Stilwell, Daniel J; Bishop, Bradley E; Sylvester, Caleb A
2005-08-01
An approach to real-time trajectory generation for platoons of autonomous vehicles is developed from well-known control techniques for redundant robotic manipulators. The partially decentralized structure of this approach permits each vehicle to independently compute its trajectory in real-time using only locally generated information and low-bandwidth feedback generated by a system exogenous to the platoon. Our work is motivated by applications for which communications bandwidth is severely limited, such for platoons of autonomous underwater vehicles. The communication requirements for our trajectory generation approach are independent of the number of vehicles in the platoon, enabling platoons composed of a large number of vehicles to be coordinated despite limited communication bandwidth.
Trajectory generation for an on-road autonomous vehicle
NASA Astrophysics Data System (ADS)
Horst, John; Barbera, Anthony
2006-05-01
We describe an algorithm that generates a smooth trajectory (position, velocity, and acceleration at uniformly sampled instants of time) for a car-like vehicle autonomously navigating within the constraints of lanes in a road. The technique models both vehicle paths and lane segments as straight line segments and circular arcs for mathematical simplicity and elegance, which we contrast with cubic spline approaches. We develop the path in an idealized space, warp the path into real space and compute path length, generate a one-dimensional trajectory along the path length that achieves target speeds and positions, and finally, warp, translate, and rotate the one-dimensional trajectory points onto the path in real space. The algorithm moves a vehicle in lane safely and efficiently within speed and acceleration maximums. The algorithm functions in the context of other autonomous driving functions within a carefully designed vehicle control hierarchy.
On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles
2006-02-17
On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles Report Title ABSTRACT In this work we proposed two semi-analytic...298-102 Enclosure 1 On-Line Path Generation and Tracking for High-Speed Wheeled Autonomous Vehicles by...Specifically, the following problems will be addressed during this project: 2.1 Challenges The problem of trajectory planning for high-speed autonomous vehicles is
NASA Astrophysics Data System (ADS)
Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen
2017-03-01
This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
This set of tutorial slides is an introduction to the Evolutionary Mission Trajectory Generator (EMTG), NASA Goddard Space Flight Center's autonomous tool for preliminary design of interplanetary missions. This slide set covers the basics of creating and post-processing simple interplanetary missions in EMTG using both high-thrust chemical and low-thrust electric propulsion along with a variety of operational constraints.
Welding torch trajectory generation for hull joining using autonomous welding mobile robot
NASA Astrophysics Data System (ADS)
Hascoet, J. Y.; Hamilton, K.; Carabin, G.; Rauch, M.; Alonso, M.; Ares, E.
2012-04-01
Shipbuilding processes involve highly dangerous manual welding operations. Welding of ship hulls presents a hazardous environment for workers. This paper describes a new robotic system, developed by the SHIPWELD consortium, that moves autonomously on the hull and automatically executes the required welding processes. Specific focus is placed on the trajectory control of such a system and forms the basis for the discussion in this paper. It includes a description of the robotic hardware design as well as some methodology used to establish the torch trajectory control.
Modeling and Classifying Six-Dimensional Trajectories for Teleoperation Under a Time Delay
NASA Technical Reports Server (NTRS)
SunSpiral, Vytas; Wheeler, Kevin R.; Allan, Mark B.; Martin, Rodney
2006-01-01
Within the context of teleoperating the JSC Robonaut humanoid robot under 2-10 second time delays, this paper explores the technical problem of modeling and classifying human motions represented as six-dimensional (position and orientation) trajectories. A dual path research agenda is reviewed which explored both deterministic approaches and stochastic approaches using Hidden Markov Models. Finally, recent results are shown from a new model which represents the fusion of these two research paths. Questions are also raised about the possibility of automatically generating autonomous actions by reusing the same predictive models of human behavior to be the source of autonomous control. This approach changes the role of teleoperation from being a stand-in for autonomy into the first data collection step for developing generative models capable of autonomous control of the robot.
Handling Trajectory Uncertainties for Airborne Conflict Management
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.
2005-01-01
Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.
A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications
NASA Technical Reports Server (NTRS)
Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco
2015-01-01
This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.
On-Board Entry Trajectory Planning Expanded to Sub-orbital Flight
NASA Technical Reports Server (NTRS)
Lu, Ping; Shen, Zuojun
2003-01-01
A methodology for on-board planning of sub-orbital entry trajectories is developed. The algorithm is able to generate in a time frame consistent with on-board environment a three-degree-of-freedom (3DOF) feasible entry trajectory, given the boundary conditions and vehicle modeling. This trajectory is then tracked by feedback guidance laws which issue guidance commands. The current trajectory planning algorithm complements the recently developed method for on-board 3DOF entry trajectory generation for orbital missions, and provides full-envelope autonomous adaptive entry guidance capability. The algorithm is validated and verified by extensive high fidelity simulations using a sub-orbital reusable launch vehicle model and difficult mission scenarios including failures and aborts.
Real-time path planning and autonomous control for helicopter autorotation
NASA Astrophysics Data System (ADS)
Yomchinda, Thanan
Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented. The integrated system is demonstrated in real-time high fidelity simulations. Results indicate feasibility of the capability of the algorithms to operate in real-time and of the integrated systems ability to provide safe autorotation landings. Preliminary simulations of autonomous autorotation on a small UAV are presented which will lead to a final hardware demonstration of the algorithms.
NASA Technical Reports Server (NTRS)
Krishnakumar, Kalmanje; Kopardekar, Parimal; Ippolito, Corey; Melton, John E.; Stepanyan, Vahram; Sankararaman, Shankar; Nikaido, Ben
2017-01-01
The most difficult phase of small Unmanned Aerial System (sUAS) deployment is autonomous operations below the notional 50 ft in urban landscapes. Understanding the feasibility of safely flying sUAS autonomously below 50 ft is a game changer for many civilian applications. This paper outlines three areas of research currently underway which address key challenges for flight in the urban landscape. These are: (1) Off-line and On-board wind estimation and accommodation; (2) Real-time trajectory planning via characterization of obstacles using a LIDAR; (3) On-board information fusion for real-time decision-making and safe trajectory generation.
Embedding Human Expert Cognition Into Autonomous UAS Trajectory Planning.
Narayan, Pritesh; Meyer, Patrick; Campbell, Duncan
2013-04-01
This paper presents a new approach for the inclusion of human expert cognition into autonomous trajectory planning for unmanned aerial systems (UASs) operating in low-altitude environments. During typical UAS operations, multiple objectives may exist; therefore, the use of multicriteria decision aid techniques can potentially allow for convergence to trajectory solutions which better reflect overall mission requirements. In that context, additive multiattribute value theory has been applied to optimize trajectories with respect to multiple objectives. A graphical user interface was developed to allow for knowledge capture from a human decision maker (HDM) through simulated decision scenarios. The expert decision data gathered are converted into value functions and corresponding criteria weightings using utility additive theory. The inclusion of preferences elicited from HDM data within an automated decision system allows for the generation of trajectories which more closely represent the candidate HDM decision preferences. This approach has been demonstrated in this paper through simulation using a fixed-wing UAS operating in low-altitude environments.
Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization
NASA Technical Reports Server (NTRS)
Pinson, Robin; Lu, Ping
2015-01-01
This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.
Distributed Traffic Complexity Management by Preserving Trajectory Flexibility
NASA Technical Reports Server (NTRS)
Idris, Husni; Vivona, Robert A.; Garcia-Chico, Jose-Luis; Wing, David J.
2007-01-01
In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which groundbased service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. This paper presents preliminary research investigating a distributed trajectory-oriented approach to manage traffic complexity, based on preserving trajectory flexibility. The underlying hypotheses are that preserving trajectory flexibility autonomously by aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by collaboratively minimizing trajectory constraints without jeopardizing the intended air traffic management objectives. This paper presents an analytical framework in which flexibility is defined in terms of robustness and adaptability to disturbances and preliminary metrics are proposed that can be used to preserve trajectory flexibility. The hypothesized impacts are illustrated through analyzing a trajectory solution space in a simple scenario with only speed as a degree of freedom, and in constraint situations involving meeting multiple times of arrival and resolving conflicts.
Reentry trajectory optimization based on a multistage pseudospectral method.
Zhao, Jiang; Zhou, Rui; Jin, Xuelian
2014-01-01
Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization.
Reentry Trajectory Optimization Based on a Multistage Pseudospectral Method
Zhou, Rui; Jin, Xuelian
2014-01-01
Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929
Self-Organizing Map With Time-Varying Structure to Plan and Control Artificial Locomotion.
Araujo, Aluizio F R; Santana, Orivaldo V
2015-08-01
This paper presents an algorithm, self-organizing map-state trajectory generator (SOM-STG), to plan and control legged robot locomotion. The SOM-STG is based on an SOM with a time-varying structure characterized by constructing autonomously close-state trajectories from an arbitrary number of robot postures. Each trajectory represents a cyclical movement of the limbs of an animal. The SOM-STG was designed to possess important features of a central pattern generator, such as rhythmic pattern generation, synchronization between limbs, and swapping between gaits following a single command. The acquisition of data for SOM-STG is based on learning by demonstration in which the data are obtained from different demonstrator agents. The SOM-STG can construct one or more gaits for a simulated robot with six legs, can control the robot with any of the gaits learned, and can smoothly swap gaits. In addition, SOM-STG can learn to construct a state trajectory form observing an animal in locomotion. In this paper, a dog is the demonstrator agent.
Trajectory Generation and Path Planning for Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto
2007-01-01
This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.
Autorotation flight control system
NASA Technical Reports Server (NTRS)
Bachelder, Edward N. (Inventor); Aponso, Bimal L. (Inventor); Lee, Dong-Chan (Inventor)
2011-01-01
The present invention provides computer implemented methodology that permits the safe landing and recovery of rotorcraft following engine failure. With this invention successful autorotations may be performed from well within the unsafe operating area of the height-velocity profile of a helicopter by employing the fast and robust real-time trajectory optimization algorithm that commands control motion through an intuitive pilot display, or directly in the case of autonomous rotorcraft. The algorithm generates optimal trajectories and control commands via the direct-collocation optimization method, solved using a nonlinear programming problem solver. The control inputs computed are collective pitch and aircraft pitch, which are easily tracked and manipulated by the pilot or converted to control actuator commands for automated operation during autorotation in the case of an autonomous rotorcraft. The formulation of the optimal control problem has been carefully tailored so the solutions resemble those of an expert pilot, accounting for the performance limitations of the rotorcraft and safety concerns.
Automated Conflict Resolution For Air Traffic Control
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
2005-01-01
The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.
Multipass Target Search in Natural Environments
Otte, Michael W.; Sofge, Donald; Gupta, Satyandra K.
2017-01-01
Consider a disaster scenario where search and rescue workers must search difficult to access buildings during an earthquake or flood. Often, finding survivors a few hours sooner results in a dramatic increase in saved lives, suggesting the use of drones for expedient rescue operations. Entropy can be used to quantify the generation and resolution of uncertainty. When searching for targets, maximizing mutual information of future sensor observations will minimize expected target location uncertainty by minimizing the entropy of the future estimate. Motion planning for multi-target autonomous search requires planning over an area with an imperfect sensor and may require multiple passes, which is hindered by the submodularity property of mutual information. Further, mission duration constraints must be handled accordingly, requiring consideration of the vehicle’s dynamics to generate feasible trajectories and must plan trajectories spanning the entire mission duration, something which most information gathering algorithms are incapable of doing. If unanticipated changes occur in an uncertain environment, new plans must be generated quickly. In addition, planning multipass trajectories requires evaluating path dependent rewards, requiring planning in the space of all previously selected actions, compounding the problem. We present an anytime algorithm for autonomous multipass target search in natural environments. The algorithm is capable of generating long duration dynamically feasible multipass coverage plans that maximize mutual information using a variety of techniques such as ϵ-admissible heuristics to speed up the search. To the authors’ knowledge this is the first attempt at efficiently solving multipass target search problems of such long duration. The proposed algorithm is based on best first branch and bound and is benchmarked against state of the art algorithms adapted to the problem in natural Simplex environments, gathering the most information in the given search time. PMID:29099087
Optimal helicopter trajectory planning for terrain following flight
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1990-01-01
Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-11-18
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints.
Li, Dachuan; Li, Qing; Cheng, Nong; Song, Jingyan
2014-01-01
This paper presents a real-time motion planning approach for autonomous vehicles with complex dynamics and state uncertainty. The approach is motivated by the motion planning problem for autonomous vehicles navigating in GPS-denied dynamic environments, which involves non-linear and/or non-holonomic vehicle dynamics, incomplete state estimates, and constraints imposed by uncertain and cluttered environments. To address the above motion planning problem, we propose an extension of the closed-loop rapid belief trees, the closed-loop random belief trees (CL-RBT), which incorporates predictions of the position estimation uncertainty, using a factored form of the covariance provided by the Kalman filter-based estimator. The proposed motion planner operates by incrementally constructing a tree of dynamically feasible trajectories using the closed-loop prediction, while selecting candidate paths with low uncertainty using efficient covariance update and propagation. The algorithm can operate in real-time, continuously providing the controller with feasible paths for execution, enabling the vehicle to account for dynamic and uncertain environments. Simulation results demonstrate that the proposed approach can generate feasible trajectories that reduce the state estimation uncertainty, while handling complex vehicle dynamics and environment constraints. PMID:25412217
An architectural approach to create self organizing control systems for practical autonomous robots
NASA Technical Reports Server (NTRS)
Greiner, Helen
1991-01-01
For practical industrial applications, the development of trainable robots is an important and immediate objective. Therefore, the developing of flexible intelligence directly applicable to training is emphasized. It is generally agreed upon by the AI community that the fusion of expert systems, neural networks, and conventionally programmed modules (e.g., a trajectory generator) is promising in the quest for autonomous robotic intelligence. Autonomous robot development is hindered by integration and architectural problems. Some obstacles towards the construction of more general robot control systems are as follows: (1) Growth problem; (2) Software generation; (3) Interaction with environment; (4) Reliability; and (5) Resource limitation. Neural networks can be successfully applied to some of these problems. However, current implementations of neural networks are hampered by the resource limitation problem and must be trained extensively to produce computationally accurate output. A generalization of conventional neural nets is proposed, and an architecture is offered in an attempt to address the above problems.
Gravitaxis in Spherical Janus Swimming Devices
2013-01-01
In this work, we show that the asymmetrical distribution of mass at the surface of catalytic Janus swimmers results in the devices preferentially propelling themselves upward in a gravitational field. We demonstrate the existence of this gravitaxis phenomenon by observing the trajectories of fueled Janus swimmers, which generate thrust along a vector pointing away from their metallically coated half. We report that as the size of the spherical swimmer increases, the propulsive trajectories are no longer isotropic with respect to gravity, and they start to show a pronounced tendency to move in an upward direction. We suggest that this effect is due to the platinum caps asymmetric mass exerting an increasing influence on the azimuthal angle of the Janus sphere with size, biasing its orientation toward a configuration where the heavier propulsion generating surface faces down. This argument is supported by the good agreement we find between the experimentally observed azimuthal angle distribution for the Janus swimmers and predictions made by simple Boltzmann statistics. This gravitaxis phenomenon provides a mechanism to autonomously control and direct the motion of catalytic swimming devices and so enable a route to make autonomous transport devices and develop new separation, sensing, and controlled release applications. PMID:24134682
On-Board Event-Based State Estimation for Trajectory Approaching and Tracking of a Vehicle
Martínez-Rey, Miguel; Espinosa, Felipe; Gardel, Alfredo; Santos, Carlos
2015-01-01
For the problem of pose estimation of an autonomous vehicle using networked external sensors, the processing capacity and battery consumption of these sensors, as well as the communication channel load should be optimized. Here, we report an event-based state estimator (EBSE) consisting of an unscented Kalman filter that uses a triggering mechanism based on the estimation error covariance matrix to request measurements from the external sensors. This EBSE generates the events of the estimator module on-board the vehicle and, thus, allows the sensors to remain in stand-by mode until an event is generated. The proposed algorithm requests a measurement every time the estimation distance root mean squared error (DRMS) value, obtained from the estimator's covariance matrix, exceeds a threshold value. This triggering threshold can be adapted to the vehicle's working conditions rendering the estimator even more efficient. An example of the use of the proposed EBSE is given, where the autonomous vehicle must approach and follow a reference trajectory. By making the threshold a function of the distance to the reference location, the estimator can halve the use of the sensors with a negligible deterioration in the performance of the approaching maneuver. PMID:26102489
Fast, Safe, Propellant-Efficient Spacecraft Motion Planning Under Clohessy-Wiltshire-Hill Dynamics
NASA Technical Reports Server (NTRS)
Starek, Joseph A.; Schmerling, Edward; Maher, Gabriel D.; Barbee, Brent W.; Pavone, Marco
2016-01-01
This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively actuated, propellant- optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill dynamics model. The approach calls upon a modified version of the FMT* algorithm to grow a set of feasible trajectories over a deterministic, low-dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of actively safe samples, from which there exists a feasible one-burn collision-avoidance maneuver that can safely circularize the spacecraft orbit along its coasting arc under a given set of potential thruster failures. Key features of the proposed algorithm include 1) theoretical guarantees in terms of trajectory safety and performance, 2) amenability to real-time implementation, and 3) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.
Lunar Landing Trajectory Design for Onboard Hazard Detection and Avoidance
NASA Technical Reports Server (NTRS)
Paschall, Steve; Brady, Tye; Sostaric, Ron
2009-01-01
The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing the software and hardware technology needed to support a safe and precise landing for the next generation of lunar missions. ALHAT provides this capability through terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard detection system to select safe landing locations, and an Autonomous Guidance, Navigation, and Control (AGNC) capability to process these measurements and safely direct the vehicle to a landing location. This paper focuses on the key trajectory design issues relevant to providing an onboard Hazard Detection and Avoidance (HDA) capability for the lander. Hazard detection can be accomplished by the crew visually scanning the terrain through a window, a sensor system imaging the terrain, or some combination of both. For ALHAT, this hazard detection activity is provided by a sensor system, which either augments the crew s perception or entirely replaces the crew in the case of a robotic landing. Detecting hazards influences the trajectory design by requiring the proper perspective, range to the landing site, and sufficient time to view the terrain. Following this, the trajectory design must provide additional time to process this information and make a decision about where to safely land. During the final part of the HDA process, the trajectory design must provide sufficient margin to enable a hazard avoidance maneuver. In order to demonstrate the effects of these constraints on the landing trajectory, a tradespace of trajectory designs was created for the initial ALHAT Design Analysis Cycle (ALDAC-1) and each case evaluated with these HDA constraints active. The ALHAT analysis process, described in this paper, narrows down this tradespace and subsequently better defines the trajectory design needed to support onboard HDA. Future ALDACs will enhance this trajectory design by balancing these issues and others in an overall system design process.
Three-bead steering microswimmers
NASA Astrophysics Data System (ADS)
Rizvi, Mohd Suhail; Farutin, Alexander; Misbah, Chaouqi
2018-02-01
The self-propelled microswimmers have recently attracted considerable attention as model systems for biological cell migration as well as artificial micromachines. A simple and well-studied microswimmer model consists of three identical spherical beads joined by two springs in a linear fashion with active oscillatory forces being applied on the beads to generate self-propulsion. We have extended this linear microswimmer configuration to a triangular geometry where the three beads are connected by three identical springs in an equilateral triangular manner. The active forces acting on each spring can lead to autonomous steering motion; i.e., allowing the swimmer to move along arbitrary paths. We explore the microswimmer dynamics analytically and pinpoint its rich character depending on the nature of the active forces. The microswimmers can translate along a straight trajectory, rotate at a fixed location, as well as perform a simultaneous translation and rotation resulting in complex curved trajectories. The sinusoidal active forces on the three springs of the microswimmer contain naturally four operating parameters which are more than required for the steering motion. We identify the minimal operating parameters which are essential for the motion of the microswimmer along any given arbitrary trajectory. Therefore, along with providing insights into the mechanics of the complex motion of the natural and artificial microswimmers, the triangular three-bead microswimmer can be utilized as a model for targeted drug delivery systems and autonomous underwater vehicles where intricate trajectories are involved.
Micro air vehicle autonomous obstacle avoidance from stereo-vision
NASA Astrophysics Data System (ADS)
Brockers, Roland; Kuwata, Yoshiaki; Weiss, Stephan; Matthies, Lawrence
2014-06-01
We introduce a new approach for on-board autonomous obstacle avoidance for micro air vehicles flying outdoors in close proximity to structure. Our approach uses inverse-range, polar-perspective stereo-disparity maps for obstacle detection and representation, and deploys a closed-loop RRT planner that considers flight dynamics for trajectory generation. While motion planning is executed in 3D space, we reduce collision checking to a fast z-buffer-like operation in disparity space, which allows for significant speed-up compared to full 3d methods. Evaluations in simulation illustrate the robustness of our approach, whereas real world flights under tree canopy demonstrate the potential of the approach.
3D Visualization of Cooperative Trajectories
NASA Technical Reports Server (NTRS)
Schaefer, John A.
2014-01-01
Aerodynamicists and biologists have long recognized the benefits of formation flight. When birds or aircraft fly in the upwash region of the vortex generated by leaders in a formation, induced drag is reduced for the trail bird or aircraft, and efficiency improves. The major consequence of this is that fuel consumption can be greatly reduced. When two aircraft are separated by a large enough longitudinal distance, the aircraft are said to be flying in a cooperative trajectory. A simulation has been developed to model autonomous cooperative trajectories of aircraft; however it does not provide any 3D representation of the multi-body system dynamics. The topic of this research is the development of an accurate visualization of the multi-body system observable in a 3D environment. This visualization includes two aircraft (lead and trail), a landscape for a static reference, and simplified models of the vortex dynamics and trajectories at several locations between the aircraft.
Spline Trajectory Algorithm Development: Bezier Curve Control Point Generation for UAVs
NASA Technical Reports Server (NTRS)
Howell, Lauren R.; Allen, B. Danette
2016-01-01
A greater need for sophisticated autonomous piloting systems has risen in direct correlation with the ubiquity of Unmanned Aerial Vehicle (UAV) technology. Whether surveying unknown or unexplored areas of the world, collecting scientific data from regions in which humans are typically incapable of entering, locating lost or wanted persons, or delivering emergency supplies, an unmanned vehicle moving in close proximity to people and other vehicles, should fly smoothly and predictably. The mathematical application of spline interpolation can play an important role in autopilots' on-board trajectory planning. Spline interpolation allows for the connection of Three-Dimensional Euclidean Space coordinates through a continuous set of smooth curves. This paper explores the motivation, application, and methodology used to compute the spline control points, which shape the curves in such a way that the autopilot trajectory is able to meet vehicle-dynamics limitations. The spline algorithms developed used to generate these curves supply autopilots with the information necessary to compute vehicle paths through a set of coordinate waypoints.
A hybrid systems strategy for automated spacecraft tour design and optimization
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey R.
As the number of operational spacecraft increases, autonomous operations is rapidly evolving into a critical necessity. Additionally, the capability to rapidly generate baseline trajectories greatly expands the range of options available to analysts as they explore the design space to meet mission demands. Thus, a general strategy is developed, one that is suitable for the construction of flight plans for both Earth-based and interplanetary spacecraft that encounter multiple objects, where these multiple encounters comprise a ``tour''. The proposed scheme is flexible in implementation and can readily be adjusted to a variety of mission architectures. Heuristic algorithms that autonomously generate baseline tour trajectories and, when appropriate, adjust reference solutions in the presence of rapidly changing environments are investigated. Furthermore, relative priorities for ranking the targets are explicitly accommodated during the construction of potential tour sequences. As a consequence, a priori, as well as newly acquired, knowledge concerning the target objects enhances the potential value of the ultimate encounter sequences. A variety of transfer options are incorporated, from rendezvous arcs enabled by low-thrust engines to more conventional impulsive orbit adjustments via chemical propulsion technologies. When advantageous, trajectories are optimized in terms of propellant consumption via a combination of indirect and direct methods; such a combination of available technologies is an example of hybrid optimization. Additionally, elements of hybrid systems theory, i.e., the blending of dynamical states, some discrete and some continuous, are integrated into the high-level tour generation scheme. For a preliminary investigation, this strategy is applied to mission design scenarios for a Sun-Jupiter Trojan asteroid tour as well as orbital debris removal for near-Earth applications.
Humanoid robot Lola: design and walking control.
Buschmann, Thomas; Lohmeier, Sebastian; Ulbrich, Heinz
2009-01-01
In this paper we present the humanoid robot LOLA, its mechatronic hardware design, simulation and real-time walking control. The goal of the LOLA-project is to build a machine capable of stable, autonomous, fast and human-like walking. LOLA is characterized by a redundant kinematic configuration with 7-DoF legs, an extremely lightweight design, joint actuators with brushless motors and an electronics architecture using decentralized joint control. Special emphasis was put on an improved mass distribution of the legs to achieve good dynamic performance. Trajectory generation and control aim at faster, more flexible and robust walking. Center of mass trajectories are calculated in real-time from footstep locations using quadratic programming and spline collocation methods. Stabilizing control uses hybrid position/force control in task space with an inner joint position control loop. Inertial stabilization is achieved by modifying the contact force trajectories.
Fuzzy Logic Trajectory Design and Guidance for Terminal Area Energy Management
NASA Technical Reports Server (NTRS)
Burchett, Bradley
2003-01-01
The second generation reusable launch vehicle will leverage many new technologies to make flight to low earth orbit safer and more cost effective. One important capability will be completely autonomous flight during reentry and landing, thus making it unnecessary to man the vehicle for cargo missions with stringent weight constraints. Implementation of sophisticated new guidance and control methods will enable the vehicle to return to earth under less than favorable conditions. The return to earth consists of three phases--Entry, Terminal Area Energy Management (TAEM), and Approach and Landing. The Space Shuttle is programmed to fly all three phases of flight automatically, and under normal circumstances the astronaut-pilot takes manual control only during the Approach and Landing phase. The automatic control algorithms used in the Shuttle for TAEM and Approach and Landing have been developed over the past 30 years. They are computationally efficient, and based on careful study of the spacecraft's flight dynamics, and heuristic reasoning. The gliding return trajectory is planned prior to the mission, and only minor adjustments are made during flight for perturbations in the vehicle energy state. With the advent of the X-33 and X-34 technology demonstration vehicles, several authors investigated implementing advanced control methods to provide autonomous real-time design of gliding return trajectories thus enhancing the ability of the vehicle to adjust to unusual energy states. The bulk of work published to date deals primarily with the approach and landing phase of flight where changes in heading angle are small, and range to the runway is monotonically decreasing. These benign flight conditions allow for model simplification and fairly straightforward optimization. This project focuses on the TAEM phase of flight where mathematically precise methods have produced limited results. Fuzzy Logic methods are used to make onboard autonomous gliding return trajectory design robust to a wider energy envelope, and the possibility of control surface failures, thus increasing the flexibility of unmanned gliding recovery and landing.
Back to the Future: Consistency-Based Trajectory Tracking
NASA Technical Reports Server (NTRS)
Kurien, James; Nayak, P. Pandurand; Norvig, Peter (Technical Monitor)
2000-01-01
Given a model of a physical process and a sequence of commands and observations received over time, the task of an autonomous controller is to determine the likely states of the process and the actions required to move the process to a desired configuration. We introduce a representation and algorithms for incrementally generating approximate belief states for a restricted but relevant class of partially observable Markov decision processes with very large state spaces. The algorithm presented incrementally generates, rather than revises, an approximate belief state at any point by abstracting and summarizing segments of the likely trajectories of the process. This enables applications to efficiently maintain a partial belief state when it remains consistent with observations and revisit past assumptions about the process' evolution when the belief state is ruled out. The system presented has been implemented and results on examples from the domain of spacecraft control are presented.
Tethered Vehicle Control and Tracking System
NASA Technical Reports Server (NTRS)
North, David D. (Inventor); Aull, Mark J. (Inventor)
2017-01-01
A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.
Tethered Vehicle Control and Tracking System
NASA Technical Reports Server (NTRS)
North, David D. (Inventor); Aull, Mark J. (Inventor)
2014-01-01
A kite system includes a kite and a ground station. The ground station includes a sensor that can be utilized to determine an angular position and velocity of the kite relative to the ground station. A controller utilizes a fuzzy logic control system to autonomously fly the kite. The system may include a ground station having powered winding units that generate power as the lines to the kite are unreeled. The control system may be configured to fly the kite in a crosswind trajectory to increase line tension for power generation. The sensors for determining the position of the kite are preferably ground-based.
Rapid Onboard Trajectory Design for Autonomous Spacecraft in Multibody Systems
NASA Astrophysics Data System (ADS)
Trumbauer, Eric Michael
This research develops automated, on-board trajectory planning algorithms in order to support current and new mission concepts. These include orbiter missions to Phobos or Deimos, Outer Planet Moon orbiters, and robotic and crewed missions to small bodies. The challenges stem from the limited on-board computing resources which restrict full trajectory optimization with guaranteed convergence in complex dynamical environments. The approach taken consists of leveraging pre-mission computations to create a large database of pre-computed orbits and arcs. Such a database is used to generate a discrete representation of the dynamics in the form of a directed graph, which acts to index these arcs. This allows the use of graph search algorithms on-board in order to provide good approximate solutions to the path planning problem. Coupled with robust differential correction and optimization techniques, this enables the determination of an efficient path between any boundary conditions with very little time and computing effort. Furthermore, the optimization methods developed here based on sequential convex programming are shown to have provable convergence properties, as well as generating feasible major iterates in case of a system interrupt -- a key requirement for on-board application. The outcome of this project is thus the development of an algorithmic framework which allows the deployment of this approach in a variety of specific mission contexts. Test cases related to missions of interest to NASA and JPL such as a Phobos orbiter and a Near Earth Asteroid interceptor are demonstrated, including the results of an implementation on the RAD750 flight processor. This method fills a gap in the toolbox being developed to create fully autonomous space exploration systems.
Powered Descent Trajectory Guidance and Some Considerations for Human Lunar Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.
2007-01-01
The Autonomous Precision Landing and Hazard Detection and Avoidance Technology development (ALHAT) will enable an accurate (better than 100m) landing on the lunar surface. This technology will also permit autonomous (independent from ground) avoidance of hazards detected in real time. A preliminary trajectory guidance algorithm capable of supporting these tasks has been developed and demonstrated in simulations. Early results suggest that with expected improvements in sensor technology and lunar mapping, mission objectives are achievable.
Towards Autonomous Airport Surface Operations: NextGen Flight Deck Implications
NASA Technical Reports Server (NTRS)
Foyle, David C.; Hooey, Becky Lee; Bakowski, Deborah Lee
2017-01-01
Surface Trajectory-based Operations (STBO) is a potential concept candidate for flight deck autonomous operations. Existing research will be reviewed and possible architectures and research issues will be presented.
Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
2015-11-16
a degraded visual environment, workload during the landing task begins to approach the limits of a human pilot’s capability. It is a similarly...Figure 2. Approach Trajectory ±4 ft landing error ±8 ft landing error ±12 ft landing error Flight Path -3000...heave and yaw axes. Figure 5. Open loop system generation ±4 ft landing error ±8 ft landing error ±12 ft landing error -10 -8 -6 -4 -2 0 2 4
Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.
Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J
2016-08-01
Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Online optimal obstacle avoidance for rotary-wing autonomous unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Kang, Keeryun
This thesis presents an integrated framework for online obstacle avoidance of rotary-wing unmanned aerial vehicles (UAVs), which can provide UAVs an obstacle field navigation capability in a partially or completely unknown obstacle-rich environment. The framework is composed of a LIDAR interface, a local obstacle grid generation, a receding horizon (RH) trajectory optimizer, a global shortest path search algorithm, and a climb rate limit detection logic. The key feature of the framework is the use of an optimization-based trajectory generation in which the obstacle avoidance problem is formulated as a nonlinear trajectory optimization problem with state and input constraints over the finite range of the sensor. This local trajectory optimization is combined with a global path search algorithm which provides a useful initial guess to the nonlinear optimization solver. Optimization is the natural process of finding the best trajectory that is dynamically feasible, safe within the vehicle's flight envelope, and collision-free at the same time. The optimal trajectory is continuously updated in real time by the numerical optimization solver, Nonlinear Trajectory Generation (NTG), which is a direct solver based on the spline approximation of trajectory for dynamically flat systems. In fact, the overall approach of this thesis to finding the optimal trajectory is similar to the model predictive control (MPC) or the receding horizon control (RHC), except that this thesis followed a two-layer design; thus, the optimal solution works as a guidance command to be followed by the controller of the vehicle. The framework is implemented in a real-time simulation environment, the Georgia Tech UAV Simulation Tool (GUST), and integrated in the onboard software of the rotary-wing UAV test-bed at Georgia Tech. Initially, the 2D vertical avoidance capability of real obstacles was tested in flight. The flight test evaluations were extended to the benchmark tests for 3D avoidance capability over the virtual obstacles, and finally it was demonstrated on real obstacles located at the McKenna MOUT site in Fort Benning, Georgia. Simulations and flight test evaluations demonstrate the feasibility of the developed framework for UAV applications involving low-altitude flight in an urban area.
NASA Astrophysics Data System (ADS)
Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi
2012-06-01
This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.
A open loop guidance architecture for navigationally robust on-orbit docking
NASA Technical Reports Server (NTRS)
Chern, Hung-Sheng
1995-01-01
The development of an open-hop guidance architecture is outlined for autonomous rendezvous and docking (AR&D) missions to determine whether the Global Positioning System (GPS) can be used in place of optical sensors for relative initial position determination of the chase vehicle. Feasible command trajectories for one, two, and three impulse AR&D maneuvers are determined using constrained trajectory optimization. Early AR&D command trajectory results suggest that docking accuracies are most sensitive to vertical position errors at the initial conduction of the chase vehicle. Thus, a feasible command trajectory is based on maximizing the size of the locus of initial vertical positions for which a fixed sequence of impulses will translate the chase vehicle into the target while satisfying docking accuracy requirements. Documented accuracies are used to determine whether relative GPS can achieve the vertical position error requirements of the impulsive command trajectories. Preliminary development of a thruster management system for the Cargo Transfer Vehicle (CTV) based on optimal throttle settings is presented to complete the guidance architecture. Results show that a guidance architecture based on a two impulse maneuvers generated the best performance in terms of initial position error and total velocity change for the chase vehicle.
NASA Astrophysics Data System (ADS)
Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao
2012-01-01
This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.
Autonomous Guidance of Agile Small-scale Rotorcraft
NASA Technical Reports Server (NTRS)
Mettler, Bernard; Feron, Eric
2004-01-01
This report describes a guidance system for agile vehicles based on a hybrid closed-loop model of the vehicle dynamics. The hybrid model represents the vehicle dynamics through a combination of linear-time-invariant control modes and pre-programmed, finite-duration maneuvers. This particular hybrid structure can be realized through a control system that combines trim controllers and a maneuvering control logic. The former enable precise trajectory tracking, and the latter enables trajectories at the edge of the vehicle capabilities. The closed-loop model is much simpler than the full vehicle equations of motion, yet it can capture a broad range of dynamic behaviors. It also supports a consistent link between the physical layer and the decision-making layer. The trajectory generation was formulated as an optimization problem using mixed-integer-linear-programming. The optimization is solved in a receding horizon fashion. Several techniques to improve the computational tractability were investigate. Simulation experiments using NASA Ames 'R-50 model show that this approach fully exploits the vehicle's agility.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-02-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Autonomous vision-based navigation for proximity operations around binary asteroids
NASA Astrophysics Data System (ADS)
Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo
2018-06-01
Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.
Fault Tolerance Analysis of L1 Adaptive Control System for Unmanned Aerial Vehicles
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Kiruthika
Trajectory tracking is a critical element for the better functionality of autonomous vehicles. The main objective of this research study was to implement and analyze L1 adaptive control laws for autonomous flight under normal and upset flight conditions. The West Virginia University (WVU) Unmanned Aerial Vehicle flight simulation environment was used for this purpose. A comparison study between the L1 adaptive controller and a baseline conventional controller, which relies on position, proportional, and integral compensation, has been performed for a reduced size jet aircraft, the WVU YF-22. Special attention was given to the performance of the proposed control laws in the presence of abnormal conditions. The abnormal conditions considered are locked actuators (stabilator, aileron, and rudder) and excessive turbulence. Several levels of abnormal condition severity have been considered. The performance of the control laws was assessed over different-shape commanded trajectories. A set of comprehensive evaluation metrics was defined and used to analyze the performance of autonomous flight control laws in terms of control activity and trajectory tracking errors. The developed L1 adaptive control laws are supported by theoretical stability guarantees. The simulation results show that L1 adaptive output feedback controller achieves better trajectory tracking with lower level of control actuation as compared to the baseline linear controller under nominal and abnormal conditions.
A Reusable Design for Precision Lunar Landing Systems
NASA Technical Reports Server (NTRS)
Fuhrman, Linda; Brand, Timothy; Fill, Tom; Norris, Lee; Paschall, Steve
2005-01-01
The top-level architecture to accomplish NASA's Vision for Space Exploration is to use Lunar missions and systems not just as an end in themselves, but also as testbeds for the more ambitious goals of Human Mars Exploration (HME). This approach means that Lunar missions and systems are most likely going to be targeted for (Lunar) polar missions, and also for long-duration (months) surface stays. This overacting theme creates basic top-level requirements for any next-generation lander system: 1) Long duration stays: a) Multiple landers in close proximity; b) Pinpoint landings for "surface rendezvous"; c) Autonomous landing of pre-positioned assets; and d) Autonomous Hazard Detection and Avoidance. 2) Polar and deep-crater landings (dark); 3) Common/extensible systems for Moon and Mars, crew and cargo. These requirements pose challenging technology and capability needs. Compare and contrast: 4) Apollo: a) 1 km landing accuracy; b) Lunar near-side (well imaged and direct-to-Earth com. possible); c) Lunar equatorial (landing trajectories offer best navigation support from Earth); d) Limited lighting conditions; e) Significant ground-in-the-loop operations; 5) Lunar Access: a) 10-100m landing precision; b) "Anywhere" access includes polar (potentially poor nav. support from Earth) and far side (poor gravity and imaging; no direct-to-Earth com); c) "Anytime" access includes any lighting condition (including dark); d) Full autonomous landing capability; e) Extensible design for tele-operation or operator-in-the-loop; and f) Minimal ground support to reduce operations costs. The Lunar Access program objectives, therefore, are to: a) Develop a baseline Lunar Precision Landing System (PLS) design to enable pinpoint "anywhere, anytime" landings; b) landing precision 10m-100m; c) Any LAT, LON; and d) Any lighting condition; This paper will characterize basic features of the next generation Lunar landing system, including trajectory types, sensor suite options and a reference system architecture.
Supervised Learning Applied to Air Traffic Trajectory Classification
NASA Technical Reports Server (NTRS)
Bosson, Christabelle S.; Nikoleris, Tasos
2018-01-01
Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs.
Path planning in GPS-denied environments via collective intelligence of distributed sensor networks
NASA Astrophysics Data System (ADS)
Jha, Devesh K.; Chattopadhyay, Pritthi; Sarkar, Soumik; Ray, Asok
2016-05-01
This paper proposes a framework for reactive goal-directed navigation without global positioning facilities in unknown dynamic environments. A mobile sensor network is used for localising regions of interest for path planning of an autonomous mobile robot. The underlying theory is an extension of a generalised gossip algorithm that has been recently developed in a language-measure-theoretic setting. The algorithm has been used to propagate local decisions of target detection over a mobile sensor network and thus, it generates a belief map for the detected target over the network. In this setting, an autonomous mobile robot may communicate only with a few mobile sensing nodes in its own neighbourhood and localise itself relative to the communicating nodes with bounded uncertainties. The robot makes use of the knowledge based on the belief of the mobile sensors to generate a sequence of way-points, leading to a possible goal. The estimated way-points are used by a sampling-based motion planning algorithm to generate feasible trajectories for the robot. The proposed concept has been validated by numerical simulation on a mobile sensor network test-bed and a Dubin's car-like robot.
NASA Technical Reports Server (NTRS)
Idris, Husni; Vivona, Robert A.; Al-Wakil, Tarek
2009-01-01
This document describes exploratory research on a distributed, trajectory oriented approach for traffic complexity management. The approach is to manage traffic complexity based on preserving trajectory flexibility and minimizing constraints. In particular, the document presents metrics for trajectory flexibility; a method for estimating these metrics based on discrete time and degree of freedom assumptions; a planning algorithm using these metrics to preserve flexibility; and preliminary experiments testing the impact of preserving trajectory flexibility on traffic complexity. The document also describes an early demonstration capability of the trajectory flexibility preservation function in the NASA Autonomous Operations Planner (AOP) platform.
Autonomous Mars ascent and orbit rendezvous for earth return missions
NASA Technical Reports Server (NTRS)
Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.
1991-01-01
The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.
Operator Informational Needs for Multiple Autonomous Small Vehicles
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal
2015-01-01
With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.
Encoding Time in Feedforward Trajectories of a Recurrent Neural Network Model.
