observation. We present strategies to gain knowledge on forest spatial heterogeneity that can be translated into confidence intervals for above ground biomass and canopy height measurements. We use data from two airborne systems: the Laser Vegetation Imaging Sensor (LVIS) and the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) acquired over sites in the US (NH and ME), Canada (Quebec) and Costa Rica. We first describe two parameters (alpha and beta) that summarize tree size distribution for individual patches, thereby capturing forest successional stage. In this scenario, the uncertainty in predicting above ground biomass stems from: (1) the ability to estimate alpha and beta with the lidar/radar signals, and (2) the error in deriving above ground biomass from tree size distribution statistics. The processes of competition and self-thinning create skewed tree size distributions where smaller individuals are common and large individuals are rare. Using a global dataset of spaceborne lidar points from the sensor ICESat (Ice, Cloud, and land Elevation Satellite), we show the importance of sampling extreme values when using spatially sparse data. This raises the need to obtain expectations for the second-order properties of forest stands. To this end, we employed wavelet transforms to quantify variation in lidar-derived canopy height metrics across >20 Km transects and asked whether environmental gradients such as elevation can constrain the spatial autocorrelation among large trees.

  2. Pure autonomic failure without synucleinopathy.

    PubMed

    Isonaka, Risa; Holmes, Courtney; Cook, Glen A; Sullivan, Patti; Sharabi, Yehonatan; Goldstein, David S

    2017-04-01

    Pure autonomic failure is a rare form of chronic autonomic failure manifesting with neurogenic orthostatic hypotension and evidence of sympathetic noradrenergic denervation unaccompanied by signs of central neurodegeneration. It has been proposed that pure autonomic failure is a Lewy body disease characterized by intra-neuronal deposition of the protein alpha-synuclein in Lewy bodies and neurites. A middle-aged man with previously diagnosed pure autonomic failure experienced a sudden, fatal cardiac arrest. He was autopsied, and tissues were harvested for neurochemical and immunofluorescence studies. Post-mortem microscopic neuropathology showed no Lewy bodies, Lewy neurites, or alpha-synuclein deposition by immunohistochemistry anywhere in the brain. The patient had markedly decreased immunofluorescent tyrosine hydroxylase in sympathetic ganglion tissue without detectable alpha-synuclein even in rare residual nests of tyrosine hydroxylase-containing ganglionic fibers. In pure autonomic failure, sympathetic noradrenergic denervation can occur without concurrent Lewy bodies or alpha-synuclein deposition in the brain or sympathetic ganglion tissue.

  3. Passive and Self-Powered Autonomous Sensors for Remote Measurements

    PubMed Central

    Sardini, Emilio; Serpelloni, Mauro

    2009-01-01

    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds. PMID:22399949

  4. A Strategy for Short-Term Earthquake Forecasting Based on Combined Ground and Space-Based Observations

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Papadopoulos, G. A.; Karastathis, V. K.; Minadakis, G.; Ouzounov, D.; Pulinets, S. A.; Tramutoli, V.; Tsinganos, K.

    2014-12-01

    No standard methodologies regarding the short-term (hours, days, few weeks) forecasting of earthquakes have been widely adopted so far. However, promising approaches from ground-based (e.g. foreshocks) and space-based (e.g. thermal anomalies) observations have been described. We propose to apply a multidisciplinary strategy by performing real-time experiments towards the identification of space-time windows having increased probability beyond chance for the occurrence of strong earthquakes (M>5.5). This is a new collaborative study which will continue the best practices achieved from other projects such as the EU-FP7 PRE-EARTHQUAKE and the ongoing ISSI project LAICa. The test region covers the entire Greece which is of the highest seismicity all over western Eurasia, while closer attention will be given to the Corinth Rift (Central Greece) which is an asymmetric half-graben of high seismicity opening rapidly with geodetic extension rates up to about 15mmyr-1. Ground-based observations will mainly include seismicity, magnetometers and radon measurements while space observations will include the ones that may provide thermal anomalies, GPS and TEC. The strategy will include the development of a system operating in real-time basis with strong tools and protocols for the collection, archiving and evaluation of the different types of data. The software part of the system may incorporate three basic interfaces implemented via open source technology: (1) The up-streaming software interface for the collection and archiving of data; (2) The backend real-time software interface incorporating all the available models; (3) The frontend WEBGIS software interface that will allow for data representation and mapping. The establishment of some certain rules for issuing non-public seismic alerts is needed. Therefore, in this paper we will also discuss the significance of the proposed work for the issues of earthquake forecasting/prediction statements and what critical new

  5. Symmetries and solutions of the non-autonomous von Bertalanffy equation

    NASA Astrophysics Data System (ADS)

    Edwards, Maureen P.; Anderssen, Robert S.

    2015-05-01

    For growth in a closed environment, which is indicative of the situation in laboratory experiments, autonomous ODE models do not necessarily capture the dynamics under investigation. The importance and impact of a closed environment arise when the question under examination relates, for example, to the number of the surviving microbes, such as in a study of the spoilage and contamination of food, the gene silencing activity of fungi or the production of a chemical compound by bacteria or fungi. Autonomous ODE models are inappropriate as they assume that only the current size of the population controls the growth-decay dynamics. This is reflected in the fact that, asymptotically, their solutions can only grow or decay monotonically or asymptote. Non-autonomous ODE models are not so constrained. A natural strategy for the choice of non-autonomous ODEs is to take appropriate autonomous ones and change them to be non-autonomous through the introduction of relevant non-autonomous terms. This is the approach in this paper with the focus being the von Bertalanffy equation. Since this equation has independent importance in relation to practical applications in growth modelling, it is natural to explore the deeper relationships between the introduced non-autonomous terms through a symmetry analysis, which is the purpose and goal of the current paper. Infinitesimals are derived which allow particular forms of the non-autonomous von Bertalanffy equation to be transformed into autonomous forms for which some new analytic solutions have been found.

  6. Autonomous Mars ascent and orbit rendezvous for earth return missions

    NASA Technical Reports Server (NTRS)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.

    1991-01-01

    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  7. Autonomous docking ground demonstration

    NASA Technical Reports Server (NTRS)

    Lamkin, Steve L.; Le, Thomas Quan; Othon, L. T.; Prather, Joseph L.; Eick, Richard E.; Baxter, Jim M.; Boyd, M. G.; Clark, Fred D.; Spehar, Peter T.; Teters, Rebecca T.

    1991-01-01

    The Autonomous Docking Ground Demonstration is an evaluation of the laser sensor system to support the docking phase (12 ft to contact) when operated in conjunction with the guidance, navigation, and control (GN&C) software. The docking mechanism being used was developed for the Apollo/Soyuz Test Program. This demonstration will be conducted using the 6-DOF Dynamic Test System (DTS). The DTS simulates the Space Station Freedom as the stationary or target vehicle and the Orbiter as the active or chase vehicle. For this demonstration, the laser sensor will be mounted on the target vehicle and the retroflectors will be on the chase vehicle. This arrangement was chosen to prevent potential damage to the laser. The laser sensor system, GN&C, and 6-DOF DTS will be operated closed-loop. Initial conditions to simulate vehicle misalignments, translational and rotational, will be introduced within the constraints of the systems involved.

  8. Autonomous Flying Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.

    2005-01-01

    The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.

  9. Evaluation of autonomic reserves in cardiac surgery patients.

    PubMed

    Deschamps, Alain; Denault, André; Rochon, Antoine; Cogan, Jennifer; Pagé, Pierre; D'Antono, Bianca

    2013-06-01

    Autonomic nervous system dysfunction is a well-recognized but rarely evaluated risk factor for patients undergoing cardiac surgery. By measuring autonomic reserves in patients scheduled for cardiac surgery, the authors aimed to identify those with autonomic dysfunction and to evaluate their risk of perioperative complications. This was a prospective, observational study. The study was conducted in a single academic center. Sixty-seven patients completed the study. Autonomic reserves were evaluated using analysis of heart rate variability (HRV) and blood pressure variability (BPV) after a Valsalva maneuver. The patients were divided into 2 groups depending on their response to the autonomic challenge, a group with autonomic reserves (AR, n = 38) and a group with negligible autonomic reserves (NAR, n = 29). The groups were compared for baseline psychologic distress, demographic and medical profiles, autonomic response to morphine premedication and the induction of anesthesia, hemodynamic instability, the occurrence of decreases in cerebral oxygen saturation, and postoperative complications. Patients in the NAR group had significantly higher psychologic distress scores (p < 0.001), a higher baseline parasympathetic tone (p = 0.003), were unable to increase parasympathetic tone with morphine premedication, had more severe hypotension at the induction of anesthesia (p < 0.001), more episodes of decreases in cerebral saturation (p = 0.0485), and a higher overall complication rate (p = 0.0388) independent of other variables studied. Patients with diminished autonomic reserves can be identified before cardiac surgery using analysis of HRV and BPV of the response to the Valsalva maneuver, and some evidence suggests that they may be at increased risk of perioperative complications. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A Space-based Observational Strategy for Characterizing the First Stars and Galaxies Using the Redshifted 21 cm Global Spectrum

