SOLON: An autonomous vehicle mission planner
NASA Technical Reports Server (NTRS)
Dudziak, M. J.
1987-01-01
The State-Operator Logic Machine (SOLON) Planner provides an architecture for effective real-time planning and replanning for an autonomous vehicle. The highlights of the system, which distinguish it from other AI-based planners that have been designed previously, are its hybrid application of state-driven control architecture and the use of both schematic representations and logic programming for the management of its knowledge base. SOLON is designed to provide multiple levels of planning for a single autonomous vehicle which is supplied with a skeletal, partially-specified mission plan at the outset of the vehicle's operations. This mission plan consists of a set of objectives, each of which will be decomposable by the planner into tasks. These tasks are themselves comparatively complex sets of actions which are executable by a conventional real-time control system which does not perform planning but which is capable of making adjustments or modifications to the provided tasks according to constraints and tolerances provided by the Planner. The current implementation of the SOLON is in the form of a real-time simulation of the Planner module of an Intelligent Vehicle Controller (IVC) on-board an autonomous underwater vehicle (AUV). The simulation is embedded within a larger simulator environment known as ICDS (Intelligent Controller Development System) operating on a Symbolics 3645/75 computer.
Planning and reasoning in the JPL telerobot testbed
NASA Technical Reports Server (NTRS)
Peters, Stephen; Mittman, David; Collins, Carol; Omeara, Jacquie; Rokey, Mark
1990-01-01
The Telerobot Interactive Planning System is developed to serve as the highest autonomous-control level of the Telerobot Testbed. A recent prototype is described which integrates an operator interface for supervisory control, a task planner supporting disassembly and re-assembly operations, and a spatial planner for collision-free manipulator motion through the workspace. Each of these components is described in detail. Descriptions of the technical problem, approach, and lessons learned are included.
A Flight Deck Decision Support Tool for Autonomous Airborne Operations
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin
2002-01-01
NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.
NASA Astrophysics Data System (ADS)
Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.
2016-12-01
Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.
Progress of Crew Autonomous Scheduling Test (CAST) On the ISS
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jessica; Hillenius, Steven; Korth, David; Bakalyar, Lauren Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This presentation shows the progress done in this study with a single astronaut test subject participating in five CAST sessions. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers.
Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)
NASA Technical Reports Server (NTRS)
Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke;
2017-01-01
The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from the Flight Operations Directorate at NASA Johnson Space Center, and researchers across multiple NASA centers. It is hoped the results of this investigation will guide NASA's implementation of autonomous mission operations for long duration human space missions to Mars and beyond.
Crew Autonomous Scheduling Test (CAST)
2017-07-18
iss052e016190 (July 18, 2017) --- Astronaut Peggy Whitson is photographed sitting in front of the Cupola windows during the final Crew Autonomous Scheduling Test (CAST) session. The CAST investigation analyzes whether crews can develop plans in a reasonable period of time with appropriate input, whether proximity of planners to the planned operations increases efficiency, and if crew members are more satisfied when given a role in plan development.
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; DePascale, Stephen M.; Wing, David J.
2012-01-01
The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.
Remote mission specialist - A study in real-time, adaptive planning
NASA Technical Reports Server (NTRS)
Rokey, Mark J.
1990-01-01
A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.
Automated and Adaptive Mission Planning for Orbital Express
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel; Koblick, Darin
2008-01-01
The Orbital Express space mission was a Defense Advanced Research Projects Agency (DARPA) lead demonstration of on-orbit satellite servicing scenarios, autonomous rendezvous, fluid transfers of hydrazine propellant, and robotic arm transfers of Orbital Replacement Unit (ORU) components. Boeing's Autonomous Space Transport Robotic Operations (ASTRO) vehicle provided the servicing to the Ball Aerospace's Next Generation Serviceable Satellite (NextSat) client. For communication opportunities, operations used the high-bandwidth ground-based Air Force Satellite Control Network (AFSCN) along with the relatively low-bandwidth GEO-Synchronous space-borne Tracking and Data Relay Satellite System (TDRSS) network. Mission operations were conducted out of the RDT&E Support Complex (RSC) at the Kirtland Air Force Base in New Mexico. All mission objectives were met successfully: The first of several autonomous rendezvous was demonstrated on May 5, 2007; autonomous free-flyer capture was demonstrated on June 22, 2007; the fluid and ORU transfers throughout the mission were successful. Planning operations for the mission were conducted by a team of personnel including Flight Directors, who were responsible for verifying the steps and contacts within the procedures, the Rendezvous Planners who would compute the locations and visibilities of the spacecraft, the Scenario Resource Planners (SRPs), who were concerned with assignment of communications windows, monitoring of resources, and sending commands to the ASTRO spacecraft, and the Mission planners who would interface with the real-time operations environment, process planning products and coordinate activities with the SRP. The SRP position was staffed by JPL personnel who used the Automated Scheduling and Planning ENvironment (ASPEN) to model and enforce mission and satellite constraints. The lifecycle of a plan began three weeks outside its execution on-board. During the planning timeframe, many aspects could change the plan, causing the need for re-planning. These variable factors, ranging from shifting contact times to ground-station closures and required maintenance times, are discussed along with the flexibility of the ASPEN tool to accommodate changes to procedures and the daily or long-range plan, which contributed to the success of the mission. This paper will present an introduction to ASPEN, a more in-depth discussion on its use on the Orbital Express mission, and other relative work. A description of ground operations after the SRP deliveries were made is included, and we briefly discuss lessons learned from the planning perspective and future work.
A Cockpit-Based Application for Traffic Aware Trajectory Optimization
NASA Technical Reports Server (NTRS)
Woods, Sharon E.; Vivona, Robert A.; Roscoe, David A.; LeFebvre, Brendan C.; Wing, David J.; Ballin, Mark G.
2013-01-01
The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP.
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Palmer, Michael T.; Eischeid, Todd M.
2004-01-01
NASA Langley Research Center is developing an Autonomous Operations Planner (AOP) that functions as an Airborne Separation Assurance System for autonomous flight operations. This development effort supports NASA s Distributed Air-Ground Traffic Management (DAG-TM) operational concept, designed to significantly increase capacity of the national airspace system, while maintaining safety. Autonomous aircraft pilots use the AOP to maintain traffic separation from other autonomous aircraft and managed aircraft flying under today's Instrument Flight Rules, while maintaining traffic flow management constraints assigned by Air Traffic Service Providers. AOP is designed to facilitate eventual implementation through careful modeling of its operational environment, interfaces with other aircraft systems and data links, and conformance with established flight deck conventions and human factors guidelines. AOP uses currently available or anticipated data exchanged over modeled Arinc 429 data buses and an Automatic Dependent Surveillance Broadcast 1090 MHz link. It provides pilots with conflict detection, prevention, and resolution functions and works with the Flight Management System to maintain assigned traffic flow management constraints. The AOP design has been enhanced over the course of several experiments conducted at NASA Langley and is being prepared for an upcoming Joint Air/Ground Simulation with NASA Ames Research Center.
Target Trailing With Safe Navigation With Colregs for Maritime Autonomous Surface Vehicles
NASA Technical Reports Server (NTRS)
Kuwata, Yoshiaki (Inventor); Aghazarian, Hrand (Inventor); Huntsberger, Terrance L. (Inventor); Howard, Andrew B. (Inventor); Wolf, Michael T. (Inventor); Zarzhitsky, Dimitri V. (Inventor)
2014-01-01
Systems and methods for operating autonomous waterborne vessels in a safe manner. The systems include hardware for identifying the locations and motions of other vessels, as well as the locations of stationary objects that represent navigation hazards. By applying a computational method that uses a maritime navigation algorithm for avoiding hazards and obeying COLREGS using Velocity Obstacles to the data obtained, the autonomous vessel computes a safe and effective path to be followed in order to accomplish a desired navigational end result, while operating in a manner so as to avoid hazards and to maintain compliance with standard navigational procedures defined by international agreement. The systems and methods have been successfully demonstrated on water with radar and stereo cameras as the perception sensors, and integrated with a higher level planner for trailing a maneuvering target.
IDEA: Planning at the Core of Autonomous Reactive Agents
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Clancy, Daniel (Technical Monitor)
2002-01-01
Several successful autonomous systems are separated into technologically diverse functional layers operating at different levels of abstraction. This diversity makes them difficult to implement and validate. In this paper, we present IDEA (Intelligent Distributed Execution Architecture), a unified planning and execution framework. In IDEA a layered system can be implemented as separate agents, one per layer, each representing its interactions with the world in a model. At all levels, the model representation primitives and their semantics is the same. Moreover, each agent relies on a single model, plan database, plan runner and on a variety of planners, both reactive and deliberative. The framework allows the specification of agents that operate, within a guaranteed reaction time and supports flexible specification of reactive vs. deliberative agent behavior. Within the IDEA framework we are working to fully duplicate the functionalities of the DS1 Remote Agent and extend it to domains of higher complexity than autonomous spacecraft control.
Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving
Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan
2016-01-01
This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203
Drivers' Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving.
Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan
2016-01-15
This paper describes a real-time motion planner based on the drivers' visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers' visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers' visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.
Next Generation Remote Agent Planner
NASA Technical Reports Server (NTRS)
Jonsson, Ari K.; Muscettola, Nicola; Morris, Paul H.; Rajan, Kanna
1999-01-01
In May 1999, as part of a unique technology validation experiment onboard the Deep Space One spacecraft, the Remote Agent became the first complete autonomous spacecraft control architecture to run as flight software onboard an active spacecraft. As one of the three components of the architecture, the Remote Agent Planner had the task of laying out the course of action to be taken, which included activities such as turning, thrusting, data gathering, and communicating. Building on the successful approach developed for the Remote Agent Planner, the Next Generation Remote Agent Planner is a completely redesigned and reimplemented version of the planner. The new system provides all the key capabilities of the original planner, while adding functionality, improving performance and providing a modular and extendible implementation. The goal of this ongoing project is to develop a system that provides both a basis for future applications and a framework for further research in the area of autonomous planning for spacecraft. In this article, we present an introductory overview of the Next Generation Remote Agent Planner. We present a new and simplified definition of the planning problem, describe the basics of the planning process, lay out the new system design and examine the functionality of the core reasoning module.
Safe Maritime Autonomous Path Planning in a High Sea State
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Quadrelli, Marco; Huntsberger, Terrance L.
2014-01-01
This paper presents a path planning method for sea surface vehicles that prevents capsizing and bow-diving in a high sea-state. A key idea is to use response amplitude operators (RAOs) or, in control terminology, the transfer functions from a sea state to a vessel's motion, in order to find a set of speeds and headings that results in excessive pitch and roll oscillations. This information is translated to arithmetic constraints on the ship's velocity, which are passed to a model predictive control (MPC)-based path planner to find a safe and optimal path that achieves specified goals. An obstacle avoidance capability is also added to the path planner. The proposed method is demonstrated by simulations.
Mission Level Autonomy for USSV
NASA Technical Reports Server (NTRS)
Huntsberger, Terry; Stirb, Robert C.; Brizzolara, Robert
2011-01-01
On-water demonstration of a wide range of mission-proven, advanced technologies at TRL 5+ that provide a total integrated, modular approach to effectively address the majority of the key needs for full mission-level autonomous, cross-platform control of USV s. Wide baseline stereo system mounted on the ONR USSV was shown to be an effective sensing modality for tracking of dynamic contacts as a first step to automated retrieval operations. CASPER onboard planner/replanner successfully demonstrated realtime, on-water resource-based analysis for mission-level goal achievement and on-the-fly opportunistic replanning. Full mixed mode autonomy was demonstrated on-water with a seamless transition between operator over-ride and return to current mission plan. Autonomous cooperative operations for fixed asset protection and High Value Unit escort using 2 USVs (AMN1 & 14m RHIB) were demonstrated during Trident Warrior 2010 in JUN 2010
Airborne Management of Traffic Conflicts in Descent With Arrival Constraints
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik
2005-01-01
NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.
Micro air vehicle autonomous obstacle avoidance from stereo-vision
NASA Astrophysics Data System (ADS)
Brockers, Roland; Kuwata, Yoshiaki; Weiss, Stephan; Matthies, Lawrence
2014-06-01
We introduce a new approach for on-board autonomous obstacle avoidance for micro air vehicles flying outdoors in close proximity to structure. Our approach uses inverse-range, polar-perspective stereo-disparity maps for obstacle detection and representation, and deploys a closed-loop RRT planner that considers flight dynamics for trajectory generation. While motion planning is executed in 3D space, we reduce collision checking to a fast z-buffer-like operation in disparity space, which allows for significant speed-up compared to full 3d methods. Evaluations in simulation illustrate the robustness of our approach, whereas real world flights under tree canopy demonstrate the potential of the approach.
Near-Nash targeting strategies for heterogeneous teams of autonomous combat vehicles
NASA Astrophysics Data System (ADS)
Galati, David G.; Simaan, Marwan A.
2008-04-01
Military strategists are currently seeking methodologies to control large numbers of autonomous assets. Automated planners based upon the Nash equilibrium concept in non-zero sum games are one option. Because such planners inherently consider possible adversarial actions, assets are able to adapt to, and to some extent predict, potential enemy actions. However, these planners must function properly both in cases in which a pure Nash strategy does not exist and in scenarios possessing multiple Nash equilibria. Another issue that needs to be overcome is the scalability of the Nash equilibrium. That is, as the dimensionality of the problem increases, the Nash strategies become unfeasible to compute using traditional methodologies. In this paper we introduce the concept of near-Nash strategies as a mechanism to overcome these difficulties. We then illustrate this concept by deriving the near-Nash strategies and using these strategies as the basis for an intelligent battle plan for heterogeneous teams of autonomous combat air vehicles in the Multi-Team Dynamic Weapon Target Assignment model.
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Krozel, James A.
1988-01-01
An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.
Verification of Autonomous Systems for Space Applications
NASA Technical Reports Server (NTRS)
Brat, G.; Denney, E.; Giannakopoulou, D.; Frank, J.; Jonsson, A.
2006-01-01
Autonomous software, especially if it is based on model, can play an important role in future space applications. For example, it can help streamline ground operations, or, assist in autonomous rendezvous and docking operations, or even, help recover from problems (e.g., planners can be used to explore the space of recovery actions for a power subsystem and implement a solution without (or with minimal) human intervention). In general, the exploration capabilities of model-based systems give them great flexibility. Unfortunately, it also makes them unpredictable to our human eyes, both in terms of their execution and their verification. The traditional verification techniques are inadequate for these systems since they are mostly based on testing, which implies a very limited exploration of their behavioral space. In our work, we explore how advanced V&V techniques, such as static analysis, model checking, and compositional verification, can be used to gain trust in model-based systems. We also describe how synthesis can be used in the context of system reconfiguration and in the context of verification.
Layered Safe Motion Planning for Autonomous Vehicles.
1995-09-01
The major problem addressed by this research is how to plan a safe motion for autonomous vehicles in a two dimensional, rectilinear world. With given start and goal configurations, the planner performs motion planning which
Design and implementation of a robot control system with traded and shared control capability
NASA Technical Reports Server (NTRS)
Hayati, S.; Venkataraman, S. T.
1989-01-01
Preliminary results are reported from efforts to design and develop a robotic system that will accept and execute commands from either a six-axis teleoperator device or an autonomous planner, or combine the two. Such a system should have both traded as well as shared control capability. A sharing strategy is presented whereby the overall system, while retaining positive features of teleoperated and autonomous operation, loses its individual negative features. A two-tiered shared control architecture is considered here, consisting of a task level and a servo level. Also presented is a computer architecture for the implementation of this system, including a description of the hardware and software.
Mission planning for autonomous systems
NASA Technical Reports Server (NTRS)
Pearson, G.
1987-01-01
Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.
Navigation of military and space unmanned ground vehicles in unstructured terrains
NASA Technical Reports Server (NTRS)
Lescoe, Paul; Lavery, David; Bedard, Roger
1991-01-01
Development of unmanned vehicles for local navigation in terrains unstructured by humans is reviewed. Modes of navigation include teleoperation or remote control, computer assisted remote driving (CARD), and semiautonomous navigation (SAN). A first implementation of a CARD system was successfully tested using the Robotic Technology Test Vehicle developed by Jet Propulsion Laboratory. Stereo pictures were transmitted to a remotely located human operator, who performed the sensing, perception, and planning functions of navigation. A computer provided range and angle measurements and the path plan was transmitted to the vehicle which autonomously executed the path. This implementation is to be enhanced by providing passive stereo vision and a reflex control system for autonomously stopping the vehicle if blocked by an obstacle. SAN achievements include implementation of a navigation testbed on a six wheel, three-body articulated rover vehicle, development of SAN algorithms and code, integration of SAN software onto the vehicle, and a successful feasibility demonstration that represents a step forward towards the technology required for long-range exploration of the lunar or Martian surface. The vehicle includes a passive stereo vision system with real-time area-based stereo image correlation, a terrain matcher, a path planner, and a path execution planner.
De Momi, E; Ferrigno, G
2010-01-01
The robot and sensors integration for computer-assisted surgery and therapy (ROBOCAST) project (FP7-ICT-2007-215190) is co-funded by the European Union within the Seventh Framework Programme in the field of information and communication technologies. The ROBOCAST project focuses on robot- and artificial-intelligence-assisted keyhole neurosurgery (tumour biopsy and local drug delivery along straight or turning paths). The goal of this project is to assist surgeons with a robotic system controlled by an intelligent high-level controller (HLC) able to gather and integrate information from the surgeon, from diagnostic images, and from an array of on-field sensors. The HLC integrates pre-operative and intra-operative diagnostics data and measurements, intelligence augmentation, multiple-robot dexterity, and multiple sensory inputs in a closed-loop cooperating scheme including a smart interface for improved haptic immersion and integration. This paper, after the overall architecture description, focuses on the intelligent trajectory planner based on risk estimation and human criticism. The current status of development is reported, and first tests on the planner are shown by using a real image stack and risk descriptor phantom. The advantages of using a fuzzy risk description are given by the possibility of upgrading the knowledge on-field without the intervention of a knowledge engineer.
Costs of Limiting Route Optimization to Published Waypoints in the Traffic Aware Planner
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Wing, David J.
2013-01-01
The Traffic Aware Planner (TAP) is an airborne advisory tool that generates optimized, traffic-avoiding routes to support the aircraft crew in making strategic reroute requests to Air Traffic Control (ATC). TAP is derived from a research-prototype self-separation tool, the Autonomous Operations Planner (AOP), in which optimized route modifications that avoid conflicts with traffic and weather, using waypoints at explicit latitudes and longitudes (a technique supported by self-separation concepts), are generated by maneuver patterns applied to the existing route. For use in current-day operations in which trajectory changes must be requested from ATC via voice communication, TAP produces optimized routes described by advisories that use only published waypoints prior to a reconnection waypoint on the existing route. We describe how the relevant algorithms of AOP have been modified to implement this requirement. The modifications include techniques for finding appropriate published waypoints in a maneuver pattern and a method for combining the genetic algorithm of AOP with an exhaustive search of certain types of advisory. We demonstrate methods to investigate the increased computation required by these techniques and to estimate other costs (measured in terms such as time to destination and fuel burned) that may be incurred when only published waypoints are used.
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Schrenkenghost, Debra K.
2001-01-01
The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.
The NASA/Army Autonomous Rotorcraft Project
NASA Technical Reports Server (NTRS)
Whalley, M.; Freed, M.; Takahashi, M.; Christian, D.; Patterson-Hine, A.; Schulein, G.; Harris, R.
2002-01-01
An overview of the NASA Ames Research Center Autonomous Rotorcraft Project (ARP) is presented. The project brings together several technologies to address NASA and US Army autonomous vehicle needs, including a reactive planner for mission planning and execution, control system design incorporating a detailed understanding of the platform dynamics, and health monitoring and diagnostics. A candidate reconnaissance and surveillance mission is described. The autonomous agent architecture and its application to the candidate mission are presented. Details of the vehicle hardware and software development are provided.
Semi-autonomous exploration of multi-floor buildings with a legged robot
NASA Astrophysics Data System (ADS)
Wenger, Garrett J.; Johnson, Aaron M.; Taylor, Camillo J.; Koditschek, Daniel E.
2015-05-01
This paper presents preliminary results of a semi-autonomous building exploration behavior using the hexapedal robot RHex. Stairwells are used in virtually all multi-floor buildings, and so in order for a mobile robot to effectively explore, map, clear, monitor, or patrol such buildings it must be able to ascend and descend stairwells. However most conventional mobile robots based on a wheeled platform are unable to traverse stairwells, motivating use of the more mobile legged machine. This semi-autonomous behavior uses a human driver to provide steering input to the robot, as would be the case in, e.g., a tele-operated building exploration mission. The gait selection and transitions between the walking and stair climbing gaits are entirely autonomous. This implementation uses an RGBD camera for stair acquisition, which offers several advantages over a previously documented detector based on a laser range finder, including significantly reduced acquisition time. The sensor package used here also allows for considerable expansion of this behavior. For example, complete automation of the building exploration task driven by a mapping algorithm and higher level planner is presently under development.
NASA Technical Reports Server (NTRS)
Truong, Long V.; Walters, Jerry L.; Roth, Mary Ellen; Quinn, Todd M.; Krawczonek, Walter M.
1990-01-01
The goal of the Autonomous Power System (APS) program is to develop and apply intelligent problem solving and control to the Space Station Freedom Electrical Power System (SSF/EPS) testbed being developed and demonstrated at NASA Lewis Research Center. The objectives of the program are to establish artificial intelligence technology paths, to craft knowledge-based tools with advanced human-operator interfaces for power systems, and to interface and integrate knowledge-based systems with conventional controllers. The Autonomous Power EXpert (APEX) portion of the APS program will integrate a knowledge-based fault diagnostic system and a power resource planner-scheduler. Then APEX will interface on-line with the SSF/EPS testbed and its Power Management Controller (PMC). The key tasks include establishing knowledge bases for system diagnostics, fault detection and isolation analysis, on-line information accessing through PMC, enhanced data management, and multiple-level, object-oriented operator displays. The first prototype of the diagnostic expert system for fault detection and isolation has been developed. The knowledge bases and the rule-based model that were developed for the Power Distribution Control Unit subsystem of the SSF/EPS testbed are described. A corresponding troubleshooting technique is also described.
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-11-18
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-01-01
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints. PMID:25412217
Survey of Command Execution Systems for NASA Spacecraft and Robots
NASA Technical Reports Server (NTRS)
Verma, Vandi; Jonsson, Ari; Simmons, Reid; Estlin, Tara; Levinson, Rich
2005-01-01
NASA spacecraft and robots operate at long distances from Earth Command sequences generated manually, or by automated planners on Earth, must eventually be executed autonomously onboard the spacecraft or robot. Software systems that execute commands onboard are known variously as execution systems, virtual machines, or sequence engines. Every robotic system requires some sort of execution system, but the level of autonomy and type of control they are designed for varies greatly. This paper presents a survey of execution systems with a focus on systems relevant to NASA missions.
System control of an autonomous planetary mobile spacecraft
NASA Technical Reports Server (NTRS)
Dias, William C.; Zimmerman, Barbara A.
1990-01-01
The goal is to suggest the scheduling and control functions necessary for accomplishing mission objectives of a fairly autonomous interplanetary mobile spacecraft, while maximizing reliability. Goals are to provide an extensible, reliable system conservative in its use of on-board resources, while getting full value from subsystem autonomy, and avoiding the lure of ground micromanagement. A functional layout consisting of four basic elements is proposed: GROUND and SYSTEM EXECUTIVE system functions and RESOURCE CONTROL and ACTIVITY MANAGER subsystem functions. The system executive includes six subfunctions: SYSTEM MANAGER, SYSTEM FAULT PROTECTION, PLANNER, SCHEDULE ADAPTER, EVENT MONITOR and RESOURCE MONITOR. The full configuration is needed for autonomous operation on Moon or Mars, whereas a reduced version without the planning, schedule adaption and event monitoring functions could be appropriate for lower-autonomy use on the Moon. An implementation concept is suggested which is conservative in use of system resources and consists of modules combined with a network communications fabric. A language concept termed a scheduling calculus for rapidly performing essential on-board schedule adaption functions is introduced.
Overview of Intelligent Systems and Operations Development
NASA Technical Reports Server (NTRS)
Pallix, Joan; Dorais, Greg; Penix, John
2004-01-01
To achieve NASA's ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take the correct action in a variety of circumstances. Vehicle intelligence can be defined as the ability to "do the right thing" when faced with a complex decision-making situation. It will be necessary to implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety and success of complex missions despite component failures, degraded performance, operator errors, and environment uncertainty. This paper will describe the array of technologies required to meet these complex objectives. This includes the integration of high-level reasoning and autonomous capabilities with multiple subsystem controllers for robust performance. Future intelligent systems will use models of the system, its environment, and other intelligent agents with which it interacts. They will also require planners, reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently. The presentation will also address the development of highly dependable software, which is a key component to ensure the reliability of intelligent systems.
Achieving integrated convoys: cargo unmanned ground vehicle development and experimentation
NASA Astrophysics Data System (ADS)
Zych, Noah; Silver, David; Stager, David; Green, Colin; Pilarski, Thomas; Fischer, Jacob
2013-05-01
The Cargo UGV project was initiated in 2010 with the aim of developing and experimenting with advanced autonomous vehicles capable of being integrated unobtrusively into manned logistics convoys. The intent was to validate two hypotheses in complex, operationally representative environments: first, that unmanned tactical wheeled vehicles provide a force protection advantage by creating standoff distance to warfighters during ambushes or improvised explosive device attacks; and second, that these UGVs serve as force multipliers by enabling a single operator to control multiple unmanned assets. To assess whether current state-of-the-art autonomous vehicle technology was sufficiently capable to permit resupply missions to be executed with decreased risk and reduced manpower, and to assess the effect of UGVs on customary convoy tactics, the Marine Corps Warfighting Laboratory and the Joint Ground Robotics Enterprise sponsored Oshkosh Defense and the National Robotics Engineering Center to equip two standard Marine Corps cargo trucks for autonomous operation. This paper details the system architecture, hardware implementation, and software modules developed to meet the vehicle control, perception, and planner requirements compelled by this application. Additionally, the design of a custom human machine interface and an accompanying training program are described, as is the creation of a realistic convoy simulation environment for rapid system development. Finally, results are conveyed from a warfighter experiment in which the effectiveness of the training program for novice operators was assessed, and the impact of the UGVs on convoy operations was observed in a variety of scenarios via direct comparison to a fully manned convoy.
The Joint Master Operational Planner
2016-04-04
Operational Planner Program, that will produce planners that are able to understand the strategic- operational environment, properly advise commanders, and...Planner Program, that will produce planners that are able to understand the strategic-operational environment, properly advise commanders, and devise...states struggle to exercise even nominal power within their borders, and the people see the government as an entity that seeks only to keep itself in
NASA Astrophysics Data System (ADS)
Hardy, Jason; Campbell, Mark; Miller, Isaac; Schimpf, Brian
2008-10-01
The local path planner implemented on Cornell's 2007 DARPA Urban Challenge entry vehicle Skynet utilizes a novel mixture of discrete and continuous path planning steps to facilitate a safe, smooth, and human-like driving behavior. The planner first solves for a feasible path through the local obstacle map using a grid based search algorithm. The resulting path is then refined using a cost-based nonlinear optimization routine with both hard and soft constraints. The behavior of this optimization is influenced by tunable weighting parameters which govern the relative cost contributions assigned to different path characteristics. This paper studies the sensitivity of the vehicle's performance to these path planner weighting parameters using a data driven simulation based on logged data from the National Qualifying Event. The performance of the path planner in both the National Qualifying Event and in the Urban Challenge is also presented and analyzed.
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
Pilot Preference, Compliance, and Performance With an Airborne Conflict Management Toolset
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik
2005-01-01
A human-in-the-loop experiment was conducted at the NASA Ames and Langley Research Centers, investigating the En Route Free Maneuvering component of a future air traffic management concept termed Distributed Air/Ground Traffic Management (DAG-TM). NASA Langley test subject pilots used the Autonomous Operations Planner (AOP) airborne toolset to detect and resolve traffic conflicts, interacting with subject pilots and air traffic controllers at NASA Ames. Experimental results are presented, focusing on conflict resolution maneuver choices, AOP resolution guidance acceptability, and performance metrics. Based on these results, suggestions are made to further improve the AOP interface and functionality.
Advanced Air Transportation Technologies Project, Final Document Collection
NASA Technical Reports Server (NTRS)
Mogford, Richard H.; Wold, Sheryl (Editor)
2008-01-01
This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.
Target Trailing With Safe Navigation for Maritime Autonomous Surface Vehicles
NASA Technical Reports Server (NTRS)
Wolf, Michael; Kuwata, Yoshiaki; Zarzhitsky, Dimitri V.
2013-01-01
This software implements a motion-planning module for a maritime autonomous surface vehicle (ASV). The module trails a given target while also avoiding static and dynamic surface hazards. When surface hazards are other moving boats, the motion planner must apply International Regulations for Avoiding Collisions at Sea (COLREGS). A key subset of these rules has been implemented in the software. In case contact with the target is lost, the software can receive and follow a "reacquisition route," provided by a complementary system, until the target is reacquired. The programmatic intention is that the trailed target is a submarine, although any mobile naval platform could serve as the target. The algorithmic approach to combining motion with a (possibly moving) goal location, while avoiding local hazards, may be applicable to robotic rovers, automated landing systems, and autonomous airships. The software operates in JPL s CARACaS (Control Architecture for Robotic Agent Command and Sensing) software architecture and relies on other modules for environmental perception data and information on the predicted detectability of the target, as well as the low-level interface to the boat controls.
Traffic Aware Planner (TAP) Flight Evaluation
NASA Technical Reports Server (NTRS)
Maris, John M.; Haynes, Mark A.; Wing, David J.; Burke, Kelly A.; Henderson, Jeff; Woods, Sharon E.
2014-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that has the potential to achieve significant fuel and time savings when it is embedded in the data-rich Next Generation Air Transportation System (NextGen) airspace. To address a key step towards the operational deployment of TAP and the NASA concept of Traffic Aware Strategic Aircrew Requests (TASAR), a system evaluation was conducted in a representative flight environment in November, 2013. Numerous challenges were overcome to achieve this goal, including the porting of the foundational Autonomous Operations Planner (AOP) software from its original simulation-based, avionics-embedded environment to an Electronic Flight Bag (EFB) platform. A flight-test aircraft was modified to host the EFB, the TAP application, an Automatic Dependent Surveillance Broadcast (ADS-B) processor, and a satellite broadband datalink. Nine Evaluation Pilots conducted 26 hours of TAP assessments using four route profiles in the complex eastern and north-eastern United States airspace. Extensive avionics and video data were collected, supplemented by comprehensive inflight and post-flight questionnaires. TAP was verified to function properly in the live avionics and ADS-B environment, characterized by recorded data dropouts, latency, and ADS-B message fluctuations. Twelve TAP-generated optimization requests were submitted to ATC, of which nine were approved, and all of which resulted in fuel and/or time savings. Analysis of subjective workload data indicated that pilot interaction with TAP during flight operations did not induce additional cognitive loading. Additionally, analyses of post-flight questionnaire data showed that the pilots perceived TAP to be useful, understandable, intuitive, and easy to use. All program objectives were met, and the next phase of TAP development and evaluations with partner airlines is in planning for 2015.
Adaptable mission planning for kino-dynamic systems
NASA Astrophysics Data System (ADS)
Bush, Lawrence A. M.; Jimenez, Tony R.; Williams, Brian C.
Autonomous systems can perform tasks that are dangerous, monotonous, or even impossible for humans. To approach the problem of planning for Unmanned Aerial Vehicles (UAVs) we present a hierarchical method that combines a high-level planner with a low-level planner. We pose the problem of high-level planning as a Selective Traveling Salesman Problem (STSP) and select the order in which to visit our science sites. We then use a kino-dynamic path planner to create a large number of intermediate waypoints. This is a complete system that combines high and low level planning to achieve a goal. This paper demonstrates the benefits gained by adaptable high-level plans versus static and greedy plans.
Mission-directed path planning for planetary rover exploration
NASA Astrophysics Data System (ADS)
Tompkins, Paul
2005-07-01
Robotic rovers uniquely benefit planetary exploration---they enable regional exploration with the precision of in-situ measurements, a combination impossible from an orbiting spacecraft or fixed lander. Mission planning for planetary rover exploration currently utilizes sophisticated software for activity planning and scheduling, but simplified path planning and execution approaches tailored for localized operations to individual targets. This approach is insufficient for the investigation of multiple, regionally distributed targets in a single command cycle. Path planning tailored for this task must consider the impact of large scale terrain on power, speed and regional access; the effect of route timing on resource availability; the limitations of finite resource capacity and other operational constraints on vehicle range and timing; and the mutual influence between traverses and upstream and downstream stationary activities. Encapsulating this reasoning in an efficient autonomous planner would allow a rover to continue operating rationally despite significant deviations from an initial plan. This research presents mission-directed path planning that enables an autonomous, strategic reasoning capability for robotic explorers. Planning operates in a space of position, time and energy. Unlike previous hierarchical approaches, it treats these dimensions simultaneously to enable globally-optimal solutions. The approach calls on a near incremental search algorithm designed for planning and re-planning under global constraints, in spaces of higher than two dimensions. Solutions under this method specify routes that avoid terrain obstacles, optimize the collection and use of rechargable energy, satisfy local and global mission constraints, and account for the time and energy of interleaved mission activities. Furthermore, the approach efficiently re-plans in response to updates in vehicle state and world models, and is well suited to online operation aboard a robot. Simulations exhibit that the new methodology succeeds where conventional path planners would fail. Three planetary-relevant field experiments demonstrate the power of mission-directed path planning in directing actual exploration robots. Offline mission-directed planning sustained a solar-powered rover in a 24-hour sun-synchronous traverse. Online planning and re-planning enabled full navigational autonomy of over 1 kilometer, and supported the execution of science activities distributed over hundreds of meters.
Power management and distribution considerations for a lunar base
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Coleman, Anthony S.
1991-01-01
Design philosophies and technology needs for the power management and distribution (PMAD) portion of a lunar base power system are discussed. A process is described whereby mission planners may proceed from a knowledge of the PMAD functions and mission performance requirements to a definition of design options and technology needs. Current research efforts at the NASA LRC to meet the PMAD system needs for a Lunar base are described. Based on the requirements, the lunar base PMAD is seen as best being accomplished by a utility like system, although with some additional demands including autonomous operation and scheduling and accurate, predictive modeling during the design process.
NASA Technical Reports Server (NTRS)
Idris, Husni; Vivona, Robert A.; Al-Wakil, Tarek
2009-01-01
This document describes exploratory research on a distributed, trajectory oriented approach for traffic complexity management. The approach is to manage traffic complexity based on preserving trajectory flexibility and minimizing constraints. In particular, the document presents metrics for trajectory flexibility; a method for estimating these metrics based on discrete time and degree of freedom assumptions; a planning algorithm using these metrics to preserve flexibility; and preliminary experiments testing the impact of preserving trajectory flexibility on traffic complexity. The document also describes an early demonstration capability of the trajectory flexibility preservation function in the NASA Autonomous Operations Planner (AOP) platform.
Sensory augmentation for increased awareness of driving environment : final research report.
DOT National Transportation Integrated Search
2016-01-01
The goal of this project was to develop a lateral localization framework for autonomous driving in urban areas. Vehicle location is significant information for the controller, planner and behaviors systems. Lateral location is extremely important for...
Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten
2011-06-01
This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Krishnamurthy, Karthik
2004-01-01
NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.
NASA Astrophysics Data System (ADS)
Davies, A. G.; Chien, S. A.; Castano, R.; Tran, D. Q.; Scharenbroich, L. J.
2006-12-01
Mission science return is increased through use of onboard autonomy, and using disparate assets integrated into an autonomously-operating sensor web that can re-task these assets to rapidly obtain additional data. Software on spacecraft has been used to analyse data to detect dynamic events of high interest, such as on- going volcanic activity. This capability has been successfully demonstrated by the NASA New Millennium Program Autonomous Sciencecraft Experiment (ASE), on the Earth Observing 1 spacecraft in Earth-orbit [1-2]. The potential now exists for eruption parameters to be quantified onboard a spacecraft, using models that relate thermal emission to volumetric eruption rate. This promises a notification not only of on-going activity, but also the magnitude of the event, within a few hours of the original observation, a process that normally takes weeks. ASE/EO-1 is part of the JPL Volcano Sensor Web [3]. This autonomous system collates information of volcanic activity from numerous assets and retasks EO-1 to obtain observations as soon as practicable. The use of a ground-based planner allows rapid insertion or replacement of new observations, with no human intervention. Endusers are notified automatically by email. Spacecraft autonomy, involving automatic fault detection and mitigation, onboard processing of data, and replanning of observations, allows mission operations to break free from pre-ordained operations sequencing, necessary for studying dynamic volcanic processes on other bodies in the Solar System (e.g., Io and Enceladus). Onboard processing allows quantification of dynamic processes, improving both science content per returned byte and optimization of subsequent resource use. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. [1] Chien, S. et al. (2004) The EO-1 Autonomous Science Agent, Proceedings of the 2004 Conferences on Autonomous Agents and Multi-agent Systems (AAMAS), New York City, USA, July 2004. [2] Davies, A. G. et al. (2006) Monitoring active volcanism with the Autonomous Sciencecraft Experiment (ASE) on EO-1, RSE, 101, 427-446. [3] Davies, A. G. et al., (2006) Sensor Web enables rapid response to volcanic activity, Eos, 87, 1, 1&5.
Moyano-Santiago, Miguel A; Rivera-Lirio, Juana M
2016-01-01
To determine the degree to which the health plans of the autonomous communities focus on the usual three dimensions of sustainability: economic, social and environmental, both in the general level of discourse and in the different areas of intervention. A qualitative study was conducted through content analysis of a large sample of documents. The specific methodology was analysis of symbolic and operational sensitivity in a sample of eleven health plans of the Spanish state. Social aspects, such as social determinants or vulnerable groups, are receiving increasing attention from the health planner, although there is room to strengthen attention to environmental issues and to provide specific interventions in economic terms. The analysis demonstrates the incipient state of health plans as strategic planning documents that integrate economic, social and environmental aspects and contribute to the sustainability of the different health systems of the country. Copyright © 2016 SESPAS. Published by Elsevier Espana. All rights reserved.
Knowledge Acquisition for the Onboard Planner of an Autonomous Spacecraft
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Rajan, Kanna
1997-01-01
This paper discusses the knowledge acquisition issues involved in transitioning their novel technology in to space flight software, developing the planer in the context of a large software projet and completing the work under a compressed development schedule.
The Challenge of Planning and Execution for Spacecraft Mobile Robots
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Gawdiak, Yuri; Clancy, Daniel (Technical Monitor)
2002-01-01
The need for spacecraft mobile robots continues to grow. These robots offer the potential to increase the capability, productivity, and duration of space missions while decreasing mission risk and cost. Spacecraft Mobile Robots (SMRs) can serve a number of functions inside and outside of spacecraft from simpler tasks, such as performing visual diagnostics and crew support, to more complex tasks, such as performing maintenance and in-situ construction. One of the predominant challenges to deploying SMRs is to reduce the need for direct operator interaction. Teleoperation is often not practical due to the communication latencies incurred because of the distances involved and in many cases a crewmember would directly perform a task rather than teleoperate a robot to do it. By integrating a mixed-initiative constraint-based planner with an executive that supports adjustably autonomous control, we intend to demonstrate the feasibility of autonomous SMRs by deploying one inside the International Space Station (ISS) and demonstrate in simulation one that operates outside of the ISS. This paper discusses the progress made at NASA towards this end, the challenges ahead, and concludes with an invitation to the research community to participate.