Hardy, N F; Buonomano, Dean V
2018-02-01
Brain activity evolves through time, creating trajectories of activity that underlie sensorimotor processing, behavior, and learning and memory. Therefore, understanding the temporal nature of neural dynamics is essential to understanding brain function and behavior. In vivo studies have demonstrated that sequential transient activation of neurons can encode time. However, it remains unclear whether these patterns emerge from feedforward network architectures or from recurrent networks and, furthermore, what role network structure plays in timing. We address these issues using a recurrent neural network (RNN) model with distinct populations of excitatory and inhibitory units. Consistent with experimental data, a single RNN could autonomously produce multiple functionally feedforward trajectories, thus potentially encoding multiple timed motor patterns lasting up to several seconds. Importantly, the model accounted for Weber's law, a hallmark of timing behavior. Analysis of network connectivity revealed that efficiency-a measure of network interconnectedness-decreased as the number of stored trajectories increased. Additionally, the balance of excitation (E) and inhibition (I) shifted toward excitation during each unit's activation time, generating the prediction that observed sequential activity relies on dynamic control of the E/I balance. Our results establish for the first time that the same RNN can generate multiple functionally feedforward patterns of activity as a result of dynamic shifts in the E/I balance imposed by the connectome of the RNN. We conclude that recurrent network architectures account for sequential neural activity, as well as for a fundamental signature of timing behavior: Weber's law.
Autonomous Surface Sample Acquisition for Planetary and Lunar Exploration
NASA Astrophysics Data System (ADS)
Barnes, D. P.
2007-08-01
Surface science sample acquisition is a critical activity within any planetary and lunar exploration mission, and our research is focused upon the design, implementation, experimentation and demonstration of an onboard autonomous surface sample acquisition capability for a rover equipped with a robotic arm upon which are mounted appropriate science instruments. Images captured by a rover stereo camera system can be processed using shape from stereo methods and a digital elevation model (DEM) generated. We have developed a terrain feature identification algorithm that can determine autonomously from DEM data suitable regions for instrument placement and/or surface sample acquisition. Once identified, surface normal data can be generated autonomously which are then used to calculate an arm trajectory for instrument placement and sample acquisition. Once an instrument placement and sample acquisition trajectory has been calculated, a collision detection algorithm is required to ensure the safe operation of the arm during sample acquisition.We have developed a novel adaptive 'bounding spheres' approach to this problem. Once potential science targets have been identified, and these are within the reach of the arm and will not cause any undesired collision, then the 'cost' of executing the sample acquisition activity is required. Such information which includes power expenditure and duration can be used to select the 'best' target from a set of potential targets. We have developed a science sample acquisition resource requirements calculation that utilises differential inverse kinematics methods to yield a high fidelity result, thus improving upon simple 1st order approximations. To test our algorithms a new Planetary Analogue Terrain (PAT) Laboratory has been created that has a terrain region composed of Mars Soil Simulant-D from DLR Germany, and rocks that have been fully characterised in the laboratory. These have been donated by the UK Planetary Analogue Field Study network, and constitute the science targets for our autonomous sample acquisition work. Our PAT Lab. terrain has been designed to support our new rover chassis which is based upon the ExoMars rover Concept-E mechanics which were investigated during the ESA ExoMars Phase A study. The rover has 6 wheel drives, 6 wheels steering, and a 6 wheel walking capability. Mounted on the rover chassis is the UWA robotic arm and mast. We have designed and built a PanCam system complete with a computer controlled pan and tilt mechanism. The UWA PanCam is based upon the ExoMars PanCam (Phase A study) and hence supports two Wide Angle Cameras (WAC - 64 degree FOV), and a High Resolution Camera (HRC - 5 degree FOV). WAC separation is 500 mm. Software has been developed to capture images which form the data input into our on-board autonomous surface sample acquisition algorithms.
Probabilistic Tracking and Trajectory Planning for Autonomous Ground Vehicles in Urban Environments
2016-03-05
SECURITY CLASSIFICATION OF: The aim of this research is to develop a unified theory for perception and planning in autonomous ground vehicles, with a...Report Title The aim of this research is to develop a unified theory for perception and planning in autonomous ground vehicles, with a specific focus on...a combination of experimentally collected vision data and Monte- Carlo simulations. Smoothing for improved perception and robustness in planning
An Augmentation of G-Guidance Algorithms
NASA Technical Reports Server (NTRS)
Carson, John M. III; Acikmese, Behcet
2011-01-01
The original G-Guidance algorithm provided an autonomous guidance and control policy for small-body proximity operations that took into account uncertainty and dynamics disturbances. However, there was a lack of robustness in regards to object proximity while in autonomous mode. The modified GGuidance algorithm was augmented with a second operational mode that allows switching into a safety hover mode. This will cause a spacecraft to hover in place until a mission-planning algorithm can compute a safe new trajectory. No state or control constraints are violated. When a new, feasible state trajectory is calculated, the spacecraft will return to standard mode and maneuver toward the target. The main goal of this augmentation is to protect the spacecraft in the event that a landing surface or obstacle is closer or further than anticipated. The algorithm can be used for the mitigation of any unexpected trajectory or state changes that occur during standard mode operations
NASA Technical Reports Server (NTRS)
Fisher, Jody l.; Striepe, Scott A.
2007-01-01
The Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining the design and performance capability of lunar descent and landing system models and lunar environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. This POST2-based ALHAT simulation provides descent and landing simulation capability by integrating lunar environment and lander system models (including terrain, sensor, guidance, navigation, and control models), along with the data necessary to design and operate a landing system for robotic, human, and cargo lunar-landing success. This paper presents the current and planned development and model validation of the POST2-based end-to-end trajectory simulation used for the testing, performance and evaluation of ALHAT project system and models.
Comparative analysis of algorithms for lunar landing control
NASA Astrophysics Data System (ADS)
Zhukov, B. I.; Likhachev, V. N.; Sazonov, V. V.; Sikharulidze, Yu. G.; Tuchin, A. G.; Tuchin, D. A.; Fedotov, V. P.; Yaroshevskii, V. S.
2015-11-01
For the descent from the pericenter of a prelanding circumlunar orbit a comparison of three algorithms for the control of lander motion is performed. These algorithms use various combinations of terminal and programmed control in a trajectory including three parts: main braking, precision braking, and descent with constant velocity. In the first approximation, autonomous navigational measurements are taken into account and an estimate of the disturbances generated by movement of the fuel in the tanks was obtained. Estimates of the accuracy for landing placement, fuel consumption, and performance of the conditions for safe lunar landing are obtained.
Interactive Spacecraft Trajectory Design Strategies Featuring Poincare Map Topology
NASA Astrophysics Data System (ADS)
Schlei, Wayne R.
Space exploration efforts are shifting towards inexpensive and more agile vehicles. Versatility regarding spacecraft trajectories refers to the agility to correct deviations from an intended path or even the ability to adapt the future path to a new destination--all with limited spaceflight resources (i.e., small DeltaV budgets). Trajectory design methods for such nimble vehicles incorporate equally versatile procedures that allow for rapid and interactive decision making while attempting to reduce Delta V budgets, leading to a versatile trajectory design platform. A versatile design paradigm requires the exploitation of Poincare map topology , or the interconnected web of dynamical structures, existing within the chaotic dynamics of multi-body gravitational models to outline low-Delta V transfer options residing nearby to a current path. This investigation details an autonomous procedure to extract the periodic orbits (topology nodes) and correlated asymptotic flow structures (or the invariant manifolds representing topology links). The autonomous process summarized in this investigation (termed PMATE) overcomes discontinuities on the Poincare section that arise in the applied multi-body model (the planar circular restricted three-body problem) and detects a wide variety of novel periodic orbits. New interactive capabilities deliver a visual analytics foundation for versatile spaceflight design, especially for initial guess generation and manipulation. Such interactive strategies include the selection of states and arcs from Poincare section visualizations and the capabilities to draw and drag trajectories to remove dependency on initial state input. Furthermore, immersive selection is expanded to cull invariant manifold structures, yielding low-DeltaV or even DeltaV-free transfers between periodic orbits. The application of interactive design strategies featuring a dense extraction of Poincare map topology is demonstrated for agile spaceflight with a simple spacecraft rerouting scenario incorporating a very limited Delta V budget. In the Earth-Moon system, a low-DeltaV transfer from low Earth orbit (LEO) to the distant retrograde orbit (DRO) vicinity is derived with interactive topology-based design tactics. Finally, Poincare map topology is exploited in the Saturn-Enceladus system to explore a possible ballistic capture scenario around Enceladus.
NASA Technical Reports Server (NTRS)
Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.;
2016-01-01
Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.
Reference trajectory generation for rehabilitation robots: complementary limb motion estimation.
Vallery, Heike; van Asseldonk, Edwin H F; Buss, Martin; van der Kooij, Herman
2009-02-01
For gait rehabilitation robots, an important question is how to ensure stable gait, while avoiding any interaction forces between robot and human in case the patient walks correctly. To achieve this, the definition of "correct" gait needs to adapted both to the individual patient and to the situation. Recently, we proposed a method for online trajectory generation that can be applied for hemiparetic subjects. Desired states for one (disabled) leg are generated online based on the movements of the other (sound) leg. An instantaneous mapping between legs is performed by exploiting physiological interjoint couplings. This way, the patient generates the reference motion for the affected leg autonomously. The approach, called Complementary Limb Motion Estimation (CLME), is implemented on the LOPES gait rehabilitation robot and evaluated with healthy subjects in two different experiments. In a previously described study, subjects walk only with one leg, while the robot's other leg acts as a fake prosthesis, to simulate complete loss of function in one leg. This study showed that CLME ensures stable gait. In a second study, to be presented in this paper, healthy subjects walk with both their own legs to assess the interference with self-determined walking. Evaluation criteria are: Power delivered to the joints by the robot, electromyography (EMG) distortions, and kinematic distortions, all compared to zero torque control, which is the baseline of minimum achievable interference. Results indicate that interference of the robot is lower with CLME than with a fixed reference trajectory, mainly in terms of lowered exchanged power and less alteration of EMG. This implies that subjects can walk more naturally with CLME, and they are assisted less by the robot when it is not needed. Future studies with patients are yet to show whether these properties of CLME transfer to the clinical domain.
The Next Generation of Mars-GRAM and Its Role in the Autonomous Aerobraking Development Plan
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, Carl G.; Ramey, Holly S.
2011-01-01
The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM 2010 is currently being used to develop the onboard atmospheric density estimator that is part of the Autonomous Aerobraking Development Plan. In previous versions, Mars-GRAM was less than realistic when used for sensitivity studies for Thermal Emission Spectrometer (TES) MapYear=0 and large optical depth values, such as tau=3. A comparison analysis has been completed between Mars-GRAM, TES and data from the Planetary Data System (PDS) resulting in updated coefficients for the functions relating density, latitude, and longitude of the sun. The adjustment factors are expressed as a function of height (z), Latitude (Lat) and areocentric solar longitude (Ls). The latest release of Mars-GRAM 2010 includes these adjustment factors that alter the in-put data from MGCM and MTGCM for the Mapping Year 0 (user-controlled dust) case. The greatest adjustment occurs at large optical depths such as tau greater than 1. The addition of the adjustment factors has led to better correspondence to TES Limb data from 0-60 km as well as better agreement with MGS, ODY and MRO data at approximately 90-135 km. Improved simulations utilizing Mars-GRAM 2010 are vital to developing the onboard atmospheric density estimator for the Autonomous Aerobraking Development Plan. Mars-GRAM 2010 was not the only planetary GRAM utilized during phase 1 of this plan; Titan-GRAM and Venus-GRAM were used to generate density data sets for Aerobraking Design Reference Missions. These data sets included altitude profiles (both vertical and along a trajectory), GRAM perturbations (tides, gravity waves, etc.) and provided density and scale height values for analysis by other Autonomous Aero-braking team members.
Insect-Based Vision for Autonomous Vehicles: A Feasibility Study
NASA Technical Reports Server (NTRS)
Srinivasan, Mandyam V.
1999-01-01
The aims of the project were to use a high-speed digital video camera to pursue two questions: i) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; To study the fine structure of insect flight trajectories with in order to better understand the characteristics of flight control, orientation and navigation.
Insect-Based Vision for Autonomous Vehicles: A Feasibility Study
NASA Technical Reports Server (NTRS)
Srinivasan, Mandyam V.
1999-01-01
The aims of the project were to use a high-speed digital video camera to pursue two questions: (1) To explore the influence of temporal imaging constraints on the performance of vision systems for autonomous mobile robots; (2) To study the fine structure of insect flight trajectories in order to better understand the characteristics of flight control, orientation and navigation.
Leader-follower function for autonomous military convoys
NASA Astrophysics Data System (ADS)
Vasseur, Laurent; Lecointe, Olivier; Dento, Jerome; Cherfaoui, Nourrdine; Marion, Vincent; Morillon, Joel G.
2004-09-01
The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales Airborne Systems as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational added value." The paper details the "robotic convoy" theme (named TEL1), which main purpose is to develop a robotic leader-follower function so that several unmanned vehicles can autonomously follow teleoperated, autonomous or on-board driven leader. Two modes have been implemented: Perceptive follower: each autonomous follower anticipates the trajectory of the vehicle in front of it, thanks to a dedicated perception equipment. This mode is mainly based on the use of perceptive data, without any communication link between leader and follower (to lower the cost of future mass development and extend the operational capabilities). Delayed follower: the leader records its path and transmits it to the follower; the follower is able to follow the recorded trajectory again at any delayed time. This mode uses localization data got from inertial measurements. The paper presents both modes with detailed algorithms and the results got from the military acceptance tests performed on wheeled 4x4 vehicles (DARDS French ATD).
A Primer on Autonomous Aerial Vehicle Design
Coppejans, Hugo H. G.; Myburgh, Herman C.
2015-01-01
There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers. PMID:26633410
A Primer on Autonomous Aerial Vehicle Design.
Coppejans, Hugo H G; Myburgh, Herman C
2015-12-02
There is a large amount of research currently being done on autonomous micro-aerial vehicles (MAV), such as quadrotor helicopters or quadcopters. The ability to create a working autonomous MAV depends mainly on integrating a simultaneous localization and mapping (SLAM) solution with the rest of the system. This paper provides an introduction for creating an autonomous MAV for enclosed environments, aimed at students and professionals alike. The standard autonomous system and MAV automation are discussed, while we focus on the core concepts of SLAM systems and trajectory planning algorithms. The advantages and disadvantages of using remote processing are evaluated, and recommendations are made regarding the viability of on-board processing. Recommendations are made regarding best practices to serve as a guideline for aspirant MAV designers.
Coherent Structure Detection using Persistent Homology and other Topological Tools
NASA Astrophysics Data System (ADS)
Smith, Spencer; Roberts, Eric; Sindi, Suzanne; Mitchell, Kevin
2017-11-01
For non-autonomous, aperiodic fluid flows, coherent structures help organize the dynamics, much as invariant manifolds and periodic orbits do for autonomous or periodic systems. The prevalence of such flows in nature and industry has motivated many successful techniques for defining and detecting coherent structures. However, often these approaches require very fine trajectory data to reconstruct velocity fields and compute Cauchy-Green-tensor-related quantities. We use topological techniques to help detect coherent trajectory sets in relatively sparse 2D advection problems. More specifically, we have developed a homotopy-based algorithm, the ensemble-based topological entropy calculation (E-tec), which assigns to each edge in an initial triangulation of advected points a topologically forced lower bound on its future stretching rate. The triangulation and its weighted edges allow us to analyze flows using persistent homology. This topological data analysis tool detects clusters and loops in the triangulation that are robust in the presence of noise and in this case correspond to coherent trajectory sets.
NASA Technical Reports Server (NTRS)
Wood, L. J.; Jones, J. B.; Mease, K. D.; Kwok, J. H.; Goltz, G. L.; Kechichian, J. A.
1984-01-01
A conceptual design is outlined for the navigation subsystem of the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS). The principal function of this navigation subsystem is to maintain the spacecraft over a specified equatorial longitude to within + or - 3 deg. In addition, the navigation subsystem must detect and correct internal faults. It comprises elements for a navigation executive and for orbit determination, trajectory, maneuver planning, and maneuver command. Each of these elements is described. The navigation subsystem is to be used in the DSCS III spacecraft.
Libration Point Navigation Concepts Supporting the Vision for Space Exploration
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Quinn, David A.
2004-01-01
This work examines the autonomous navigation accuracy achievable for a lunar exploration trajectory from a translunar libration point lunar navigation relay satellite, augmented by signals from the Global Positioning System (GPS). We also provide a brief analysis comparing the libration point relay to lunar orbit relay architectures, and discuss some issues of GPS usage for cis-lunar trajectories.
Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.
1998-08-01
A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.
Hierarchical Motion Planning for Autonomous Aerial and Terrestrial Vehicles
NASA Astrophysics Data System (ADS)
Cowlagi, Raghvendra V.
Autonomous mobile robots---both aerial and terrestrial vehicles---have gained immense importance due to the broad spectrum of their potential military and civilian applications. One of the indispensable requirements for the autonomy of a mobile vehicle is the vehicle's capability of planning and executing its motion, that is, finding appropriate control inputs for the vehicle such that the resulting vehicle motion satisfies the requirements of the vehicular task. The motion planning and control problem is inherently complex because it involves two disparate sub-problems: (1) satisfaction of the vehicular task requirements, which requires tools from combinatorics and/or formal methods, and (2) design of the vehicle control laws, which requires tools from dynamical systems and control theory. Accordingly, this problem is usually decomposed and solved over two levels of hierarchy. The higher level, called the geometric path planning level, finds a geometric path that satisfies the vehicular task requirements, e.g., obstacle avoidance. The lower level, called the trajectory planning level, involves sufficient smoothening of this geometric path followed by a suitable time parametrization to obtain a reference trajectory for the vehicle. Although simple and efficient, such hierarchical decomposition suffers a serious drawback: the geometric path planner has no information of the kinematical and dynamical constraints of the vehicle. Consequently, the geometric planner may produce paths that the trajectory planner cannot transform into a feasible reference trajectory. Two main ideas appear in the literature to remedy this problem: (a) randomized sampling-based planning, which eliminates the geometric planner altogether by planning in the vehicle state space, and (b) geometric planning supported by feedback control laws. The former class of methods suffer from a lack of optimality of the resultant trajectory, while the latter class of methods makes a restrictive assumption concerning the vehicle kinematical model. We propose a hierarchical motion planning framework based on a novel mode of interaction between these two levels of planning. This interaction rests on the solution of a special shortest-path problem on graphs, namely, one using costs defined on multiple edge transitions in the path instead of the usual single edge transition costs. These costs are provided by a local trajectory generation algorithm, which we implement using model predictive control and the concept of effective target sets for simplifying the non-convex constraints involved in the problem. The proposed motion planner ensures "consistency" between the two levels of planning, i.e., a guarantee that the higher level geometric path is always associated with a kinematically and dynamically feasible trajectory. The main contributions of this thesis are: 1. A motion planning framework based on history-dependent costs (H-costs) in cell decomposition graphs for incorporating vehicle dynamical constraints: this framework offers distinct advantages in comparison with the competing approaches of discretization of the state space, of randomized sampling-based motion planning, and of local feedback-based, decoupled hierarchical motion planning, 2. An efficient and flexible algorithm for finding optimal H-cost paths, 3. A precise and general formulation of a local trajectory problem (the tile motion planning problem) that allows independent development of the discrete planner and the trajectory planner, while maintaining "compatibility" between the two planners, 4. A local trajectory generation algorithm using mpc, and the application of the concept of effective target sets for a significant simplification of the local trajectory generation problem, 5. The geometric analysis of curvature-bounded traversal of rectangular channels, leading to less conservative results in comparison with a result reported in the literature, and also to the efficient construction of effective target sets for the solution of the tile motion planning problem, 6. A wavelet-based multi-resolution path planning scheme, and a proof of completeness of the proposed scheme: such proofs are altogether absent from other works on multi-resolution path planning, 7. A technique for extracting all information about cells---namely, the locations, the sizes, and the associated image intensities---directly from the set of significant detail coefficients considered for path planning at a given iteration, and 8. The extension of the multi-resolution path planning scheme to include vehicle dynamical constraints using the aforementioned history-dependent costs approach. The future work includes an implementation of the proposed framework involving a discrete planner that solves classical planning problems more general than the single-query path planning problem considered thus far, and involving trajectory generation schemes for realistic vehicle dynamical models such as the bicycle model.
Estimating long-term behavior of periodically driven flows without trajectory integration
NASA Astrophysics Data System (ADS)
Froyland, Gary; Koltai, Péter
2017-05-01
Periodically driven flows are fundamental models of chaotic behavior and the study of their transport properties is an active area of research. A well-known analytic construction is the augmentation of phase space with an additional time dimension; in this augmented space, the flow becomes autonomous or time-independent. We prove several results concerning the connections between the original time-periodic representation and the time-extended representation, focusing on transport properties. In the deterministic setting, these include single-period outflows and time-asymptotic escape rates from time-parameterized families of sets. We also consider stochastic differential equations with time-periodic advection term. In this stochastic setting one has a time-periodic generator (the differential operator given by the right-hand-side of the corresponding time-periodic Fokker-Planck equation). We define in a natural way an autonomous generator corresponding to the flow on time-extended phase space. We prove relationships between these two generator representations and use these to quantify decay rates of observables and to determine time-periodic families of sets with slow escape rate. Finally, we use the generator on the time-extended phase space to create efficient numerical schemes to implement the various theoretical constructions. These ideas build on the work of Froyland et al (2013 SIAM J. Numer. Anal. 51 223-47), and no expensive time integration is required. We introduce an efficient new hybrid approach, which treats the space and time dimensions separately.
Autonomous spacecraft rendezvous and docking
NASA Technical Reports Server (NTRS)
Tietz, J. C.; Almand, B. J.
1985-01-01
A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.
Autonomous spacecraft rendezvous and docking
NASA Astrophysics Data System (ADS)
Tietz, J. C.; Almand, B. J.
A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.
NASA Astrophysics Data System (ADS)
Jorris, Timothy R.
2007-12-01
To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.
Alerting, orienting or executive attention networks: differential patters of pupil dilations
Geva, Ronny; Zivan, Michal; Warsha, Aviv; Olchik, Dov
2013-01-01
Attention capacities, alerting responses, orienting to sensory stimulation, and executive monitoring of performance are considered independent yet interrelated systems. These operations play integral roles in regulating the behavior of diverse species along the evolutionary ladder. Each of the primary attention constructs—alerting, orienting, and executive monitoring—involves salient autonomic correlates as evidenced by changes in reactive pupil dilation (PD), heart rate, and skin conductance. Recent technological advances that use remote high-resolution recording may allow the discernment of temporo-spatial attributes of autonomic responses that characterize the alerting, orienting, and executive monitoring networks during free viewing, irrespective of voluntary performance. This may deepen the understanding of the roles of autonomic regulation in these mental operations and may deepen our understanding of behavioral changes in verbal as well as in non-verbal species. The aim of this study was to explore differences between psychosensory PD responses in alerting, orienting, and executive conflict monitoring tasks to generate estimates of concurrent locus coeruleus (LC) noradrenergic input trajectories in healthy human adults using the attention networks test (ANT). The analysis revealed a construct-specific pattern of pupil responses: alerting is characterized by an early component (Pa), its acceleration enables covert orienting, and executive control is evidenced by a prominent late component (Pe). PD characteristics seem to be task-sensitive, allowing exploration of mental operations irrespective of conscious voluntary responses. These data may facilitate development of studies designed to assess mental operations in diverse species using autonomic responses. PMID:24133422
Real-Time Trajectory Assessment and Abort Management for the X-33 Vehicle
NASA Technical Reports Server (NTRS)
Moise, M. C.; McCarter, J. W.; Mulqueen, J.
2000-01-01
The X-33 is a flying testbed to evaluate technologies and designs for a reusable Single Stage To Orbit (SSTO) production vehicle. Although it is sub-orbital, it is trans-atmospheric. This paper will discuss the abort capabilities, both commanded and autonomous, available to the X-33. The cornerstone of the abort capabilities is the Performance Monitor (PM) and it's supporting software. PM is an on-board 3-DOF simulation, which evaluates the vehicle ability to execute the current trajectory. The Abort Manager evaluates the results from PM, and, when indicated, computes and implements an abort trajectory.
Path Planning Algorithms for Autonomous Border Patrol Vehicles
NASA Astrophysics Data System (ADS)
Lau, George Tin Lam
This thesis presents an online path planning algorithm developed for unmanned vehicles in charge of autonomous border patrol. In this Pursuit-Evasion game, the unmanned vehicle is required to capture multiple trespassers on its own before any of them reach a target safe house where they are safe from capture. The problem formulation is based on Isaacs' Target Guarding problem, but extended to the case of multiple evaders. The proposed path planning method is based on Rapidly-exploring random trees (RRT) and is capable of producing trajectories within several seconds to capture 2 or 3 evaders. Simulations are carried out to demonstrate that the resulting trajectories approach the optimal solution produced by a nonlinear programming-based numerical optimal control solver. Experiments are also conducted on unmanned ground vehicles to show the feasibility of implementing the proposed online path planning algorithm on physical applications.
Zhang, Peng; Liu, Keping; Zhao, Bo; Li, Yuanchun
2015-01-01
Optimal guidance is essential for the soft landing task. However, due to its high computational complexities, it is hardly applied to the autonomous guidance. In this paper, a computationally inexpensive optimal guidance algorithm based on the radial basis function neural network (RBFNN) is proposed. The optimization problem of the trajectory for soft landing on asteroids is formulated and transformed into a two-point boundary value problem (TPBVP). Combining the database of initial states with the relative initial co-states, an RBFNN is trained offline. The optimal trajectory of the soft landing is determined rapidly by applying the trained network in the online guidance. The Monte Carlo simulations of soft landing on the Eros433 are performed to demonstrate the effectiveness of the proposed guidance algorithm. PMID:26367382
2009-09-01
to promote one way as the best, but to show there are several ways to define the problem. 107 Figure 71. Final Orientation/Obstacle Scenario...a comparison of the running cost vs. distance from an obstacle for varying values of p. Simulations have shown that for 4p , the running cost...sliding door example. This scenario shows a major weakness when conducting trajectory planning using snapshots in a dynamic environment
Attractors of equations of non-Newtonian fluid dynamics
NASA Astrophysics Data System (ADS)
Zvyagin, V. G.; Kondrat'ev, S. K.
2014-10-01
This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles.
Multi-agent autonomous system and method
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor); Dohm, James (Inventor); Tarbell, Mark A. (Inventor)
2010-01-01
A method of controlling a plurality of crafts in an operational area includes providing a command system, a first craft in the operational area coupled to the command system, and a second craft in the operational area coupled to the command system. The method further includes determining a first desired destination and a first trajectory to the first desired destination, sending a first command from the command system to the first craft to move a first distance along the first trajectory, and moving the first craft according to the first command. A second desired destination and a second trajectory to the second desired destination are determined and a second command is sent from the command system to the second craft to move a second distance along the second trajectory.
NASA Technical Reports Server (NTRS)
Mardirossian, H.; Beri, A. C.; Doll, C. E.
1990-01-01
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.
NASA Technical Reports Server (NTRS)
Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.
1989-01-01
The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.
Reconfigurable Software for Controlling Formation Flying
NASA Technical Reports Server (NTRS)
Mueller, Joseph B.
2006-01-01
Software for a system to control the trajectories of multiple spacecraft flying in formation is being developed to reflect underlying concepts of (1) a decentralized approach to guidance and control and (2) reconfigurability of the control system, including reconfigurability of the software and of control laws. The software is organized as a modular network of software tasks. The computational load for both determining relative trajectories and planning maneuvers is shared equally among all spacecraft in a cluster. The flexibility and robustness of the software are apparent in the fact that tasks can be added, removed, or replaced during flight. In a computational simulation of a representative formation-flying scenario, it was demonstrated that the following are among the services performed by the software: Uploading of commands from a ground station and distribution of the commands among the spacecraft, Autonomous initiation and reconfiguration of formations, Autonomous formation of teams through negotiations among the spacecraft, Working out details of high-level commands (e.g., shapes and sizes of geometrically complex formations), Implementation of a distributed guidance law providing autonomous optimization and assignment of target states, and Implementation of a decentralized, fuel-optimal, impulsive control law for planning maneuvers.
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; DePascale, Stephen M.; Wing, David J.
2012-01-01
The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.
NASA Technical Reports Server (NTRS)
Forcey, W.; Minnie, C. R.; Defazio, R. L.
1995-01-01
The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.
Alkon, Abbey; Boyce, W. Thomas; Tran, Linh; Harley, Kim G.; Neuhaus, John; Eskenazi, Brenda
2014-01-01
The purpose of the study was to determine whether mothers’ adversities experienced during early pregnancy are associated with offspring’s autonomic nervous system (ANS) reactivity trajectories from 6 months to 5 years of age. This cohort study of primarily Latino families included maternal interviews at 13–14 weeks gestation about their experience of a range of adversities: father’s absence, general social support, poverty level, and household density. ANS measures of heart rate, respiratory sinus arrhythmia (parasympathetic nervous system) and preejection period (sympathetic nervous system) were collected during resting and challenging conditions on children at 6 months and 1, 3.5 and 5 years of age. Reactivity measures were calculated as the mean of the responses to challenging conditions minus a resting condition. Fixed effects models were conducted for the 212 children with two or more timepoints of ANS measures. Interactions between maternal prenatal adversity levels and child age at time of ANS protocol were included in the models, allowing the calculation of separate trajectories or slopes for each level of adversity. Results showed no significant relations between mothers’ prenatal socioeconomic or social support adversity and offspring’s parasympathetic nervous system trajectories, but there was a statistically significant relationship between social support adversity and offspring’s heart rate trajectories (p<.05) and a borderline significant relationship between socioeconomic adversity and offspring’s sympathetic nervous system trajectories (p = .05). Children whose mothers experienced one, not two, social support adversity had the smallest increases in heart rate reactivity compared to children whose mothers experienced no adversity. The children whose mothers experienced no social support and no socioeconomic adversity had the largest increases in heart rate and preejection period respectively from 6 months to 5 years showing the most plasticity. Mothers’ prenatal adverse experiences may program their children’s physiologic trajectory to dampen their heart rate or sympathetic responsivity to challenging conditions. PMID:24466003
Emulating avian orographic soaring with a small autonomous glider.
Fisher, Alex; Marino, Matthew; Clothier, Reece; Watkins, Simon; Peters, Liam; Palmer, Jennifer L
2015-12-17
This paper explores a method by which an unpowered, fixed-wing micro air vehicle (MAV) may autonomously gain height by utilising orographic updrafts in urban environments. These updrafts are created when wind impinges on both man-made and natural obstacles, and are often highly turbulent and very localised. Thus in contrast to most previous autonomous soaring research, which have focused on large thermals and ridges, we use a technique inspired by kestrels known as 'wind-hovering', in order to maintain unpowered flight within small updrafts. A six-degree-of-freedom model of a MAV was developed based on wind-tunnel tests and vortex-lattice calculations, and the model was used to develop and test a simple cascaded control system designed to hold the aircraft on a predefined trajectory within an updraft. The wind fields around two typical updraft locations (a building and a hill) were analysed, and a simplified trajectory calculation method was developed by which trajectories for height gain can be calculated on-board the aircraft based on a priori knowledge of the wind field. The results of simulations are presented, demonstrating the behaviour of the system in both smooth and turbulent flows. Finally, the results from a series of flight tests are presented. Flight tests at the hill were consistently successful, while flights around the building could not be sustained for periods of more than approximately 20 s. The difficulty of operating near a building is attributable to significant levels of low-frequency unsteadiness (gustiness) in the oncoming wind during the flight tests, effectively resulting in a loss of updraft for sustained periods.
Greenwood, Nigel J C; Gunton, Jenny E
2014-07-01
This study demonstrated the novel application of a "machine-intelligent" mathematical structure, combining differential game theory and Lyapunov-based control theory, to the artificial pancreas to handle dynamic uncertainties. Realistic type 1 diabetes (T1D) models from the literature were combined into a composite system. Using a mixture of "black box" simulations and actual data from diabetic medical histories, realistic sets of diabetic time series were constructed for blood glucose (BG), interstitial fluid glucose, infused insulin, meal estimates, and sometimes plasma insulin assays. The problem of underdetermined parameters was side stepped by applying a variant of a genetic algorithm to partial information, whereby multiple candidate-personalized models were constructed and then rigorously tested using further data. These formed a "dynamic envelope" of trajectories in state space, where each trajectory was generated by a hypothesis on the hidden T1D system dynamics. This dynamic envelope was then culled to a reduced form to cover observed dynamic behavior. A machine-intelligent autonomous algorithm then implemented game theory to construct real-time insulin infusion strategies, based on the flow of these trajectories through state space and their interactions with hypoglycemic or near-hyperglycemic states. This technique was tested on 2 simulated participants over a total of fifty-five 24-hour days, with no hypoglycemic or hyperglycemic events, despite significant uncertainties from using actual diabetic meal histories with 10-minute warnings. In the main case studies, BG was steered within the desired target set for 99.8% of a 16-hour daily assessment period. Tests confirmed algorithm robustness for ±25% carbohydrate error. For over 99% of the overall 55-day simulation period, either formal controller stability was achieved to the desired target or else the trajectory was within the desired target. These results suggest that this is a stable, high-confidence way to generate closed-loop insulin infusion strategies. © 2014 Diabetes Technology Society.
NASA Astrophysics Data System (ADS)
Pinson, Robin Marie
Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant (fuel) optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without interaction from ground control. The goal is to autonomously design the optimal powered descent trajectory onboard the spacecraft immediately prior to the descent burn for use during the burn. Compared to a planetary powered landing problem, the challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies, and low thrust vehicles. The nonlinear gravity fields cannot be represented by a constant gravity model nor a Newtonian model. The trajectory design algorithm needs to be robust and efficient to guarantee a designed trajectory and complete the calculations in a reasonable time frame. This research investigates the following questions: Can convex optimization be used to design the minimum propellant powered descent trajectory for a soft landing on an asteroid? Is this method robust and reliable to allow autonomy onboard the spacecraft without interaction from ground control? This research designed a convex optimization based method that rapidly generates the propellant optimal asteroid powered descent trajectory. The solution to the convex optimization problem is the thrust magnitude and direction, which designs and determines the trajectory. The propellant optimal problem was formulated as a second order cone program, a subset of convex optimization, through relaxation techniques by including a slack variable, change of variables, and incorporation of the successive solution method. Convex optimization solvers, especially second order cone programs, are robust, reliable, and are guaranteed to find the global minimum provided one exists. In addition, an outer optimization loop using Brent's method determines the optimal flight time corresponding to the minimum propellant usage over all flight times. Inclusion of additional trajectory constraints, solely vertical motion near the landing site and glide slope, were evaluated. Through a theoretical proof involving the Minimum Principle from Optimal Control Theory and the Karush-Kuhn-Tucker conditions it was shown that the relaxed problem is identical to the original problem at the minimum point. Therefore, the optimal solution of the relaxed problem is an optimal solution of the original problem, referred to as lossless convexification. A key finding is that this holds for all levels of gravity model fidelity. The designed thrust magnitude profiles were the bang-bang predicted by Optimal Control Theory. The first high fidelity gravity model employed was the 2x2 spherical harmonics model assuming a perfect triaxial ellipsoid and placement of the coordinate frame at the asteroid's center of mass and aligned with the semi-major axes. The spherical harmonics model is not valid inside the Brillouin sphere and this becomes relevant for irregularly shaped asteroids. Then, a higher fidelity model was implemented combining the 4x4 spherical harmonics gravity model with the interior spherical Bessel gravity model. All gravitational terms in the equations of motion are evaluated with the position vector from the previous iteration, creating the successive solution method. Methodology success was shown by applying the algorithm to three triaxial ellipsoidal asteroids with four different rotation speeds using the 2x2 gravity model. Finally, the algorithm was tested using the irregularly shaped asteroid, Castalia.
NASP guidance design for vehicle autonomy
NASA Astrophysics Data System (ADS)
Wagner, E. A.; Li, I.; Nguyen, D. D.; Nguyen, P. L.
1990-10-01
Vehicle guidance for General Dynamics' NASP vehicle is planned to be self-contained onboard the vehicle, and independent of any ground support during the mission. It will include real-time onboard abort and ascent trajectory optimization capability. Although these features should be considered a natural outgrowth of research in guidance and trajectory optimization and advances in computation, facilitating full vehicle autonomy for NASP represents a significant advance relative to any flight-demonstrated guidance. Algorithms and processing requirements for autonomous NASP vehicle guidance are considered.
The Trajectory Synthesizer Generalized Profile Interface
NASA Technical Reports Server (NTRS)
Lee, Alan G.; Bouyssounouse, Xavier; Murphy, James R.
2010-01-01
The Trajectory Synthesizer is a software program that generates aircraft predictions for Air Traffic Management decision support tools. The Trajectory Synthesizer being used by researchers at NASA Ames Research Center was restricted in the number of trajectory types that could be generated. This limitation was not sufficient to support the rapidly changing Air Traffic Management research requirements. The Generalized Profile Interface was developed to address this issue. It provides a flexible approach to describe the constraints applied to trajectory generation and may provide a method for interoperability between trajectory generators. It also supports the request and generation of new types of trajectory profiles not possible with the previous interface to the Trajectory Synthesizer. Other enhancements allow the Trajectory Synthesizer to meet the current and future needs of Air Traffic Management research.
Attitude and Trajectory Estimation Using Earth Magnetic Field Data
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack Y.
1996-01-01
The magnetometer has long been a reliable, inexpensive sensor used in spacecraft momentum management and attitude estimation. Recent studies show an increased accuracy potential for magnetometer-only attitude estimation systems. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computer and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. Traditionally, satellite attitude and trajectory have been estimated with completely separate system, using different measurement data. Recently, trajectory estimation for low earth orbit satellites was successfully demonstrated in ground software using only magnetometer data. This work proposes a single augmented extended Kalman Filter to simultaneously and autonomously estimate both spacecraft trajectory and attitude with data from a magnetometer and either dynamically determined rates or gyro-measured body rates.
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack
1997-01-01
Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.
MGA trajectory planning with an ACO-inspired algorithm
NASA Astrophysics Data System (ADS)
Ceriotti, Matteo; Vasile, Massimiliano
2010-11-01
Given a set of celestial bodies, the problem of finding an optimal sequence of swing-bys, deep space manoeuvres (DSM) and transfer arcs connecting the elements of the set is combinatorial in nature. The number of possible paths grows exponentially with the number of celestial bodies. Therefore, the design of an optimal multiple gravity assist (MGA) trajectory is a NP-hard mixed combinatorial-continuous problem. Its automated solution would greatly improve the design of future space missions, allowing the assessment of a large number of alternative mission options in a short time. This work proposes to formulate the complete automated design of a multiple gravity assist trajectory as an autonomous planning and scheduling problem. The resulting scheduled plan will provide the optimal planetary sequence and a good estimation of the set of associated optimal trajectories. The trajectory model consists of a sequence of celestial bodies connected by two-dimensional transfer arcs containing one DSM. For each transfer arc, the position of the planet and the spacecraft, at the time of arrival, are matched by varying the pericentre of the preceding swing-by, or the magnitude of the launch excess velocity, for the first arc. For each departure date, this model generates a full tree of possible transfers from the departure to the destination planet. Each leaf of the tree represents a planetary encounter and a possible way to reach that planet. An algorithm inspired by ant colony optimization (ACO) is devised to explore the space of possible plans. The ants explore the tree from departure to destination adding one node at the time: every time an ant is at a node, a probability function is used to select a feasible direction. This approach to automatic trajectory planning is applied to the design of optimal transfers to Saturn and among the Galilean moons of Jupiter. Solutions are compared to those found through more traditional genetic-algorithm techniques.
Robots testing robots: ALAN-Arm, a humanoid arm for the testing of robotic rehabilitation systems.
Brookes, Jack; Kuznecovs, Maksims; Kanakis, Menelaos; Grigals, Arturs; Narvidas, Mazvydas; Gallagher, Justin; Levesley, Martin
2017-07-01
Robotics is increasing in popularity as a method of providing rich, personalized and cost-effective physiotherapy to individuals with some degree of upper limb paralysis, such as those who have suffered a stroke. These robotic rehabilitation systems are often high powered, and exoskeletal systems can attach to the person in a restrictive manner. Therefore, ensuring the mechanical safety of these devices before they come in contact with individuals is a priority. Additionally, rehabilitation systems may use novel sensor systems to measure current arm position. Used to capture and assess patient movements, these first need to be verified for accuracy by an external system. We present the ALAN-Arm, a humanoid robotic arm designed to be used for both accuracy benchmarking and safety testing of robotic rehabilitation systems. The system can be attached to a rehabilitation device and then replay generated or human movement trajectories, as well as autonomously play rehabilitation games or activities. Tests of the ALAN-Arm indicated it could recreate the path of a generated slow movement path with a maximum error of 14.2mm (mean = 5.8mm) and perform cyclic movements up to 0.6Hz with low gain (<1.5dB). Replaying human data trajectories showed the ability to largely preserve human movement characteristics with slightly higher path length and lower normalised jerk.