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Bradley, Richard; Tauscher, Keith; Furlanetto, Steven; Mirocha, Jordan; Monsalve, Raul; Rapetti, David; Purcell, William; Newell, David; Draper, David; MacDowall, Robert; Bowman, Judd; Nhan, Bang; Wollack, Edward J.; Fialkov, Anastasia; Jones, Dayton; Kasper, Justin C.; Loeb, Abraham; Datta, Abhirup; Pritchard, Jonathan; Switzer, Eric; Bicay, Michael

    2017-07-01

    The redshifted 21 cm monopole is expected to be a powerful probe of the epoch of the first stars and galaxies (10< z< 35). The global 21 cm signal is sensitive to the thermal and ionization state of hydrogen gas and thus provides a tracer of sources of energetic photons—primarily hot stars and accreting black holes—which ionize and heat the high redshift intergalactic medium (IGM). This paper presents a strategy for observations of the global spectrum with a realizable instrument placed in a low-altitude lunar orbit, performing night-time 40-120 MHz spectral observations, while on the farside to avoid terrestrial radio frequency interference, ionospheric corruption, and solar radio emissions. The frequency structure, uniformity over large scales, and unpolarized state of the redshifted 21 cm spectrum are distinct from the spectrally featureless, spatially varying, and polarized emission from the bright foregrounds. This allows a clean separation between the primordial signal and foregrounds. For signal extraction, we model the foreground, instrument, and 21 cm spectrum with eigenmodes calculated via Singular Value Decomposition analyses. Using a Markov Chain Monte Carlo algorithm to explore the parameter space defined by the coefficients associated with these modes, we illustrate how the spectrum can be measured and how astrophysical parameters (e.g., IGM properties, first star characteristics) can be constrained in the presence of foregrounds using the Dark Ages Radio Explorer (DARE).

  11. Autonomous navigation of USAF spacecraft

    NASA Astrophysics Data System (ADS)

    Ferguson, J. R., Jr.

    Observations from several medium-accuracy space sensors, such as the existing telescopic space sextant are compared with those of future matrix-type sensors. The large field of view of matrix sensors should permit determining the Earth horizon to approximately an order of magnitude better than current infrared sensors by observing atmospheric refraction of stellar light. This horizon determination will give the matrix sensors an accuracy of less than 1 km. The limiting factor in Earth-horizon determination is the modeling of atmospheric refraction effects. For high-accuracy requirements (100 meters or less), the Global Positioning System (GPS) offers the only near-term solution. A relative navigation technique using range and Doppler data is proposed for autonomous navigation of the GPS satellites. The navigation accuracy of this technique is evaluated by considering covariance analysis and by processing corrupted data through a reduced-order onboard sequentially partitioned algorithm. The algorithm is stable and for the GPS system produces in-plane accuracy of 40 meters over twenty days. However, out-of-plane motion is shown to be unobservable in the GPS-to-GPS tracking mode, and errors of up to 1.5 km over 60 days are experienced. For this reason, a supplemental transmitter on the ground or in a different orbit is recommended.

  12. Alleviating Autonomic Dysreflexia after Spinal Cord Injury

    DTIC Science & Technology

    2016-10-01

    autonomic  dysreflexia).  We  previously  reported  that  the  combination  of  peripheral   nerve  graft,  chondroitinase  ABC  (ChABC)  and  monastrol...peripheral   nerve  graft  to  diminish  autonomic   dysreflexia.  We  previously  demonstrated  that  grafting  a  population  of  neural   progenitors  into...or  bradycardia  were  observed   between  groups.   !   3   peripheral   nerve .  Dr.  Tian  Wang,  our  Science  Officer,  approved  that

  13. Neuromodulation and plasticity in an autonomous robot.

    PubMed

    Sporns, Olaf; Alexander, William H

    2002-01-01

    In this paper we implement a computational model of a neuromodulatory system in an autonomous robot. The output of the neuromodulatory system acts as a value signal, modulating widely distributed synaptic changes. The model is based on anatomical and physiological properties of midbrain diffuse ascending systems, in particular parts of the dopamine and noradrenaline systems. During reward conditioning, the model learns to generate tonic and phasic signals that represent predictions and prediction errors, including precisely timed negative signals if expected rewards are omitted or delayed. We test the robot's learning and behavior in different environmental contexts and observe changes in the development of the neuromodulatory system that depend upon environmental factors. Simulation of a computational model incorporating both reward-related and aversive stimuli leads to the emergence of conditioned reward and aversive behaviors. These studies represent a step towards investigating computational aspects of neuromodulatory systems in autonomous robots.

  14. Autonomous Exploration for Gathering Increased Science

    NASA Technical Reports Server (NTRS)

    Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.; Judd, Michele A.

    2010-01-01

    The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.

  15. Minimal Representation and Decision Making for Networked Autonomous Agents

    DTIC Science & Technology

    2015-08-27

    multiagent systems . The overall goal of the project is to develop efficient and adaptive strategies to process, represent, exchange, and act upon relevant...decentralized planning, and decision-making in multiagent systems . The overall goal of the project is to develop efficient and adaptive strategies to...information representation architectures for autonomous reasoning and learning, decentralized planning, and decision-making in multiagent systems . The

  16. Do cell-autonomous and non-cell-autonomous effects drive the structure of tumor ecosystems?

    PubMed

    Tissot, Tazzio; Ujvari, Beata; Solary, Eric; Lassus, Patrice; Roche, Benjamin; Thomas, Frédéric

    2016-04-01

    By definition, a driver mutation confers a growth advantage to the cancer cell in which it occurs, while a passenger mutation does not: the former is usually considered as the engine of cancer progression, while the latter is not. Actually, the effects of a given mutation depend on the genetic background of the cell in which it appears, thus can differ in the subclones that form a tumor. In addition to cell-autonomous effects generated by the mutations, non-cell-autonomous effects shape the phenotype of a cancer cell. Here, we review the evidence that a network of biological interactions between subclones drives cancer cell adaptation and amplifies intra-tumor heterogeneity. Integrating the role of mutations in tumor ecosystems generates innovative strategies targeting the tumor ecosystem's weaknesses to improve cancer treatment.

  17. Cybersecurity for aerospace autonomous systems

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  18. Autonomous power system brassboard

    NASA Technical Reports Server (NTRS)

    Merolla, Anthony

    1992-01-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the

  19. Autonomous power system brassboard

    NASA Astrophysics Data System (ADS)

    Merolla, Anthony

    1992-10-01

    The Autonomous Power System (APS) brassboard is a 20 kHz power distribution system which has been developed at NASA Lewis Research Center, Cleveland, Ohio. The brassboard exists to provide a realistic hardware platform capable of testing artificially intelligent (AI) software. The brassboard's power circuit topology is based upon a Power Distribution Control Unit (PDCU), which is a subset of an advanced development 20 kHz electrical power system (EPS) testbed, originally designed for Space Station Freedom (SSF). The APS program is designed to demonstrate the application of intelligent software as a fault detection, isolation, and recovery methodology for space power systems. This report discusses both the hardware and software elements used to construct the present configuration of the brassboard. The brassboard power components are described. These include the solid-state switches (herein referred to as switchgear), transformers, sources, and loads. Closely linked to this power portion of the brassboard is the first level of embedded control. Hardware used to implement this control and its associated software is discussed. An Ada software program, developed by Lewis Research Center's Space Station Freedom Directorate for their 20 kHz testbed, is used to control the brassboard's switchgear, as well as monitor key brassboard parameters through sensors located within these switches. The Ada code is downloaded from a PC/AT, and is resident within the 8086 microprocessor-based embedded controllers. The PC/AT is also used for smart terminal emulation, capable of controlling the switchgear as well as displaying data from them. Intelligent control is provided through use of a T1 Explorer and the Autonomous Power Expert (APEX) LISP software. Real-time load scheduling is implemented through use of a 'C' program-based scheduling engine. The methods of communication between these computers and the brassboard are explored. In order to evaluate the features of both the

  20. Autonomous Operations Mission Development Suite

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.

    2016-01-01

    This is a presentation related to the development of Autonomous Operations Systems at NASA Kennedy Space Center. It covers a high level description of the work of FY14, FY15, FY16 for the AES IGODU and APL projects.

  1. ISS Update: Autonomous Mission Operations

    NASA Image and Video Library

    NASA Public Affairs Officer Brandi Dean interviews Jeff Mauldin, Simulation Supervisor for Autonomous Mission Operations at Johnson Space Center in Houston, Texas. Ask us on Twitter @NASA_Johnson a...

  2. Autonomous Landing Hazard Avoidance Technology

    NASA Image and Video Library

    Future NASA space crafts will be able to safely land on the Moon, Marsand even an asteroid, in potentially hazardous terrain areas, allautonomously. And NASA’s Autonomous Landing Hazard Avoidan...