2016-05-26
Footnote in History: Sixth Army Group Operations in the Second World War and Lessons for Contemporary Planners A Monograph...Lessons for Contemporary Planners 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Rebecca E. Beard, MAJ, U.S...History: Sixth Army Group Operations in the Second World War and Lessons for Contemporary Planners Approved by: , Monograph Director
Handling Trajectory Uncertainties for Airborne Conflict Management
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.
2005-01-01
Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.
Airborne Tactical Intent-Based Conflict Resolution Capability
NASA Technical Reports Server (NTRS)
Wing, David J.; Vivona, Robert A.; Roscoe, David A.
2009-01-01
Trajectory-based operations with self-separation involve the aircraft taking the primary role in the management of its own trajectory in the presence of other traffic. In this role, the flight crew assumes the responsibility for ensuring that the aircraft remains separated from all other aircraft by at least a minimum separation standard. These operations are enabled by cooperative airborne surveillance and by airborne automation systems that provide essential monitoring and decision support functions for the flight crew. An airborne automation system developed and used by NASA for research investigations of required functionality is the Autonomous Operations Planner. It supports the flight crew in managing their trajectory when responsible for self-separation by providing monitoring and decision support functions for both strategic and tactical flight modes. The paper focuses on the latter of these modes by describing a capability for tactical intent-based conflict resolution and its role in a comprehensive suite of automation functions supporting trajectory-based operations with self-separation.
Test oracle automation for V&V of an autonomous spacecraft's planner
NASA Technical Reports Server (NTRS)
Feather, M. S.; Smith, B.
2001-01-01
We built automation to assist the software testing efforts associated with the Remote Agent experiment. In particular, our focus was upon introducing test oracles into the testing of the planning and scheduling system component. This summary is intended to provide an overview of the work.
Model Checking the Remote Agent Planner
NASA Technical Reports Server (NTRS)
Khatib, Lina; Muscettola, Nicola; Havelund, Klaus; Norvig, Peter (Technical Monitor)
2001-01-01
This work tackles the problem of using Model Checking for the purpose of verifying the HSTS (Scheduling Testbed System) planning system. HSTS is the planner and scheduler of the remote agent autonomous control system deployed in Deep Space One (DS1). Model Checking allows for the verification of domain models as well as planning entries. We have chosen the real-time model checker UPPAAL for this work. We start by motivating our work in the introduction. Then we give a brief description of HSTS and UPPAAL. After that, we give a sketch for the mapping of HSTS models into UPPAAL and we present samples of plan model properties one may want to verify.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship s flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm s design, along with mathematical models of the algorithm s performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Roscoe, David A.; DePascale, Stephen M.; Consiglio, Maria
2009-01-01
The Autonomous Operations Planner, a research prototype flight-deck decision support tool to enable airborne self-separation, uses a pattern-based genetic algorithm to resolve predicted conflicts between the ownship and traffic aircraft. Conflicts are resolved by modifying the active route within the ownship's flight management system according to a predefined set of maneuver pattern templates. The performance of this pattern-based genetic algorithm was evaluated in the context of batch-mode Monte Carlo simulations running over 3600 flight hours of autonomous aircraft in en-route airspace under conditions ranging from typical current traffic densities to several times that level. Encountering over 8900 conflicts during two simulation experiments, the genetic algorithm was able to resolve all but three conflicts, while maintaining a required time of arrival constraint for most aircraft. Actual elapsed running time for the algorithm was consistent with conflict resolution in real time. The paper presents details of the genetic algorithm's design, along with mathematical models of the algorithm's performance and observations regarding the effectiveness of using complimentary maneuver patterns when multiple resolutions by the same aircraft were required.
Autonomous Planning and Replanning for Mine-Sweeping Unmanned Underwater Vehicles
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.
2010-01-01
This software generates high-quality plans for carrying out mine-sweeping activities under resource constraints. The autonomous planning and replanning system for unmanned underwater vehicles (UUVs) takes as input a set of prioritized mine-sweep regions, and a specification of available UUV resources including available battery energy, data storage, and time available for accomplishing the mission. Mine-sweep areas vary in location, size of area to be swept, and importance of the region. The planner also works with a model of the UUV, as well as a model of the power consumption of the vehicle when idle and when moving.
Navy Operational Planner: Anti-Submarine Warfare with Time-Dependent Performance
2017-09-01
PLANNER: ANTI-SUBMARINE WARFARE WITH TIME -DEPENDENT PERFORMANCE by Anthony M. Baldessari September 2017 Thesis Advisor: W. Matthew...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE NAVY OPERATIONAL PLANNER: ANTI-SUBMARINE WARFARE WITH TIME -DEPENDENT
Integrated guidance and control for microsatellite real-time automated proximity operations
NASA Astrophysics Data System (ADS)
Chen, Ying; He, Zhen; Zhou, Ding; Yu, Zhenhua; Li, Shunli
2018-07-01
This paper investigates the trajectory planning and control of autonomous spacecraft proximity operations with impulsive dynamics. A new integrated guidance and control scheme is developed to perform automated close-range rendezvous for underactuated microsatellites. To efficiently prevent collision, a modified RRT* trajectory planning algorithm is proposed under this context. Several engineering constraints such as collision avoidance, plume impingement, field of view and control feasibility are considered simultaneously. Then, the feedback controller that employs a turn-burn-turn strategy with a combined impulsive orbital control and finite-time attitude control is designed to ensure the implementation of planned trajectory. Finally, the performance of trajectory planner and controller are evaluated through numerical tests. Simulation results indicate the real-time implementability of the proposed integrated guidance and control scheme with position control error less than 0.5 m and velocity control error less than 0.05 m/s. Consequently, the proposed scheme offers the potential for wide applications, such as on-orbit maintenance, space surveillance and debris removal.
A continuous function model for path prediction of entities
NASA Astrophysics Data System (ADS)
Nanda, S.; Pray, R.
2007-04-01
As militaries across the world continue to evolve, the roles of humans in various theatres of operation are being increasingly targeted by military planners for substitution with automation. Forward observation and direction of supporting arms to neutralize threats from dynamic adversaries is one such example. However, contemporary tracking and targeting systems are incapable of serving autonomously for they do not embody the sophisticated algorithms necessary to predict the future positions of adversaries with the accuracy offered by the cognitive and analytical abilities of human operators. The need for these systems to incorporate methods characterizing such intelligence is therefore compelling. In this paper, we present a novel technique to achieve this goal by modeling the path of an entity as a continuous polynomial function of multiple variables expressed as a Taylor series with a finite number of terms. We demonstrate the method for evaluating the coefficient of each term to define this function unambiguously for any given entity, and illustrate its use to determine the entity's position at any point in time in the future.
Reasoning and planning in dynamic domains: An experiment with a mobile robot
NASA Technical Reports Server (NTRS)
Georgeff, M. P.; Lansky, A. L.; Schoppers, M. J.
1987-01-01
Progress made toward having an autonomous mobile robot reason and plan complex tasks in real-world environments is described. To cope with the dynamic and uncertain nature of the world, researchers use a highly reactive system to which is attributed attitudes of belief, desire, and intention. Because these attitudes are explicitly represented, they can be manipulated and reasoned about, resulting in complex goal-directed and reflective behaviors. Unlike most planning systems, the plans or intentions formed by the system need only be partly elaborated before it decides to act. This allows the system to avoid overly strong expectations about the environment, overly constrained plans of action, and other forms of over-commitment common to previous planners. In addition, the system is continuously reactive and has the ability to change its goals and intentions as situations warrant. Thus, while the system architecture allows for reasoning about means and ends in much the same way as traditional planners, it also posseses the reactivity required for survival in complex real-world domains. The system was tested using SRI's autonomous robot (Flakey) in a scenario involving navigation and the performance of an emergency task in a space station scenario.
An Architecture for Autonomic Web Service Process Planning
NASA Astrophysics Data System (ADS)
Moore, Colm; Xue Wang, Ming; Pahl, Claus
Web service composition is a technology that has received considerable attention in the last number of years. Languages and tools to aid in the process of creating composite Web services have been received specific attention. Web service composition is the process of linking single Web services together in order to accomplish more complex tasks. One area of Web service composition that has not received as much attention is the area of dynamic error handling and re-planning, enabling autonomic composition. Given a repository of service descriptions and a task to complete, it is possible for AI planners to automatically create a plan that will achieve this goal. If however a service in the plan is unavailable or erroneous the plan will fail. Motivated by this problem, this paper suggests autonomous re-planning as a means to overcome dynamic problems. Our solution involves automatically recovering from faults and creating a context-dependent alternate plan. We present an architecture that serves as a basis for the central activities autonomous composition, monitoring and fault handling.
Immune systems are not just for making you feel better: they are for controlling autonomous robots
NASA Astrophysics Data System (ADS)
Rosenblum, Mark
2005-05-01
The typical algorithm for robot autonomous navigation in off-road complex environments involves building a 3D map of the robot's surrounding environment using a 3D sensing modality such as stereo vision or active laser scanning, and generating an instantaneous plan to navigate around hazards. Although there has been steady progress using these methods, these systems suffer from several limitations that cannot be overcome with 3D sensing and planning alone. Geometric sensing alone has no ability to distinguish between compressible and non-compressible materials. As a result, these systems have difficulty in heavily vegetated environments and require sensitivity adjustments across different terrain types. On the planning side, these systems have no ability to learn from their mistakes and avoid problematic environmental situations on subsequent encounters. We have implemented an adaptive terrain classification system based on the Artificial Immune System (AIS) computational model, which is loosely based on the biological immune system, that combines various forms of imaging sensor inputs to produce a "feature labeled" image of the scene categorizing areas as benign or detrimental for autonomous robot navigation. Because of the qualities of the AIS computation model, the resulting system will be able to learn and adapt on its own through interaction with the environment by modifying its interpretation of the sensor data. The feature labeled results from the AIS analysis are inserted into a map and can then be used by a planner to generate a safe route to a goal point. The coupling of diverse visual cues with the malleable AIS computational model will lead to autonomous robotic ground vehicles that require less human intervention for deployment in novel environments and more robust operation as a result of the system's ability to improve its performance through interaction with the environment.
Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps
Bowen, Chris; Ye, Gu; Alterovitz, Ron
2015-01-01
In unstructured environments in people’s homes and workspaces, robots executing a task may need to avoid obstacles while satisfying task motion constraints, e.g., keeping a plate of food level to avoid spills or properly orienting a finger to push a button. We introduce a sampling-based method for computing motion plans that are collision-free and minimize a cost metric that encodes task motion constraints. Our time-dependent cost metric, learned from a set of demonstrations, encodes features of a task’s motion that are consistent across the demonstrations and, hence, are likely required to successfully execute the task. Our sampling-based motion planner uses the learned cost metric to compute plans that simultaneously avoid obstacles and satisfy task constraints. The motion planner is asymptotically optimal and minimizes the Mahalanobis distance between the planned trajectory and the distribution of demonstrations in a feature space parameterized by the locations of task-relevant objects. The motion planner also leverages the distribution of the demonstrations to significantly reduce plan computation time. We demonstrate the method’s effectiveness and speed using a small humanoid robot performing tasks requiring both obstacle avoidance and satisfaction of learned task constraints. Note to Practitioners Motivated by the desire to enable robots to autonomously operate in cluttered home and workplace environments, this paper presents an approach for intuitively training a robot in a manner that enables it to repeat the task in novel scenarios and in the presence of unforeseen obstacles in the environment. Based on user-provided demonstrations of the task, our method learns features of the task that are consistent across the demonstrations and that we expect should be repeated by the robot when performing the task. We next present an efficient algorithm for planning robot motions to perform the task based on the learned features while avoiding obstacles. We demonstrate the effectiveness of our motion planner for scenarios requiring transferring a powder and pushing a button in environments with obstacles, and we plan to extend our results to more complex tasks in the future. PMID:26279642
Charles W. McHugh; Stu Hoyt; Brett Fay
2015-01-01
The Strategic Operational Planner (SOPL) wildland fire management position was created in the United States in 2009 to reflect updated terminology. SOPL merges the former Fire Use Manager positions (FUM1 and FUM2) and is now an established position within the Incident Command System. Traditionally, the FUM positions and the SOPL have been used on incidents managed for...
TARDEC's Intelligent Ground Systems overview
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2009-05-01
The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.
Mars Exploration Rover Operations with the Science Activity Planner
NASA Technical Reports Server (NTRS)
Jeffrey S. Norris; Powell, Mark W.; Vona, Marsette A.; Backes, Paul G.; Wick, Justin V.
2005-01-01
The Science Activity Planner (SAP) is the primary science operations tool for the Mars Exploration Rover mission and NASA's Software of the Year for 2004. SAP utilizes a variety of visualization and planning capabilities to enable the mission operations team to direct the activities of the Spirit and Opportunity rovers. This paper outlines some of the challenging requirements that drove the design of SAP and discusses lessons learned from the development and use of SAP in mission operations.
Robot Trajectories Comparison: A Statistical Approach
Ansuategui, A.; Arruti, A.; Susperregi, L.; Yurramendi, Y.; Jauregi, E.; Lazkano, E.; Sierra, B.
2014-01-01
The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot. Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an example, to compare two different motion planners, FM2 and WaveFront, using different environments, robots, and local planners. PMID:25525618
Revitalizing Nuclear Operations in the Joint Environment
2014-02-01
height of the Cold War, US schol - ars and joint operational planners were working simultaneously on weapons development and operational art to employ...leadership’s large-target- category withholds thought necessary to maintain stability in a strategic crisis. The inclusion of nuclear effects and...escalation. The inclusion of these points in tomorrow’s doctrine as well as an intellec- tual discussion on the topic will inform Joint Staff planners
Multiresolution motion planning for autonomous agents via wavelet-based cell decompositions.
Cowlagi, Raghvendra V; Tsiotras, Panagiotis
2012-10-01
We present a path- and motion-planning scheme that is "multiresolution" both in the sense of representing the environment with high accuracy only locally and in the sense of addressing the vehicle kinematic and dynamic constraints only locally. The proposed scheme uses rectangular multiresolution cell decompositions, efficiently generated using the wavelet transform. The wavelet transform is widely used in signal and image processing, with emerging applications in autonomous sensing and perception systems. The proposed motion planner enables the simultaneous use of the wavelet transform in both the perception and in the motion-planning layers of vehicle autonomy, thus potentially reducing online computations. We rigorously prove the completeness of the proposed path-planning scheme, and we provide numerical simulation results to illustrate its efficacy.
ESSOPE: Towards S/C operations with reactive schedule planning
NASA Technical Reports Server (NTRS)
Wheadon, J.
1993-01-01
The ESSOPE is a prototype front-end tool running on a Sun workstation and interfacing to ESOC's MSSS spacecraft control system for the exchange of telecommand requests (to MSSS) and telemetry reports (from MSSS). ESSOPE combines an operations Planner-Scheduler, with a Schedule Execution Control function. Using an internal 'model' of the spacecraft, the Planner generates a schedule based on utilization requests for a variety of payload services by a community of Olympus users, and incorporating certain housekeeping operations. Conflicts based on operational constraints are automatically resolved, by employing one of several available strategies. The schedule is passed to the execution function which drives MSSS to perform it. When the schedule can no longer be met, either because the operator interferes (by delays or changes of requirements), or because ESSOPE has recognized some spacecraft anomalies, the Planner produces a modified schedule maintaining the on-going procedures as far as consistent with the new constraints or requirements.
ERIC Educational Resources Information Center
Bahry, Stephen A.
2012-01-01
While quality in education has long been a significant issue, definitions of quality are often taken for granted rather than argued for, allowing the possibility that the criteria used by researchers and planners to judge quality may differ from local stakeholders' perspectives, particularly regarding the place within quality education of the…
2007-01-22
requirements for the degree of Master of Science, Plan II. Approval for the Report and Comprehensive Examination: Committee: Professor S. Shankar Sastry...13 2.4 Plans for the high-level planner. . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Idealized flight for purposes of analyzing...Stamping In order to use the RMFPP algorithm, we must first motion stamp each image, i.e. de - termine the orientation and position of the camera when
Demonstration of a Spoken Dialogue Interface for Planning Activities of a Semi-autonomous Robot
NASA Technical Reports Server (NTRS)
Dowding, John; Frank, Jeremy; Hockey, Beth Ann; Jonsson, Ari; Aist, Gregory
2002-01-01
Planning and scheduling in the face of uncertainty and change pushes the capabilities of both planning and dialogue technologies by requiring complex negotiation to arrive at a workable plan. Planning for use of semi-autonomous robots involves negotiation among multiple participants with competing scientific and engineering goals to co-construct a complex plan. In NASA applications this plan construction is done under severe time pressure so having a dialogue interface to the plan construction tools can aid rapid completion of the process. But, this will put significant demands on spoken dialogue technology, particularly in the areas of dialogue management and generation. The dialogue interface will need to be able to handle the complex dialogue strategies that occur in negotiation dialogues, including hypotheticals and revisions, and the generation component will require an ability to summarize complex plans. This demonstration will describe a work in progress towards building a spoken dialogue interface to the EUROPA planner for the purposes of planning and scheduling the activities of a semi-autonomous robot. A prototype interface has been built for planning the schedule of the Personal Satellite Assistant (PSA), a mobile robot designed for micro-gravity environments that is intended for use on the Space Shuttle and International Space Station. The spoken dialogue interface gives the user the capability to ask for a description of the plan, ask specific questions about the plan, and update or modify the plan. We anticipate that a spoken dialogue interface to the planner will provide a natural augmentation or alternative to the visualization interface, in situations in which the user needs very targeted information about the plan, in situations where natural language can express complex ideas more concisely than GUI actions, or in situations in which a graphical user interface is not appropriate.
2015-03-01
wine warfare NCC naval component commander NFC numbered fleet commander NM nautical mile NMP Navy mission planner NOP Navy...principles for naval component commanders ( NCCs ), numbered fleet commanders (NFCs) or joint force maritime component commanders (JFMCCs) and their
Developing a General Framework for Human Autonomy Teaming
NASA Technical Reports Server (NTRS)
Lachter, Joel; Brandt, Summer; Shively, Jay
2017-01-01
Automation has entered nearly every aspect of our lives, but it often remains hard to understand. Why is this? Automation is often brittle, requiring constant human oversight to assure it operates as intended. This oversight has become harder as automation has become more complicated. To resolve this problem, Human-Autonomy Teaming (HAT) has been proposed. HAT looks to make automation act as more of a teammate, by having it communicate with human operators in a more human, goal-directed, manner which provides transparency into the reasoning behind automated recommendations and actions. This, in turn, permits more trust in the automation when it is appropriate, and less when it is not, allowing a more targeted supervision of automated functions. This paper proposes a framework for HAT, incorporating two key tenets: bi-directional communication, and operator directed authority. We have successfully applied these tenets to integrating the autonomous constrained flight planner (an aide for planning diverts) into a dispatch station. We propose the development of general design patterns that may allow these results to be generalized to domains such as photography and automotive navigation. While these domains are very different, we find application of our HAT tenets provides a number of opportunities for improving interaction between human operators and automation.
An Efficient Missile Loadout Planning Tool for Operational Planners
2017-06-01
defense. Two cases were explored : one in which combat air patrol (CAP) was able to assist against the attack, and one without such assets. Dugan (2007...the Navy Operational Planner (NOP) to help decision makers with maritime operational planning. His work explores our Navy’s capability to accomplish...the elitist strategy of genetic algorithms. This strategy forms each new generation as a mix of the elite, or best, solutions carried over from
2007-05-10
planners will also benefit from experiencing the regimented military decision - making process and working with experienced operational planners. This...picture of the disaster area for the senior decision -makers, duplication of efforts, gaps in addressing requests for assistance, and the inefficient...Guard Atlantic Area. Interview by author, 25 March 2007. Mr. Doane stated that the JTF operated “in a vacuum” and “outside the inter-agency decision
Operational Art and its Relevance to Army Logisticians
1999-12-06
essence. Chapter two describes how the operational planner synthesizes the problem environment and merges the " art " and " science " of war through...catalyst that merges application of science and theory into " art ." The planner must also possess personal attributes that allow application to be...synergize (instead of dictate) the merging of science and art . be an expert at applying MDMP.. .not enslaved by it. absorb the construct of operational art
The Dragon’s Rise from the Sea
2014-05-22
diplomatic engagements. The PLAN sent elements of is force to numerous places to include Russia, Europe, India, Latin America , Southeast Asia, Australia...significant diplomatic measures, US operational planners have several military options that come with some degree of associated risk . 15. SUBJECT...requires significant diplomatic measures, US operational planners have several military options that come with some degree of associated risk
Model-Unified Planning and Execution for Distributed Autonomous System Control
NASA Technical Reports Server (NTRS)
Aschwanden, Pascal; Baskaran, Vijay; Bernardini, Sara; Fry, Chuck; Moreno, Maria; Muscettola, Nicola; Plaunt, Chris; Rijsman, David; Tompkins, Paul
2006-01-01
The Intelligent Distributed Execution Architecture (IDEA) is a real-time architecture that exploits artificial intelligence planning as the core reasoning engine for interacting autonomous agents. Rather than enforcing separate deliberation and execution layers, IDEA unifies them under a single planning technology. Deliberative and reactive planners reason about and act according to a single representation of the past, present and future domain state. The domain state behaves the rules dictated by a declarative model of the subsystem to be controlled, internal processes of the IDEA controller, and interactions with other agents. We present IDEA concepts - modeling, the IDEA core architecture, the unification of deliberation and reaction under planning - and illustrate its use in a simple example. Finally, we present several real-world applications of IDEA, and compare IDEA to other high-level control approaches.
1988-04-11
Monograph Director I. Lieutenant Colonel Charles D. Daves , M.S. l, e ’- i % 4 ’- Director, School of Colonel L.D. Holder, M.A. Advanced Military...operations within the campaign plan. Phase I (1 April-30 June 1945) envisioned American forces seizing airfields and anchorages in the Bonin and...occupied as a result of operations commencing December 1944. Additionally, the planners relied on the seizure of Iwo Jima in the Bonin islands and the
The Impact of Human-Automation Collaboration in Decentralized Multiple Unmanned Vehicle Control
2011-01-01
based decentralized auctions for robust task allocation ,[ IEEE Trans. Robot., vol. 25, no. 4, pp...operators can aid such systems by bringing their knowledge- based reasoning and experience to bear. Given a decentralized task planner and a goal- based ...experience to bear. Given a decentralized task planner and a goal- based operator interface for a network of unmanned vehicles in a search, track,
Visualizing railroad operations : a tool for planning and monitoring railroad traffic
DOT National Transportation Integrated Search
2009-01-01
This report provides an overview of the development and technology transfer of the Railroad Traffic Planner application, a visualization tool with string line diagrams that show train positions over time. The Railroad Traffic Planner provides support...
Autonomous path-planning navigation system for site characterization
NASA Astrophysics Data System (ADS)
Rankin, Arturo L.; Crane, Carl D., III; Armstrong, David G., II; Nease, Allen D.; Brown, H. Edward
1996-05-01
The location and removal of buried munitions is an important yet hazardous task. Current development is aimed at performing both the ordnance location and removal tasks autonomously. An autonomous survey vehicle (ASV) named the Gator has been developed at the Center for Intelligent Machines and Robotics, under the direction of Wright Laboratory, Tyndall Air Force Base, Florida, and the Navy Explosive Ordnance Disposal Technology Division, Indian Head, Maryland. The primary task of the survey vehicle is to autonomously traverse an off-road site, towing behind it a trailer containing a sensor package capable of characterizing the sub-surface contents. Achieving 00 percent coverage of the site is critical to fully characterizing the site. This paper presents a strategy for planning efficient paths for the survey vehicle that guarantees near-complete coverage of a site. A small library of three in-house developed path planners are reviewed. A strategy is also presented to keep the trailer on-path and to calculate the percent of coverage of a site with a resolution of 0.01 m2. All of the algorithms discussed in this paper were initially developed in simulation on a Silicon Graphics computer and subsequently implemented on the survey vehicle.
Towards Autonomous Operation of Robonaut 2
NASA Technical Reports Server (NTRS)
Badger, Julia M.; Hart, Stephen W.; Yamokoski, J. D.
2011-01-01
The Robonaut 2 (R2) platform, as shown in Figure 1, was designed through a collaboration between NASA and General Motors to be a capable robotic assistant with the dexterity similar to a suited astronaut [1]. An R2 robot was sent to the International Space Station (ISS) in February 2011 and, in doing so, became the first humanoid robot in space. Its capabilities are presently being tested and expanded to increase its usefulness to the crew. Current work on R2 includes the addition of a mobility platform to allow the robot to complete tasks (such as cleaning, maintenance, or simple construction activities) both inside and outside of the ISS. To support these new activities, R2's software architecture is being developed to provide efficient ways of programming robust and autonomous behavior. In particular, a multi-tiered software architecture is proposed that combines principles of low-level feedback control with higher-level planners that accomplish behavioral goals at the task level given the run-time context, user constraints, the health of the system, and so on. The proposed architecture is shown in Figure 2. At the lowest-level, the resource level, there exists the various sensory and motor signals available to the system. The sensory signals for a robot such as R2 include multiple channels of force/torque data, joint or Cartesian positions calculated through the robot's proprioception, and signals derived from objects observable by its cameras.
Suffering What They Must: The Shifting Alliances of Romania and Finland in World War II
2015-05-01
operational artist considers these theories in understanding an environment. However, the military planner then must apply that knowledge to...understanding a specific strategic environment, and then translate that knowledge into conceptual and detailed plans for military operations. The stories of...situation where military planners of a small nation could leverage their knowledge of a strategic environment to anticipate change and plan accordingly
Autonomous Vehicles: Disengagements, Accidents and Reaction Times.
Dixit, Vinayak V; Chand, Sai; Nair, Divya J
2016-01-01
Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.
Autonomous Vehicles: Disengagements, Accidents and Reaction Times
Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.
2016-01-01
Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566
Automated control of hierarchical systems using value-driven methods
NASA Technical Reports Server (NTRS)
Pugh, George E.; Burke, Thomas E.
1990-01-01
An introduction is given to the Value-driven methodology, which has been successfully applied to solve a variety of difficult decision, control, and optimization problems. Many real-world decision processes (e.g., those encountered in scheduling, allocation, and command and control) involve a hierarchy of complex planning considerations. For such problems it is virtually impossible to define a fixed set of rules that will operate satisfactorily over the full range of probable contingencies. Decision Science Applications' value-driven methodology offers a systematic way of automating the intuitive, common-sense approach used by human planners. The inherent responsiveness of value-driven systems to user-controlled priorities makes them particularly suitable for semi-automated applications in which the user must remain in command of the systems operation. Three examples of the practical application of the approach in the automation of hierarchical decision processes are discussed: the TAC Brawler air-to-air combat simulation is a four-level computerized hierarchy; the autonomous underwater vehicle mission planning system is a three-level control system; and the Space Station Freedom electrical power control and scheduling system is designed as a two-level hierarchy. The methodology is compared with rule-based systems and with other more widely-known optimization techniques.
NASA Technical Reports Server (NTRS)
Maris, John
2015-01-01
NASA's Traffic Aware Planner (TAP) is a cockpit decision support tool that provides aircrew with vertical and lateral flight-path optimizations with the intent of achieving significant fuel and time savings, while automatically avoiding traffic, weather, and restricted airspace conflicts. A key step towards the maturation and deployment of TAP concerned its operational evaluation in a representative flight environment. This Systems Engineering Management Plan (SEMP) addresses the test-vehicle design, systems integration, and flight-test planning for the first TAP operational flight evaluations, which were successfully completed in November 2013. The trial outcomes are documented in the Traffic Aware Planner (TAP) flight evaluation paper presented at the 14th AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA. (AIAA-2014-2166, Maris, J. M., Haynes, M. A., Wing, D. J., Burke, K. A., Henderson, J., & Woods, S. E., 2014).
Effects of Transparency on Pilot Trust and Agreement in the Autonomous Constrained Flight Planner
NASA Technical Reports Server (NTRS)
Sadler, Garrett; Battiste, Henri; Ho, Nhut; Hoffmann, Lauren; Lyons, Joseph; Johnson, Walter; Shively, Robert; Smith, David
2016-01-01
We performed a human-in-the-loop study to explore the role of transparency in engendering trust and reliance within highly automated systems. Specifically, we examined how transparency impacts trust in and reliance upon the Autonomous Constrained Flight Planner (ACFP), a critical automated system being developed as part of NASA's Reduced Crew Operations (RCO) Concept. The ACFP is designed to provide an enhanced ground operator, termed a super dispatcher, with recommended diversions for aircraft when their primary destinations are unavailable. In the current study, 12 commercial transport rated pilots who played the role of super dispatchers were given six time-pressured all land scenarios where they needed to use the ACFP to determine diversions for multiple aircraft. Two factors were manipulated. The primary factor was level of transparency. In low transparency scenarios the pilots were given a recommended airport and runway, plus basic information about the weather conditions, the aircraft types, and the airport and runway characteristics at that and other airports. In moderate transparency scenarios the pilots were also given a risk evaluation for the recommended airport, and for the other airports if they requested it. In the high transparency scenario additional information including the reasoning for the risk evaluations was made available to the pilots. The secondary factor was level of risk, either high or low. For high-risk aircraft, all potential diversions were rated as highly risky, with the ACFP giving the best option for a bad situation. For low-risk aircraft the ACFP found only low-risk options for the pilot. Both subjective and objective measures were collected, including rated trust, whether the pilots checked the validity of the automation recommendation, and whether the pilots eventually flew to the recommended diversion airport. Key results show that: 1) Pilots trust increased with higher levels of transparency, 2) Pilots were more likely to verify ACFPs recommendations with low levels of transparency and when risk was high, 3) Pilots were more likely to explore other options from the ACFP in low transparency conditions and when risk was high, and 4) Pilots decision to accept or reject ACFPs recommendations increased as a function of the transparency in the explanation. The finding that higher levels of transparency was coupled with higher levels of trust, a lower need to verify other options, and higher levels of agreement with ACFP recommendations, confirms the importance of transparency in aiding reliance on automated recommendations. Additional analyses of qualitative data gathered from subjects through surveys and during debriefing interviews also provided the basis for new design recommendations for the ACFP.
[Learning strategies of autonomous medical students].
Márquez U, Carolina; Fasce H, Eduardo; Ortega B, Javiera; Bustamante D, Carolina; Pérez V, Cristhian; Ibáñez G, Pilar; Ortiz M, Liliana; Espinoza P, Camila; Bastías V, Nancy
2015-12-01
Understanding how autonomous students are capable of regulating their own learning process is essential to develop self-directed teaching methods. To understand how self-directed medical students approach learning in medical schools at University of Concepción, Chile. A qualitative and descriptive study, performed according to Grounded Theory guidelines, following Strauss & Corbin was performed. Twenty medical students were selected by the maximum variation sampling method. The data collection technique was carried out by a semi-structured thematic interview. Students were interviewed by researchers after an informed consent procedure. Data were analyzed by the open coding method using Atlas-ti 7.5.2 software. Self-directed learners were characterized by being good planners and managing their time correctly. Students performed a diligent selection of contents to study based on reliable literature sources, theoretical relevance and type of evaluation. They also emphasized the discussion of clinical cases, where theoretical contents can be applied. This modality allows them to gain a global view of theoretical contents, to verbalize knowledge and to obtain a learning feedback. The learning process of autonomous students is intentional and planned.
Operations mission planner beyond the baseline
NASA Technical Reports Server (NTRS)
Biefeld, Eric; Cooper, Lynne
1991-01-01
The scheduling of Space Station Freedom must satisfy four major requirements. It must ensure efficient housekeeping operations, maximize the collection of science, respond to changes in tasking and available resources, and accommodate the above changes in a manner that minimizes disruption of the ongoing operations of the station. While meeting these requirements the scheduler must cope with the complexity, scope, and flexibility of SSF operations. This requires the scheduler to deal with an astronomical number of possible schedules. The Operations Mission Planner (OMP) is centered around minimally disruptive replanning and the use of heuristics limit search in scheduling. OMP has already shown several artificial intelligence based scheduling techniques such as Interleaved Iterative Refinement and Bottleneck Identification using Process Chronologies.
Wang, Huan; Dong, Peng; Liu, Hongcheng; Xing, Lei
2017-02-01
Current treatment planning remains a costly and labor intensive procedure and requires multiple trial-and-error adjustments of system parameters such as the weighting factors and prescriptions. The purpose of this work is to develop an autonomous treatment planning strategy with effective use of prior knowledge and in a clinically realistic treatment planning platform to facilitate radiation therapy workflow. Our technique consists of three major components: (i) a clinical treatment planning system (TPS); (ii) a formulation of decision-function constructed using an assemble of prior treatment plans; (iii) a plan evaluator or decision-function and an outer-loop optimization independent of the clinical TPS to assess the TPS-generated plan and to drive the search toward a solution optimizing the decision-function. Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines for querying and interacting with the TPS. These subroutines are called back in the outer-loop optimization program to navigate the plan selection process through the solution space iteratively. The utility of the approach is demonstrated by using clinical prostate and head-and-neck cases. An autonomous treatment planning technique with effective use of an assemble of prior treatment plans is developed to automatically maneuver the clinical treatment planning process in the platform of a commercial TPS. The process mimics the decision-making process of a human planner and provides a clinically sensible treatment plan automatically, thus reducing/eliminating the tedious manual trial-and-errors of treatment planning. It is found that the prostate and head-and-neck treatment plans generated using the approach compare favorably with that used for the patients' actual treatments. Clinical inverse treatment planning process can be automated effectively with the guidance of an assemble of prior treatment plans. The approach has the potential to significantly improve the radiation therapy workflow. © 2016 American Association of Physicists in Medicine.
A vision system planner for increasing the autonomy of the Extravehicular Activity Helper/Retriever
NASA Technical Reports Server (NTRS)
Magee, Michael
1993-01-01
The Extravehicular Activity Retriever (EVAR) is a robotic device currently being developed by the Automation and Robotics Division at the NASA Johnson Space Center to support activities in the neighborhood of the Space Shuttle or Space Station Freedom. As the name implies, the Retriever's primary function will be to provide the capability to retrieve tools and equipment or other objects which have become detached from the spacecraft, but it will also be able to rescue a crew member who may have become inadvertently de-tethered. Later goals will include cooperative operations between a crew member and the Retriever such as fetching a tool that is required for servicing or maintenance operations. This paper documents a preliminary design for a Vision System Planner (VSP) for the EVAR that is capable of achieving visual objectives provided to it by a high level task planner. Typical commands which the task planner might issue to the VSP relate to object recognition, object location determination, and obstacle detection. Upon receiving a command from the task planner, the VSP then plans a sequence of actions to achieve the specified objective using a model-based reasoning approach. This sequence may involve choosing an appropriate sensor, selecting an algorithm to process the data, reorienting the sensor, adjusting the effective resolution of the image using lens zooming capability, and/or requesting the task planner to reposition the EVAR to obtain a different view of the object. An initial version of the Vision System Planner which realizes the above capabilities using simulated images has been implemented and tested. The remaining sections describe the architecture and capabilities of the VSP and its relationship to the high level task planner. In addition, typical plans that are generated to achieve visual goals for various scenarios are discussed. Specific topics to be addressed will include object search strategies, repositioning of the EVAR to improve the quality of information obtained from the sensors, and complementary usage of the sensors and redundant capabilities.
VISUAL and SLOPE: perspective and quantitative representation of digital terrain models.
R.J. McGaughey; R.H. Twito
1988-01-01
Two computer programs to help timber-harvest planners evaluate terrain for logging operations are presented. The first program, VISUAL, produces three-dimensional perspectives of a digital terrain model. The second, SLOPE, produces map-scaled overlays delineating areas of equal slope, aspect, or elevation. Both programs help planners familiarize themselves with new...
Autonomous Science Operations Technologies for Deep Space Gateway
NASA Astrophysics Data System (ADS)
Barnes, P. K.; Haddock, A. T.; Cruzen, C. A.
2018-02-01
Autonomous Science Operations Technologies for Deep Space Gateway (DSG) is an overview of how the DSG would benefit from autonomous systems utilizing proven technologies performing telemetry monitoring and science operations.
Energy aware path planning in complex four dimensional environments
NASA Astrophysics Data System (ADS)
Chakrabarty, Anjan
This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning in ground robots. In traditional path planning problem the focus is on obstacle avoidance and navigation. The optimal Kinematic Tree algorithm named Kinematic Tree* is shown to find optimal paths to reach the destination while avoiding obstacles. A more challenging path planning scenario arises for planning in complex terrain. This research shows how the Kinematic Tree* algorithm can be extended to find minimum energy paths for a ground vehicle in difficult mountainous terrain.
Expeditionary Economics: A Future Resource for Military Planners?
2012-05-17
Monograph: Expeditionary Economics: A Future Resource for Military Planners? Approved by: __________________________________ Monograph Director Matthew J ...creation and elucidates the relationship with the operating environment. For a comprehensive review of this idea, see Antulio J . Echevarria II, The...these principles were derived, see Carl J . Schramm, "Expeditionary Economics: Spurring Growth After Conflicts and Disasters," Foreign Affairs, May
Autonomous Commanding of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They can be used as a design and implementation template by other small satellite missions interested in evolving toward autonomous and lower cost operations.
Exception handling for sensor fusion
NASA Astrophysics Data System (ADS)
Chavez, G. T.; Murphy, Robin R.
1993-08-01
This paper presents a control scheme for handling sensing failures (sensor malfunctions, significant degradations in performance due to changes in the environment, and errant expectations) in sensor fusion for autonomous mobile robots. The advantages of the exception handling mechanism are that it emphasizes a fast response to sensing failures, is able to use only a partial causal model of sensing failure, and leads to a graceful degradation of sensing if the sensing failure cannot be compensated for. The exception handling mechanism consists of two modules: error classification and error recovery. The error classification module in the exception handler attempts to classify the type and source(s) of the error using a modified generate-and-test procedure. If the source of the error is isolated, the error recovery module examines its cache of recovery schemes, which either repair or replace the current sensing configuration. If the failure is due to an error in expectation or cannot be identified, the planner is alerted. Experiments using actual sensor data collected by the CSM Mobile Robotics/Machine Perception Laboratory's Denning mobile robot demonstrate the operation of the exception handling mechanism.
2013-03-01
Approved by: W. Matthew Carlyle, Professor Thesis Advisor Walter DeGrange, CDR, SC, USN Second Reader Robert F. Dell Chair...x THIS PAGE INTENTIONALLY LEFT BLANK xi LIST OF TABLES Table 1. Disaster Relief Airlift Planner results for Malaysia cyclone scenario with...Planner results for Malaysia cyclone scenario with aircraft allocation varying
Advancing Autonomous Operations Technologies for NASA Missions
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Thompson, Jerry Todd
2013-01-01
This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce operations cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing operations cost, ameliorating inefficiencies, and mitigating catastrophic anomalies.
Observing Active Volcanism on Earth and Beyond With an Autonomous Science Investigation Capability
NASA Astrophysics Data System (ADS)
Davies, A. G.; Mjolsness, E. D.; Fink, W.; Castano, R.; Park, H. G.; Zak, M.; Burl, M. C.