Human Guidance Behavior Decomposition and Modeling
NASA Astrophysics Data System (ADS)
Feit, Andrew James
Trained humans are capable of high performance, adaptable, and robust first-person dynamic motion guidance behavior. This behavior is exhibited in a wide variety of activities such as driving, piloting aircraft, skiing, biking, and many others. Human performance in such activities far exceeds the current capability of autonomous systems in terms of adaptability to new tasks, real-time motion planning, robustness, and trading safety for performance. The present work investigates the structure of human dynamic motion guidance that enables these performance qualities. This work uses a first-person experimental framework that presents a driving task to the subject, measuring control inputs, vehicle motion, and operator visual gaze movement. The resulting data is decomposed into subspace segment clusters that form primitive elements of action-perception interactive behavior. Subspace clusters are defined by both agent-environment system dynamic constraints and operator control strategies. A key contribution of this work is to define transitions between subspace cluster segments, or subgoals, as points where the set of active constraints, either system or operator defined, changes. This definition provides necessary conditions to determine transition points for a given task-environment scenario that allow a solution trajectory to be planned from known behavior elements. In addition, human gaze behavior during this task contains predictive behavior elements, indicating that the identified control modes are internally modeled. Based on these ideas, a generative, autonomous guidance framework is introduced that efficiently generates optimal dynamic motion behavior in new tasks. The new subgoal planning algorithm is shown to generate solutions to certain tasks more quickly than existing approaches currently used in robotics.
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Pinon, Elfego, III; Oconnor, Brendan M.; Bilby, Curt R.
1990-01-01
The documentation of the Trajectory Generation and System Characterization Model for the Cislunar Low-Thrust Spacecraft is presented in Technical and User's Manuals. The system characteristics and trajectories of low thrust nuclear electric propulsion spacecraft can be generated through the use of multiple system technology models coupled with a high fidelity trajectory generation routine. The Earth to Moon trajectories utilize near Earth orbital plane alignment, midcourse control dependent upon the spacecraft's Jacobian constant, and capture to target orbit utilizing velocity matching algorithms. The trajectory generation is performed in a perturbed two-body equinoctial formulation and the restricted three-body formulation. A single control is determined by the user for the interactive midcourse portion of the trajectory. The full spacecraft system characteristics and trajectory are provided as output.
Giovannini, Federico; Savino, Giovanni; Pierini, Marco; Baldanzini, Niccolò
2013-10-01
In the recent years the autonomous emergency brake (AEB) was introduced in the automotive field to mitigate the injury severity in case of unavoidable collisions. A crucial element for the activation of the AEB is to establish when the obstacle is no longer avoidable by lateral evasive maneuvers (swerving). In the present paper a model to compute the minimum swerving distance needed by a powered two-wheeler (PTW) to avoid the collision against a fixed obstacle, named last-second swerving model (Lsw), is proposed. The effectiveness of the model was investigated by an experimental campaign involving 12 volunteers riding a scooter equipped with a prototype autonomous emergency braking, named motorcycle autonomous emergency braking system (MAEB). The tests showed the performance of the model in evasive trajectory computation for different riding styles and fixed obstacles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bilevel shared control for teleoperators
NASA Technical Reports Server (NTRS)
Hayati, Samad A. (Inventor); Venkataraman, Subramanian T. (Inventor)
1992-01-01
A shared system is disclosed for robot control including integration of the human and autonomous input modalities for an improved control. Autonomously planned motion trajectories are modified by a teleoperator to track unmodelled target motions, while nominal teleoperator motions are modified through compliance to accommodate geometric errors autonomously in the latter. A hierarchical shared system intelligently shares control over a remote robot between the autonomous and teleoperative portions of an overall control system. Architecture is hierarchical, and consists of two levels. The top level represents the task level, while the bottom, the execution level. In space applications, the performance of pure teleoperation systems depend significantly on the communication time delays between the local and the remote sites. Selection/mixing matrices are provided with entries which reflect how each input's signals modality is weighted. The shared control minimizes the detrimental effects caused by these time delays between earth and space.
DOT National Transportation Integrated Search
2017-12-01
Visions of self-driving vehicles abound in popular science and entertainment. Many programs are at work to make a reality catch of this imagination. Vehicle automation has progressed rapidly in recent years, from simple driver assistance technologies...
Robot Trajectories Comparison: A Statistical Approach
Ansuategui, A.; Arruti, A.; Susperregi, L.; Yurramendi, Y.; Jauregi, E.; Lazkano, E.; Sierra, B.
2014-01-01
The task of planning a collision-free trajectory from a start to a goal position is fundamental for an autonomous mobile robot. Although path planning has been extensively investigated since the beginning of robotics, there is no agreement on how to measure the performance of a motion algorithm. This paper presents a new approach to perform robot trajectories comparison that could be applied to any kind of trajectories and in both simulated and real environments. Given an initial set of features, it automatically selects the most significant ones and performs a statistical comparison using them. Additionally, a graphical data visualization named polygraph which helps to better understand the obtained results is provided. The proposed method has been applied, as an example, to compare two different motion planners, FM2 and WaveFront, using different environments, robots, and local planners. PMID:25525618
Catalogue Creation for Space Situational Awareness with Optical Sensors
NASA Astrophysics Data System (ADS)
Hobson, T.; Clarkson, I.; Bessell, T.; Rutten, M.; Gordon, N.; Moretti, N.; Morreale, B.
2016-09-01
In order to safeguard the continued use of space-based technologies, effective monitoring and tracking of man-made resident space objects (RSOs) is paramount. The diverse characteristics, behaviours and trajectories of RSOs make space surveillance a challenging application of the discipline that is tracking and surveillance. When surveillance systems are faced with non-canonical scenarios, it is common for human operators to intervene while researchers adapt and extend traditional tracking techniques in search of a solution. A complementary strategy for improving the robustness of space surveillance systems is to place greater emphasis on the anticipation of uncertainty. Namely, give the system the intelligence necessary to autonomously react to unforeseen events and to intelligently and appropriately act on tenuous information rather than discard it. In this paper we build from our 2015 campaign and describe the progression of a low-cost intelligent space surveillance system capable of autonomously cataloguing and maintaining track of RSOs. It currently exploits robotic electro-optical sensors, high-fidelity state-estimation and propagation as well as constrained initial orbit determination (IOD) to intelligently and adaptively manage its sensors in order to maintain an accurate catalogue of RSOs. In a step towards fully autonomous cataloguing, the system has been tasked with maintaining surveillance of a portion of the geosynchronous (GEO) belt. Using a combination of survey and track-refinement modes, the system is capable of maintaining a track of known RSOs and initiating tracks on previously unknown objects. Uniquely, due to the use of high-fidelity representations of a target's state uncertainty, as few as two images of previously unknown RSOs may be used to subsequently initiate autonomous search and reacquisition. To achieve this capability, particularly within the congested environment of the GEO-belt, we use a constrained admissible region (CAR) to generate a plausible estimate of the unknown RSO's state probability density function and disambiguate measurements using a particle-based joint probability data association (JPDA) method. Additionally, the use of alternative CAR generation methods, incorporating catalogue-based priors, is explored and tested. We also present the findings of two field trials of an experimental system that incorporates these techniques. The results demonstrate that such a system is capable of autonomously searching for an RSO that was briefly observed days prior in a GEO-survey and discriminating it from the measurements of other previously catalogued RSOs.
Acoustic window planning for ultrasound acquisition.
Göbl, Rüdiger; Virga, Salvatore; Rackerseder, Julia; Frisch, Benjamin; Navab, Nassir; Hennersperger, Christoph
2017-06-01
Autonomous robotic ultrasound has recently gained considerable interest, especially for collaborative applications. Existing methods for acquisition trajectory planning are solely based on geometrical considerations, such as the pose of the transducer with respect to the patient surface. This work aims at establishing acoustic window planning to enable autonomous ultrasound acquisitions of anatomies with restricted acoustic windows, such as the liver or the heart. We propose a fully automatic approach for the planning of acquisition trajectories, which only requires information about the target region as well as existing tomographic imaging data, such as X-ray computed tomography. The framework integrates both geometrical and physics-based constraints to estimate the best ultrasound acquisition trajectories with respect to the available acoustic windows. We evaluate the developed method using virtual planning scenarios based on real patient data as well as for real robotic ultrasound acquisitions on a tissue-mimicking phantom. The proposed method yields superior image quality in comparison with a naive planning approach, while maintaining the necessary coverage of the target. We demonstrate that by taking image formation properties into account acquisition planning methods can outperform naive plannings. Furthermore, we show the need for such planning techniques, since naive approaches are not sufficient as they do not take the expected image quality into account.
Multi-Modal Active Perception for Autonomously Selecting Landing Sites on Icy Moons
NASA Technical Reports Server (NTRS)
Arora, A.; Furlong, P. M.; Wong, U.; Fong, T.; Sukkarieh, S.
2017-01-01
Selecting suitable landing sites is fundamental to achieving many mission objectives in planetary robotic lander missions. However, due to sensing limitations, landing sites which are both safe and scientifically valuable often cannot be determined reliably from orbit, particularly, in icy moon missions where orbital sensing data is noisy and incomplete. This paper presents an active perception approach to Entry Descent and Landing (EDL) which enables the lander to autonomously plan informative descent trajectories, acquire high quality sensing data during descent and exploit this additional information to select higher utility landing sites. Our approach consists of two components: probabilistic modeling of landing site features and approximate trajectory planning using a sampling based planner. The proposed framework allows the lander to plan long horizons paths and remain robust to noisy data. Results in simulated environments show large performance improvements over alternative approaches and show promise that our approach has strong potential to improve science return of not only icy moon missions but EDL systems in general.
Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu
2015-11-01
This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Autonomous proximity operations using machine vision for trajectory control and pose estimation
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Sternberg, Stanley R.
1991-01-01
A machine vision algorithm was developed which permits guidance control to be maintained during autonomous proximity operations. At present this algorithm exists as a simulation, running upon an 80386 based personal computer, using a ModelMATE CAD package to render the target vehicle. However, the algorithm is sufficiently simple, so that following off-line training on a known target vehicle, it should run in real time with existing vision hardware. The basis of the algorithm is a sequence of single camera images of the target vehicle, upon which radial transforms were performed. Selected points of the resulting radial signatures are fed through a decision tree, to determine whether the signature matches that of the known reference signatures for a particular view of the target. Based upon recognized scenes, the position of the maneuvering vehicle with respect to the target vehicles can be calculated, and adjustments made in the former's trajectory. In addition, the pose and spin rates of the target satellite can be estimated using this method.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.
The Ship Movement Trajectory Prediction Algorithm Using Navigational Data Fusion.
Borkowski, Piotr
2017-06-20
It is essential for the marine navigator conducting maneuvers of his ship at sea to know future positions of himself and target ships in a specific time span to effectively solve collision situations. This article presents an algorithm of ship movement trajectory prediction, which, through data fusion, takes into account measurements of the ship's current position from a number of doubled autonomous devices. This increases the reliability and accuracy of prediction. The algorithm has been implemented in NAVDEC, a navigation decision support system and practically used on board ships.
The Ship Movement Trajectory Prediction Algorithm Using Navigational Data Fusion
Borkowski, Piotr
2017-01-01
It is essential for the marine navigator conducting maneuvers of his ship at sea to know future positions of himself and target ships in a specific time span to effectively solve collision situations. This article presents an algorithm of ship movement trajectory prediction, which, through data fusion, takes into account measurements of the ship’s current position from a number of doubled autonomous devices. This increases the reliability and accuracy of prediction. The algorithm has been implemented in NAVDEC, a navigation decision support system and practically used on board ships. PMID:28632176
Autonomous formation flight of helicopters: Model predictive control approach
NASA Astrophysics Data System (ADS)
Chung, Hoam
Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected information, the FSM generates discrete reference points in state space. Then, the reference trajectory generator makes smooth trajectories from discrete reference points using interpolation and/or an online optimization scheme. By modifying the reference trajectory and triggering mode changes, the formation manager can override behaviors of the MPC controller. When a vehicle outside of the formation approaches a vehicle at the edge of the formation, the motion of the vehicle at the formation edge acts like a disturbance with respect to the vehicle attempting to join the formation. The vehicle at the edge of the formation cannot cooperate with any vehicle outside of the formation due to constraints on maintaining the existing formation. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Bayard, David
2006-01-01
Fuzzy Feature Observation Planner for Small Body Proximity Observations (FuzzObserver) is a developmental computer program, to be used along with other software, for autonomous planning of maneuvers of a spacecraft near an asteroid, comet, or other small astronomical body. Selection of terrain features and estimation of the position of the spacecraft relative to these features is an essential part of such planning. FuzzObserver contributes to the selection and estimation by generating recommendations for spacecraft trajectory adjustments to maintain the spacecraft's ability to observe sufficient terrain features for estimating position. The input to FuzzObserver consists of data from terrain images, including sets of data on features acquired during descent toward, or traversal of, a body of interest. The name of this program reflects its use of fuzzy logic to reason about the terrain features represented by the data and extract corresponding trajectory-adjustment rules. Linguistic fuzzy sets and conditional statements enable fuzzy systems to make decisions based on heuristic rule-based knowledge derived by engineering experts. A major advantage of using fuzzy logic is that it involves simple arithmetic calculations that can be performed rapidly enough to be useful for planning within the short times typically available for spacecraft maneuvers.
Optimal bounds and extremal trajectories for time averages in dynamical systems
NASA Astrophysics Data System (ADS)
Tobasco, Ian; Goluskin, David; Doering, Charles
2017-11-01
For systems governed by differential equations it is natural to seek extremal solution trajectories, maximizing or minimizing the long-time average of a given quantity of interest. A priori bounds on optima can be proved by constructing auxiliary functions satisfying certain point-wise inequalities, the verification of which does not require solving the underlying equations. We prove that for any bounded autonomous ODE, the problems of finding extremal trajectories on the one hand and optimal auxiliary functions on the other are strongly dual in the sense of convex duality. As a result, auxiliary functions provide arbitrarily sharp bounds on optimal time averages. Furthermore, nearly optimal auxiliary functions provide volumes in phase space where maximal and nearly maximal trajectories must lie. For polynomial systems, such functions can be constructed by semidefinite programming. We illustrate these ideas using the Lorenz system, producing explicit volumes in phase space where extremal trajectories are guaranteed to reside. Supported by NSF Award DMS-1515161, Van Loo Postdoctoral Fellowships, and the John Simon Guggenheim Foundation.
Vehicle Guidance and Control Along Circular Trajectories
1992-09-01
the line of sight, while Chism [2] studied a cross track error based control law. Hawkinson [3] extended the results to the multiple input case when...Thesis, Naval Postgraduate School, Monterey, California, June. 2. Chism , S., (1990) "Robust path tracking of autonomous underwater vehicles using sliding
A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application.
Vivacqua, Rafael; Vassallo, Raquel; Martins, Felipe
2017-10-16
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.
A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application
Vassallo, Raquel
2017-01-01
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle’s backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation. PMID:29035334
Geometrically derived difference formulae for the numerical integration of trajectory problems
NASA Technical Reports Server (NTRS)
Mcleod, R. J. Y.; Sanz-Serna, J. M.
1982-01-01
An initial value problem for the autonomous system of ordinary differential equations dy/dt = f(y), where y is a vector, is considered. In a number of practical applications the interest lies in obtaining the curve traced by the solution y. These applications include the computation of trajectories in mechanical problems. The term 'trajectory problem' is employed to refer to these cases. Lambert and McLeod (1979) have introduced a method involving local rotation of the axes in the y-plane for the two-dimensional case. The present investigation continues the study of difference schemes specifically derived for trajectory problems. A simple geometrical way of constructing such methods is presented, and the local accuracy of the schemes is investigated. A circularly exact, fixed-step predictor-corrector algorithm is defined, and a variable-step version of a circularly exact algorithm is presented.
NASA Astrophysics Data System (ADS)
Langa, José A.; Rodríguez-Bernal, Aníbal; Suárez, Antonio
In this paper we study in detail the geometrical structure of global pullback and forwards attractors associated to non-autonomous Lotka-Volterra systems in all the three cases of competition, symbiosis or prey-predator. In particular, under some conditions on the parameters, we prove the existence of a unique nondegenerate global solution for these models, which attracts any other complete bounded trajectory. Thus, we generalize the existence of a unique strictly positive stable (stationary) solution from the autonomous case and we extend to Lotka-Volterra systems the result for scalar logistic equations. To this end we present the sub-supertrajectory tool as a generalization of the now classical sub-supersolution method. In particular, we also conclude pullback and forwards permanence for the above models.
New Vectorial Propulsion System and Trajectory Control Designs for Improved AUV Mission Autonomy.
Masmitja, Ivan; Gonzalez, Julian; Galarza, Cesar; Gomariz, Spartacus; Aguzzi, Jacopo; Del Rio, Joaquin
2018-04-17
Autonomous Underwater Vehicles (AUV) are proving to be a promising platform design for multidisciplinary autonomous operability with a wide range of applications in marine ecology and geoscience. Here, two novel contributions towards increasing the autonomous navigation capability of a new AUV prototype (the Guanay II) as a mix between a propelled vehicle and a glider are presented. Firstly, a vectorial propulsion system has been designed to provide full vehicle maneuverability in both horizontal and vertical planes. Furthermore, two controllers have been designed, based on fuzzy controls, to provide the vehicle with autonomous navigation capabilities. Due to the decoupled system propriety, the controllers in the horizontal plane have been designed separately from the vertical plane. This class of non-linear controllers has been used to interpret linguistic laws into different zones of functionality. This method provided good performance, used as interpolation between different rules or linear controls. Both improvements have been validated through simulations and field tests, displaying good performance results. Finally, the conclusion of this work is that the Guanay II AUV has a solid controller to perform autonomous navigation and carry out vertical immersions.
ERIC Educational Resources Information Center
El-Sheikh, Mona; Keiley, Margaret; Erath, Stephen; Dyer, W. Justin
2013-01-01
We assessed trajectories of children's internalizing symptoms, indexed through anxiety and depression, with a focus on the role of interactions between interparental marital conflict, children's sympathetic nervous system activity indexed by skin conductance level (SCL), and parasympathetic nervous system activity indexed by respiratory sinus…
RoBlock: a prototype autonomous manufacturing cell
NASA Astrophysics Data System (ADS)
Baekdal, Lars K.; Balslev, Ivar; Eriksen, Rene D.; Jensen, Soren P.; Jorgensen, Bo N.; Kirstein, Brian; Kristensen, Bent B.; Olsen, Martin M.; Perram, John W.; Petersen, Henrik G.; Petersen, Morten L.; Ruhoff, Peter T.; Skjolstrup, Carl E.; Sorensen, Anders S.; Wagenaar, Jeroen M.
2000-10-01
RoBlock is the first phase of an internally financed project at the Institute aimed at building a system in which two industrial robots suspended from a gantry, as shown below, cooperate to perform a task specified by an external user, in this case, assembling an unstructured collection of colored wooden blocks into a specified 3D pattern. The blocks are identified and localized using computer vision and grasped with a suction cup mechanism. Future phases of the project will involve other processes such as grasping and lifting, as well as other types of robot such as autonomous vehicles or variable geometry trusses. Innovative features of the control software system include: The use of an advanced trajectory planning system which ensures collision avoidance based on a generalization of the method of artificial potential fields, the use of a generic model-based controller which learns the values of parameters, including static and kinetic friction, of a detailed mechanical model of itself by comparing actual with planned movements, the use of fast, flexible, and robust pattern recognition and 3D-interpretation strategies, integration of trajectory planning and control with the sensor systems in a distributed Java application running on a network of PC's attached to the individual physical components. In designing this first stage, the aim was to build in the minimum complexity necessary to make the system non-trivially autonomous and to minimize the technological risks. The aims of this project, which is planned to be operational during 2000, are as follows: To provide a platform for carrying out experimental research in multi-agent systems and autonomous manufacturing systems, to test the interdisciplinary cooperation architecture of the Maersk Institute, in which researchers in the fields of applied mathematics (modeling the physical world), software engineering (modeling the system) and sensor/actuator technology (relating the virtual and real worlds) could collaborate with systems integrators to construct intelligent, autonomous systems, and to provide a showpiece demonstrator in the entrance hall of the Institute's new building.
NASA Technical Reports Server (NTRS)
Hartley, Tom T. (Editor)
1987-01-01
Recent advances in control-system design and simulation are discussed in reviews and reports. Among the topics considered are fast algorithms for generating near-optimal binary decision programs, trajectory control of robot manipulators with compensation of load effects via a six-axis force sensor, matrix integrators for real-time simulation, a high-level control language for an autonomous land vehicle, and a practical engineering design method for stable model-reference adaptive systems. Also addressed are the identification and control of flexible-limb robots with unknown loads, adaptive control and robust adaptive control for manipulators with feedforward compensation, adaptive pole-placement controllers with predictive action, variable-structure strategies for motion control, and digital signal-processor-based variable-structure controls.
Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2
NASA Technical Reports Server (NTRS)
Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Johnson, Andrew E.; Paschall, Stephen C., II
2010-01-01
The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycle
The JPL telerobotic Manipulator Control and Mechanization (MCM) subsystem
NASA Technical Reports Server (NTRS)
Hayati, Samad; Lee, Thomas S.; Tso, Kam; Backes, Paul; Kan, Edwin; Lloyd, J.
1989-01-01
The Manipulator Control and Mechanization (MCM) subsystem of the telerobot system provides the real-time control of the robot manipulators in autonomous and teleoperated modes and real time input/output for a variety of sensors and actuators. Substantial hardware and software are included in this subsystem which interfaces in the hierarchy of the telerobot system with the other subsystems. The other subsystems are: run time control, task planning and reasoning, sensing and perception, and operator control subsystem. The architecture of the MCM subsystem, its capabilities, and details of various hardware and software elements are described. Important improvements in the MCM subsystem over the first version are: dual arm coordinated trajectory generation and control, addition of integrated teleoperation, shared control capability, replacement of the ultimate controllers with motor controllers, and substantial increase in real time processing capability.
Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System
NASA Technical Reports Server (NTRS)
Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jeannette
2016-01-01
This paper presents a study of transfers between distant retrograde orbits (DROs) and L2 halo orbits in the Earth-Moon system that could be flown by a spacecraft with solar electric propulsion (SEP). Two collocation-based optimal control methods are used to optimize these highly-nonlinear transfers: Legendre pseudospectral and Hermite-Simpson. Transfers between DROs and halo orbits using low-thrust propulsion have not been studied previously. This paper offers a study of several families of trajectories, parameterized by the number of orbital revolutions in a synodic frame. Even with a poor initial guess, a method is described to reliably generate families of solutions. The circular restricted 3-body problem (CRTBP) is used throughout the paper so that the results are autonomous and simpler to understand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EISLER, G. RICHARD
This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Robust Planning for Autonomous Navigation of Mobile Robots In Unstructured, Dynamic Environments (AutoNav)''. The project goal was to develop an algorithmic-driven, multi-spectral approach to point-to-point navigation characterized by: segmented on-board trajectory planning, self-contained operation without human support for mission duration, and the development of appropriate sensors and algorithms to navigate unattended. The project was partially successful in achieving gains in sensing, path planning, navigation, and guidance. One of three experimental platforms, the Minimalist Autonomous Testbed, used a repetitive sense-and-re-plan combination to demonstratemore » the majority of elements necessary for autonomous navigation. However, a critical goal for overall success in arbitrary terrain, that of developing a sensor that is able to distinguish true obstacles that need to be avoided as a function of vehicle scale, still needs substantial research to bring to fruition.« less
Trajectory phase transitions and dynamical Lee-Yang zeros of the Glauber-Ising chain.
Hickey, James M; Flindt, Christian; Garrahan, Juan P
2013-07-01
We examine the generating function of the time-integrated energy for the one-dimensional Glauber-Ising model. At long times, the generating function takes on a large-deviation form and the associated cumulant generating function has singularities corresponding to continuous trajectory (or "space-time") phase transitions between paramagnetic trajectories and ferromagnetically or antiferromagnetically ordered trajectories. In the thermodynamic limit, the singularities make up a whole curve of critical points in the complex plane of the counting field. We evaluate analytically the generating function by mapping the generator of the biased dynamics to a non-Hermitian Hamiltonian of an associated quantum spin chain. We relate the trajectory phase transitions to the high-order cumulants of the time-integrated energy which we use to extract the dynamical Lee-Yang zeros of the generating function. This approach offers the possibility to detect continuous trajectory phase transitions from the finite-time behavior of measurable quantities.
Sonar Based Navigation of an Autonomous Underwater Vehicle
1994-06-01
3.1.4 Obstacles that are not on the map are marked, known initial position. 35 Eommd Trejecay of AUV 25 Elied -Solid ine Actual :Dashed line 20, 15 I...actual trajectory. Efifets of Camn*= in do Pai~on of AUV. 20 15- 5- 0 S 10 15 20 25 30 35 Figure 3.16 The effects of currents in the trajectory of the...vehicle. 38 E~med T~MjMMa~ ofAUV 20Eadalmd 3affid one Actual :Dashed hMe 15- 0- 0 5 10 15 20 25 30 35 X (irn faet) Figure 3.17 Position estimation
Rule-based navigation control design for autonomous flight
NASA Astrophysics Data System (ADS)
Contreras, Hugo; Bassi, Danilo
2008-04-01
This article depicts a navigation control system design that is based on a set of rules in order to follow a desired trajectory. The full control of the aircraft considered here comprises: a low level stability control loop, based on classic PID controller and the higher level navigation whose main job is to exercise lateral control (course) and altitude control, trying to follow a desired trajectory. The rules and PID gains were adjusted systematically according to the result of flight simulation. In spite of its simplicity, the rule-based navigation control proved to be robust, even with big perturbation, like crossing winds.
2013-03-01
Ciência e a Tecnologia . References [1] Kaminer, I., Pascoal, A.M., Hallberg, E., and Silvestreo, C., “Trajectory Tracking for Autonomous Vehicles: An...for publication). [53] Cichella, V., Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A. M., and Hovakimyan, N., “Geometric 3D Path-Following
2007-09-01
Control Conference and Exhibit. 5-8 August 2002. AIAA-2002-4457. 25. ElGindy, Hossam and Lachlan Wetherall. “A Simple Voronoi Diagram Algorithm for a...Jacobs, Thomas H., Elan T. Smith , and Michael W. Garrambone. “Space Ac- cess Vehicles Mission and Operations Simulation (SAVMOS) For Simulating
Modeling and control of tissue compression and temperature for automation in robot-assisted surgery.
Sinha, Utkarsh; Li, Baichun; Sankaranarayanan, Ganesh
2014-01-01
Robotic surgery is being used widely due to its various benefits that includes reduced patient trauma and increased dexterity and ergonomics for the operating surgeon. Making the whole or part of the surgical procedure autonomous increases patient safety and will enable the robotic surgery platform to be used in telesurgery. In this work, an Electrosurgery procedure that involves tissue compression and application of heat such as the coaptic vessel closure has been automated. A MIMO nonlinear model characterizing the tissue stiffness and conductance under compression was feedback linearized and tuned PID controllers were used to control the system to achieve both the displacement and temperature constraints. A reference input for both the constraints were chosen as a ramp and hold trajectory which reflect the real constraints that exist in an actual surgical procedure. Our simulations showed that the controllers successfully tracked the reference trajectories with minimal deviation and in finite time horizon. The MIMO system with controllers developed in this work can be used to drive a surgical robot autonomously and perform electrosurgical procedures such as coaptic vessel closures.
NASA Astrophysics Data System (ADS)
Zhou, Wenyong; Yuan, Jianping; Luo, Jianjun
2005-11-01
Autonomous on-orbit servicing provides flexibility to space systems and has great value both in civil and in military. When a satellite performs on-orbit servicing tasks, flying around is the basic type of motion. This paper is concerned with the design and control problems of a chaser satellite flying around a target spacecraft in non-coplanar elliptical orbit for a long time. At first, a mathematical model used to design a long-term flying around trajectory is presented, which is applicable to the situation that the target spacecraft flies in an elliptical orbit. The conditions of the target at the centre of the flying around path are deduced. Considering the safety and task requirements, a long-term flying around trajectory is designed. Taking into account perturbations and navigation errors which can cause the trajectory unstable and mission impossible, a two-impulse control method is put forward. Genetic algorithm is used to minimize the cost function which considers fuel consumption and bias simultaneously. Some simulation works are carried out and the results indicate the flying around mathematical model and the trajectory control method can be used in the design and control of a long-term flying around trajectory.
A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles
1994-05-02
AD-A282 787 " A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles Alonzo Kelly CMU-RI-TR-94-17 The Robotics...follow, or a direction to prefer, it cannot generate its own strategic goals. Therefore, it solves the local planning problem for autonomous vehicles . The... autonomous vehicles . It is intelligent because it uses range images that are generated from either a laser rangefinder or a stereo triangulation
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2009-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Swarm autonomic agents with self-destruct capability
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic entity manages a system by generating one or more stay alive signals based on the functioning status and operating state of the system. In some embodiments, an evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy. The evolvable neural interface receives and generates heartbeat monitor signals and pulse monitor signals that are used to generate a stay alive signal that is used to manage the operations of the synthetic neural system. In another embodiment an asynchronous Alice signal (Autonomic license) requiring valid credentials of an anonymous autonomous agent is initiated. An unsatisfactory Alice exchange may lead to self-destruction of the anonymous autonomous agent for self-protection.
Method and Apparatus for Generating Flight-Optimizing Trajectories
NASA Technical Reports Server (NTRS)
Ballin, Mark G. (Inventor); Wing, David J. (Inventor)
2015-01-01
An apparatus for generating flight-optimizing trajectories for a first aircraft includes a receiver capable of receiving second trajectory information associated with at least one second aircraft. The apparatus also includes a traffic aware planner (TAP) module operably connected to the receiver to receive the second trajectory information. The apparatus also includes at least one internal input device on board the first aircraft to receive first trajectory information associated with the first aircraft and a TAP application capable of calculating an optimal trajectory for the first aircraft based at least on the first trajectory information and the second trajectory information. The optimal trajectory at least avoids conflicts between the first trajectory information and the second trajectory information.
Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles
Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro
2016-01-01
The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional–integral–derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle. PMID:27110793
Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.
Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro
2016-04-22
The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.
Improved LTVMPC design for steering control of autonomous vehicle
NASA Astrophysics Data System (ADS)
Velhal, Shridhar; Thomas, Susy
2017-01-01
An improved linear time varying model predictive control for steering control of autonomous vehicle running on slippery road is presented. Control strategy is designed such that the vehicle will follow the predefined trajectory with highest possible entry speed. In linear time varying model predictive control, nonlinear vehicle model is successively linearized at each sampling instant. This linear time varying model is used to design MPC which will predict the future horizon. By incorporating predicted input horizon in each successive linearization the effectiveness of controller has been improved. The tracking performance using steering with front wheel and braking at four wheels are presented to illustrate the effectiveness of the proposed method.
New Vectorial Propulsion System and Trajectory Control Designs for Improved AUV Mission Autonomy
Gonzalez, Julian; Galarza, Cesar; Aguzzi, Jacopo; del Rio, Joaquin
2018-01-01
Autonomous Underwater Vehicles (AUV) are proving to be a promising platform design for multidisciplinary autonomous operability with a wide range of applications in marine ecology and geoscience. Here, two novel contributions towards increasing the autonomous navigation capability of a new AUV prototype (the Guanay II) as a mix between a propelled vehicle and a glider are presented. Firstly, a vectorial propulsion system has been designed to provide full vehicle maneuverability in both horizontal and vertical planes. Furthermore, two controllers have been designed, based on fuzzy controls, to provide the vehicle with autonomous navigation capabilities. Due to the decoupled system propriety, the controllers in the horizontal plane have been designed separately from the vertical plane. This class of non-linear controllers has been used to interpret linguistic laws into different zones of functionality. This method provided good performance, used as interpolation between different rules or linear controls. Both improvements have been validated through simulations and field tests, displaying good performance results. Finally, the conclusion of this work is that the Guanay II AUV has a solid controller to perform autonomous navigation and carry out vertical immersions. PMID:29673224
Drivers’ Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving
Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan
2016-01-01
This paper describes a real-time motion planner based on the drivers’ visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers’ visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers’ visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms. PMID:26784203
Drivers' Visual Behavior-Guided RRT Motion Planner for Autonomous On-Road Driving.
Du, Mingbo; Mei, Tao; Liang, Huawei; Chen, Jiajia; Huang, Rulin; Zhao, Pan
2016-01-15
This paper describes a real-time motion planner based on the drivers' visual behavior-guided rapidly exploring random tree (RRT) approach, which is applicable to on-road driving of autonomous vehicles. The primary novelty is in the use of the guidance of drivers' visual search behavior in the framework of RRT motion planner. RRT is an incremental sampling-based method that is widely used to solve the robotic motion planning problems. However, RRT is often unreliable in a number of practical applications such as autonomous vehicles used for on-road driving because of the unnatural trajectory, useless sampling, and slow exploration. To address these problems, we present an interesting RRT algorithm that introduces an effective guided sampling strategy based on the drivers' visual search behavior on road and a continuous-curvature smooth method based on B-spline. The proposed algorithm is implemented on a real autonomous vehicle and verified against several different traffic scenarios. A large number of the experimental results demonstrate that our algorithm is feasible and efficient for on-road autonomous driving. Furthermore, the comparative test and statistical analyses illustrate that its excellent performance is superior to other previous algorithms.
CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
Liu, Chengju; Chen, Qijun; Wang, Danwei
2011-06-01
This paper deals with the locomotion control of quadruped robots inspired by the biological concept of central pattern generator (CPG). A control architecture is proposed with a 3-D workspace trajectory generator and a motion engine. The workspace trajectory generator generates adaptive workspace trajectories based on CPGs, and the motion engine realizes joint motion imputes. The proposed architecture is able to generate adaptive workspace trajectories online by tuning the parameters of the CPG network to adapt to various terrains. With feedback information, a quadruped robot can walk through various terrains with adaptive joint control signals. A quadruped platform AIBO is used to validate the proposed locomotion control system. The experimental results confirm the effectiveness of the proposed control architecture. A comparison by experiments shows the superiority of the proposed method against the traditional CPG-joint-space control method.
Integrated guidance and control for microsatellite real-time automated proximity operations
NASA Astrophysics Data System (ADS)
Chen, Ying; He, Zhen; Zhou, Ding; Yu, Zhenhua; Li, Shunli
2018-07-01
This paper investigates the trajectory planning and control of autonomous spacecraft proximity operations with impulsive dynamics. A new integrated guidance and control scheme is developed to perform automated close-range rendezvous for underactuated microsatellites. To efficiently prevent collision, a modified RRT* trajectory planning algorithm is proposed under this context. Several engineering constraints such as collision avoidance, plume impingement, field of view and control feasibility are considered simultaneously. Then, the feedback controller that employs a turn-burn-turn strategy with a combined impulsive orbital control and finite-time attitude control is designed to ensure the implementation of planned trajectory. Finally, the performance of trajectory planner and controller are evaluated through numerical tests. Simulation results indicate the real-time implementability of the proposed integrated guidance and control scheme with position control error less than 0.5 m and velocity control error less than 0.05 m/s. Consequently, the proposed scheme offers the potential for wide applications, such as on-orbit maintenance, space surveillance and debris removal.
Airborne Tactical Intent-Based Conflict Resolution Capability
NASA Technical Reports Server (NTRS)
Wing, David J.; Vivona, Robert A.; Roscoe, David A.
2009-01-01
Trajectory-based operations with self-separation involve the aircraft taking the primary role in the management of its own trajectory in the presence of other traffic. In this role, the flight crew assumes the responsibility for ensuring that the aircraft remains separated from all other aircraft by at least a minimum separation standard. These operations are enabled by cooperative airborne surveillance and by airborne automation systems that provide essential monitoring and decision support functions for the flight crew. An airborne automation system developed and used by NASA for research investigations of required functionality is the Autonomous Operations Planner. It supports the flight crew in managing their trajectory when responsible for self-separation by providing monitoring and decision support functions for both strategic and tactical flight modes. The paper focuses on the latter of these modes by describing a capability for tactical intent-based conflict resolution and its role in a comprehensive suite of automation functions supporting trajectory-based operations with self-separation.
Tjin A Tsoi, Sharon L; de Boer, Anthonius; Croiset, Gerda; Kusurkar, Rashmi A; Koster, Andries S
2018-03-01
Objective. To explore the changes in motivation of Dutch pharmacists for Continuing Education (CE) in the Dutch CE system. Methods. Pharmacists' motivation was measured across three time points with the Academic Motivation Scale, based on the Self-Determination Theory of motivation. The Latent Growth Modelling technique was used to analyze these data. Results. Over a period of 21 months, Controlled Motivation had increased and Relative Autonomous Motivation of Dutch pharmacists had decreased. Traineeship was the only demographic factor with a significant influence on the change in motivation. No subgroups with different trajectories could be identified. Conclusion. Relative Autonomous Motivation of Dutch pharmacists for CE decreases over time. This indicates a loss of Autonomous Motivation ("good" motivation) in favor of Controlled Motivation ("bad" motivation). Further research needs to be conducted to gain a better understanding of the association between pharmacist motivation and the features of the current CE system.
Evolutionary Computation for the Identification of Emergent Behavior in Autonomous Systems
NASA Technical Reports Server (NTRS)
Terrile, Richard J.; Guillaume, Alexandre
2009-01-01
Over the past several years the Center for Evolutionary Computation and Automated Design at the Jet Propulsion Laboratory has developed a technique based on Evolutionary Computational Methods (ECM) that allows for the automated optimization of complex computationally modeled systems. An important application of this technique is for the identification of emergent behaviors in autonomous systems. Mobility platforms such as rovers or airborne vehicles are now being designed with autonomous mission controllers that can find trajectories over a solution space that is larger than can reasonably be tested. It is critical to identify control behaviors that are not predicted and can have surprising results (both good and bad). These emergent behaviors need to be identified, characterized and either incorporated into or isolated from the acceptable range of control characteristics. We use cluster analysis of automatically retrieved solutions to identify isolated populations of solutions with divergent behaviors.
Real-time tracking of objects for a KC-135 microgravity experiment
NASA Technical Reports Server (NTRS)
Littlefield, Mark L.
1994-01-01
The design of a visual tracking system for use on the Extra-Vehicular Activity Helper/Retriever (EVAHR) is discussed. EVAHR is an autonomous robot designed to perform numerous tasks in an orbital microgravity environment. Since the ability to grasp a freely translating and rotating object is vital to the robot's mission, the EVAHR must analyze range image generated by the primary sensor. This allows EVAHR to locate and focus its sensors so that an accurate set of object poses can be determined and a grasp strategy planned. To test the visual tracking system being developed, a mathematical simulation was used to model the space station environment and maintain dynamics on the EVAHR and any other free floating objects. A second phase of the investigation consists of a series of experiments carried out aboard a KC-135 aircraft flying a parabolic trajectory to simulate microgravity.
Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Nesnas, Issa A.; Pivtoraiko, Mihail N.; Kelly, Alonzo; Fleder, Michael
2012-01-01
This software controls a rover platform to traverse rocky terrain autonomously, plan paths, and avoid obstacles using its stereo hazard and navigation cameras. It does so while continuously tracking a target of interest selected from 10 20 m away. The rover drives and tracks the target until it reaches the vicinity of the target. The rover then positions itself to approach the target, deploys its robotic arm, and places the end effector instrument on the designated target to within 2-3-cm accuracy of the originally selected target. This software features continuous navigation in a fairly rocky field in an outdoor environment and the ability to enable the rover to avoid large rocks and traverse over smaller ones. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover s mast cameras. The navigation software uses stereo imaging, traversability analysis, path planning, trajectory generation, and trajectory execution. It also includes visual target tracking of a designated target selected from 10 m away while continuously navigating the rocky terrain. Improvements in this design include steering while driving, which uses continuous curvature paths. There are also several improvements to the traversability analyzer, including improved data fusion of traversability maps that result from pose estimation uncertainties, dealing with boundary effects to enable tighter maneuvers, and handling a wider range of obstacles. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight, thread-the-needle maneuvers. These algorithms were integrated on the newly refurbished Athena Mars research rover, and were fielded in the JPL Mars Yard. Forty-three runs were conducted with targets at distances ranging from 5 to 15 m, and a success rate of 93% was achieved for placement of the instrument within 2-3 cm of the target.
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John
2016-01-01
The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.