  3. Simulink controlled autonomous nano quadcopter

    NASA Astrophysics Data System (ADS)

    Venkatraman Santhanam, Hariharan

    Traditional quadcopters have generally been operated by a controller in real time. This has often required precious manpower and time. In recent years, research and development in the field of robotics has led to the creation of autonomous flying quadcopters, which save more manpower and time when compared to traditional quadcopters. This project presents the model development and implementation of an interface for the autonomous Nano quadcopter using Simulink. MATLAB Simulink was selected as the platform for simulation owing to its robustness, security and real-time simulation capabilities. A Simulink model was developed for the autonomous flight of the Nano quadcopter and an interface with MATLAB level 2 S-function was created to communicate with the quadcopter. Real-time simulation of the autonomous flight maintaining constant altitude was then achieved using a predefined set of control values.

  4. Use of biomarker S100B for traumatic brain damage in the emergency department may change observation strategy.

    PubMed

    Hansen-Schwartz, Jacob; Bouchelouche, Pierre Nourdine

    2014-09-01

    The revised Scandinavian Neurotrauma Committee (SNC) guidelines on management of patients with head trauma include an option for measurement of S100B in peripheral blood with 100% sensitivity for neurosurgical intervention. A medical technology assessment was conducted to evaluate any impact of using S100B on the use of computed tomographies (CT) of the brain and admission for observation. Patients referred for assessment of head injury over a period of 1.5 months had their blood sampled for measurement of S100B in serum. Results were not available to the treating physician and treatment was conducted according to existing practice. Patient records were reviewed retrospectively and post hoc divided into two groups depending on whether the SNC criteria for taking the blood sample were met. The use of CT and admission was analysed. A total of 39 patients had their blood sampled for analysis. In all, 12 patients were excluded in pursuance of SNC guidelines, which left 27 patients for analysis. A total of 15 patients had abnormally high S100B levels. Using the SNC criteria, only eight of these qualified a priori for blood sampling. Furthermore, seven of the 11 patients who were admitted had normal S100B levels. The number of patients with an above-threshold concentration of S100B was almost equally distributed between those fulfilling the SNC criteria for S100B assessment and those who could have been discharged without further evaluation. Using S100B as a screening tool may lead to an increase in the use of CTs of the brain. In relation to admission, measurement of S100B may contribute to the adoption of an appropriate observation strategy. not relevant. not relevant.

  5. What visual illusions tell us about underlying neural mechanisms and observer strategies for tackling the inverse problem of achromatic perception

    PubMed Central

    Blakeslee, Barbara; McCourt, Mark E.

    2015-01-01

    Research in lightness perception centers on understanding the prior assumptions and processing strategies the visual system uses to parse the retinal intensity distribution (the proximal stimulus) into the surface reflectance and illumination components of the scene (the distal stimulus—ground truth). It is agreed that the visual system must compare different regions of the visual image to solve this inverse problem; however, the nature of the comparisons and the mechanisms underlying them are topics of intense debate. Perceptual illusions are of value because they reveal important information about these visual processing mechanisms. We propose a framework for lightness research that resolves confusions and paradoxes in the literature, and provides insight into the mechanisms the visual system employs to tackle the inverse problem. The main idea is that much of the debate and confusion in the literature stems from the fact that lightness, defined as apparent reflectance, is underspecified and refers to three different types of judgments that are not comparable. Under stimulus conditions containing a visible illumination component, such as a shadow boundary, observers can distinguish and match three independent dimensions of achromatic experience: apparent intensity (brightness), apparent local intensity ratio (brightness-contrast), and apparent reflectance (lightness). In the absence of a visible illumination boundary, however, achromatic vision reduces to two dimensions and, depending on stimulus conditions and observer instructions, judgments of lightness are identical to judgments of brightness or brightness-contrast. Furthermore, because lightness judgments are based on different information under different conditions, they can differ greatly in their degree of difficulty and in their accuracy. This may, in part, explain the large variability in lightness constancy across studies. PMID:25954181

  6. Physics Simulation Software for Autonomous Propellant Loading and Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Regalado Reyes, Bjorn Constant

    2015-01-01

    1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.

  7. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  8. Genetic engineering and autonomous agency.

    PubMed

    Barclay, Linda

    2003-01-01

    In this paper I argue that the genetic manipulation of sexual orientation at the embryo stage could have a detrimental effect on the subsequent person's later capacity for autonomous agency. By focussing on an example of sexist oppression I show that the norms and expectations expressed with this type of genetic manipulation can threaten the development of autonomous agency and the kind of social environment that makes its exercise likely.

  9. Cooperative Autonomous Robots for Reconnaissance

    DTIC Science & Technology

    2009-03-06

    REPORT Cooperative Autonomous Robots for Reconnaissance 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Collaborating mobile robots equipped with WiFi ...Cooperative Autonomous Robots for Reconnaissance Report Title ABSTRACT Collaborating mobile robots equipped with WiFi transceivers are configured as a mobile...equipped with WiFi transceivers are configured as a mobile ad-hoc network. Algorithms are developed to take advantage of the distributed processing

  10. Autonomous rotor heat engine.

    PubMed

    Roulet, Alexandre; Nimmrichter, Stefan; Arrazola, Juan Miguel; Seah, Stella; Scarani, Valerio

    2017-06-01

    The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.

  11. Autonomous rotor heat engine

    NASA Astrophysics Data System (ADS)

    Roulet, Alexandre; Nimmrichter, Stefan; Arrazola, Juan Miguel; Seah, Stella; Scarani, Valerio

    2017-06-01

    The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.

  12. Autonomous Mission Operations Roadmap

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy David

    2014-01-01

    As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.

  13. Is paramecium swimming autonomic?

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  14. Autonomous landing guidance program

    NASA Astrophysics Data System (ADS)

    Brown, John A.

    1996-05-01

    The Autonomous Landing Guidance program is partly funded by the US Government under the Technology Reinvestment Project. The program consortium consists of avionics and other equipment vendors, airlines and the USAF. A Sextant Avionique HUD is used to present flight symbology in cursive form as well as millimeter wave radar imagery from Lear Astronics equipment and FLIR Systems dual-channel, forward-looking, infrared imagery. All sensor imagery is presented in raster form. A future aim is to fuse all imagery data into a single presentation. Sensor testing has been accomplished in a Cessna 402 operated by the Maryland Advanced Development Laboratory. Development testing is under way in a Northwest Airlines simulator equipped with HUD and image simulation. Testing is also being carried out using United Airlines Boeing 727 and USAF C-135C (Boeing 707) test aircraft. The paper addresses the technology utilized in sensory and display systems as well as modifications made to accommodate the elements in the aircraft. Additions to the system test aircraft include global positioning systems, inertial navigation systems and extensive data collection equipment. Operational philosophy and benefits for both civil and military users are apparent. Approach procedures have been developed allowing use of Category 1 ground installations in Category 3 conditions.

  15. Autonomous mission operations

    NASA Astrophysics Data System (ADS)

    Frank, J.; Spirkovska, L.; McCann, R.; Wang, Lui; Pohlkamp, K.; Morin, L.

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time delay on today's mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crewmembers and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  16. The autonomous ocean profiler

    SciTech Connect

    Echert, D.C.; White, G.B.; Geller, E.W.; Morison, J.H.

    1989-04-01

    This paper describes the development and initial field test results of the Autonomous Ocean Profiler (AOP). The AOP is an oceanographic instrument platform for measuring profiles of physical, thermodynamic, and biological properties in the ocean. The profiler employs a hydrodynamic lift device to ''fly'' the instrument package up and down the water column along a taut vertical cable. Because the local currents drive the platform's vertical motion, power requirements are low, and therefore long, unattended deployments are possible. By using ARGOS or GOES satellite retrieval networks, the system can supply near real-time data. The system provides profile data at very high vertical resolution in contrast to conventional buoys, which gather data at only fixed sensor depths. Because only a single set of sensors is required to cover the vertical range desired, the system is low cost and, for many applications, expendable. The initial deployment configuration is as an Arctic drifting buoy. A satellite retransmission buoy is placed on the sea-ice surface with the cable suspended below the ice. Conductivity, temperature, and depth information are gathered over a depth range of 0 to 300 m. Data are internally recorded and relayed to the surface buoy through an inductive communications link for transmission via satellite.

  17. Mapping planetary caves with an autonomous, heterogeneous robot team

    NASA Astrophysics Data System (ADS)

    Husain, Ammar; Jones, Heather; Kannan, Balajee; Wong, Uland; Pimentel, Tiago; Tang, Sarah; Daftry, Shreyansh; Huber, Steven; Whittaker, William L.