2001-12-01
Operational constraints imposed by restricted downlink and long communication delays make autonomous systems a necessity for exploring dynamic processes in the Solar System and beyond. Our objective is to develop an onboard, modular, automated science analysis tool that will autonomously detect unexpected events, identify rare events at predicted sites, quantify the processes under study, and prioritize the science data and analyses as they are collected. A primary target for this capability is terrestrial active volcanism. Our integrated, science-driven command and control package represents the next stage of the automatic monitoring of volcanic activity pioneered by GOES. The resulting system will maximize science return from day-to-day instrument use and provide immediate reaction to capture the fullest information from infrequent events. For example, a sensor suite consisting of a Galileo-like multi-filter visible wavelength camera and an infrared spectrometer, can acquire high-spatial resolution data of eruptions of lava and volcanic plumes and identify large concentrations of volcanic SO2. After image/spectrum formation, software is applied to the data which is capable of change detection (in the visible and infrared), feature identification (both in imagery and spectra), and novelty detection. In this particular case, the latter module detects change in the parameter space of an advanced multi-component black-body volcanic thermal emission model by means of a novel technique called the "Grey-Box" method which analyzes time series data through a combination of deterministic and stochastic models. This approach can be demonstrated using data obtained by the Galileo spacecraft of ionian volcanism. The system autonomously identifies the most scientifically important targets and prioritizes data and analyses for return. All of these techniques have been successfully demonstrated in laboratory experiments, and are ready to be tested in an operational environment. After identification of a target of interest, an onboard planner prioritizes resources to obtain the best possible dataset of the identified process. We emphasize that the software is modular. The change detection and feature identification modules can be applied to any imaged dataset, and are not confined to volcanic targets. Applications are therefore widespread, across all NASA Enterprises. Examples include detection and quantification of extraterrestrial volcanism (Io, Triton), the monitoring of features in planetary atmospheres (Earth, Gas Giants), the ebb and flow of ices (Earth, Mars), asteriod, comet and supernova detection, change detection in magnetic fields, and identification of structure within radio outbursts.
Lessons Learned in the Livingstone 2 on Earth Observing One Flight Experiment
NASA Technical Reports Server (NTRS)
Hayden, Sandra C.; Sweet, Adam J.; Shulman, Seth
2005-01-01
The Livingstone 2 (L2) model-based diagnosis software is a reusable diagnostic tool for monitoring complex systems. In 2004, L2 was integrated with the JPL Autonomous Sciencecraft Experiment (ASE) and deployed on-board Goddard's Earth Observing One (EO-1) remote sensing satellite, to monitor and diagnose the EO-1 space science instruments and imaging sequence. This paper reports on lessons learned from this flight experiment. The goals for this experiment, including validation of minimum success criteria and of a series of diagnostic scenarios, have all been successfully net. Long-term operations in space are on-going, as a test of the maturity of the system, with L2 performance remaining flawless. L2 has demonstrated the ability to track the state of the system during nominal operations, detect simulated abnormalities in operations and isolate failures to their root cause fault. Specific advances demonstrated include diagnosis of ambiguity groups rather than a single fault candidate; hypothesis revision given new sensor evidence about the state of the system; and the capability to check for faults in a dynamic system without having to wait until the system is quiescent. The major benefits of this advanced health management technology are to increase mission duration and reliability through intelligent fault protection, and robust autonomous operations with reduced dependency on supervisory operations from Earth. The work-load for operators will be reduced by telemetry of processed state-of-health information rather than raw data. The long-term vision is that of making diagnosis available to the onboard planner or executive, allowing autonomy software to re-plan in order to work around known component failures. For a system that is expected to evolve substantially over its lifetime, as for the International Space Station, the model-based approach has definite advantages over rule-based expert systems and limit-checking fault protection systems, as these do not scale well. The model-based approach facilitates reuse of the L2 diagnostic software; only the model of the system to be diagnosed and telemetry monitoring software has to be rebuilt for a new system or expanded for a growing system. The hierarchical L2 model supports modularity and expendability, and as such is suitable solution for integrated system health management as envisioned for systems-of-systems.
Systems Architecture for Fully Autonomous Space Missions
NASA Technical Reports Server (NTRS)
Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)
2002-01-01
The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software development techniques lays the foundation for delivery of product-oriented flight software modules and models. Software can then be readily applied to support the on-board autonomy required for mission self-management. An on-board intelligent system, based on advanced scripting languages, facilitates the mission autonomy required to offload ground system resources, and enables the spacecraft to manage itself safely through an efficient and effective process of reactive planning, science data acquisition, synthesis, and transmission to the ground. Autonomous ground systems in turn coordinate and support schedule contact times with the spacecraft. Specific autonomy software modules on-board include mission and science planners, instrument and subsystem control, and fault tolerance response software, all residing within a distributed computing environment supported through the flight LAN. Autonomy also requires the minimization of human intervention between users on the ground and the spacecraft, and hence calls for the elimination of the traditional operations control center as a funnel for data manipulation. Basic goal-oriented commands are sent directly from the user to the spacecraft through a distributed internet-based payload operations "center". The ensuing architecture calls for the use of spacecraft as point extensions on the Internet. This paper will detail the system architecture implementation chosen to enable cost-effective autonomous missions with applicability to a broad range of conditions. It will define the structure needed for implementation of such missions, including software and hardware infrastructures. The overall architecture is then laid out as a common thread in the mission life cycle from formulation through implementation and flight operations.
Pilot In Command: A Feasibility Assessment of Autonomous Flight Management Operations
NASA Technical Reports Server (NTRS)
Wing, David J.; Ballin, Mark G.; Krishnamurthy, Karthik
2004-01-01
Several years of NASA research have produced the air traffic management operational concept of Autonomous Flight Management with high potential for operational feasibility, significant system and user benefits, and safety. Among the chief potential benefits are demand-adaptive or scalable capacity, user flexibility and autonomy that may finally enable truly successful business strategies, and compatibility with current-day operations such that the implementation rate can be driven from within the user community. A concept summary of Autonomous Flight Management is provided, including a description of how these operations would integrate in shared airspace with existing ground-controlled flight operations. The mechanisms enabling the primary benefits are discussed, and key findings of a feasibility assessment of airborne autonomous operations are summarized. Concept characteristics that impact safety are presented, and the potential for initially implementing Autonomous Flight Management is discussed.
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
NASA Technical Reports Server (NTRS)
Chien, S.
1994-01-01
This paper describes work on the Multimission VICAR Planner (MVP) system to automatically construct executable image processing procedures for custom image processing requests for the JPL Multimission Image Processing Lab (MIPL). This paper focuses on two issues. First, large search spaces caused by complex plans required the use of hand encoded control information. In order to address this in a manner similar to that used by human experts, MVP uses a decomposition-based planner to implement hierarchical/skeletal planning at the higher level and then uses a classical operator based planner to solve subproblems in contexts defined by the high-level decomposition.
Better Lucky Than Good: Operation Earnest Will as Gunboat Diplomacy
2007-06-01
expectations of American behavior . These factors, which are by no means easy to understand, were not carefully considered by American planners...generated by uneven distribution of oil wealth bred social resentment, which, when coupled with the Shah’s increasingly autocratic behavior , delegitimized...the event Iran responded agressively to the U.S. policy, American planners prioritized the methods with which Tehran would challenge the United States
Cold Regions Issues for Off-Road Autonomous Vehicles
2004-04-01
the operation of off-road autonomous vehicles . Low-temperature effects on lubricants, materials, and batteries can impair a robot’s ability to operate...demanding that off-road autonomous vehicles must be designed for and tested in cold regions if they are expected to operate there successfully.
Autonomous Vehicle Operation A person can operate a fully autonomous vehicle with the automated federal motor vehicle safety standards and is registered as a fully autonomous vehicle. Other conditions
Multi-Modal Active Perception for Autonomously Selecting Landing Sites on Icy Moons
NASA Technical Reports Server (NTRS)
Arora, A.; Furlong, P. M.; Wong, U.; Fong, T.; Sukkarieh, S.
2017-01-01
Selecting suitable landing sites is fundamental to achieving many mission objectives in planetary robotic lander missions. However, due to sensing limitations, landing sites which are both safe and scientifically valuable often cannot be determined reliably from orbit, particularly, in icy moon missions where orbital sensing data is noisy and incomplete. This paper presents an active perception approach to Entry Descent and Landing (EDL) which enables the lander to autonomously plan informative descent trajectories, acquire high quality sensing data during descent and exploit this additional information to select higher utility landing sites. Our approach consists of two components: probabilistic modeling of landing site features and approximate trajectory planning using a sampling based planner. The proposed framework allows the lander to plan long horizons paths and remain robust to noisy data. Results in simulated environments show large performance improvements over alternative approaches and show promise that our approach has strong potential to improve science return of not only icy moon missions but EDL systems in general.
Artificial Neural Network Based Mission Planning Mechanism for Spacecraft
NASA Astrophysics Data System (ADS)
Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying
2018-04-01
The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.
Bid opening report : Federal-aid highway construction contracts : first six months 1998
DOT National Transportation Integrated Search
1999-07-01
This document presents human factors guidelines for designers, owners operators, and planners involved in the development and operation of traffic management centers. Dimensions of the work environment affecting operator and system performance are ad...
The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations
2017-06-09
Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence
DOT National Transportation Integrated Search
1999-07-01
This document presents human factors guidelines for designers, owners operators, and planners involved in the development and operation of traffic management centers. Dimensions of the work environment affecting operator and system performance are ad...
Renewable Energy Zone (REZ) Transmission Planning Process: A Guidebook for Practitioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Nathan; Flores-Espino, Francisco; Hurlbut, David J.
Achieving clean energy goals may require new investments in transmission, especially if planners anticipate economic growth and increased demand for electricity. The renewable energy zone (REZ) transmission planning process can help policymakers ensure their infrastructure investments achieve national goals in the most economical manner. Policymakers, planners, and system operators around the world have used variations of the REZ process to chart the expansion of their transmission networks and overcome the barriers of traditional transmission planning. This guidebook seeks to help power system planners, key decision makers, and stakeholders understand and use the REZ transmission planning process to integrate transmission expansionmore » planning and renewable energy generation planning.« less
Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles
NASA Astrophysics Data System (ADS)
Cowlagi, Raghvendra V.
Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption concerning the vehicle kinematical model. We propose a hierarchical motion planning framework based on a novel mode of interaction between these two levels of planning. This interaction rests on the solution of a special shortest-path problem on graphs, namely, one using costs defined on multiple edge transitions in the path instead of the usual single edge transition costs. These costs are provided by a local trajectory generation algorithm, which we implement using model predictive control and the concept of effective target sets for simplifying the non-convex constraints involved in the problem. The proposed motion planner ensures "consistency" between the two levels of planning, i.e., a guarantee that the higher level geometric path is always associated with a kinematically and dynamically feasible trajectory. The main contributions of this thesis are: 1. A motion planning framework based on history-dependent costs (H-costs) in cell decomposition graphs for incorporating vehicle dynamical constraints: this framework offers distinct advantages in comparison with the competing approaches of discretization of the state space, of randomized sampling-based motion planning, and of local feedback-based, decoupled hierarchical motion planning, 2. An efficient and flexible algorithm for finding optimal H-cost paths, 3. A precise and general formulation of a local trajectory problem (the tile motion planning problem) that allows independent development of the discrete planner and the trajectory planner, while maintaining "compatibility" between the two planners, 4. A local trajectory generation algorithm using mpc, and the application of the concept of effective target sets for a significant simplification of the local trajectory generation problem, 5. The geometric analysis of curvature-bounded traversal of rectangular channels, leading to less conservative results in comparison with a result reported in the literature, and also to the efficient construction of effective target sets for the solution of the tile motion planning problem, 6. A wavelet-based multi-resolution path planning scheme, and a proof of completeness of the proposed scheme: such proofs are altogether absent from other works on multi-resolution path planning, 7. A technique for extracting all information about cells---namely, the locations, the sizes, and the associated image intensities---directly from the set of significant detail coefficients considered for path planning at a given iteration, and 8. The extension of the multi-resolution path planning scheme to include vehicle dynamical constraints using the aforementioned history-dependent costs approach. The future work includes an implementation of the proposed framework involving a discrete planner that solves classical planning problems more general than the single-query path planning problem considered thus far, and involving trajectory generation schemes for realistic vehicle dynamical models such as the bicycle model.
Work zone operations best practices guidebook
DOT National Transportation Integrated Search
2000-04-01
This guidebook is the first release of a resource designed to give state and local transportation agencies, construction contractors, transportation planners, trainers, and others with interest in work zone operations access to information and points...
Improving Human/Autonomous System Teaming Through Linguistic Analysis
NASA Technical Reports Server (NTRS)
Meszaros, Erica L.
2016-01-01
An area of increasing interest for the next generation of aircraft is autonomy and the integration of increasingly autonomous systems into the national airspace. Such integration requires humans to work closely with autonomous systems, forming human and autonomous agent teams. The intention behind such teaming is that a team composed of both humans and autonomous agents will operate better than homogenous teams. Procedures exist for licensing pilots to operate in the national airspace system and current work is being done to define methods for validating the function of autonomous systems, however there is no method in place for assessing the interaction of these two disparate systems. Moreover, currently these systems are operated primarily by subject matter experts, limiting their use and the benefits of such teams. Providing additional information about the ongoing mission to the operator can lead to increased usability and allow for operation by non-experts. Linguistic analysis of the context of verbal communication provides insight into the intended meaning of commonly heard phrases such as "What's it doing now?" Analyzing the semantic sphere surrounding these common phrases enables the prediction of the operator's intent and allows the interface to supply the operator's desired information.
A Unified Approach to Model-Based Planning and Execution
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Norvig, Peter (Technical Monitor)
2000-01-01
Writing autonomous software is complex, requiring the coordination of functionally and technologically diverse software modules. System and mission engineers must rely on specialists familiar with the different software modules to translate requirements into application software. Also, each module often encodes the same requirement in different forms. The results are high costs and reduced reliability due to the difficulty of tracking discrepancies in these encodings. In this paper we describe a unified approach to planning and execution that we believe provides a unified representational and computational framework for an autonomous agent. We identify the four main components whose interplay provides the basis for the agent's autonomous behavior: the domain model, the plan database, the plan running module, and the planner modules. This representational and problem solving approach can be applied at all levels of the architecture of a complex agent, such as Remote Agent. In the rest of the paper we briefly describe the Remote Agent architecture. The new agent architecture proposed here aims at achieving the full Remote Agent functionality. We then give the fundamental ideas behind the new agent architecture and point out some implication of the structure of the architecture, mainly in the area of reactivity and interaction between reactive and deliberative decision making. We conclude with related work and current status.
Autonomous Vehicle Regulations and Committee A fully autonomous vehicle is defined as a vehicle tactical control functions of the vehicle at any time.Effective December 1, 2017, the operator of a fully autonomous vehicle is not required to be licensed to operate a motor vehicle. A person may operate a fully
Very fast motion planning for highly dexterous-articulated robots
NASA Technical Reports Server (NTRS)
Challou, Daniel J.; Gini, Maria; Kumar, Vipin
1994-01-01
Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.
The Identification and Classification of Inland Ports
DOT National Transportation Integrated Search
2001-08-01
This report presents a formal definition for inland ports and creates a classification methodology to promote familiarity with inland port operations and aid transportation planners interested in supporting inland port operations. Inland ports are si...
DOT National Transportation Integrated Search
2010-04-01
This publication is a resource designed to enable transportation planners and their planning partners to build a transportation plan that includes operations objectives, performance measures, and strategies that are relevant to their region, that ref...
Advancing Autonomous Operations Technologies for NASA Missions
NASA Technical Reports Server (NTRS)
Cruzen, Craig; Thompson, Jerry T.
2013-01-01
This paper discusses the importance of implementing advanced autonomous technologies supporting operations of future NASA missions. The ability for crewed, uncrewed and even ground support systems to be capable of mission support without external interaction or control has become essential as space exploration moves further out into the solar system. The push to develop and utilize autonomous technologies for NASA mission operations stems in part from the need to reduce cost while improving and increasing capability and safety. This paper will provide examples of autonomous technologies currently in use at NASA and will identify opportunities to advance existing autonomous technologies that will enhance mission success by reducing cost, ameliorating inefficiencies, and mitigating catastrophic anomalies
Paratransit Handbook : a Guide to Paratransit Implementation : Volume 1. Parts 1-3.
DOT National Transportation Integrated Search
1979-01-01
This Paratransit Handbook has been developed to aid public officials, planners and system operators in planning, designing, implementing, operating and evaluating integrated paratransit systems. The Handbook represents a compedium of techniques and e...
Advanced avionics concepts: Autonomous spacecraft control
NASA Technical Reports Server (NTRS)
1990-01-01
A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.
NASA Astrophysics Data System (ADS)
Madani, Kaveh; Hooshyar, Milad
2014-11-01
Reservoir systems with multiple operators can benefit from coordination of operation policies. To maximize the total benefit of these systems the literature has normally used the social planner's approach. Based on this approach operation decisions are optimized using a multi-objective optimization model with a compound system's objective. While the utility of the system can be increased this way, fair allocation of benefits among the operators remains challenging for the social planner who has to assign controversial weights to the system's beneficiaries and their objectives. Cooperative game theory provides an alternative framework for fair and efficient allocation of the incremental benefits of cooperation. To determine the fair and efficient utility shares of the beneficiaries, cooperative game theory solution methods consider the gains of each party in the status quo (non-cooperation) as well as what can be gained through the grand coalition (social planner's solution or full cooperation) and partial coalitions. Nevertheless, estimation of the benefits of different coalitions can be challenging in complex multi-beneficiary systems. Reinforcement learning can be used to address this challenge and determine the gains of the beneficiaries for different levels of cooperation, i.e., non-cooperation, partial cooperation, and full cooperation, providing the essential input for allocation based on cooperative game theory. This paper develops a game theory-reinforcement learning (GT-RL) method for determining the optimal operation policies in multi-operator multi-reservoir systems with respect to fairness and efficiency criteria. As the first step to underline the utility of the GT-RL method in solving complex multi-agent multi-reservoir problems without a need for developing compound objectives and weight assignment, the proposed method is applied to a hypothetical three-agent three-reservoir system.
Systems, methods and apparatus for quiesence of autonomic safety devices with self action
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic environmental safety device may be quiesced. In at least one embodiment, a method for managing an autonomic safety device, such as a smoke detector, based on functioning state and operating status of the autonomic safety device includes processing received signals from the autonomic safety device to obtain an analysis of the condition of the autonomic safety device, generating one or more stay-awake signals based on the functioning status and the operating state of the autonomic safety device, transmitting the stay-awake signal, transmitting self health/urgency data, and transmitting environment health/urgency data. A quiesce component of an autonomic safety device can render the autonomic safety device inactive for a specific amount of time or until a challenging situation has passed.
Advanced Range Safety System for High Energy Vehicles
NASA Technical Reports Server (NTRS)
Claxton, Jeffrey S.; Linton, Donald F.
2002-01-01
The advanced range safety system project is a collaboration between the National Aeronautics and Space Administration and the United States Air Force to develop systems that would reduce costs and schedule for safety approval for new classes of unmanned high-energy vehicles. The mission-planning feature for this system would yield flight profiles that satisfy the mission requirements for the user while providing an increased quality of risk assessment, enhancing public safety. By improving the speed and accuracy of predicting risks to the public, mission planners would be able to expand flight envelopes significantly. Once in place, this system is expected to offer the flexibility of handling real-time risk management for the high-energy capabilities of hypersonic vehicles including autonomous return-from-orbit vehicles and extended flight profiles over land. Users of this system would include mission planners of Space Launch Initiative vehicles, space planes, and other high-energy vehicles. The real-time features of the system could make extended flight of a malfunctioning vehicle possible, in lieu of an immediate terminate decision. With this improved capability, the user would have more time for anomaly resolution and potential recovery of a malfunctioning vehicle.
The Jet Propulsion Laboratory shared control architecture and implementation
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad
1990-01-01
A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.
2012-06-01
This document was downloaded on August 16, 2012 at 10:14:04 Author(s) Acton, Brian E.; Taylor, David L. Title Autonomous Dirigible Airships: a ...Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation for Logistical Use in Complex Environments...2. REPORT DATE June 2012 3. REPORT TYPE AND DATES COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Autonomous Dirigible Airships: A
Towards Autonomous Airport Surface Operations: NextGen Flight Deck Implications
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky Lee; Bakowski, Deborah Lee
2017-01-01
Surface Trajectory-based Operations (STBO) is a potential concept candidate for flight deck autonomous operations. Existing research will be reviewed and possible architectures and research issues will be presented.
Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel
2014-10-22
In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems' (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach.
Drenjanac, Domagoj; Tomic, Slobodanka; Agüera, Juan; Perez-Ruiz, Manuel
2014-01-01
In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach. PMID:25340450
Paratransit Handbook : a Guide to Paratransit System Implementation volume II - parts 4 and 5
DOT National Transportation Integrated Search
1979-02-01
This Paratransit Handbook has been developed to aid public officials, planners and system operators in planning, designing, implementing, operating and evaluating integrated paratransit systems. The Handbook represents a compedium of techniques and e...
DOT National Transportation Integrated Search
2016-10-01
This report addresses the matter of autonomous vehicles and the regulation of their operation in the : state of Louisiana. It was prepared in response to a request from the Louisiana State Legislature to : study the subject of autonomous vehicles and...
Autonomous Control of Space Reactor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belle R. Upadhyaya; K. Zhao; S.R.P. Perillo
2007-11-30
Autonomous and semi-autonomous control is a key element of space reactor design in order to meet the mission requirements of safety, reliability, survivability, and life expectancy. Interrestrial nuclear power plants, human operators are avilable to perform intelligent control functions that are necessary for both normal and abnormal operational conditions.
Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue
NASA Technical Reports Server (NTRS)
Zornetzer, Steve; Gage, Douglas
2005-01-01
Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.
Agent Technology, Complex Adaptive Systems, and Autonomic Systems: Their Relationships
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Rash, James; Rouff, Chistopher; Hincheny, Mike
2004-01-01
To reduce the cost of future spaceflight missions and to perform new science, NASA has been investigating autonomous ground and space flight systems. These goals of cost reduction have been further complicated by nanosatellites for future science data-gathering which will have large communications delays and at times be out of contact with ground control for extended periods of time. This paper describes two prototype agent-based systems, the Lights-out Ground Operations System (LOGOS) and the Agent Concept Testbed (ACT), and their autonomic properties that were developed at NASA Goddard Space Flight Center (GSFC) to demonstrate autonomous operations of future space flight missions. The paper discusses the architecture of the two agent-based systems, operational scenarios of both, and the two systems autonomic properties.
A Robust Compositional Architecture for Autonomous Systems
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Deney, Ewen; Farrell, Kimberley; Giannakopoulos, Dimitra; Jonsson, Ari; Frank, Jeremy; Bobby, Mark; Carpenter, Todd; Estlin, Tara
2006-01-01
Space exploration applications can benefit greatly from autonomous systems. Great distances, limited communications and high costs make direct operations impossible while mandating operations reliability and efficiency beyond what traditional commanding can provide. Autonomous systems can improve reliability and enhance spacecraft capability significantly. However, there is reluctance to utilizing autonomous systems. In part this is due to general hesitation about new technologies, but a more tangible concern is that of reliability of predictability of autonomous software. In this paper, we describe ongoing work aimed at increasing robustness and predictability of autonomous software, with the ultimate goal of building trust in such systems. The work combines state-of-the-art technologies and capabilities in autonomous systems with advanced validation and synthesis techniques. The focus of this paper is on the autonomous system architecture that has been defined, and on how it enables the application of validation techniques for resulting autonomous systems.
An Evaluation of Potential Operating Systems for Autonomous Underwater Vehicles
2013-02-01
Remotely Operated Vehicle RTOS Real-Time Operating System SAUC -E Student Autonomous Underwater Vehicle Challenge - Europe TCP Transmission Control Protocol...popularity, with examples including the Student Autonomous Underwater Vehicle Challenge - Europe ( SAUC -E) [7] and the AUVSI robosub competition [8]. For...28] for entry into AUV competitions such as SAUC -E [7], and AUVSI [8]. 8 UNCLASSIFIED UNCLASSIFIED DSTO–TN–1194 3.4 Windows CE Windows CE
JOMAR: Joint Operations with Mobile Autonomous Robots
2015-12-21
AFRL-AFOSR-JP-TR-2015-0009 JOMAR: Joint Operations with Mobile Autonomous Robots Edwin Olson UNIVERSITY OF MICHIGAN Final Report 12/21/2015...SUBTITLE JOMAR: Joint Operations with Mobile Autonomous Robots 5a. CONTRACT NUMBER FA23861114024 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...14. ABSTRACT Under this grant, we formulated and implemented a variety of novel algorithms that address core problems in multi- robot systems. These
Intelligent (Autonomous) Power Controller Development for Human Deep Space Exploration
NASA Technical Reports Server (NTRS)
Soeder, James; Raitano, Paul; McNelis, Anne
2016-01-01
As NASAs Evolvable Mars Campaign and other exploration initiatives continue to mature they have identified the need for more autonomous operations of the power system. For current human space operations such as the International Space Station, the paradigm is to perform the planning, operation and fault diagnosis from the ground. However, the dual problems of communication lag as well as limited communication bandwidth beyond GEO synchronous orbit, underscore the need to change the operation methodology for human operation in deep space. To address this need, for the past several years the Glenn Research Center has had an effort to develop an autonomous power controller for human deep space vehicles. This presentation discusses the present roadmap for deep space exploration along with a description of conceptual power system architecture for exploration modules. It then contrasts the present ground centric control and management architecture with limited autonomy on-board the spacecraft with an advanced autonomous power control system that features ground based monitoring with a spacecraft mission manager with autonomous control of all core systems, including power. It then presents a functional breakdown of the autonomous power control system and examines its operation in both normal and fault modes. Finally, it discusses progress made in the development of a real-time power system model and how it is being used to evaluate the performance of the controller and well as using it for verification of the overall operation.
Autonomous Command Operations of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Walyus, Keith; Prior, Mike; Saylor, Richard
1999-01-01
This paper presents operational innovations which will be introduced on NASA's Wide Field Infrared Explorer (WIRE) mission. These innovations include an end-to-end design architecture for an autonomous commanding capability for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented all autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period. The key factors driving design and implementation of this capability were: 1) integration with already existing ground system autonomous capabilities and systems, 2) the desire to evolve autonomous operations capabilities based upon previous SMEX operations experience - specifically the TRACE mission, 3) integration with ground station operations - both autonomous and man-tended, 4) low cost and quick implementation, and 5) end-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed in addition to use of the TRACE mission as a testbed for autonomous commanding prior to implementation on WIRE. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They call be used as a design and implementation template by other missions interested in evolving toward autonomous and lower cost operations. Additionally, the WIRE spacecraft will be used as an operational testbed upon completion of its nominal mission later in 1999. One idea being studied is advanced on-board modeling. Advanced on-board modeling techniques will be used to more efficiently display the spacecraft state. This health and safety information could be used by engineers on the ground or could be used by tile spacecraft for its own assessments. Additionally, this same state information could also be input into the event-driven scheduling system, as the scheduling system will need to assess the spacecraft state before undertaking a new activity. Advanced modeling techniques are being evaluated for a number of NASA missions including The Next Generation Space Telescope (NGST), which is scheduled to launch in 2007.
Operation Dragoon: The Race Up the Rhone
2016-05-26
should be familiar with the exploits of the US Seventh Anny and its French allies. 1S. SUBJECT TERMS Operation Dragoon, European Theater of...the Rhone Valley, and its overall effects on the European Theater of Operations, useful lessons are drawn for both contemporary commanders and planners...57 Southern France’s Effects on the European Theater of Operations
A mission executor for an autonomous underwater vehicle
NASA Technical Reports Server (NTRS)
Lee, Yuh-Jeng; Wilkinson, Paul
1991-01-01
The Naval Postgraduate School has been conducting research into the design and testing of an Autonomous Underwater Vehicle (AUV). One facet of this research is to incrementally design a software architecture and implement it in an advanced testbed, the AUV II. As part of the high level architecture, a Mission Executor is being constructed using CLIPS (C Language Integrated Production System) version 5.0. The Mission Executor is an expert system designed to oversee progress from the AUV launch point to a goal area and back to the origin. It is expected that the executor will make informed decisions about the mission, taking into account the navigational path, the vehicle subsystem health, and the sea environment, as well as the specific mission profile which is downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted obstacles, waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a submarine captain) are required. Many of the vehicle subsystems are modeled as objects using the CLIPS Object Oriented Language (COOL) embedded in CLIPS 5.0. Also, truth maintenance is applied to the knowledge base to keep configurations updated.
Operator Informational Needs for Multiple Autonomous Small Vehicles
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal
2015-01-01
With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.
Active Collision Avoidance for Planetary Landers
NASA Technical Reports Server (NTRS)
Rickman, Doug; Hannan, Mike; Srinivasan, Karthik
2015-01-01
The use of automotive radar systems are being evaluated for collision avoidance in planetary landers. Our focus is to develop a low-cost, light-weight collision avoidance system that overcomes the drawbacks identified with optical-based systems. We also seek to complement the Autonomous Landing and Hazard Avoidance Technology system by providing mission planners an alternative system that can be used on low-cost, small robotic missions and in close approach. Our approach takes advantage of how electromagnetic radiation interacts with solids. As the wavelength increases, the sensitivity of the radiation to isolated solids of a specific particle size decreases. Thus, rocket exhaust-blown dust particles, which have major significance in visible wavelengths, have much less significance at radar wavelengths.
Trajectory Generation and Path Planning for Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto
2007-01-01
This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.
HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler
NASA Technical Reports Server (NTRS)
Hua, Hook; Mrozinski, Joseph J.; Elfes, Alberto; Adumitroaie, Virgil; Shelton, Kacie E.; Smith, Jeffrey H.; Lincoln, William P.; Weisbin, Charles R.
2012-01-01
HURON solves the problem of how to optimize a plan and schedule for assigning multiple agents to a temporal sequence of actions (e.g., science tasks). Developed as a generic planning and scheduling tool, HURON has been used to optimize space mission surface operations. The tool has also been used to analyze lunar architectures for a variety of surface operational scenarios in order to maximize return on investment and productivity. These scenarios include numerous science activities performed by a diverse set of agents: humans, teleoperated rovers, and autonomous rovers. Once given a set of agents, activities, resources, resource constraints, temporal constraints, and de pendencies, HURON computes an optimal schedule that meets a specified goal (e.g., maximum productivity or minimum time), subject to the constraints. HURON performs planning and scheduling optimization as a graph search in state-space with forward progression. Each node in the graph contains a state instance. Starting with the initial node, a graph is automatically constructed with new successive nodes of each new state to explore. The optimization uses a set of pre-conditions and post-conditions to create the children states. The Python language was adopted to not only enable more agile development, but to also allow the domain experts to easily define their optimization models. A graphical user interface was also developed to facilitate real-time search information feedback and interaction by the operator in the search optimization process. The HURON package has many potential uses in the fields of Operations Research and Management Science where this technology applies to many commercial domains requiring optimization to reduce costs. For example, optimizing a fleet of transportation truck routes, aircraft flight scheduling, and other route-planning scenarios involving multiple agent task optimization would all benefit by using HURON.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2009-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Bengochea-Guevara, José M; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela
2016-02-24
The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them.
Bengochea-Guevara, José M.; Conesa-Muñoz, Jesus; Andújar, Dionisio; Ribeiro, Angela
2016-01-01
The concept of precision agriculture, which proposes farming management adapted to crop variability, has emerged in recent years. To effectively implement precision agriculture, data must be gathered from the field in an automated manner at minimal cost. In this study, a small autonomous field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A path planner considered the field contour and the crop type to determine the best inspection route. An image-processing method capable of extracting the central crop row under uncontrolled lighting conditions in real time from images acquired with a reflex camera positioned on the front of the robot was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided navigation. A method for detecting the end of a crop row using camera-acquired images was developed. In addition, manoeuvres necessary for the robot to change rows were established. These manoeuvres enabled the robot to autonomously cover the entire crop by following a previously established plan and without stepping on the crop row, which is an essential behaviour for covering crops such as maize without damaging them. PMID:26927102
Word Processing Curriculum: Attitudes/Skills Business Educators Should Update.
ERIC Educational Resources Information Center
Robertson, Jane R.; West, Judy F.
1984-01-01
Discusses a study to gain data enabling curricula planners and business educators to plan an effective word processing curriculum, to determine basic skills and attitudes needed by word processing operators, and to make recommendations to help word processor operators increase productivity. (JOW)
PHM Enabled Autonomous Propellant Loading Operations
NASA Technical Reports Server (NTRS)
Walker, Mark; Figueroa, Fernando
2017-01-01
The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.
Applying an AI Planner to Military Operations Planning
1993-01-12
This paper describes a prototype system for quickly developing joint military courses of action. The system, SOCAP (System for Operations Crisis...display and applies this technology to military operations planning. This paper describes the Socap problem domain, how SIPE-2 was used to address this problem, and the strengths and weaknesses of our approach.
Man-machine cooperation in advanced teleoperation
NASA Technical Reports Server (NTRS)
Fiorini, Paolo; Das, Hari; Lee, Sukhan
1993-01-01
Teleoperation experiments at JPL have shown that advanced features in a telerobotic system are a necessary condition for good results, but that they are not sufficient to assure consistently good performance by the operators. Two or three operators are normally used during training and experiments to maintain the desired performance. An alternative to this multi-operator control station is a man-machine interface embedding computer programs that can perform some of the operator's functions. In this paper we present our first experiments with these concepts, in which we focused on the areas of real-time task monitoring and interactive path planning. In the first case, when performing a known task, the operator has an automatic aid for setting control parameters and camera views. In the second case, an interactive path planner will rank different path alternatives so that the operator will make the correct control decision. The monitoring function has been implemented with a neural network doing the real-time task segmentation. The interactive path planner was implemented for redundant manipulators to specify arm configurations across the desired path and satisfy geometric, task, and performance constraints.
In Situ Surveying of Saturn's Rings
NASA Technical Reports Server (NTRS)
Clark, P. E.; Curtis, S. A.; Rilee, M. L.; Cheung, C.
2004-01-01
The Saturn Autonomous Ring Array (SARA) mission concept is a new application for the Autonomous Nano-Technology Swarm (ANTS) architecture, a paradigm being developed for exploration of high surface area and/or multibody targets to minimize costs and maximize effectiveness of survey operations. Systems designed with ANTS architecture are built from potentially very large numbers of highly autonomous, yet socially interactive, specialists, in approximately ten specialist classes. Here, we analyze requirements for such a mission as well as specialized autonomous operations which would support this application.
NATO In Africa: Ready for Action?
2007-04-01
options for NATO planners who might be called upon to prepare NATO forces for the gamut of operations on the continent of Africa. vi Chapter 1...in a number of military operations running the gamut from peacekeeping/presence operations to combat operations and stability/reconstruction efforts...which run the gamut from 25 peacekeeping/humanitarian intervention to peacemaking operations.13 Some have criticized the EU for establishing its
Enabling New Operations Concepts for Lunar and Mars Exploration
NASA Astrophysics Data System (ADS)
Jaap, John; Maxwell, Theresa
2005-02-01
The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the ``operations concept'' that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a ``job jar'' of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space Flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically; and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.
Enabling New Operations Concepts for Lunar and Mars Exploration
NASA Technical Reports Server (NTRS)
Jaap, John; Maxwell, Theresa
2005-01-01
The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the operations concept that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a job jar of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a planning and scheduling system that would enable multiple planners, some on the earth and some in space, to build one integrated timeline. Its modeling schema can capture all the task requirements; its scheduling engine can build the schedule automatically, and its architecture can allow those (on earth and in space) with the best knowledge of the tasks to schedule them. This paper describes the enabling technology and proposes an operations concept for astronauts autonomously scheduling their activities and the activities around them.
Information for Successful Interaction with Autonomous Systems
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Johnson, Kathy A.
2003-01-01
Interaction in heterogeneous mission operations teams is not well matched to classical models of coordination with autonomous systems. We describe methods of loose coordination and information management in mission operations. We describe an information agent and information management tool suite for managing information from many sources, including autonomous agents. We present an integrated model of levels of complexity of agent and human behavior, which shows types of information processing and points of potential error in agent activities. We discuss the types of information needed for diagnosing problems and planning interactions with an autonomous system. We discuss types of coordination for which designs are needed for autonomous system functions.
NASA Technical Reports Server (NTRS)
Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.;
2016-01-01
Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.
Planning and Scheduling for Environmental Sensor Networks
NASA Astrophysics Data System (ADS)
Frank, J. D.
2005-12-01
Environmental Sensor Networks are a new way of monitoring the environment. They comprise autonomous sensor nodes in the environment that record real-time data, which is retrieved, analyzed, integrated with other data sets (e.g. satellite images, GIS, process models) and ultimately lead to scientific discoveries. Sensor networks must operate within time and resource constraints. Sensors have limited onboard memory, energy, computational power, communications windows and communications bandwidth. The value of data will depend on when, where and how it was collected, how detailed the data is, how long it takes to integrate the data, and how important the data was to the original scientific question. Planning and scheduling of sensor networks is necessary for effective, safe operations in the face of these constraints. For example, power bus limitations may preclude sensors from simultaneously collecting data and communicating without damaging the sensor; planners and schedulers can ensure these operations are ordered so that they do not happen simultaneously. Planning and scheduling can also ensure best use of the sensor network to maximize the value of collected science data. For example, if data is best recorded using a particular camera angle but it is costly in time and energy to achieve this, planners and schedulers can search for times when time and energy are available to achieve the optimal camera angle. Planning and scheduling can handle uncertainty in the problem specification; planners can be re-run when new information is made available, or can generate plans that include contingencies. For example, if bad weather may prevent the collection of data, a contingent plan can check lighting conditions and turn off data collection to save resources if lighting is not ideal. Both mobile and immobile sensors can benefit from planning and scheduling. For example, data collection on otherwise passive sensors can be halted to preserve limited power and memory resources and to reduce the costs of communication. Planning and scheduling is generally a heavy consumer of time, memory and energy resources. This means careful thought must be given to how much planning and scheduling should be done on the sensors themselves, and how much to do elsewhere. The difficulty of planning and scheduling is exacerbated when reasoning about uncertainty. More time, memory and energy is needed to solve such problems, leading either to more expensive sensors, or suboptimal plans. For example, scientifically interesting events may happen at random times, making it difficult to ensure that sufficient resources are availanble. Since uncertainty is usually lowest in proximity to the sensors themselves, this argues for planning and scheduling onboard the sensors. However, cost minimization dictates sensors be kept as simple as possible, reducing the amount of planning and scheduling they can do themselves. Furthermore, coordinating each sensor's independent plans can be difficult. In the full presentation, we will critically review the planning and scheduling systems used by previously fielded sensor networks. We do so primarily from the perspective of the computational sciences, with a focus on taming computational complexity when operating sensor networks. The case studies are derived from sensor networks based on UAVs, satellites, and planetary rovers. Planning and scheduling considerations include multi-sensor coordination, optimizing science value, onboard power management, onboard memory, planning movement actions to acquire data, and managing communications.These case studies offer lessons for future designs of environmental sensor networks.