Self-propelled colloidal particle near a planar wall: A Brownian dynamics study
NASA Astrophysics Data System (ADS)
Mozaffari, Ali; Sharifi-Mood, Nima; Koplik, Joel; Maldarelli, Charles
2018-01-01
Miniaturized, self-propelled locomotors use chemo-mechanical transduction mechanisms to convert fuel in the environment to autonomous motion. Recent experimental and theoretical studies demonstrate that these autonomous engines can passively follow the contours of solid boundaries they encounter. Boundary guidance, however, is not necessarily stable: Mechanical disturbances can cause the motor to hydrodynamically depart from the passively guided pathway. Furthermore, given the scaled-down size of micromotors (typically 100 nm to10 μ m ), Brownian thermal fluctuation forces are necessarily important, and these stochastic forces can randomize passively steered trajectories. Here we examine theoretically the stability of boundary-guided motion of micromotors along infinite planar walls to mechanical disturbances and to Brownian forces. Our aim is to understand under what conditions this passively guided motion is stable. We choose a locomotor design in which spherical colloids are partially coated with a catalytic cap that reacts with solute to produce a product. The product is repelled from the particle surface, causing the particle to move with the inert face at the front (autonomous motion via self-diffusiophoresis). When propelled towards a planar wall, deterministic hydrodynamic studies demonstrate that these locomotors can exhibit, for large enough cap sizes, steady trajectories in which the particle either skims unidirectionally along the surface at a constant distance from the wall or becomes stationary. We first investigate the linear hydrodynamic stability of these states by expanding the equations of motion about the states, and we find that linear perturbations decay exponentially in time. We then study the effects of thermal fluctuations by formulating a Langevin equation for the particle motion which includes the Brownian stochastic force. The Péclet number scales the ratio of deterministic to Brownian forces, where Pe =π μ a2v˜c/kBT and a denotes the colloid radius, μ the continuous phase viscosity, v˜c the characteristic diffusiophoretic velocity, and kBT the thermal energy. The skimming and stationary states are found to persist for Pe above 103. At Pe below 200, the trajectory of a locomotor approaching the wall is unpredictable. We present representative individual trajectories along with probability distributions for statistical ensembles of particles, quantifying the effects of thermal fluctuations and illustrating the transition from unpredictable to passively guided motion.
Task Decomposition Module For Telerobot Trajectory Generation
NASA Astrophysics Data System (ADS)
Wavering, Albert J.; Lumia, Ron
1988-10-01
A major consideration in the design of trajectory generation software for a Flight Telerobotic Servicer (FTS) is that the FTS will be called upon to perform tasks which require a diverse range of manipulator behaviors and capabilities. In a hierarchical control system where tasks are decomposed into simpler and simpler subtasks, the task decomposition module which performs trajectory planning and execution should therefore be able to accommodate a wide range of algorithms. In some cases, it will be desirable to plan a trajectory for an entire motion before manipulator motion commences, as when optimizing over the entire trajectory. Many FTS motions, however, will be highly sensory-interactive, such as moving to attain a desired position relative to a non-stationary object whose position is periodically updated by a vision system. In this case, the time-varying nature of the trajectory may be handled either by frequent replanning using updated sensor information, or by using an algorithm which creates a less specific state-dependent plan that determines the manipulator path as the trajectory is executed (rather than a priori). This paper discusses a number of trajectory generation techniques from these categories and how they may be implemented in a task decompo-sition module of a hierarchical control system. The structure, function, and interfaces of the proposed trajectory gener-ation module are briefly described, followed by several examples of how different algorithms may be performed by the module. The proposed task decomposition module provides a logical structure for trajectory planning and execution, and supports a large number of published trajectory generation techniques.
Lander Trajectory Reconstruction computer program
NASA Technical Reports Server (NTRS)
Adams, G. L.; Bradt, A. J.; Ferguson, J. B.; Schnelker, H. J.
1971-01-01
The Lander Trajectory Reconstruction (LTR) computer program is a tool for analysis of the planetary entry trajectory and atmosphere reconstruction process for a lander or probe. The program can be divided into two parts: (1) the data generator and (2) the reconstructor. The data generator provides the real environment in which the lander or probe is presumed to find itself. The reconstructor reconstructs the entry trajectory and atmosphere using sensor data generated by the data generator and a Kalman-Schmidt consider filter. A wide variety of vehicle and environmental parameters may be either solved-for or considered in the filter process.
Autonomic regulation in fetuses with Congenital Heart Disease
Siddiqui, Saira; Wilpers, Abigail; Myers, Michael; Nugent, J. David; Fifer, William P.; Williams, Ismée A.
2015-01-01
Background Exposure to antenatal stressors affects autonomic regulation in fetuses. Whether the presence of congenital heart disease (CHD) alters the developmental trajectory of autonomic regulation is not known. Aims/Study Design This prospective observational cohort study aimed to further characterize autonomic regulation in fetuses with CHD; specifically hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and tetralogy of Fallot (TOF). Subjects From 11/2010 – 11/2012, 92 fetuses were enrolled: 41 controls and 51 with CHD consisting of 19 with HLHS, 12 with TGA, and 20 with TOF. Maternal abdominal fetal electrocardiogram (ECG) recordings were obtained at 3 gestational ages: 19-27 weeks (F1), 28-33 weeks (F2), and 34-38 weeks (F3). Outcome measures Fetal ECG was analyzed for mean heart rate along with 3 measures of autonomic variability of the fetal heart rate: interquartile range, standard deviation, and root mean square of the standard deviation of the heart rate (RMSSD), a measure of parasympathetic activity. Results During F1 and F2 periods, HLHS fetuses demonstrated significantly lower mean HR than controls (p<0.05). Heart rate variability at F3, as measured by standard deviation, interquartile range, and RMSSD was lower in HLHS than controls (p<0.05). Other CHD subgroups showed a similar, though non-significant trend towards lower variability. Conclusions Autonomic regulation in CHD fetuses differs from controls with HLHS fetuses most markedly affected. PMID:25662702
Autonomic regulation in fetuses with congenital heart disease.
Siddiqui, Saira; Wilpers, Abigail; Myers, Michael; Nugent, J David; Fifer, William P; Williams, Ismée A
2015-03-01
Exposure to antenatal stressors affects autonomic regulation in fetuses. Whether the presence of congenital heart disease (CHD) alters the developmental trajectory of autonomic regulation is not known. This prospective observational cohort study aimed to further characterize autonomic regulation in fetuses with CHD; specifically hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and tetralogy of Fallot (TOF). From 11/2010 to 11/2012, 92 fetuses were enrolled: 41 controls and 51 with CHD consisting of 19 with HLHS, 12 with TGA, and 20 with TOF. Maternal abdominal fetal electrocardiogram (ECG) recordings were obtained at 3 gestational ages: 19-27 weeks (F1), 28-33 weeks (F2), and 34-38 weeks (F3). Fetal ECG was analyzed for mean heart rate along with 3 measures of autonomic variability of the fetal heart rate: interquartile range, standard deviation, and root mean square of the standard deviation of the heart rate (RMSSD), a measure of parasympathetic activity. During F1 and F2 periods, HLHS fetuses demonstrated significantly lower mean HR than controls (p<0.05). Heart rate variability at F3, as measured by standard deviation, interquartile range, and RMSSD was lower in HLHS than controls (p<0.05). Other CHD subgroups showed a similar, though non-significant trend towards lower variability. Autonomic regulation in CHD fetuses differs from controls, with HLHS fetuses most markedly affected. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.
2016-05-01
For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-σ. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.
NASA Technical Reports Server (NTRS)
Roback, Vincent E.; Amzajerdian, Farzin; Bulyshev, Alexander E.; Brewster, Paul F.; Barnes, Bruce W.
2016-01-01
For the first time, a 3-D imaging Flash Lidar instrument has been used in flight to scan a lunar-like hazard field, build a 3-D Digital Elevation Map (DEM), identify a safe landing site, and, in concert with an experimental Guidance, Navigation, and Control (GN&C) system, help to guide the Morpheus autonomous, rocket-propelled, free-flying lander to that safe site on the hazard field. The flight tests served as the TRL 6 demo of the Autonomous Precision Landing and Hazard Detection and Avoidance Technology (ALHAT) system and included launch from NASA-Kennedy, a lunar-like descent trajectory from an altitude of 250m, and landing on a lunar-like hazard field of rocks, craters, hazardous slopes, and safe sites 400m down-range. The ALHAT project developed a system capable of enabling safe, precise crewed or robotic landings in challenging terrain on planetary bodies under any ambient lighting conditions. The Flash Lidar is a second generation, compact, real-time, air-cooled instrument. Based upon extensive on-ground characterization at flight ranges, the Flash Lidar was shown to be capable of imaging hazards from a slant range of 1 km with an 8 cm range precision and a range accuracy better than 35 cm, both at 1-delta. The Flash Lidar identified landing hazards as small as 30 cm from the maximum slant range which Morpheus could achieve (450 m); however, under certain wind conditions it was susceptible to scintillation arising from air heated by the rocket engine and to pre-triggering on a dust cloud created during launch and transported down-range by wind.
Incorporating Manual and Autonomous Code Generation
NASA Technical Reports Server (NTRS)
McComas, David
1998-01-01
Code can be generated manually or using code-generated software tools, but how do you interpret the two? This article looks at a design methodology that combines object-oriented design with autonomic code generation for attitude control flight software. Recent improvements in space flight computers are allowing software engineers to spend more time engineering the applications software. The application developed was the attitude control flight software for an astronomical satellite called the Microwave Anisotropy Probe (MAP). The MAP flight system is being designed, developed, and integrated at NASA's Goddard Space Flight Center. The MAP controls engineers are using Integrated Systems Inc.'s MATRIXx for their controls analysis. In addition to providing a graphical analysis for an environment, MATRIXx includes an autonomic code generation facility called AutoCode. This article examines the forces that shaped the final design and describes three highlights of the design process: (1) Defining the manual to autonomic code interface; (2) Applying object-oriented design to the manual flight code; (3) Implementing the object-oriented design in C.
Amador-Angulo, Leticia; Mendoza, Olivia; Castro, Juan R.; Rodríguez-Díaz, Antonio; Melin, Patricia; Castillo, Oscar
2016-01-01
A hybrid approach composed by different types of fuzzy systems, such as the Type-1 Fuzzy Logic System (T1FLS), Interval Type-2 Fuzzy Logic System (IT2FLS) and Generalized Type-2 Fuzzy Logic System (GT2FLS) for the dynamic adaptation of the alpha and beta parameters of a Bee Colony Optimization (BCO) algorithm is presented. The objective of the work is to focus on the BCO technique to find the optimal distribution of the membership functions in the design of fuzzy controllers. We use BCO specifically for tuning membership functions of the fuzzy controller for trajectory stability in an autonomous mobile robot. We add two types of perturbations in the model for the Generalized Type-2 Fuzzy Logic System to better analyze its behavior under uncertainty and this shows better results when compared to the original BCO. We implemented various performance indices; ITAE, IAE, ISE, ITSE, RMSE and MSE to measure the performance of the controller. The experimental results show better performances using GT2FLS then by IT2FLS and T1FLS in the dynamic adaptation the parameters for the BCO algorithm. PMID:27618062
An Algorithm for Autonomous Formation Obstacle Avoidance
NASA Astrophysics Data System (ADS)
Cruz, Yunior I.
The level of human interaction with Unmanned Aerial Systems varies greatly from remotely piloted aircraft to fully autonomous systems. In the latter end of the spectrum, the challenge lies in designing effective algorithms to dictate the behavior of the autonomous agents. A swarm of autonomous Unmanned Aerial Vehicles requires collision avoidance and formation flight algorithms to negotiate environmental challenges it may encounter during the execution of its mission, which may include obstacles and chokepoints. In this work, a simple algorithm is developed to allow a formation of autonomous vehicles to perform point to point navigation while avoiding obstacles and navigating through chokepoints. Emphasis is placed on maintaining formation structures. Rather than breaking formation and individually navigating around the obstacle or through the chokepoint, vehicles are required to assemble into appropriately sized/shaped sub-formations, bifurcate around the obstacle or negotiate the chokepoint, and reassemble into the original formation at the far side of the obstruction. The algorithm receives vehicle and environmental properties as inputs and outputs trajectories for each vehicle from start to the desired ending location. Simulation results show that the algorithm safely routes all vehicles past the obstruction while adhering to the aforementioned requirements. The formation adapts and successfully negotiates the obstacles and chokepoints in its path while maintaining proper vehicle separation.
NASA Technical Reports Server (NTRS)
Glenn, G. M.
1977-01-01
A preflight analysis of the ALT separation reference trajectories for the tailcone on, forward, and aft cg orbiter configurations is documented. The ALT separation reference trajectories encompass the time from physical separation of the orbiter from the carrier to orbiter attainment of the maximum ALT interface airspeed. The trajectories include post separation roll maneuvers by both vehicles and are generated using the final preflight data base. The trajectories so generated satisfy all known separation design criteria and violate no known constraints. The requirement for this analysis is given along with the specifications, assumptions, and analytical approach used to generate the separation trajectories. The results of the analytical approach are evaluated, and conclusions and recommendations are summarized.
Orion Entry Display Feeder and Interactions with the Entry Monitor System
NASA Technical Reports Server (NTRS)
Baird, Darren; Bernatovich, Mike; Gillespie, Ellen; Kadwa, Binaifer; Matthews, Dave; Penny, Wes; Zak, Tim; Grant, Mike; Bihari, Brian
2010-01-01
The Orion spacecraft is designed to return astronauts to a landing within 10 km of the intended landing target from low Earth orbit, lunar direct-entry, and lunar skip-entry trajectories. Al pile the landing is nominally controlled autonomously, the crew can fly precision entries manually in the event of an anomaly. The onboard entry displays will be used by the crew to monitor and manually fly the entry, descent, and landing, while the Entry Monitor System (EMS) will be used to monitor the health and status of the onboard guidance and the trajectory. The entry displays are driven by the entry display feeder, part of the Entry Monitor System (EMS). The entry re-targeting module, also part of the EMS, provides all the data required to generate the capability footprint of the vehicle at any point in the trajectory, which is shown on the Primary Flight Display (PFD). It also provides caution and warning data and recommends the safest possible re-designated landing site when the nominal landing site is no longer within the capability of the vehicle. The PFD and the EMS allow the crew to manually fly an entry trajectory profile from entry interface until parachute deploy having the flexibility to manually steer the vehicle to a selected landing site that best satisfies the priorities of the crew. The entry display feeder provides data from the ENIS and other components of the GNC flight software to the displays at the proper rate and in the proper units. It also performs calculations that are specific to the entry displays and which are not made in any other component of the flight software. In some instances, it performs calculations identical to those performed by the onboard primary guidance algorithm to protect against a guidance system failure. These functions and the interactions between the entry display feeder and the other components of the EMS are described.
A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun
2017-10-01
This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.
Telerobot local-remote control architecture for space flight program applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul; Steele, Robert; Long, Mark; Bon, Bruce; Beahan, John
1993-01-01
The JPL Supervisory Telerobotics (STELER) Laboratory has developed and demonstrated a unique local-remote robot control architecture which enables management of intermittent communication bus latencies and delays such as those expected for ground-remote operation of Space Station robotic systems via the Tracking and Data Relay Satellite System (TDRSS) communication platform. The current work at JPL in this area has focused on enhancing the technologies and transferring the control architecture to hardware and software environments which are more compatible with projected ground and space operational environments. At the local site, the operator updates the remote worksite model using stereo video and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. This capability runs on a single Silicon Graphics Inc. machine. The operator can employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the intended object. The remote site controller, called the Modular Telerobot Task Execution System (MOTES), runs in a multi-processor VME environment and performs the task sequencing, task execution, trajectory generation, closed loop force/torque control, task parameter monitoring, and reflex action. This paper describes the new STELER architecture implementation, and also documents the results of the recent autonomous docking task execution using the local site and MOTES.
Autonomous manipulation on a robot: Summary of manipulator software functions
NASA Technical Reports Server (NTRS)
Lewis, R. A.
1974-01-01
A six degree-of-freedom computer-controlled manipulator is examined, and the relationships between the arm's joint variables and 3-space are derived. Arm trajectories using sequences of third-degree polynomials to describe the time history of each joint variable are presented and two approaches to the avoidance of obstacles are given. The equations of motion for the arm are derived and then decomposed into time-dependent factors and time-independent coefficients. Several new and simplifying relationships among the coefficients are proven. Two sample trajectories are analyzed in detail for purposes of determining the most important contributions to total force in order that relatively simple approximations to the equations of motion can be used.
A Cockpit-Based Application for Traffic Aware Trajectory Optimization
NASA Technical Reports Server (NTRS)
Woods, Sharon E.; Vivona, Robert A.; Roscoe, David A.; LeFebvre, Brendan C.; Wing, David J.; Ballin, Mark G.
2013-01-01
The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP.
Development of next generation intersection control.
DOT National Transportation Integrated Search
2013-03-01
A reservation-based autonomous intersection control system, named Autonomous Control of Urban : TrAffic (ACUTA), was developed as a part of this research effort. ACUTA allows centralized management : of autonomous vehicles within a certain distance f...
NASA Technical Reports Server (NTRS)
Glenn, G. M.
1976-01-01
Details of the generation of the separation trajectories are discussed. The analysis culminated in definition of separation trajectories between physical separation and orbiter/carrier vortex clearance. Specifications, assumptions and analytical approach used to generate the separation trajectories are presented. Results of the analytical approach are evaluated. Conclusions and recommendations are summarized. Supporting references are listed.
Heslar, John; Chu, Shih-I.
2016-11-24
Recently, the study of near- and below- threshold regime harmonics as a potential source of intense coherent vacuum-ultraviolet radiation has received considerable attention. However, the dynamical origin of these lower harmonics, particularly for the molecular systems, is less understood and largely unexplored. Here we perform the first fully ab initio and high precision 3D quantum study of the below- and near-threshold harmonic generation of H 2 + molecules in an intense 800-nm near-infrared (NIR) laser field. Furthermore, combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, we explore in-depth the roles of various quantummore » trajectories, including short- and long trajectories, multiphoton trajectories, resonance-enhanced trajectories, and multiple rescattering trajectories of the below- and near- threshold harmonic generation processes. Our results shed new light on the dynamical origin of the below- and near-threshold harmonic generation and various quantum trajectories for diatomic molecules for the first time.« less
Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator
NASA Astrophysics Data System (ADS)
Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.
2006-05-01
Optimized laser launch trajectories have been developed for a 1.4 m diameter, 120 kg (empty mass) Lightcraft Technology Demonstrator (LTD). The lightcraft's combined-cycle airbreathing/rocket engine is designed for single-stage-to-orbit flights with a mass ratio of 2 propelled by a 100 MW class ground-based laser built on a 3 km mountain peak. Once in orbit, the vehicle becomes an autonomous micro-satellite. Two types of trajectories were simulated with the SORT (Simulation and Optimization of Rocket Trajectories) software package: a) direct GBL boost to orbit, and b) GBL boost aided by laser relay satellite. Several new subroutines were constructed for SORT to input engine performance (as a function of Mach number and altitude), vehicle aerodynamics, guidance algorithms, and mass history. A new guidance/steering option required the lightcraft to always point at the GBL or laser relay satellite. SORT iterates on trajectory parameters to optimize vehicle performance, achieve a desired criteria, or constrain the solution to avoid some specific limit. The predicted laser-boost performance for the LTD is undoubtedly revolutionary, and SORT simulations have helped to define this new frontier.
NASA Astrophysics Data System (ADS)
Ren, Wei
Cooperative control problems for multiple vehicle systems can be categorized as either formation control problems with applications to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated highway systems, or non-formation control problems such as task assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing, and cooperative search. The cooperative control of multiple vehicle systems poses significant theoretical and practical challenges. For cooperative control strategies to be successful, numerous issues must be addressed. We consider three important and correlated issues: consensus seeking, formation keeping, and trajectory tracking. For consensus seeking, we investigate algorithms and protocols so that a team of vehicles can reach consensus on the values of the coordination data in the presence of imperfect sensors, communication dropout, sparse communication topologies, and noisy and unreliable communication links. The main contribution of this dissertation in this area is that we show necessary and/or sufficient conditions for consensus seeking with limited, unidirectional, and unreliable information exchange under fixed and switching interaction topologies (through either communication or sensing). For formation keeping, we apply a so-called "virtual structure" approach to spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single vehicle path planning and trajectory generation techniques can be employed for the virtual structure while trajectory tracking strategies can be employed for each vehicle. The main contribution of this dissertation in this area is that we propose a decentralized architecture for multiple spacecraft formation flying in deep space with formation feedback introduced. This architecture ensures the necessary precision in the presence of actuator saturation, internal and external disturbances, and stringent inter-vehicle communication limitations. A constructive approach based on the satisficing control paradigm is also applied to multi-robot coordination in hardware. For trajectory tracking, we investigate nonlinear tracking controllers for fixed wing unmanned air vehicles and nonholonomic mobile robots with velocity and heading rate constraints. The main contribution of this dissertation in this area is that our proposed tracking controllers are shown to be robust to input uncertainties and measurement noise, and are computationally simple and can be implemented with low-cost, low-power microcontrollers. In addition, our approach allows piecewise continuous reference velocity and heading rate and can be extended to derive a variety of other trajectory tracking strategies.
Optimal Path Planning and Control of Quadrotor Unmanned Aerial Vehicle for Area Coverage
NASA Astrophysics Data System (ADS)
Fan, Jiankun
An Unmanned Aerial Vehicle (UAV) is an aircraft without a human pilot on board. Its flight is controlled either autonomously by computers onboard the vehicle, or remotely by a pilot on the ground, or by another vehicle. In recent years, UAVs have been used more commonly than prior years. The example includes areo-camera where a high speed camera was attached to a UAV which can be used as an airborne camera to obtain aerial video. It also could be used for detecting events on ground for tasks such as surveillance and monitoring which is a common task during wars. Similarly UAVs can be used for relaying communication signal during scenarios when regular communication infrastructure is destroyed. The objective of this thesis is motivated from such civilian operations such as search and rescue or wildfire detection and monitoring. One scenario is that of search and rescue where UAV's objective is to geo-locate a person in a given area. The task is carried out with the help of a camera whose live feed is provided to search and rescue personnel. For this objective, the UAV needs to carry out scanning of the entire area in the shortest time. The aim of this thesis to develop algorithms to enable a UAV to scan an area in optimal time, a problem referred to as "Coverage Control" in literature. The thesis focuses on a special kind of UAVs called "quadrotor" that is propelled with the help of four rotors. The overall objective of this thesis is achieved via solving two problems. The first problem is to develop a dynamic control model of quadrtor. In this thesis, a proportional-integral-derivative controller (PID) based feedback control system is developed and implemented on MATLAB's Simulink. The PID controller helps track any given trajectory. The second problem is to design a trajectory that will fulfill the mission. The planed trajectory should make sure the quadrotor will scan the whole area without missing any part to make sure that the quadrotor will find the lost person in the area. The generated trajectory should also be optimal. This is achieved via making some assumptions on the form of the trajectory and solving the optimization problem to obtain optimal parameters of the trajectory. The proposed techniques are validated with the help of numerous simulations.
Position, Attitude, and Fault-Tolerant Control of Tilting-Rotor Quadcopter
NASA Astrophysics Data System (ADS)
Kumar, Rumit
The aim of this thesis is to present algorithms for autonomous control of tilt-rotor quadcopter UAV. In particular, this research work describes position, attitude and fault tolerant control in tilt-rotor quadcopter. Quadcopters are one of the most popular and reliable unmanned aerial systems because of the design simplicity, hovering capabilities and minimal operational cost. Numerous applications for quadcopters have been explored all over the world but very little work has been done to explore design enhancements and address the fault-tolerant capabilities of the quadcopters. The tilting rotor quadcopter is a structural advancement of traditional quadcopter and it provides additional actuated controls as the propeller motors are actuated for tilt which can be utilized to improve efficiency of the aerial vehicle during flight. The tilting rotor quadcopter design is accomplished by using an additional servo motor for each rotor that enables the rotor to tilt about the axis of the quadcopter arm. Tilting rotor quadcopter is a more agile version of conventional quadcopter and it is a fully actuated system. The tilt-rotor quadcopter is capable of following complex trajectories with ease. The control strategy in this work is to use the propeller tilts for position and orientation control during autonomous flight of the quadcopter. In conventional quadcopters, two propellers rotate in clockwise direction and other two propellers rotate in counter clockwise direction to cancel out the effective yawing moment of the system. The variation in rotational speeds of these four propellers is utilized for maneuvering. On the other hand, this work incorporates use of varying propeller rotational speeds along with tilting of the propellers for maneuvering during flight. The rotational motion of propellers work in sync with propeller tilts to control the position and orientation of the UAV during the flight. A PD flight controller is developed to achieve various modes of the flight. Further, the performance of the controller and the tilt-rotor design has been compared with respect to the conventional quadcopter in the presence of wind disturbances and sensor uncertainties. In this work, another novel feed-forward control design approach is presented for complex trajectory tracking during autonomous flight. Differential flatness based feed-forward position control is employed to enhance the performance of the UAV during complex trajectory tracking. By accounting for differential flatness based feed-forward control input parameters, a new PD controller is designed to achieve the desired performance in autonomous flight. The results for tracking complex trajectories have been presented by performing numerical simulations with and without environmental uncertainties to demonstrate robustness of the controller during flight. The conventional quadcopters are under-actuated systems and, upon failure of one propeller, the conventional quadcopter would have a tendency of spinning about the primary axis fixed to the vehicle as an outcome of the asymmetry in resultant yawing moment in the system. In this work, control of tilt-rotor quadcopter is presented upon failure of one propeller during flight. The tilt-rotor quadcopter is capable of handling a propeller failure and hence is a fault-tolerant system. The dynamic model of tilting-rotor quadcopter with one propeller failure is derived and a controller has been designed to achieve hovering and navigation capability. The simulation results of way point navigation, complex trajectory tracking and fault-tolerance are presented.
Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories
2016-04-01
ARL-TR-7642 ● APR 2016 US Army Research Laboratory Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms... Wind Profiles and Modeling Their Effects on Small-Arms Trajectories by Timothy A Fargus Weapons and Materials Research Directorate, ARL...Generating Variable Wind Profiles and Modeling Their Effects on Small-Arms Trajectories 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM
Challenges to Autonomous Navigation in Complex Urban Terrain
2012-03-23
a, Robert E. Karlsen a, Chip DiBerardino b, Edward Mottern b, & N. Joseph Kott, III a aU.S. Army Tank- Automotive Research, Development & Engineering...threat, but this becomes especially challenging when dealing with humans or animals that may change trajectory, suddenly and without warning. The...people and animals . In urban environments, the number of potential vehicle to civilian encounters increases exponentially as the urban population
Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics
2014-09-15
Optimization of Interplanetary Trajectories,” Journal of Spacecraft and Rockets, Vol. 46, No. 2, March-April 2009, pp. 365–372. [23] Subbarao , K . and...Black, PhD (Chairman) /signed/ Darryl K . Ahner, PhD (Member) /signed/ Raymond R. Hill, PhD (Member) /signed/ William E. Wiesel, PhD (Member) 29 Jul 2014...124 Appendix A: Derivation of Spherical Equations of Motion . . . . . . . . . . . . . . 126 Appendix B : Equations of
How a visual surveillance system hypothesizes how you behave.
Micheloni, C; Piciarelli, C; Foresti, G L
2006-08-01
In the last few years, the installation of a large number of cameras has led to a need for increased capabilities in video surveillance systems. It has, indeed, been more and more necessary for human operators to be helped in the understanding of ongoing activities in real environments. Nowadays, the technology and the research in the machine vision and artificial intelligence fields allow one to expect a new generation of completely autonomous systems able to reckon the behaviors of entities such as pedestrians, vehicles, and so forth. Hence, whereas the sensing aspect of these systems has been the issue considered the most so far, research is now focused mainly on more newsworthy problems concerning understanding. In this article, we present a novel method for hypothesizing the evolution of behavior. For such purposes, the system is required to extract useful information by means of low-level techniques for detecting and maintaining track of moving objects. The further estimation of performed trajectories, together with objects classification, enables one to compute the probability distribution of the normal activities (e.g., trajectories). Such a distribution is defined by means of a novel clustering technique. The resulting clusters are used to estimate the evolution of objects' behaviors and to speculate about any intention to act dangerously. The provided solution for hypothesizing behaviors occurring in real environments was tested in the context of an outdoor parking lot
Distributed formation control of nonholonomic autonomous vehicle via RBF neural network
NASA Astrophysics Data System (ADS)
Yang, Shichun; Cao, Yaoguang; Peng, Zhaoxia; Wen, Guoguang; Guo, Konghui
2017-03-01
In this paper, RBF neural network consensus-based distributed control scheme is proposed for nonholonomic autonomous vehicles in a pre-defined formation along the specified reference trajectory. A variable transformation is first designed to convert the formation control problem into a state consensus problem. Then, the complete dynamics of the vehicles including inertia, Coriolis, friction model and unmodeled bounded disturbances are considered, which lead to the formation unstable when the distributed kinematic controllers are proposed based on the kinematics. RBF neural network torque controllers are derived to compensate for them. Some sufficient conditions are derived to accomplish the asymptotically stability of the systems based on algebraic graph theory, matrix theory, and Lyapunov theory. Finally, simulation examples illustrate the effectiveness of the proposed controllers.
Precise Image-Based Motion Estimation for Autonomous Small Body Exploration
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Matthies, Larry H.
1998-01-01
Space science and solar system exploration are driving NASA to develop an array of small body missions ranging in scope from near body flybys to complete sample return. This paper presents an algorithm for onboard motion estimation that will enable the precision guidance necessary for autonomous small body landing. Our techniques are based on automatic feature tracking between a pair of descent camera images followed by two frame motion estimation and scale recovery using laser altimetry data. The output of our algorithm is an estimate of rigid motion (attitude and position) and motion covariance between frames. This motion estimate can be passed directly to the spacecraft guidance and control system to enable rapid execution of safe and precise trajectories.
Jandackova, Vera K; Scholes, Shaun; Britton, Annie; Steptoe, Andrew
2016-02-12
No study to date has investigated longitudinal trajectories of cardiac autonomic modulation changes with aging; therefore, we lack evidence showing whether these changes occur naturally or are secondary to disease or medication use. This study tested whether heart rate variability (HRV) trajectories from middle to older age are largely normative or caused by pathological changes with aging in a large prospective cohort. We further assessed whether HRV changes were modified by socioeconomic status, ethnicity, or habitual physical activity. This study involved 3176 men and 1238 women initially aged 44 to 69 years (1997-1999) from the UK Whitehall II population-based cohort. We evaluated time- and frequency-domain HRV measures of short-term recordings at 3 time points over a 10-year period. Random mixed models with time-varying covariates were applied. Cross-sectionally, HRV measures were lower for men than for women, for participants with cardiometabolic conditions, and for participants reporting use of medications other than beta blockers. Longitudinally, HRV measures decreased significantly with aging in both sexes, with faster decline in younger age groups. HRV trajectories were not explained by increased prevalence of cardiometabolic problems and/or medication use. In women, cardiometabolic problems were associated with faster decline in the standard deviation of all intervals between R waves with normal-to-normal conduction, in low-frequency HRV, and in low-frequency HRV in normalized units. Socioeconomic status, ethnicity, and habitual physical activity did not have significant effects on HRV trajectories. Our investigation showed a general pattern and timing of changes in indices of cardiac autonomic modulation from middle to older age. These changes seem likely to reflect the normal aging process rather than being secondary to cardiometabolic problems and medication use. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
de Boer, Anthonius; Croiset, Gerda; Kusurkar, Rashmi A.; Koster, Andries S.
2018-01-01
Objective. To explore the changes in motivation of Dutch pharmacists for Continuing Education (CE) in the Dutch CE system. Methods. Pharmacists’ motivation was measured across three time points with the Academic Motivation Scale, based on the Self-Determination Theory of motivation. The Latent Growth Modelling technique was used to analyze these data. Results. Over a period of 21 months, Controlled Motivation had increased and Relative Autonomous Motivation of Dutch pharmacists had decreased. Traineeship was the only demographic factor with a significant influence on the change in motivation. No subgroups with different trajectories could be identified. Conclusion. Relative Autonomous Motivation of Dutch pharmacists for CE decreases over time. This indicates a loss of Autonomous Motivation (“good” motivation) in favor of Controlled Motivation (“bad” motivation). Further research needs to be conducted to gain a better understanding of the association between pharmacist motivation and the features of the current CE system. PMID:29606706
Ramirez-Zamora, Adolfo; Smith, Heather; Youn, Youngwon; Durphy, Jennifer; Shin, Damian S; Pilitsis, Julie G
2016-07-15
There is limited evidence regarding the precise location and connections of thermoregulatory centers in humans. We present two patients managed with subthalamic nucleus (STN) Deep Brain Stimulation (DBS) for motor fluctuations in PD that developed reproducible hyperhidrosis with high frequency DBS. To describe the clinical features and analyze the location of the electrodes leading to autonomic activation in both patients. We retrospectively assessed the anatomical localization, electrode programming settings and effects of unilateral STN DBS leading to hyperhidrosis. Unilateral stimulation of anterior and medially located contacts within the STN and zona incerta (Zi) caused bilateral, consistent, reproducible, and reversible sweating in our patients. Adequate control of motor symptoms without autonomic side effects was accomplished with alternative programming settings. Stimulation of the medial Zi and medial and anterior STN causes hyperhidrosis in a pattern similar to that described in primates and rats. We speculate that central autonomic fibers originating in the lateral hypothalamic area project laterally to the ventral/medial Zi and then to brainstem nuclei following an medial and posterior trajectory in relationship to STN. Copyright © 2016 Elsevier B.V. All rights reserved.
A study of numerical methods for computing reentry trajectories for shuttle-type space vehicles
NASA Technical Reports Server (NTRS)
1972-01-01
The reuseable exterior insulation system (REI) is studied to determine the optimal reentry trajectory for a space shuttle, which minimizes the heat input to the fuselage. The REI is composed of titanium, covered by a surface insulation material. The method of perturbation functions was used to generate the trajectories, and proved to be an effective technique for generating families of solutions, once an initial trajectory has been obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heslar, John; Chu, Shih-I.
Recently, the study of near- and below- threshold regime harmonics as a potential source of intense coherent vacuum-ultraviolet radiation has received considerable attention. However, the dynamical origin of these lower harmonics, particularly for the molecular systems, is less understood and largely unexplored. Here we perform the first fully ab initio and high precision 3D quantum study of the below- and near-threshold harmonic generation of H 2 + molecules in an intense 800-nm near-infrared (NIR) laser field. Furthermore, combining with a synchrosqueezing transform of the quantum time-frequency spectrum and an extended semiclassical analysis, we explore in-depth the roles of various quantummore » trajectories, including short- and long trajectories, multiphoton trajectories, resonance-enhanced trajectories, and multiple rescattering trajectories of the below- and near- threshold harmonic generation processes. Our results shed new light on the dynamical origin of the below- and near-threshold harmonic generation and various quantum trajectories for diatomic molecules for the first time.« less
High-Fidelity Flash Lidar Model Development
NASA Technical Reports Server (NTRS)
Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin
2014-01-01
NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.
On the Formal Verification of Conflict Detection Algorithms
NASA Technical Reports Server (NTRS)
Munoz, Cesar; Butler, Ricky W.; Carreno, Victor A.; Dowek, Gilles
2001-01-01
Safety assessment of new air traffic management systems is a main issue for civil aviation authorities. Standard techniques such as testing and simulation have serious limitations in new systems that are significantly more autonomous than the older ones. In this paper, we present an innovative approach, based on formal verification, for establishing the correctness of conflict detection systems. Fundamental to our approach is the concept of trajectory, which is a continuous path in the x-y plane constrained by physical laws and operational requirements. From the Model of trajectories, we extract, and formally prove, high level properties that can serve as a framework to analyze conflict scenarios. We use the Airborne Information for Lateral Spacing (AILS) alerting algorithm as a case study of our approach.
Advances in POST2 End-to-End Descent and Landing Simulation for the ALHAT Project
NASA Technical Reports Server (NTRS)
Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Hines, Glenn D.; Paschall, Stephen, II; Cohanim, Babak E.; Fill, Thomas; Johnson, Michael C.; Bishop, Robert H.; DeMars, Kyle J.;
2008-01-01
Program to Optimize Simulated Trajectories II (POST2) is used as a basis for an end-to-end descent and landing trajectory simulation that is essential in determining design and integration capability and system performance of the lunar descent and landing system and environment models for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. The POST2 simulation provides a six degree-of-freedom capability necessary to test, design and operate a descent and landing system for successful lunar landing. This paper presents advances in the development and model-implementation of the POST2 simulation, as well as preliminary system performance analysis, used for the testing and evaluation of ALHAT project system models.
Knips, Guido; Zibner, Stephan K U; Reimann, Hendrik; Schöner, Gregor
2017-01-01
Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp.
Knips, Guido; Zibner, Stephan K. U.; Reimann, Hendrik; Schöner, Gregor
2017-01-01
Reaching for objects and grasping them is a fundamental skill for any autonomous robot that interacts with its environment. Although this skill seems trivial to adults, who effortlessly pick up even objects they have never seen before, it is hard for other animals, for human infants, and for most autonomous robots. Any time during movement preparation and execution, human reaching movement are updated if the visual scene changes (with a delay of about 100 ms). The capability for online updating highlights how tightly perception, movement planning, and movement generation are integrated in humans. Here, we report on an effort to reproduce this tight integration in a neural dynamic process model of reaching and grasping that covers the complete path from visual perception to movement generation within a unified modeling framework, Dynamic Field Theory. All requisite processes are realized as time-continuous dynamical systems that model the evolution in time of neural population activation. Population level neural processes bring about the attentional selection of objects, the estimation of object shape and pose, and the mapping of pose parameters to suitable movement parameters. Once a target object has been selected, its pose parameters couple into the neural dynamics of movement generation so that changes of pose are propagated through the architecture to update the performed movement online. Implementing the neural architecture on an anthropomorphic robot arm equipped with a Kinect sensor, we evaluate the model by grasping wooden objects. Their size, shape, and pose are estimated from a neural model of scene perception that is based on feature fields. The sequential organization of a reach and grasp act emerges from a sequence of dynamic instabilities within a neural dynamics of behavioral organization, that effectively switches the neural controllers from one phase of the action to the next. Trajectory formation itself is driven by a dynamical systems version of the potential field approach. We highlight the emergent capacity for online updating by showing that a shift or rotation of the object during the reaching phase leads to the online adaptation of the movement plan and successful completion of the grasp. PMID:28303100
Materials learning from life: concepts for active, adaptive and autonomous molecular systems.
Merindol, Rémi; Walther, Andreas
2017-09-18
Bioinspired out-of-equilibrium systems will set the scene for the next generation of molecular materials with active, adaptive, autonomous, emergent and intelligent behavior. Indeed life provides the best demonstrations of complex and functional out-of-equilibrium systems: cells keep track of time, communicate, move, adapt, evolve and replicate continuously. Stirred by the understanding of biological principles, artificial out-of-equilibrium systems are emerging in many fields of soft matter science. Here we put in perspective the molecular mechanisms driving biological functions with the ones driving synthetic molecular systems. Focusing on principles that enable new levels of functionalities (temporal control, autonomous structures, motion and work generation, information processing) rather than on specific material classes, we outline key cross-disciplinary concepts that emerge in this challenging field. Ultimately, the goal is to inspire and support new generations of autonomous and adaptive molecular devices fueled by self-regulating chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etmektzoglou, A; Mishra, P; Svatos, M
Purpose: To automate creation and delivery of robotic linac trajectories with TrueBeam Developer Mode, an open source spreadsheet-based trajectory generation tool has been developed, tested and made freely available. The computing power inherent in a spreadsheet environment plus additional functions programmed into the tool insulate users from the underlying schema tedium and allow easy calculation, parameterization, graphical visualization, validation and finally automatic generation of Developer Mode XML scripts which are directly loadable on a TrueBeam linac. Methods: The robotic control system platform that allows total coordination of potentially all linac moving axes with beam (continuous, step-and-shoot, or combination thereof) becomesmore » available in TrueBeam Developer Mode. Many complex trajectories are either geometric or can be described in analytical form, making the computational power, graphing and programmability available in a spreadsheet environment an easy and ideal vehicle for automatic trajectory generation. The spreadsheet environment allows also for parameterization of trajectories thus enabling the creation of entire families of trajectories using only a few variables. Standard spreadsheet functionality has been extended for powerful movie-like dynamic graphic visualization of the gantry, table, MLC, room, lasers, 3D observer placement and beam centerline all as a function of MU or time, for analysis of the motions before requiring actual linac time. Results: We used the tool to generate and deliver extended SAD “virtual isocenter” trajectories of various shapes such as parameterized circles and ellipses. We also demonstrated use of the tool in generating linac couch motions that simulate respiratory motion using analytical parameterized functions. Conclusion: The SAGE tool is a valuable resource to experiment with families of complex geometric trajectories for a TrueBeam Linac. It makes Developer Mode more accessible as a vehicle to quickly translate research ideas into machine readable scripts without programming knowledge. As an open source initiative, it also enables researcher collaboration on future developments. I am a full time employee at Varian Medical Systems, Palo Alto, California.« less
Coordination and Control for Multi-Quadrotor UAV Missions
2012-03-01
space equation uses a set of matrices to set up a series of first-order differential equations of the vehicle states. Some flexibility exists in...challenges with autonomous micro aerial vehicles.” Int. Symp. On Robotics Research, 2011 [11] M. Turpin , N. Michael, & V. Kumar, (2012). “Trajectory design...Mathematics and Engineer- ingAnalysis, TechnicalDocumentMEA-LR-085. Boeing Information and Support Services, The Boeing Company, Seattle ( 1997 ) [23] O
2009-09-01
22 b. Hazard Detection and Avoidance ( HDA )...............................22 c. Hazard Relative Navigation (HRN...Navigation (HRN) and Hazard Detection and Avoidance ( HDA ). In addition to the TRN and HDA sensors used during these phases, which will be discussed...and Avoidance ( HDA ) During the HAD phase, the expected landing site is examined and evaluated, and a new site may be selected. Using the HDA
Satellite Articulation Characterization from an Image Trajectory Matrix Using Optimization
NASA Astrophysics Data System (ADS)
Curtis, D. H.; Cobb, R. G.