    Caves on other planetary bodies offer sheltered habitat for future human explorers and numerous clues to a planet's past for scientists. While recent orbital imagery provides exciting new details about cave entrances on the Moon and Mars, the interiors of these caves are still unknown and not observable from orbit. Multi-robot teams offer unique solutions for exploration and modeling subsurface voids during precursor missions. Robot teams that are diverse in terms of size, mobility, sensing, and capability can provide great advantages, but this diversity, coupled with inherently distinct low-level behavior architectures, makes coordination a challenge. This paper presents a framework that consists of an autonomous frontier and capability-based task generator, a distributed market-based strategy for coordinating and allocating tasks to the different team members, and a communication paradigm for seamless interaction between the different robots in the system. Robots have different sensors, (in the representative robot team used for testing: 2D mapping sensors, 3D modeling sensors, or no exteroceptive sensors), and varying levels of mobility. Tasks are generated to explore, model, and take science samples. Based on an individual robot's capability and associated cost for executing a generated task, a robot is autonomously selected for task execution. The robots create coarse online maps and store collected data for high resolution offline modeling. The coordination approach has been field tested at a mock cave site with highly-unstructured natural terrain, as well as an outdoor patio area. Initial results are promising for applicability of the proposed multi-robot framework to exploration and modeling of planetary caves.

  18. [Therapy of autonomic disorders by xanax (alprazolam)].

    PubMed

    Solov'eva, A D; Filatova, E G; Averkina, N A

    2000-01-01

    The paper presents an open noncomparative investigation of 36 patients with different manifestations of the syndrome of autonomic dystonia. 20 patients (group 1) had permanent autonomic disorder in context of generalyzed anxious disorders, 16 patients (group 2) had panic attacks. The examination was performed before and 4 weeks after monotherapy with xanax (1.5-2.5 mg/day). Clinical-neurologic study estimated both presence and a degree of manifestations of the syndrome of autonomic dysfunction, hyperventilatory syndrome and sleep disorders. Psychologic investigation included estimation of anxiety according to Spilberg's test, depression according to Beck's scale; SCL Scale was also used. Algesic syndrome was estimated by complex algesic questionnaire. Neurophysiologic study determined a contingent negative deviation and nociceptive flexory reflex. A positive therapeutic activity of xanax was established. The highest therapeutic effect was achieved in group 1 (83%) using lower doses (1.5 mg/day). In group 2 higher doses were needed (2.5 mg/day). In this case the effect was achieved in 83% of the cases, but full absence of panic attacks was observed only in 25% of the patients. Predictors of the drug's efficiency appeared to be short duration of the disease, slight manifestation of depression and absence of the algesic syndrome.

  19. Flocking algorithm for autonomous flying robots.

    PubMed

    Virágh, Csaba; Vásárhelyi, Gábor; Tarcai, Norbert; Szörényi, Tamás; Somorjai, Gergő; Nepusz, Tamás; Vicsek, Tamás

    2014-06-01

    Animal swarms displaying a variety of typical flocking patterns would not exist without the underlying safe, optimal and stable dynamics of the individuals. The emergence of these universal patterns can be efficiently reconstructed with agent-based models. If we want to reproduce these patterns with artificial systems, such as autonomous aerial robots, agent-based models can also be used in their control algorithms. However, finding the proper algorithms and thus understanding the essential characteristics of the emergent collective behaviour requires thorough and realistic modeling of the robot and also the environment. In this paper, we first present an abstract mathematical model of an autonomous flying robot. The model takes into account several realistic features, such as time delay and locality of communication, inaccuracy of the on-board sensors and inertial effects. We present two decentralized control algorithms. One is based on a simple self-propelled flocking model of animal collective motion, the other is a collective target tracking algorithm. Both algorithms contain a viscous friction-like term, which aligns the velocities of neighbouring agents parallel to each other. We show that this term can be essential for reducing the inherent instabilities of such a noisy and delayed realistic system. We discuss simulation results on the stability of the control algorithms, and perform real experiments to show the applicability of the algorithms on a group of autonomous quadcopters. In our case, bio-inspiration works in two ways. On the one hand, the whole idea of trying to build and control a swarm of robots comes from the observation that birds tend to flock to optimize their behaviour as a group. On the other hand, by using a realistic simulation framework and studying the group behaviour of autonomous robots we can learn about the major factors influencing the flight of bird flocks.

  20. Evaluation of autonomic functions in subclinical hypothyroid and hypothyroid patients

    PubMed Central

    Mahajan, Aarti S.; Lal, Ram; Dhanwal, Dinesh K.; Jain, Ajay K.; Chowdhury, Veena

    2013-01-01

    Background: Autonomic dysfunction may contribute to cardiovascular morbidity in subclinical hypothyroid patients. It is controversial whether the abnormality exists in sympathetic or the parasympathetic function. It is also not known whether the severity of autonomic dysfunction is related to the degree of thyroid deficiency. Design of Study: Prospective case control. Materials and Methods: Autonomic functions based on heart rate (HR) and blood pressure (BP) responses to various maneuvers were evaluated and scored in twenty two subclinical hypothyroid patients, 30-50 years and compared with twenty hypothyroid patients. Biochemical estimation of TSH, fT3, fT4, TPO antibody was done. Result: Sympathetic function abnormalities were seen in 82% subclinical hypothyroid patients and 85%hypothyroid patients when one test was abnormal. Parasympathetic dysfunction was also recorded in eight patients in both groups. When two abnormal tests were used as the selection criteria sympathetic function abnormality was observed in about 41% subclinical hypothyroid and 65% hypothyroid patients. There were no intergroup differences in autonomic functions, score and TPO levels. The TSH levels were not related to type or degree of autonomic dysfunction. Systolic BP in both groups and diastolic BP in hypothyroid patients were higher with lower thyroxine levels but the patients were normotensive. Conclusion: Autonomic dysfunction of comparable degree was seen in subclinical hypothyroid and hypothyroid patients. Sympathetic function abnormality was more common although decreased parasympathetic function reactivity was also present. These abnormalities were unrelated to TSH levels. PMID:23869303

  1. Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice

    PubMed Central

    2011-01-01

    Background Dystonia musculorum (dt) is an autosomal recessive hereditary neuropathy with a characteristic uncoordinated movement and is caused by a defect in the bullous pemphigoid antigen 1 (BPAG1) gene. The neural isoform of BPAG1 is expressed in various neurons, including those in the central and peripheral nerve systems of mice. However, most previous studies on neuronal degeneration in BPAG1-deficient mice focused on peripheral sensory neurons and only limited investigation of the autonomic system has been conducted. Methods In this study, patterns of nerve innervation in cutaneous and iridial tissues were examined using general neuronal marker protein gene product 9.5 via immunohistochemistry. To perform quantitative analysis of the autonomic neuronal number, neurons within the lumbar sympathetic and parasympathetic ciliary ganglia were calculated. In addition, autonomic neurons were cultured from embryonic dt/dt mutants to elucidate degenerative patterns in vitro. Distribution patterns of neuronal intermediate filaments in cultured autonomic neurons were thoroughly studied under immunocytochemistry and conventional electron microscopy. Results Our immunohistochemistry results indicate that peripheral sensory nerves and autonomic innervation of sweat glands and irises dominated degeneration in dt/dt mice. Quantitative results confirmed that the number of neurons was significantly decreased in the lumbar sympathetic ganglia as well as in the parasympathetic ciliary ganglia of dt/dt mice compared with those of wild-type mice. We also observed that the neuronal intermediate filaments were aggregated abnormally in cultured autonomic neurons from dt/dt embryos. Conclusions These results suggest that a deficiency in the cytoskeletal linker BPAG1 is responsible for dominant sensory nerve degeneration and severe autonomic degeneration in dt/dt mice. Additionally, abnormally aggregated neuronal intermediate filaments may participate in neuronal death of cultured

  2. Understanding and improving mitigation strategies for reducing catchment scale nutrient loads using high resolution observations and uncertainty analysis approaches

    NASA Astrophysics Data System (ADS)

    Collins, A.; Lloyd, C.; Freer, J. E.; Johnes, P.; Stirling, M.