2012-06-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT Autonomous Dirigible Airships: A Comparative Analysis...COVERED MBA Professional Report 4. TITLE AND SUBTITLE: Autonomous Dirigible Airships: A Comparative Analysis and Operational Efficiency Evaluation...NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this report are
Innovation Talk at TARDEC by Dr. Tulga Ersal
problems of teleoperation and fully autonomous operation of large Unmanned Ground Vehicles (UGVs) at high wide spectrum in their mode of operation ranging from teleoperated, in which the remote human operator implementable solution. High speeds also present a challenge to fully autonomous operation with respect to
Automated Derivation of Complex System Constraints from User Requirements
NASA Technical Reports Server (NTRS)
Foshee, Mark; Murey, Kim; Marsh, Angela
2010-01-01
The Payload Operations Integration Center (POIC) located at the Marshall Space Flight Center has the responsibility of integrating US payload science requirements for the International Space Station (ISS). All payload operations must request ISS system resources so that the resource usage will be included in the ISS on-board execution timelines. The scheduling of resources and building of the timeline is performed using the Consolidated Planning System (CPS). The ISS resources are quite complex due to the large number of components that must be accounted for. The planners at the POIC simplify the process for Payload Developers (PD) by providing the PDs with a application that has the basic functionality PDs need as well as list of simplified resources in the User Requirements Collection (URC) application. The planners maintained a mapping of the URC resources to the CPS resources. The process of manually converting PD's science requirements from a simplified representation to a more complex CPS representation is a time-consuming and tedious process. The goal is to provide a software solution to allow the planners to build a mapping of the complex CPS constraints to the basic URC constraints and automatically convert the PD's requirements into systems requirements during export to CPS.
A Conceptual Design of a Departure Planner Decision Aid
NASA Technical Reports Server (NTRS)
Anagnostakis, Ioannis; Idris, Husni R.; Clark, John-Paul; Feron, Eric; Hansman, R. John; Odoni, Amedeo R.; Hall, William D.
2000-01-01
Terminal area Air Traffic Management handles both arriving and departing traffic. To date, research work on terminal area operations has focused primarily on the arrival flow and typically departures are taken into account only in an approximate manner. However, arrivals and departures are highly coupled processes especially in the terminal airspace, with complex interactions and sharing of the same airport resources between arrivals and departures taking place in practically every important terminal area. Therefore, the addition of automation aids for departures, possibly in co-operation with existing arrival flow automation systems, could have a profound contribution in enhancing the overall efficiency of airport operations. This paper presents the conceptual system architecture for such an automation aid, the Departure Planner (DP). This architecture can be used as a core in the development of decision-aiding systems to assist air traffic controllers in improving the performance of departure operations and optimize runway time allocation among different operations at major congested airports. The design of such systems is expected to increase the overall efficiency of terminal area operations and yield benefits for all stakeholders involved in Air Traffic Management (ATM) operations, users as well as service providers.
Mission Operations of EO-1 with Onboard Autonomy
NASA Technical Reports Server (NTRS)
Tran, Daniel Q.
2006-01-01
Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the prior, labor and knowledge intensive mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the new autonomous operations as part of the Autonomous Sciencecraft Experiment.
NASA Technical Reports Server (NTRS)
Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott
2010-01-01
Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for autonomous ultrasound image collection during exploration missions.
An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes
NASA Astrophysics Data System (ADS)
Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei
2016-01-01
For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.
Sea-based JSOTFs: Considerations for the Operational Planner
2014-05-15
the distinct requirements of the GCE hitting the beach. An equal level of specialization regarding special operations extends to the various...will discuss some of the operational level advantages and challenges of this novel construct and will proffer suggestions regarding how current...This paper will discuss some of the operational level advantages and challenges of this novel construct and will proffer suggestions regarding how
Market-based demand forecasting promotes informed strategic financial planning.
Beech, A J
2001-11-01
Market-based demand forecasting is a method of estimating future demand for a healthcare organization's services by using a broad range of data that describe the nature of demand within the organization's service area. Such data include the primary and secondary service areas, the service-area populations by various demographic groupings, discharge utilization rates, market size, and market share by service line and organizationwide. Based on observable market dynamics, strategic planners can make a variety of explicit assumptions about future trends regarding these data to develop scenarios describing potential future demand. Financial planners then can evaluate each scenario to determine its potential effect on selected financial and operational measures, such as operating margin, days cash on hand, and debt-service coverage, and develop a strategic financial plan that covers a range of contingencies.
Advanced Autonomous Systems for Space Operations
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.
2002-01-01
New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not otherwise possible, as well as many more efficient and low cost applications. In addition, utilizing component and system modeling and reasoning capabilities, autonomous systems will play an increasing role in ground operations for space missions, where they will both reduce the human workload as well as provide greater levels of monitoring and system safety. This paper will focus specifically on new and innovative software for remote, autonomous, space systems flight operations. Topics to be presented will include a brief description of key autonomous control concepts, the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New on-board software for autonomous science data acquisition for planetary exploration will be described, as well as advanced systems for safe planetary landings. A new multi-agent architecture that addresses some of the challenges of autonomous systems will be presented. Autonomous operation of ground systems will also be considered, including software for autonomous in-situ propellant production and management, and closed- loop ecological life support systems (CELSS). Finally, plans and directions for the future will be discussed.
Advancing Autonomous Operations for Deep Space Vehicles
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard K.
2014-01-01
Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.
Where Are We Going? Planning Assumptions for Community Colleges.
ERIC Educational Resources Information Center
Maas, Rao, Taylor and Associates, Riverside, CA.
Designed to provide community college planners with a series of reference assumptions to consider in the planning process, this document sets forth assumptions related to finance (i.e., operational funds, capital funds, alternate funding sources, and campus financial operations); California state priorities; occupational trends; population (i.e.,…
Reflections on a Strategic Vision for Computer Network Operations
2010-05-25
either a traditional or an irregular war. It cannot include the disarmament or destruction of enemy forces or the occupation of its geographic territory...Washington, DC: Chairman of the Joint Chiefs of Staff, 15 August 2007), GL-7. 34 Mr. John Mense , Basic Computer Network Operations Planners Course
Terrorist-Insurgent Thinking and Joint Special Operational Planning Doctrine and Procedures
2010-09-01
b. Often organized planners, with some military training/experience c. Usually the brains behind operations or targeting and having the most detailed... Storytelling and Terrorism: Towards a Compre- hensive ‘Counter-Narrative Strategy,’ ” Strategic Insights IV:3 (March 2005), 1-16. Center for Army Lessons
Natesan, Chitra; Ajithan, Senthil Kumar; Mani, Shobana; Palani, Priyadharshini; Kandhasamy, Prabaakaran
2014-01-01
Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs) tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform.
Natesan, Chitra; Ajithan, Senthil Kumar; Mani, Shobana; Palani, Priyadharshini; Kandhasamy, Prabaakaran
2014-01-01
Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs) tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform. PMID:25162062
The Embudito Mission: A Case Study of the Systematics of Autonomous Ground Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
EICKER,PATRICK J.
2001-02-01
Ground mobile robots are much in the mind of defense planners at this time, being considered for a significant variety of missions with a diversity ranging from logistics supply to reconnaissance and surveillance. While there has been a very large amount of basic research funded in the last quarter century devoted to mobile robots and their supporting component technologies, little of this science base has been fully developed and deployed--notable exceptions being NASA's Mars rover and several terrestrial derivatives. The material in this paper was developed as a first exemplary step in the development of a more systematic approach tomore » the R and D of ground mobile robots.« less
Reducing cost with autonomous operations of the Deep Space Network radio science receiver
NASA Technical Reports Server (NTRS)
Asmar, S.; Anabtawi, A.; Connally, M.; Jongeling, A.
2003-01-01
This paper describes the Radio Science Receiver system and the savings it has brought to mission operations. The design and implementation of remote and autonomous operations will be discussed along with the process of including user feedback along the way and lessons learned and procedures avoided.
Mission Operations of Earth Observing-1 with Onboard Autonomy
NASA Technical Reports Server (NTRS)
Rabideau, Gregg; Tran, Daniel Q.; Chien, Steve; Cichy, Benjamin; Sherwood, Rob; Mandl, Dan; Frye, Stuart; Shulman, Seth; Szwaczkowski, Joseph; Boyer, Darrell;
2006-01-01
Space mission operations are extremely labor and knowledge-intensive and are driven by the ground and flight systems. Inclusion of an autonomy capability can have dramatic effects on mission operations. We describe the past mission operations flow for the Earth Observing-1 (EO-1) spacecraft as well as the more autonomous operations to which we transferred as part of the Autonomous Sciencecraft Experiment (ASE).
Human-Autonomy Teaming in a Flight Following Task
NASA Technical Reports Server (NTRS)
Shively, Robert J.
2017-01-01
The NATO HFM-247 Working Group is creating a summary report of the group's activities on human-autonomy teaming. This chapter is a summary of our at NASA Ames work toward developing a framework for human-autonomy teaming (HAT) in aviation. The purpose of this project was to demonstrate and evaluate proposed tenets of HAT. The HAT features were derived from three tenets and were built into an automated recommender system on a ground station. These tenets include bi-directional communication, automation transparency, and operator directed interface. This study focused primarily on interactions with one piece of automation, the Autonomous Constrained Flight Planner (ACFP). The ACFP is designed to support rapid diversion decisions for commercial pilots in off-nominal situations. Much effort has gone into enhancing this tool not only in capability but also in transparency. In this study, participants used the ACFP at a ground station designed to aid dispatchers in a flight following role to reroute aircraft in situations such as inclement weather, system failures and medical emergencies. Participants performed this task both with HAT features enabled and without and provided feedback. We examined subjective and behavioral indicators of HAT collaborations using a proof-of-concept demonstration of HAT tenets. The data collected suggest potential advantages and disadvantages of HAT.
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; Brooks, Alexander J.-W.; Tarbell, Mark A.; Dohm, James M.
2017-05-01
Autonomous reconnaissance missions are called for in extreme environments, as well as in potentially hazardous (e.g., the theatre, disaster-stricken areas, etc.) or inaccessible operational areas (e.g., planetary surfaces, space). Such future missions will require increasing degrees of operational autonomy, especially when following up on transient events. Operational autonomy encompasses: (1) Automatic characterization of operational areas from different vantages (i.e., spaceborne, airborne, surface, subsurface); (2) automatic sensor deployment and data gathering; (3) automatic feature extraction including anomaly detection and region-of-interest identification; (4) automatic target prediction and prioritization; (5) and subsequent automatic (re-)deployment and navigation of robotic agents. This paper reports on progress towards several aspects of autonomous C4ISR systems, including: Caltech-patented and NASA award-winning multi-tiered mission paradigm, robotic platform development (air, ground, water-based), robotic behavior motifs as the building blocks for autonomous tele-commanding, and autonomous decision making based on a Caltech-patented framework comprising sensor-data-fusion (feature-vectors), anomaly detection (clustering and principal component analysis), and target prioritization (hypothetical probing).
Geronimo: Planning Considerations for Employing Airborne Forces
2017-05-25
Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that... operation , a planner must adhere to joint planning considerations and understand the Air Force and Army requirements. Today the Army maintains only...one brigade and two battalions of deployable conventional airborne combat power. The special operations community also is airborne capable, and the
Automation of Armored Four Wheel Counter Steer Vehicles
2015-08-28
designed and implemented with an operator ease-of-use approach, allowing the simple transition between manual control and autonomous operation. Automation...Public Release The U.S. Army’s efforts in vehicle auto- mation are designed in part to protect soldiers in the field as they traverse poten- tially...System (AMAS) convoy autonomy, sensor, and drive-by-wire kits, to ground-up autonomous vehicle designs , such as TARDEC’s Autonomous Platform
Recent Advances in Bathymetric Surveying of Continental Shelf Regions Using Autonomous Vehicles
NASA Astrophysics Data System (ADS)
Holland, K. T.; Calantoni, J.; Slocum, D.
2016-02-01
Obtaining bathymetric observations within the continental shelf in areas closer to the shore is often time consuming and dangerous, especially when uncharted shoals and rocks present safety concerns to survey ships and launches. However, surveys in these regions are critically important to numerical simulation of oceanographic processes, as bathymetry serves as the bottom boundary condition in operational forecasting models. We will present recent progress in bathymetric surveying using both traditional vessels retrofitted for autonomous operations and relatively inexpensive, small team deployable, Autonomous Underwater Vehicles (AUV). Both systems include either high-resolution multibeam echo sounders or interferometric sidescan sonar sensors with integrated inertial navigation system capabilities consistent with present commercial-grade survey operations. The advantages and limitations of these two configurations employing both unmanned and autonomous strategies are compared using results from several recent survey operations. We will demonstrate how sensor data collected from unmanned platforms can augment or even replace traditional data collection technologies. Oceanographic observations (e.g., sound speed, temperature and currents) collected simultaneously with bathymetry using autonomous technologies provide additional opportunities for advanced data assimilation in numerical forecasts. Discussion focuses on our vision for unmanned and autonomous systems working in conjunction with manned or in-situ systems to optimally and simultaneously collect data in environmentally hostile or difficult to reach areas.
Autonomous Operations Mission Development Suite
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.
2016-01-01
This is a presentation related to the development of Autonomous Operations Systems at NASA Kennedy Space Center. It covers a high level description of the work of FY14, FY15, FY16 for the AES IGODU and APL projects.
Autonomous calibration of single spin qubit operations
NASA Astrophysics Data System (ADS)
Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor
2017-12-01
Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.
Engelmann, Carsten; Ametowobla, Dzifa
2017-05-17
Planning and controlling surgical operations hugely impacts upon productivity, patient safety, and surgeons' careers. Established, specialized software for this task is being increasingly replaced by "Operating Room (OR)-modules" appended to enterprise-wide resource planning (ERP) systems. As a result, usability problems are re-emerging and require developers' attention. Systematic evaluation of the functionality and social repercussions of a global, market-leading IT business control system (SAP R3, Germany), adapted for real-time OR process steering. Field study involving document analyses, interviews, and a 73-item survey addressed to 77 qualified (> 1-year system experience) senior planning executives (end users; "planners") working in surgical departments of university hospitals. Planners reported that 57% of electronic operation requests contained contradictory information. Key screens contained clinically irrelevant areas (36 +/- 29%). Compared to the legacy system, users reported either no improvements or worse performance, in regard to co-ordination of OR stakeholders, intra-day program changes, and safety. Planners concluded that the ERP-planning module was "non-intuitive" (66%), increased planning work (56%, p=0.002), and did not impact upon either organizational mishap spectrum or frequency. Interviews evidenced intra-institutional power shifts due to increased system complexity. Planners resented e.g. a trend towards increased personal culpability for mishap. Highly complex enterprise system extensions may not be directly suited to specific process steering tasks in a high risk/low error-environment like the OR. In view of surgeons' high primary task load, the repeated call for simpler IT is an imperative for ERP extensions. System design should consider a) that current OR IT suffers from an input limitation regarding planning-relevant real-time data, and b) that there are social processes that strongly affect planning and particularly ERP use beyond algorithms. Real improvement of clinical IT tools requires their independent evaluation according to standards developed for pharmaceutical subjects.
Autonomic Management of Space Missions. Chapter 12
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Truszkowski, Walt; Rouff, Christopher A.; Sterritt, Roy
2006-01-01
With NASA s renewed commitment to outer space exploration, greater emphasis is being placed on both human and robotic exploration. Even when humans are involved in the exploration, human tending of assets becomes cost-prohibitive or in many cases is simply not feasible. In addition, certain exploration missions will require spacecraft that will be capable of venturing where humans cannot be sent. Early space missions were operated manually from ground control centers with little or no automated operations. In the mid-l980s, the high costs of satellite operations prompted NASA, and others, to begin automating as many functions as possible. In our context, a system is autonomous if it can achieve its goals without human intervention. A number of more-or-less automated ground systems exist today, but work continues with the goal being to reduce operations costs to even lower levels. Cost reductions can be achieved in a number of areas. Ground control and spacecraft operations are two such areas where greater autonomy can reduce costs. As a consequence, autonomy is increasingly seen as a critical approach for robotic missions and for some aspects of manned missions. Although autonomy will be critical for the success of future missions (and indeed will enable certain kinds of science data gathering approaches), missions imbued with autonomy must also exhibit autonomic properties. Exploitation of autonomy alone, without emphasis on autonomic properties, will leave spacecraft vulnerable to the dangerous environments in which they must operate. Without autonomic properties, a spacecraft may be unable to recognize negative environmental effects on its components and subsystems, or may be unable to take any action to ameliorate the effects. The spacecraft, though operating autonomously, may then sustain a degradation of performance of components or subsystems, and consequently may have a reduced potential for achieving mission objectives. In extreme cases, lack of autonomic properties could leave the spacecraft unable to recover from faults. Ensuring that exploration spacecraft have autonomic properties will increase the survivability and therefore the likelihood of success of these missions. In fact, over time, as mission requirements increased demands on spacecraft capabilities and longevity, designers have gradually built more autonomicity into spacecraft. For example, a spacecraft in low-earth orbit may experience an out-of-bounds perturbation of its attitude (orientation) due to increased drag caused by increased atmospheric density at its altitude as a result of a sufficiently large solar flare. If the spacecraft was designed to recognize the excessive attitude perturbation, it could decide to protect itself by going into a safe-hold mode where its internal configuration and operation are altered to conserve power and its coarse attitude is adjusted to point its solar panels toward the Sun to maximize power generation. This is an example of a simple type of autonomic behavior that has actually occurred. Future mission concepts will be increasingly dependent on space system survivability enabled by more advanced types of autonomic behaviors
Technology Advances Enabling a New Class of Hybrid Underwater Vehicles
NASA Astrophysics Data System (ADS)
Bowen, A.
2016-02-01
Both tethered (ROV) and untethered (AUV) systems have proven to be highly valuable tools for a range of application undersea. Certain enabling technologies coupled with recent advances in robotic systems make it possible to consider supplementing many of the functions performed by these platforms with appropriately designed semi-autonomous vehicles that may be less expensive operate than traditional deep-water ROVs. Such vehicles can be deployed from smaller ships and may lead to sea-floor resident systems able to perform a range of interventions under direct human control when required. These systems are effectively a hybrid cross between ROV and AUV vehicles and poised to enable an important new class of undersea vehicle. It is now possible to radically redefine the meaning of the words "tethered vehicle" to include virtual tethering via acoustic and optical means or through the use of small diameter re-useable tethers, providing not power but only high bandwidth communications. The recent developments at Woods Hole Oceanographic Institution (WHOI), paves the way for a derivative vehicle type able to perform a range of interventions in deep water. Such battery-powered, hybrid-tethered vehicles will be able to perform tasks that might otherwise require a conventional ROV. These functions will be possible from less complex ships because of a greatly reduced dependence on large, heavy tethers and associated vehicle handling equipment. In certain applications, such vehicles can be resident within subsea facilities, able to provide operators with near instant access when required. Several key emerging technologies and capabilities make such a vehicle possible. Advances in both acoustic and optical "wireless" underwater communications and mico-tethers as pioneered by the HROV Nereus offer the potential to transform ROV type operations and thus offer planners and designers an important new dimension to subsea robotic intervention
Automated Guideway Transit System Passenger Security Guidebook
DOT National Transportation Integrated Search
1980-03-01
This uidebook provides AGT system planners, designers and operators with information on available crime countermeasures and their relative effectiveness against transit crime. : Crime countermeasures on current transit systems have been reviewed and ...
Autonomous onboard crew operations: A review and developmental approach
NASA Technical Reports Server (NTRS)
Rogers, J. G.
1982-01-01
A review of the literature generated by an intercenter mission approach and consolidation team and their contractors was performed to obtain background information on the development of autonomous operations concepts for future space shuttle and space platform missions. The Boeing 757/767 flight management system was examined to determine the relevance for transfer of the developmental approach and technology to the performance of the crew operations function. In specific, the engine indications and crew alerting system was studied to determine the relevance of this display for the performance of crew operations onboard the vehicle. It was concluded that the developmental approach and technology utilized in the aeronautics industry would be appropriate for development of an autonomous operations concept for the space platform.
Laser Threat Analysis System (LTAS)
NASA Astrophysics Data System (ADS)
Pfaltz, John M.; Richardson, Christina E.; Ruiz, Abel; Barsalou, Norman; Thomas, Robert J.
2002-11-01
LTAS is a totally integrated modeling and simulation environment designed for the purpose of ascertaining the susceptibility of Air Force pilots and air crews to optical radiation threats. Using LTAS, mission planners can assess the operational impact of optically directed energy weapons and countermeasures. Through various scenarios, threat analysts are able to determine the capability of laser threats and their impact on operational missions including the air crew's ability to complete their mission effectively. Additionally, LTAS allows the risk of laser use on training ranges and the requirement for laser protection to be evaluated. LTAS gives mission planners and threat analysts complete control of the threat environment including threat parameter control and placement, terrain mapping (line-of-site), atmospheric conditions, and laser eye protection (LEP) selection. This report summarizes the design of the final version of LTAS, and the modeling methodologies implemented to accomplish analysis.
Using Multimodal Input for Autonomous Decision Making for Unmanned Systems
NASA Technical Reports Server (NTRS)
Neilan, James H.; Cross, Charles; Rothhaar, Paul; Tran, Loc; Motter, Mark; Qualls, Garry; Trujillo, Anna; Allen, B. Danette
2016-01-01
Autonomous decision making in the presence of uncertainly is a deeply studied problem space particularly in the area of autonomous systems operations for land, air, sea, and space vehicles. Various techniques ranging from single algorithm solutions to complex ensemble classifier systems have been utilized in a research context in solving mission critical flight decisions. Realized systems on actual autonomous hardware, however, is a difficult systems integration problem, constituting a majority of applied robotics development timelines. The ability to reliably and repeatedly classify objects during a vehicles mission execution is vital for the vehicle to mitigate both static and dynamic environmental concerns such that the mission may be completed successfully and have the vehicle operate and return safely. In this paper, the Autonomy Incubator proposes and discusses an ensemble learning and recognition system planned for our autonomous framework, AEON, in selected domains, which fuse decision criteria, using prior experience on both the individual classifier layer and the ensemble layer to mitigate environmental uncertainty during operation.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This program planning guide for a two-year postsecondary nuclear reactor (plant) operator trainee program is designed for use with courses 1-16 of thirty-five in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians and operators; and to assist planners,…
Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR
Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng
2018-01-01
In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner. PMID:29439447
Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR.
Li, Jincheng; Chen, Jie; Wang, Pengbo; Li, Chunsheng
2018-02-11
In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner.
2005-09-01
ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE ..................100 27. SHARPLE, SARAH (WITH COX, GEMMA & STEDMON...104 30. TANGO, FABIO: CONCEPT OF AUTONOMIC COMPUTING APPLIED TO TRANSPORTATION ISSUES: THE SENSITIVE CAR .....105 31. TAYLOR, ROBERT: POSITION...SYSTEMS ENGINEERING APPROACH TO INTELLIGENT OPERATOR ASSISTANCE AND AUTONOMOUS VEHICLE GUIDANCE Today’s automation systems are typically introduced
NASA Technical Reports Server (NTRS)
Regalado Reyes, Bjorn Constant
2015-01-01
1. Kennedy Space Center (KSC) is developing a mobile launching system with autonomous propellant loading capabilities for liquid-fueled rockets. An autonomous system will be responsible for monitoring and controlling the storage, loading and transferring of cryogenic propellants. The Physics Simulation Software will reproduce the sensor data seen during the delivery of cryogenic fluids including valve positions, pressures, temperatures and flow rates. The simulator will provide insight into the functionality of the propellant systems and demonstrate the effects of potential faults. This will provide verification of the communications protocols and the autonomous system control. 2. The High Pressure Gas Facility (HPGF) stores and distributes hydrogen, nitrogen, helium and high pressure air. The hydrogen and nitrogen are stored in cryogenic liquid state. The cryogenic fluids pose several hazards to operators and the storage and transfer equipment. Constant monitoring of pressures, temperatures and flow rates are required in order to maintain the safety of personnel and equipment during the handling and storage of these commodities. The Gas House Autonomous System Monitoring software will be responsible for constantly observing and recording sensor data, identifying and predicting faults and relaying hazard and operational information to the operators.
Efficiency in bus stop location and design.
DOT National Transportation Integrated Search
1980-01-01
The research reported here identified those elements associated with the location and design of bus stops that affect the efficiency of transit and traffic operations, and developed guidelines to assist transportation engineers and planners in techni...
Development of a semi-autonomous service robot with telerobotic capabilities
NASA Technical Reports Server (NTRS)
Jones, J. E.; White, D. R.
1987-01-01
The importance to the United States of semi-autonomous systems for application to a large number of manufacturing and service processes is very clear. Two principal reasons emerge as the primary driving forces for development of such systems: enhanced national productivity and operation in environments whch are hazardous to humans. Completely autonomous systems may not currently be economically feasible. However, autonomous systems that operate in a limited operation domain or that are supervised by humans are within the technology capability of this decade and will likely provide reasonable return on investment. The two research and development efforts of autonomy and telerobotics are distinctly different, yet interconnected. The first addresses the communication of an intelligent electronic system with a robot while the second requires human communication and ergonomic consideration. Discussed here are work in robotic control, human/robot team implementation, expert system robot operation, and sensor development by the American Welding Institute, MTS Systems Corporation, and the Colorado School of Mines--Center for Welding Research.
Control of an automated mobile manipulator using artificial immune system
NASA Astrophysics Data System (ADS)
Deepak, B. B. V. L.; Parhi, Dayal R.
2016-03-01
This paper addresses the coordination and control of a wheeled mobile manipulator (WMM) using artificial immune system. The aim of the developed methodology is to navigate the system autonomously and transport jobs and tools in manufacturing environments. This study integrates the kinematic structures of a four-axis manipulator and a differential wheeled mobile platform. The motion of the developed WMM is controlled by the complete system of parametric equation in terms of joint velocities and makes the robot to follow desired trajectories by the manipulator and platform within its workspace. The developed robot system performs its action intelligently according to the sensed environmental criteria within its search space. To verify the effectiveness of the proposed immune-based motion planner for WMM, simulations as well as experimental results are presented in various unknown environments.
Towards high-speed autonomous navigation of unknown environments
NASA Astrophysics Data System (ADS)
Richter, Charles; Roy, Nicholas
2015-05-01
In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.
Simulating Autonomous Telecommunication Networks for Space Exploration
NASA Technical Reports Server (NTRS)
Segui, John S.; Jennings, Esther H.
2008-01-01
Currently, most interplanetary telecommunication systems require human intervention for command and control. However, considering the range from near Earth to deep space missions, combined with the increase in the number of nodes and advancements in processing capabilities, the benefits from communication autonomy will be immense. Likewise, greater mission science autonomy brings the need for unscheduled, unpredictable communication and network routing. While the terrestrial Internet protocols are highly developed their suitability for space exploration has been questioned. JPL has developed the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to help characterize network designs and protocols. The results will allow future mission planners to better understand the trade offs of communication protocols. This paper discusses various issues with interplanetary network and simulation results of interplanetary networking protocols.
Planning for MacArthur: Harnessing the Complexity of Postwar Japan
2014-05-22
change in Japan’s education system, facilitated religious tolerance and strictly controlled information through censorship and targeted information...system, facilitated religious tolerance and strictly controlled information through censorship and targeted information operations. Although many...Supreme Commander for the Allied Powers, it is clear that operational planners on MacArthur’s staff used the principles of understanding the
Airborne Tactical Crossload Planner
2017-12-01
set out in the Airborne Standard Operating Procedure (ASOP). 14. SUBJECT TERMS crossload, airborne, optimization, integer linear programming ...they land to their respective sub-mission locations. In this thesis, we formulate and implement an integer linear program called the Tactical...to meet any desired crossload objectives. xiv We demonstrate TCP with two real-world tactical problems from recent airborne operations: one by the
ERIC Educational Resources Information Center
Erfurt, John C.; And Others
Concepts of internal agency structure and operations, agency-company relations, and agency-enrollee relations, with recommendations for their implementation, form the three main sections of this handbook developed for manpower agency administrators, supervisory staffs and program planners. It is designed to aid those who organize and develop…
The Cost of Quality Out-of-School-Time Programs
ERIC Educational Resources Information Center
Grossman, Jean Baldwin; Lind, Christianne; Hayes, Cheryl; McMaken, Jennifer; Gersick, Andrew
2009-01-01
Funders and program planners want to know: What does it cost to operate a high-quality after-school or summer program? This study answers that question, discovering that there is no "right" number. Cost varies substantially, depending on the characteristics of the participants, the goals of the program, who operates it and where it is located.…
An intelligent algorithm for autonomous scientific sampling with the VALKYRIE cryobot
NASA Astrophysics Data System (ADS)
Clark, Evan B.; Bramall, Nathan E.; Christner, Brent; Flesher, Chris; Harman, John; Hogan, Bart; Lavender, Heather; Lelievre, Scott; Moor, Joshua; Siegel, Vickie
2018-07-01
The development of algorithms for agile science and autonomous exploration has been pursued in contexts ranging from spacecraft to planetary rovers to unmanned aerial vehicles to autonomous underwater vehicles. In situations where time, mission resources and communications are limited and the future state of the operating environment is unknown, the capability of a vehicle to dynamically respond to changing circumstances without human guidance can substantially improve science return. Such capabilities are difficult to achieve in practice, however, because they require intelligent reasoning to utilize limited resources in an inherently uncertain environment. Here we discuss the development, characterization and field performance of two algorithms for autonomously collecting water samples on VALKYRIE (Very deep Autonomous Laser-powered Kilowatt-class Yo-yoing Robotic Ice Explorer), a glacier-penetrating cryobot deployed to the Matanuska Glacier, Alaska (Mission Control location: 61°42'09.3''N 147°37'23.2''W). We show performance on par with human performance across a wide range of mission morphologies using simulated mission data, and demonstrate the effectiveness of the algorithms at autonomously collecting samples with high relative cell concentration during field operation. The development of such algorithms will help enable autonomous science operations in environments where constant real-time human supervision is impractical, such as penetration of ice sheets on Earth and high-priority planetary science targets like Europa.
2017-05-25
The Application of Operational Art to Health Service Support: A Case Study of the Korean and Vietnam Wars A Monograph by MAJ Brian M. Downs...of Operational Art to Health Service Support: A Case Study of the Korean and Vietnam Wars 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ABSTRACT Health Service Support (HSS) planners have endured static healthcare operations over the last 15 years during operations in Iraq and
Reservoir Analysis Model for Battlefield Operations
1989-05-01
courtesy of the Imperial War Museum; Figure 2 is used courtesy of Frederick A. Praeger, Inc.; Figures 7, 8, and 9 are used courtesy of the Society of...operational and tactical levels of war . Military commanders today are confronted with problems of unprecedented complexity that require the application of...associated with operating reservoir systems in theaters of war . Without these tools the planner stands little chance of maximizing the utilization of his water
The Italian Expedition in the Russian Campaign 1941-43: A Pronounced Failure
This monograph investigates the Italian Expedition in the Russian campaign during the Second World War from an operational perspective. It seeks to...identify those factors relevant for practicing operational art that caused the collapse of the Italian forces in 1943. Specifically, the monograph ...commands. The conclusion of the monograph depicts several lessons for current and future operational planners. The latter have to be ready to properly frame
CF Training for Moral and Ethical Decision Making in an Operational Context
2006-08-16
operational experience and providing strong mentorship; evaluating and promoting individuals who consistently demonstrate high ethical conduct...they can gain first-hand operational experience. As one SME stated, “program planners need to walk a mile in soldier’s shoes . That will make them a...understanding of how their work can more effectively contribute to actual CF performance , and will provide program development efforts with the gravity of
How U.S. Colleges and Universities Can Confront Telecommunications Issues.
ERIC Educational Resources Information Center
King, Timothy D.; Lancaster, Ann-Marie
1989-01-01
An analysis of telecommunications operations is presented in the hope that it will help university planners make pre-purchase and post-purchase decisions more effectively. The experiences of Bowling Green State University are described. (MLW)
Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600
Expert mission planning and replanning scheduling system for NASA KSC payload operations
NASA Technical Reports Server (NTRS)
Pierce, Roger
1987-01-01
EMPRESS (Expert Mission Planning and REplanning Scheduling System) is an expert system created to assist payload mission planners at Kennedy in the long range planning and scheduling of horizontal payloads for space shuttle flights. Using the current flight manifest, these planners develop mission and payload schedules detailing all processing to be performed in the Operations and Checkout building at Kennedy. With the EMPRESS system, schedules are generated quickly using standard flows that represent the tasks and resources required to process a specific horizontal carrier. Resources can be tracked and resource conflicts can be determined and resolved interactively. Constraint relationships between tasks are maintained and can be enforced when a task is moved or rescheduled. The domain, structure, and functionality of the EMPRESS system is briefly designed. The limitations of the EMPRESS system are described as well as improvements expected with the EMPRESS-2 development.
Integrating small satellite communication in an autonomous vehicle network: A case for oceanography
NASA Astrophysics Data System (ADS)
Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando
2018-04-01
Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.
Autonomous mission planning and scheduling: Innovative, integrated, responsive
NASA Technical Reports Server (NTRS)
Sary, Charisse; Liu, Simon; Hull, Larry; Davis, Randy
1994-01-01
Autonomous mission scheduling, a new concept for NASA ground data systems, is a decentralized and distributed approach to scientific spacecraft planning, scheduling, and command management. Systems and services are provided that enable investigators to operate their own instruments. In autonomous mission scheduling, separate nodes exist for each instrument and one or more operations nodes exist for the spacecraft. Each node is responsible for its own operations which include planning, scheduling, and commanding; and for resolving conflicts with other nodes. One or more database servers accessible to all nodes enable each to share mission and science planning, scheduling, and commanding information. The architecture for autonomous mission scheduling is based upon a realistic mix of state-of-the-art and emerging technology and services, e.g., high performance individual workstations, high speed communications, client-server computing, and relational databases. The concept is particularly suited to the smaller, less complex missions of the future.
NASA Astrophysics Data System (ADS)
Durst, Phillip J.; Gray, Wendell; Trentini, Michael
2013-05-01
A simple, quantitative measure for encapsulating the autonomous capabilities of unmanned systems (UMS) has yet to be established. Current models for measuring a UMS's autonomy level require extensive, operational level testing, and provide a means for assessing the autonomy level for a specific mission/task and operational environment. A more elegant technique for quantifying autonomy using component level testing of the robot platform alone, outside of mission and environment contexts, is desirable. Using a high level framework for UMS architectures, such a model for determining a level of autonomy has been developed. The model uses a combination of developmental and component level testing for each aspect of the UMS architecture to define a non-contextual autonomous potential (NCAP). The NCAP provides an autonomy level, ranging from fully non- autonomous to fully autonomous, in the form of a single numeric parameter describing the UMS's performance capabilities when operating at that level of autonomy.
Nature-Inspired Acoustic Sensor Projects
1999-08-24
m). The pager motors are worn on the wrists. Yale Intelligent Sensors Lab 8 Autonomous vehicle navigation Yago – Yale Autonomous Go-Cart Yago is used...proximity sensor determined the presence of close-by objects missed by the sonars. Yago operated autonomously by avoiding obstacles. Problems being
Hardware design for the Autonomous Visibility Monitoring (AVM) observatory
NASA Technical Reports Server (NTRS)
Cowles, K.
1993-01-01
The hardware for the three Autonomous Visibility Monitoring (AVM) observatories was redesigned. Changes in hardware design include electronics components, weather sensors, and the telescope drive system. Operation of the new hardware is discussed, as well as some of its features. The redesign will allow reliable automated operation.
Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification
NASA Technical Reports Server (NTRS)
Wilson, J.; Wright, C.; Couluris, G. J.
1997-01-01
The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.
Autonomous Mission Manager for Rendezvous, Inspection and Mating
NASA Technical Reports Server (NTRS)
Zimpfer, Douglas J.
2003-01-01
To meet cost and safety objectives, space missions that involve proximity operations between two vehicles require a high level of autonomy to successfully complete their missions. The need for autonomy is primarily driven by the need to conduct complex operations outside of communication windows, and the communication time delays inherent in space missions. Autonomy also supports the goals of both NASA and the DOD to make space operations more routine, and lower operational costs by reducing the requirement for ground personnel. NASA and the DoD have several programs underway that require a much higher level of autonomy for space vehicles. NASA's Space Launch Initiative (SLI) program has ambitious goals of reducing costs by a factor or 10 and improving safety by a factor of 100. DARPA has recently begun its Orbital Express to demonstrate key technologies to make satellite servicing routine. The Air Force's XSS-ll program is developing a protoflight demonstration of an autonomous satellite inspector. A common element in space operations for many NASA and DOD missions is the ability to rendezvous, inspect anclJor dock with another spacecraft. For DARPA, this is required to service or refuel military satellites. For the Air Force, this is required to inspect un-cooperative resident space objects. For NASA, this is needed to meet the primary SLI design reference mission of International Space Station re-supply. A common aspect for each of these programs is an Autonomous Mission Manager that provides highly autonomous planning, execution and monitoring of the rendezvous, inspection and docking operations. This paper provides an overview of the Autonomous Mission Manager (AMM) design being incorporated into many of these technology programs. This AMM provides a highly scalable level of autonomous operations, ranging from automatic execution of ground-derived plans to highly autonomous onboard planning to meet ground developed mission goals. The AMM provides the capability to automatically execute the plans and monitor the system performance. In the event of system dispersions or failures the AMM can modify plans or abort to assure overall system safety. This paper describes the design and functionality of Draper's AMM framework, presents concept of operations associated with the use of the AMM, and outlines the relevant features of the flight demonstrations.
ERIC Educational Resources Information Center
Heath, Robert L.
1990-01-01
Demonstrates how corporate culture stifled adaptive efforts of strategic planners, operations managers, industrial hygienists, and issue monitors in the asbestos industry thereby leading it to the brink of bankruptcy. (MG)
Measuring and documenting truck activity times at international border crossings.
DOT National Transportation Integrated Search
2014-04-01
Documenting the times trucks incur when crossing an international border facility is : valuable both to the private freight industry and to gateway facility operators and planners. : Members of the project team previously developed and implemented an...
The Bicycle Compatibility Index : a level of service concept, implementation manual
DOT National Transportation Integrated Search
1998-11-01
Currently, no methodology is widely accepted by engineers, planners, or bicycle coordinators that will allow them to determine how compatible a roadway is for allowing efficient operation of both bicycles and motor vehicles. Determining how existing ...
Cooperative Control of Multiple Unmanned Autonomous Vehicles
2005-06-03
I I Final Report 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Cooperative Control of Multiple Unmanned Autonomous Vehicles F49620-01-1-0337 6. AUTHOR(S... Autonomous Vehicles Final Report Kendall E. Nygard Department of Computer Science and Operations Research North Dakota State University Fargo, ND 58105-5164
Lower cost offshore field development utilizing autonomous vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frisbie, F.R.; Vie, K.J.; Welch, D.W.
1996-12-31
The offshore oil and gas industry has the requirement to inspect offshore oil and gas pipelines for scour, corrosion and damage as well as inspect and intervene on satellite production facilities. This task is currently performed with Remotely Operated Vehicles (ROV) operated from dynamically positioned (DP) offshore supply or diving support boats. Currently, these tasks are expensive due to the high day rates for DP ships and the slow, umbilical impeded, 1 knot inspection rates of the tethered ROVs, Emerging Autonomous Undersea Vehicle (AUV) technologies offer opportunities to perform these same inspection tasks for 50--75% lower cost, with comparable ormore » improved quality. The new generation LAPV (Linked Autonomous Power Vehicles) will operate from fixed facilities such as TLPs or FPFs and cover an operating field 10 kms in diameter.« less
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)
2010-01-01
A multi-agent autonomous system for exploration of hazardous or inaccessible locations. The multi-agent autonomous system includes simple surface-based agents or craft controlled by an airborne tracking and command system. The airborne tracking and command system includes an instrument suite used to image an operational area and any craft deployed within the operational area. The image data is used to identify the craft, targets for exploration, and obstacles in the operational area. The tracking and command system determines paths for the surface-based craft using the identified targets and obstacles and commands the craft using simple movement commands to move through the operational area to the targets while avoiding the obstacles. Each craft includes its own instrument suite to collect information about the operational area that is transmitted back to the tracking and command system. The tracking and command system may be further coupled to a satellite system to provide additional image information about the operational area and provide operational and location commands to the tracking and command system.