Autonomous on-orbit satellite servicing and inspection benefits from an inspector satellite that can autonomously gain as much information as possible about the primary satellite. This includes performance of articulated objects such as solar arrays, antennas, and sensors. This paper presents a method of characterizing the articulation of a satellite using resolved monocular imagery. A simulated point cloud representing a nominal satellite with articulating solar panels and a complex articulating appendage is developed and projected to the image coordinates that would be seen from an inspector following a given inspection route. A method is developed to analyze the resulting image trajectory matrix. The developed method takes advantage of the fact that the route of the inspector satellite is known to assist in the segmentation of the points into different rigid bodies, the creation of the 3D point cloud, and the identification of the articulation parameters. Once the point cloud and the articulation parameters are calculated, they can be compared to the known truth. The error in the calculated point cloud is determined as well as the difference between the true workspace of the satellite and the calculated workspace. These metrics can be used to compare the quality of various inspection routes for characterizing the satellite and its articulation.
Sensor-driven area coverage for an autonomous fixed-wing unmanned aerial vehicle.
Paull, Liam; Thibault, Carl; Nagaty, Amr; Seto, Mae; Li, Howard
2014-09-01
Area coverage with an onboard sensor is an important task for an unmanned aerial vehicle (UAV) with many applications. Autonomous fixed-wing UAVs are more appropriate for larger scale area surveying since they can cover ground more quickly. However, their non-holonomic dynamics and susceptibility to disturbances make sensor coverage a challenging task. Most previous approaches to area coverage planning are offline and assume that the UAV can follow the planned trajectory exactly. In this paper, this restriction is removed as the aircraft maintains a coverage map based on its actual pose trajectory and makes control decisions based on that map. The aircraft is able to plan paths in situ based on sensor data and an accurate model of the on-board camera used for coverage. An information theoretic approach is used that selects desired headings that maximize the expected information gain over the coverage map. In addition, the branch entropy concept previously developed for autonomous underwater vehicles is extended to UAVs and ensures that the vehicle is able to achieve its global coverage mission. The coverage map over the workspace uses the projective camera model and compares the expected area of the target on the ground and the actual area covered on the ground by each pixel in the image. The camera is mounted on a two-axis gimbal and can either be stabilized or optimized for maximal coverage. Hardware-in-the-loop simulation results and real hardware implementation on a fixed-wing UAV show the effectiveness of the approach. By including the already developed automatic takeoff and landing capabilities, we now have a fully automated and robust platform for performing aerial imagery surveys.
Vision Based Navigation for Autonomous Cooperative Docking of CubeSats
NASA Astrophysics Data System (ADS)
Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker
2018-05-01
A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.
Effects of modeling errors on trajectory predictions in air traffic control automation
NASA Technical Reports Server (NTRS)
Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda
1996-01-01
Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.
Optimal Trajectories Generation in Robotic Fiber Placement Systems
NASA Astrophysics Data System (ADS)
Gao, Jiuchun; Pashkevich, Anatol; Caro, Stéphane
2017-06-01
The paper proposes a methodology for optimal trajectories generation in robotic fiber placement systems. A strategy to tune the parameters of the optimization algorithm at hand is also introduced. The presented technique transforms the original continuous problem into a discrete one where the time-optimal motions are generated by using dynamic programming. The developed strategy for the optimization algorithm tuning allows essentially reducing the computing time and obtaining trajectories satisfying industrial constraints. Feasibilities and advantages of the proposed methodology are confirmed by an application example.
Autonomous Vision Navigation for Spacecraft in Lunar Orbit
NASA Astrophysics Data System (ADS)
Bader, Nolan A.
NASA aims to achieve unprecedented navigational reliability for the first manned lunar mission of the Orion spacecraft in 2023. A technique for accomplishing this is to integrate autonomous feature tracking as an added means of improving position and velocity estimation. In this thesis, a template matching algorithm and optical sensor are tested onboard three simulated lunar trajectories using linear covariance techniques under various conditions. A preliminary characterization of the camera gives insight into its ability to determine azimuth and elevation angles to points on the surface of the Moon. A navigation performance analysis shows that an optical camera sensor can aid in decreasing position and velocity errors, particularly in a loss of communication scenario. Furthermore, it is found that camera quality and computational capability are driving factors affecting the performance of such a system.
Optimal path planning for video-guided smart munitions via multitarget tracking
NASA Astrophysics Data System (ADS)
Borkowski, Jeffrey M.; Vasquez, Juan R.
2006-05-01
An advent in the development of smart munitions entails autonomously modifying target selection during flight in order to maximize the value of the target being destroyed. A unique guidance law can be constructed that exploits both attribute and kinematic data obtained from an onboard video sensor. An optimal path planning algorithm has been developed with the goals of obstacle avoidance and maximizing the value of the target impacted by the munition. Target identification and classification provides a basis for target value which is used in conjunction with multi-target tracks to determine an optimal waypoint for the munition. A dynamically feasible trajectory is computed to provide constraints on the waypoint selection. Results demonstrate the ability of the autonomous system to avoid moving obstacles and revise target selection in flight.
Navigation of the autonomous vehicle reverse movement
NASA Astrophysics Data System (ADS)
Rachkov, M.; Petukhov, S.
2018-02-01
The paper presents a mathematical formulation of the vehicle reverse motion along a multi-link polygonal trajectory consisting of rectilinear segments interconnected by nodal points. Relevance of the problem is caused by the need to solve a number of tasks: to save the vehicle in the event of а communication break by returning along the trajectory already passed, to avoid a turn on the ground in constrained obstacles or dangerous conditions, or a partial return stroke for the subsequent bypass of the obstacle and continuation of the forward movement. The method of navigation with direct movement assumes that the reverse path is elaborated by using landmarks. To measure landmarks on board, a block of cameras is placed on a vehicle controlled by the operator through the radio channel. Errors in estimating deviation from the nominal trajectory of motion are determined using the multidimensional correlation analysis apparatus based on the dynamics of a lateral deviation error and a vehicle speed error. The result of the experiment showed a relatively high accuracy in determining the state vector that provides the vehicle reverse motion relative to the reference trajectory with a practically acceptable error while returning to the start point.
Applying deep bidirectional LSTM and mixture density network for basketball trajectory prediction
NASA Astrophysics Data System (ADS)
Zhao, Yu; Yang, Rennong; Chevalier, Guillaume; Shah, Rajiv C.; Romijnders, Rob
2018-04-01
Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a basketball trajectory based on real data, but it also can generate new trajectory samples. It is an excellent application to help coaches and players decide when and where to shoot. Its structure is particularly suitable for dealing with time series problems. BLSTM receives forward and backward information at the same time, while stacking multiple BLSTMs further increases the learning ability of the model. Combined with BLSTMs, MDN is used to generate a multi-modal distribution of outputs. Thus, the proposed model can, in principle, represent arbitrary conditional probability distributions of output variables. We tested our model with two experiments on three-pointer datasets from NBA SportVu data. In the hit-or-miss classification experiment, the proposed model outperformed other models in terms of the convergence speed and accuracy. In the trajectory generation experiment, eight model-generated trajectories at a given time closely matched real trajectories.
The experimental studies of operating modes of a diesel-generator set at variable speed
NASA Astrophysics Data System (ADS)
Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.
2017-02-01
A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.
Precision Landing and Hazard Avoidance Doman
NASA Technical Reports Server (NTRS)
Robertson, Edward A.; Carson, John M., III
2016-01-01
The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.
Autonomous Attitude Determination System (AADS). Volume 1: System description
NASA Technical Reports Server (NTRS)
Saralkar, K.; Frenkel, Y.; Klitsch, G.; Liu, K. S.; Lefferts, E.; Tasaki, K.; Snow, F.; Garrahan, J.
1982-01-01
Information necessary to understand the Autonomous Attitude Determination System (AADS) is presented. Topics include AADS requirements, program structure, algorithms, and system generation and execution.
Angles-only navigation for autonomous orbital rendezvous
NASA Astrophysics Data System (ADS)
Woffinden, David C.
The proposed thesis of this dissertation has both a practical element and theoretical component which aim to answer key questions related to the use of angles-only navigation for autonomous orbital rendezvous. The first and fundamental principle to this work argues that an angles-only navigation filter can determine the relative position and orientation (pose) between two spacecraft to perform the necessary maneuvers and close proximity operations for autonomous orbital rendezvous. Second, the implementation of angles-only navigation for on-orbit applications is looked upon with skeptical eyes because of its perceived limitation of determining the relative range between two vehicles. This assumed, yet little understood subtlety can be formally characterized with a closed-form analytical observability criteria which specifies the necessary and sufficient conditions for determining the relative position and velocity with only angular measurements. With a mathematical expression of the observability criteria, it can be used to (1) identify the orbital rendezvous trajectories and maneuvers that ensure the relative position and velocity are observable for angles-only navigation, (2) quantify the degree or level of observability and (3) compute optimal maneuvers that maximize observability. In summary, the objective of this dissertation is to provide both a practical and theoretical foundation for the advancement of autonomous orbital rendezvous through the use of angles-only navigation.
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-01-01
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks. PMID:26729123
Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian
2015-12-30
Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.
Canonical Transformations of Kepler Trajectories
ERIC Educational Resources Information Center
Mostowski, Jan
2010-01-01
In this paper, canonical transformations generated by constants of motion in the case of the Kepler problem are discussed. It is shown that canonical transformations generated by angular momentum are rotations of the trajectory. Particular attention is paid to canonical transformations generated by the Runge-Lenz vector. It is shown that these…
Long-Duration Environmentally-Adaptive Autonomous Rigorous Naval Systems
2015-09-30
equations). The accuracy of the DO level-set equations for solving the governing stochastic level-set reachability fronts was first verified in part by...reachable set contours computed by DO and MC. We see that it is less than the spatial resolution used, indicating our DO solutions are accurate. We solved ...the interior of the sensors’ reachable sets, all the physically impossible trajectories are immediately ruled out. However, this approach is myopic
Escalator: An Autonomous Scheduling Scheme for Convergecast in TSCH
Oh, Sukho; Hwang, DongYeop; Kim, Ki-Hyung; Kim, Kangseok
2018-01-01
Time Slotted Channel Hopping (TSCH) is widely used in the industrial wireless sensor networks due to its high reliability and energy efficiency. Various timeslot and channel scheduling schemes have been proposed for achieving high reliability and energy efficiency for TSCH networks. Recently proposed autonomous scheduling schemes provide flexible timeslot scheduling based on the routing topology, but do not take into account the network traffic and packet forwarding delays. In this paper, we propose an autonomous scheduling scheme for convergecast in TSCH networks with RPL as a routing protocol, named Escalator. Escalator generates a consecutive timeslot schedule along the packet forwarding path to minimize the packet transmission delay. The schedule is generated autonomously by utilizing only the local routing topology information without any additional signaling with other nodes. The generated schedule is guaranteed to be conflict-free, in that all nodes in the network could transmit packets to the sink in every slotframe cycle. We implement Escalator and evaluate its performance with existing autonomous scheduling schemes through a testbed and simulation. Experimental results show that the proposed Escalator has lower end-to-end delay and higher packet delivery ratio compared to the existing schemes regardless of the network topology. PMID:29659508
Escalator: An Autonomous Scheduling Scheme for Convergecast in TSCH.
Oh, Sukho; Hwang, DongYeop; Kim, Ki-Hyung; Kim, Kangseok
2018-04-16
Time Slotted Channel Hopping (TSCH) is widely used in the industrial wireless sensor networks due to its high reliability and energy efficiency. Various timeslot and channel scheduling schemes have been proposed for achieving high reliability and energy efficiency for TSCH networks. Recently proposed autonomous scheduling schemes provide flexible timeslot scheduling based on the routing topology, but do not take into account the network traffic and packet forwarding delays. In this paper, we propose an autonomous scheduling scheme for convergecast in TSCH networks with RPL as a routing protocol, named Escalator. Escalator generates a consecutive timeslot schedule along the packet forwarding path to minimize the packet transmission delay. The schedule is generated autonomously by utilizing only the local routing topology information without any additional signaling with other nodes. The generated schedule is guaranteed to be conflict-free, in that all nodes in the network could transmit packets to the sink in every slotframe cycle. We implement Escalator and evaluate its performance with existing autonomous scheduling schemes through a testbed and simulation. Experimental results show that the proposed Escalator has lower end-to-end delay and higher packet delivery ratio compared to the existing schemes regardless of the network topology.
Systems, methods and apparatus for quiesence of autonomic safety devices with self action
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor); Sterritt, Roy (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments an autonomic environmental safety device may be quiesced. In at least one embodiment, a method for managing an autonomic safety device, such as a smoke detector, based on functioning state and operating status of the autonomic safety device includes processing received signals from the autonomic safety device to obtain an analysis of the condition of the autonomic safety device, generating one or more stay-awake signals based on the functioning status and the operating state of the autonomic safety device, transmitting the stay-awake signal, transmitting self health/urgency data, and transmitting environment health/urgency data. A quiesce component of an autonomic safety device can render the autonomic safety device inactive for a specific amount of time or until a challenging situation has passed.
NASA Technical Reports Server (NTRS)
Grey, J.
1977-01-01
Reports submitted to the conference encompass: administration and law relating to inhabited space facilities and colonies; space manufacturing and processing; organization and construction of space habitats and management of space colony farms; winning and acquisition of lunar and asteroidal materials for sustaining autonomous space colonies. Attention is given to trajectories between earth, low earth orbit, earth-moon libration points (specifically L5), circumlunar parking orbits, and trajectories in translunar space; effects of low gravity and zero gravity on human physiology and on materials processing; architecture and landscaping for space colonies; closed ecosystems of space colonies. Varieties of human cultures and value hierarchies around the earth are examined for broader perspectives on the social organization of space colonies.
The Role of Public Opinion in Shaping Trajectories of Agricultural Biotechnology.
Malyska, Aleksandra; Bolla, Robert; Twardowski, Tomasz
2016-07-01
Science and technology are not autonomous entities and research trajectories are largely influenced by public opinion. The role of political decisions becomes especially evident in light of rapidly developing new breeding techniques (NBTs) and other genome editing methods for crop improvement. Decisions on how those new techniques should be regulated may not be based entirely on scientific rationale, and even if it is decided that crops produced by NBTs do not fall under the umbrella of genetically modified organisms (GMOs), their commercialization is by no means certain at this time. If and when adopted regulations do not comply with the public's perception of risks, policy makers will find themselves under pressure to ban or restrict the use of the respective products. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development and Evaluation of Positioning Systems for Autonomous Vehicle Navigation
2001-12-01
generation of autonomous vehicles to utilize NTV technology is built on a commercially-available vehicle built by ASV. The All-Purpose Remote Transport...larger scale, AFRL and CIMAR are involved in the development of a standard approach in the design and specification of autonomous vehicles being...1996. Shi92 Shin, D.H., Sanjiv, S., and Lee, J.J., “Explicit Path Tracking by Autonomous Vehicles ,” Robotica, 10, (1992), 69-87. Ste95
Self-Assessment Exercises in Continuum Mechanics with Autonomous Learning
ERIC Educational Resources Information Center
Marcé-Nogué, Jordi; Gil, LLuís; Pérez, Marco A.; Sánchez, Montserrat
2013-01-01
The main objective of this work is to generate a set of exercises to improve the autonomous learning in "Continuum Mechanics" through a virtual platform. Students will have to resolve four exercises autonomously related to the subject developed in class and they will post the solutions on the virtual platform within a deadline. Students…
NASA Technical Reports Server (NTRS)
Steck, Daniel
2009-01-01
This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.
Autonomic predictors of recovery following surgery: A comparative study
Williamson, John B.; Lewis, Greg; Grippo, Angela J.; Lamb, Damon; Harden, Emily; Handleman, Mika; Lebow, Jocelyn; Carter, C. Sue; Porges, Stephen W.
2015-01-01
Although heart rate and temperature are continuously monitored in patients during recovery following surgery, measures that extract direct manifestations of neural regulation of autonomic circuits from the beat-to-beat heart rate may be more sensitive to outcome. We explore the relationship between features of autonomic regulation and survival in the prairie vole, a small mammal, with features of vagal regulation of the heart similar to humans. Cardiac vagal regulation is manifested in the beat-to-beat heart rate variability (HRV) pattern and can be quantified by extracting measures of the amplitude of periodic oscillations associated with spontaneous breathing. Thus, monitoring beat-to-beat heart rate patterns post-surgery in the prairie vole may provide an opportunity to dynamically assess autonomic adjustments during recovery. Surgeries to implant telemetry devices to monitor body temperature and continuous ECG in prairie voles are routinely performed in our laboratory. Ten of these implanted prairie voles died within 48 h post-surgery. To compare the post-surgery autonomic trajectories with typical surviving prairie voles, the post-surgery data from 17 surviving prairie voles were randomly selected. The data are reported hourly for 27 prairie voles between 6 and 14 h (1 h before the demise of the first subject) post-surgery. Receiver operator curves were calculated hourly for each variable to evaluate sensitivity in discriminating survival. The data illustrate that measures of HRV are the most sensitive indicators. These findings provide a foundation for investigating further neural mechanisms of cardiovascular function. PMID:20451468
Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Shukurova, L. M.
2017-11-01
For all days of measurements in 2002-2015 of volume concentration of aerosols at the AERONET Tomsk/Tomsk-22 station an array of 10-day backward trajectories of air parcels arriving in Tomsk into seven layers of the troposphere with heights in the range of 0.5-5.0 km is calculated using the trajectory model NOAA HYSPLIT_4. For the three fractions of the aerosol with particle sizes < 1.0 μm, 1.0-2.5 μm, 2.5-5.0 μm and their sum (< 5.0 μm), the field of capacity of the potential sources of aerosols of these fractions for southern Siberia is determined by the CWT (concentration weighted trajectory) method using the backward trajectory array. The analysis is carried out taking into account the processes both the scavenging of the aerosols with precipitation and the dry deposition. Trajectories arriving at different heights were analyzed taking into account the weight coefficients proportional to the backward light scattering coefficients of an aerosols at corresponding heights for warm and cold seasons in Western Siberia. The most capable (in unit of volume concentration μm3 /μm2 ) potential sources of these fractions for southern Siberia are located above North Africa, Eastern Siberia, Central Asia and the Dzhungarian desert in the Xinjiang-Uyghur Autonomous Region of China.
Iso-chemical potential trajectories in the P-T plane for He II
NASA Technical Reports Server (NTRS)
Maytal, B.; Nissen, J. A.; Van Sciver, S. W.
1990-01-01
Trajectories of constant chemical potential in the P-T plane serve as an integral formulation of London's equation. The trajectories are useful for analysis and synthesis of fountain effect pump performance. A family of trajectories is generated from available numerical codes.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Zhou, Yang; Yuan, Kai; Jia, Zhiyu; Li, Shuo
2018-05-01
Aiming at the demonstration of autonomic logistics system to be used at the new generation of aviation materiel in our country, the modeling and simulating method of aviation materiel support effectiveness considering autonomic logistics are studied. Firstly, this paper introduced the idea of JSF autonomic logistics and analyzed the influence of autonomic logistics on support effectiveness from aspects of reliability, false alarm rate, troubleshooting time, and support delay time and maintenance level. On this basis, the paper studies the modeling and simulating methods of support effectiveness considering autonomic logistics, and puts forward the maintenance support simulation process considering autonomic logistics. Finally, taking the typical aviation materiel as an example, this paper analyzes and verifies the above-mentioned support effectiveness modeling and simulating method of aviation materiel considering autonomic logistics.
John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Reversible Chemochromic Hydrogen Detectors; Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling; Using Indium Tin Oxide To Mitigate Dust on Viewing Ports; High-Performance Polyimide Powder Coatings; Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications; Aerocoat 7 Replacement Coatings; Photocatalytic Coatings for Exploration and Spaceport Design; New Materials for the Repair of Polyimide Electrical Wire Insulation; Commodity-Free Calibration; Novel Ice Mitigation Methods; Crack Offset Measurement With the Projected Laser Target Device; New Materials for Structural Composites and Protective Coatings; Fire Chemistry Testing of Spray-On Foam Insulation (SOFI); Using Aerogel-Based Insulation Material To Prevent Foam Loss on the Liquid-Hydrogen Intertank; Particle Ejection and Levitation Technology (PELT); Electrostatic Characterization of Lunar Dust; Numerical Analysis of Rocket Exhaust Cratering; RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization; Tribocharging Lunar Soil for Electrostatic Beneficiation; Numerically Modeling the Erosion of Lunar Soil by Rocket Exhaust Plumes; Trajectory Model of Lunar Dust Particles; Using Lunar Module Shadows To Scale the Effects of Rocket Exhaust Plumes; Predicting the Acoustic Environment Induced by the Launch of the Ares I Vehicle; Measuring Ultrasonic Acoustic Velocity in a Thin Sheet of Graphite Epoxy Composite; Hail Size Distribution Mapping; Launch Pad 39 Hail Monitor Array System; Autonomous Flight Safety System - Phase III; The Photogrammetry Cube; Bird Vision System; Automating Range Surveillance Through Radio Interferometry and Field Strength Mapping Techniques; Next-Generation Telemetry Workstation; GPS Metric Tracking Unit; and Space-Based Range.
NASA Technical Reports Server (NTRS)
Murad, P. A.
1993-01-01
Tsien's method is extended to treat the orbital motion of a body undergoing accelerations and decelerations. A generalized solution is discussed for the generalized case where a body undergoes azimuthal and radial thrust and the problem is further simplified for azimuthal thrust alone. Judicious selection of thrust could generate either an elliptic or hyperbolic trajectory. This is unexpected especially when the body has only enough energy for a lower state trajectory. The methodology is extended treating the problem of vehicle thrust for orbiting a sphere and vehicle thrust within the classical restricted three-body problem. Results for the latter situation can produce hyperbolic trajectories through eigen value decomposition. Since eigen values for no-thrust can be imaginary, thrust can generate real eigen values to describe hyperbolic trajectories. Keplerian dynamics appears to represent but a small subset of a much larger non-Keplerian domain especially when thrust effects are considered. The need for high thrust long duration space-based propulsion systems for changing a trajectory's canonical form is clearly demonstrated.
Computing danger zones for provably safe closely spaced parallel approaches: Theory and experiment
NASA Astrophysics Data System (ADS)
Teo, Rodney
In poor visibility, paired approaches to airports with closely spaced parallel runways are not permitted, thus halving the arrival rate. With Global Positioning System technology, datalinks and cockpit displays, this could be averted. One important problem is ensuring safety during a blundered approach by one aircraft. This is on-going research. A danger zone around the blunderer is required. If the correct danger zone could be calculated, then it would be possible to get 100% of clear-day capacity in poor-visibility days even on 750 foot runways. The danger zones vary significantly (during an approach) and calculating them in real time would be very significant. Approximations (e.g. outer bounds) are not good enough. This thesis presents a way to calculate these danger zones in real time for a very broad class of blunder trajectories. The approach in this thesis differs from others in that it guarantees safety for any possible blunder trajectory as long as the speeds and turn rates of the blunder are within certain bounds. In addition, the approach considers all emergency evasive maneuvers whose speeds and turn rates are within certain bounds about a nominal emergency evasive maneuver. For all combinations of these blunder and evasive maneuver trajectories, it guarantees that the evasive maneuver is safe. For more than 1 million simulation runs, the algorithm shows a 100% rate of Successful Alerts and a 0% rate of Collisions Given an Alert. As an experimental testbed, two 10-ft wingspan fully autonomous unmanned aerial vehicles and a ground station are developed together with J. S. Jang. The development includes the design and flight testing of automatic controllers. The testbed is used to demonstrate the algorithm implementation through an autonomous closely spaced parallel approach, with one aircraft programmed to blunder. The other aircraft responds according to the result of the algorithm on board it and evades autonomously when required. This experimental demonstration is successfully conducted, showing the implementation of the algorithm, in particular, demonstrating that it can run in real time. Finally; with the necessary sensors and datalink, and the appropriate procedures in place, the algorithm developed in this thesis will enable 100% of clear-day capacity in poor-visibility days even on 750 foot runways.
Yan, Zheping; Li, Jiyun; Zhang, Gengshi; Wu, Yi
2018-01-01
A novel real-time reaction obstacle avoidance algorithm (RRA) is proposed for autonomous underwater vehicles (AUVs) that must adapt to unknown complex terrains, based on forward looking sonar (FLS). To accomplish this algorithm, obstacle avoidance rules are planned, and the RRA processes are split into five steps Introduction only lists 4 so AUVs can rapidly respond to various environment obstacles. The largest polar angle algorithm (LPAA) is designed to change detected obstacle’s irregular outline into a convex polygon, which simplifies the obstacle avoidance process. A solution is designed to solve the trapping problem existing in U-shape obstacle avoidance by an outline memory algorithm. Finally, simulations in three unknown obstacle scenes are carried out to demonstrate the performance of this algorithm, where the obtained obstacle avoidance trajectories are safety, smooth and near-optimal. PMID:29393915
Yan, Zheping; Li, Jiyun; Zhang, Gengshi; Wu, Yi
2018-02-02
A novel real-time reaction obstacle avoidance algorithm (RRA) is proposed for autonomous underwater vehicles (AUVs) that must adapt to unknown complex terrains, based on forward looking sonar (FLS). To accomplish this algorithm, obstacle avoidance rules are planned, and the RRA processes are split into five steps Introduction only lists 4 so AUVs can rapidly respond to various environment obstacles. The largest polar angle algorithm (LPAA) is designed to change detected obstacle's irregular outline into a convex polygon, which simplifies the obstacle avoidance process. A solution is designed to solve the trapping problem existing in U-shape obstacle avoidance by an outline memory algorithm. Finally, simulations in three unknown obstacle scenes are carried out to demonstrate the performance of this algorithm, where the obtained obstacle avoidance trajectories are safety, smooth and near-optimal.
NASA Technical Reports Server (NTRS)
Rouff, Christopher A. (Inventor); Sterritt, Roy (Inventor); Truszkowski, Walter F. (Inventor); Hinchey, Michael G. (Inventor); Gracanin, Denis (Inventor); Rash, James L. (Inventor)
2011-01-01
Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable. The ability to specify the policy for the management of a system and then automatically generate an equivalent implementation greatly improves the quality of software, the survivability of future missions, in particular when the system will operate untended in very remote environments, and greatly reduces development lead times and costs.
A trajectory generation framework for modeling spacecraft entry in MDAO
NASA Astrophysics Data System (ADS)
D`Souza, Sarah N.; Sarigul-Klijn, Nesrin
2016-04-01
In this paper a novel trajectory generation framework was developed that optimizes trajectory event conditions for use in a Generalized Entry Guidance algorithm. The framework was developed to be adaptable via the use of high fidelity equations of motion and drag based analytical bank profiles. Within this framework, a novel technique was implemented that resolved the sensitivity of the bank profile to atmospheric non-linearities. The framework's adaptability was established by running two different entry bank conditions. Each case yielded a reference trajectory and set of transition event conditions that are flight feasible and implementable in a Generalized Entry Guidance algorithm.
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor)
2015-01-01
A self-managing system that uses autonomy and autonomicity is provided with the self-* property of autopoiesis (self-creation). In the event of an agent in the system self-destructing, autopoiesis auto-generates a replacement. A self-esteem reward scheme is also provided and can be used for autonomic agents, based on their performance and trust. Art agent with greater self-esteem may clone at a greater rate compared to the rate of an agent with lower self-esteem. A self-managing system is provided for a high volume of distributed autonomic/self-managing mobile agents, and autonomic adhesion is used to attract similar agents together or to repel dissimilar agents from an event horizon. An apoptotic system is also provided that accords an "expiry date" to data and digital objects, for example, that are available on the internet, which finds usefulness not only in general but also for controlling the loaning and use of space scientific data.
NASA Astrophysics Data System (ADS)
Rodríguez, A.; Astrain, D.; Martínez, A.; Aranguren, P.
2014-06-01
In the work discussed in this paper a thermoelectric generator was developed to harness waste heat from the exhaust gas of a boiler in a biomass power plant and thus generate electric power to operate a flowmeter installed in the chimney, to make it autonomous. The main objective was to conduct an experimental study to optimize a previous design obtained after computational work based on a simulation model for thermoelectric generators. First, several places inside and outside the chimney were considered as sites for the thermoelectricity-driven autonomous sensor. Second, the thermoelectric generator was built and tested to assess the effect of the cold-side heat exchanger on the electric power, power consumption by the flowmeter, and transmission frequency. These tests provided the best configuration for the heat exchanger, which met the transmission requirements for different working conditions. The final design is able to transmit every second and requires neither batteries nor electric wires. It is a promising application in the field of thermoelectric generation.
2017-02-08
Georgia Tech Research Corporation 505 Tenth Street NW Atlanta, GA 30332 -0420 ABSTRACT Final Report: MURI: Neuro-Inspired Adaptive Perception and...Conquer Strategy for Optimal Trajectory Planning via Mixed-Integer Programming, IEEE Transactions on Robotics, (12 2015): 0. doi: 10.1109/TRO...Learning Day, Microsoft Corporation , Cambridge, MA, May 18, 2015. (c) Presentations 09/06/2015 09/08/2015 125 131 Ali Borji, Dicky N. Sihite, Laurent Itti
2011-09-01
artificially creating enough baseline to enable triangulation. This motion comes at the expense of the primary mission, unless the entire purpose...control of a sUAS for surveillance and other mis-sions. Completely autonomous UAS control for surveillance missions is still an on-the-horizon...work, xapp, was correspondingly set to 2-m. Since the test platform for the algorithm was a helicopter vice a fixed-wing UAS , an aggressive flare segment
Six Dimensional Trajectory Solver for Autonomous Proximity Operations
1990-05-01
Clohessy - Wiltshire equations for relative position and quaternions for relative attitude are used to define a state space relationship between the initial...0 (2.23) y + 2nX = 0 (2.24) 2+ n2 z = 0 (2.25) which are commonly referred to as the Clohessy - Wiltshire equations. Although 11 the equations are...attributed to W. Clohessy and R. Wiltshire for their paper in the September 1960 issue of the Journal of Aerospace Science, another author developed the
NASA Technical Reports Server (NTRS)
Rowe, Neil C.; Lewis, David H.
1989-01-01
Path planning is an important issue for space robotics. Finding safe and energy-efficient paths in the presence of obstacles and other constraints can be complex although important. High-level (large-scale) path planning for robotic vehicles was investigated in three-dimensional space with obstacles, accounting for: (1) energy costs proportional to path length; (2) turn costs where paths change trajectory abruptly; and (3) safety costs for the danger associated with traversing a particular path due to visibility or invisibility from a fixed set of observers. Paths optimal with respect to these cost factors are found. Autonomous or semi-autonomous vehicles were considered operating either in a space environment around satellites and space platforms, or aircraft, spacecraft, or smart missiles operating just above lunar and planetary surfaces. One class of applications concerns minimizing detection, as for example determining the best way to make complex modifications to a satellite without being observed by hostile sensors; another example is verifying there are no paths (holes) through a space defense system. Another class of applications concerns maximizing detection, as finding a good trajectory between mountain ranges of a planet while staying reasonably close to the surface, or finding paths for a flight between two locations that maximize the average number of triangulation points available at any time along the path.
Qu, Yang; Pomerantz, Eva M.
2014-01-01
There is increasing concern that American children are not achieving at their full potential. A particular point of risk is early adolescence when American children often view school as less valuable, becoming less engaged as well. Initial research in China does not find such a trend. The goal of the current research was to elucidate why the movement away from school evident in the United States does not appear to be evident in China. 4 times over the 7th and 8th grades, 825 (48% female) American and Chinese children (mean age = 12.73 years) reported on the value they place on school and their engagement (i.e., use of self-regulated learning strategies) in school. They also reported on their sense of responsibility to parents (e.g., feelings of obligation to parents), parents’ involvement in their learning, and their autonomous motivation in school. A decline in American but not Chinese children’s sense of responsibility to parents accounted for divergent trajectories in the value they place on school and their engagement in school over the seventh and eighth grades. Neither parents’ involvement nor children’s autonomous motivation played a mediating role. The findings suggest that maintaining American children’s sense of responsibility to parents during early adolescence may protect children from moving away from school. PMID:25354963
A navigation and control system for an autonomous rescue vehicle in the space station environment
NASA Technical Reports Server (NTRS)
Merkel, Lawrence
1991-01-01
A navigation and control system was designed and implemented for an orbital autonomous rescue vehicle envisioned to retrieve astronauts or equipment in the case that they become disengaged from the space station. The rescue vehicle, termed the Extra-Vehicular Activity Retriever (EVAR), has an on-board inertial measurement unit ahd GPS receivers for self state estimation, a laser range imager (LRI) and cameras for object state estimation, and a data link for reception of space station state information. The states of the retriever and objects (obstacles and the target object) are estimated by inertial state propagation which is corrected via measurements from the GPS, the LRI system, or the camera system. Kalman filters are utilized to perform sensor fusion and estimate the state propagation errors. Control actuation is performed by a Manned Maneuvering Unit (MMU). Phase plane control techniques are used to control the rotational and translational state of the retriever. The translational controller provides station-keeping or motion along either Clohessy-Wiltshire trajectories or straight line trajectories in the LVLH frame of any sufficiently observed object or of the space station. The software was used to successfully control a prototype EVAR on an air bearing floor facility, and a simulated EVAR operating in a simulated orbital environment. The design of the navigation system and the control system are presented. Also discussed are the hardware systems and the overall software architecture.
Qu, Yang; Pomerantz, Eva M
2015-11-01
There is increasing concern that American children are not achieving at their full potential. A particular point of risk is early adolescence when American children often view school as less valuable, becoming less engaged as well. Initial research in China does not find such a trend. The goal of the current research was to elucidate why the movement away from school evident in the United States does not appear to be evident in China. 4 times over the 7th and 8th grades, 825 (48 % female) American and Chinese children (mean age = 12.73 years) reported on the value they place on school and their engagement (i.e., use of self-regulated learning strategies) in school. They also reported on their sense of responsibility to parents (e.g., feelings of obligation to parents), parents' involvement in their learning, and their autonomous motivation in school. A decline in American but not Chinese children's sense of responsibility to parents accounted for divergent trajectories in the value they place on school and their engagement in school over the seventh and eighth grades. Neither parents' involvement nor children's autonomous motivation played a mediating role. The findings suggest that maintaining American children's sense of responsibility to parents during early adolescence may protect children from moving away from school.
Trajectories of Listeria-type motility in two dimensions
NASA Astrophysics Data System (ADS)
Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi
2012-12-01
Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.
NASA Technical Reports Server (NTRS)
Balas, M. J.; Kaufman, H.; Wen, J.
1985-01-01
A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS.
Experimental Evaluation of an Integrated Datalink and Automation-Based Strategic Trajectory Concept
NASA Technical Reports Server (NTRS)
Mueller, Eric
2007-01-01
This paper presents research on the interoperability of trajectory-based automation concepts and technologies with modern Flight Management Systems and datalink communication available on many of today s commercial aircraft. A tight integration of trajectory-based ground automation systems with the aircraft Flight Management System through datalink will enable mid-term and far-term benefits from trajectory-based automation methods. A two-way datalink connection between the trajectory-based automation resident in the Center/TRACON Automation System and the Future Air Navigation System-1 integrated FMS/datalink in NASA Ames B747-400 Level D simulator has been established and extensive simulation of the use of datalink messages to generate strategic trajectories completed. A strategic trajectory is defined as an aircraft deviation needed to solve a conflict or honor a route request and then merge the aircraft back to its nominal preferred trajectory using a single continuous trajectory clearance. Engineers on the ground side of the datalink generated lateral and vertical trajectory clearances and transmitted them to the Flight Management System of the 747; the airborne automation then flew the new trajectory without human intervention, requiring the flight crew only to review and to accept the trajectory. This simulation established the protocols needed for a significant majority of the trajectory change types required to solve a traffic conflict or deviate around weather. This demonstration provides a basis for understanding the requirements for integration of trajectory-based automation with current Flight Management Systems and datalink to support future National Airspace System operations.
Yang, Yongliang; Modares, Hamidreza; Wunsch, Donald C; Yin, Yixin
2018-06-01
This paper develops optimal control protocols for the distributed output synchronization problem of leader-follower multiagent systems with an active leader. Agents are assumed to be heterogeneous with different dynamics and dimensions. The desired trajectory is assumed to be preplanned and is generated by the leader. Other follower agents autonomously synchronize to the leader by interacting with each other using a communication network. The leader is assumed to be active in the sense that it has a nonzero control input so that it can act independently and update its control to keep the followers away from possible danger. A distributed observer is first designed to estimate the leader's state and generate the reference signal for each follower. Then, the output synchronization of leader-follower systems with an active leader is formulated as a distributed optimal tracking problem, and inhomogeneous algebraic Riccati equations (AREs) are derived to solve it. The resulting distributed optimal control protocols not only minimize the steady-state error but also optimize the transient response of the agents. An off-policy reinforcement learning algorithm is developed to solve the inhomogeneous AREs online in real time and without requiring any knowledge of the agents' dynamics. Finally, two simulation examples are conducted to illustrate the effectiveness of the proposed algorithm.
Costs of Limiting Route Optimization to Published Waypoints in the Traffic Aware Planner
NASA Technical Reports Server (NTRS)
Karr, David A.; Vivona, Robert A.; Wing, David J.
2013-01-01
The Traffic Aware Planner (TAP) is an airborne advisory tool that generates optimized, traffic-avoiding routes to support the aircraft crew in making strategic reroute requests to Air Traffic Control (ATC). TAP is derived from a research-prototype self-separation tool, the Autonomous Operations Planner (AOP), in which optimized route modifications that avoid conflicts with traffic and weather, using waypoints at explicit latitudes and longitudes (a technique supported by self-separation concepts), are generated by maneuver patterns applied to the existing route. For use in current-day operations in which trajectory changes must be requested from ATC via voice communication, TAP produces optimized routes described by advisories that use only published waypoints prior to a reconnection waypoint on the existing route. We describe how the relevant algorithms of AOP have been modified to implement this requirement. The modifications include techniques for finding appropriate published waypoints in a maneuver pattern and a method for combining the genetic algorithm of AOP with an exhaustive search of certain types of advisory. We demonstrate methods to investigate the increased computation required by these techniques and to estimate other costs (measured in terms such as time to destination and fuel burned) that may be incurred when only published waypoints are used.
Analysis and control of high-speed wheeled vehicles
NASA Astrophysics Data System (ADS)
Velenis, Efstathios
In this work we reproduce driving techniques to mimic expert race drivers and obtain the open-loop control signals that may be used by auto-pilot agents driving autonomous ground wheeled vehicles. Race drivers operate their vehicles at the limits of the acceleration envelope. An accurate characterization of the acceleration capacity of the vehicle is required. Understanding and reproduction of such complex maneuvers also require a physics-based mathematical description of the vehicle dynamics. While most of the modeling issues of ground-vehicles/automobiles are already well established in the literature, lack of understanding of the physics associated with friction generation results in ad-hoc approaches to tire friction modeling. In this work we revisit this aspect of the overall vehicle modeling and develop a tire friction model that provides physical interpretation of the tire forces. The new model is free of those singularities at low vehicle speed and wheel angular rate that are inherent in the widely used empirical static models. In addition, the dynamic nature of the tire model proposed herein allows the study of dynamic effects such as transients and hysteresis. The trajectory-planning problem for an autonomous ground wheeled vehicle is formulated in an optimal control framework aiming to minimize the time of travel and maximize the use of the available acceleration capacity. The first approach to solve the optimal control problem is using numerical techniques. Numerical optimization allows incorporation of a vehicle model of high fidelity and generates realistic solutions. Such an optimization scheme provides an ideal platform to study the limit operation of the vehicle, which would not be possible via straightforward simulation. In this work we emphasize the importance of online applicability of the proposed methodologies. This underlines the need for optimal solutions that require little computational cost and are able to incorporate real, unpredictable environments. A semi-analytic methodology is developed to generate the optimal velocity profile for minimum time travel along a prescribed path. The semi-analytic nature ensures minimal computational cost while a receding horizon implementation allows application of the methodology in uncertain environments. Extensions to increase fidelity of the vehicle model are finally provided.
Trajectory-based visual localization in underwater surveying missions.
Burguera, Antoni; Bonin-Font, Francisco; Oliver, Gabriel
2015-01-14
We present a new vision-based localization system applied to an autonomous underwater vehicle (AUV) with limited sensing and computation capabilities. The traditional EKF-SLAM approaches are usually expensive in terms of execution time; the approach presented in this paper strengthens this method by adopting a trajectory-based schema that reduces the computational requirements. The pose of the vehicle is estimated using an extended Kalman filter (EKF), which predicts the vehicle motion by means of a visual odometer and corrects these predictions using the data associations (loop closures) between the current frame and the previous ones. One of the most important steps in this procedure is the image registration method, as it reinforces the data association and, thus, makes it possible to close loops reliably. Since the use of standard EKFs entail linearization errors that can distort the vehicle pose estimations, the approach has also been tested using an iterated Kalman filter (IEKF). Experiments have been conducted using a real underwater vehicle in controlled scenarios and in shallow sea waters, showing an excellent performance with very small errors, both in the vehicle pose and in the overall trajectory estimates.