    2012-12-01

    One of the biggest challenges in catchment water quality management is tackling the problem of reducing water pollution from agriculture whilst ensuring food security nationally. Improvements to catchment management plans are needed if we are to enhance biodiversity and maintain good ecological status in freshwater ecosystems, while producing enough food to support a growing global population. In order to plan for a more sustainable and secure future, research needs to quantify the uncertainties and understand the complexities in the source-mobilisation-delivery-impact continuum of pollution and nutrients at all scales. In the UK the Demonstration Test Catchment (DTC) project has been set up to improve water quality specifically from diffuse pollution from agriculture by enhanced high resolution monitoring and targeted mitigation experiments. The DTC project aims to detect shifts in the baseline trend of the most ecologically-significant pollutants resulting from targeted on-farm measures at field to farm scales and assessing their effects on ecosystem function. The DTC programme involves three catchments across the UK that are indicative of three different typologies and land uses. This paper will focus on the Hampshire Avon DTC, where a total of 12 parameters are monitored by bank-side stations at two sampling sites, including flow, turbidity, phosphate and nitrate concentrations at 30 min resolution. This monitoring is supported by daily resolution sampling at 5 other sites and storm sampling at all locations. Part of the DTC project aims to understand how observations of water quality within river systems at different temporal resolutions and types of monitoring strategies enable us to understand and detect changes over and above the natural variability. Baseline monitoring is currently underway and early results show that high-resolution data is essential at this sub-catchment scale to understand important process dynamics. This is critical if we are to design

  3. The precise autonomous orbit keeping experiment on the PRISMA mission

    NASA Astrophysics Data System (ADS)

    De Florio, Sergio; D'Amico, Simone

    2008-12-01

    This paper analyzes the problem of autonomous control of the longitude of the ascending node (LAN) for a satellite in low Earth orbit (LEO) by means of along-track and anti-alongtrack velocity increments which adjust the semimajor axis. The problems related to the possibility of generating the reference orbit (RO) on-board and with the estimation of the atmospheric drag are considered. The Autonomous Orbit Keeping (AOK) experiment of the PRISMA formation flying mission will be the test platform of the control strategy here exposed. The AOK on-board software shall demonstrate autonomous orbit control using a guidance law for the orbit's LAN and shall implement a deterministic control algorithm using along-track and anti-along-track velocity increments. Using GPS-based absolute navigation data, AOK shall command thruster activations in the orbital frame to autonomously control the orbit within a predefined window. The AOK experiment paves the way to the accurate and autonomous orbit control of LEO satellites on a routine basis. The main requirement of the experiment is to demonstrate an orbit control accuracy of the osculating ascending node of 10 m (1σ). The paper shows results from real-world software simulations where the accuracy of the reference orbit is limited and GPS sensors and hydrazine actuators are accurately modeled. The fundamental approach on which the software design, validation and testing is based, is also explained.

  4. Autonomous Byte Stream Randomizer

    NASA Technical Reports Server (NTRS)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  5. Clinical Presentations, Antiplatelet Strategies and Prognosis of Patients with Stent Thrombosis: An Observational Study of 140 Patients

    PubMed Central

    Han, Ya-Ling; Zhang, Quan-Yu; Li, Yi; Guan, Shao-Yi; Jing, Quan-Min; Wang, Zu-Lu; Zhao, Xin; Wang, Xiao-Zeng; Ma, Ying-Yan; Wang, Bin; Deng, Jie; Wang, Geng; Kim, Young-Hak

    2012-01-01

    Background Until now there has been scarce evidence regarding an optimal antiplatelet strategy and clinical outcomes for patients who had suffered from stent thrombosis (ST). Methods and Results 140 patients who suffered from stent thrombosis were prospectively registered. Patients received dual (aspirin and 150 mg clopidogrel, N = 66) or triple (additional cilostazol, N = 74) antiplatelet therapy at the physician’s discretion. Thereafter platelet reactivity and one year clinical outcomes were analyzed. The primary outcome included the composite of cardiac death, non-fatal myocardial infarction (MI) or stroke at one year,which developed in 41 (29.3%) patients, consisting of 31 (22.1%) cardiac death, 9 (6.4%) non-fatal MI and 1 (1.4%) stroke. Recurrent definite and probable ST according to ARC definition was observed in 8 (5.7%) and 14 (10.0%) patients, respectively. Triple therapy was associated with significantly lower platelet reactivities (50.2±17.8, % vs. 59.6±17.2, %, P = 0.002) compared to high dose dual antiplatelet therapy. However, the incidence of primary events (24.3% vs. 34.8%, P = 0.172) did not differ between triple and dual antiplatelet therapies. High on-treatment platelet reactivity (HR: 8.35, 95% CI: 2.234∼30.867, P = 0.002) and diabetes (HR: 3.732, 95% CI: 1.353∼10.298, P = 0.011) were independent predictors of primary events. Conclusions Patients who suffered from stent thrombosis have a poor prognosis even after revascularization with intensive antiplatelet therapy. Triple antiplatelet therapy was more effective in reducing on-treatment platelet reactivity, compared to high dose dual antiplatelet therapy. PMID:23119044

  6. New Interview and Observation Measures of the Broader Autism Phenotype: Description of Strategy and Reliability Findings for the Interview Measures.

    PubMed

    Parr, Jeremy R; De Jonge, Maretha V; Wallace, Simon; Pickles, Andrew; Rutter, Michael L; Le Couteur, Ann S; van Engeland, Herman; Wittemeyer, Kerstin; McConachie, Helen; Roge, Bernadette; Mantoulan, Carine; Pedersen, Lennart; Isager, Torben; Poustka, Fritz; Bolte, Sven; Bolton, Patrick; Weisblatt, Emma; Green, Jonathan; Papanikolaou, Katerina; Baird, Gillian; Bailey, Anthony J

    2015-10-01

    Clinical genetic studies confirm the broader autism phenotype (BAP) in some relatives of individuals with autism, but there are few standardized assessment measures. We developed three BAP measures (informant interview, self-report interview, and impression of interviewee observational scale) and describe the development strategy and findings from the interviews. International Molecular Genetic Study of Autism Consortium data were collected from families containing at least two individuals with autism. Comparison of the informant and self-report interviews was restricted to samples in which the interviews were undertaken by different researchers from that site (251 UK informants, 119 from the Netherlands). Researchers produced vignettes that were rated blind by others. Retest reliability was assessed in 45 participants. Agreement between live scoring and vignette ratings was very high. Retest stability for the interviews was high. Factor analysis indicated a first factor comprising social-communication items and rigidity (but not other repetitive domain items), and a second factor comprised mainly of reading and spelling impairments. Whole scale Cronbach's alphas were high for both interviews. The correlation between interviews for factor 1 was moderate (adult items 0.50; childhood items 0.43); Kappa values for between-interview agreement on individual items were mainly low. The correlations between individual items and total score were moderate. The inclusion of several factor 2 items lowered the overall Cronbach's alpha for the total set. Both interview measures showed good reliability and substantial stability over time, but the findings were better for factor 1 than factor 2. We recommend factor 1 scores be used for characterising the BAP.

  7. Is directly observed tuberculosis treatment strategy patient-centered? A mixed method study in Addis Ababa, Ethiopia.

    PubMed

    Getahun, Belete; Nkosi, Zethu Zerish

    2017-01-01

    The directly observed treatment, short course (DOTS) strategy has been considered as an efficacious approach for better tuberculosis (TB) treatment adherence and outcome. However, its level of patient centerdness has not been studied and documented well. Hence, the study aimed to determine the level of patient centeredness' of the DOTS. The study used explanatory sequential mixed method design in Addis Ababa, Ethiopia. The study employed an interviewer-administered questionnaire with 601 patients with TB, focus group discussions with 23 TB experts, and telephonic-interview with 25 persons lost to follow-up from TB treatment. Descriptive and multivariable analyses carried out for the quantitative data while thematic analysis was used for the qualitative data. Forty percent of patients with TB had not received patient-centered TB care (PC-TB care) with DOTS. Male gender (AOR = 0.45, 95% CI 0.3, 0.7), good communication (AOR = 3.2, 95%CI 1.6, 6.1), and health care providers as a treatment supporter (AOR = 3.4, 95% CI 2.1, 5.48) had significant associations with PC-TB care. All persons lost to follow-up and TB experts perceived that DOTS is merely patient-centered. The identified categories were patient preferences, treatment supporter choice, integration of DOTS with nutritional support, mental health, and transport services, provider's commitment and communication skills. DOTS is limited to provide patient-centered TB care. Hence, DOTS needs a model that enhances effectiveness towards patient centeredness of TB care.

  8. Unusual Structural Autonomic Disorders Presenting in Pediatrics: Disorders Associated with Hypoventilation and Autonomic Neuropathies.

    PubMed

    Chelimsky, Gisela; Chelimsky, Thomas

    2017-02-01

    Structural autonomic disorders (producing structural damage to the autonomic nervous system or autonomic centers) are far less common than functional autonomic disorders (reflected in abnormal function of a fundamentally normal autonomic nervous system) in children and teenagers. This article focuses on this uncommon first group in the pediatric clinic. These disorders are grouped into 2 main categories: those characterized by hypoventilation and those that feature an autonomic neuropathy.

  9. Sensing, Control, and System Integration for Autonomous Vehicles: A Series of Challenges

    NASA Astrophysics Data System (ADS)

    Özgüner, Ümit; Redmill, Keith

    One of the important examples of mechatronic systems can be found in autonomous ground vehicles. Autonomous ground vehicles provide a series of challenges in sensing, control and system integration. In this paper we consider off-road autonomous vehicles, automated highway systems and urban autonomous driving and indicate the unifying aspects. We specifically consider our own experience during the last twelve years in various demonstrations and challenges in attempting to identify unifying themes. Such unifying themes can be observed in basic hierarchies, hybrid system control approaches and sensor fusion techniques.