Manhunting: Counter-Network Organization for Irregular Warfare
2009-09-01
received his B.A. in International Relations from the University of Kansas in 1985 and M.S. in Computer Applications Management from Lesley University...collection management , and targeting.b. Operational level processes begin with intelligence on the adversary capabilities with granular focus to mitigate... managers work with analysts, targeting experts, decision makers, planners, and operations personnel, guiding multidisciplinary intelligence collection to
Theater gateway closure: a strategic level barricade
that at the strategic level the effects are based on the economic and diplomatic elements of the national power, affecting proportionally sustainment...Seven months of detrimental political implications, expensive effects on military operations, and strategic level barricades during 2011 and 2012 in...logistical planners at the strategic level can anticipate or mitigate the effects of a theater gateway closure on military operations. Through two
Effects-Based Operations: Useful or Useless
2010-05-03
the effects -based approach largely irrelevant. 30 The idea of Consequence Identification, however, is not to identify all outcomes , but rather to... effects -based thinking could provide operational planners and commanders with a valuable consequence identification tool. It further argues that System...to achieve specific effects that contribute directly to desired military and political outcomes .” 14 Air Force Brig Gen David Deptula further writes
Wang, Henry; Xing, Lei
2016-11-08
An autopilot scheme of volumetric-modulated arc therapy (VMAT)/intensity-modulated radiation therapy (IMRT) planning with the guidance of prior knowl-edge is established with recorded interactions between a planner and a commercial treatment planning system (TPS). Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines. The TPS used in this study is a Windows-based Eclipse system. The interactions of our application program with Eclipse TPS are realized through a series of subrou-tines obtained by prerecording the mouse clicks or keyboard strokes of a planner in operating the TPS. A strategy to autopilot Eclipse VMAT/IMRT plan selection process is developed as a specific example of the proposed "scripting" method. The autopiloted planning is navigated by a decision function constructed with a reference plan that has the same prescription and similar anatomy with the case at hand. The calculation proceeds by alternating between the Eclipse optimization and the outer-loop optimization independent of the Eclipse. In the C# program, the dosimetric characteristics of a reference treatment plan are used to assess and modify the Eclipse planning parameters and to guide the search for a clinically sensible treatment plan. The approach is applied to plan a head and neck (HN) VMAT case and a prostate IMRT case. Our study demonstrated the feasibility of application programming method in C# environment with recorded interactions of planner-TPS. The process mimics a planner's planning process and automatically provides clinically sensible treatment plans that would otherwise require a large amount of manual trial and error of a planner. The proposed technique enables us to harness a commercial TPS by application programming via the use of recorded human computer interactions and provides an effective tool to greatly facilitate the treatment planning process. © 2016 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Denholm, Paul; Cochran, Jaquelin
2015-06-01
Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.
A Guidance Document on Airport Noise Control.
1980-08-01
airport . This Document is one of the tools designed to help airport operators and planners reach that goal. It should aid the reader in applying the...into the five major areas where airport noise control can be applied : airport plans, airport / airspace use, aircraft operation, land use, and noise...flights to another airport is just another form of rescheduling, though it need not apply only to night operations. The FAA is concerned about the
Automated Planning and Scheduling for Planetary Rover Distributed Operations
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve
1999-01-01
Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.
Turning a remotely controllable observatory into a fully autonomous system
NASA Astrophysics Data System (ADS)
Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael
2014-08-01
We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.
Wireless IR Image Transfer System for Autonomous Vehicles
2003-12-01
the camera can operate between 0 and 500 C; this uniquely suites it for employment on autonomous vehicles in rugged environments. The camera is...system is suitable for used on autonomous vehicles under varying antenna orientations. • The third is the use of MDS transceivers allows the received
A Concept and Implementation of Optimized Operations of Airport Surface Traffic
NASA Technical Reports Server (NTRS)
Jung, Yoon C.; Hoang, Ty; Montoya, Justin; Gupta, Gautam; Malik, Waqar; Tobias, Leonard
2010-01-01
This paper presents a new concept of optimized surface operations at busy airports to improve the efficiency of taxi operations, as well as reduce environmental impacts. The suggested system architecture consists of the integration of two decoupled optimization algorithms. The Spot Release Planner provides sequence and timing advisories to tower controllers for releasing departure aircraft into the movement area to reduce taxi delay while achieving maximum throughput. The Runway Scheduler provides take-off sequence and arrival runway crossing sequence to the controllers to maximize the runway usage. The description of a prototype implementation of this integrated decision support tool for the airport control tower controllers is also provided. The prototype decision support tool was evaluated through a human-in-the-loop experiment, where both the Spot Release Planner and Runway Scheduler provided advisories to the Ground and Local Controllers. Initial results indicate the average number of stops made by each departure aircraft in the departure runway queue was reduced by more than half when the controllers were using the advisories, which resulted in reduced taxi times in the departure queue.
Video Guidance Sensor for Surface Mobility Operations
NASA Technical Reports Server (NTRS)
Fernandez, Kenneth R.; Fischer, Richard; Bryan, Thomas; Howell, Joe; Howard, Ricky; Peters, Bruce
2008-01-01
Robotic systems and surface mobility will play an increased role in future exploration missions. Unlike the LRV during Apollo era which was an astronaut piloted vehicle future systems will include teleoperated and semi-autonomous operations. The tasks given to these vehicles will run the range from infrastructure maintenance, ISRU, and construction to name a few. A common task that may be performed would be the retrieval and deployment of trailer mounted equipment. Operational scenarios may require these operations to be performed remotely via a teleoperated mode,or semi-autonomously. This presentation describes the on-going project to adapt the Automated Rendezvous and Capture (AR&C) sensor developed at the Marshall Space Flight Center for use in an automated trailer pick-up and deployment operation. The sensor which has been successfully demonstrated on-orbit has been mounted on an iRobot/John Deere RGATOR autonomous vehicle for this demonstration which will be completed in the March 2008 time-frame.
2014-09-01
efficient yet safe operations. • Further understanding of human psychology in the operation of autonomous systems. • Interfaces, be they visual...that system, especially when included in aspects or during times where automation backup is required, when the human-operators anticipatory skills...political and psychological domains, where it connotes self-determination (Christman 2009). The autonomous systems domain that has evolved since
The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements
NASA Technical Reports Server (NTRS)
Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray
2012-01-01
In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.
Autonomy Software: V&V Challenges and Characteristics
NASA Technical Reports Server (NTRS)
Schumann, Johann; Visser, Willem
2006-01-01
The successful operation of unmanned air vehicles requires software with a high degree of autonomy. Only if high level functions can be carried out without human control and intervention, complex missions in a changing and potentially unknown environment can be carried out successfully. Autonomy software is highly mission and safety critical: failures, caused by flaws in the software cannot only jeopardize the mission, but could also endanger human life (e.g., a crash of an UAV in a densely populated area). Due to its large size, high complexity, and use of specialized algorithms (planner, constraint-solver, etc.), autonomy software poses specific challenges for its verification, validation, and certification. -- - we have carried out a survey among researchers aid scientists at NASA to study these issues. In this paper, we will present major results of this study, discussing the broad spectrum. of notions and characteristics of autonomy software and its challenges for design and development. A main focus of this survey was to evaluate verification and validation (V&V) issues and challenges, compared to the development of "traditional" safety-critical software. We will discuss important issues in V&V of autonomous software and advanced V&V tools which can help to mitigate software risks. Results of this survey will help to identify and understand safety concerns in autonomy software and will lead to improved strategies for mitigation of these risks.
Advanced Diagnostic System on Earth Observing One
NASA Technical Reports Server (NTRS)
Hayden, Sandra C.; Sweet, Adam J.; Christa, Scott E.; Tran, Daniel; Shulman, Seth
2004-01-01
In this infusion experiment, the Livingstone 2 (L2) model-based diagnosis engine, developed by the Computational Sciences division at NASA Ames Research Center, has been uploaded to the Earth Observing One (EO-1) satellite. L2 is integrated with the Autonomous Sciencecraft Experiment (ASE) which provides an on-board planning capability and a software bridge to the spacecraft's 1773 data bus. Using a model of the spacecraft subsystems, L2 predicts nominal state transitions initiated by control commands, monitors the spacecraft sensors, and, in the case of failure, isolates the fault based on the discrepant observations. Fault detection and isolation is done by determining a set of component modes, including most likely failures, which satisfy the current observations. All mode transitions and diagnoses are telemetered to the ground for analysis. The initial L2 model is scoped to EO-1's imaging instruments and solid state recorder. Diagnostic scenarios for EO-1's nominal imaging timeline are demonstrated by injecting simulated faults on-board the spacecraft. The solid state recorder stores the science images and also hosts: the experiment software. The main objective of the experiment is to mature the L2 technology to Technology Readiness Level (TRL) 7. Experiment results are presented, as well as a discussion of the challenging technical issues encountered. Future extensions may explore coordination with the planner, and model-based ground operations.
Onboard Processing and Autonomous Operations on the IPEX Cubesat
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi;
2012-01-01
IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.
Mission Operations with an Autonomous Agent
NASA Technical Reports Server (NTRS)
Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.
1998-01-01
The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.
Mars Exploration Rover surface operations: driving opportunity at Meridiani Planum
NASA Technical Reports Server (NTRS)
Biesiadecki, Jeffrey J.; Baumgartner, E.; Bonitz, R.; Cooper, B.; Hartman, F.; Leger, C.; Maimone, M.; Maxwell, S.; Trebi-Ollenu, A.; Wright, J.
2005-01-01
This paper will detail the experience of driving Opportunity through this alien landscape from the point of view of the Rover Planners, the people who tell the rover where to drive and how to use its robotic arm.
Commanding Officer Sergeant Major Sections S1 - Administration S3 - Training S4 - Logistics Career Planner Operation Command, Pacific Hawaii Judicial Circuit Consolidated Storage Program DLA Customer Support Warrior Detachment College of Distance Education & Training Patrol and Reconnaissance Wing TWO Patrol
Simplified web-based decision support method for traffic management and work zone analysis.
DOT National Transportation Integrated Search
2017-01-01
Traffic congestion mitigation is one of the key challenges that transportation planners and operations engineers face when planning for construction and maintenance activities. There is a wide variety of approaches and methods that address work zone ...
Simplified web-based decision support method for traffic management and work zone analysis.
DOT National Transportation Integrated Search
2015-06-01
Traffic congestion mitigation is one of the key challenges that transportation planners and operations engineers face when : planning for construction and maintenance activities. There is a wide variety of approaches and methods that address work : z...
Fundreds in Arkansas: An Interdisciplinary Collaboration
ERIC Educational Resources Information Center
La Porte, Angela M.
2010-01-01
This article discusses Fundreds in Arkansas, an interactive cooperative in Arkansas to promote and support Mel Chin's nationwide interdisciplinary artwork, Operation Paydirt (The Fundred Dollar Bill Project). The artwork involves communities and educational institutions across the country, healthcare professionals, engineers, urban planners, and…
Bidding-based autonomous process planning and scheduling
NASA Astrophysics Data System (ADS)
Gu, Peihua; Balasubramanian, Sivaram; Norrie, Douglas H.
1995-08-01
Improving productivity through computer integrated manufacturing systems (CIMS) and concurrent engineering requires that the islands of automation in an enterprise be completely integrated. The first step in this direction is to integrate design, process planning, and scheduling. This can be achieved through a bidding-based process planning approach. The product is represented in a STEP model with detailed design and administrative information including design specifications, batch size, and due dates. Upon arrival at the manufacturing facility, the product registered in the shop floor manager which is essentially a coordinating agent. The shop floor manager broadcasts the product's requirements to the machines. The shop contains autonomous machines that have knowledge about their functionality, capabilities, tooling, and schedule. Each machine has its own process planner and responds to the product's request in a different way that is consistent with its capabilities and capacities. When more than one machine offers certain process(es) for the same requirements, they enter into negotiation. Based on processing time, due date, and cost, one of the machines wins the contract. The successful machine updates its schedule and advises the product to request raw material for processing. The concept was implemented using a multi-agent system with the task decomposition and planning achieved through contract nets. The examples are included to illustrate the approach.
Autonomic Computing for Spacecraft Ground Systems
NASA Technical Reports Server (NTRS)
Li, Zhenping; Savkli, Cetin; Jones, Lori
2007-01-01
Autonomic computing for spacecraft ground systems increases the system reliability and reduces the cost of spacecraft operations and software maintenance. In this paper, we present an autonomic computing solution for spacecraft ground systems at NASA Goddard Space Flight Center (GSFC), which consists of an open standard for a message oriented architecture referred to as the GMSEC architecture (Goddard Mission Services Evolution Center), and an autonomic computing tool, the Criteria Action Table (CAT). This solution has been used in many upgraded ground systems for NASA 's missions, and provides a framework for developing solutions with higher autonomic maturity.
Autonomous Payload Operations Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Stetson, Howard K.; Deitsch, David K.; Cruzen, Craig A.; Haddock, Angie T.
2007-01-01
Operating the International Space Station (ISS) involves many complex crew tended, ground operated and combined systems. Over the life of the ISS program, it has become evident that by having automated and autonomous systems on board, more can be accomplished and at the same time reduce the workload of the crew and ground operators. Engineers at the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center in Huntsville Alabama, working in collaboration with The Charles Stark Draper Laboratory have developed an autonomous software system that uses the Timeliner User Interface Language and expert logic to continuously monitor ISS payload systems, issue commands and signal ground operators as required. This paper describes the development history of the system, its concept of operation and components. The paper also discusses the testing process as well as the facilities used to develop the system. The paper concludes with a description of future enhancement plans for use on the ISS as well as potential applications to Lunar and Mars exploration systems.
Autonomous Command Operation of the WIRE Spacecraft
NASA Technical Reports Server (NTRS)
Prior, Mike; Walyus, Keith; Saylor, Rick
1999-01-01
This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.
NASA Astrophysics Data System (ADS)
Black, Randy; Bai, Haowei; Michalicek, Andrew; Shelton, Blaine; Villela, Mark
2008-01-01
Currently, autonomy in space applications is limited by a variety of technology gaps. Innovative application of wireless technology and avionics architectural principles drawn from the Orion crew exploration vehicle provide solutions for several of these gaps. The Vision for Space Exploration envisions extensive use of autonomous systems. Economic realities preclude continuing the level of operator support currently required of autonomous systems in space. In order to decrease the number of operators, more autonomy must be afforded to automated systems. However, certification authorities have been notoriously reluctant to certify autonomous software in the presence of humans or when costly missions may be jeopardized. The Orion avionics architecture, drawn from advanced commercial aircraft avionics, is based upon several architectural principles including partitioning in software. Robust software partitioning provides "brick wall" separation between software applications executing on a single processor, along with controlled data movement between applications. Taking advantage of these attributes, non-deterministic applications can be placed in one partition and a "Safety" application created in a separate partition. This "Safety" partition can track the position of astronauts or critical equipment and prevent any unsafe command from executing. Only the Safety partition need be certified to a human rated level. As a proof-of-concept demonstration, Honeywell has teamed with the Ultra WideBand (UWB) Working Group at NASA Johnson Space Center to provide tracking of humans, autonomous systems, and critical equipment. Using UWB the NASA team can determine positioning to within less than one inch resolution, allowing a Safety partition to halt operation of autonomous systems in the event that an unplanned collision is imminent. Another challenge facing autonomous systems is the coordination of multiple autonomous agents. Current approaches address the issue as one of networking and coordination of multiple independent units, each with its own mission. As a proof-of-concept Honeywell is developing and testing various algorithms that lead to a deterministic, fault tolerant, reliable wireless backplane. Just as advanced avionics systems control several subsystems, actuators, sensors, displays, etc.; a single "master" autonomous agent (or base station computer) could control multiple autonomous systems. The problem is simplified to controlling a flexible body consisting of several sensors and actuators, rather than one of coordinating multiple independent units. By filling technology gaps associated with space based autonomous system, wireless technology and Orion architectural principles provide the means for decreasing operational costs and simplifying problems associated with collaboration of multiple autonomous systems.
Semi-Autonomous Small Unmanned Aircraft Systems for Sampling Tornadic Supercell Thunderstorms
NASA Astrophysics Data System (ADS)
Elston, Jack S.
This work describes the development of a network-centric unmanned aircraft system (UAS) for in situ sampling of supercell thunderstorms. UAS have been identified as a well-suited platform for meteorological observations given their portability, endurance, and ability to mitigate atmospheric disturbances. They represent a unique tool for performing targeted sampling in regions of a supercell thunderstorm previously unreachable through other methods. Doppler radar can provide unique measurements of the wind field in and around supercell thunderstorms. In order to exploit this capability, a planner was developed that can optimize ingress trajectories for severe storm penetration. The resulting trajectories were examined to determine the feasibility of such a mission, and to optimize ingress in terms of flight time and exposure to precipitation. A network-centric architecture was developed to handle the large amount of distributed data produced during a storm sampling mission. Creation of this architecture was performed through a bottom-up design approach which reflects and enhances the interplay between networked communication and autonomous aircraft operation. The advantages of the approach are demonstrated through several field and hardware-in-the-loop experiments containing different hardware, networking protocols, and objectives. Results are provided from field experiments involving the resulting network-centric architecture. An airmass boundary was sampled in the Collaborative Colorado Nebraska Unmanned Aircraft Experiment (CoCoNUE). Utilizing lessons learned from CoCoNUE, a new concept of operations (CONOPS) and UAS were developed to perform in situ sampling of supercell thunderstorms. Deployment during the Verification of the Origins of Rotation in Tornadoes Experiment 2 (VORTEX2) resulted in the first ever sampling of the airmass associated with the rear flank downdraft of a tornadic supercell thunderstorm by a UAS. Hardware-in-the-loop simulation capability was added to the UAS to enable further assessment of the system and CONOPS. The simulation combines a full six degree-of-freedom aircraft dynamic model with wind and precipitation data from simulations of severe convective storms. Interfaces were written to involve as much of the system's field hardware as possible, including the creation of a simulated radar product server. A variety of simulations were conducted to evaluate different aspects of the CONOPS used for the 2010 VORTEX2 field campaign.
Automatic rendezvous and docking systems functional and performance requirements
NASA Technical Reports Server (NTRS)
1985-01-01
A generalized mission design scheme which utilizes a standard mission profile for all OMV rendezvous operations, recognizes typical operational constraints, and minimizes propellant penalties due to nodal regression effects was developed. This scheme has been used to demonstrate a unified guidance and navigation maneuver processor (the UMP), which supports all mission phases through station-keeping. The initial demonstration version of the Orbital Rendezvous Mission Planner (ORMP) was provided for evaluation purposes, and program operation was discussed.
Training augmentation device for the Air Force satellite Control Network
NASA Technical Reports Server (NTRS)
Shoates, Keith B.
1993-01-01
From the 1960's and into the early 1980's satellite operations and control were conducted by Air Force Systems Command (AFSC), now Air Force Materiel Command (AFMC), out of the Satellite Control Facility at Onizuka AFB, CA. AFSC was responsible for acquiring satellite command and control systems and conducting routine satellite operations. The daily operations, consisting of satellite health and status contacts and station keeping activities, were performed for AFSC by a Mission Control Team (MCT) staffed by civilian contractors who were responsible for providing their own technically 'qualified' personnel as satellite operators. An MCT consists of five positions: mission planner, ground controller, planner analyst, orbit analyst, and ranger controller. Most of the training consisted of On-the-Job-Training (OJT) with junior personnel apprenticed to senior personnel until they could demonstrate job proficiency. With most of the satellite operators having 15 to 25 years of experience, there was minimal risk to the mission. In the mid 1980's Air Force Space Command (AFSPACOM) assumed operational responsibility for a newly established control node at Falcon AFB (FAFB) in CO. The satellites and ground system program offices (SPO's) are organized under AFSC's Space and Missiles Systems Center (SMC) to function as a systems engineering and acquisition agency for AFSPACECOM. The collection of the satellite control nodes, ground tracking stations, computer processing equipment, and connecting communications links is referred to as the Air Force Satellite Control Network (AFSCN).
1992-02-01
Postgraduate School Autonomous Under Vehicle (AUV) are then examined. Autonomous underwater vehicle (AUV), hard real-time system, real - time operating system , real-time programming language, real-time system, soft real-time system.
TLOG: Training and Educating Operational Logistic Planners
2008-05-22
monograph recommends specific changes to the current curriculum. Additions in operational knowledge provide the students technical knowledge and a...common frame of reference in campaign planning. The changes result in students not only technically competent to design a concept of support, but...planning process. The implementation of these changes enhance TLog’s curriculum to meet the course’s stated goal; the graduates will be the
The Joint Master Operational Planner
2016-04-04
Daniel H. Hibner, United States Army Joint Forces Staff College Joint Advanced Warfighting School 7800 Hampton Blvd. Norfolk, VA 23511-1702 Approved...Operational Art. Unclass Unclass Unclass Unclassified Unlimited 66 757-443-6301 NATIONAL DEFENSE UNIVERSITY JOINT FORCES STAFF COLLEGE JOINT ADVANCED...of this paper reflect my own personal views and are not necessarily endorsed by the Joint Forces Staff College or the department of Defense. Thesis
Automated Scheduling Via Artificial Intelligence
NASA Technical Reports Server (NTRS)
Biefeld, Eric W.; Cooper, Lynne P.
1991-01-01
Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.
ERIC Educational Resources Information Center
KOVNER, EDGAR A.
PROBLEMS CONFRONTED BY PLANNERS OF NUCLEAR PROGRAMS AT THE TECHNICIAN LEVEL INCLUDE (1) LACK OF PRECEDENT IN CURRICULUM, COURSE OUTLINES, AND GRADUATE PLACEMENT, (2) DIFFICULTY IN DETERMINING COSTS OF LABORATORY CONSTRUCTION, EQUIPMENT, AND OPERATION, AND (3) REQUIREMENT OF ATOMIC ENERGY COMMISSION LICENSES IN NUCLEAR OCCUPATIONS. A 92-SEMESTER…
48 CFR 7.104 - General procedures.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., fiscal, legal, and technical personnel. If contract performance is to be in a designated operational area... shall review the plan and, if appropriate, revise it. (b) Requirements and logistics personnel should... planner should consult with requirements and logistics personnel who determine type, quality, quantity...
48 CFR 7.104 - General procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., fiscal, legal, and technical personnel. If contract performance is to be in a designated operational area... shall review the plan and, if appropriate, revise it. (b) Requirements and logistics personnel should... planner should consult with requirements and logistics personnel who determine type, quality, quantity...
48 CFR 7.104 - General procedures.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., fiscal, legal, and technical personnel. If contract performance is to be in a designated operational area... shall review the plan and, if appropriate, revise it. (b) Requirements and logistics personnel should... planner should consult with requirements and logistics personnel who determine type, quality, quantity...
48 CFR 7.104 - General procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., fiscal, legal, and technical personnel. If contract performance is to be in a designated operational area... shall review the plan and, if appropriate, revise it. (b) Requirements and logistics personnel should... planner should consult with requirements and logistics personnel who determine type, quality, quantity...
48 CFR 7.104 - General procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., fiscal, legal, and technical personnel. If contract performance is to be in a designated operational area... shall review the plan and, if appropriate, revise it. (b) Requirements and logistics personnel should... planner should consult with requirements and logistics personnel who determine type, quality, quantity...
Development of the Bicycle Compatibility Index: A Level of Service Concept, Final Report
DOT National Transportation Integrated Search
1998-12-01
Presently, there is no methodology widely accepted by engineers, planners, or bicycle coordinators that will allow them to determine how compatible a roadway is for allowing efficient operation of both bicycles and motor vehicles. Determining how exi...
DOT National Transportation Integrated Search
2011-01-01
The Quick Wins Connected Vehicles deployment scenario provides stakeholders from planners, to operators, to manufacturers, to policymakers with a defensible path towards the deployment of Connected Vehicles technologies over the next half-dec...
One issue for community groups, local and regional planners, and politicians, is that they require relevant information to develop programs and initiatives for incorporating sustainability principles into their physical infrastructure, operations, and decision-making processes. T...
ERIC Educational Resources Information Center
Rubin, Mary
2009-01-01
This article describes the Fundred Dollar Bill Project which is an innovative artwork made of millions of drawings. This creative collective action is intended to support Operation Paydirt, an extraordinary art/science project uniting three million children with educators, scientists, healthcare professionals, designers, urban planners, engineers,…
Infrastructure-Based Sensors Augmenting Efficient Autonomous Vehicle Operations: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jun, Myungsoo; Markel, Anthony J
Autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehicles is seen as a potential barrier to broad adoption and achieving system energy efficiency gains. Since traffic in autonomous vehicle technology development relies on an on-board network of fused sensor inputs for safe and efficient operation. The fused sensors offer multiple perspectives of similar information aiding in system decision robustness. The high cost of full systems on individual vehiclesmore » is seen as a potential barrier to broad adoption and achieving system energy efficiency gains.« less
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S.
2012-01-01
The Simulation Software, KATE (Knowledgebase Autonomous Test Engineer), is used to demonstrate the automatic identification of faults in a system. The ACLO (Autonomous Cryogenics Loading Operation) project uses KATE to monitor and find faults in the loading of the cryogenics int o a vehicle fuel tank. The KATE software interfaces with the IHM (Integrated Health Management) systems bus to communicate with other systems that are part of ACLO. One system that KATE uses the IHM bus to communicate with is AIS (Advanced Inspection System). KATE will send messages to AIS when there is a detected anomaly. These messages include visual inspection of specific valves, pressure gauges and control messages to have AIS open or close manual valves. My goals include implementing the connection to the IHM bus within KATE and for the AIS project. I will also be working on implementing changes to KATE's Ul and implementing the physics objects in KATE that will model portions of the cryogenics loading operation.
System and method of self-properties for an autonomous and automatic computer environment
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)
2010-01-01
Systems, methods and apparatus are provided through which in some embodiments self health/urgency data and environment health/urgency data may be transmitted externally from an autonomic element. Other embodiments may include transmitting the self health/urgency data and environment health/urgency data together on a regular basis similar to the lub-dub of a heartbeat. Yet other embodiments may include a method for managing a system based on the functioning state and operating status of the system, wherein the method may include processing received signals from the system indicative of the functioning state and the operating status to obtain an analysis of the condition of the system, generating one or more stay alive signals based on the functioning status and the operating state of the system, transmitting the stay-alive signal, transmitting self health/urgency data, and transmitting environment health/urgency data. Still other embodiments may include an autonomic element that includes a self monitor, a self adjuster, an environment monitor, and an autonomic manager.
NASA Astrophysics Data System (ADS)
Langton, John T.; Caroli, Joseph A.; Rosenberg, Brad
2008-04-01
To support an Effects Based Approach to Operations (EBAO), Intelligence, Surveillance, and Reconnaissance (ISR) planners must optimize collection plans within an evolving battlespace. A need exists for a decision support tool that allows ISR planners to rapidly generate and rehearse high-performing ISR plans that balance multiple objectives and constraints to address dynamic collection requirements for assessment. To meet this need we have designed an evolutionary algorithm (EA)-based "Integrated ISR Plan Analysis and Rehearsal System" (I2PARS) to support Effects-based Assessment (EBA). I2PARS supports ISR mission planning and dynamic replanning to coordinate assets and optimize their routes, allocation and tasking. It uses an evolutionary algorithm to address the large parametric space of route-finding problems which is sometimes discontinuous in the ISR domain because of conflicting objectives such as minimizing asset utilization yet maximizing ISR coverage. EAs are uniquely suited for generating solutions in dynamic environments and also allow user feedback. They are therefore ideal for "streaming optimization" and dynamic replanning of ISR mission plans. I2PARS uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to automatically generate a diverse set of high performing collection plans given multiple objectives, constraints, and assets. Intended end users of I2PARS include ISR planners in the Combined Air Operations Centers and Joint Intelligence Centers. Here we show the feasibility of applying the NSGA-II algorithm and EAs in general to the ISR planning domain. Unique genetic representations and operators for optimization within the ISR domain are presented along with multi-objective optimization criteria for ISR planning. Promising results of the I2PARS architecture design, early software prototype, and limited domain testing of the new algorithm are discussed. We also present plans for future research and development, as well as technology transition goals.
Orbital Express mission operations planning and resource management using ASPEN
NASA Astrophysics Data System (ADS)
Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel
2008-04-01
As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less labor-power rises. Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Like a tow-truck delivering gas to a car on the road, the "servicing" satellite of OE had to find the "client" from several kilometers away, connect directly to the client, and transfer fluid (or a battery) autonomously, while on earth-orbit. The mission met 100% of its success criteria, and proved that autonomous satellite servicing is now a reality for space operations. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. As the constraints for execution could change weekly, daily, and even hourly, the tools used create the mission execution plans needed to be flexible and adaptable to many different kinds of changes. At the same time, the hard constraints of the plans needed to be maintained and satisfied. The Automated Scheduling and Planning Environment (ASPEN) tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, an overview of the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the NASA's Earth Observing One mission's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.
1987-06-01
by block numoiber) The study of human driving of automotive vehicles is an important aid to the development of viable autonomous vehicle navigation...of human driving which could provide some different insights into possible approaches to autonomous vehicle control. At the start of this work, it was...advanced work in the behavioral aspects of human driving . Research of this nature can have a significant impact on the development of autonomous vehicles
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-02-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-06-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Plan Execution Interchange Language (PLEXIL)
NASA Technical Reports Server (NTRS)
Estlin, Tara; Jonsson, Ari; Pasareanu, Corina; Simmons, Reid; Tso, Kam; Verma, Vandi
2006-01-01
Plan execution is a cornerstone of spacecraft operations, irrespective of whether the plans to be executed are generated on board the spacecraft or on the ground. Plan execution frameworks vary greatly, due to both different capabilities of the execution systems, and relations to associated decision-making frameworks. The latter dependency has made the reuse of execution and planning frameworks more difficult, and has all but precluded information sharing between different execution and decision-making systems. As a step in the direction of addressing some of these issues, a general plan execution language, called the Plan Execution Interchange Language (PLEXIL), is being developed. PLEXIL is capable of expressing concepts used by many high-level automated planners and hence provides an interface to multiple planners. PLEXIL includes a domain description that specifies command types, expansions, constraints, etc., as well as feedback to the higher-level decision-making capabilities. This document describes the grammar and semantics of PLEXIL. It includes a graphical depiction of this grammar and illustrative rover scenarios. It also outlines ongoing work on implementing a universal execution system, based on PLEXIL, using state-of-the-art rover functional interfaces and planners as test cases.
Interactive-rate Motion Planning for Concentric Tube Robots.
Torres, Luis G; Baykal, Cenk; Alterovitz, Ron
2014-05-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient's anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method's high speed enables a user to continuously and freely move the robot's tip while the motion planner ensures that the robot's shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device's shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot's tip through the environment while the robot automatically avoids collisions with the anatomical obstacles.
Collaborating with Autonomous Agents
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Cross, Charles D.; Fan, Henry; Hempley, Lucas E.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc D.; Allen, B. Danette
2015-01-01
With the anticipated increase of small unmanned aircraft systems (sUAS) entering into the National Airspace System, it is highly likely that vehicle operators will be teaming with fleets of small autonomous vehicles. The small vehicles may consist of sUAS, which are 55 pounds or less that typically will y at altitudes 400 feet and below, and small ground vehicles typically operating in buildings or defined small campuses. Typically, the vehicle operators are not concerned with manual control of the vehicle; instead they are concerned with the overall mission. In order for this vision of high-level mission operators working with fleets of vehicles to come to fruition, many human factors related challenges must be investigated and solved. First, the interface between the human operator and the autonomous agent must be at a level that the operator needs and the agents can understand. This paper details the natural language human factors e orts that NASA Langley's Autonomy Incubator is focusing on. In particular these e orts focus on allowing the operator to interact with the system using speech and gestures rather than a mouse and keyboard. With this ability of the system to understand both speech and gestures, operators not familiar with the vehicle dynamics will be able to easily plan, initiate, and change missions using a language familiar to them rather than having to learn and converse in the vehicle's language. This will foster better teaming between the operator and the autonomous agent which will help lower workload, increase situation awareness, and improve performance of the system as a whole.
NASA Astrophysics Data System (ADS)
Ivancic, W. D.; Paulsen, P. E.; Miller, E. M.; Sage, S. P.
This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe® satellites to obtain space-based sensor data.
Autonomous Electrothermal Facility for Oil Recovery Intensification Fed by Wind Driven Power Unit
NASA Astrophysics Data System (ADS)
Belsky, Aleksey A.; Dobush, Vasiliy S.
2017-10-01
This paper describes the structure of autonomous facility fed by wind driven power unit for intensification of viscous and heavy crude oil recovery by means of heat impact on productive strata. Computer based service simulation of this facility was performed. Operational energy characteristics were obtained for various operational modes of facility. The optimal resistance of heating element of the downhole heater was determined for maximum operating efficiency of wind power unit.
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie; Stetson, Howard K.
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide single button intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system on-board the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System [1] , along with the execution component design from within the HAL 9000 Space Operating System [2] , this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA s Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
Automated Operations Development for Advanced Exploration Systems
NASA Technical Reports Server (NTRS)
Haddock, Angie T.; Stetson, Howard
2012-01-01
Automated space operations command and control software development and its implementation must be an integral part of the vehicle design effort. The software design must encompass autonomous fault detection, isolation, recovery capabilities and also provide "single button" intelligent functions for the crew. Development, operations and safety approval experience with the Timeliner system onboard the International Space Station (ISS), which provided autonomous monitoring with response and single command functionality of payload systems, can be built upon for future automated operations as the ISS Payload effort was the first and only autonomous command and control system to be in continuous execution (6 years), 24 hours a day, 7 days a week within a crewed spacecraft environment. Utilizing proven capabilities from the ISS Higher Active Logic (HAL) System, along with the execution component design from within the HAL 9000 Space Operating System, this design paper will detail the initial HAL System software architecture and interfaces as applied to NASA's Habitat Demonstration Unit (HDU) in support of the Advanced Exploration Systems, Autonomous Mission Operations project. The development and implementation of integrated simulators within this development effort will also be detailed and is the first step in verifying the HAL 9000 Integrated Test-Bed Component [2] designs effectiveness. This design paper will conclude with a summary of the current development status and future development goals as it pertains to automated command and control for the HDU.
Contingency Software in Autonomous Systems: Technical Level Briefing
NASA Technical Reports Server (NTRS)
Lutz, Robyn R.; Patterson-Hines, Ann
2006-01-01
Contingency management is essential to the robust operation of complex systems such as spacecraft and Unpiloted Aerial Vehicles (UAVs). Automatic contingency handling allows a faster response to unsafe scenarios with reduced human intervention on low-cost and extended missions. Results, applied to the Autonomous Rotorcraft Project and Mars Science Lab, pave the way to more resilient autonomous systems.
Autonomous Aircraft Operations using RTCA Guidelines for Airborne Conflict Management
NASA Technical Reports Server (NTRS)
Krishnamurthy, Karthik; Wing, David J.; Barmore, Bryan E.; Barhydt, Richard; Palmer, Michael T.; Johnson, Edward J.; Ballin, Mark G.; Eischeid, Todd M.
2003-01-01
A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of DAG-TM autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special-use airspace (SUA) regions on either side of the pilot's planned route. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. Key guidelines from the RTCA Airborne Conflict Management (ACM) concept were applied to autonomous aircraft operations for this experiment. These concepts included the RTCA ACM definitions of distinct conflict detection and collision avoidance zones, and the use of a graded system of conflict alerts for the flight crew. Three studies were conducted in the course of the experiment. The first study investigated the effect of hazard proximity upon pilot ability to meet constraints and solve conflict situations. The second study investigated pilot use of the airborne tools when faced with an unexpected loss of separation (LOS). The third study explored pilot interactions in an over-constrained conflict situation, with and without priority rules dictating who should move first. Detailed results from these studies were presented at the 5th USA/Europe Air Traffic Management R&D Seminar (ATM2003). This overview paper focuses on the integration of the RTCA ACM concept into autonomous aircraft operations in highly constrained situations, and provides an overview of the results presented at the ATM2003 seminar. These results, together with previously reported studies, continue to support the feasibility of autonomous aircraft operations.
DOT National Transportation Integrated Search
2007-06-01
The intent of this study is to explore the planning, design, and ongoing operation and maintenance of HOT facilities and to provide lessons learned and applicable technical guidance that will assist the state and local transportation planners and des...
DOT National Transportation Integrated Search
2017-01-20
Documenting the times trucks incur when crossing an international border facility is valuable both to the private freight industry and to gateway facility operators and planners. : Members of the project team previously developed and implemented an a...
Information Sources on Rural Recycling.
ERIC Educational Resources Information Center
Notess, Greg; Kuske, Jodee
1992-01-01
Provides resources for rural recycling operations with the principle aim of assisting rural government officials, planners, residents, and educators to encourage recycling as an integral part of an individual's or community's solid waste management plan. Sources range from bibliographies, directories, and government documents to case studies. (49…
DOT National Transportation Integrated Search
2008-02-01
Planners concerned with deep-water port operations are interested in strategies that improve : regional truck flows associated with the container trade while also mitigating related problems of : highway congestion and air pollution. An inland port o...
NASA Astrophysics Data System (ADS)
McGrath, Carl J.
1994-11-01
Continued evolution of consumer broadband services such as digital video and digital multimedia has placed renewed emphasis on the need for network solutions to the broadband connectivity challenge. Although still important to architectural planners, connection oriented broadband services based on ISDN concepts must now compete with a wider array of broadcast and highly asymmetrical services for bandwidth on the network. For network operators, the business imperative is to identify and execute a network rebuild plan that will meet the capacity and flexibility needs of these services and compete with the inevitable alternate paths into the home. This paper focuses on some of the key issues facing broadband network planners as they search for the best architecture to meet the business and operations goals in their segment of the market. It will be apparent that no single optimum solution exists for all deployment scenarios, emphasizing the need for flexible and modular sources (such as servers) and network interfaces (such as set tops) which preserve the value of content, the ultimate driver in this round of network revolution.
Autonomous System Technologies for Resilient Airspace Operations
NASA Technical Reports Server (NTRS)
Houston, Vincent E.; Le Vie, Lisa R.
2017-01-01
Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.
NASA Technical Reports Server (NTRS)
Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.
1984-01-01
The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.
Fuzzy logic in autonomous orbital operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.
Laser Range and Bearing Finder for Autonomous Missions
NASA Technical Reports Server (NTRS)
Granade, Stephen R.