An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback
NASA Technical Reports Server (NTRS)
Humphreys, William M, Jr.; Culliton, William G.
2008-01-01
Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.
Fluctuating observation time ensembles in the thermodynamics of trajectories
NASA Astrophysics Data System (ADS)
Budini, Adrián A.; Turner, Robert M.; Garrahan, Juan P.
2014-03-01
The dynamics of stochastic systems, both classical and quantum, can be studied by analysing the statistical properties of dynamical trajectories. The properties of ensembles of such trajectories for long, but fixed, times are described by large-deviation (LD) rate functions. These LD functions play the role of dynamical free energies: they are cumulant generating functions for time-integrated observables, and their analytic structure encodes dynamical phase behaviour. This ‘thermodynamics of trajectories’ approach is to trajectories and dynamics what the equilibrium ensemble method of statistical mechanics is to configurations and statics. Here we show that, just like in the static case, there are a variety of alternative ensembles of trajectories, each defined by their global constraints, with that of trajectories of fixed total time being just one of these. We show how the LD functions that describe an ensemble of trajectories where some time-extensive quantity is constant (and large) but where total observation time fluctuates can be mapped to those of the fixed-time ensemble. We discuss how the correspondence between generalized ensembles can be exploited in path sampling schemes for generating rare dynamical trajectories.
NASA Astrophysics Data System (ADS)
Gao, Guoyou; Jiang, Chunsheng; Chen, Tao; Hui, Chun
2018-05-01
Industrial robots are widely used in various processes of surface manufacturing, such as thermal spraying. The established robot programming methods are highly time-consuming and not accurate enough to fulfil the demands of the actual market. There are many off-line programming methods developed to reduce the robot programming effort. This work introduces the principle of several based robot trajectory generation strategy on planar surface and curved surface. Since the off-line programming software is widely used and thus facilitates the robot programming efforts and improves the accuracy of robot trajectory, the analysis of this work is based on the second development of off-line programming software Robot studio™. To meet the requirements of automotive paint industry, this kind of software extension helps provide special functions according to the users defined operation parameters. The presented planning strategy generates the robot trajectory by moving an orthogonal surface according to the information of coating surface, a series of intersection curves are then employed to generate the trajectory points. The simulation results show that the path curve created with this method is successive and smooth, which corresponds to the requirements of automotive spray industrial applications.
Fuzzy Logic Based Control for Autonomous Mobile Robot Navigation
Masmoudi, Mohamed Slim; Masmoudi, Mohamed
2016-01-01
This paper describes the design and the implementation of a trajectory tracking controller using fuzzy logic for mobile robot to navigate in indoor environments. Most of the previous works used two independent controllers for navigation and avoiding obstacles. The main contribution of the paper can be summarized in the fact that we use only one fuzzy controller for navigation and obstacle avoidance. The used mobile robot is equipped with DC motor, nine infrared range (IR) sensors to measure the distance to obstacles, and two optical encoders to provide the actual position and speeds. To evaluate the performances of the intelligent navigation algorithms, different trajectories are used and simulated using MATLAB software and SIMIAM navigation platform. Simulation results show the performances of the intelligent navigation algorithms in terms of simulation times and travelled path. PMID:27688748
Development of a neuromorphic control system for a lightweight humanoid robot
NASA Astrophysics Data System (ADS)
Folgheraiter, Michele; Keldibek, Amina; Aubakir, Bauyrzhan; Salakchinov, Shyngys; Gini, Giuseppina; Mauro Franchi, Alessio; Bana, Matteo
2017-03-01
A neuromorphic control system for a lightweight middle size humanoid biped robot built using 3D printing techniques is proposed. The control architecture consists of different modules capable to learn and autonomously reproduce complex periodic trajectories. Each module is represented by a chaotic Recurrent Neural Network (RNN) with a core of dynamic neurons randomly and sparsely connected with fixed synapses. A set of read-out units with adaptable synapses realize a linear combination of the neurons output in order to reproduce the target signals. Different experiments were conducted to find out the optimal initialization for the RNN’s parameters. From simulation results, using normalized signals obtained from the robot model, it was proven that all the instances of the control module can learn and reproduce the target trajectories with an average RMS error of 1.63 and variance 0.74.
Astronaut Carl Meade mans pilots station during trajectory control exercise
1994-09-12
STS064-22-024 (9-20 Sept. 1994) --- With a manual and lap top computer in front of him, astronaut Carl J. Meade, STS-64 mission specialist, supports operations with the Trajectory Control Sensor (TCS) aboard the Earth-orbiting space shuttle Discovery. For this exercise, Meade temporarily mans the pilot's station on the forward flight deck. The TCS is the work of a team of workers at NASA's Johnson Space Center. Data gathered during this flight was expected to prove valuable in designing and developing a sensor for use during the rendezvous and mating phases of orbiter missions to the space station. For this demonstration, the Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN 201) was used as the target vehicle during release and retrieval operations. Photo credit: NASA or National Aeronautics and Space Administration
Outer-Planet Mission Analysis Using Solar-Electric Ion Propulsion
NASA Technical Reports Server (NTRS)
Woo, Byoungsam; Coverstone, Victoria L.; Hartmann, John W.; Cupples, Michael
2003-01-01
Outer-planet mission analysis was performed using three next generation solar-electric ion thruster models. Optimal trajectories are presented that maximize the delivered mass to the designated outer planet. Trajectories to Saturn and Neptune with a single Venus gravity assist are investigated. For each thruster model, the delivered mass versus flight time curve was generated to obtain thruster model performance. The effects of power to the thrusters and resonance ratio of Venutian orbital periods to spacecraft period were also studied. Multiple locally optimal trajectories to Saturn and Neptune have been discovered in different regions of the parameter search space. The characteristics of each trajectory are noted.
Generation of NEP heliocentric trajectory data
NASA Technical Reports Server (NTRS)
Horsewood, J. L.; Brice, K. B.
1972-01-01
A study, designed to generate representative nuclear electric propulsion data for rendezvous missions to the comet Encke using the variational calculus program HILTOP, is presented. Other purposes of the study include a comparison of the HILTOP data with equivalent data generated with QUICKTOP program and to propose approaches for storing and subsequently accessing the optimum trajectory and performance data in the QUICKLY program.
Generation and use of the Goddard trajectory determination system SLP ephemeris files
NASA Technical Reports Server (NTRS)
Armstrong, M. G.; Tomaszewski, I. B.
1973-01-01
Information is presented to acquaint users of the Goddard Trajectory Determination System Solar/Lunar/Planetary ephemeris files with the details connected with the generation and use of these files. In particular, certain sections constitute a user's manual for the ephemeris files.
Motion generation of robotic surgical tasks: learning from expert demonstrations.
Reiley, Carol E; Plaku, Erion; Hager, Gregory D
2010-01-01
Robotic surgical assistants offer the possibility of automating portions of a task that are time consuming and tedious in order to reduce the cognitive workload of a surgeon. This paper proposes using programming by demonstration to build generative models and generate smooth trajectories that capture the underlying structure of the motion data recorded from expert demonstrations. Specifically, motion data from Intuitive Surgical's da Vinci Surgical System of a panel of expert surgeons performing three surgical tasks are recorded. The trials are decomposed into subtasks or surgemes, which are then temporally aligned through dynamic time warping. Next, a Gaussian Mixture Model (GMM) encodes the experts' underlying motion structure. Gaussian Mixture Regression (GMR) is then used to extract a smooth reference trajectory to reproduce a trajectory of the task. The approach is evaluated through an automated skill assessment measurement. Results suggest that this paper presents a means to (i) extract important features of the task, (ii) create a metric to evaluate robot imitative performance (iii) generate smoother trajectories for reproduction of three common medical tasks.
Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette Syndrome
Nagai, Yoko
2015-01-01
This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in epilepsy (small) and tics in Tourette Syndrome (TS). In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g., syncope), or in relation to Sudden Unexpected Death in Epilepsy (SUDEP). Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in epilepsy and TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behavior influence central thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated to gain a strong position within the next generation of treatment for epilepsy, as a non-invasive technique with minimal side effects. This approach also takes advantage of the current practical opportunity to utilize growing digital health technology. PMID:26441491
Modulation of autonomic activity in neurological conditions: Epilepsy and Tourette Syndrome.
Nagai, Yoko
2015-01-01
This manuscript considers the central but neglected role of the autonomic nervous system in the expression and control of seizures in epilepsy (small) and tics in Tourette Syndrome (TS). In epilepsy, consideration of autonomic involvement is typically confined to differential diagnoses (e.g., syncope), or in relation to Sudden Unexpected Death in Epilepsy (SUDEP). Investigation is more limited in Tourette Syndrome. The role of the autonomic nervous system in the generation and prevention of epileptic seizures is largely overlooked. Emotional stimuli such as anxiety and stress are potent causes of seizures and tic activity in epilepsy and TS, respectively. This manuscript will describe a possible neural mechanism by which afferent autonomic projections linked to cognition and behavior influence central thalamo-cortical regulation, which appears to be an important means for controlling both seizure and tic activity. It also summarizes the link between the integrity of the default mode network and autonomic regulation in patients with epilepsy as well as the link between impaired motor control and autonomic regulation in patients with TS. Two neurological conditions; epilepsy and TS were chosen, as seizures and tics represent parameters that can be easily measured to investigate influences of autonomic functions. The EDA biofeedback approach is anticipated to gain a strong position within the next generation of treatment for epilepsy, as a non-invasive technique with minimal side effects. This approach also takes advantage of the current practical opportunity to utilize growing digital health technology.
Analysis of Chemical, REP, and SEP missions to the Trojan asteroids
NASA Technical Reports Server (NTRS)
Bonfiglio, Eugene P.; Oh, David; Yen, Chen-Wan
2005-01-01
Recent studies suggest significant benefits from using 1st and 2nd generation Radioisotope Power Systems (RPS) as a power source for electric propulsion (EP) missions to the outer planets. This study focuses on trajectories to the Trojan asteroids. A high level analysis is performed with chemical trajectories to determine potential canidates for REP trajectory optimization. Extensive analysis of direct trajectories using REP is performed on these candidates. Solar Electric Propulsion (SEP) trajectories are also considered for comparison against REP trajectories.
Nonlinear pattern analysis of ventricular premature beats by mutual information
NASA Technical Reports Server (NTRS)
Osaka, M.; Saitoh, H.; Yokoshima, T.; Kishida, H.; Hayakawa, H.; Cohen, R. J.
1997-01-01
The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated random time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.
Management by Trajectory: Trajectory Management Study Report
NASA Technical Reports Server (NTRS)
Leiden, Kenneth; Atkins, Stephen; Fernandes, Alicia D.; Kaler, Curt; Bell, Alan; Kilbourne, Todd; Evans, Mark
2017-01-01
In order to realize the full potential of the Next Generation Air Transportation System (NextGen), improved management along planned trajectories between air navigation service providers (ANSPs) and system users (e.g., pilots and airline dispatchers) is needed. Future automation improvements and increased data communications between aircraft and ground automation would make the concept of Management by Trajectory (MBT) possible.
2012-12-01
autonomy helped to maximize a Mars day journey, because humans could only plan the first portion of the journey based on images sent from the rover...safe trajectory based on its sensors [1]. The distance between Mars and Earth ranges from 100-200 million miles [1] and at this distance, the time...This feature worked for the pre- planned maneuvers, which were planned by humans the day before based on available sensory and visual inputs. Once the
2015-04-24
xs , ys , xe , ye ) double EndPo in t s [L...Distribution Statement A. Approved for public release. #26161 350 400 450 100 150 200 250 300 350 400 450 500 550 600 x (m) y (m ) Start Target U0 = 10...longitudinal speed 350 400 450 100 150 200 250 300 350 400 450 500 550 600 x (m) y (m ) Start Target (a) Trajectory 0 5 10 15 0 1 t (s) f ( U0 = 30
Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2014-01-01
Access to Space, Chemical Propulsion, Advanced Propulsion, In-Situ Resource Utilization, Entry, Descent, Landing and Ascent, Humans and Robots Working Together, Autonomous Operations, In-Flight Maintenance, Exploration Mobility, Power Generation, Life Support, Space Suits, Microgravity Countermeasures, Autonomous Medicine, Environmental Control.
A Space Station robot walker and its shared control software
NASA Technical Reports Server (NTRS)
Xu, Yangsheng; Brown, Ben; Aoki, Shigeru; Yoshida, Tetsuji
1994-01-01
In this paper, we first briefly overview the update of the self-mobile space manipulator (SMSM) configuration and testbed. The new robot is capable of projecting cameras anywhere interior or exterior of the Space Station Freedom (SSF), and will be an ideal tool for inspecting connectors, structures, and other facilities on SSF. Experiments have been performed under two gravity compensation systems and a full-scale model of a segment of SSF. This paper presents a real-time shared control architecture that enables the robot to coordinate autonomous locomotion and teleoperation input for reliable walking on SSF. Autonomous locomotion can be executed based on a CAD model and off-line trajectory planning, or can be guided by a vision system with neural network identification. Teleoperation control can be specified by a real-time graphical interface and a free-flying hand controller. SMSM will be a valuable assistant for astronauts in inspection and other EVA missions.
Free energy reconstruction from steered dynamics without post-processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athenes, Manuel, E-mail: Manuel.Athenes@cea.f; Condensed Matter and Materials Division, Physics and Life Sciences Directorate, LLNL, Livermore, CA 94551; Marinica, Mihai-Cosmin
2010-09-20
Various methods achieving importance sampling in ensembles of nonequilibrium trajectories enable one to estimate free energy differences and, by maximum-likelihood post-processing, to reconstruct free energy landscapes. Here, based on Bayes theorem, we propose a more direct method in which a posterior likelihood function is used both to construct the steered dynamics and to infer the contribution to equilibrium of all the sampled states. The method is implemented with two steering schedules. First, using non-autonomous steering, we calculate the migration barrier of the vacancy in Fe-{alpha}. Second, using an autonomous scheduling related to metadynamics and equivalent to temperature-accelerated molecular dynamics, wemore » accurately reconstruct the two-dimensional free energy landscape of the 38-atom Lennard-Jones cluster as a function of an orientational bond-order parameter and energy, down to the solid-solid structural transition temperature of the cluster and without maximum-likelihood post-processing.« less
Generation of electron Airy beams.
Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady
2013-02-21
Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.
State Tracking and Fault Diagnosis for Dynamic Systems Using Labeled Uncertainty Graph.
Zhou, Gan; Feng, Wenquan; Zhao, Qi; Zhao, Hongbo
2015-11-05
Cyber-physical systems such as autonomous spacecraft, power plants and automotive systems become more vulnerable to unanticipated failures as their complexity increases. Accurate tracking of system dynamics and fault diagnosis are essential. This paper presents an efficient state estimation method for dynamic systems modeled as concurrent probabilistic automata. First, the Labeled Uncertainty Graph (LUG) method in the planning domain is introduced to describe the state tracking and fault diagnosis processes. Because the system model is probabilistic, the Monte Carlo technique is employed to sample the probability distribution of belief states. In addition, to address the sample impoverishment problem, an innovative look-ahead technique is proposed to recursively generate most likely belief states without exhaustively checking all possible successor modes. The overall algorithms incorporate two major steps: a roll-forward process that estimates system state and identifies faults, and a roll-backward process that analyzes possible system trajectories once the faults have been detected. We demonstrate the effectiveness of this approach by applying it to a real world domain: the power supply control unit of a spacecraft.
A GPS Receiver for Lunar Missions
NASA Technical Reports Server (NTRS)
Bamford, William A.; Heckler, Gregory W.; Holt, Greg N.; Moreau, Michael C.
2008-01-01
Beginning with the launch of the Lunar Reconnaissance Orbiter (LRO) in October of 2008, NASA will once again begin its quest to land humans on the Moon. This effort will require the development of new spacecraft which will safely transport people from the Earth to the Moon and back again, as well as robotic probes tagged with science, re-supply, and communication duties. In addition to the next-generation spacecraft currently under construction, including the Orion capsule, NASA is also investigating and developing cutting edge navigation sensors which will allow for autonomous state estimation in low Earth orbit (LEO) and cislunar space. Such instruments could provide an extra layer of redundancy in avionics systems and reduce the reliance on support and on the Deep Space Network (DSN). One such sensor is the weak-signal Global Positioning System (GPS) receiver "Navigator" being developed at NASA's Goddard Space Flight Center (GSFC). At the heart of the Navigator is a Field Programmable Gate Array (FPGA) based acquisition engine. This engine allows for the rapid acquisition/reacquisition of strong GPS signals, enabling the receiver to quickly recover from outages due to blocked satellites or atmospheric entry. Additionally, the acquisition algorithm provides significantly lower sensitivities than a conventional space-based GPS receiver, permitting it to acquire satellites well above the GPS constellation. This paper assesses the performance of the Navigator receiver based upon three of the major flight regimes of a manned lunar mission: Earth ascent, cislunar navigation, and entry. Representative trajectories for each of these segments were provided by NASA. The Navigator receiver was connected to a Spirent GPS signal generator, to allow for the collection of real-time, hardware-in-the-loop results for each phase of the flight. For each of the flight segments, the Navigator was tested on its ability to acquire and track GPS satellites under the dynamical environment unique to that trajectory.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim
2004-01-01
Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.
Information surfing with the JHU/APL coherent imager
NASA Astrophysics Data System (ADS)
Ratto, Christopher R.; Shipley, Kara R.; Beagley, Nathaniel; Wolfe, Kevin C.
2015-05-01
The ability to perform remote forensics in situ is an important application of autonomous undersea vehicles (AUVs). Forensics objectives may include remediation of mines and/or unexploded ordnance, as well as monitoring of seafloor infrastructure. At JHU/APL, digital holography is being explored for the potential application to underwater imaging and integration with an AUV. In previous work, a feature-based approach was developed for processing the holographic imagery and performing object recognition. In this work, the results of the image processing method were incorporated into a Bayesian framework for autonomous path planning referred to as information surfing. The framework was derived assuming that the location of the object of interest is known a priori, but the type of object and its pose are unknown. The path-planning algorithm adaptively modifies the trajectory of the sensing platform based on historical performance of object and pose classification. The algorithm is called information surfing because the direction of motion is governed by the local information gradient. Simulation experiments were carried out using holographic imagery collected from submerged objects. The autonomous sensing algorithm was compared to a deterministic sensing CONOPS, and demonstrated improved accuracy and faster convergence in several cases.
Intelligent electrical outlet for collective load control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Ford, Justin R.; Spires, Shannon V.
Various technologies described herein pertain to an electrical outlet that autonomously manages loads in a microgrid. The electrical outlet can provide autonomous load control in response to variations in electrical power generation supply in the microgrid. The electrical outlet includes a receptacle, a sensor operably coupled to the receptacle, and an actuator configured to selectively actuate the receptacle. The sensor measures electrical parameters at the receptacle. Further, a processor autonomously controls the actuator based at least in part on the electrical parameters measured at the receptacle, electrical parameters from one or more disparate electrical outlets in the microgrid, and amore » supply of generated electric power in the microgrid at a given time.« less
Park, Julie; Nawyn, Stephanie J; Benetsky, Megan J
2015-10-01
Women in the United States have made significant socioeconomic advances over the last generation. The second generation of post-1965 immigrants came of age during this "gender revolution." However, assimilation theories focus mainly on racial/ethnic trajectories. Do gendered trajectories between and within groups better capture mobility patterns? Using the 1980 decennial census and the 2003-2007 Current Population Survey (CPS), we observe the socioeconomic status of Latino and Asian immigrant parents and their second-generation children 25 years later. We compare the educational, occupational, and earnings attainment of second-generation daughters and sons with that of their immigrant mothers and fathers. We simultaneously compare those socioeconomic trajectories with a U.S.-born white, non-Latino reference group. We find that second-generation women experience greater status attainment than both their mothers and their male counterparts, but the earnings of second-generation women lag behind those of men. However, because white mainstream women experienced similar intergenerational mobility, many gaps between the second generation and the mainstream remain. These patterns remain even after we control for parenthood status. With feminized intergenerational mobility occurring similarly across race, the racial/ethnic gaps observed in 1980 narrow but persist into the next generation for many outcomes. Both gender and race shape mobility trajectories, so ignoring either leads to an incomplete picture of assimilation.
Real-time fuzzy inference based robot path planning
NASA Technical Reports Server (NTRS)
Pacini, Peter J.; Teichrow, Jon S.
1990-01-01
This project addresses the problem of adaptive trajectory generation for a robot arm. Conventional trajectory generation involves computing a path in real time to minimize a performance measure such as expended energy. This method can be computationally intensive, and it may yield poor results if the trajectory is weakly constrained. Typically some implicit constraints are known, but cannot be encoded analytically. The alternative approach used here is to formulate domain-specific knowledge, including implicit and ill-defined constraints, in terms of fuzzy rules. These rules utilize linguistic terms to relate input variables to output variables. Since the fuzzy rulebase is determined off-line, only high-level, computationally light processing is required in real time. Potential applications for adaptive trajectory generation include missile guidance and various sophisticated robot control tasks, such as automotive assembly, high speed electrical parts insertion, stepper alignment, and motion control for high speed parcel transfer systems.
Scout trajectory error propagation computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1982-01-01
Since 1969, flight experience has been used as the basis for predicting Scout orbital accuracy. The data used for calculating the accuracy consists of errors in the trajectory parameters (altitude, velocity, etc.) at stage burnout as observed on Scout flights. Approximately 50 sets of errors are used in Monte Carlo analysis to generate error statistics in the trajectory parameters. A covariance matrix is formed which may be propagated in time. The mechanization of this process resulted in computer program Scout Trajectory Error Propagation (STEP) and is described herein. Computer program STEP may be used in conjunction with the Statistical Orbital Analysis Routine to generate accuracy in the orbit parameters (apogee, perigee, inclination, etc.) based upon flight experience.
Imaginary geometric phases of quantum trajectories in high-order terahertz sideband generation
NASA Astrophysics Data System (ADS)
Yang, Fan; Liu, Ren-Bao
2014-03-01
Quantum evolution of particles under strong fields can be described by a small number of quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integral. The quantum trajectories are the key concept to understand the high-order terahertz siedeband generation (HSG) in semiconductors. Due to the nontrivial ``vacuum'' states of band materials, the quantum trajectories of optically excited electron-hole pairs in semiconductors can accumulate geometric phases under the driving of an elliptically polarized THz field. We find that the geometric phase of the stationary trajectory is generally complex with both real and imaginary parts. In monolayer MoS2, the imaginary parts of the geometric phase leads to a changing of the polarization ellipticity of the sideband. We further show that the imaginary part originates from the quantum interference of many trajectories with different phases. Thus the observation of the polarization ellipticity of the sideband shall be a good indication of the quantum nature of the stationary trajectory. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.
Automated trajectory planning for multiple-flyby interplanetary missions
NASA Astrophysics Data System (ADS)
Englander, Jacob
Many space mission planning problems may be formulated as hybrid optimal control problems (HOCP), i.e. problems that include both real-valued variables and categorical variables. In interplanetary trajectory design problems the categorical variables will typically specify the sequence of planets at which to perform flybys, and the real-valued variables will represent the launch date, ight times between planets, magnitudes and directions of thrust, flyby altitudes, etc. The contribution of this work is a framework for the autonomous optimization of multiple-flyby interplanetary trajectories. The trajectory design problem is converted into a HOCP with two nested loops: an "outer-loop" that finds the sequence of flybys and an "inner-loop" that optimizes the trajectory for each candidate yby sequence. The problem of choosing a sequence of flybys is posed as an integer programming problem and solved using a genetic algorithm (GA). This is an especially difficult problem to solve because GAs normally operate on a fixed-length set of decision variables. Since in interplanetary trajectory design the number of flyby maneuvers is not known a priori, it was necessary to devise a method of parameterizing the problem such that the GA can evolve a variable-length sequence of flybys. A novel "null gene" transcription was developed to meet this need. Then, for each candidate sequence of flybys, a trajectory must be found that visits each of the flyby targets and arrives at the final destination while optimizing some cost metric, such as minimizing ▵v or maximizing the final mass of the spacecraft. Three different classes of trajectory are described in this work, each of which requireda different physical model and optimization method. The choice of a trajectory model and optimization method is especially challenging because of the nature of the hybrid optimal control problem. Because the trajectory optimization problem is generated in real time by the outer-loop, the inner-loop optimization algorithm cannot require any a priori information and must always return a solution. In addition, the upper and lower bounds on each decision variable cannot be chosen a priori by the user because the user has no way to know what problem will be solved. Instead a method of choosing upper and lower bounds via a set of simple rules was developed and used for all three types of trajectory optimization problem. Many optimization algorithms were tested and discarded until suitable algorithms were found for each type of trajectory. The first class of trajectories use chemical propulsion and may only apply a ▵v at the periapse of each flyby. These Multiple Gravity Assist (MGA) trajectories are optimized using a cooperative algorithm of Differential Evolution (DE) and Particle Swarm Optimization (PSO). The second class of trajectories, known as Multiple Gravity Assist with one Deep Space Maneuver (MGA-DSM), also use chemical propulsion but instead of maneuvering at the periapse of each flyby as in the MGA case a maneuver is applied at a free point along each planet-to-planet arc, i.e. there is one maneuver for each pair of flybys. MGA-DSM trajectories are parameterized by more variables than MGA trajectories, and so the cooperative algorithm of DE and PSO that was used to optimize MGA trajectories was found to be less effective when applied to MGA-DSM. Instead, either PSO or DE alone were found to be more effective. The third class of trajectories addressed in this work are those using continuousthrust propulsion. Continuous-thrust trajectory optimization problems are more challenging than impulsive-thrust problems because the control variables are a continuous time series rather than a small set of parameters and because the spacecraft does not follow a conic section trajectory, leading to a large number of nonlinear constraints that must be satisfied to ensure that the spacecraft obeys the equations of motion. Many models and optimization algorithms were applied including direct transcription with nonlinear programming (DTNLP), the inverse-polynomial shapebased method, and feasible region analysis. However the only physical model and optimization method that proved reliable enough were the Sims-Flanagan transcription coupled with a nonlinear programming solver and the monotonic basin hopping (MBH) global search heuristic. The methods developed here are demonstrated to optimize a set of example trajectories, including a recreation of the Cassini mission, a Galileo-like mission, and conceptual continuous-thrust missions to Jupiter, Mercury, and Uranus.
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
Optimization of interplanetary trajectories with unpowered planetary swingbys
NASA Technical Reports Server (NTRS)
Sauer, Carl G., Jr.
1988-01-01
A method is presented for calculating and optimizing unpowered planetary swingby trajectories using a patched conic trajectory generator. Examples of unpowered swingby trajectories are given to demonstrate the method. The method, which uses primer vector theory, is not highly accurate, but provides projections for preliminary mission definition studies. Advantages to using a patched conic trajectory simulation for preliminary studies which examine many different and complex missions include calculation speed and adaptability to changes or additions to the formulation.
Flow Mapping Based on the Motion-Integration Errors of Autonomous Underwater Vehicles
NASA Astrophysics Data System (ADS)
Chang, D.; Edwards, C. R.; Zhang, F.
2016-02-01
Knowledge of a flow field is crucial in the navigation of autonomous underwater vehicles (AUVs) since the motion of AUVs is affected by ambient flow. Due to the imperfect knowledge of the flow field, it is typical to observe a difference between the actual and predicted trajectories of an AUV, which is referred to as a motion-integration error (also known as a dead-reckoning error if an AUV navigates via dead-reckoning). The motion-integration error has been essential for an underwater glider to compute its flow estimate from the travel information of the last leg and to improve navigation performance by using the estimate for the next leg. However, the estimate by nature exhibits a phase difference compared to ambient flow experienced by gliders, prohibiting its application in a flow field with strong temporal and spatial gradients. In our study, to mitigate the phase problem, we have developed a local ocean model by combining the flow estimate based on the motion-integration error with flow predictions from a tidal ocean model. Our model has been used to create desired trajectories of gliders for guidance. Our method is validated by Long Bay experiments in 2012 and 2013 in which we deployed multiple gliders on the shelf of South Atlantic Bight and near the edge of Gulf Stream. In our recent study, the application of the motion-integration error is further extended to create a spatial flow map. Considering that the motion-integration errors of AUVs accumulate along their trajectories, the motion-integration error is formulated as a line integral of ambient flow which is then reformulated into algebraic equations. By solving an inverse problem for these algebraic equations, we obtain the knowledge of such flow in near real time, allowing more effective and precise guidance of AUVs in a dynamic environment. This method is referred to as motion tomography. We provide the results of non-parametric and parametric flow mapping from both simulated and experimental data.
The promises and perils of hospital autonomy: reform by decree in Viet Nam.
London, Jonathan D
2013-11-01
This article investigates impacts of hospital autonomization in Viet Nam employing a "decision-space" framework that examines how hospitals have used their increased discretion and to what effect. Analysis suggests autonomization is associated with increased revenue, increasing staff pay, and greater investment in infrastructure and equipment. But autonomization is also associated with more costly and intensive treatment methods of uncertain contribution to the Vietnamese government's stated goal of quality healthcare for all. Impacts of autonomization in district hospitals are less striking. Despite certain limitations, the analysis generates key insights into early stages of hospital autonomization in Viet Nam. Copyright © 2013 The Author. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Wurster, Kathryn E.
2006-01-01
Recently, NASA's Exploration Systems Research and Technology Project funded several tasks that endeavored to develop and evaluate various thermal protection systems and high temperature material concepts for potential use on the crew exploration vehicle. In support of these tasks, NASA Langley's Vehicle Analysis Branch generated trajectory information and associated aeroheating environments for more than 60 unique entry cases. Using the Apollo Command Module as the baseline entry system because of its relevance to the favored crew exploration vehicle design, trajectories for a range of lunar and Mars return, direct and aerocapture Earth-entry scenarios were developed. For direct entry, a matrix of cases was created that reflects reasonably expected minimum and maximum values of vehicle ballistic coefficient, inertial velocity at entry interface, and inertial flight path angle at entry interface. For aerocapture, trajectories were generated for a range of values of initial velocity and ballistic coefficient that, when combined with proper initial flight path angles, resulted in achieving a low Earth orbit either by employing a full lift vector up or full lift vector down attitude. For each trajectory generated, aeroheating environments were generated which were intended to bound the thermal protection system requirements for likely crew exploration vehicle concepts. The trades examined clearly pointed to a range of missions / concepts that will require ablative systems as well as a range for which reusable systems may be feasible. In addition, the results clearly indicated those entry conditions and modes suitable for manned flight, considering vehicle deceleration levels experienced during entry. This paper presents an overview of the analysis performed, including the assumptions, methods, and general approach used, as well as a summary of the trajectory and aerothermal environment information that was generated.
Design factors and considerations for a time-based flight management system
NASA Technical Reports Server (NTRS)
Vicroy, D. D.; Williams, D. H.; Sorensen, J. A.
1986-01-01
Recent NASA Langley Research Center research to develop a technology data base from which an advanced Flight Management System (FMS) design might evolve is reviewed. In particular, the generation of fixed range cruise/descent reference trajectories which meet predefined end conditions of altitude, speed, and time is addressed. Results on the design and theoretical basis of the trajectory generation algorithm are presented, followed by a brief discussion of a series of studies that are being conducted to determine the accuracy requirements of the aircraft and weather models resident in the trajectory generation algorithm. Finally, studies to investigate the interface requirements between the pilot and an advanced FMS are considered.
Guiding supersonic projectiles using optically generated air density channels
NASA Astrophysics Data System (ADS)
Johnson, Luke A.; Sprangle, Phillip
2015-09-01
We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.
Autonomous data transmission apparatus
Kotlyar, Oleg M.
1997-01-01
A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.
Leaking in history space: A way to analyze systems subjected to arbitrary driving
NASA Astrophysics Data System (ADS)
Kaszás, Bálint; Feudel, Ulrike; Tél, Tamás
2018-03-01
Our aim is to unfold phase space structures underlying systems with a drift in their parameters. Such systems are non-autonomous and belong to the class of non-periodically driven systems where the traditional theory of chaos (based e.g., on periodic orbits) does not hold. We demonstrate that even such systems possess an underlying topological horseshoe-like structure at least for a finite period of time. This result is based on a specifically developed method which allows to compute the corresponding time-dependent stable and unstable foliations. These structures can be made visible by prescribing a certain type of history for an ensemble of trajectories in phase space and by analyzing the trajectories fulfilling this constraint. The process can be considered as a leaking in history space—a generalization of traditional leaking, a method that has become widespread in traditional chaotic systems, to leaks depending on time.
Design of a Multi-mode Flight Deck Decision Support System for Airborne Conflict Management
NASA Technical Reports Server (NTRS)
Barhydt, Richard; Krishnamurthy, Karthik
2004-01-01
NASA Langley has developed a multi-mode decision support system for pilots operating in a Distributed Air-Ground Traffic Management (DAG-TM) environment. An Autonomous Operations Planner (AOP) assists pilots in performing separation assurance functions, including conflict detection, prevention, and resolution. Ongoing AOP design has been based on a comprehensive human factors analysis and evaluation results from previous human-in-the-loop experiments with airline pilot test subjects. AOP considers complex flight mode interactions and provides flight guidance to pilots consistent with the current aircraft control state. Pilots communicate goals to AOP by setting system preferences and actively probing potential trajectories for conflicts. To minimize training requirements and improve operational use, AOP design leverages existing alerting philosophies, displays, and crew interfaces common on commercial aircraft. Future work will consider trajectory prediction uncertainties, integration with the TCAS collision avoidance system, and will incorporate enhancements based on an upcoming air-ground coordination experiment.
Koushki, A M; Sadighi-Bonabi, R; Mohsen-Nia, M; Irani, E
2018-04-14
In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N 2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.
NASA Astrophysics Data System (ADS)
Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.
2018-04-01
In the present work, an efficient method is theoretically investigated for extending high-order harmonics and ultrashort attosecond pulse generation in N2 and CO molecules by using the time-dependent density functional theory approach. Our results show that by utilizing chirped laser field in the presence of a low frequency field, not only is the harmonic cutoff extended remarkably but also the single short quantum trajectory is selected to contribute to the harmonic spectra. When a low frequency field is added to the two-color chirped laser field, the long quantum trajectories are suppressed and only the short quantum trajectories contribute to the higher harmonic emission mechanism. As a result, the spectral modulation is significantly decreased and an intense ultrashort pulse can be generated from the supercontinuum region of high harmonics. With such a scheme, the isolated ultrashort attosecond pulses can be generated in length, velocity, and acceleration gauges. Furthermore, these results are explained by using the classical and quantum time-frequency analyses.
Anosov C-systems and random number generators
NASA Astrophysics Data System (ADS)
Savvidy, G. K.
2016-08-01
We further develop our previous proposal to use hyperbolic Anosov C-systems to generate pseudorandom numbers and to use them for efficient Monte Carlo calculations in high energy particle physics. All trajectories of hyperbolic dynamical systems are exponentially unstable, and C-systems therefore have mixing of all orders, a countable Lebesgue spectrum, and a positive Kolmogorov entropy. These exceptional ergodic properties follow from the C-condition introduced by Anosov. This condition defines a rich class of dynamical systems forming an open set in the space of all dynamical systems. An important property of C-systems is that they have a countable set of everywhere dense periodic trajectories and their density increases exponentially with entropy. Of special interest are the C-systems defined on higher-dimensional tori. Such C-systems are excellent candidates for generating pseudorandom numbers that can be used in Monte Carlo calculations. An efficient algorithm was recently constructed that allows generating long C-system trajectories very rapidly. These trajectories have good statistical properties and can be used for calculations in quantum chromodynamics and in high energy particle physics.
Optimal trajectory generation for mechanical arms. M.S. Thesis
NASA Technical Reports Server (NTRS)
Iemenschot, J. A.
1972-01-01
A general method of generating optimal trajectories between an initial and a final position of an n degree of freedom manipulator arm with nonlinear equations of motion is proposed. The method is based on the assumption that the time history of each of the coordinates can be expanded in a series of simple time functions. By searching over the coefficients of the terms in the expansion, trajectories which minimize the value of a given cost function can be obtained. The method has been applied to a planar three degree of freedom arm.
Multiple independent autonomous hydraulic oscillators driven by a common gravity head.
Kim, Sung-Jin; Yokokawa, Ryuji; Lesher-Perez, Sasha Cai; Takayama, Shuichi
2015-06-15
Self-switching microfluidic circuits that are able to perform biochemical experiments in a parallel and autonomous manner, similar to instruction-embedded electronics, are rarely implemented. Here, we present design principles and demonstrations for gravity-driven, integrated, microfluidic pulsatile flow circuits. With a common gravity head as the only driving force, these fluidic oscillator arrays realize a wide range of periods (0.4 s-2 h) and flow rates (0.10-63 μl min(-1)) with completely independent timing between the multiple oscillator sub-circuits connected in parallel. As a model application, we perform systematic, parallel analysis of endothelial cell elongation response to different fluidic shearing patterns generated by the autonomous microfluidic pulsed flow generation system.
Microscale autonomous sensor and communications module
Okandan, Murat; Nielson, Gregory N
2014-03-25
Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.
The Autonomic Symptom Profile: a new instrument to assess autonomic symptoms
NASA Technical Reports Server (NTRS)
Suarez, G. A.; Opfer-Gehrking, T. L.; Offord, K. P.; Atkinson, E. J.; O'Brien, P. C.; Low, P. A.
1999-01-01
OBJECTIVE: To develop a new specific instrument called the Autonomic Symptom Profile to measure autonomic symptoms and test its validity. BACKGROUND: Measuring symptoms is important in the evaluation of quality of life outcomes. There is no validated, self-completed questionnaire on the symptoms of patients with autonomic disorders. METHODS: The questionnaire is 169 items concerning different aspects of autonomic symptoms. The Composite Autonomic Symptom Scale (COMPASS) with item-weighting was established; higher scores indicate more or worse symptoms. Autonomic function tests were performed to generate the Composite Autonomic Scoring Scale (CASS) and to quantify autonomic deficits. We compared the results of the COMPASS with the CASS derived from the Autonomic Reflex Screen to evaluate validity. RESULTS: The instrument was tested in 41 healthy controls (mean age 46.6 years), 33 patients with nonautonomic peripheral neuropathies (mean age 59.5 years), and 39 patients with autonomic failure (mean age 61.1 years). COMPASS scores correlated well with the CASS, demonstrating an acceptable level of content and criterion validity. The mean (+/-SD) overall COMPASS score was 9.8 (+/-9) in controls, 25.9 (+/-17.9) in the patients with nonautonomic peripheral neuropathies, and 52.3 (+/-24.2) in the autonomic failure group. Scores of symptoms of orthostatic intolerance and secretomotor dysfunction best predicted the CASS on multiple stepwise regression analysis. CONCLUSIONS: We describe a questionnaire that measures autonomic symptoms and present evidence for its validity. The instrument shows promise in assessing autonomic symptoms in clinical trials and epidemiologic studies.
Distributed autonomous systems: resource management, planning, and control algorithms
NASA Astrophysics Data System (ADS)
Smith, James F., III; Nguyen, ThanhVu H.
2005-05-01
Distributed autonomous systems, i.e., systems that have separated distributed components, each of which, exhibit some degree of autonomy are increasingly providing solutions to naval and other DoD problems. Recently developed control, planning and resource allocation algorithms for two types of distributed autonomous systems will be discussed. The first distributed autonomous system (DAS) to be discussed consists of a collection of unmanned aerial vehicles (UAVs) that are under fuzzy logic control. The UAVs fly and conduct meteorological sampling in a coordinated fashion determined by their fuzzy logic controllers to determine the atmospheric index of refraction. Once in flight no human intervention is required. A fuzzy planning algorithm determines the optimal trajectory, sampling rate and pattern for the UAVs and an interferometer platform while taking into account risk, reliability, priority for sampling in certain regions, fuel limitations, mission cost, and related uncertainties. The real-time fuzzy control algorithm running on each UAV will give the UAV limited autonomy allowing it to change course immediately without consulting with any commander, request other UAVs to help it, alter its sampling pattern and rate when observing interesting phenomena, or to terminate the mission and return to base. The algorithms developed will be compared to a resource manager (RM) developed for another DAS problem related to electronic attack (EA). This RM is based on fuzzy logic and optimized by evolutionary algorithms. It allows a group of dissimilar platforms to use EA resources distributed throughout the group. For both DAS types significant theoretical and simulation results will be presented.
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
Performance Evaluation of the Approaches and Algorithms for Hamburg Airport Operations
NASA Technical Reports Server (NTRS)
Zhu, Zhifan; Jung, Yoon; Lee, Hanbong; Schier, Sebastian; Okuniek, Nikolai; Gerdes, Ingrid
2016-01-01
In this work, fast-time simulations have been conducted using SARDA tools at Hamburg airport by NASA and real-time simulations using CADEO and TRACC with the NLR ATM Research Simulator (NARSIM) by DLR. The outputs are analyzed using a set of common metrics collaborated between DLR and NASA. The proposed metrics are derived from International Civil Aviation Organization (ICAO)s Key Performance Areas (KPAs) in capability, efficiency, predictability and environment, and adapted to simulation studies. The results are examined to explore and compare the merits and shortcomings of the two approaches using the common performance metrics. Particular attention is paid to the concept of the close-loop, trajectory-based taxi as well as the application of US concept to the European airport. Both teams consider the trajectory-based surface operation concept a critical technology advance in not only addressing the current surface traffic management problems, but also having potential application in unmanned vehicle maneuver on airport surface, such as autonomous towing or TaxiBot [6][7] and even Remote Piloted Aircraft (RPA). Based on this work, a future integration of TRACC and SOSS is described aiming at bringing conflict-free trajectory-based operation concept to US airport.