  10. Towards an Autonomic Cluster Management System (ACMS) with Reflex Autonomicity

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Hinchey, Mike; Sterritt, Roy

    2005-01-01

    Cluster computing, whereby a large number of simple processors or nodes are combined together to apparently function as a single powerful computer, has emerged as a research area in its own right. The approach offers a relatively inexpensive means of providing a fault-tolerant environment and achieving significant computational capabilities for high-performance computing applications. However, the task of manually managing and configuring a cluster quickly becomes daunting as the cluster grows in size. Autonomic computing, with its vision to provide self-management, can potentially solve many of the problems inherent in cluster management. We describe the development of a prototype Autonomic Cluster Management System (ACMS) that exploits autonomic properties in automating cluster management and its evolution to include reflex reactions via pulse monitoring.

  11. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  12. Lead toxicity promotes autonomic dysfunction with increased chemoreceptor sensitivity.

    PubMed

    Geraldes, Vera; Carvalho, Mafalda; Goncalves-Rosa, Nataniel; Tavares, Cristiano; Laranjo, Sérgio; Rocha, Isabel

    2016-05-01

    Mortality and morbidity by toxic metals is an important issue of occupational health. Lead is an ubiquitous heavy metal in our environment despite having no physiological role in biological systems. Being an homeostatic controller is expected that the autonomic nervous system would show a degree of impairment in lead toxicity. In fact, sympathoexcitation associated to high blood pressure and tachypnea has been described together with baroreflex dysfunction. However, the mechanisms underlying the autonomic dysfunction and the interplay between baro- and chemoreflex are not yet fully clarified. The angiotensinogenic PVN-NTS axis (paraventricular nucleus of the hypothalamus - nucleus tractus solitarius axis) is a particularly important neuronal pathway that could be responsible for the autonomic dysfunction and the cardiorespiratory impairment in lead toxicity. Within the current work, we addressed in vivo, baro- and chemoreceptor reflex behaviour, before and after central angiotensin inhibition, in order to better understand the cardiorespiratory autonomic mechanisms underlying the toxic effects of long-term lead exposure. For that, arterial pressure, heart rate, respiratory rate, sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles of anaesthetized young adult rats exposed to lead, from foetal period to adulthood, were evaluated. Results showed increased chemosensitivity together with baroreceptor reflex impairment, sympathetic over-excitation, hypertension and tachypnea. Chemosensitivity and sympathetic overexcitation were reversed towards normality values by NTS treatment with A-779, an angiotensin (1-7) antagonist. No parasympathetic changes were observed before and after A-799 treatment. In conclusion, angiotensin (1-7) at NTS level is involved in the autonomic dysfunction observed in lead toxicity. The increased sensitivity of chemoreceptor reflex expresses the clear impairment of autonomic outflow to the cardiovascular and

  13. On the design of neuro-controllers for individual and social learning behaviour in autonomous robots: an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Pini, Giovanni; Tuci, Elio

    2008-06-01

    In biology/psychology, the capability of natural organisms to learn from the observation/interaction with conspecifics is referred to as social learning. Roboticists have recently developed an interest in social learning, since it might represent an effective strategy to enhance the adaptivity of a team of autonomous robots. In this study, we show that a methodological approach based on artifcial neural networks shaped by evolutionary computation techniques can be successfully employed to synthesise the individual and social learning mechanisms for robots required to learn a desired action (i.e. phototaxis or antiphototaxis).

  14. Visual identification and similarity measures used for on-line motion planning of autonomous robots in unknown environments

    NASA Astrophysics Data System (ADS)

    Martínez, Fredy; Martínez, Fernando; Jacinto, Edwar

    2017-02-01

    In this paper we propose an on-line motion planning strategy for autonomous robots in dynamic and locally observable environments. In this approach, we first visually identify geometric shapes in the environment by filtering images. Then, an ART-2 network is used to establish the similarity between patterns. The proposed algorithm allows that a robot establish its relative location in the environment, and define its navigation path based on images of the environment and its similarity to reference images. This is an efficient and minimalist method that uses the similarity of landmark view patterns to navigate to the desired destination. Laboratory tests on real prototypes demonstrate the performance of the algorithm.

  15. Observing with FIFI-LS on SOFIA: time estimates and strategies to use a field imaging spectrometer on an airborne observatory

    NASA Astrophysics Data System (ADS)

    Fischer, Christian; Bryant, Aaron; Beckmann, Siman; Colditz, Sebastian; Fumi, Fabio; Geis, Norbert; Henning, Thomas; Hönle, Rainer; Iserlohe, Christof; Klein, Randolf; Krabbe, Alfred; Looney, Leslie W.; Poglitsch, Albrecht; Raab, Walfried; Rebell, Felix; Trinh, Christopher

    2016-07-01

    Observing on the Stratospheric Observatory for Infrared Astronomy (SOFIA) requires a strategy that takes the specific circumstances of an airborne platform into account. Observations of a source cannot be extended or shortened on the spot due to flight path constraints. Still, no exact prediction of the time on source is available since there are always wind and weather conditions, and sometimes technical issues. Observations have to be planned to maximize the observing efficiency while maintaining full flexibility for changes during the observation. The complex nature of observations with FIFI-LS - such as the interlocking cycles of the mechanical gratings, telescope nodding and dithering - is considered in the observing strategy as well. Since SOFIA Cycle 3 FIFI-LS is available to general investigators. Therefore general investigators must be able to define the necessary parameters simply, without being familiar with the instrument, still resulting in efficient and flexible observations. We describe the observing process with FIFI-LS including the integration time estimate, the mapping and dithering setup and aspects of the scripting for the actual observations performed in flight. We also give an overview of the observing scenarios, which have proven to be useful for FIFI-LS.

  16. Space-based visible observation strategy for beyond-LEO objects based on an equatorial LEO satellite with multi-sensors

    NASA Astrophysics Data System (ADS)

    Hu, Yun-peng; Huang, Jian-yu; Chen, Lei

    2017-04-01

    Many space-based visible observation strategies based on Low Earth Orbit (LEO) satellites for observing Geosynchronous Orbit (GEO) objects were proposed previously. However, there were few studies about other beyond-LEO objects (Geostationary Transfer Orbit (GTO) objects, Medium Earth Orbit (MEO) objects, and Molniya objects). In this paper, a space-based visible observation strategy is proposed for observing GEO objects, GTO objects, MEO objects (especially global navigation satellites), and Molniya objects simultaneously to get more orbital data, using an earth-oriented equatorial LEO satellite with three sensors. This work is focused on the pointing geometry. Brightness of observed objects and sensitivity of sensors are assumed under the relative ideal conditions. First, the distribution characteristics of these beyond-LEO objects are discussed. And in order to observe global navigation satellites efficiently, joint regions formed by the track superposition of two adjacent orbits in a constellation are proposed. To offset the influence of the earth shadow and constraint of sun-target-observer angle, two sensors pointing inside of the equatorial plane are used to observe GEO and GTO objects. The installation angle of the third sensor is optimized to obtain a relative high coverage rate for observing global navigation satellites and Molniya objects based on joint regions. Finally, the coverage rate, the number of observations, and observation duration under different sensors with different field of views (FOVs) are compared and analyzed respectively.

  17. Autonomic control of the eye

    PubMed Central

    McDougal, David H.; Gamlin, Paul D.

    2016-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia. PMID:25589275

  18. Autonomic control of the eye.

    PubMed

    McDougal, David H; Gamlin, Paul D

    2015-01-01

    The autonomic nervous system influences numerous ocular functions. It does this by way of parasympathetic innervation from postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia, and by way of sympathetic innervation from postganglionic fibers that originate from neurons in the superior cervical ganglion. Ciliary ganglion neurons project to the ciliary body and the sphincter pupillae muscle of the iris to control ocular accommodation and pupil constriction, respectively. Superior cervical ganglion neurons project to the dilator pupillae muscle of the iris to control pupil dilation. Ocular blood flow is controlled both via direct autonomic influences on the vasculature of the optic nerve, choroid, ciliary body, and iris, as well as via indirect influences on retinal blood flow. In mammals, this vasculature is innervated by vasodilatory fibers from the pterygopalatine ganglion, and by vasoconstrictive fibers from the superior cervical ganglion. Intraocular pressure is regulated primarily through the balance of aqueous humor formation and outflow. Autonomic regulation of ciliary body blood vessels and the ciliary epithelium is an important determinant of aqueous humor formation; autonomic regulation of the trabecular meshwork and episcleral blood vessels is an important determinant of aqueous humor outflow. These tissues are all innervated by fibers from the pterygopalatine and superior cervical ganglia. In addition to these classical autonomic pathways, trigeminal sensory fibers exert local, intrinsic influences on many of these regions of the eye, as well as on some neurons within the ciliary and pterygopalatine ganglia.