2004-01-01
NASA has recently re-confirmed their interest in autonomous systems as an enabling technology for future missions. In order for autonomous missions to be possible, highly-capable relative sensor systems are needed to determine an object's distance, direction, and orientation. This is true whether the mission is autonomous in-space assembly, rendezvous and docking, or rover surface navigation. Advanced Optical Systems, Inc. has developed a wide-angle laser range and bearing finder (RBF) for autonomous space missions. The laser RBF has a number of features that make it well-suited for autonomous missions. It has an operating range of 10 m to 5 km, with a 5 deg field of view. Its wide field of view removes the need for scanning systems such as gimbals, eliminating moving parts and making the sensor simpler and space qualification easier. Its range accuracy is 1% or better. It is designed to operate either as a stand-alone sensor or in tandem with a sensor that returns range, bearing, and orientation at close ranges, such as NASA's Advanced Video Guidance Sensor. We have assembled the initial prototype and are currently testing it. We will discuss the laser RBF's design and specifications. Keywords: laser range and bearing finder, autonomous rendezvous and docking, space sensors, on-orbit sensors, advanced video guidance sensor
Challenges in verification and validation of autonomous systems for space exploration
NASA Technical Reports Server (NTRS)
Brat, Guillaume; Jonsson, Ari
2005-01-01
Space exploration applications offer a unique opportunity for the development and deployment of autonomous systems, due to limited communications, large distances, and great expense of direct operation. At the same time, the risk and cost of space missions leads to reluctance to taking on new, complex and difficult-to-understand technology. A key issue in addressing these concerns is the validation of autonomous systems. In recent years, higher-level autonomous systems have been applied in space applications. In this presentation, we will highlight those autonomous systems, and discuss issues in validating these systems. We will then look to future demands on validating autonomous systems for space, identify promising technologies and open issues.
Development of a Space Station Operations Management System
NASA Technical Reports Server (NTRS)
Brandli, A. E.; Mccandless, W. T.
1988-01-01
To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.
Development of a Space Station Operations Management System
NASA Astrophysics Data System (ADS)
Brandli, A. E.; McCandless, W. T.
To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.
Job Analysis of the Professional Requirements of the Certified Financial Planner.
ERIC Educational Resources Information Center
Skurnik, Larry
A study examined the job functions of certified financial planners, the areas of knowledge needed by new financial planners, the links between these knowledge areas and the job functions of financial planners, and the validity of the examinations currently used by the College of Financial Planning to certify financial planners. A multimethod…
Orbital Express Mission Operations Planning and Resource Management using ASPEN
NASA Technical Reports Server (NTRS)
Chouinard, Caroline; Knight, Russell; Jones, Grailing; Tran, Daniel
2008-01-01
As satellite equipment and mission operations become more costly, the drive to keep working equipment running with less man-power rises.Demonstrating the feasibility of autonomous satellite servicing was the main goal behind the Orbital Express (OE) mission. Planning the satellite mission operations for OE required the ability to create a plan which could be executed autonomously over variable conditions. The Automated-Scheduling and Planning Environment (ASPEN)tool, developed at the Jet Propulsion Laboratory, was used to create the schedule of events in each daily plan for the two satellites of the OE mission. This paper presents an introduction to the ASPEN tool, the constraints of the OE domain, the variable conditions that were presented within the mission, and the solution to operations that ASPEN provided. ASPEN has been used in several other domains, including research rovers, Deep Space Network scheduling research, and in flight operations for the ASE project's EO1 satellite. Related work is discussed, as are the future of ASPEN and the future of autonomous satellite servicing.
NASA Technical Reports Server (NTRS)
Beisert, Susan; Rodriggs, Michael; Moreno, Francisco; Korth, David; Gibson, Stephen; Lee, Young H.; Eagles, Donald E.
2013-01-01
Now that major assembly of the International Space Station (ISS) is complete, NASA's focus has turned to using this high fidelity in-space research testbed to not only advance fundamental science research, but also demonstrate and mature technologies and develop operational concepts that will enable future human exploration missions beyond low Earth orbit. The ISS as a Testbed for Analog Research (ISTAR) project was established to reduce risks for manned missions to exploration destinations by utilizing ISS as a high fidelity micro-g laboratory to demonstrate technologies, operations concepts, and techniques associated with crew autonomous operations. One of these focus areas is the development and execution of ISS Testbed for Analog Research (ISTAR) autonomous flight crew procedures intended to increase crew autonomy that will be required for long duration human exploration missions. Due to increasing communications delays and reduced logistics resupply, autonomous procedures are expected to help reduce crew reliance on the ground flight control team, increase crew performance, and enable the crew to become more subject-matter experts on both the exploration space vehicle systems and the scientific investigation operations that will be conducted on a long duration human space exploration mission. These tests make use of previous or ongoing projects tested in ground analogs such as Research and Technology Studies (RATS) and NASA Extreme Environment Mission Operations (NEEMO). Since the latter half of 2012, selected non-critical ISS systems crew procedures have been used to develop techniques for building ISTAR autonomous procedures, and ISS flight crews have successfully executed them without flight controller involvement. Although the main focus has been preparing for exploration, the ISS has been a beneficiary of this synergistic effort and is considering modifying additional standard ISS procedures that may increase crew efficiency, reduce operational costs, and raise the amount of crew time available for scientific research. The next phase of autonomous procedure development is expected to include payload science and human research investigations. Additionally, ISS International Partners have expressed interest in participating in this effort. The recently approved one-year crew expedition starting in 2015, consisting of one Russian and one U.S. Operating Segment (USOS) crewmember, will be used not only for long duration human research investigations but also for the testing of exploration operations concepts, including crew autonomy.
Autonomous Aerobraking: A Design, Development, and Feasibility Study
NASA Technical Reports Server (NTRS)
Prince, Jill L. H.; Powell, Richard W.; Murri, Dan
2011-01-01
Aerobraking has been used four times to decrease the apoapsis of a spacecraft in a captured orbit around a planetary body with a significant atmosphere utilizing atmospheric drag to decelerate the spacecraft. While aerobraking requires minimum fuel, the long time required for aerobraking requires both a large operations staff, and large Deep Space Network resources. A study to automate aerobraking has been sponsored by the NASA Engineering and Safety Center to determine initial feasibility of equipping a spacecraft with the onboard capability for autonomous aerobraking, thus saving millions of dollars incurred by a large aerobraking operations workforce and continuous DSN coverage. This paper describes the need for autonomous aerobraking, the development of the Autonomous Aerobraking Development Software that includes an ephemeris estimator, an atmospheric density estimator, and maneuver calculation, and the plan forward for continuation of this study.
Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer
NASA Technical Reports Server (NTRS)
Wehner, Walter S., Jr.
2013-01-01
Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).
Autonomous Flight Rules Concept: User Implementation Costs and Strategies
NASA Technical Reports Server (NTRS)
Cotton, William B.; Hilb, Robert
2014-01-01
The costs to implement Autonomous Flight Rules (AFR) were examined for estimates in acquisition, installation, training and operations. The user categories were airlines, fractional operators, general aviation and unmanned aircraft systems. Transition strategies to minimize costs while maximizing operational benefits were also analyzed. The primary cost category was found to be the avionics acquisition. Cost ranges for AFR equipment were given to reflect the uncertainty of the certification level for the equipment and the extent of existing compatible avionics in the aircraft to be modified.
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Paulsen, Phillip E.; Miller, Eric M.; Sage, Steen P.
2013-01-01
This report describes a Secure, Autonomous, and Intelligent Controller for Integrating Distributed Emergency Response Satellite Operations. It includes a description of current improvements to existing Virtual Mission Operations Center technology being used by US Department of Defense and originally developed under NASA funding. The report also highlights a technology demonstration performed in partnership with the United States Geological Service for Earth Resources Observation and Science using DigitalGlobe(Registered TradeMark) satellites to obtain space-based sensor data.
NASA Technical Reports Server (NTRS)
Conway, Lynn; Volz, Richard; Walker, Michael W.
1989-01-01
There is a growing need for humans to perform complex remote operations and to extend the intelligence and experience of experts to distant applications. It is asserted that a blending of human intelligence, modern information technology, remote control, and intelligent autonomous systems is required, and have coined the term tele-autonomous technology, or tele-automation, for methods producing intelligent action at a distance. Tele-automation goes beyond autonomous control by blending in human intelligence. It goes beyond tele-operation by incorporating as much autonomy as possible and/or reasonable. A new approach is discussed for solving one of the fundamental problems facing tele-autonomous systems: The need to overcome time delays due to telemetry and signal propagation. New concepts are introduced called time and position clutches, that allow the time and position frames between the local user control and the remote device being controlled, to be desynchronized respectively. The design and implementation of these mechanisms are described in detail. It is demonstrated that these mechanisms lead to substantial telemanipulation performance improvements, including the result of improvements even in the absence of time delays. The new controls also yield a simple protocol for control handoffs of manipulation tasks between local operators and remote systems.
DOT National Transportation Integrated Search
2007-06-01
The intent of this study is to explore the planning, design, and ongoing operation and maintenance of HOT facilities and to provide lessons learned and applicable technical guidance that will assist the state and local transportation planners and des...
DOT National Transportation Integrated Search
2016-11-30
Documenting the times trucks incur when crossing an international border facility is valuable both to the private freight industry and to gateway facility operators and planners. Members of the project team previously developed and implemented an app...
Factors Critical to the Implementation of Self-Paced Instruction: A Background Review.
1984-08-01
tailored and adapted to specific user needs during the implementation process. Factors related to the user group’s ability to take a flexible...Manager and Learning Facilitator. The seven roles are Planner (at classroom operations), Inplementor/Monitor, Evaluator, fDiagnostician , Remediator
Navy Operational Planner - Undersea Warfare Module
2016-09-01
8217, ’ ’ , , ’, ’ , , , , M13 , , M14 , M15 , , M16 1 , , M17 1 , M18 p p p p t p p...platforms from being considered assigned if they are transiting between missions. Equation ( M13 ) will not allow platforms to perform a mission longer
Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.
User interface issues in supporting human-computer integrated scheduling
NASA Technical Reports Server (NTRS)
Cooper, Lynne P.; Biefeld, Eric W.
1991-01-01
The topics are presented in view graph form and include the following: characteristics of Operations Mission Planner (OMP) schedule domain; OMP architecture; definition of a schedule; user interface dimensions; functional distribution; types of users; interpreting user interaction; dynamic overlays; reactive scheduling; and transitioning the interface.
The MAP Autonomous Mission Control System
NASA Technical Reports Server (NTRS)
Breed, Juile; Coyle, Steven; Blahut, Kevin; Dent, Carolyn; Shendock, Robert; Rowe, Roger
2000-01-01
The Microwave Anisotropy Probe (MAP) mission is the second mission in NASA's Office of Space Science low-cost, Medium-class Explorers (MIDEX) program. The Explorers Program is designed to accomplish frequent, low cost, high quality space science investigations utilizing innovative, streamlined, efficient management, design and operations approaches. The MAP spacecraft will produce an accurate full-sky map of the cosmic microwave background temperature fluctuations with high sensitivity and angular resolution. The MAP spacecraft is planned for launch in early 2001, and will be staffed by only single-shift operations. During the rest of the time the spacecraft must be operated autonomously, with personnel available only on an on-call basis. Four (4) innovations will work cooperatively to enable a significant reduction in operations costs for the MAP spacecraft. First, the use of a common ground system for Spacecraft Integration and Test (I&T) as well as Operations. Second, the use of Finite State Modeling for intelligent autonomy. Third, the integration of a graphical planning engine to drive the autonomous systems without an intermediate manual step. And fourth, the ability for distributed operations via Web and pager access.
Crew/Robot Coordinated Planetary EVA Operations at a Lunar Base Analog Site
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Bluethmann, W. J.; Delgado, F. J.; Herrera, E.; Kosmo, J. J.; Janoiko, B. A.; Wilcox, B. H.; Townsend, J. A.; Matthews, J. B.;
2007-01-01
Under the direction of NASA's Exploration Technology Development Program, robots and space suited subjects from several NASA centers recently completed a very successful demonstration of coordinated activities indicative of base camp operations on the lunar surface. For these activities, NASA chose a site near Meteor Crater, Arizona close to where Apollo Astronauts previously trained. The main scenario demonstrated crew returning from a planetary EVA (extra-vehicular activity) to a temporary base camp and entering a pressurized rover compartment while robots performed tasks in preparation for the next EVA. Scenario tasks included: rover operations under direct human control and autonomous modes, crew ingress and egress activities, autonomous robotic payload removal and stowage operations under both local control and remote control from Houston, and autonomous robotic navigation and inspection. In addition to the main scenario, participants had an opportunity to explore additional robotic operations: hill climbing, maneuvering heaving loads, gathering geo-logical samples, drilling, and tether operations. In this analog environment, the suited subjects and robots experienced high levels of dust, rough terrain, and harsh lighting.
The Spacecraft Emergency Response System (SERS) for Autonomous Mission Operations
NASA Technical Reports Server (NTRS)
Breed, Julia; Chu, Kai-Dee; Baker, Paul; Starr, Cynthia; Fox, Jeffrey; Baitinger, Mick
1998-01-01
Today, most mission operations are geared toward lowering cost through unmanned operations. 7-day/24-hour operations are reduced to either 5-day/8-hour operations or become totally autonomous, especially for deep-space missions. Proper and effective notification during a spacecraft emergency could mean success or failure for an entire mission. The Spacecraft Emergency Response System (SERS) is a tool designed for autonomous mission operations. The SERS automatically contacts on-call personnel as needed when crises occur, either on-board the spacecraft or within the automated ground systems. Plus, the SERS provides a group-ware solution to facilitate the work of the person(s) contacted. The SERS is independent of the spacecraft's automated ground system. It receives and catalogues reports for various ground system components in near real-time. Then, based on easily configurable parameters, the SERS determines whom, if anyone, should be alerted. Alerts may be issued via Sky-Tel 2-way pager, Telehony, or e-mail. The alerted personnel can then review and respond to the spacecraft anomalies through the Netscape Internet Web Browser, or directly review and respond from the Sky-Tel 2-way pager.
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
Science Activity Planner for the MER Mission
NASA Technical Reports Server (NTRS)
Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.
2008-01-01
The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.
On-board emergent scheduling of autonomous spacecraft payload operations
NASA Technical Reports Server (NTRS)
Lindley, Craig A.
1994-01-01
This paper describes a behavioral competency level concerned with emergent scheduling of spacecraft payload operations. The level is part of a multi-level subsumption architecture model for autonomous spacecraft, and it functions as an action selection system for processing a spacecraft commands that can be considered as 'plans-as-communication'. Several versions of the selection mechanism are described, and their robustness is qualitatively compared.
2008-12-01
n. , ’>, ,. Australian Government Department of Defence Defence Science and Technology Organisation Automated Detection and Classification in... Organisation DSTO-GD-0537 ABSTRACT Autonomous Underwater Vehicles (AUVs) are increasingly being used by military forces to acquire high-resolution sonar...release Published by Maritime Operations Division DsTO Defrnce sdence and Technology Organisation PO Box 1500 Edinburgh South Australia 5111 Australia
Active Control of NITINOL-Reinforced Structural Composites
1992-10-12
useful in many critical structures that are intended to operate autonomously for long durations in isolated environments such as defense vehicles , space...durations in isolated environment such as defense vehicles , space structures and satellites. ACKNOWLEDGEMENTS This work is funded by a grant from the US Army...are intended to operate autonomously for long durations in isolated environment such as defense vehicles , space structures and satellites. REFERENCES
System for autonomous monitoring of bioagents
Langlois, Richard G.; Milanovich, Fred P.; Colston, Jr, Billy W.; Brown, Steve B.; Masquelier, Don A.; Mariella, Jr., Raymond P.; Venkateswaran, Kodomudi
2015-06-09
An autonomous monitoring system for monitoring for bioagents. A collector gathers the air, water, soil, or substance being monitored. A sample preparation means for preparing a sample is operatively connected to the collector. A detector for detecting the bioagents in the sample is operatively connected to the sample preparation means. One embodiment of the present invention includes confirmation means for confirming the bioagents in the sample.
Toward enhanced learning of science: An educational scheme for informal science institutions
NASA Astrophysics Data System (ADS)
Suzuki, Midori
Current educational operation for informal science institutions tend to be based on the staff's experience and intuition rather than on educational theories or research findings. This status study sought research evidence for an educational scheme to give informal science institutions. Evidence for this scheme came from surveys to determine specific circumstances of educational operations and visitor behaviors. The Provus discrepancy model, seeking gaps between the actual and desired states, guided this investigation of how informal science education institution staff view the nature and status of educational operations. Another investigation sought visitors' views of the effectiveness of the main idea for exhibit understanding (n=68 for each group of with the main idea and without the main idea), effective labels (n=68), expectations toward on-site lessons(n=22 and 65 for student groups, and n=2 for teachers), and possibilities for assessments of museum operations. Institutional data were collected via a web portal, with a separate site created for administrators (n=41), exhibit developers (n=21), and program planners (n=35). The survey asked about actual and desired states in terms of goals and roles of staff, contents of exhibits and programs, assessment, and professional development. The four visitor surveys were administered individually at the North Carolina Museum of Natural Sciences. The institutional survey found that most institutions focus on attitudinal reinforcement rather than visitor learning, do not overtly value research or long-term assessment, and value partnerships with K-12 schools more than other groups. It is also clarified that the staff do not have a clear vision of the nature or function of an operations manuals. Large gaps were found between the actual and desired states in terms of assessment (administrators, exhibit developers, and program planners), professional development (exhibit developers and program planners), and partnerships (program planners), indicating that their current visions and attempts are not consistent and may need improvement. The survey of effective labels did not find a preference for any one particular type of label, and although visitors prefer concise labels, they perceive "being concise" in a variety of ways. Student visitor expectations toward on-site lessons closely matched that of their teachers, which is for science learning beyond the classroom. Assessment of daily operation indicated that a tailored design for long-term assessments could overcome perceived drawbacks of feasibility (for the staff to interpret the results and for the visitors to fill in the survey) and measurement of visitor learning. No statistically significant difference was found between respondents who were provided the main exhibit ideas those who were not. Four notions were generated from these five surveys: (1) Assessment instruments must include evaluation of visitor learning as well as their state of mind of them; (2) Staff professional development sessions must include acquisition of assessment skills and general knowledge in science and science education; (3) K-12 partnerships can be an initial step in bridging between institutions and their visitors; and (4) An operations manual could help direct an informal science institutions to more effective educational operations. The importance of a fair and systematic assessment system would help achieve all these notions.
Explanation Capabilities for Behavior-Based Robot Control
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2012-01-01
A recent study that evaluated issues associated with remote interaction with an autonomous vehicle within the framework of grounding found that missing contextual information led to uncertainty in the interpretation of collected data, and so introduced errors into the command logic of the vehicle. As the vehicles became more autonomous through the activation of additional capabilities, more errors were made. This is an inefficient use of the platform, since the behavior of remotely located autonomous vehicles didn't coincide with the "mental models" of human operators. One of the conclusions of the study was that there should be a way for the autonomous vehicles to describe what action they choose and why. Robotic agents with enough self-awareness to dynamically adjust the information conveyed back to the Operations Center based on a detail level component analysis of requests could provide this description capability. One way to accomplish this is to map the behavior base of the robot into a formal mathematical framework called a cost-calculus. A cost-calculus uses composition operators to build up sequences of behaviors that can then be compared to what is observed using well-known inference mechanisms.
Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)
2001-01-01
NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.
Growing up our way: the first year of life in remote Aboriginal Australia.
Kruske, Sue; Belton, Suzanne; Wardaguga, Molly; Narjic, Concepta
2012-06-01
In this study, we attempted to explore the experiences and beliefs of Aboriginal families as they cared for their children in the first year of life. We collected family stories concerning child rearing, development, behavior, health, and well-being between each infant's birth and first birthday. We found significant differences in parenting behaviors and child-rearing practices between Aboriginal groups and mainstream Australians. Aboriginal parents perceived their children to be autonomous individuals with responsibilities toward a large family group. The children were active agents in determining their own needs, highly prized, and included in all aspects of community life. Concurrent with poverty, neocolonialism, and medical hegemony, child-led parenting styles hamper the effectiveness of health services. Hence, until the planners of Australia's health systems better understand Aboriginal knowledge systems and incorporate them into their planning, we can continue to expect the failure of government and health services among Aboriginal communities.
Man-Robot Symbiosis: A Framework For Cooperative Intelligence And Control
NASA Astrophysics Data System (ADS)
Parker, Lynne E.; Pin, Francois G.
1988-10-01
The man-robot symbiosis concept has the fundamental objective of bridging the gap between fully human-controlled and fully autonomous systems to achieve true man-robot cooperative control and intelligence. Such a system would allow improved speed, accuracy, and efficiency of task execution, while retaining the man in the loop for innovative reasoning and decision-making. The symbiont would have capabilities for supervised and unsupervised learning, allowing an increase of expertise in a wide task domain. This paper describes a robotic system architecture facilitating the symbiotic integration of teleoperative and automated modes of task execution. The architecture reflects a unique blend of many disciplines of artificial intelligence into a working system, including job or mission planning, dynamic task allocation, man-robot communication, automated monitoring, and machine learning. These disciplines are embodied in five major components of the symbiotic framework: the Job Planner, the Dynamic Task Allocator, the Presenter/Interpreter, the Automated Monitor, and the Learning System.
Comparison of three control methods for an autonomous vehicle
NASA Astrophysics Data System (ADS)
Deshpande, Anup; Mathur, Kovid; Hall, Ernest
2010-01-01
The desirability and challenge of developing a completely autonomous vehicle and the rising need for more efficient use of energy by automobiles motivate this research- a study for an optimum solution to computer control of energy efficient vehicles. The purpose of this paper is to compare three control methods - mechanical, hydraulic and electric that have been used to convert an experimental all terrain vehicle to drive by wire which would eventually act as a test bed for conducting research on various technologies for autonomous operation. Computer control of basic operations in a vehicle namely steering, braking and speed control have been implemented and will be described in this paper. The output from a 3 axis motion controller is used for this purpose. The motion controller is interfaced with a software program using WSDK (Windows Servo Design Kit) as an intermediate tuning layer for tuning and parameter settings in autonomous operation. The software program is developed in C++. The voltage signal sent to the motion controller can be varied through the control program for desired results in controlling the steering motor, activating the hydraulic brakes and varying the vehicle's speed. The vehicle has been tested for its basic functionality which includes testing of street legal operations and also a 1000 mile test while running in a hybrid mode. The vehicle has also been tested for control when it is interfaced with devices such as a keyboard, joystick and sensors under full autonomous operation. The vehicle is currently being tested in various safety studies and is being used as a test bed for experiments in control courses and research studies. The significance of this research is in providing a greater understanding of conventional driving controls and the possibility of improving automobile safety by removing human error in control of a motor vehicle.
SIMYAR: a cable-yarding simulation model.
R.J. McGaughey; R.H. Twito
1987-01-01
A skyline-logging simulation model designed to help planners evaluate potential yarding options and alternative harvest plans is presented. The model, called SIMYAR, uses information about the timber stand, yarding equipment, and unit geometry to estimate yarding co stand productivity for a particular operation. The costs of felling, bucking, loading, and hauling are...
Guidelines for the Integration of Instructional Television in Speech and Hearing Facilities.
ERIC Educational Resources Information Center
Borich, Gary D.
To devise an efficient instructional television system, the planner must first identify and assess objectives for target audiences; allow for construction of a flexible, expansible system; plan for exchangeable instructional tapes; observe instructional procedures for large class, small group, and remote location operations; consider types of…
Taking the Heat off the School Lunchroom.
ERIC Educational Resources Information Center
Lutz, Raymond P.; And Others
The application of operations research techniques to a public school system's lunch program suggests a possible solution to the problem of rapidly increasing program costs. A computer-assisted menu planner was developed which generated a monthly set of menus satisfying nutritional and Federal standards, and food demand cycles. When compared to the…
Grid Integration Studies: Advancing Clean Energy Planning and Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Chernyakhovskiy, Ilya
2016-07-01
Integrating significant variable renewable energy (VRE) into the grid requires an evolution in power system planning and operation. To plan for this evolution, power system stakeholders can undertake grid integration studies. This Greening the Grid document reviews grid integration studies, common elements, questions, and guidance for system planners.
Making Room for Planners in FM
ERIC Educational Resources Information Center
Drummond, Victoria C.
2012-01-01
Not long ago universities, colleges, and schools identified the management of facilities as the Physical Plant Office. Albeit, the services provided by the physical plant office included complex and highly technical functions, they were mainly focused on keeping building systems operating and the campus looking good. As important as these…
Operation and Maintenance Support Information (OMSI) Creation, Management, and Repurposing With XML
2004-09-01
engines that cost tens of thousands of dollars. There are many middleware applications on the commercial and open-source market . The “Big Four......planners can begin an incremental planning effort early in the facility construction phase. This thesis provides a non-proprietary, no- cost solution to
Reconstructing Operational Theory: A Framework for Emerging Threats in a Complex Environment
2007-01-01
closely with the above-sited Deleuze, referred to his writings as a toolbox from which users can apply his summations as needed. See also: Michel Foucault ...military planners. Eyal Weizman uses this term in his article “Lethal Theory” purposefully. Renowned philosopher Michael Foucault , who worked
Using social network analysis to understand Missouri's system of public health emergency planners.
Harris, Jenine K; Clements, Bruce
2007-01-01
Effective response to large-scale public health threats requires well-coordinated efforts among individuals and agencies. While guidance is available to help states put emergency planning programs into place, little has been done to evaluate the human infrastructure that facilitates successful implementation of these programs. This study examined the human infrastructure of the Missouri public health emergency planning system in 2006. The Center for Emergency Response and Terrorism (CERT) at the Missouri Department of Health and Senior Services has responsibility for planning, guiding, and funding statewide emergency response activities. Thirty-two public health emergency planners working primarily in county health departments contract with CERT to support statewide preparedness. We surveyed the planners to determine whom they communicate with, work with, seek expertise from, and exchange guidance with regarding emergency preparedness in Missouri. Most planners communicated regularly with planners in their region but seldom with planners outside their region. Planners also reported working with an average of 12 local entities (e.g., emergency management, hospitals/ clinics). Planners identified the following leaders in Missouri's public health emergency preparedness system: local public health emergency planners, state epidemiologists, the state vaccine and grant coordinator, regional public health emergency planners, State Emergency Management Agency area coordinators, the state Strategic National Stockpile coordinator, and Federal Bureau of Investigation Weapons of Mass Destruction coordinators. Generally, planners listed few federal-level or private-sector individuals in their emergency preparedness networks. While Missouri public health emergency planners maintain large and varied emergency preparedness networks, there are opportunities for strengthening existing ties and seeking additional connections.
Situation Awareness of Onboard System Autonomy
NASA Technical Reports Server (NTRS)
Schreckenghost, Debra; Thronesbery, Carroll; Hudson, Mary Beth
2005-01-01
We have developed intelligent agent software for onboard system autonomy. Our approach is to provide control agents that automate crew and vehicle systems, and operations assistants that aid humans in working with these autonomous systems. We use the 3 Tier control architecture to develop the control agent software that automates system reconfiguration and routine fault management. We use the Distributed Collaboration and Interaction (DCI) System to develop the operations assistants that provide human services, including situation summarization, event notification, activity management, and support for manual commanding of autonomous system. In this paper we describe how the operations assistants aid situation awareness of the autonomous control agents. We also describe our evaluation of the DCI System to support control engineers during a ground test at Johnson Space Center (JSC) of the Post Processing System (PPS) for regenerative water recovery.
Autonomous Vehicles: A Policy Roadmap for Law Enforcement
2015-09-01
Timeline for Autonomous Vehicle Development ................................48 Figure 3. RAS 2020 Strategic Theme, Five Areas of Strategic Activity to...BLANK 1 I. INTRODUCTION It would be like an elevator. They used to have elevator operators, and then we developed some simple circuitry to have...advancements to make autonomous vehicles possible are being developed , manufactured, and tested. These two advantages should be used to help develop a solid
Testing the Intelligence of Unmanned Autonomous Systems
2008-01-01
decisions without the operator. The term autonomous is also used interchangeably with intelligent, giving rise to the name unmanned autonomous system ( UAS ...For the purposes of this article, UAS describes an unmanned system that makes decisions based on gathered information. Because testers should not...make assumptions about the decision process within a UAS , there is a need for a methodology that completely tests this decision process without biasing
Hospital renovation projects: phased construction requires planning at its best.
Cox, J C
1986-01-01
Building a new hospital facility is a difficult task, but adding onto and renovating an existing structure while normal activity continues is even more difficult. Project planners, designers, contractors, and hospital managers must carefully program the joint effort of construction and hospital operation. Several factors in the construction process and potential problems for hospital operations are described to help hospital managers better anticipate difficulties before plans are finalized and construction commences.
Development of Mission Enabling Infrastructure — Cislunar Autonomous Positioning System (CAPS)
NASA Astrophysics Data System (ADS)
Cheetham, B. W.
2017-10-01
Advanced Space, LLC is developing the Cislunar Autonomous Positioning System (CAPS) which would provide a scalable and evolvable architecture for navigation to reduce ground congestion and improve operations for missions throughout cislunar space.
Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2014-01-01
Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.
Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations
2007-12-01
programs may be the XSS-11. The AFRL Space Vehicle Directorate at Kirtland Air Force Base in New Mexico developed the XSS-11 in order to exhibit the...the LQR/APF algorithm appears to be a promising new development for the field of multiple spacecraft close proximity maneuver control. Monte...dissertation reports the development of an autonomous distributed control algorithm for multiple spacecraft during close proximity operations
Investigating the Usefulness of Soldier Aids for Autonomous Unmanned Ground Vehicles, Part 2
2015-03-01
distribution is unlimited. 13. SUPPLEMENTARY NOTES DCS Corporation, Alexandria, VA 14. ABSTRACT In the past, robot operation has been a high-cognitive...increase performance and reduce perceived workload. The aids were overlays displaying what an autonomous robot perceived in the environment and the...subsequent course of action planned by the robot . Eight active-duty, US Army Soldiers completed 16 scenario missions using an operator interface
Real-time Collision Avoidance and Path Optimizer for Semi-autonomous UAVs.
NASA Astrophysics Data System (ADS)
Hawary, A. F.; Razak, N. A.
2018-05-01
Whilst UAV offers a potentially cheaper and more localized observation platform than current satellite or land-based approaches, it requires an advance path planner to reveal its true potential, particularly in real-time missions. Manual control by human will have limited line-of-sights and prone to errors due to careless and fatigue. A good alternative solution is to equip the UAV with semi-autonomous capabilities that able to navigate via a pre-planned route in real-time fashion. In this paper, we propose an easy-and-practical path optimizer based on the classical Travelling Salesman Problem and adopts a brute force search method to re-optimize the route in the event of collisions using range finder sensor. The former utilizes a Simple Genetic Algorithm and the latter uses Nearest Neighbour algorithm. Both algorithms are combined to optimize the route and avoid collision at once. Although many researchers proposed various path planning algorithms, we find that it is difficult to integrate on a basic UAV model and often lacks of real-time collision detection optimizer. Therefore, we explore a practical benefit from this approach using on-board Arduino and Ardupilot controllers by manually emulating the motion of an actual UAV model prior to test on the flying site. The result showed that the range finder sensor provides a real-time data to the algorithm to find a collision-free path and eventually optimized the route successfully.
Development of autonomous eating mechanism for biomimetic robots
NASA Astrophysics Data System (ADS)
Jeong, Kil-Woong; Cho, Ik-Jin; Lee, Yun-Jung
2005-12-01
Most of the recently developed robots are human friendly robots which imitate animals or humans such as entertainment robot, bio-mimetic robot and humanoid robot. Interest for these robots are being increased because the social trend is focused on health, welfare, and graying. Autonomous eating functionality is most unique and inherent behavior of pets and animals. Most of entertainment robots and pet robots make use of internal-type battery. Entertainment robots and pet robots with internal-type battery are not able to operate during charging the battery. Therefore, if a robot has an autonomous function for eating battery as its feeds, the robot is not only able to operate during recharging energy but also become more human friendly like pets. Here, a new autonomous eating mechanism was introduced for a biomimetic robot, called ELIRO-II(Eating LIzard RObot version 2). The ELIRO-II is able to find a food (a small battery), eat and evacuate by itself. This work describe sub-parts of the developed mechanism such as head-part, mouth-part, and stomach-part. In addition, control system of autonomous eating mechanism is described.
Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie
2014-12-01
Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.
Pelvic autonomic neuromonitoring: present reality, future prospects.
Skinner, Stanley A
2014-08-01
Currently, the means to assess the autonomic nervous system primarily depend on end organ functional measurement: intravesical pressure, skin resistance, and penile strain gauge tension, for example. None of these measures has been generally accepted in the operating room. Nevertheless, the segmental and peripheral pelvic autonomic nerve supply is placed at risk during both pelvic and lower spine surgery. In this difficult era of suboptimal post-prostatectomy outcomes, the urological literature does reveal the salutary development of safer dissection techniques about the peri-prostatic and cavernous plexus. Means of reliably specific nerve identification remain elusive. The need for actual nerve monitoring (not just identification) has only recently been proposed. Data from the animal lab reinforce an appreciation of the intimate and elegant interconnectedness of autonomic and somatic structures, particularly at the segmental level. Also, the biochemistry of erectile tissue engorgement (in both sexes) is very well understood (the electrophysiology increasingly so). Understanding these principles should permit parallel investigation and implementation of neurophysiological techniques which both identify and monitor pelvic autonomic function. The predicates for these proposed new approaches in the operating room are discussed in this review.
Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.
The experimental studies of operating modes of a diesel-generator set at variable speed
NASA Astrophysics Data System (ADS)
Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.
2017-02-01
A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.
NASA Astrophysics Data System (ADS)
Fornas, D.; Sales, J.; Peñalver, A.; Pérez, J.; Fernández, J. J.; Marín, R.; Sanz, P. J.
2016-03-01
This article presents research on the subject of autonomous underwater robot manipulation. Ongoing research in underwater robotics intends to increase the autonomy of intervention operations that require physical interaction in order to achieve social benefits in fields such as archaeology or biology that cannot afford the expenses of costly underwater operations using remote operated vehicles. Autonomous grasping is still a very challenging skill, especially in underwater environments, with highly unstructured scenarios, limited availability of sensors and adverse conditions that affect the robot perception and control systems. To tackle these issues, we propose the use of vision and segmentation techniques that aim to improve the specification of grasping operations on underwater primitive shaped objects. Several sources of stereo information are used to gather 3D information in order to obtain a model of the object. Using a RANSAC segmentation algorithm, the model parameters are estimated and a set of feasible grasps are computed. This approach is validated in both simulated and real underwater scenarios.
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Kopardekar, Parimal; Ippolito, Corey; Melton, John E.; Stepanyan, Vahram; Sankararaman, Shankar; Nikaido, Ben
2017-01-01
The most difficult phase of small Unmanned Aerial System (sUAS) deployment is autonomous operations below the notional 50 ft in urban landscapes. Understanding the feasibility of safely flying sUAS autonomously below 50 ft is a game changer for many civilian applications. This paper outlines three areas of research currently underway which address key challenges for flight in the urban landscape. These are: (1) Off-line and On-board wind estimation and accommodation; (2) Real-time trajectory planning via characterization of obstacles using a LIDAR; (3) On-board information fusion for real-time decision-making and safe trajectory generation.
Project : transit demand and routing after autonomous vehicle availability.
DOT National Transportation Integrated Search
2015-12-01
Autonomous vehicles (AVs) create the potential for improvements in traffic operations as well as : new behaviors for travelers such as car sharing among trips through driverless repositioning. Most studies : on AVs have focused on technology or traff...
Preliminary Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David; Hawkins, Albin
2001-01-01
NASA's first autonomous formation flying mission is completing a primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center has implemented an autonomous universal three-axis formation flying algorithm in executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard design and presents the preliminary validation results of this unique system. Results from functionality assessment and autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a stand-alone algorithm.
Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II
2005-01-01
NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.
Compiling quantum circuits to realistic hardware architectures using temporal planners
NASA Astrophysics Data System (ADS)
Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy
2018-04-01
To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.
Interactive-rate Motion Planning for Concentric Tube Robots
Torres, Luis G.; Baykal, Cenk; Alterovitz, Ron
2014-01-01
Concentric tube robots may enable new, safer minimally invasive surgical procedures by moving along curved paths to reach difficult-to-reach sites in a patient’s anatomy. Operating these devices is challenging due to their complex, unintuitive kinematics and the need to avoid sensitive structures in the anatomy. In this paper, we present a motion planning method that computes collision-free motion plans for concentric tube robots at interactive rates. Our method’s high speed enables a user to continuously and freely move the robot’s tip while the motion planner ensures that the robot’s shaft does not collide with any anatomical obstacles. Our approach uses a highly accurate mechanical model of tube interactions, which is important since small movements of the tip position may require large changes in the shape of the device’s shaft. Our motion planner achieves its high speed and accuracy by combining offline precomputation of a collision-free roadmap with online position control. We demonstrate our interactive planner in a simulated neurosurgical scenario where a user guides the robot’s tip through the environment while the robot automatically avoids collisions with the anatomical obstacles. PMID:25436176
2017-05-01
Analyzing these factors enables a planner to develop an axis-of-advance that a vessel can easily maintain, as well as to reduce the travel time from...operational risk by testing the feasibility of the navigability of an area; 2) determining the capacity and timing of that operation; 3) defining the...conditions at this location dictate that only a narrow window of time is available for conducting surface ship-to- shore operations. The vessel
Crisis action planning and replanning using SIPE-2
NASA Technical Reports Server (NTRS)
Skidmore, Jennifer D.
1993-01-01
Rome Laboratory and DARPA are jointly sponsoring an initiative to develop the next generation of AI planning and scheduling technology focused on military operations planning, especially for crisis situations. SRI International has demonstrated their knowledge-based planning technology in this domain with a system called SOCAP, System for Operations Crisis Action Planning. SOCAP's underlying power comes from SIPE-2, a hierarchical, domain-independent, nonlinear AI planner also developed at SRI. This paper discusses the features of SIPE-2 that made it an ideal choice for military operations planning and which contributed greatly to SOCAP's success.
Wind and turbine characteristics needed for integration of wind turbine arrays into a utility system
NASA Technical Reports Server (NTRS)
Park, G. L.
1982-01-01
Wind data and wind turbine generator (WTG) performance characteristics are often available in a form inconvenient for use by utility planners and engineers. The steps used by utility planners are summarized and the type of wind and WTG data needed for integration of WTG arrays suggested. These included long term yearly velocity averages for preliminary site feasibility, hourly velocities on a 'wind season' basis for more detailed economic analysis and for reliability studies, worst-case velocity profiles for gusts, and various minute-to-hourly velocity profiles for estimating the effect of longer-term wind fluctuations on utility operations. wind turbine data needed includes electrical properties of the generator, startup and shutdown characteristics, protection characteristics, pitch control response and control strategy, and electro-mechanical model for stability analysis.
Characteristics of urban transportation systems. A handbook for transportation planners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-05-01
The objective of the handbook, specifically for use by transportation planners in the evaluation of alternative systems, is to provide a single simplified reference source which characterizes the most important performance characteristics of the following contemporary urban transportation systems: (1) rail (commuter, rapid, and light); (2) local bus and bus rapid transit; (3) automobile-highway system (automobiles and other vehicles); (4) pedestrian assistance systems; and (5) activity center systems--people mover systems that have been installed at airports, zoos, amusement parks, etc. The handbook assesses the supply or performance aspect of urban transportation dealing with passenger demand implicitly. Seven supply parameters studiedmore » are: speed, capacity (service volume), operating cost (vehicle), energy consumption (vehicle or source), pollution, capital cost, and accident frequency.« less
GOATS 2008: Autonomous, Adaptive Multistatic Acoustic Sensing
2010-09-30
carried out jointly with the NATO Undersea Research Centre in the Tuscan archipelago July 26 – August 16, 2010. MIT operated the Unicorn AUV and...4 trail behavior with the physical Unicorn AUV, and is accidentally passing close the R/V Leonardo, fully autonomously changing its depth from...vehicles. The AUV Unicorn is performing an adaptive thermocline mapping mission, with the vehicle trail shown in green. Note the autonomous collision
Trajectory control of an articulated robot with a parallel drive arm based on splines under tension
NASA Astrophysics Data System (ADS)
Yi, Seung-Jong
Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and motors to produce combined arc and straight-line motion. The simulation and experiment show interesting results by demonstrating smooth motion in both acceleration and jerk and significant improvements of positioning accuracy in trajectory planning.