Autonomous data transmission apparatus
Kotlyar, O.M.
1997-03-25
A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.
NASA Technical Reports Server (NTRS)
Lee, Alan G.; Robinson, John E.; Lai, Chok Fung
2017-01-01
This paper will describe the purpose, architecture, and implementation of a gate-to-gate, high-fidelity air traffic simulation environment called the Shadow Mode Assessment using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed.The overarching purpose of the SMART-NAS Test Bed (SNTB) is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the Next Generation Air Transportation System of the United States, called NextGen. SNTB is intended to enable simulations that are currently impractical or impossible for three major areas of NextGen research and development: Concepts across multiple operational domains such as the gate-to-gate trajectory-based operations concept; Concepts related to revolutionary operations such as the seamless and widespread integration of large and small Unmanned Aerial System (UAS) vehicles throughout U.S. airspace; Real-time system-wide safety assurance technologies to allow safe, increasingly autonomous aviation operations. SNTB is primarily accessed through a web browser. A set of secure support services are provided to simplify all aspects of real-time, human-in-the-loop and automation-in-the-loop simulations from design (i.e., prior to execution) through analysis (i.e., after execution). These services include simulation architecture and asset configuration; scenario generation; command, control and monitoring; and analysis support.
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.
1992-01-01
A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.
Computer aiding for low-altitude helicopter flight
NASA Technical Reports Server (NTRS)
Swenson, Harry N.
1991-01-01
A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.
Autonomous site selection and instrument positioning for sample acquisition
NASA Astrophysics Data System (ADS)
Shaw, A.; Barnes, D.; Pugh, S.
The European Space Agency Aurora Exploration Program aims to establish a European long-term programme for the exploration of Space, culminating in a human mission to space in the 2030 timeframe. Two flagship missions, namely Mars Sample Return and ExoMars, have been proposed as recognised steps along the way. The Exomars Rover is the first of these flagship missions and includes a rover carrying the Pasteur Payload, a mobile exobiology instrumentation package, and the Beagle 2 arm. The primary objective is the search for evidence of past or present life on mars, but the payload will also study the evolution of the planet and the atmosphere, look for evidence of seismological activity and survey the environment in preparation for future missions. The operation of rovers in unknown environments is complicated, and requires large resources not only on the planet but also in ground based operations. Currently, this can be very labour intensive, and costly, if large teams of scientists and engineers are required to assess mission progress, plan mission scenarios, and construct a sequence of events or goals for uplink. Furthermore, the constraints in communication imposed by the time delay involved over such large distances, and line-of-sight required, make autonomy paramount to mission success, affording the ability to operate in the event of communications outages and be opportunistic with respect to scientific discovery. As part of this drive to reduce mission costs and increase autonomy the Space Robotics group at the University of Wales, Aberystwyth is researching methods of autonomous site selection and instrument positioning, directly applicable to the ExoMars mission. The site selection technique used builds on the geometric reasoning algorithms used previously for localisation and navigation [Shaw 03]. It is proposed that a digital elevation model (DEM) of the local surface, generated during traverse and without interaction from ground based operators, can be analysed to calculate possible long range trajectories [Weisbin 99] for the rover. Provided the rover is given a predefined "ideal rock" definition, the same DEMs can be used to classify rocks in the surrounding area and identify any which meet the ideal rock criteria, meaning that, during long-range traverses potentially scientifically rich rocks would not be missed. The technique can also be used identify the approach trajectory for the arm given the orientation of the rock surface. 1 If several ideal rocks have been identified the rover could then use a rock reachability map to prioritise the rocks for sampling, this would consider: rock classification; the amount of energy required to reach the rock; and the number of instruments that can be placed on the surface. Autonomously identifying ideal rocks and calculating instrument position reduces the rover waiting time and operator input, and increases the scientific return. 1. Shaw A.J. and Barnes D.P., Landmark recognition for localisation and navigation of aerial vehicles. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, October 2003. CD-ROM Proceedings. 2. Weisbin, Charles R. Rodriguez Guillermo, Schenker Paul S., Das Hari, Hayati Samad A., Baumgartner Eric T., Maimone Mark, Nesnas Issa A., Volpe Richard A. Autonomous rover technology for mars sample return, Pages 1-10 of: 1999 International Symposium on Artificial Intelligence, Robotics and Automation in Space, ISAIRAS99. 2
Low-thrust roundtrip trajectories to Mars with one-synodic-period repeat time
NASA Astrophysics Data System (ADS)
Okutsu, Masataka; Landau, Damon F.; Rogers, Blake A.; Longuski, James M.
2015-05-01
Cycler trajectories-both ballistic and powered-are reported in the literature in which there are two-vehicle, three-vehicle, and four-vehicle cases. Such trajectories permit the installation of cycler vehicles which provide safe and comfortable living conditions for human space travel between Earth and Mars during every synodic opportunity. The question the present paper answers is a logical, obvious one: Does a single-vehicle, one-synodic-period cycler exist? The answer is yes: such a trajectory can be flown-but only with a high-power electric propulsion system. In our example, it is found that "stopover" trajectories that spend 30 days in orbit about Earth and 30 days about Mars, and return astronauts to Earth in one synodic period require a 90-t power generator with a power level of 11 MWe. Fortuitously, and in lieu of using chemical propulsion, the high power level of the electric propulsion system would also be effective in hauling the cargo payload via a spiral trajectory about the Earth. But because one synodic period is not enough for the cycler vehicle to fly both the interplanetary trajectories and the Earth-spiral trajectories, we suggest developing two nuclear power generators, which could alternate flying the interplanetary trajectories and the Earth-spiral trajectories. Once these power generators are launched and begin operating in space, the mass requirement in seven subsequent missions (over a period of 15 years beginning in 2022) would be modest at 250-300 metric tons to low-Earth orbit per mission. Thus two cargo launches of NASA's Space Launch System and one crew launch of the Falcon Heavy, for example, would be adequate to maintain support for each consecutive mission. Although we propose developing two sets of electric propulsion systems to account for the Earth-spiral phases, only one vehicle is flown on a heliocentric trajectory at any given time. Thus, our low-thrust stopover cycler with zero encounter velocities falls into a category of a "one-vehicle cycler," which completes the gap in the literature, where we have already seen multiple-vehicle cycler concepts.
NASA Technical Reports Server (NTRS)
Teles, Jerome (Editor); Samii, Mina V. (Editor)
1993-01-01
A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.
Grasping objects autonomously in simulated KC-135 zero-g
NASA Technical Reports Server (NTRS)
Norsworthy, Robert S.
1994-01-01
The KC-135 aircraft was chosen for simulated zero gravity testing of the Extravehicular Activity Helper/retriever (EVAHR). A software simulation of the EVAHR hardware, KC-135 flight dynamics, collision detection and grasp inpact dynamics has been developed to integrate and test the EVAHR software prior to flight testing on the KC-135. The EVAHR software will perform target pose estimation, tracking, and motion estimation for rigid, freely rotating, polyhedral objects. Manipulator grasp planning and trajectory control software has also been developed to grasp targets while avoiding collisions.
Dual-Arm Generalized Compliant Motion With Shared Control
NASA Technical Reports Server (NTRS)
Backes, Paul G.
1994-01-01
Dual-Arm Generalized Compliant Motion (DAGCM) primitive computer program implementing improved unified control scheme for two manipulator arms cooperating in task in which both grasp same object. Provides capabilities for autonomous, teleoperation, and shared control of two robot arms. Unifies cooperative dual-arm control with multi-sensor-based task control and makes complete task-control capability available to higher-level task-planning computer system via large set of input parameters used to describe desired force and position trajectories followed by manipulator arms. Some concepts discussed in "A Generalized-Compliant-Motion Primitive" (NPO-18134).
A Mars orbiter/rover/penetrator mission for the 1984 opportunity
NASA Technical Reports Server (NTRS)
Hastrup, R.; Driver, J.; Nagorski, R.
1977-01-01
A point design mission is described that utilizes the 1984 opportunity to extend the exploration of Mars after the successful Viking operations and provide the additional scientific information needed before conducting a sample return mission. Two identical multi-element spacecraft are employed, each consisting of (1) an orbiter, (2) a Viking-derived landing system that delivers a heavily instrumented, semi-autonomous rover, and (3) three penetrators deployed from the approach trajectory. Selection of the orbit profiles requires consideration of several important factors in order to satisfy all of the mission goals.
An AI Approach to Ground Station Autonomy for Deep Space Communications
NASA Technical Reports Server (NTRS)
Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve
1998-01-01
This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).
Wisneski, Kimberly J; Johnson, Michelle J
2007-03-23
Robotic therapy is at the forefront of stroke rehabilitation. The Activities of Daily Living Exercise Robot (ADLER) was developed to improve carryover of gains after training by combining the benefits of Activities of Daily Living (ADL) training (motivation and functional task practice with real objects), with the benefits of robot mediated therapy (repeatability and reliability). In combining these two therapy techniques, we seek to develop a new model for trajectory generation that will support functional movements to real objects during robot training. We studied natural movements to real objects and report on how initial reaching movements are affected by real objects and how these movements deviate from the straight line paths predicted by the minimum jerk model, typically used to generate trajectories in robot training environments. We highlight key issues that to be considered in modelling natural trajectories. Movement data was collected as eight normal subjects completed ADLs such as drinking and eating. Three conditions were considered: object absent, imagined, and present. This data was compared to predicted trajectories generated from implementing the minimum jerk model. The deviations in both the plane of the table (XY) and the sagittal plane of torso (XZ) were examined for both reaches to a cup and to a spoon. Velocity profiles and curvature were also quantified for all trajectories. We hypothesized that movements performed with functional task constraints and objects would deviate from the minimum jerk trajectory model more than those performed under imaginary or object absent conditions. Trajectory deviations from the predicted minimum jerk model for these reaches were shown to depend on three variables: object presence, object orientation, and plane of movement. When subjects completed the cup reach their movements were more curved than for the spoon reach. The object present condition for the cup reach showed more curvature than in the object imagined and absent conditions. Curvature in the XZ plane of movement was greater than curvature in the XY plane for all movements. The implemented minimum jerk trajectory model was not adequate for generating functional trajectories for these ADLs. The deviations caused by object affordance and functional task constraints must be accounted for in order to allow subjects to perform functional task training in robotic therapy environments. The major differences that we have highlighted include trajectory dependence on: object presence, object orientation, and the plane of movement. With the ability to practice ADLs on the ADLER environment we hope to provide patients with a therapy paradigm that will produce optimal results and recovery.
Enhancing the Trajectory Generation of a Stair-Climbing Mobility System
Chocoteco, Jose Abel
2017-01-01
Recent advances in mobile robotic technologies have enabled significant progress to be made in the development of Stair-Climbing Mobility Systems (SCMSs) for people with mobility impairments and limitations. These devices are mainly characterized by their ability to negotiate those architectural barriers associated with climbing stairs (curbs, ramps, etc.). The development of advanced trajectory generators with which to surpass such architectural barriers is one of the most important aspects of SCMSs that has not yet been appropriately exploited. These advanced trajectory generators have a considerable influence on the time invested in the stair climbing process and on passenger comfort and, consequently, provide people with physical disabilities with greater independence and a higher quality of life. In this paper, we propose a new nonlinear trajectory generator for an SCMS. This generator balances the stair-climbing time and the user’s comfort and includes the most important constraints inherent to the system behavior: the geometry of the architectural barrier, the reconfigurable nature of the SCMS (discontinuous states), SCMS state-transition diagrams, comfort restrictions and physical limitations as regards the actuators, speed and acceleration. The SCMS was tested on a real two-step staircase using different time-comfort combinations and different climbing strategies to verify the effectiveness and the robustness of the proposed approach.
NASA Technical Reports Server (NTRS)
Wing, David J.; Barhydt, Richard; Barmore, Bryan; Krishnamurthy, Karthik
2003-01-01
Feasibility and safety of autonomous aircraft operations were studied in a multi-piloted simulation of overconstrained traffic conflicts to determine the need for, and utility of, priority flight rules to maintain safety in this extraordinary and potentially hazardous situation. An overconstrained traffic conflict is one in which the separation assurance objective is incompatible with other objectives. In addition, a proposed scheme for implementing priority flight rules by staggering the alerting time between the two aircraft in conflict was tested for effectiveness. The feasibility study was conducted through a simulation in the Air Traffic Operations Laboratory at the NASA Langley Research Center. This research activity is a continuation of the Distributed Air-Ground Traffic Management feasibility analysis reported in the 4th USA/Europe Air Traffic Management R&D Seminar in December 2001 (paper #48). The over-constrained conflict scenario studied here consisted of two piloted aircraft that were assigned an identical en-route waypoint arrival time and altitude crossing restriction. The simulation results indicated that the pilots safely resolved the conflict without the need for a priority flight rule system. Occurrences of unnecessary maneuvering near the common waypoint were traced to false conflict alerts, generated as the result of including waypoint constraint information in the broadcast data link message issued from each aircraft. This result suggests that, in the conservative interests of safety, broadcast intent information should be based on the commanded trajectory and not on the Flight Management System flight plan, to which the aircraft may not actually adhere. The use of priority flight rules had no effect on the percentage of the aircraft population meeting completely predictable which aircraft in a given pair would meet the constraints and which aircraft would make the first maneuver to yield right-of-way. Therefore, the proposed scheme for implementing priority flight rules through staggering the alerting time between the two aircraft was completely effective. The data and observations from this experiment, together with results from the previously reported study, support the feasibility of autonomous aircraft operations.
A Self Contained Method for Safe and Precise Lunar Landing
NASA Technical Reports Server (NTRS)
Paschall, Stephen C., II; Brady, Tye; Cohanim, Babak; Sostaric, Ronald
2008-01-01
The return of humans to the Moon will require increased capability beyond that of the previous Apollo missions. Longer stay times and a greater flexibility with regards to landing locations are among the many improvements planned. A descent and landing system that can land the vehicle more accurately than Apollo with a greater ability to detect and avoid hazards is essential to the development of a Lunar Outpost, and also for increasing the number of potentially reachable Lunar Sortie locations. This descent and landing system should allow landings in more challenging terrain and provide more flexibility with regards to mission timing and lighting considerations, while maintaining safety as the top priority. The lunar landing system under development by the ALHAT (Autonomous precision Landing and Hazard detection Avoidance Technology) project is addressing this by providing terrain-relative navigation measurements to enhance global-scale precision, an onboard hazard-detection system to select safe landing locations, and an Autonomous GNC (Guidance, Navigation, and Control) capability to process these measurements and safely direct the vehicle to this landing location. This ALHAT landing system will enable safe and precise lunar landings without requiring lunar infrastructure in the form of navigation aids or a priori identified hazard-free landing locations. The safe landing capability provided by ALHAT uses onboard active sensing to detect hazards that are large enough to be a danger to the vehicle but too small to be detected from orbit, given currently planned orbital terrain resolution limits. Algorithms to interpret raw active sensor terrain data and generate hazard maps as well as identify safe sites and recalculate new trajectories to those sites are included as part of the ALHAT System. These improvements to descent and landing will help contribute to repeated safe and precise landings for a wide variety of terrain on the Moon.
Autonomous planetary rover at Carnegie Mellon
NASA Technical Reports Server (NTRS)
Whittaker, William; Kanade, Takeo; Mitchell, Tom
1990-01-01
This report describes progress in research on an autonomous robot for planetary exploration. In 1989, the year covered by this report, a six-legged walking robot, the Ambler, was configured, designed, and constructed. This configuration was used to overcome shortcomings exhibited by existing wheeled and walking robot mechanisms. The fundamental advantage of the Ambler is that the actuators for body support are independent of those for propulsion; a subset of the planar joints propel the body, and the vertical actuators support and level the body over terrain. Models of the Ambler's dynamics were developed and the leveling control was studied. An integrated system capable of walking with a single leg over rugged terrain was implemented and tested. A prototype of an Ambler leg is suspended below a carriage that slides along rails. To walk, the system uses a laser scanner to find a clear, flat foothold, positions the leg above the foothold, contacts the terrain with the foot, and applies force enough to advance the carriage along the rails. Walking both forward and backward, the system has traversed hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep to step in, closely spaced rocks, and sand hills. In addition, preliminary experiments were conducted with concurrent planning and execution, and a leg recovery planner that generates time and power efficient 3D trajectories using 2D search was developed. A Hero robot was used to demonstrate mobile manipulation. Indoor tasks include collecting cups from the lab floor, retrieving printer output, and recharging when its battery gets low. The robot monitors its environment, and handles exceptional conditions in a robust fashion, using vision to track the appearance and disappearance of cups, onboard sonars to detect imminent collisions, and monitors to detect the battery level.
On the design of fuzzified trajectory shaping guidance law.
Lin, Chun-Liang; Lin, Yu-Ping; Chen, Kai-Ming
2009-04-01
Midcourse guidance is commonly designed to save as much energy as possible so that the missile's final speed can be maximized while entering the homing stage. For this purpose, a competitive guidance design should be able to generate an admissible flight trajectory as to bring the interceptor to a superior altitude for a favorable target engagement. In this paper, a new adaptive trajectory shaping guidance scheme based on the adaptive fuzzy inference system, which is capable of generating a variety of trajectories for efficient target interception, is presented. The guidance law is developed with the aim of saving the interceptor's energy conservation while improving performance robustness. Applications of the presented approach have included a variety of mission oriented guidance, such as cruise missile guidance, anti-ballistic missile guidance, etc.
Validating a UAV artificial intelligence control system using an autonomous test case generator
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Huber, Justin
2013-05-01
The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.
Thermoelectric-Driven Autonomous Sensors for a Biomass Power Plant
NASA Astrophysics Data System (ADS)
Rodríguez, A.; Astrain, D.; Martínez, A.; Gubía, E.; Sorbet, F. J.
2013-07-01
This work presents the design and development of a thermoelectric generator intended to harness waste heat in a biomass power plant, and generate electric power to operate sensors and the required electronics for wireless communication. The first objective of the work is to design the optimum thermoelectric generator to harness heat from a hot surface, and generate electric power to operate a flowmeter and a wireless transmitter. The process is conducted by using a computational model, presented in previous papers, to determine the final design that meets the requirements of electric power consumption and number of transmissions per minute. Finally, the thermoelectric generator is simulated to evaluate its performance. The final device transmits information every 5 s. Moreover, it is completely autonomous and can be easily installed, since no electric wires are required.
NASA Astrophysics Data System (ADS)
Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul
2018-03-01
We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.
NASA Astrophysics Data System (ADS)
Park, Seon Yeong; Jung, Yeon Wook; Hwang, Si Hyun; Jang, Gun Hyuk; Seo, Hyunseon; Kim, Yu-Chan; Ok, Myoung-Ryul
2018-05-01
We proposed a new hybrid system that autonomously generates H2O2 without any instrument or external energy source, such as light. Electrons formed during spontaneous degradation process of Mg were conveyed to ZnO/Au oxygen-reduction-reaction nanocatalysts, and these transferred electrons converted O2 molecules in aqueous solution into H2O2. Autonomously released H2O2 from Mg-ZnO/Au hybrids effectively killed 97% of Escherichia coli cells within 1 h. Moreover, Mg-ZnO/Au nanohybrids could gradually degrade methylene blue over time with Fe2+. We believe our approach utilizing degradable metals and catalytic metal oxides in mesoporous-film form can be a promising method in the field of environment remediation.
WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, L; Thomas, C; Syme, A
2016-06-15
Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less
ERIC Educational Resources Information Center
Garnett, Bruce
2012-01-01
Little empirical research has ever systematically documented the academic trajectories of Generation 1.5 in Canadian schools. Indeed, this label has not even been used to define the population of interest in the studies reviewed here. Nonetheless, some earlier work, along with more current studies made possible by recent availability of data, has…
The Trajectories of Saccadic Eye Movements.
ERIC Educational Resources Information Center
Bahill, A. Terry; Stark, Lawrence
1979-01-01
Investigates the trajectories of saccadic eye movements, the control signals of the eye, and nature of the mechanisms that generate them, using the techniques of bioengineering in collecting the data. (GA)
Long-time uncertainty propagation using generalized polynomial chaos and flow map composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luchtenburg, Dirk M., E-mail: dluchten@cooper.edu; Brunton, Steven L.; Rowley, Clarence W.
2014-10-01
We present an efficient and accurate method for long-time uncertainty propagation in dynamical systems. Uncertain initial conditions and parameters are both addressed. The method approximates the intermediate short-time flow maps by spectral polynomial bases, as in the generalized polynomial chaos (gPC) method, and uses flow map composition to construct the long-time flow map. In contrast to the gPC method, this approach has spectral error convergence for both short and long integration times. The short-time flow map is characterized by small stretching and folding of the associated trajectories and hence can be well represented by a relatively low-degree basis. The compositionmore » of these low-degree polynomial bases then accurately describes the uncertainty behavior for long integration times. The key to the method is that the degree of the resulting polynomial approximation increases exponentially in the number of time intervals, while the number of polynomial coefficients either remains constant (for an autonomous system) or increases linearly in the number of time intervals (for a non-autonomous system). The findings are illustrated on several numerical examples including a nonlinear ordinary differential equation (ODE) with an uncertain initial condition, a linear ODE with an uncertain model parameter, and a two-dimensional, non-autonomous double gyre flow.« less
Movement and collision of Lagrangian particles in hydro-turbine intakes: a case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero-Gomez, Pedro; Richmond, Marshall C.
Studies of the stress/survival of migratory fish during downstream passage through operating hydro-turbines are normally conducted to determine the fish-friendliness of units. One field approach consisting of recording extreme hydraulics with autonomous sensors is largely sensitive to the conditions of sensor release and the initial trajectories at the turbine intake. This study applies a modelling strategy based on flow simulations using computational fluid dynamics and Lagrangian particle tracking to represent the travel of live fish and autonomous sensor devices through hydro-turbine intakes. For the flow field calculation, the simulations were conducted with both a time-averaging turbulence model and an eddy-resolvingmore » technique. For the particle tracking calculation, different modelling assumptions for turbulence forcing, mass formulation, buoyancy, and release condition were tested. The modelling assumptions are evaluated with respect to data sets collected using a laboratory physical model and an autonomous sensor device deployed at Ice Harbor Dam (Snake River, State of Washington, U.S.A.) at the same discharge and release point as in the present computer simulations. We found an acceptable agreement between the simulated results and observed data and discuss relevant features of Lagrangian particle movement that are critical in turbine design and in the experimental design of field studies.« less
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Cross, Charles D.; Motter, Mark A.; Neilan, James H.; Qualls, Garry D.; Rothhaar, Paul M.; Tran, Loc; Trujillo, Anna C.; Crisp, Vicki K.
2015-01-01
NASA aeronautics research has made decades of contributions to aviation. Both aircraft and air traffic management (ATM) systems in use today contain NASA-developed and NASA sponsored technologies that improve safety and efficiency. Recent innovations in robotics and autonomy for automobiles and unmanned systems point to a future with increased personal mobility and access to transportation, including aviation. Automation and autonomous operations will transform the way we move people and goods. Achieving this mobility will require safe, robust, reliable operations for both the vehicle and the airspace and challenges to this inevitable future are being addressed now in government labs, universities, and industry. These challenges are the focus of NASA Langley Research Center's Autonomy Incubator whose R&D portfolio includes mission planning, trajectory and path planning, object detection and avoidance, object classification, sensor fusion, controls, machine learning, computer vision, human-machine teaming, geo-containment, open architecture design and development, as well as the test and evaluation environment that will be critical to prove system reliability and support certification. Safe autonomous operations will be enabled via onboard sensing and perception systems in both data-rich and data-deprived environments. Applied autonomy will enable safety, efficiency and unprecedented mobility as people and goods take to the skies tomorrow just as we do on the road today.
Ruscio, D; Bos, A J; Ciceri, M R
2017-06-01
The interaction with Advanced Driver Assistance Systems has several positive implications for road safety, but also some potential downsides such as mental workload and automation complacency. Malleable attentional resources allocation theory describes two possible processes that can generate workload in interaction with advanced assisting devices. The purpose of the present study is to determine if specific analysis of the different modalities of autonomic control of nervous system can be used to discriminate different potential workload processes generated during assisted-driving tasks and automation complacency situations. Thirty-five drivers were tested in a virtual scenario while using head-up advanced warning assistance system. Repeated MANOVA were used to examine changes in autonomic activity across a combination of different user interactions generated by the advanced assistance system: (1) expected take-over request without anticipatory warning; (2) expected take-over request with two-second anticipatory warning; (3) unexpected take-over request with misleading warning; (4) unexpected take-over request without warning. Results shows that analysis of autonomic modulations can discriminate two different resources allocation processes, related to different behavioral performances. The user's interaction that required divided attention under expected situations produced performance enhancement and reciprocally-coupled parasympathetic inhibition with sympathetic activity. At the same time, supervising interactions that generated automation complacency were described specifically by uncoupled sympathetic activation. Safety implications for automated assistance systems developments are considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of Taylor's series to trajectory propagation
NASA Technical Reports Server (NTRS)
Stanford, R. H.; Berryman, K. W.; Breckheimer, P. J.
1986-01-01
This paper describes the propagation of trajectories by the application of the preprocessor ATOMCC which uses Taylor's series to solve initial value problems in ordinary differential equations. Comparison of the results obtained with those from other methods are presented. The current studies indicate that the ATOMCC preprocessor is an easy, yet fast and accurate method for generating trajectories.
Program For Simulation Of Trajectories And Events
NASA Technical Reports Server (NTRS)
Gottlieb, Robert G.
1992-01-01
Universal Simulation Executive (USE) program accelerates and eases generation of application programs for numerical simulation of continuous trajectories interrupted by or containing discrete events. Developed for simulation of multiple spacecraft trajectories with events as one spacecraft crossing the equator, two spacecraft meeting or parting, or firing rocket engine. USE also simulates operation of chemical batch processing factory. Written in Ada.
Drift Recovery and Station Keeping for the CanX-4 & CanX-5 Nanosatellite Formation Flying Mission
NASA Astrophysics Data System (ADS)
Newman, Joshua Zachary
Canadian Advanced Nanospace eXperiments 4 & 5 (CanX-4&5) are a pair of formation flying nanosatellites that demonstrated autonomous sub-metre formation control at ranges of 1000 to 50 m. To facilitate the autonomous formation flight mission, it is necessary that the two spacecraft be brought within a few kilometres of one another, with a low relative velocity. Therefore, a system to calculate fuel-efficient recovery trajectories and produce the corresponding spacecraft commands was required. This system was also extended to provide station keeping capabilities. In this thesis, the overall drift recovery strategy is outlined, and the design of the controller is detailed. A method of putting the formation into a passively safe state, where the spacecraft cannot collide, is also presented. Monte-Carlo simulations are used to estimate the fuel losses associated with navigational and attitude errors. Finally, on-orbit results are presented, validating both the design and the error expectations.
A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics.
Jaffe, Jules S; Franks, Peter J S; Roberts, Paul L D; Mirza, Diba; Schurgers, Curt; Kastner, Ryan; Boch, Adrien
2017-01-24
Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (<1-10 km) requires new technologies and approaches. Here we introduce the Mini-Autonomous Underwater Explorer (M-AUE), deployed as a swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.
NASA Technical Reports Server (NTRS)
Shue, Jack
2004-01-01
The end-to-end test would verify the complex sequence of events from lander separation to landing. Due to the large distances involved and the significant delay time in sending a command and receiving verification, the lander needed to operate autonomously after it separated from the orbiter. It had to sense conditions, make decisions, and act accordingly. We were flying into a relatively unknown set of conditions-a Martian atmosphere of unknown pressure, density, and consistency to land on a surface of unknown altitude, and one which had an unknown bearing strength. In order to touch down safely on Mars the lander had to orient itself for descent and entry, modulate itself to maintain proper lift, pop a parachute, jettison its aeroshell, deploy landing legs and radar, ignite a terminal descent engine, and fly a given trajectory to the surface. Once on the surface, it would determine its orientation, raise the high-gain antenna, perform a sweep to locate Earth, and begin transmitting information. It was this complicated, autonomous sequence that the end-to-end test was to simulate.
Combing VFH with bezier for motion planning of an autonomous vehicle
NASA Astrophysics Data System (ADS)
Ye, Feng; Yang, Jing; Ma, Chao; Rong, Haijun
2017-08-01
Vector Field Histogram (VFH) is a method for mobile robot obstacle avoidance. However, due to the nonholonomic constraints of the vehicle, the algorithm is seldom applied to autonomous vehicles. Especially when we expect the vehicle to reach target location in a certain direction, the algorithm is often unsatisfactory. Fortunately, the Bezier Curve is defined by the states of the starting point and the target point. We can use this feature to make the vehicle in the expected direction. Therefore, we propose an algorithm to combine the Bezier Curve with the VFH algorithm, to search for the collision-free states with the VFH search method, and to select the optimal trajectory point with the Bezier Curve as the reference line. This means that we will improve the cost function in the VFH algorithm by comparing the distance between candidate directions and reference line. Finally, select the closest direction to the reference line to be the optimal motion direction.
A swarm of autonomous miniature underwater robot drifters for exploring submesoscale ocean dynamics
NASA Astrophysics Data System (ADS)
Jaffe, Jules S.; Franks, Peter J. S.; Roberts, Paul L. D.; Mirza, Diba; Schurgers, Curt; Kastner, Ryan; Boch, Adrien
2017-01-01
Measuring the ever-changing 3-dimensional (3D) motions of the ocean requires simultaneous sampling at multiple locations. In particular, sampling the complex, nonlinear dynamics associated with submesoscales (<1-10 km) requires new technologies and approaches. Here we introduce the Mini-Autonomous Underwater Explorer (M-AUE), deployed as a swarm of 16 independent vehicles whose 3D trajectories are measured near-continuously, underwater. As the vehicles drift with the ambient flow or execute preprogrammed vertical behaviours, the simultaneous measurements at multiple, known locations resolve the details of the flow within the swarm. We describe the design, construction, control and underwater navigation of the M-AUE. A field programme in the coastal ocean using a swarm of these robots programmed with a depth-holding behaviour provides a unique test of a physical-biological interaction leading to plankton patch formation in internal waves. The performance of the M-AUE vehicles illustrates their novel capability for measuring submesoscale dynamics.
BIGNASim: a NoSQL database structure and analysis portal for nucleic acids simulation data
Hospital, Adam; Andrio, Pau; Cugnasco, Cesare; Codo, Laia; Becerra, Yolanda; Dans, Pablo D.; Battistini, Federica; Torres, Jordi; Goñi, Ramón; Orozco, Modesto; Gelpí, Josep Ll.
2016-01-01
Molecular dynamics simulation (MD) is, just behind genomics, the bioinformatics tool that generates the largest amounts of data, and that is using the largest amount of CPU time in supercomputing centres. MD trajectories are obtained after months of calculations, analysed in situ, and in practice forgotten. Several projects to generate stable trajectory databases have been developed for proteins, but no equivalence exists in the nucleic acids world. We present here a novel database system to store MD trajectories and analyses of nucleic acids. The initial data set available consists mainly of the benchmark of the new molecular dynamics force-field, parmBSC1. It contains 156 simulations, with over 120 μs of total simulation time. A deposition protocol is available to accept the submission of new trajectory data. The database is based on the combination of two NoSQL engines, Cassandra for storing trajectories and MongoDB to store analysis results and simulation metadata. The analyses available include backbone geometries, helical analysis, NMR observables and a variety of mechanical analyses. Individual trajectories and combined meta-trajectories can be downloaded from the portal. The system is accessible through http://mmb.irbbarcelona.org/BIGNASim/. Supplementary Material is also available on-line at http://mmb.irbbarcelona.org/BIGNASim/SuppMaterial/. PMID:26612862
Optimal low-thrust trajectories for nuclear and solar electric propulsion
NASA Astrophysics Data System (ADS)
Genta, G.; Maffione, P. F.
2016-01-01
The optimization of the trajectory and of the thrust profile of a low-thrust interplanetary transfer is usually solved under the assumption that the specific mass of the power generator is constant. While this is reasonable in the case of nuclear electric propulsion, if solar electric propulsion is used the specific mass depends on the distance of the spacecraft from the Sun. In the present paper the optimization of the trajectory of the spacecraft and of the thrust profile is solved under the latter assumption, to obtain optimized interplanetary trajectories for solar electric spacecraft, also taking into account all phases of the journey, from low orbit about the starting planet to low orbit about the destination one. General plots linking together the travel time, the specific mass of the generator and the propellant consumption are obtained.
NASA Astrophysics Data System (ADS)
Gramajo, German G.
This thesis presents an algorithm for a search and coverage mission that has increased autonomy in generating an ideal trajectory while explicitly considering the available energy in the optimization. Further, current algorithms used to generate trajectories depend on the operator providing a discrete set of turning rate requirements to obtain an optimal solution. This work proposes an additional modification to the algorithm so that it optimizes the trajectory for a range of turning rates instead of a discrete set of turning rates. This thesis conducts an evaluation of the algorithm with variation in turn duration, entry-heading angle, and entry point. Comparative studies of the algorithm with existing method indicates improved autonomy in choosing the optimization parameters while producing trajectories with better coverage area and closer final distance to the desired terminal point.
Automatic Generation of Indoor Navigable Space Using a Point Cloud and its Scanner Trajectory
NASA Astrophysics Data System (ADS)
Staats, B. R.; Diakité, A. A.; Voûte, R. L.; Zlatanova, S.
2017-09-01
Automatic generation of indoor navigable models is mostly based on 2D floor plans. However, in many cases the floor plans are out of date. Buildings are not always built according to their blue prints, interiors might change after a few years because of modified walls and doors, and furniture may be repositioned to the user's preferences. Therefore, new approaches for the quick recording of indoor environments should be investigated. This paper concentrates on laser scanning with a Mobile Laser Scanner (MLS) device. The MLS device stores a point cloud and its trajectory. If the MLS device is operated by a human, the trajectory contains information which can be used to distinguish different surfaces. In this paper a method is presented for the identification of walkable surfaces based on the analysis of the point cloud and the trajectory of the MLS scanner. This method consists of several steps. First, the point cloud is voxelized. Second, the trajectory is analysing and projecting to acquire seed voxels. Third, these seed voxels are generated into floor regions by the use of a region growing process. By identifying dynamic objects, doors and furniture, these floor regions can be modified so that each region represents a specific navigable space inside a building as a free navigable voxel space. By combining the point cloud and its corresponding trajectory, the walkable space can be identified for any type of building even if the interior is scanned during business hours.
The Mathematics of Navigating the Solar System
NASA Technical Reports Server (NTRS)
Hintz, Gerald
2000-01-01
In navigating spacecraft throughout the solar system, the space navigator relies on three academic disciplines - optimization, estimation, and control - that work on mathematical models of the real world. Thus, the navigator determines the flight path that will consume propellant and other resources in an efficient manner, determines where the craft is and predicts where it will go, and transfers it onto the optimal trajectory that meets operational and mission constraints. Mission requirements, for example, demand that observational measurements be made with sufficient precision that relativity must be modeled in collecting and fitting (the estimation process) the data, and propagating the trajectory. Thousands of parameters are now determined in near real-time to model the gravitational forces acting on a spacecraft in the vicinity of an irregularly shaped body. Completing these tasks requires mathematical models, analyses, and processing techniques. Newton, Gauss, Lambert, Legendre, and others are justly famous for their contributions to the mathematics of these tasks. More recently, graduate students participated in research to update the gravity model of the Saturnian system, including higher order gravity harmonics, tidal effects, and the influence of the rings. This investigation was conducted for the Cassini project to incorporate new trajectory modeling features in the navigation software. The resulting trajectory model will be used in navigating the 4-year tour of the Saturnian satellites. Also, undergraduate students are determining the ephemerides (locations versus time) of asteroids that will be used as reference objects in navigating the New Millennium's Deep Space 1 spacecraft autonomously.
NASA Astrophysics Data System (ADS)
Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios
2015-12-01
We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.
On-Board Generation of Three-Dimensional Constrained Entry Trajectories
NASA Technical Reports Server (NTRS)
Shen, Zuojun; Lu, Ping; Jackson, Scott (Technical Monitor)
2002-01-01
A methodology for very fast design of 3DOF entry trajectories subject to all common inequality and equality constraints is developed. The approach make novel use of the well known quasi-equilibrium glide phenomenon in lifting entry as a center piece for conveniently enforcing the inequality constraints which are otherwise difficulty to handle. The algorithm is able to generate a complete feasible 3DOF entry trajectory, given the entry conditions, values of constraint parameters, and final conditions in about 2 seconds on a PC. Numerical simulations with the X-33 vehicle model for various entry missions to land at Kennedy Space Center will be presented.
On-demand trajectory control of continuously generated airborne microdroplets
NASA Astrophysics Data System (ADS)
Ishiwata, Tomoki; Sakai, Keiji
2011-05-01
A technique to control the trajectory of in-flight microdroplets is described. The localized electric field generated by a needle electrode applies the dielectrophoretic force to the droplet to deflect its trajectory. Deflection by as much as 0.2 rad can be achieved, sufficient for industrial use. Moreover, highly selective control among droplets in a stream was demonstrated with the electric field modulations of 10 μs, which corresponds to the sorting speed of 105 s-1. In contrast to the conventional electrostatic control, the proposed technique is effective also for insulating liquids, allowing it to be applied to a wider range of materials.
Electron trajectory evaluation in laser-plasma interaction for effective output beam
NASA Astrophysics Data System (ADS)
Zobdeh, P.; Sadighi-Bonabi, R.; Afarideh, H.
2010-06-01
Using the ellipsoidal cavity model, the quasi-monoenergetic electron output beam in laser-plasma interaction is described. By the cavity regime the quality of electron beam is improved in comparison with those generated from other methods such as periodic plasma wave field, spheroidal cavity regime and plasma channel guided acceleration. Trajectory of electron motion is described as hyperbolic, parabolic or elliptic paths. We find that the self-generated electron bunch has a smaller energy width and more effective gain in energy spectrum. Initial condition for the ellipsoidal cavity is determined by laser-plasma parameters. The electron trajectory is influenced by its position, energy and cavity electrostatic potential.
INS integrated motion analysis for autonomous vehicle navigation
NASA Technical Reports Server (NTRS)
Roberts, Barry; Bazakos, Mike
1991-01-01
The use of inertial navigation system (INS) measurements to enhance the quality and robustness of motion analysis techniques used for obstacle detection is discussed with particular reference to autonomous vehicle navigation. The approach to obstacle detection used here employs motion analysis of imagery generated by a passive sensor. Motion analysis of imagery obtained during vehicle travel is used to generate range measurements to points within the field of view of the sensor, which can then be used to provide obstacle detection. Results obtained with an INS integrated motion analysis approach are reviewed.
NASA Technical Reports Server (NTRS)
Kelly, G. M.; Mcconnell, J. G.; Findlay, J. T.; Heck, M. L.; Henry, M. W.
1984-01-01
The STS-11 (41-B) postflight data processing is completed and the results published. The final reconstructed entry trajectory is presented. The various atmospheric sources available for this flight are discussed. Aerodynamic Best Estimate of Trajectory BET generation and plots from this file are presented. A definition of the major maneuvers effected is given. Physical constants, including spacecraft mass properties; final residuals from the reconstruction process; trajectory parameter listings; and an archival section are included.
Onboard Processing and Autonomous Operations on the IPEX Cubesat
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Ortega, Kevin; Flatley, Tom; Crum, Gary; Geist, Alessandro; Lin, Michael; Williams, Austin; Bellardo, John; Puig-Suari, Jordi;
2012-01-01
IPEX is a 1u Cubesat sponsored by NASA Earth Science Technology Office (ESTO), the goals or which are: (1) Flight validate high performance flight computing, (2) Flight validate onboard instrument data processing product generation software, (3) flight validate autonomous operations for instrument processing, (4) enhance NASA outreach and university ties.
A Double-Blind Atropine Trial for Active Learning of Autonomic Function
ERIC Educational Resources Information Center
Fry, Jeffrey R.; Burr, Steven A.