  19. Autonomic function in manganese alloy workers.

    PubMed

    Barrington, W W; Angle, C R; Willcockson, N K; Padula, M A; Korn, T

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a "frog shop" for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6-10 years before and 1.2-3.4 years after the diagnosis of the index case exceeded 1.0 mg/m3 in 29% and 0.2 mg/m3 in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR' interval) and the rates of change at low frequency (0.04-0.15 Hz) and high frequency (0.15-0.40 Hz). MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used. The five frog shop workers had abnormal sympathovagal balance with decreased high frequency variability (increased ln LF/ln HF). Seven of the eight workers had symptoms of autonomic dysfunction and significantly decreased heart rate variability (rMSSD) but these did not distinguish the relative exposure. Mood or affect was disturbed in all with associated changes in short-term memory and attention in four of the subjects. There were no significant correlations with serum or urine manganese. Power spectrum analysis of 24-h ambulatory ECG indicating a decrease in parasympathetic high frequency activation of heart rate variability may provide a sensitive index of central autonomic dysfunction reflecting increased exposure to manganese, although the contribution of exposures to solvents and other metals cannot be excluded. Neurotoxicity due to the gouging

  20. [The relationship between autonomous motivation and academic adjustment in junior high school students].

    PubMed

    Nishimura, Takuma; Sakurai, Shigeo

    2013-10-01

    This study investigated the relationship between autonomous motivation and academic adjustment based on the perspective of self-determination theory. It also examined motivational profiles to reveal individual differences and the characteristic of these profiles for groups with varying levels of autonomous and controlled regulation (autonomous, controlled, high motivation, and low motivation). Data were collected from 442 junior high school students for academic motivation, academic performance, academic competence, meta-cognitive strategy, academic anxiety, apathy, and stress experience. Correlation analyses generally supported the basic hypothesis of self-determination theory that a more autonomous regulation style was strongly related to academic adjustment. The results also showed that persons with a high autonomous regulation and a low controlled regulation style were the most adaptive.

  1. Autonomous mobile robots: Vehicles with cognitive control

    SciTech Connect

    Meystel, A.

    1987-01-01

    This book explores a new rapidly developing area of robotics. It describes the state-of-the-art intelligence control, applied machine intelligence, and research and initial stages of manufacturing of autonomous mobile robots. A complete account of the theoretical and experimental results obtained during the last two decades together with some generalizations on Autonomous Mobile Systems are included in this book. Contents: Introduction; Requirements and Specifications; State-of-the-art in Autonomous Mobile Robots Area; Structure of Intelligent Mobile Autonomous System; Planner, Navigator; Pilot; Cartographer; Actuation Control; Computer Simulation of Autonomous Operation; Testing the Autonomous Mobile Robot; Conclusions; Bibliography.

  2. Vestibular influences on autonomic cardiovascular control in humans

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Costa, F.; Kaufmann, H.; Robertson, D. (Principal Investigator)

    1998-01-01

    There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans.

  3. Vestibular influences on autonomic cardiovascular control in humans

    NASA Technical Reports Server (NTRS)

    Biaggioni, I.; Costa, F.; Kaufmann, H.; Robertson, D. (Principal Investigator)

    1998-01-01

    There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans.

  4. Autonomous hazard detection and avoidance

    NASA Technical Reports Server (NTRS)

    Pien, Homer

    1992-01-01

    During GFY 91, Draper Laboratory was awarded a task by NASA-JSC under contract number NAS9-18426 to study and evaluate the potential for achieving safe autonomous landings on Mars using an on-board autonomous hazard detection and avoidance (AHDA) system. This report describes the results of that study. The AHDA task had four objectives: to demonstrate, via a closed-loop simulation, the ability to autonomously select safe landing sites and the ability to maneuver to the selected site; to identify key issues in the development of AHDA systems; to produce strawman designs for AHDA sensors and algorithms; and to perform initial trade studies leading to better understanding of the effect of sensor/terrain/viewing parameters on AHDA algorithm performance. This report summarizes the progress made during the first year, with primary emphasis on describing the tools developed for simulating a closed-loop AHDA landing. Some cursory performance evaluation results are also presented.

  5. Hereditary sensory and autonomic neuropathies.

    PubMed

    Auer-Grumbach, Michaela

    2013-01-01

    Hereditary sensory and autonomic neuropathies (HSN/HSAN) are clinically and genetically heterogeneous disorders of the peripheral nervous system that predominantly affect the sensory and autonomic neurons. Hallmark features comprise not only prominent sensory signs and symptoms and ulcerative mutilations but also variable autonomic and motor disturbances. Autosomal dominant and autosomal recessive inheritance has been reported. Molecular genetics studies have identified disease-causing mutations in 11 genes. Some of the affected proteins have nerve-specific roles but underlying mechanisms have also been shown to involve sphingolipid metabolism, vesicular transport, structural integrity, and transcription regulation. Genetic and functional studies have substantially improved the understanding of the pathogenesis of the HSN/HSAN and will help to find preventive and causative therapies in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Exploratory Research on the Effect of Autonomous Learners to Team Learning within Healthcare Systems

    ERIC Educational Resources Information Center

    Goodman, Patricia R.; Chalofsky, Neal

    2005-01-01

    How does individual learning impact team learning? Through an exploratory case study, data was collected from questionnaires, documentation review, observations, and interviews. Three themes emerged describing how an autonomous learner affected team learning. The results indicated that the autonomous learner influenced team learning through…

  7. Autonomic Dysfunctions in Parkinsonian Disorders

    PubMed Central

    Bae, Hyo-Jin; Cheon, Sang-Myung; Kim, Jae Woo

    2009-01-01

    Background and Purpose: Symptoms of autonomic dysfunctions are common in the patients with parkinsonian disorders. Because clinical features of autonomic dysfunctions are diverse, the comprehensive evaluation is essential for the appropriate management. For the appreciation of autonomic dysfunctions and the identification of differences, patients with degenerative parkinsonisms are evaluated using structured questionnaire for autonomic dysfunction (ADQ). Methods: Total 259 patients, including 192 patients with [idiopathic Parkinson’s disease (IPD, age 64.6 ± 9.6 years)], 37 with [multiple system atrophy (MSA, 62.8 ± 9.1)], 9 with [dementia with Lewy body (DLB, 73.9 ± 4.3)], and 21 with [progressive supranuclear palsy (PSP, 69.4 ± 9.6)]. The ADQ was structured for evaluation of the presence of symptoms and its severity due to autonomic dysfunction, covering gastrointestinal, urinary, sexual, cardiovascular and thermoregulatory domains. Patients were also evaluated for the orthostatic hypotension. Results: Although dementia with Lewy body (DLB) patients were oldest and duration of disease was longest in IPD, total ADQ scores of MSA and PSP (23.9 ± 12.6 and 21.1 ± 7.8) were significantly increased than that of IPD (15.1 ± 10.6). Urinary and cardiovascular symptom scores of MSA and gastrointestinal symptom score of PSP were significantly worse than those of IPD. The ratio of patient with orthostatic hypotension in IPD was 31.2% and not differed between groups (35.1% in MSA, 33.3% in DLB and 33.3% in PSP). But the systolic blood pressure dropped drastically after standing in patients with MSA and DLB than in patients with IPD and PSP. Conclusions: Patients with degenerative parkinsonism showed widespread symptoms of autonomic dysfunctions. The severity of those symptoms in patients with PSP were comparing to that of MSA patients and worse than that of IPD. PMID:24868361

  8. Liberal versus restricted fluid resuscitation strategies in trauma patients: a systematic review and meta-analysis of randomized controlled trials and observational studies*.

    PubMed

    Wang, Chih-Hung; Hsieh, Wen-Han; Chou, Hao-Chang; Huang, Yu-Sheng; Shen, Jen-Hsiang; Yeo, Yee Hui; Chang, Huai-En; Chen, Shyr-Chyr; Lee, Chien-Chang

    2014-04-01

    Hemorrhage is responsible for most deaths that occur during the first few hours after trauma. Animal models of trauma have shown that restricting fluid administration can reduce the risk of death; however, studies in patients are difficult to conduct due to logistical and ethical problems. To maximize the value of the existing evidence, we performed a meta-analysis to compare liberal versus restricted fluid resuscitation strategies in trauma patients. Medline and Embase were systemically searched from inception to February 2013. We selected randomized controlled trials and observational studies that compared different fluid administration strategies in trauma patients. There were no restrictions for language, population, or publication year. Four randomized controlled trials and seven observational studies were identified from 1,106 references. One of the randomized controlled trials suffered from a high protocol violation rate and was excluded from the final analysis. The quantitative synthesis indicated that liberal fluid resuscitation strategies might be associated with higher mortality than restricted fluid strategies, both in randomized controlled trials (risk ratio, 1.25; 95% CI, 1.01-1.55; three trials; I(2), 0) and observational studies (odds ratio, 1.14; 95% CI, 1.01-1.28; seven studies; I(2), 21.4%). When only adjusted odds ratios were pooled for observational studies, odds for mortality with liberal fluid resuscitation strategies increased (odds ratio, 1.19; 95% CI, 1.02-1.38; six studies; I(2), 26.3%). Current evidence indicates that initial liberal fluid resuscitation strategies may be associated with higher mortality in injured patients. However, available studies are subject to a high risk of selection bias and clinical heterogeneity. This result should be interpreted with great caution.