A Blackboard-Based Dynamic Instructional Planner. ONR Final Report.
ERIC Educational Resources Information Center
Murray, William R.
Dynamic instructional planning was explored as a control mechanism for intelligent tutoring systems through the development of the Blackboard Instructional Planner--a blackboard software-based dynamic planner for computerized intelligent tutoring systems. The planner, designed to be generic to tutors teaching troubleshooting for complex physical…
1987-12-01
objectives: (1) What forms of electronic mail are available to USCENTAF/SC planners at Shaw AFB; (2) Why and how often do USCENTAF/SC planners use the... how the AUTODIN system is used to transmit a message between planners; (4) Develop an electronic mail communications model for electronic mail...Determine why and how often messages were sent using the AUTODIN system to communicate with the planners at Langley AFE. 3. Create an AUTODIN
Distributed subterranean exploration and mapping with teams of UAVs
NASA Astrophysics Data System (ADS)
Rogers, John G.; Sherrill, Ryan E.; Schang, Arthur; Meadows, Shava L.; Cox, Eric P.; Byrne, Brendan; Baran, David G.; Curtis, J. Willard; Brink, Kevin M.
2017-05-01
Teams of small autonomous UAVs can be used to map and explore unknown environments which are inaccessible to teams of human operators in humanitarian assistance and disaster relief efforts (HA/DR). In addition to HA/DR applications, teams of small autonomous UAVs can enhance Warfighter capabilities and provide operational stand-off for military operations such as cordon and search, counter-WMD, and other intelligence, surveillance, and reconnaissance (ISR) operations. This paper will present a hardware platform and software architecture to enable distributed teams of heterogeneous UAVs to navigate, explore, and coordinate their activities to accomplish a search task in a previously unknown environment.
NASA Astrophysics Data System (ADS)
Khavanov, Pavel; Chulenyov, Anatoly
2017-10-01
Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.
Development of autonomous grasping and navigating robot
NASA Astrophysics Data System (ADS)
Kudoh, Hiroyuki; Fujimoto, Keisuke; Nakayama, Yasuichi
2015-01-01
The ability to find and grasp target items in an unknown environment is important for working robots. We developed an autonomous navigating and grasping robot. The operations are locating a requested item, moving to where the item is placed, finding the item on a shelf or table, and picking the item up from the shelf or the table. To achieve these operations, we designed the robot with three functions: an autonomous navigating function that generates a map and a route in an unknown environment, an item position recognizing function, and a grasping function. We tested this robot in an unknown environment. It achieved a series of operations: moving to a destination, recognizing the positions of items on a shelf, picking up an item, placing it on a cart with its hand, and returning to the starting location. The results of this experiment show the applicability of reducing the workforce with robots.
A Variable Flow Modelling Approach To Military End Strength Planning
2016-12-01
programming MAPE mean average percentage error MLRPS Manpower Long-Range Planning System MT marine technician OR operations research RAN Royal...OR Practice—The Army Manpower Long-Range Planning System. Operations Research , 36(1), 5–17. http://dx.doi.org/10.1287/opre.36.1.5 Guerry, M. A...unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) The purpose of this thesis is to develop a model to assist military manpower planners in
Multi-Spacecraft Autonomous Positioning System
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2015-01-01
As the number of spacecraft in simultaneous operation continues to grow, there is an increased dependency on ground-based navigation support. The current baseline system for deep space navigation utilizes Earth-based radiometric tracking, requiring long-duration observations to perform orbit determination and generate a state update. The age, complexity, and high utilization of the ground assets pose a risk to spacecraft navigation performance. In order to perform complex operations at large distances from Earth, such as extraterrestrial landing and proximity operations, autonomous systems are required. With increasingly complex mission operations, the need for frequent and Earth-independent navigation capabilities is further reinforced. The Multi-spacecraft Autonomous Positioning System (MAPS) takes advantage of the growing interspacecraft communication network and infrastructure to allow for Earth-autonomous state measurements to enable network-based space navigation. A notional concept of operations is given in figure 1. This network is already being implemented and routinely used in Martian communications through the use of the Mars Reconnaissance Orbiter and Mars Odyssey spacecraft as relays for surface assets. The growth of this communications architecture is continued through MAVEN, and future potential commercial Mars telecom orbiters. This growing network provides an initial Marslocal capability for inter-spacecraft communication and navigation. These navigation updates are enabled by cross-communication between assets in the network, coupled with onboard navigation estimation routines to integrate packet travel time to generate ranging measurements. Inter-spacecraft communication allows for frequent state broadcasts and time updates from trusted references. The architecture is a software-based solution, enabling its implementation on a wide variety of current assets, with the operational constraints and measurement accuracy determined by onboard systems.
NASA Technical Reports Server (NTRS)
Biefeld, Eric; Cooper, Lynne
1990-01-01
The findings are documented of the OMP research task, which investigated the applicability of artificial intelligence (AI) technology in support of automated scheduling. The goals of the effort are summarized and the technical accomplishments are highlighted. The OMP task succeeded in identifying how AI technology could be applied and demonstrated an AI-based automated scheduling approach through the OMP prototypes.
Research-Based Model for Adult Consumer-Homemaking Education.
ERIC Educational Resources Information Center
Ball State Univ., Muncie, IN.
This model is designed to be used as a guide by all teachers and designers of adult vocational consumer and homemaking courses who usually function as program planners. Chapter 1 contains an operational definition, the rationale, and description of intended users. Chapter 2 presents the model description with an overview and discussion of the…
ERIC Educational Resources Information Center
Babuca, Pamela; Meade, Kelly
2012-01-01
Today's educators are passionate about shifting the standard classroom towards technology rich, collaborative spaces that support multiple types of learning environments (e.g. individual; peer-to-peer; problem based; hands-on; student-centered). On the other hand, facilities planners are challenged to create solutions within existing, restrictive…
An international nomenclature for forest work study
Rolf Bjorheden; Michael A. Thompson
2000-01-01
Knowledge gained in the study of forest work is used to improve operational efficiency through better planning and control of future work. Internationally recognized standard methods for recording, evaluating and reporting performance in forest work will greatly enhance the usefulness of this information to managers and planners. A subcommittee of IUFRO Working Party...
An international nomenclature for forest work study
Rolf Björheden; Michael A. Thompson
2000-01-01
Knowledge gained in the study of forest work is used to improve operational efficiency through better planning and control of future work. Internationally recognized standard methods for recording, evaluating and reporting performance in forest work will greatly enhance the usefulness of this information to managers and planners. A subcommittee of IUFRO Working Party $...
Cable Television: A Guide for Education Planners.
ERIC Educational Resources Information Center
Carpenter, Polly
This second volume of a two-part study is intended to help educators construct viable plans for the use of cable television (CATV) in education. Following an introductory consideration of CATV as a means of distribution, the report lays out the steps for the planning, development, operation, and evaluation of a project, illustrating successful…
2013-05-01
scrambling to recover ever since.39 Major Isaiah Wilson, who served as an official historian of the campaign and later as a war planner in Iraq, wrote...2 Headquarters Department of the Army, Stability Operations. FM 3-07 (Washington, DC: U.S. Army, October 2008), 1-1. 3 Thomas E. Ricks...38 Crane, 12. 39 Thomas
Start-up analysis for marketing strategy.
Griffith, M J; Baloff, N
1984-01-01
The complex start-up effect on utilization of health care services is too often overlooked or underestimated by marketing planners, leading to a range of negative consequences for both the users of services and the provider organization. Start-up analysis allows accurate estimation of these utilization effects for coordinated strategic planning among marketing finance, and operations.
NASA Technical Reports Server (NTRS)
Kerstman, Eric; Minard, Charles G.; Saile, Lynn; FreiredeCarvalho, Mary; Myers, Jerry; Walton, Marlei; Butler, Douglas; Lopez, Vilma
2010-01-01
The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight.
ERIC Educational Resources Information Center
Camara, Boubacar
This publication complements the "Education for All" program and is intended to provide a comprehensive and operational indicator for monitoring education. As a synthetic tool, the Educational Progress Indicator (EPI) facilitates the analytical assessment and projection work of educational planners, managers, actors, and policymakers. The EPI…
Optimized autonomous operations of a 20 K space hydrogen sorption cryocooler
NASA Astrophysics Data System (ADS)
Borders, J.; Morgante, G.; Prina, M.; Pearson, D.; Bhandari, P.
2004-06-01
A fully redundant hydrogen sorption cryocooler is being developed for the European Space Agency Planck mission, dedicated to the measurement of the temperature anisotropies of the cosmic microwave background radiation with unprecedented sensitivity and resolution [Advances in Cryogenic Engineering 45A (2000) 499]. In order to achieve this ambitious scientific task, this cooler is required to provide a stable temperature reference (˜20 K) and appropriate cooling (˜1 W) to the two instruments on-board, with a flight operational lifetime of 18 months. During mission operations, communication with the spacecraft will be possible in a restricted time-window, not longer than 2 h/day. This implies the need for an operations control structure with the required robustness to safely perform autonomous procedures. The cooler performance depends on many operating parameters (such as the temperatures of the pre-cooling stages and the warm radiator), therefore the operation control system needs the capability to adapt to variations of these boundary conditions, while maintaining safe operating procedures. An engineering bread board (EBB) cooler was assembled and tested to evaluate the behavior of the system under conditions simulating flight operations and the test data were used to refine and improve the operation control software. In order to minimize scientific data loss, the cooler is required to detect all possible failure modes and to autonomously react to them by taking the appropriate action in a rapid fashion. Various procedures and schemes both general and specific in nature were developed, tested and implemented to achieve these goals. In general, the robustness to malfunctions was increased by implementing an automatic classification of anomalies in different levels relative to the seriousness of the error. The response is therefore proportional to the failure level. Specifically, the start-up sequence duration was significantly reduced, allowing a much faster activation of the system, particularly useful in case of restarts after inadvertent shutdowns arising from malfunctions in the spacecraft. The capacity of the system to detect J-T plugs was increased to the point that the cooler is able to autonomously identify actual contaminants clogging from gas flow reductions due to off-nominal operating conditions. Once a plug is confirmed, the software autonomously energizes, and subsequently turns off, a J-T defrost heater until the clog is removed, bringing the system back to normal operating conditions. In this paper, all the cooler Operational Modes are presented, together with the description of the logic structure of the procedures and the advantages they produce for the operations.
Autonomous Agents and Intelligent Assistants for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.
2000-01-01
Human exploration of space will involve remote autonomous crew and systems in long missions. Data to earth will be delayed and limited. Earth control centers will not receive continuous real-time telemetry data, and there will be communication round trips of up to one hour. There will be reduced human monitoring on the planet and earth. When crews are present on the planet, they will be occupied with other activities, and system management will be a low priority task. Earth control centers will use multi-tasking "night shift" and on-call specialists. A new project at Johnson Space Center is developing software to support teamwork between distributed human and software agents in future interplanetary work environments. The Engineering and Mission Operations Directorates at Johnson Space Center (JSC) are combining laboratories and expertise to carry out this project, by establishing a testbed for hWl1an centered design, development and evaluation of intelligent autonomous and assistant systems. Intelligent autonomous systems for managing systems on planetary bases will commuicate their knowledge to support distributed multi-agent mixed-initiative operations. Intelligent assistant agents will respond to events by developing briefings and responses according to instructions from human agents on earth and in space.
Broyles, R W; Narine, L; Khaliq, A
2003-08-01
This paper modifies traditional break-even analysis and develops a model that reflects the influence of variation in payer mix, the collection rate, profitability and autonomous income on the desired volume alternative. The augmented model indicates that a failure to adjust for uncollectibles and the net surplus results in a systematic understatement of the desired volume alternative. Conversely, a failure to adjust for autonomous income derived from the operation of cafeterias, gift shops or an organization's investment in marketable securities produces an overstatement of the desired volume. In addition, this paper uses Microsoft Excel to develop a spreadsheet that constructs a pro forma income statement, expressed in terms of the contribution margin. The spreadsheet also relies on the percentage of sales or revenue approach to prepare a balance sheet from which indicators of fiscal performance are calculated. Hence, the analysis enables the organization to perform a sensitivity analysis of potential changes in the desired volume, the operating margin, the current ratio, the debt: equity ratio and the amount of cash derived from operations that are associated with expected variation in payer mix, the collection rate, grouped by payer, the net surplus and autonomous income.
NASA Technical Reports Server (NTRS)
Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.
2003-01-01
Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation through the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The applications of several different types of AI techniques for flight are explored during this research effort. The research concentration is directed to the application of different AI methods within the UAV arena. By evaluating AI and biological system approaches. which include Expert Systems, Neural Networks. Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI and CAS techniques applied to achieving true autonomous operation of these systems. Although flight systems were explored, the benefits should apply to many Unmanned Vehicles such as: Rovers. Ocean Explorers, Robots, and autonomous operation systems. A portion of the flight system is broken down into control agents that represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework for applying an intelligent agent is presented. The initial results from simulation of a security agent for communication are presented.
Hybrid ARQ Scheme with Autonomous Retransmission for Multicasting in Wireless Sensor Networks.
Jung, Young-Ho; Choi, Jihoon
2017-02-25
A new hybrid automatic repeat request (HARQ) scheme for multicast service for wireless sensor networks is proposed in this study. In the proposed algorithm, the HARQ operation is combined with an autonomous retransmission method that ensure a data packet is transmitted irrespective of whether or not the packet is successfully decoded at the receivers. The optimal number of autonomous retransmissions is determined to ensure maximum spectral efficiency, and a practical method that adjusts the number of autonomous retransmissions for realistic conditions is developed. Simulation results show that the proposed method achieves higher spectral efficiency than existing HARQ techniques.
NASA Astrophysics Data System (ADS)
Revin, A.; Dygalo, V.; Boyko, G.; Lyaschenko, M.; Dygalo, L.
2018-02-01
Possibilities of diagnosing of a technical condition of braking system of the autonomous vehicles with automated modules while in service are considered. The concept of sharing of onboard means and stands for diagnosing is presented.
Autonomous Power System intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Autonomous power system intelligent diagnosis and control
NASA Technical Reports Server (NTRS)
Ringer, Mark J.; Quinn, Todd M.; Merolla, Anthony
1991-01-01
The Autonomous Power System (APS) project at NASA Lewis Research Center is designed to demonstrate the abilities of integrated intelligent diagnosis, control, and scheduling techniques to space power distribution hardware. Knowledge-based software provides a robust method of control for highly complex space-based power systems that conventional methods do not allow. The project consists of three elements: the Autonomous Power Expert System (APEX) for fault diagnosis and control, the Autonomous Intelligent Power Scheduler (AIPS) to determine system configuration, and power hardware (Brassboard) to simulate a space based power system. The operation of the Autonomous Power System as a whole is described and the responsibilities of the three elements - APEX, AIPS, and Brassboard - are characterized. A discussion of the methodologies used in each element is provided. Future plans are discussed for the growth of the Autonomous Power System.
Validation and Development of Competencies for Meeting Planners. Final Report.
ERIC Educational Resources Information Center
Walk, Mary H.
A study was conducted to determine the entry-level requirements for meeting planners. The study benefited from the definition of the body of knowledge that had already been done for a professional meeting planner certificate by the Association of Professional Meeting Planners International. To document the competencies needed for an entry-level…
Autonomous spacecraft maintenance study group
NASA Technical Reports Server (NTRS)
Marshall, M. H.; Low, G. D.
1981-01-01
A plan to incorporate autonomous spacecraft maintenance (ASM) capabilities into Air Force spacecraft by 1989 is outlined. It includes the successful operation of the spacecraft without ground operator intervention for extended periods of time. Mechanisms, along with a fault tolerant data processing system (including a nonvolatile backup memory) and an autonomous navigation capability, are needed to replace the routine servicing that is presently performed by the ground system. The state of the art fault handling capabilities of various spacecraft and computers are described, and a set conceptual design requirements needed to achieve ASM is established. Implementations for near term technology development needed for an ASM proof of concept demonstration by 1985, and a research agenda addressing long range academic research for an advanced ASM system for 1990s are established.
Human-Interaction Challenges in UAV-Based Autonomous Surveillance
NASA Technical Reports Server (NTRS)
Freed, Michael; Harris, Robert; Shafto, Michael G.
2004-01-01
Autonomous UAVs provide a platform for intelligent surveillance in application domains ranging from security and military operations to scientific information gathering and land management. Surveillance tasks are often long duration, requiring that any approach be adaptive to changes in the environment or user needs. We describe a decision- theoretic model of surveillance, appropriate for use on our autonomous helicopter, that provides a basis for optimizing the value of information returned by the UAV. From this approach arise a range of challenges in making this framework practical for use by human operators lacking specialized knowledge of autonomy and mathematics. This paper describes our platform and approach, then describes human-interaction challenges arising from this approach that we have identified and begun to address.
Power supply of autonomous systems using solar modules
NASA Astrophysics Data System (ADS)
Yurchenko, A. V.; Zotov, L. G.; Mekhtiev, A. D.; Yugai, V. V.; Tatkeeva, G. G.
2015-04-01
The article shows the methods of constructing autonomous decentralized energy systems from solar modules. It shows the operation of up DC inverter. It demonstrates the effectiveness of DC inverters with varying structure. The system has high efficiency and low level of conductive impulse noise and at the same time the system is practically feasible. Electrical processes have been analyzed to determine the characteristics of operating modes of the main circuit elements. Recommendations on using the converters have been given.
Multidisciplinary unmanned technology teammate (MUTT)
NASA Astrophysics Data System (ADS)
Uzunovic, Nenad; Schneider, Anne; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark
2013-01-01
The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) held an autonomous robot competition called CANINE in June 2012. The goal of the competition was to develop innovative and natural control methods for robots. This paper describes the winning technology, including the vision system, the operator interaction, and the autonomous mobility. The rules stated only gestures or voice commands could be used for control. The robots would learn a new object at the start of each phase, find the object after it was thrown into a field, and return the object to the operator. Each of the six phases became more difficult, including clutter of the same color or shape as the object, moving and stationary obstacles, and finding the operator who moved from the starting location to a new location. The Robotic Research Team integrated techniques in computer vision, speech recognition, object manipulation, and autonomous navigation. A multi-filter computer vision solution reliably detected the objects while rejecting objects of similar color or shape, even while the robot was in motion. A speech-based interface with short commands provided close to natural communication of complicated commands from the operator to the robot. An innovative gripper design allowed for efficient object pickup. A robust autonomous mobility and navigation solution for ground robotic platforms provided fast and reliable obstacle avoidance and course navigation. The research approach focused on winning the competition while remaining cognizant and relevant to real world applications.
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Kopardekar, Parimal; Battiste, Vernol; Doble, Nathan; Johnson, Walter; Lee, Paul; Prevot, Thomas; Smith, Nancy
2005-01-01
In order to meet the anticipated future demand for air travel, the National Aeronautics and Space Administration (NASA) is investigating a new concept of operations known as Distributed Air-Ground Traffic Management (DAG-TM). Under the En Route Free Maneuvering component of DAG-TM, appropriately equipped autonomous aircraft self separate from other autonomous aircraft and from managed aircraft that continue to fly under today s Instrument Flight Rules (IFR). Controllers provide separation services between IFR aircraft and assign traffic flow management constraints to all aircraft. To address concept feasibility issues pertaining to integrated air/ground operations at various traffic levels, NASA Ames and Langley Research Centers conducted a joint human-in-the-loop experiment. Professional airline pilots and air traffic controllers flew a total of 16 scenarios under four conditions: mixed autonomous/managed operations at three traffic levels and a baseline all-managed condition at the lowest traffic level. These scenarios included en route flights and descents to a terminal area meter fix in airspace modeled after the Dallas Ft. Worth area. Pilots of autonomous aircraft met controller assigned meter fix constraints with high success. Separation violations by subject pilots did not appear to vary with traffic level and were mainly attributable to software errors and procedural lapses. Controller workload was lower for mixed flight conditions, even at higher traffic levels. Pilot workload was deemed acceptable under all conditions. Controllers raised several safety concerns, most of which pertained to the occurrence of near-term conflicts between autonomous and managed aircraft. These issues are being addressed through better compatibility between air and ground systems and refinements to air and ground procedures.
NASA Astrophysics Data System (ADS)
Gardner, R. W.; Hanushevsky, A.; Vukotic, I.; Yang, W.
2017-10-01
As many LHC Tier-3 and some Tier-2 centers look toward streamlining operations, they are considering autonomously managed storage elements as part of the solution. These storage elements are essentially file caching servers. They can operate as whole file or data block level caches. Several implementations exist. In this paper we explore using XRootD caching servers that can operate in either mode. They can also operate autonomously (i.e. demand driven), be centrally managed (i.e. a Rucio managed cache), or operate in both modes. We explore the pros and cons of various configurations as well as practical requirements for caching to be effective. While we focus on XRootD caches, the analysis should apply to other kinds of caches as well.
Towards Autonomous Inspection of Space Systems Using Mobile Robotic Sensor Platforms
NASA Technical Reports Server (NTRS)
Wong, Edmond; Saad, Ashraf; Litt, Jonathan S.
2007-01-01
The space transportation systems required to support NASA's Exploration Initiative will demand a high degree of reliability to ensure mission success. This reliability can be realized through autonomous fault/damage detection and repair capabilities. It is crucial that such capabilities are incorporated into these systems since it will be impractical to rely upon Extra-Vehicular Activity (EVA), visual inspection or tele-operation due to the costly, labor-intensive and time-consuming nature of these methods. One approach to achieving this capability is through the use of an autonomous inspection system comprised of miniature mobile sensor platforms that will cooperatively perform high confidence inspection of space vehicles and habitats. This paper will discuss the efforts to develop a small scale demonstration test-bed to investigate the feasibility of using autonomous mobile sensor platforms to perform inspection operations. Progress will be discussed in technology areas including: the hardware implementation and demonstration of robotic sensor platforms, the implementation of a hardware test-bed facility, and the investigation of collaborative control algorithms.
NASA's Autonomous Formation Flying Technology Demonstration, Earth Observing-1(EO-1)
NASA Technical Reports Server (NTRS)
Folta, David; Bristow, John; Hawkins, Albin; Dell, Greg
2002-01-01
NASA's first autonomous formation flying mission, the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft, recently completed its principal goal of demonstrating advanced formation control technology. This paper provides an overview of the evolution of an onboard system that was developed originally as a ground mission planning and operations tool. We discuss the Goddard Space Flight Center s formation flying algorithm, the onboard flight design and its implementation, the interface and functionality of the onboard system, and the implementation of a Kalman filter based GPS data smoother. A number of safeguards that allow the incremental phasing in of autonomy and alleviate the potential for mission-impacting anomalies from the on- board autonomous system are discussed. A comparison of the maneuvers planned onboard using the EO-1 autonomous control system to those from the operational ground-based maneuver planning system is presented to quantify our success. The maneuvers discussed encompass reactionary and routine formation maintenance. Definitive orbital data is presented that verifies all formation flying requirements.
Student Planners in School and Out of School: Who is Managing Whom?
ERIC Educational Resources Information Center
Lenters, Kimberly; McTavish, Marianne
2013-01-01
This paper examines the use of student planners (agendas) with elementary school students. It asks how teachers, students and parents in two classrooms engage in the literacy practice of using student planners. A literacy object originally introduced to manage schoolwork in and out of school for students with learning difficulties, planners are…
2010-04-01
October 2008, in Figure 2-1 below. TACON Best Practices 1) For the respective commanders to jointly determine the required tasks and organize the... organization . 2) Provide the gaining commander of the TACON force the requisite expertise to effectively plan and exercise TACON of the force. We sometimes...the TACON of SOF is given to an organization other than the parent organization . As changes occur, a plan may change requiring a shift in end state
1992-10-29
These people try to make their robotic vehicle as intelligent and autonomous as possible with the current state of technology. The robot only interacts... Robotics Peter J. Burt David Sarnoff Research Center Princeton, NJ 08543-5300 U.S.A. The ability of an operator to drive a remotely piloted vehicle depends...RESUPPLY - System which can rapidly and autonomously load and unload palletized ammunition. (18) AUTONOMOUS COMBAT EVACUATION VEHICLE - Robotic arms
Planning in subsumption architectures
NASA Technical Reports Server (NTRS)
Chalfant, Eugene C.
1994-01-01
A subsumption planner using a parallel distributed computational paradigm based on the subsumption architecture for control of real-world capable robots is described. Virtual sensor state space is used as a planning tool to visualize the robot's anticipated effect on its environment. Decision sequences are generated based on the environmental situation expected at the time the robot must commit to a decision. Between decision points, the robot performs in a preprogrammed manner. A rudimentary, domain-specific partial world model contains enough information to extrapolate the end results of the rote behavior between decision points. A collective network of predictors operates in parallel with the reactive network forming a recurrrent network which generates plans as a hierarchy. Details of a plan segment are generated only when its execution is imminent. The use of the subsumption planner is demonstrated by a simple maze navigation problem.
Ground Operations Autonomous Control and Integrated Health Management
NASA Technical Reports Server (NTRS)
Daniels, James
2014-01-01
The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.
ERIC Educational Resources Information Center
Phillips, Virginia B.
2011-01-01
Many adults attend and rely on continuing professional education (CPE) throughout their careers, and CPE is big business for associations. One way associations deliver CPE is through educational conferences. While adult education theories and frameworks offer developmental and operational guidance and advice, there is little practice data to…
The Canadian Labour Market: Readings in Manpower Economics.
ERIC Educational Resources Information Center
Kruger, A.M., Ed.; Meltz, N.M., Ed.
Canadian manpower problems were researched by a group of economists at the University of Toronto in areas of interest to manpower planners and students of the labor market. The dissatisfaction of policy makers with the present operation of the labor market is discussed in three areas: (1) inadequate output due to alleged labor shortages, (2)…
A Comparative Study of KC-135 Operations in Vietnam, Desert Storm, and Allied Force
2000-06-01
aircraft and 15 sorties. Because of its proximity, and thus potential offload capability, it was highly prized by SAC planners. Finally, Korat took...Disposition in 1972 Base Aircraft Crews Sorties per Day U-Tapao 46 88 60 Clark 28 37 25 Don Muang 13 23 15 Takhli 20 36 24 Korat
Modeling fire and other disturbance processes using LANDIS
Stephen R. Shifley; Jian Yang; Hong He
2009-01-01
LANDIS is a landscape decision support tool that models spatial relationships to help managers and planners examine the large-scale, long-term, cumulative effects of succession, harvesting, wildfire, prescribed fire, insects, and disease. It can operate on forest landscapes from a few thousand to a few million acres in extent. Fire modeling capabilities in LANDIS are...
An Exploratory [Silver] Path to Interagency Reconstruction
2011-05-31
problem is different, even if there are similarities with previous experiences , so planners use lessons learned from previous experiences at their...Department of State, especially the US Agency for International Development, has extensive development experience , while the Department of Defense...development experience , while the Department of Defense knows combat and security operations. Integration comes in the middle ground, where we
Improving Nonlethal Targeting: A Social Network Analysis Method for Military Planners
2012-12-01
which primarily positive elements are expected , then negative information becomes perceptually salient as a jolting disconfirmation of those... expectations . We also know that people stop to examine disconfirmations to a much higher degree than confirmations. Negative information is often highly...9 3. Military Deception Operations .........................................................10 C. INFLUENCE THEORY
The Design of Secondary Schools--A Case Study, Singapore.
ERIC Educational Resources Information Center
Liew Kok-Pun, Michael; And Others
Land scarcity dominates the thinking of school planners in Singapore. Techniques for optimizing the use of land for schools include (1) the construction of multi-storied or high-rise schools; (2) operation of a double-shift system and, in some cases, a triple-shift system; (3) multiple use of educational spaces; and (4) construction of several…
Future Influences on Vocational Education. Special Publication Series No. 46.
ERIC Educational Resources Information Center
Lewis, Morgan; And Others
This booklet provides a brief overview of some of the major trends most likely to influence vocational education during the remainder of the 1980s. It is directed to all vocational educators, particularly planners and policymakers, who want a better understanding of the conditions under which their programs will operate. It considers the nation's…
Information Operations: Doctrine, Tactics, Techniques, and Procedures
2003-11-01
Third level. Individuals or small groups supported by state-sponsored institutions (military or civilian) and significant resources, using so... institutions . Exer- cise planners may have to provide these. The data needed to create, update, and use these products should be built into the...safeguarding information for tracking, apprehending and prosecuting perpetrators of unauthorized activity. • Incorporating intrusion software into
Interdisciplinary research can provide information for the harvesting challenges of the 1990's
Chris B. LeDoux; John E. Baumgras
1991-01-01
Management of our complex forest ecosystems in the economic and political climate of the 1990's is a challenge for planners, managers, and loggers. A multifunctional approach - using the research results of other disciplines and considering all forest uses and values - can improve the effectiveness of forest operations research. Since harvesting cost and revenue...
Data Archives for the Social Sciences: Purposes, Operations and Problems.
ERIC Educational Resources Information Center
Nasatir, David
Social science data, existing in a format that can be manipulated by computing machinery, can be used for many purposes in addition to those for which they were initially collected. Scholars and government planners should hve ready and equal access to such material and these groups will be best served if they are informed regarding the…
2017-01-11
discrete system components or measurements of latency in autonomous systems. 15. SUBJECT TERMS Unmanned Ground Vehicles, Basic Video Latency, End-to... discrete system components or measurements of latency in autonomous systems. 1.1 Basic Video Latency. Teleoperation latency, or lag, describes
Prediction and causal reasoning in planning
NASA Technical Reports Server (NTRS)
Dean, T.; Boddy, M.
1987-01-01
Nonlinear planners are often touted as having an efficiency advantage over linear planners. The reason usually given is that nonlinear planners, unlike their linear counterparts, are not forced to make arbitrary commitments to the order in which actions are to be performed. This ability to delay commitment enables nonlinear planners to solve certain problems with far less effort than would be required of linear planners. Here, it is argued that this advantage is bought with a significant reduction in the ability of a nonlinear planner to accurately predict the consequences of actions. Unfortunately, the general problem of predicting the consequences of a partially ordered set of actions is intractable. In gaining the predictive power of linear planners, nonlinear planners sacrifice their efficiency advantage. There are, however, other advantages to nonlinear planning (e.g., the ability to reason about partial orders and incomplete information) that make it well worth the effort needed to extend nonlinear methods. A framework is supplied for causal inference that supports reasoning about partially ordered events and actions whose effects depend upon the context in which they are executed. As an alternative to a complete but potentially exponential-time algorithm, researchers provide a provably sound polynomial-time algorithm for predicting the consequences of partially ordered events.
VML 3.0 Reactive Sequencing Objects and Matrix Math Operations for Attitude Profiling
NASA Technical Reports Server (NTRS)
Grasso, Christopher A.; Riedel, Joseph E.
2012-01-01
VML (Virtual Machine Language) has been used as the sequencing flight software on over a dozen JPL deep-space missions, most recently flying on GRAIL and JUNO. In conjunction with the NASA SBIR entitled "Reactive Rendezvous and Docking Sequencer", VML version 3.0 has been enhanced to include object-oriented element organization, built-in queuing operations, and sophisticated matrix / vector operations. These improvements allow VML scripts to easily perform much of the work that formerly would have required a great deal of expensive flight software development to realize. Autonomous turning and tracking makes considerable use of new VML features. Profiles generated by flight software are managed using object-oriented VML data constructs executed in discrete time by the VML flight software. VML vector and matrix operations provide the ability to calculate and supply quaternions to the attitude controller flight software which produces torque requests. Using VML-based attitude planning components eliminates flight software development effort, and reduces corresponding costs. In addition, the direct management of the quaternions allows turning and tracking to be tied in with sophisticated high-level VML state machines. These state machines provide autonomous management of spacecraft operations during critical tasks like a hypothetic Mars sample return rendezvous and docking. State machines created for autonomous science observations can also use this sort of attitude planning system, allowing heightened autonomy levels to reduce operations costs. VML state machines cannot be considered merely sequences - they are reactive logic constructs capable of autonomous decision making within a well-defined domain. The state machine approach enabled by VML 3.0 is progressing toward flight capability with a wide array of applicable mission activities.
Autonomous Mechanical Assembly on the Space Shuttle: An Overview
NASA Technical Reports Server (NTRS)
Raibert, M. H.
1979-01-01
The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed.
Validating a UAV artificial intelligence control system using an autonomous test case generator
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Huber, Justin
2013-05-01
The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.
Using Planning, Scheduling and Execution for Autonomous Mars Rover Operations
NASA Technical Reports Server (NTRS)
Estlin, Tara A.; Gaines, Daniel M.; Chouinard, Caroline M.; Fisher, Forest W.; Castano, Rebecca; Judd, Michele J.; Nesnas, Issa A.
2006-01-01
With each new rover mission to Mars, rovers are traveling significantly longer distances. This distance increase raises not only the opportunities for science data collection, but also amplifies the amount of environment and rover state uncertainty that must be handled in rover operations. This paper describes how planning, scheduling and execution techniques can be used onboard a rover to autonomously generate and execute rover activities and in particular to handle new science opportunities that have been identified dynamically. We also discuss some of the particular challenges we face in supporting autonomous rover decision-making. These include interaction with rover navigation and path-planning software and handling large amounts of uncertainty in state and resource estimations. Finally, we describe our experiences in testing this work using several Mars rover prototypes in a realistic environment.
Design of an autonomous exterior security robot
NASA Technical Reports Server (NTRS)
Myers, Scott D.
1994-01-01
This paper discusses the requirements and preliminary design of robotic vehicle designed for performing autonomous exterior perimeter security patrols around warehouse areas, ammunition supply depots, and industrial parks for the U.S. Department of Defense. The preliminary design allows for the operation of up to eight vehicles in a six kilometer by six kilometer zone with autonomous navigation and obstacle avoidance. In addition to detection of crawling intruders at 100 meters, the system must perform real-time inventory checking and database comparisons using a microwave tags system.
Expert system isssues in automated, autonomous space vehicle rendezvous
NASA Technical Reports Server (NTRS)
Goodwin, Mary Ann; Bochsler, Daniel C.
1987-01-01
The problems involved in automated autonomous rendezvous are briefly reviewed, and the Rendezvous Expert (RENEX) expert system is discussed with reference to its goals, approach used, and knowledge structure and contents. RENEX has been developed to support streamlining operations for the Space Shuttle and Space Station program and to aid definition of mission requirements for the autonomous portions of rendezvous for the Mars Surface Sample Return and Comet Nucleus Sample return unmanned missions. The experience with REMEX to date and recommendations for further development are presented.
Autonomous operations through onboard artificial intelligence
NASA Technical Reports Server (NTRS)
Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.
2002-01-01
The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Youngho; Hur, Kyeon; Kang, Yong
This study investigates the emerging harmonic stability concerns to be addressed by grid planners in generation interconnection studies, owing to the increased adoption of renewable energy resources connected to the grid via power electronic converters. The wideband and high-frequency electromagnetic transient (EMT) characteristics of these converter-interfaced generators (CIGs) and their interaction with the grid impedance are not accurately captured in the typical dynamic studies conducted by grid planners. This paper thus identifies the desired components to be studied and subsequently develops a practical process for integrating a new CIG into a grid with the existing CIGs. The steps of thismore » process are as follows: the impedance equation of a CIG using its control dynamics and an interface filter to the grid, for example, an LCL filter (inductor-capacitor-inductor type), is developed; an equivalent impedance model including the existing CIGs nearby and the grid observed from the point of common coupling are derived; the system stability for credible operating scenarios is assessed. Detailed EMT simulations validate the accuracy of the impedance models and stability assessment for various connection scenarios. Here, by complementing the conventional EMT simulation studies, the proposed analytical approach enables grid planners to identify critical design parameters for seamlessly integrating a new CIG and ensuring the reliability of the grid.« less
2015-03-02
balloons , large UAVs, and satellite communications are all employed to mitigate LOS and OTH communication on the battlefield. The Marine Corps’ fleets...Phang, N. S. (2006). Tethered operation of autonomous aerial vehicles to provide extended fields of view for autonomous ground vehicles (Master’s
NASA Technical Reports Server (NTRS)
Lum, Henry, Jr.
1988-01-01
Information on systems autonomy is given in viewgraph form. Information is given on space systems integration, intelligent autonomous systems, automated systems for in-flight mission operations, the Systems Autonomy Demonstration Project on the Space Station Thermal Control System, the architecture of an autonomous intelligent system, artificial intelligence research issues, machine learning, and real-time image processing.
An autonomous rendezvous and docking system using cruise missile technologies
NASA Technical Reports Server (NTRS)
Jones, Ruel Edwin
1991-01-01
In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.
Intelligent unmanned vehicle systems suitable for individual or cooperative missions
NASA Astrophysics Data System (ADS)
Anderson, Matthew O.; McKay, Mark D.; Wadsworth, Derek C.
2007-04-01
The Department of Energy's Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for over fifteen years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high-resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicles during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Speed control for a mobile robot
NASA Astrophysics Data System (ADS)
Kolli, Kaylan C.; Mallikarjun, Sreeram; Kola, Krishnamohan; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a speed control for a modular autonomous mobile robot controller. The speed control of the traction motor is essential for safe operation of a mobile robot. The challenges of autonomous operation of a vehicle require safe, runaway and collision free operation. A mobile robot test-bed has been constructed using a golf cart base. The computer controlled speed control has been implemented and works with guidance provided by vision system and obstacle avoidance using ultrasonic sensors systems. A 486 computer through a 3- axis motion controller supervises the speed control. The traction motor is controlled via the computer by an EV-1 speed control. Testing of the system was done both in the lab and on an outside course with positive results. This design is a prototype and suggestions for improvements are also given. The autonomous speed controller is applicable for any computer controlled electric drive mobile vehicle.
Using Model-Based Reasoning for Autonomous Instrument Operation - Lessons Learned From IMAGE/LENA
NASA Technical Reports Server (NTRS)
Johnson, Michael A.; Rilee, Michael L.; Truszkowski, Walt; Bailin, Sidney C.
2001-01-01
Model-based reasoning has been applied as an autonomous control strategy on the Low Energy Neutral Atom (LENA) instrument currently flying on board the Imager for Magnetosphere-to-Aurora Global Exploration (IMAGE) spacecraft. Explicit models of instrument subsystem responses have been constructed and are used to dynamically adapt the instrument to the spacecraft's environment. These functions are cast as part of a Virtual Principal Investigator (VPI) that autonomously monitors and controls the instrument. In the VPI's current implementation, LENA's command uplink volume has been decreased significantly from its previous volume; typically, no uplinks are required for operations. This work demonstrates that a model-based approach can be used to enhance science instrument effectiveness. The components of LENA are common in space science instrumentation, and lessons learned by modeling this system may be applied to other instruments. Future work involves the extension of these methods to cover more aspects of LENA operation and the generalization to other space science instrumentation.
Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.