  9. Cardiac Autonomic Functions in Obese Children

    PubMed Central

    Taşçılar, Mehmet Emre; Yokuşoğlu, Mehmet; Boyraz, Mehmet; Baysan, Oben; Köz, Cem; Dündaröz, Ruşen

    2011-01-01

    Objective: The autonomic nervous system is assumed to have a role in the pathophysiology of obesity. In this study, we evaluated the autonomic system by measuring heart rate variability (HRV) in obese children. Methods: Thirty-two obese and 30 healthy children (mean ages: 11.6±2.0 years and 11.0±2.9 years, respectively) were enrolled in the study. Obesity was defined as a body mass index higher than 97th percentile for age- and gender-specific reference values. All participants were free of any disease and none of them was receiving any medication. Twenty-four-hour ambulatory electrocardiographic recordings were obtained and the time-domain and frequency-domain indices of HRV were analyzed. The study group was evaluated with respect to insulin resistance by HOMA-IR values. Results: A significant decrease in calculated HRV variables was observed in obese children as compared to controls. The HRV alteration was found in both time-domain and frequency-domain parameters. The subgroup analysis of the study group revealed a significant decrease in all investigated HRV parameters in the insulin-resistant obese children compared to the non-insulin-resistant obese ones. Conclusions: Our results indicate that HRV is decreased in obese children, which implies parasympathetic withdrawal and sympathetic predominance. A marked decrease in HRV was observed in insulin-resistant obese children compared to their non-insulin-resistant counterparts. We propose that autonomic imbalance pertaining especially to insulin resistance may be involved in the pathogenesis of obesity in pediatric patients Conflict of interest:None declared. PMID:21750633

  10. Rehabilitation medicine: 1. Autonomic dysreflexia

    PubMed Central

    Blackmer, Jeff

    2003-01-01

    AUTONOMIC DYSREFLEXIA IS AN ACUTE SYNDROME OF EXCESSIVE, UNCONTROLLED SYMPATHETIC OUTPUT that can occur in patients who have had an injury to the spinal cord (generally at or above the sixth thoracic neurologic level). It is caused by spinal reflex mechanisms that remain intact despite the patient's injury, leading to hypertension. This review describes the clinical features of autonomic dysreflexia, its common causes (most frequently stimulation of the lower urinary tract) and a recommended approach to treatment. The condition can nearly always be managed successfully, but prompt recognition is essential — without treatment there may be dire consequences, including death. PMID:14581313

  11. Miniature Autonomous Robotic Vehicle (MARV)

    SciTech Connect

    Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

    1996-12-31

    Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

  12. Gas House Autonomous System Monitoring

    NASA Technical Reports Server (NTRS)

    Miller, Luke; Edsall, Ashley

    2015-01-01

    Gas House Autonomous System Monitoring (GHASM) will employ Integrated System Health Monitoring (ISHM) of cryogenic fluids in the High Pressure Gas Facility at Stennis Space Center. The preliminary focus of development incorporates the passive monitoring and eventual commanding of the Nitrogen System. ISHM offers generic system awareness, adept at using concepts rather than specific error cases. As an enabler for autonomy, ISHM provides capabilities inclusive of anomaly detection, diagnosis, and abnormality prediction. Advancing ISHM and Autonomous Operation functional capabilities enhances quality of data, optimizes safety, improves cost effectiveness, and has direct benefits to a wide spectrum of aerospace applications.

  13. Discerning non-autonomous dynamics

    NASA Astrophysics Data System (ADS)

    Clemson, Philip T.; Stefanovska, Aneta

    2014-09-01

    Structure and function go hand in hand. However, while a complex structure can be relatively safely broken down into the minutest parts, and technology is now delving into nanoscales, the function of complex systems requires a completely different approach. Here the complexity clearly arises from nonlinear interactions, which prevents us from obtaining a realistic description of a system by dissecting it into its structural component parts. At best, the result of such investigations does not substantially add to our understanding or at worst it can even be misleading. Not surprisingly, the dynamics of complex systems, facilitated by increasing computational efficiency, is now readily tackled in the case of measured time series. Moreover, time series can now be collected in practically every branch of science and in any structural scale-from protein dynamics in a living cell to data collected in astrophysics or even via social networks. In searching for deterministic patterns in such data we are limited by the fact that no complex system in the real world is autonomous. Hence, as an alternative to the stochastic approach that is predominantly applied to data from inherently non-autonomous complex systems, theory and methods specifically tailored to non-autonomous systems are needed. Indeed, in the last decade we have faced a huge advance in mathematical methods, including the introduction of pullback attractors, as well as time series methods that cope with the most important characteristic of non-autonomous systems-their time-dependent behaviour. Here we review current methods for the analysis of non-autonomous dynamics including those for extracting properties of interactions and the direction of couplings. We illustrate each method by applying it to three sets of systems typical for chaotic, stochastic and non-autonomous behaviour. For the chaotic class we select the Lorenz system, for the stochastic the noise-forced Duffing system and for the non-autonomous the

  14. Autonomous DNA-Molecule Computing

    NASA Astrophysics Data System (ADS)

    Komiya, Ken; Rose, John A.; Yamamura, Masayuki

    DNA molecules autonomously change their forms from the single strand to the double helix by specific binding between complementary sequences according to the Watson-Crick base pairing rule. This paring rule allows us to control connections among molecules and to construct various structures by sequence design. Further, the motion of constructed structures can also be designed by considering sequential bindings. Recently, the feasibility to utilize the programmed DNA structural change for information processing was studied. In the present paper, we report an efficient synthetic chain reaction based on autonomous binding of DNA to realize a computing system, which enable us to implement computational intelligence in vitro.

  15. Contingency Software in Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn; Patterson-Hine, Ann

    2006-01-01

    This viewgraph presentation reviews the development of contingency software for autonomous systems. Autonomous vehicles currently have a limited capacity to diagnose and mitigate failures. There is a need to be able to handle a broader range of contingencies. The goals of the project are: 1. Speed up diagnosis and mitigation of anomalous situations.2.Automatically handle contingencies, not just failures.3.Enable projects to select a degree of autonomy consistent with their needs and to incrementally introduce more autonomy.4.Augment on-board fault protection with verified contingency scripts

  16. Contingency Software in Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn; Patterson-Hine, Ann

    2006-01-01

    This viewgraph presentation reviews the development of contingency software for autonomous systems. Autonomous vehicles currently have a limited capacity to diagnose and mitigate failures. There is a need to be able to handle a broader range of contingencies. The goals of the project are: 1. Speed up diagnosis and mitigation of anomalous situations.2.Automatically handle contingencies, not just failures.3.Enable projects to select a degree of autonomy consistent with their needs and to incrementally introduce more autonomy.4.Augment on-board fault protection with verified contingency scripts

  17. Active matter logic for autonomous microfluidics

    PubMed Central

    Woodhouse, Francis G.; Dunkel, Jörn

    2017-01-01

    Chemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set–reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids. PMID:28440273

  18. Active matter logic for autonomous microfluidics

    NASA Astrophysics Data System (ADS)

    Woodhouse, Francis G.; Dunkel, Jörn

    2017-04-01

    Chemically or optically powered active matter plays an increasingly important role in materials design, but its computational potential has yet to be explored systematically. The competition between energy consumption and dissipation imposes stringent physical constraints on the information transport in active flow networks, facilitating global optimization strategies that are not well understood. Here, we combine insights from recent microbial experiments with concepts from lattice-field theory and non-equilibrium statistical mechanics to introduce a generic theoretical framework for active matter logic. Highlighting conceptual differences with classical and quantum computation, we demonstrate how the inherent non-locality of incompressible active flow networks can be utilized to construct universal logical operations, Fredkin gates and memory storage in set-reset latches through the synchronized self-organization of many individual network components. Our work lays the conceptual foundation for developing autonomous microfluidic transport devices driven by bacterial fluids, active liquid crystals or chemically engineered motile colloids.

  19. A Robust Compositional Architecture for Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara

    2006-01-01

    Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.

  20. A Case Based Analysis Preparation Strategy for Use in a Classroom Management for Inclusive Settings Course: Preliminary Observations

    ERIC Educational Resources Information Center

    Niles, William J.; Cohen, Alan

    2012-01-01

    Case based instruction (CBI) is a pedagogical option in teacher preparation growing in application but short on practical means to implement the method. This paper presents an analysis strategy and questions developed to help teacher trainees focus on classroom management issues embedded in a set of "real" cases. An analysis of teacher candidate…