2001-01-01
The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.; Kirchner, Frank; Spenneberg, Dirk; Starman, Jared; Hanratty, James; Kovsmeyer, David (Technical Monitor)
2003-01-01
NASA needs autonomous robotic exploration of difficult (rough and/or steep) scientifically interesting Martian terrains. Concepts involving distributed autonomy for cooperative robotic exploration are key to enabling new scientific objectives in robotic missions. We propose to utilize a legged robot as an adjunct scout to a rover for access to difficult - scientifically interesting - terrains (rocky areas, slopes, cliffs). Our final mission scenario involves the Ames rover platform "K9" and Scorpion acting together to explore a steep cliff, with the Scorpion robot rappelling down using the K9 as an anchor as well as mission planner and executive. Cooperation concepts, including wheeled rappelling robots have been proposed before. Now we propose to test the combined advantages of a wheeled vehicle with a legged scout as well as the advantages of merging of high level planning and execution with biologically inspired, behavior based robotics. We propose to use the 8-legged, multifunctional autonomous robot platform Scorpion that is currently capable of: Walking on different terrains (rocks, sand, grass, ...). Perceiving its environment and modifying its behavioral pattern accordingly. These capabilities would be extended to enable the Scorpion to: communicate and cooperate with a partner robot; climb over rocks, rubble piles, and objects with structural features. This will be done in the context of exploration of rough terrains in the neighborhood of the rover, but inaccessible to it, culminating in the added capability of rappelling down a steep cliff for both vertical and horizontal terrain observation.
Automation study for space station subsystems and mission ground support
NASA Technical Reports Server (NTRS)
1985-01-01
An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.
Autonomous Dome for a Robotic Telescope
NASA Astrophysics Data System (ADS)
Kumar, A.; Sengupta, A.; Ganesh, S.
2016-12-01
The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.
SAMURAI: Polar AUV-Based Autonomous Dexterous Sampling
NASA Astrophysics Data System (ADS)
Akin, D. L.; Roberts, B. J.; Smith, W.; Roderick, S.; Reves-Sohn, R.; Singh, H.
2006-12-01
While autonomous undersea vehicles are increasingly being used for surveying and mapping missions, as of yet there has been little concerted effort to create a system capable of performing physical sampling or other manipulation of the local environment. This type of activity has typically been performed under teleoperated control from ROVs, which provides high-bandwidth real-time human direction of the manipulation activities. Manipulation from an AUV will require a completely autonomous sampling system, which implies both advanced technologies such as machine vision and autonomous target designation, but also dexterous robot manipulators to perform the actual sampling without human intervention. As part of the NASA Astrobiology Science and Technology for Exploring the Planets (ASTEP) program, the University of Maryland Space Systems Laboratory has been adapting and extending robotics technologies developed for spacecraft assembly and maintenance to the problem of autonomous sampling of biologicals and soil samples around hydrothermal vents. The Sub-polar ice Advanced Manipulator for Universal Sampling and Autonomous Intervention (SAMURAI) system is comprised of a 6000-meter capable six-degree-of-freedom dexterous manipulator, along with an autonomous vision system, multi-level control system, and sampling end effectors and storage mechanisms to allow collection of samples from vent fields. SAMURAI will be integrated onto the Woods Hole Oceanographic Institute (WHOI) Jaguar AUV, and used in Arctic during the fall of 2007 for autonomous vent field sampling on the Gakkel Ridge. Under the current operations concept, the JAGUAR and PUMA AUVs will survey the water column and localize on hydrothermal vents. Early mapping missions will create photomosaics of the vents and local surroundings, allowing scientists on the mission to designate desirable sampling targets. Based on physical characteristics such as size, shape, and coloration, the targets will be loaded into the SAMURAI control system, and JAGUAR (with SAMURAI mounted to the lower forward hull) will return to the designated target areas. Once on site, vehicle control will be turned over to the SAMURAI controller, which will perform vision-based guidance to the sampling site and will then ground the AUV to the sea bottom for stability. The SAMURAI manipulator will collect samples, such as sessile biologicals, geological samples, and (potentially) vent fluids, and store the samples for the return trip. After several hours of sampling operations on one or several sites, JAGUAR control will be returned to the WHOI onboard controller for the return to the support ship. (Operational details of AUV operations on the Gakkel Ridge mission are presented in other papers at this conference.) Between sorties, SAMURAI end effectors can be changed out on the surface for specific targets, such as push cores or larger biologicals such as tube worms. In addition to the obvious challenges in autonomous vision-based manipulator control from a free-flying support vehicle, significant development challenges have been the design of a highly capable robotic arm within the mass limitations (both wet and dry) of the JAGUAR vehicle, the development of a highly robust manipulator with modular maintenance units for extended polar operations, and the creation of a robot-based sample collection and holding system for multiple heterogeneous samples on a single extended sortie.
Moiş, George Dan; Sanislav, Teodora; Folea, Silviu Corneliu; Zeadally, Sherali
2018-05-25
Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO₂ and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings.
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.
Alerting, orienting or executive attention networks: differential patters of pupil dilations
Geva, Ronny; Zivan, Michal; Warsha, Aviv; Olchik, Dov
2013-01-01
Attention capacities, alerting responses, orienting to sensory stimulation, and executive monitoring of performance are considered independent yet interrelated systems. These operations play integral roles in regulating the behavior of diverse species along the evolutionary ladder. Each of the primary attention constructs—alerting, orienting, and executive monitoring—involves salient autonomic correlates as evidenced by changes in reactive pupil dilation (PD), heart rate, and skin conductance. Recent technological advances that use remote high-resolution recording may allow the discernment of temporo-spatial attributes of autonomic responses that characterize the alerting, orienting, and executive monitoring networks during free viewing, irrespective of voluntary performance. This may deepen the understanding of the roles of autonomic regulation in these mental operations and may deepen our understanding of behavioral changes in verbal as well as in non-verbal species. The aim of this study was to explore differences between psychosensory PD responses in alerting, orienting, and executive conflict monitoring tasks to generate estimates of concurrent locus coeruleus (LC) noradrenergic input trajectories in healthy human adults using the attention networks test (ANT). The analysis revealed a construct-specific pattern of pupil responses: alerting is characterized by an early component (Pa), its acceleration enables covert orienting, and executive control is evidenced by a prominent late component (Pe). PD characteristics seem to be task-sensitive, allowing exploration of mental operations irrespective of conscious voluntary responses. These data may facilitate development of studies designed to assess mental operations in diverse species using autonomic responses. PMID:24133422
PRoViScout: a planetary scouting rover demonstrator
NASA Astrophysics Data System (ADS)
Paar, Gerhard; Woods, Mark; Gimkiewicz, Christiane; Labrosse, Frédéric; Medina, Alberto; Tyler, Laurence; Barnes, David P.; Fritz, Gerald; Kapellos, Konstantinos
2012-01-01
Mobile systems exploring Planetary surfaces in future will require more autonomy than today. The EU FP7-SPACE Project ProViScout (2010-2012) establishes the building blocks of such autonomous exploration systems in terms of robotics vision by a decision-based combination of navigation and scientific target selection, and integrates them into a framework ready for and exposed to field demonstration. The PRoViScout on-board system consists of mission management components such as an Executive, a Mars Mission On-Board Planner and Scheduler, a Science Assessment Module, and Navigation & Vision Processing modules. The platform hardware consists of the rover with the sensors and pointing devices. We report on the major building blocks and their functions & interfaces, emphasizing on the computer vision parts such as image acquisition (using a novel zoomed 3D-Time-of-Flight & RGB camera), mapping from 3D-TOF data, panoramic image & stereo reconstruction, hazard and slope maps, visual odometry and the recognition of potential scientifically interesting targets.
Planning perception and action for cognitive mobile manipulators
NASA Astrophysics Data System (ADS)
Gaschler, Andre; Nogina, Svetlana; Petrick, Ronald P. A.; Knoll, Alois
2013-12-01
We present a general approach to perception and manipulation planning for cognitive mobile manipulators. Rather than hard-coding single purpose robot applications, a robot should be able to reason about its basic skills in order to solve complex problems autonomously. Humans intuitively solve tasks in real-world scenarios by breaking down abstract problems into smaller sub-tasks and use heuristics based on their previous experience. We apply a similar idea for planning perception and manipulation to cognitive mobile robots. Our approach is based on contingent planning and run-time sensing, integrated in our knowledge of volumes" planning framework, called KVP. Using the general-purpose PKS planner, we model information-gathering actions at plan time that have multiple possible outcomes at run time. As a result, perception and sensing arise as necessary preconditions for manipulation, rather than being hard-coded as tasks themselves. We demonstrate the e ectiveness of our approach on two scenarios covering visual and force sensing on a real mobile manipulator.
Lieutenant General Robert L. Bullard: Understanding Small and Large Conflicts
2012-12-06
confronting the nation. Working in austere environments and hastily learning diverse cultures, operational planners must balance the realities of conflict...they develop, learn from those who came before them. As previously stated, leadership, understanding, and preparedness (as foundations gained...the mind of the experienced officer. Through these writings, this monograph discusses his thoughts and determines how he developed into an
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This program planning guide for a two-year postsecondary radiation protection technician program is designed for use with courses 17-22 of thirty-five included in the Nuclear Technology Series. The purpose of the guide is to describe the nuclear power field and its job categories for specialists, technicians, and operators; and to assist planners,…
A model linking clinical workforce skill mix planning to health and health care dynamics.
Masnick, Keith; McDonnell, Geoff
2010-04-30
In an attempt to devise a simpler computable tool to assist workforce planners in determining what might be an appropriate mix of health service skills, our discussion led us to consider the implications of skill mixing and workforce composition beyond the 'stock and flow' approach of much workforce planning activity. Taking a dynamic systems approach, we were able to address the interactions, delays and feedbacks that influence the balance between the major components of health and health care. We linked clinical workforce requirements to clinical workforce workload, taking into account the requisite facilities, technologies, other material resources and their funding to support clinical care microsystems; gave recognition to productivity and quality issues; took cognisance of policies, governance and power concerns in the establishment and operation of the health care system; and, going back to the individual, gave due attention to personal behaviour and biology within the socio-political family environment. We have produced the broad endogenous systems model of health and health care which will enable human resource planners to operate within real world variables. We are now considering the development of simple, computable national versions of this model.
Implementation and Simulation Results using Autonomous Aerobraking Development Software
NASA Technical Reports Server (NTRS)
Maddock, Robert W.; DwyerCianciolo, Alicia M.; Bowes, Angela; Prince, Jill L. H.; Powell, Richard W.
2011-01-01
An Autonomous Aerobraking software system is currently under development with support from the NASA Engineering and Safety Center (NESC) that would move typically ground-based operations functions to onboard an aerobraking spacecraft, reducing mission risk and mission cost. The suite of software that will enable autonomous aerobraking is the Autonomous Aerobraking Development Software (AADS) and consists of an ephemeris model, onboard atmosphere estimator, temperature and loads prediction, and a maneuver calculation. The software calculates the maneuver time, magnitude and direction commands to maintain the spacecraft periapsis parameters within design structural load and/or thermal constraints. The AADS is currently tested in simulations at Mars, with plans to also evaluate feasibility and performance at Venus and Titan.
U.S. Army dietitians deploy in support of Cobra Gold: a humanitarian mission.
Kemmer, T; Podojil, R; Sweet, L E
1999-07-01
Dietitians are multifunctional and play an important role in humanitarian missions as educators, planners, and consultants. Three dietitians deployed to Thailand in support of the 16th Annual Joint and Combined Exercise, Cobra Gold 1997. The goal of the Medical Civic Assistance Program (MEDCAP) was to promote long-term public health improvements in rural Thai villages. The dietitians counseled 140 patients and taught an additional 5,300 individuals during nutrition classes. The primary nutrition-related clinical diagnoses included malnutrition, anemia, diabetes, hypertension, goiter, and poor appetite. The dietitian who deployed as the medical planner and MEDCAP executive officer facilitated coordination and planning for all phases of the MEDCAP operation. The teams were made up of U.S. and Thai military forces and Thai civilian medical personnel. The mission requirements were established with the Royal Thai Supreme Command, Thai governors, Ministry of Public Health officers, military and medical officers, and veterinarians of the three provinces.
A decision support tool for synchronizing technology advances with strategic mission objectives
NASA Technical Reports Server (NTRS)
Hornstein, Rhoda S.; Willoughby, John K.
1992-01-01
Successful accomplishment of the objectives of many long-range future missions in areas such as space systems, land-use planning, and natural resource management requires significant technology developments. This paper describes the development of a decision-support data-derived tool called MisTec for helping strategic planners to determine technology development alternatives and to synchronize the technology development schedules with the performance schedules of future long-term missions. Special attention is given to the operations, concept, design, and functional capabilities of the MisTec. The MisTec was initially designed for manned Mars mission, but can be adapted to support other high-technology long-range strategic planning situations, making it possible for a mission analyst, planner, or manager to describe a mission scenario, determine the technology alternatives for making the mission achievable, and to plan the R&D activity necessary to achieve the required technology advances.
ERIC Educational Resources Information Center
van der Worp, Karin
2017-01-01
In the Basque Autonomous Community, besides the official languages Spanish and Basque, English is considered an important third language for internationally operating companies. However, employees are not believed to be linguistically well enough prepared, due to shortcomings in English language learning in the Basque educational system. The…
Concept synthesis of an equipment manipulation and transportation system EMATS
NASA Technical Reports Server (NTRS)
Depeuter, W.; Waffenschmidt, E.
1989-01-01
The European Columbus Scenario is established. One of the Columbus Elements, the Man Tended Free Flyer will be designed for fully autonomous operation in order to provide the environment for micro gravity facilities. The Concept of an autonomous automation system which perform servicing of facilities and deals with related logistic tasks is discussed.
Assessing Plankton and Particles with an Autonomous Imaging LOPC
2007-09-30
been modified to operate autonomously by auto-starting its programs on power-up and storing its data to an onboard flashcard . Since data transfer to... flashcard is a slow process, storage will occur when the AUV surfaces for a position fix. Data acquisition will commence as the AUV descends >5m
NASA Technical Reports Server (NTRS)
Montemerlo, Melvin
1988-01-01
The Autonomous Systems focus on the automation of control systems for the Space Station and mission operations. Telerobotics focuses on automation for in-space servicing, assembly, and repair. The Autonomous Systems and Telerobotics each have a planned sequence of integrated demonstrations showing the evolutionary advance of the state-of-the-art. Progress is briefly described for each area of concern.
DOT National Transportation Integrated Search
2016-10-01
The objective of this study is to review the status quo in the development of autonomous vehicles and determine : what regulatory action needs to be taken that will permit their safe introduction in : Louisiana while not stifling innovation and devel...
Movement to curtail animal dissections in zoology curriculum: review of the Indian experience.
Akbarsha, Mohammad Abdulkader
2007-01-01
Animal dissections have been dropped from the curriculum in several developed countries, and virtual laboratories are taking their place, or at least the concept of the "three R's" is becoming accepted. Yet, the scenario in the developing countries in this regard has been dismal. However, recently, a movement has started in India in this area, thanks to the aggressive approach of PfA, I-CARE and InterNICHE, supported by a few zoology educators and policy makers, who joined this movement as freelancers. The aggressive campaigners against animal dissections put up convincing arguments to the orthodox zoology educators and higher education planners with such veracity that the arguments cannot be ignored. The arguments, to be presented in detail at the conference, and the campaign have been rewarded with success such that a few universities and autonomous colleges have revamped their zoology curricula so as to dispense with or reduce animal dissections. The Bharathidasan University, Tiruchirappalli, Tamil Nadu, India, has been the trendsetter, evolving what is known as the "Bharathidasan University Model". A memorandum from I-CARE and PfA to the University Grants Commission, Government of India, New Delhi, was sent out by the UGC to the universities with a request to consider the points positively. However, there is still a need to bring about an attitudinal change in the zoology educators and higher education planners such that they participate willingly in this endeavour. The role-players at all levels are identified and approached with a language that is understandable to each and are adequately supported by hands-on training in the alternative methods. Ultimately, the responsibility in this regard lies with the educators themselves, since they are the ones who, working in the academic committees that design the curricula, can cut down on the requirement for dissections.
AGATE: Adversarial Game Analysis for Tactical Evaluation
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2013-01-01
AGATE generates a set of ranked strategies that enables an autonomous vehicle to track/trail another vehicle that is trying to break the contact using evasive tactics. The software is efficient (can be run on a laptop), scales well with environmental complexity, and is suitable for use onboard an autonomous vehicle. The software will run in near-real-time (2 Hz) on most commercial laptops. Existing software is usually run offline in a planning mode, and is not used to control an unmanned vehicle actively. JPL has developed a system for AGATE that uses adversarial game theory (AGT) methods (in particular, leader-follower and pursuit-evasion) to enable an autonomous vehicle (AV) to maintain tracking/ trailing operations on a target that is employing evasive tactics. The AV trailing, tracking, and reacquisition operations are characterized by imperfect information, and are an example of a non-zero sum game (a positive payoff for the AV is not necessarily an equal loss for the target being tracked and, potentially, additional adversarial boats). Previously, JPL successfully applied the Nash equilibrium method for onboard control of an autonomous ground vehicle (AGV) travelling over hazardous terrain.
Cross-cultural comparison of political leaders' operational codes.
Dirilen-Gumus, Ozlem
2017-12-01
This study aims at comparing operational codes (namely, philosophical and instrumental beliefs about the political universe) of political leaders from different cultures. According to Schwartz (2004), cultures can be categorised into 3 dimensions: autonomy-embeddedness, egalitarianism-hierarchy and mastery-harmony. This study draws upon the 1st dimension (akin to the most popular cultural dimension of Hofstede: individualism-collectivism) and focuses on comparing the leaders of autonomous and embedded cultures based on how cooperative/conflictual they are. The main research hypothesis is as follows: the leaders of embedded cultures would be more cooperative than the leaders of autonomous cultures. For this purpose, 3 autonomous cultures (the UK, Canada and Australia) and embedded cultures (Singapore, South Africa and Malaysia) cultures were chosen randomly and the cooperativeness of the correspondent countries' leaders were compared after being profiled by Profiler Plus. The results indicated that the leaders of embedded cultures were significantly more cooperative than autonomous cultures after holding the control variables constant. The findings were discussed in the light of relevant literature. © 2016 International Union of Psychological Science.
Towards autonomous fuzzy control
NASA Technical Reports Server (NTRS)
Shenoi, Sujeet; Ramer, Arthur
1993-01-01
The efficient implementation of on-line adaptation in real time is an important research problem in fuzzy control. The goal is to develop autonomous self-organizing controllers employing system-independent control meta-knowledge which enables them to adjust their control policies depending on the systems they control and the environments in which they operate. An autonomous fuzzy controller would continuously observe system behavior while implementing its control actions and would use the outcomes of these actions to refine its control policy. It could be designed to lie dormant when its control actions give rise to adequate performance characteristics but could rapidly and autonomously initiate real-time adaptation whenever its performance degrades. Such an autonomous fuzzy controller would have immense practical value. It could accommodate individual variations in system characteristics and also compensate for degradations in system characteristics caused by wear and tear. It could also potentially deal with black-box systems and control scenarios. On-going research in autonomous fuzzy control is reported. The ultimate research objective is to develop robust and relatively inexpensive autonomous fuzzy control hardware suitable for use in real time environments.
Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.
Autonomous control systems - Architecture and fundamental issues
NASA Technical Reports Server (NTRS)
Antsaklis, P. J.; Passino, K. M.; Wang, S. J.
1988-01-01
A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).
Secure Autonomous Automated Scheduling (SAAS). Rev. 1.1
NASA Technical Reports Server (NTRS)
Walke, Jon G.; Dikeman, Larry; Sage, Stephen P.; Miller, Eric M.
2010-01-01
This report describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the UK-DMC, is used as the space-based sensor. The UK-DMC's availability is determined via machine-to-machine communications using SSTL's mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL's and Universal Space Network's (USN) ground assets. The availability and scheduling of USN's assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards
Achieving TASAR Operational Readiness
NASA Technical Reports Server (NTRS)
Wing, David J.
2015-01-01
NASA has been developing and testing the Traffic Aware Strategic Aircrew Requests (TASAR) concept for aircraft operations featuring a NASA-developed cockpit automation tool, the Traffic Aware Planner (TAP), which computes traffic/hazard-compatible route changes to improve flight efficiency. The TAP technology is anticipated to save fuel and flight time and thereby provide immediate and pervasive benefits to the aircraft operator, as well as improving flight schedule compliance, passenger comfort, and pilot and controller workload. Previous work has indicated the potential for significant benefits for TASAR-equipped aircraft, and a flight trial of the TAP software application in the National Airspace System has demonstrated its technical viability. This paper reviews previous and ongoing activities to prepare TASAR for operational use.
Instrumentation and Control Needs for Reliable Operation of Lunar Base Surface Nuclear Power Systems
NASA Technical Reports Server (NTRS)
Turso, James; Chicatelli, Amy; Bajwa, Anupa
2005-01-01
As one of the near-term goals of the President's Vision for Space Exploration, establishment of a multi-person lunar base will require high-endurance power systems which are independent of the sun, and can operate without replenishment for several years. These requirements may be obtained using nuclear power systems specifically designed for use on the lunar surface. While it is envisioned that such a system will generally be supervised by humans, some of the evolutions required maybe semi or fully autonomous. The entire base complement for near-term missions may be less than 10 individuals, most or all of which may not be qualified nuclear plant operators and may be off-base for extended periods thus, the need for power system autonomous operation. Startup, shutdown, and load following operations will require the application of advanced control and health management strategies with an emphasis on robust, supervisory, coordinated control of, for example, the nuclear heat source, energy conversion plant (e.g., Brayton Energy Conversion units), and power management system. Autonomous operation implies that, in addition to being capable of automatic response to disturbance input or load changes, the system is also capable of assessing the status of the integrated plant, determining the risk associated with the possible actions, and making a decision as to the action that optimizes system performance while minimizing risk to the mission. Adapting the control to deviations from design conditions and degradation due to component failures will be essential to ensure base inhabitant safety and mission success. Intelligent decisions will have to be made to choose the right set of sensors to provide the data needed to do condition monitoring and fault detection and isolation because of liftoff weight and space limitations, it will not be possible to have an extensive set of instruments as used for earth-based systems. Advanced instrumentation and control technologies will be needed to enable this critical functionality of autonomous operation. It will be imperative to consider instrumentation and control requirements in parallel to system configuration development so as to identify control-related, as well as integrated system-related, problem areas early to avoid potentially expensive work-arounds . This paper presents an overview of the enabling technologies necessary for the development of reliable, autonomous lunar base nuclear power systems with an emphasis on system architectures and off-the-shelf algorithms rather than hardware. Autonomy needs are presented in the context of a hypothetical lunar base nuclear power system. The scenarios and applications presented are hypothetical in nature, based on information from open-literature sources, and only intended to provoke thought and provide motivation for the use of autonomous, intelligent control and diagnostics.
Space Technology - Game Changing Development NASA Facts: Autonomous Medical Operations
NASA Technical Reports Server (NTRS)
Thompson, David E.
2018-01-01
The AMO (Autonomous Medical Operations) Project is working extensively to train medical models on the reliability and confidence of computer-aided interpretation of ultrasound images in various clinical settings, and of various anatomical structures. AI (Artificial Intelligence) algorithms recognize and classify features in the ultrasound images, and these are compared to those features that clinicians use to diagnose diseases. The acquisition of clinically validated image assessment and the use of the AI algorithms constitutes fundamental baseline for a Medical Decision Support System that will advise crew on long-duration, remote missions.
Intelligent mobility research for robotic locomotion in complex terrain
NASA Astrophysics Data System (ADS)
Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit
2006-05-01
The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.
Lessons learned from the introduction of autonomous monitoring to the EUVE science operations center
NASA Technical Reports Server (NTRS)
Lewis, M.; Girouard, F.; Kronberg, F.; Ringrose, P.; Abedini, A.; Biroscak, D.; Morgan, T.; Malina, R. F.
1995-01-01
The University of California at Berkeley's (UCB) Center for Extreme Ultraviolet Astrophysics (CEA), in conjunction with NASA's Ames Research Center (ARC), has implemented an autonomous monitoring system in the Extreme Ultraviolet Explorer (EUVE) science operations center (ESOC). The implementation was driven by a need to reduce operations costs and has allowed the ESOC to move from continuous, three-shift, human-tended monitoring of the science payload to a one-shift operation in which the off shifts are monitored by an autonomous anomaly detection system. This system includes Eworks, an artificial intelligence (AI) payload telemetry monitoring package based on RTworks, and Epage, an automatic paging system to notify ESOC personnel of detected anomalies. In this age of shrinking NASA budgets, the lessons learned on the EUVE project are useful to other NASA missions looking for ways to reduce their operations budgets. The process of knowledge capture, from the payload controllers for implementation in an expert system, is directly applicable to any mission considering a transition to autonomous monitoring in their control center. The collaboration with ARC demonstrates how a project with limited programming resources can expand the breadth of its goals without incurring the high cost of hiring additional, dedicated programmers. This dispersal of expertise across NASA centers allows future missions to easily access experts for collaborative efforts of their own. Even the criterion used to choose an expert system has widespread impacts on the implementation, including the completion time and the final cost. In this paper we discuss, from inception to completion, the areas where our experiences in moving from three shifts to one shift may offer insights for other NASA missions.
Advances in Autonomous Systems for Missions of Space Exploration
NASA Astrophysics Data System (ADS)
Gross, A. R.; Smith, B. D.; Briggs, G. A.; Hieronymus, J.; Clancy, D. J.
New missions of space exploration will require unprecedented levels of autonomy to successfully accomplish their objectives. Both inherent complexity and communication distances will preclude levels of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of meeting the greatly increased space exploration requirements, along with dramatically reduced design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health monitoring and maintenance capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of space exploration, since the science and operational requirements specified by such missions, as well as the budgetary constraints that limit the ability to monitor and control these missions by a standing army of ground- based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communications distance as are not otherwise possible, as well as many more efficient and low cost applications. One notable example of such missions are those to explore for the existence of water on planets such as Mars and the moons of Jupiter. It is clear that water does not exist on the surfaces of such bodies, but may well be located at some considerable depth below the surface, thus requiring a subsurface drilling capability. Subsurface drilling on planetary surfaces will require a robust autonomous control and analysis system, currently a major challenge, but within conceivable reach of planned technology developments. This paper will focus on new and innovative software for remote, autonomous, space systems flight operations, including flight test results, lessons learned, and implications for the future. An additional focus will be on technologies for planetary exploration using autonomous systems and astronaut-assistance systems that employ new spoken language technology. Topics to be presented will include a description of key autonomous control concepts, illustrated by the Remote Agent program that commanded the Deep Space 1 spacecraft to new levels of system autonomy, recent advances in distributed autonomous system capabilities, and concepts for autonomous vehicle health management systems. A brief description of teaming spacecraft and rovers for complex exploration missions will also be provided. New software for autonomous science data acquisition for planetary exploration will also be described, as well as advanced systems for safe planetary landings. Current results of autonomous planetary drilling system research will be presented. A key thrust within NASA is to develop technologies that will leverage the capabilities of human astronauts during planetary surface explorations. One such technology is spoken dialogue interfaces, which would allow collaboration with semi-autonomous agents that are engaged in activities that are normally accomplished using language, e.g., astronauts in space suits interacting with groups of semi-autonomous rovers and other astronauts. This technology will be described and discussed in the context of future exploration missions and the major new capabilities enabled by such systems. Finally, plans and directions for the future of autonomous systems will be presented.
Survivability design for a hybrid underwater vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Biao; Wu, Chao; Li, Xiang
A novel hybrid underwater robotic vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes: operate as an untethered autonomous vehicle in autonomous underwater vehicle (AUV) mode and operate under remote control connected to the surface vessel by a lightweight, fiber optic tether in remotely operated vehicle (ROV) mode. Considering the hazardous underwater environment at the limiting depth and the hybrid operating modes, survivability has been placed on an equal level with the other design attributes of the HROV since the beginning of the project. This paper reports themore » survivability design elements for the HROV including basic vehicle design of integrated navigation and integrated communication, emergency recovery strategy, distributed architecture, redundant bus, dual battery package, emergency jettison system and self-repairing control system.« less
I-AUV Docking and Panel Intervention at Sea
Palomeras, Narcís; Peñalver, Antonio; Massot-Campos, Miquel; Negre, Pep Lluís; Fernández, José Javier; Ridao, Pere; Sanz, Pedro J.; Oliver-Codina, Gabriel
2016-01-01
The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely operated vehicles (ROVs) equipped with teleoperated arms: the intervention applications. To allow these heavy vehicles controlled by human operators to perform intervention tasks, underwater structures like observatory facilities, subsea panels or oil-well Christmas trees have been adapted, making them more robust and easier to operate. The TRITON Spanish founded project proposes the use of a light-weight intervention AUV (I-AUV) to carry out intervention applications simplifying the adaptation of these underwater structures and drastically reducing the operational cost. To prove this concept, the Girona 500 I-AUV is used to autonomously dock into an adapted subsea panel and once docked perform an intervention composed of turning a valve and plugging in/unplugging a connector. The techniques used for the autonomous docking and manipulation as well as the design of an adapted subsea panel with a funnel-based docking system are presented in this article together with the results achieved in a water tank and at sea. PMID:27754348
I-AUV Docking and Panel Intervention at Sea.
Palomeras, Narcís; Peñalver, Antonio; Massot-Campos, Miquel; Negre, Pep Lluís; Fernández, José Javier; Ridao, Pere; Sanz, Pedro J; Oliver-Codina, Gabriel
2016-10-12
The use of commercially available autonomous underwater vehicles (AUVs) has increased during the last fifteen years. While they are mainly used for routine survey missions, there is a set of applications that nowadays can be only addressed by manned submersibles or work-class remotely operated vehicles (ROVs) equipped with teleoperated arms: the intervention applications. To allow these heavy vehicles controlled by human operators to perform intervention tasks, underwater structures like observatory facilities, subsea panels or oil-well Christmas trees have been adapted, making them more robust and easier to operate. The TRITON Spanish founded project proposes the use of a light-weight intervention AUV (I-AUV) to carry out intervention applications simplifying the adaptation of these underwater structures and drastically reducing the operational cost. To prove this concept, the Girona 500 I-AUV is used to autonomously dock into an adapted subsea panel and once docked perform an intervention composed of turning a valve and plugging in/unplugging a connector. The techniques used for the autonomous docking and manipulation as well as the design of an adapted subsea panel with a funnel-based docking system are presented in this article together with the results achieved in a water tank and at sea.
Wang, Juanqi; Hu, Weigang; Yang, Zhaozhi; Chen, Xiaohui; Wu, Zhiqiang; Yu, Xiaoli; Guo, Xiaomao; Lu, Saiquan; Li, Kaixuan; Yu, Gongyi
2017-05-22
Knowledge-based planning (KBP) is a promising technique that can improve plan quality and increase planning efficiency. However, no attempts have been made to extend the domain of KBP for planners with different planning experiences so far. The purpose of this study was to quantify the potential gains for planners with different planning experiences after implementing KBP in intensity modulated radiation therapy (IMRT) plans for left-sided breast cancer patients. The model libraries were populated with 80 expert clinical plans from treated patients who previously received left-sided breast-conserving surgery and IMRT with simultaneously integrated boost. The libraries were created on the RapidPlan TM . 6 planners with different planning experiences (2 beginner planners, 2 junior planners and 2 senior planners) generated manual and KBP optimized plans for additional 10 patients, similar to those included in the model libraries. The plan qualities were compared between manual and KBP plans. All plans were capable of achieving the prescription requirement. There were almost no statistically significant differences in terms of the planning target volume (PTV) coverage and dose conformality. It was demonstrated that the doses for most of organs-at-risk (OARs) were on average lower or equal in KBP plans compared to manual plans except for the senior planners, where the very small differences were not statistically significant. KBP data showed a systematic trend to have superior dose sparing at most parameters for the heart and ipsilateral lung. The observed decrease in the doses to these OARs could be achieved, particularly for the beginner and junior planners. Many differences were statistically significant. It is feasible to generate acceptable IMRT plans after implementing KBP for left-sided breast cancer. KBP helps to effectively improve the quality of IMRT plans against the benchmark of manual plans for less experienced planners without any manual intervention. KBP showed promise for homogenizing the plan quality by transferring planning expertise from more experienced to less experienced planners.
NASA Astrophysics Data System (ADS)
Arkin, Ronald C.; Lyons, Damian; Shu, Jiang; Nirmal, Prem; Zafar, Munzir
2012-06-01
A crucially important aspect for mission-critical robotic operations is ensuring as best as possible that an autonomous system be able to complete its task. In a project for the Defense Threat Reduction Agency (DTRA) we are developing methods to provide such guidance, specifically for counter-Weapons of Mass Destruction (C-WMD) missions. In this paper, we describe the scenarios under consideration, the performance measures and metrics being developed, and an outline of the mechanisms for providing performance guarantees.
Progress towards autonomous, intelligent systems
NASA Technical Reports Server (NTRS)
Lum, Henry; Heer, Ewald
1987-01-01
An aggressive program has been initiated to develop, integrate, and implement autonomous systems technologies starting with today's expert systems and evolving to autonomous, intelligent systems by the end of the 1990s. This program includes core technology developments and demonstration projects for technology evaluation and validation. This paper discusses key operational frameworks in the content of systems autonomy applications and then identifies major technological challenges, primarily in artificial intelligence areas. Program content and progress made towards critical technologies and demonstrations that have been initiated to achieve the required future capabilities in the year 2000 era are discussed.
Autonomous intelligent cars: proof that the EPSRC Principles are future-proof
NASA Astrophysics Data System (ADS)
de Cock Buning, Madeleine; de Bruin, Roeland
2017-07-01
Principle 2 of the EPSRC's principles of robotics (AISB workshop on Principles of Robotics, 2016) proves to be future proof when applied to the current state of the art of law and technology surrounding autonomous intelligent cars (AICs). Humans, not AICS, are responsible agents. AICs should be designed; operated as far as is practicable to comply with existing laws and fundamental rights and freedoms, including privacy by design. It will show that some legal questions arising from autonomous intelligent driving technology can be answered by the technology itself.
Toward autonomous driving: The CMU Navlab. I - Perception
NASA Technical Reports Server (NTRS)
Thorpe, Charles; Hebert, Martial; Kanade, Takeo; Shafer, Steven
1991-01-01
The Navlab project, which seeks to build an autonomous robot that can operate in a realistic environment with bad weather, bad lighting, and bad or changing roads, is discussed. The perception techniques developed for the Navlab include road-following techniques using color classification and neural nets. These are discussed with reference to three road-following systems, SCARF, YARF, and ALVINN. Three-dimensional perception using three types of terrain representation (obstacle maps, terrain feature maps, and high-resolution maps) is examined. It is noted that perception continues to be an obstacle in developing autonomous vehicles.
Autonomous navigation and obstacle avoidance for unmanned surface vehicles
NASA Astrophysics Data System (ADS)
Larson, Jacoby; Bruch, Michael; Ebken, John
2006-05-01
The US Navy and other Department of Defense (DoD) and Department of Homeland Security (DHS) organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. In order for USVs to fill these roles, they must be capable of a relatively high degree of autonomous navigation. Space and Naval Warfare Systems Center, San Diego is developing core technologies required for robust USV operation in a real-world environment, primarily focusing on autonomous navigation, obstacle avoidance, and path planning.
1974-11-01
Challenge to Operations Research" 263 Mr. R. H. Adams Mr..F. P. Paca Mr. A. T. Sylvester "A Combat Rates Logistics Analysis...Staff; if we average a tour of duty in the Pentagon as three years, the Army has had eight successive generations of planners and operators in the...doctrine, originally enunciated for Greece and Turkey, brought the Army full tilt into the Military Assistance Program ( MAP ) as this contributed to
An Intelligent Propulsion Control Architecture to Enable More Autonomous Vehicle Operation
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T. Shane; Simon, Donald L.; Owen, A. Karl; Rinehart, Aidan W.; Chicatelli, Amy K.; Acheson, Michael J.; Hueschen, Richard M.; Spiers, Christopher W.
2018-01-01
This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.
A scheduling and diagnostic system for scientific satellite GEOTAIL using expert system
NASA Technical Reports Server (NTRS)
Nakatani, I; Hashimoto, M.; Mukai, T.; Obara, T.; Nishigori, N.
1994-01-01
The Intelligent Satellite Control Software (ISACS) for the geoMagnetic tail observation satellite named GEOTAIL (launched in July 1992) has been successfully developed. ISACS has made it possible by applying Artificial Intelligence (AI) technology including an expert system to autonomously generate a tracking schedule, which originally used to be conducted manually. Using ISACS, a satellite operator can generate a maximum four day period of stored command stream autonomously and can easily confirm its safety. The ISACS system has another function -- to diagnose satellite troubles and to suggest necessary remedies. The workload of satellite operators has drastically been reduced since ISACS has been introduced into the operations of GEOTAIL.
NASA Technical Reports Server (NTRS)
Sandy, Michael
2015-01-01
The Regolith Advanced Surface Systems Operations Robot (RASSOR) Phase 2 is an excavation robot for mining regolith on a planet like Mars. The robot is programmed using the Robotic Operating System (ROS) and it also uses a physical simulation program called Gazebo. This internship focused on various functions of the program in order to make it a more professional and efficient robot. During the internship another project called the Smart Autonomous Sand-Swimming Excavator was worked on. This is a robot that is designed to dig through sand and extract sample material. The intern worked on programming the Sand-Swimming robot, and designing the electrical system to power and control the robot.
Surveillance Range and Interference Impacts on Self-Separation Performance
NASA Technical Reports Server (NTRS)
Idris, Husni; Consiglio, Maria C.; Wing, David J.
2011-01-01
Self-separation is a concept of flight operations that aims to provide user benefits and increase airspace capacity by transferring traffic separation responsibility from ground-based controllers to the flight crew. Self-separation is enabled by cooperative airborne surveillance, such as that provided by the Automatic Dependent Surveillance-Broadcast (ADSB) system and airborne separation assistance technologies. This paper describes an assessment of the impact of ADS-B system performance on the performance of self-separation as a step towards establishing far-term ADS-B performance requirements. Specifically, the impacts of ADS-B surveillance range and interference limitations were analyzed under different traffic density levels. The analysis was performed using a batch simulation of aircraft performing self-separation assisted by NASA s Autonomous Operations Planner prototype flight-deck tool, in two-dimensional airspace. An aircraft detected conflicts within a look-ahead time of ten minutes and resolved them using strategic closed trajectories or tactical open maneuvers if the time to loss of separation was below a threshold. While a complex interaction was observed between the impacts of surveillance range and interference, as both factors are physically coupled, self-separation performance followed expected trends. An increase in surveillance range resulted in a decrease in the number of conflict detections, an increase in the average conflict detection lead time, and an increase in the percentage of conflict resolutions that were strategic. The majority of the benefit was observed when surveillance range was increased to a value corresponding to the conflict detection look-ahead time. The benefits were attenuated at higher interference levels. Increase in traffic density resulted in a significant increase in the number of conflict detections, as expected, but had no effect on the conflict detection lead time and the percentage of conflict resolutions that were strategic. With surveillance range corresponding to ADS-B minimum operational performance standards for Class A3 equipment and without background interference, a significant portion of conflict resolutions, 97 percent, were achieved in the preferred strategic mode. The majority of conflict resolutions, 71 percent, were strategic even with very high interference (over three times that expected in 2035).