2011-01-01
Here, we describe a human physiology laboratory class measuring changes in autonomic function over time in response to atropine. Students use themselves as subjects, generating ownership and self-interest in the learning as well as directly experiencing the active link between physiology and pharmacology in people. The class is designed to…
Sahl, Jason W; Fairfield, Nathaniel; Harris, J Kirk; Wettergreen, David; Stone, William C; Spear, John R
2010-03-01
The deep phreatic thermal explorer (DEPTHX) is an autonomous underwater vehicle designed to navigate an unexplored environment, generate high-resolution three-dimensional (3-D) maps, collect biological samples based on an autonomous sampling decision, and return to its origin. In the spring of 2007, DEPTHX was deployed in Zacatón, a deep (approximately 318 m), limestone, phreatic sinkhole (cenote) in northeastern Mexico. As DEPTHX descended, it generated a 3-D map based on the processing of range data from 54 onboard sonars. The vehicle collected water column samples and wall biomat samples throughout the depth profile of the cenote. Post-expedition sample analysis via comparative analysis of 16S rRNA gene sequences revealed a wealth of microbial diversity. Traditional Sanger gene sequencing combined with a barcoded-amplicon pyrosequencing approach revealed novel, phylum-level lineages from the domains Bacteria and Archaea; in addition, several novel subphylum lineages were also identified. Overall, DEPTHX successfully navigated and mapped Zacatón, and collected biological samples based on an autonomous decision, which revealed novel microbial diversity in a previously unexplored environment.
Scott, John W; Park, Elizabeth; Rodriguiz, Ramona M; Oakhill, Jonathan S; Issa, Samah M A; O'Brien, Matthew T; Dite, Toby A; Langendorf, Christopher G; Wetsel, William C; Means, Anthony R; Kemp, Bruce E
2015-09-23
Mutations that reduce expression or give rise to a Thr85Ser (T85S) mutation of Ca(2+)-CaM-dependent protein kinase kinase-2 (CaMKK2) have been implicated in behavioural disorders such as anxiety, bipolar and schizophrenia in humans. Here we report that Thr85 is an autophosphorylation site that endows CaMKK2 with a molecular memory that enables sustained autonomous activation following an initial, transient Ca(2+) signal. Conversely, autophosphorylation of Ser85 in the T85S mutant fails to generate autonomous activity but instead causes a partial loss of CaMKK2 activity. The loss of autonomous activity in the mutant can be rescued by blocking glycogen synthase kinase-3 (GSK3) phosphorylation of CaMKK2 with the anti-mania drug lithium. Furthermore, CaMKK2 null mice representing a loss of function model the human behavioural phenotypes, displaying anxiety and manic-like behavioural disturbances. Our data provide a novel insight into CaMKK2 regulation and its perturbation by a mutation associated with behavioural disorders.
Piao, Jin-Chun; Kim, Shin-Dug
2017-11-07
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.
Multivariant function model generation
NASA Technical Reports Server (NTRS)
1974-01-01
The development of computer programs applicable to space vehicle guidance was conducted. The subjects discussed are as follows: (1) determination of optimum reentry trajectories, (2) development of equations for performance of trajectory computation, (3) vehicle control for fuel optimization, (4) development of equations for performance trajectory computations, (5) applications and solution of Hamilton-Jacobi equation, and (6) stresses in dome shaped shells with discontinuities at the apex.
Complexity and the Fractional Calculus
2013-01-01
these trajectories over the entire Lotka - Volterra cycle thereby generating the mistaken impression that the resulting average trajectory reaches...interpreted as a form of phase decor- relation process rather than one with friction. The fractional version of the popular Lotka - Volterra ecological...trajectory is an ordinary Lotka - Volterra cycle in the operational time . Transitioning from the operational time to the chronological time spreads
In situ data analytics and indexing of protein trajectories.
Johnston, Travis; Zhang, Boyu; Liwo, Adam; Crivelli, Silvia; Taufer, Michela
2017-06-15
The transition toward exascale computing will be accompanied by a performance dichotomy. Computational peak performance will rapidly increase; I/O performance will either grow slowly or be completely stagnant. Essentially, the rate at which data are generated will grow much faster than the rate at which data can be read from and written to the disk. MD simulations will soon face the I/O problem of efficiently writing to and reading from disk on the next generation of supercomputers. This article targets MD simulations at the exascale and proposes a novel technique for in situ data analysis and indexing of MD trajectories. Our technique maps individual trajectories' substructures (i.e., α-helices, β-strands) to metadata frame by frame. The metadata captures the conformational properties of the substructures. The ensemble of metadata can be used for automatic, strategic analysis within a trajectory or across trajectories, without manually identify those portions of trajectories in which critical changes take place. We demonstrate our technique's effectiveness by applying it to 26.3k helices and 31.2k strands from 9917 PDB proteins and by providing three empirical case studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Efficient Optimization of Low-Thrust Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul
2007-01-01
A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.
Prototype Flight Management Capabilities to Explore Temporal RNP Concepts
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Williams, David H.; Allen, Bonnie Danette; Palmer, Michael T.
2008-01-01
Next Generation Air Transportation System (NextGen) concepts of operation may require aircraft to fly planned trajectories in four dimensions three spatial dimensions and time. A prototype 4D flight management capability is being developed by NASA to facilitate the development of these concepts. New trajectory generation functions extend today's flight management system (FMS) capabilities that meet a single Required Time of Arrival (RTA) to trajectory solutions that comply with multiple RTA constraints. When a solution is not possible, a constraint management capability relaxes constraints to achieve a trajectory solution that meets the most important constraints as specified by candidate NextGen concepts. New flight guidance functions provide continuous guidance to the aircraft s flight control system to enable it to fly specified 4D trajectories. Guidance options developed for research investigations include a moving time window with varying tolerances that are a function of proximity to imposed constraints, and guidance that recalculates the aircraft s planned trajectory as a function of the estimation of current compliance. Compliance tolerances are related to required navigation performance (RNP) through the extension of existing RNP concepts for lateral containment. A conceptual temporal RNP implementation and prototype display symbology are proposed.
Spatiotemporal Interpolation Methods for Solar Event Trajectories
NASA Astrophysics Data System (ADS)
Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe
2018-05-01
This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.
NASA Technical Reports Server (NTRS)
Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen
2017-01-01
The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankinds understand of the universe and extending human presence into the solar system.
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.
2017-01-01
The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system.
Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E
2011-03-15
Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.
Narang, Sahil; Best, Andrew; Curtis, Sean; Manocha, Dinesh
2015-01-01
Pedestrian crowds often have been modeled as many-particle system including microscopic multi-agent simulators. One of the key challenges is to unearth governing principles that can model pedestrian movement, and use them to reproduce paths and behaviors that are frequently observed in human crowds. To that effect, we present a novel crowd simulation algorithm that generates pedestrian trajectories that exhibit the speed-density relationships expressed by the Fundamental Diagram. Our approach is based on biomechanical principles and psychological factors. The overall formulation results in better utilization of free space by the pedestrians and can be easily combined with well-known multi-agent simulation techniques with little computational overhead. We are able to generate human-like dense crowd behaviors in large indoor and outdoor environments and validate the results with captured real-world crowd trajectories. PMID:25875932
Kinematic evaluation of virtual walking trajectories.
Cirio, Gabriel; Olivier, Anne-Hélène; Marchal, Maud; Pettré, Julien
2013-04-01
Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.
NASA Technical Reports Server (NTRS)
D'souza, Sarah N.; Kinney, David J.; Garcia, Joseph A.; Sarigul-Klijn, Nesrin
2014-01-01
The state-of-the-art in vehicle design decouples flight feasible trajectory generation from the optimization process of an entry spacecraft shape. The disadvantage to this decoupled process is seen when a particular aeroshell does not meet in-flight requirements when integrated into Guidance, Navigation, and Control simulations. It is postulated that the integration of a guidance algorithm into the design process will provide a real-time, rapid trajectory generation technique to enhance the robustness of vehicle design solutions. The potential benefit of this integration is a reduction in design cycles (possible cost savings) and increased accuracy in the aerothermal environment (possible mass savings). This work examines two aspects: 1) the performance of a reference tracking guidance algorithm for five different geometries with the same reference trajectory and 2) the potential of mass savings from improved aerothermal predictions. An Apollo Derived Guidance (ADG) algorithm is used in this study. The baseline geometry and five test case geometries were flown using the same baseline trajectory. The guided trajectory results are compared to separate trajectories determined in a vehicle optimization study conducted for NASA's Mars Entry, Descent, and Landing System Analysis. This study revealed several aspects regarding the potential gains and required developments for integrating a guidance algorithm into the vehicle optimization environment. First, the generation of flight feasible trajectories is only as good as the robustness of the guidance algorithm. The set of dispersed geometries modelled aerodynamic dispersions that ranged from +/-1% to +/-17% and a single extreme case was modelled where the aerodynamics were approximately 80% less than the baseline geometry. The ADG, as expected, was able to guide the vehicle into the aeroshell separation box at the target location for dispersions up to 17%, but failed for the 80% dispersion cases. Finally, the results revealed that including flight feasible trajectories for a set of dispersed geometries has the potential to save mass up to 430 kg.
A Distributed Trajectory-Oriented Approach to Managing Traffic Complexity
NASA Technical Reports Server (NTRS)
Idris, Husni; Wing, David J.; Vivona, Robert; Garcia-Chico, Jose-Luis
2007-01-01
In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which ground-based service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. While its architecture becomes more distributed, the goal of the Air Traffic Management (ATM) system remains to achieve objectives such as maintaining safety and efficiency. It is, therefore, critical to design appropriate control elements to ensure that aircraft and groundbased actions result in achieving these objectives without unduly restricting user-preferred trajectories. This paper presents a trajectory-oriented approach containing two such elements. One is a trajectory flexibility preservation function, by which aircraft plan their trajectories to preserve flexibility to accommodate unforeseen events. And the other is a trajectory constraint minimization function by which ground-based agents, in collaboration with air-based agents, impose just-enough restrictions on trajectories to achieve ATM objectives, such as separation assurance and flow management. The underlying hypothesis is that preserving trajectory flexibility of each individual aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by minimizing constraints without jeopardizing the intended ATM objectives. The paper presents conceptually how the two functions operate in a distributed control architecture that includes self separation. The paper illustrates the concept through hypothetical scenarios involving conflict resolution and flow management. It presents a functional analysis of the interaction and information flow between the functions. It also presents an analytical framework for defining metrics and developing methods to preserve trajectory flexibility and minimize its constraints. In this framework flexibility is defined in terms of robustness and adaptability to disturbances and the impact of constraints is illustrated through analysis of a trajectory solution space with limited degrees of freedom and in simple constraint situations involving meeting multiple times of arrival and resolving a conflict.
Autonomous quantum to classical transitions and the generalized imaging theorem
NASA Astrophysics Data System (ADS)
Briggs, John S.; Feagin, James M.
2016-03-01
The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.
Autonomous quantum to classical transitions and the generalized imaging theorem
Briggs, John S.; Feagin, James M.
2016-03-16
The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less
NASA Astrophysics Data System (ADS)
Stark, Holger
2016-11-01
Microswimmers move autonomously but are subject to external fields, which influence their swimming path and their collective dynamics. With three concrete examples we illustrate swimming in external fields and explain the methodology to treat it. First, an active Brownian particle shows a conventional sedimentation profile in a gravitational field but with increased sedimentation length and some polar order along the vertical. Bottom-heavy swimmers are able to invert the sedimentation profile. Second, active Brownian particles interacting by hydrodynamic flow fields in a three-dimensional harmonic trap can spontaneously break the isotropic symmetry. They develop polar order, which one can describe by mean-field theory reminiscent to Weiss theory of ferromagnetism, and thereby pump fluid. Third, a single microswimmer shows interesting non-linear dynamics in Poiseuille flow including swinging and tumbling trajectories. For pushers, hydrodynamic interactions with bounding surfaces stabilize either straight swimming against the flow or tumbling close to the channel wall, while pushers always move on a swinging trajectory with a specific amplitude as limit cycle.
Advanced design for orbital debris removal in support of solar system exploration
NASA Technical Reports Server (NTRS)
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) is the ultimate goal. The craft will process, in situ, orbital debris using resources available in low Earth orbit (LEO). The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. This year, focus was on development of a versatile robotic manipulator to augment an existing robotic arm; incorporation of remote operation of robotic arms; and formulation of optimal (time and energy) trajectory planning algorithms for coordinating robotic arms. The mechanical design of the new arm is described in detail. The versatile work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time-optimal and energy-optimal problem. The optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamics programming.
Visual Persons Behavior Diary Generation Model based on Trajectories and Pose Estimation
NASA Astrophysics Data System (ADS)
Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li
2018-03-01
The behavior pattern of persons was the important output of the surveillance analysis. This paper focus on the generation model of visual person behavior diary. The pipeline includes the person detection, tracking, and the person behavior classify. This paper adopts the deep convolutional neural model YOLO (You Only Look Once)V2 for person detection module. Multi person tracking was based on the detection framework. The Hungarian assignment algorithm was used to the matching. The person appearance model was integrated by HSV color model and Hash code model. The person object motion was estimated by the Kalman Filter. The multi objects were matching with exist tracklets through the appearance and motion location distance by the Hungarian assignment method. A long continuous trajectory for one person was get by the spatial-temporal continual linking algorithm. And the face recognition information was used to identify the trajectory. The trajectories with identification information can be used to generate the visual diary of person behavior based on the scene context information and person action estimation. The relevant modules are tested in public data sets and our own capture video sets. The test results show that the method can be used to generate the visual person behavior pattern diary with certain accuracy.
NASA Technical Reports Server (NTRS)
Mukkamala, R.; Mathias, J. M.; Mullen, T. J.; Cohen, R. J.; Freeman, R.
1999-01-01
We applied cardiovascular system identification (CSI) to characterize closed-loop cardiovascular regulation in patients with diabetic autonomic neuropathy (DAN). The CSI method quantitatively analyzes beat-to-beat fluctuations in noninvasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV) to characterize four physiological coupling mechanisms, two of which are autonomically mediated (the heart rate baroreflex and the coupling of respiration, measured in terms of ILV, to heart rate) and two of which are mechanically mediated (the coupling of ventricular contraction to the generation of the ABP wavelet and the coupling of respiration to ABP). We studied 37 control and 60 diabetic subjects who were classified as having minimal, moderate, or severe DAN on the basis of standard autonomic tests. The autonomically mediated couplings progressively decreased with increasing severity of DAN, whereas the mechanically mediated couplings were essentially unchanged. CSI identified differences between the minimal DAN and control groups, which were indistinguishable based on the standard autonomic tests. CSI may provide a powerful tool for assessing DAN.
Coordinated turn-and-reach movements. II. Planning in an external frame of reference
NASA Technical Reports Server (NTRS)
Pigeon, Pascale; Bortolami, Simone B.; DiZio, Paul; Lackner, James R.
2003-01-01
The preceding study demonstrated that normal subjects compensate for the additional interaction torques generated when a reaching movement is made during voluntary trunk rotation. The present paper assesses the influence of trunk rotation on finger trajectories and on interjoint coordination and determines whether simultaneous turn-and-reach movements are most simply described relative to a trunk-based or an external reference frame. Subjects reached to targets requiring different extents of arm joint and trunk rotation at a natural pace and quickly in normal lighting and in total darkness. We first examined whether the larger interaction torques generated during rapid turn-and-reach movements perturb finger trajectories and interjoint coordination and whether visual feedback plays a role in compensating for these torques. These issues were addressed using generalized Procrustes analysis (GPA), which attempts to overlap a group of configurations (e.g., joint trajectories) through translations and rotations in multi-dimensional space. We first used GPA to identify the mean intrinsic patterns of finger and joint trajectories (i.e., their average shape irrespective of location and orientation variability in the external and joint workspaces) from turn-and-reach movements performed in each experimental condition and then calculated their curvatures. We then quantified the discrepancy between each finger or joint trajectory and the intrinsic pattern both after GPA was applied individually to trajectories from a pair of experimental conditions and after GPA was applied to the same trajectories pooled together. For several subjects, joint trajectories but not finger trajectories were more curved in fast than slow movements. The curvature of both joint and finger trajectories of turn-and-reach movements was relatively unaffected by the vision conditions. Pooling across speed conditions significantly increased the discrepancy between joint but not finger trajectories for most subjects, indicating that subjects used different patterns of interjoint coordination in slow and fast movements while nevertheless preserving the shape of their finger trajectory. Higher movement speeds did not disrupt the arm joint rotations despite the larger interaction torques generated. Rather, subjects used the redundant degrees of freedom of the arm/trunk system to achieve similar finger trajectories with differing joint configurations. We examined finger movement patterns and velocity profiles to determine the frame of reference in which turn-and-reach movements could be most simply described. Finger trajectories of turn-and-reach movements had much larger curvatures and their velocity profiles were less smooth and less bell-like in trunk-based coordinates than in external coordinates. Taken together, these results support the conclusion that turn-and-reach movements are controlled in an external frame of reference.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-06-15
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP's position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice.
Visualization of Morse connection graphs for topologically rich 2D vector fields.
Szymczak, Andrzej; Sipeki, Levente
2013-12-01
Recent advances in vector field topologymake it possible to compute its multi-scale graph representations for autonomous 2D vector fields in a robust and efficient manner. One of these representations is a Morse Connection Graph (MCG), a directed graph whose nodes correspond to Morse sets, generalizing stationary points and periodic trajectories, and arcs - to trajectories connecting them. While being useful for simple vector fields, the MCG can be hard to comprehend for topologically rich vector fields, containing a large number of features. This paper describes a visual representation of the MCG, inspired by previous work on graph visualization. Our approach aims to preserve the spatial relationships between the MCG arcs and nodes and highlight the coherent behavior of connecting trajectories. Using simulations of ocean flow, we show that it can provide useful information on the flow structure. This paper focuses specifically on MCGs computed for piecewise constant (PC) vector fields. In particular, we describe extensions of the PC framework that make it more flexible and better suited for analysis of data on complex shaped domains with a boundary. We also describe a topology simplification scheme that makes our MCG visualizations less ambiguous. Despite the focus on the PC framework, our approach could also be applied to graph representations or topological skeletons computed using different methods.
Xia, Dunzhu; Yao, Yanhong; Cheng, Limei
2017-01-01
In this paper, we aimed to achieve the indoor tracking control of a two-wheeled inverted pendulum (TWIP) vehicle. The attitude data are acquired from a low cost micro inertial measurement unit (IMU), and the ultra-wideband (UWB) technology is utilized to obtain an accurate estimation of the TWIP’s position. We propose a dual-loop control method to realize the simultaneous balance and trajectory tracking control for the TWIP vehicle. A robust adaptive second-order sliding mode control (2-RASMC) method based on an improved super-twisting (STW) algorithm is investigated to obtain the control laws, followed by several simulations to verify its robustness. The outer loop controller is designed using the idea of backstepping. Moreover, three typical trajectories, including a circle, a trifolium and a hexagon, have been designed to prove the adaptability of the control combinations. Six different combinations of inner and outer loop control algorithms have been compared, and the characteristics of inner and outer loop algorithm combinations have been analyzed. Simulation results demonstrate its tracking performance and thus verify the validity of the proposed control methods. Trajectory tracking experiments in a real indoor environment have been performed using our experimental vehicle to further validate the feasibility of the proposed algorithm in practice. PMID:28617338
Peng, Zhen; Braun, Daniel A.
2015-01-01
In a previous study we have shown that human motion trajectories can be characterized by translating continuous trajectories into symbol sequences with well-defined complexity measures. Here we test the hypothesis that the motion complexity individuals generate in their movements might be correlated to the degree of creativity assigned by a human observer to the visualized motion trajectories. We asked participants to generate 55 novel hand movement patterns in virtual reality, where each pattern had to be repeated 10 times in a row to ensure reproducibility. This allowed us to estimate a probability distribution over trajectories for each pattern. We assessed motion complexity not only by the previously proposed complexity measures on symbolic sequences, but we also propose two novel complexity measures that can be directly applied to the distributions over trajectories based on the frameworks of Gaussian Processes and Probabilistic Movement Primitives. In contrast to previous studies, these new methods allow computing complexities of individual motion patterns from very few sample trajectories. We compared the different complexity measures to how a group of independent jurors rank ordered the recorded motion trajectories according to their personal creativity judgment. We found three entropic complexity measures that correlate significantly with human creativity judgment and discuss differences between the measures. We also test whether these complexity measures correlate with individual creativity in divergent thinking tasks, but do not find any consistent correlation. Our results suggest that entropic complexity measures of hand motion may reveal domain-specific individual differences in kinesthetic creativity. PMID:26733896
Shaffer, Franklin D.
2013-03-12
The application relates to particle trajectory recognition from a Centroid Population comprised of Centroids having an (x, y, t) or (x, y, f) coordinate. The method is applicable to visualization and measurement of particle flow fields of high particle. In one embodiment, the centroids are generated from particle images recorded on camera frames. The application encompasses digital computer systems and distribution mediums implementing the method disclosed and is particularly applicable to recognizing trajectories of particles in particle flows of high particle concentration. The method accomplishes trajectory recognition by forming Candidate Trajectory Trees and repeated searches at varying Search Velocities, such that initial search areas are set to a minimum size in order to recognize only the slowest, least accelerating particles which produce higher local concentrations. When a trajectory is recognized, the centroids in that trajectory are removed from consideration in future searches.
Ares I-X Best Estimated Trajectory Analysis and Results
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Beck, Roger E.; Starr, Brett R.; Derry, Stephen D.; Brandon, Jay; Olds, Aaron D.
2011-01-01
The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air-data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.
Ares I-X Best Estimated Trajectory and Comparison with Pre-Flight Predictions
NASA Technical Reports Server (NTRS)
Karlgaard, Christopher D.; Beck, Roger E.; Derry, Stephen D.; Brandon, Jay M.; Starr, Brett R.; Tartabini, Paul V.; Olds, Aaron D.
2011-01-01
The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air- data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.
Venus Global Reference Atmospheric Model
NASA Technical Reports Server (NTRS)
Justh, Hilary L.
2017-01-01
Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.
Optimizing Spacecraft Placement for Liaison Constellations
NASA Technical Reports Server (NTRS)
Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.
2011-01-01
A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.
NASA Astrophysics Data System (ADS)
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-03-01
We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, R. Lee; Thomas, Christopher G., E-mail: Chris.Thomas@cdha.nshealth.ca; Department of Medical Physics, Nova Scotia Cancer Centre, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia B3H 1V7
2015-05-15
Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space,more » indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry motion during radiation therapy to minimize the geometrical overlap in the beams-eye-view of target volumes and the organs-at-risk can have an appreciable dose reduction to organs-at-risk.« less
ERIC Educational Resources Information Center
Groh, Ashley M.; Roisman, Glenn I.
2009-01-01
This article examines the extent to which secure base script knowledge--as reflected in an adult's ability to generate narratives in which attachment-related threats are recognized, competent help is provided, and the problem is resolved--is associated with adults' autonomic and subjective emotional responses to infant distress and nondistress…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorquet, J. C., E-mail: jc.lorquet@ulg.ac.be
2015-09-14
The purpose of the present work is to determine initial conditions that generate reacting, recrossing-free trajectories that cross the conventional dividing surface of transition state theory (i.e., the plane in configuration space passing through a saddle point of the potential energy surface and perpendicular to the reaction coordinate) without ever returning to it. Local analytical equations of motion valid in the neighborhood of this planar surface have been derived as an expansion in Poisson brackets. We show that the mere presence of a saddle point implies that reactivity criteria can be quite simply formulated in terms of elements of thismore » series, irrespective of the shape of the potential energy function. Some of these elements are demonstrated to be equal to a sum of squares and thus to be necessarily positive, which has a profound impact on the dynamics. The method is then applied to a three-dimensional model describing an atom-diatom interaction. A particular relation between initial conditions is shown to generate a bundle of reactive trajectories that form reactive cylinders (or conduits) in phase space. This relation considerably reduces the phase space volume of initial conditions that generate recrossing-free trajectories. Loci in phase space of reactive initial conditions are presented. Reactivity is influenced by symmetry, as shown by a comparative study of collinear and bent transition states. Finally, it is argued that the rules that have been derived to generate reactive trajectories in classical mechanics are also useful to build up a reactive wave packet.« less
Real-time visual mosaicking and navigation on the seafloor
NASA Astrophysics Data System (ADS)
Richmond, Kristof
Remote robotic exploration holds vast potential for gaining knowledge about extreme environments accessible to humans only with great difficulty. Robotic explorers have been sent to other solar system bodies, and on this planet into inaccessible areas such as caves and volcanoes. In fact, the largest unexplored land area on earth lies hidden in the airless cold and intense pressure of the ocean depths. Exploration in the oceans is further hindered by water's high absorption of electromagnetic radiation, which both inhibits remote sensing from the surface, and limits communications with the bottom. The Earth's oceans thus provide an attractive target for developing remote exploration capabilities. As a result, numerous robotic vehicles now routinely survey this environment, from remotely operated vehicles piloted over tethers from the surface to torpedo-shaped autonomous underwater vehicles surveying the mid-waters. However, these vehicles are limited in their ability to navigate relative to their environment. This limits their ability to return to sites with precision without the use of external navigation aids, and to maneuver near and interact with objects autonomously in the water and on the sea floor. The enabling of environment-relative positioning on fully autonomous underwater vehicles will greatly extend their power and utility for remote exploration in the furthest reaches of the Earth's waters---even under ice and under ground---and eventually in extraterrestrial liquid environments such as Europa's oceans. This thesis presents an operational, fielded system for visual navigation of underwater robotic vehicles in unexplored areas of the seafloor. The system does not depend on external sensing systems, using only instruments on board the vehicle. As an area is explored, a camera is used to capture images and a composite view, or visual mosaic, of the ocean bottom is created in real time. Side-to-side visual registration of images is combined with dead-reckoned navigation information in a framework allowing the creation and updating of large, locally consistent mosaics. These mosaics are used as maps in which the vehicle can navigate and localize itself with respect to points in the environment. The system achieves real-time performance in several ways. First, wherever possible, direct sensing of motion parameters is used in place of extracting them from visual data. Second, trajectories are chosen to enable a hierarchical search for side-to-side links which limits the amount of searching performed without sacrificing robustness. Finally, the map estimation is formulated as a sparse, linear information filter allowing rapid updating of large maps. The visual navigation enabled by the work in this thesis represents a new capability for remotely operated vehicles, and an enabling capability for a new generation of autonomous vehicles which explore and interact with remote, unknown and unstructured underwater environments. The real-time mosaic can be used on current tethered vehicles to create pilot aids and provide a vehicle user with situational awareness of the local environment and the position of the vehicle within it. For autonomous vehicles, the visual navigation system enables precise environment-relative positioning and mapping, without requiring external navigation systems, opening the way for ever-expanding autonomous exploration capabilities. The utility of this system was demonstrated in the field at sites of scientific interest using the ROVs Ventana and Tiburon operated by the Monterey Bay Aquarium Research Institute. A number of sites in and around Monterey Bay, California were mosaicked using the system, culminating in a complete imaging of the wreck site of the USS Macon , where real-time visual mosaics containing thousands of images were generated while navigating using only sensor systems on board the vehicle.
Smooth Sensor Motion Planning for Robotic Cyber Physical Social Sensing (CPSS)
Tang, Hong; Li, Liangzhi; Xiao, Nanfeng
2017-01-01
Although many researchers have begun to study the area of Cyber Physical Social Sensing (CPSS), few are focused on robotic sensors. We successfully utilize robots in CPSS, and propose a sensor trajectory planning method in this paper. Trajectory planning is a fundamental problem in mobile robotics. However, traditional methods are not suited for robotic sensors, because of their low efficiency, instability, and non-smooth-generated paths. This paper adopts an optimizing function to generate several intermediate points and regress these discrete points to a quintic polynomial which can output a smooth trajectory for the robotic sensor. Simulations demonstrate that our approach is robust and efficient, and can be well applied in the CPSS field. PMID:28218649
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Rañó, Iñaki
2012-07-01
Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.
BIGNASim: a NoSQL database structure and analysis portal for nucleic acids simulation data.
Hospital, Adam; Andrio, Pau; Cugnasco, Cesare; Codo, Laia; Becerra, Yolanda; Dans, Pablo D; Battistini, Federica; Torres, Jordi; Goñi, Ramón; Orozco, Modesto; Gelpí, Josep Ll
2016-01-04
Molecular dynamics simulation (MD) is, just behind genomics, the bioinformatics tool that generates the largest amounts of data, and that is using the largest amount of CPU time in supercomputing centres. MD trajectories are obtained after months of calculations, analysed in situ, and in practice forgotten. Several projects to generate stable trajectory databases have been developed for proteins, but no equivalence exists in the nucleic acids world. We present here a novel database system to store MD trajectories and analyses of nucleic acids. The initial data set available consists mainly of the benchmark of the new molecular dynamics force-field, parmBSC1. It contains 156 simulations, with over 120 μs of total simulation time. A deposition protocol is available to accept the submission of new trajectory data. The database is based on the combination of two NoSQL engines, Cassandra for storing trajectories and MongoDB to store analysis results and simulation metadata. The analyses available include backbone geometries, helical analysis, NMR observables and a variety of mechanical analyses. Individual trajectories and combined meta-trajectories can be downloaded from the portal. The system is accessible through http://mmb.irbbarcelona.org/BIGNASim/. Supplementary Material is also available on-line at http://mmb.irbbarcelona.org/BIGNASim/SuppMaterial/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Getting the Most from the Twin Mars Rovers
NASA Technical Reports Server (NTRS)
Laufenberg, Larry
2003-01-01
The report discusses the Mixed-initiative Activity Planning GENerator (MARGEN) automatically generates activity plans for rovers. Decision support system mixes autonomous planning/scheduling with user modifications. Accommodating change. Technology spotlight
Trajectory Design Employing Convex Optimization for Landing on Irregularly Shaped Asteroids
NASA Technical Reports Server (NTRS)
Pinson, Robin M.; Lu, Ping
2016-01-01
Mission proposals that land on asteroids are becoming popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site. The problem under investigation is how to design a fuel-optimal powered descent trajectory that can be quickly computed on- board the spacecraft, without interaction from ground control. An optimal trajectory designed immediately prior to the descent burn has many advantages. These advantages include the ability to use the actual vehicle starting state as the initial condition in the trajectory design and the ease of updating the landing target site if the original landing site is no longer viable. For long trajectories, the trajectory can be updated periodically by a redesign of the optimal trajectory based on current vehicle conditions to improve the guidance performance. One of the key drivers for being completely autonomous is the infrequent and delayed communication between ground control and the vehicle. Challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies and low thrust vehicles. There are two previous studies that form the background to the current investigation. The first set looked in-depth at applying convex optimization to a powered descent trajectory on Mars with promising results.1, 2 This showed that the powered descent equations of motion can be relaxed and formed into a convex optimization problem and that the optimal solution of the relaxed problem is indeed a feasible solution to the original problem. This analysis used a constant gravity field. The second area applied a successive solution process to formulate a second order cone program that designs rendezvous and proximity operations trajectories.3, 4 These trajectories included a Newtonian gravity model. The equivalence of the solutions between the relaxed and the original problem is theoretically established. The proposed solution for designing the asteroid powered descent trajectory is to use convex optimization, a gravity model with higher fidelity than Newtonian, and an iterative solution process to design the fuel optimal trajectory. The solution to the convex optimization problem is the thrust profile, magnitude and direction, that will yield the minimum fuel trajectory for a soft landing at the target site, subject to various mission and operational constraints. The equations of motion are formulated in a rotating coordinate system and includes a high fidelity gravity model. The vehicle's thrust magnitude can vary between maximum and minimum bounds during the burn. Also, constraints are included to ensure that the vehicle does not run out of propellant, or go below the asteroid's surface, and any vehicle pointing requirements. The equations of motion are discretized and propagated with the trapezoidal rule in order to produce equality constraints for the optimization problem. These equality constraints allow the optimization algorithm to solve the entire problem, without including a propagator inside the optimization algorithm.
Entry Abort Determination Using Non-Adaptive Neural Networks for Mars Precision Landers
NASA Technical Reports Server (NTRS)
Graybeal, Sarah R.; Kranzusch, Kara M.
2005-01-01
The 2009 Mars Science Laboratory (MSL) will attempt the first precision landing on Mars using a modified version of the Apollo Earth entry guidance program. The guidance routine, Entry Terminal Point Controller (ETPC), commands the deployment of a supersonic parachute after converging the range to the landing target. For very dispersed cases, ETPC may not converge the range to the target and safely command parachute deployment within Mach number and dynamic pressure constraints. A full-lift up abort can save 85% of these failed trajectories while abandoning the precision landing objective. Though current MSL requirements do not call for an abort capability, an autonomous abort capability may be desired, for this mission or future Mars precision landers, to make the vehicle more robust. The application of artificial neural networks (NNs) as an abort determination technique was evaluated by personnel at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC). In order to implement an abort, a failed trajectory needs to be recognized in real time. Abort determination is dependent upon several trajectory parameters whose relationships to vehicle survival are not well understood, and yet the lander must be trained to recognize unsafe situations. Artificial neural networks (NNs) provide a way to model these parameters and can provide MSL with the artificial intelligence necessary to independently declare an abort. Using the 2009 Mars Science Laboratory (MSL) mission as a case study, a non-adaptive NN was designed, trained and tested using Monte Carlo simulations of MSL descent and incorporated into ETPC. Neural network theory, the development history of the MSL NN, and initial testing with severe dust storm entry trajectory cases are discussed in Reference 1 and will not be repeated here. That analysis demonstrated that NNs are capable of recognizing failed descent trajectories and can significantly increase the survivability of MSL for very dispersed cases. NN testing was then broadened to evaluate fully dispersed entry trajectories. The NN correctly classified 99.7% of descent trajectories as abort or nonabort and reduced the probability of an unsafe parachute deployment by 83%. This second, broader testing phase is discussed in this paper.
Development of quadruped walking locomotion gait generator using a hybrid method
NASA Astrophysics Data System (ADS)
Jasni, F.; Shafie, A. A.
2013-12-01
The earth, in many areas is hardly reachable by the wheeled or tracked locomotion system. Thus, walking locomotion system is becoming a favourite option for mobile robot these days. This is because of the ability of walking locomotion to move on the rugged and unlevel terrains. However, to develop a walking locomotion gait for a robot is not a simple task. Central Pattern Generator (CPGs) method is a biological inspired method that is introduced as a method to develop the gait for the walking robot recently to tackle the issue faced by the conventional method of pre-designed trajectory based method. However, research shows that even the CPG method do have some limitations. Thus, in this paper, a hybrid method that combines CPG and the pre-designed trajectory based method is introduced to develop a walking gait for quadruped walking robot. The 3-D foot trajectories and the joint angle trajectories developed using the proposed method are compared with the data obtained via the conventional method of pre-designed trajectory to confirm the performance.
Global asymptotical ω-periodicity of a fractional-order non-autonomous neural networks.
Chen, Boshan; Chen, Jiejie
2015-08-01
We study the global asymptotic ω-periodicity for a fractional-order non-autonomous neural networks. Firstly, based on the Caputo fractional-order derivative it is shown that ω-periodic or autonomous fractional-order neural networks cannot generate exactly ω-periodic signals. Next, by using the contraction mapping principle we discuss the existence and uniqueness of S-asymptotically ω-periodic solution for a class of fractional-order non-autonomous neural networks. Then by using a fractional-order differential and integral inequality technique, we study global Mittag-Leffler stability and global asymptotical periodicity of the fractional-order non-autonomous neural networks, which shows that all paths of the networks, starting from arbitrary points and responding to persistent, nonconstant ω-periodic external inputs, asymptotically converge to the same nonconstant ω-periodic function that may be not a solution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ballistic projectile trajectory determining system
Karr, Thomas J.
1997-01-01
A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.
Novel Driving Control of Power Assisted Wheelchair Based on Minimum Jerk Trajectory
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu
This paper describes a novel trajectory control scheme for power assisted wheelchair. Human input torque patterns are always intermittent in power assisted wheelchairs, therefore, the suitable trajectories must be generated also after the human decreases his/her input torque. This paper tries to solve this significant problem based on minimum jerk model minimizing the changing rate of acceleration. The proposed control system based on minimum jerk trajectory is expected to improve the ride quality, stability and safety. Some experiments show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Pack, Robert T.; Saunders, David; Fullmer, Rees; Budge, Scott
2006-05-01
USU LadarSIM Release 2.0 is a ladar simulator that has the ability to feed high-level mission scripts into a processor that automatically generates scan commands during flight simulations. The scan generation depends on specified flight trajectories and scenes consisting of terrain and targets. The scenes and trajectories can either consist of simulated or actual data. The first modeling step produces an outline of scan footprints in xyz space. Once mission goals have been analyzed and it is determined that the scan footprints are appropriately distributed or placed, specific scans can then be chosen for the generation of complete radiometry-based range images and point clouds. The simulation is capable of quickly modeling ray-trace geometry associated with (1) various focal plane arrays and scanner configurations and (2) various scene and trajectories associated with particular maneuvers or missions.
Autonomous interplanetary constellation design
NASA Astrophysics Data System (ADS)
Chow, Cornelius Channing, II
According to NASA's integrated space technology roadmaps, space-based infrastructures are envisioned as necessary ingredients to a sustained effort in continuing space exploration. Whether it be for extra-terrestrial habitats, roving/cargo vehicles, or space tourism, autonomous space networks will provide a vital communications lifeline for both future robotic and human missions alike. Projecting that the Moon will be a bustling hub of activity within a few decades, a near-term opportunity for in-situ infrastructure development is within reach. This dissertation addresses the anticipated need for in-space infrastructure by investigating a general design methodology for autonomous interplanetary constellations; to illustrate the theory, this manuscript presents results from an application to the Earth-Moon neighborhood. The constellation design methodology is formulated as an optimization problem, involving a trajectory design step followed by a spacecraft placement sequence. Modeling the dynamics as a restricted 3-body problem, the investigated design space consists of families of periodic orbits which play host to the constellations, punctuated by arrangements of spacecraft autonomously guided by a navigation strategy called LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation). Instead of more traditional exhaustive search methods, a numerical continuation approach is implemented to map the admissible configuration space. In particular, Keller's pseudo-arclength technique is used to follow folding/bifurcating solution manifolds, which are otherwise inaccessible with other parameter continuation schemes. A succinct characterization of the underlying structure of the local, as well as global, extrema is thus achievable with little a priori intuition of the solution space. Furthermore, the proposed design methodology offers benefits in computation speed plus the ability to handle mildly stochastic systems. An application of the constellation design methodology to the restricted Earth-Moon system, reveals optimal pairwise configurations for various L1, L2, and L5 (halo, axial, and vertical) periodic orbit families. Navigation accuracies, ranging from O (10+/-1) meters in position space, are obtained for the optimal Earth-Moon constellations, given measurement noise on the order of 1 meter.
Fields, Chris
2011-01-01
The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599
Overshoot and Non-Overshoot Pathways to 1.5oC and Above: The Temperature Tunnel
NASA Astrophysics Data System (ADS)
Feijoo, F.; Edmonds, J.; Wise, M. A.; Mignone, B.; Kheshgi, H. S.
2017-12-01
We create 3000 temperature pathways that lead to a wide range of outcomes in 2100 from below 1.5oC to over 3oC. We use the Global Change Assessment Model (GCAM), which includes the HECTOR physical Earth system model, to generate emission, climate forcing and global temperature trajectories driven by a wide range of assumed carbon price trajectories. While no probability is estimated for the generated trajectories, we report the central estimate of temperature response to emissions from HECTOR. We find that despite the wide range of generated carbon emission trajectories, temperature pathways were constrained to a narrow range until shortly before mid-century. This "temperature tunnel" was the result of two phenomena: first, a narrow range of radiative forcing for 10-15 years created by the concurrent reduction of carbon and aerosol emissions; and second, the thermal lag of the climate response to radiative forcing change of roughly 10-15 years. Scenarios consistent with 1.5oC showed higher short-term temperatures than scenarios consistent with higher temperature outcomes. No scenarios were found that peak below approximately 1.9oC.
Chen, Xueli; Wu, Guan; Lan, Tian; Chen, Wei
2014-07-11
A novel autonomous micromotor, based on catalytically pneumatic behaviour of balloon-like MnOx-graphene crumples, has been synthesized via an ultrasonic spray pyrolysis method. Through catalytic decomposition of H2O2 into O2, the gas accumulated in a confined space and was released to generate a strong force to push the micromotor.
Autonomous Car Parking System through a Cooperative Vehicular Positioning Network.
Correa, Alejandro; Boquet, Guillem; Morell, Antoni; Lopez Vicario, Jose
2017-04-13
The increasing development of the automotive industry towards a fully autonomous car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs). Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is a mobile node that exchanges sensed and state information within the VSN. Among all the value added services for VSNs, the design of new intelligent parking management architectures where the autonomous car will coexist with traditional cars is mandatory in order to profit from all the opportunities associated with the increasing intelligence of the new generation of cars. In this work, we design a new smart parking system on top of a VSN that takes into account the heterogeneity of cars and provides guidance to the best parking place for the autonomous car based on a collaborative approach that searches for the common good of all of them measured by the accessibility rate, which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate a real parking lot and the results show that the performance of our system is close to the optimum considering different communication ranges and penetration rates for the autonomous car.
Autonomous Car Parking System through a Cooperative Vehicular Positioning Network
Correa, Alejandro; Boquet, Guillem; Morell, Antoni; Lopez Vicario, Jose
2017-01-01
The increasing development of the automotive industry towards a fully autonomous car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs). Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is a mobile node that exchanges sensed and state information within the VSN. Among all the value added services for VSNs, the design of new intelligent parking management architectures where the autonomous car will coexist with traditional cars is mandatory in order to profit from all the opportunities associated with the increasing intelligence of the new generation of cars. In this work, we design a new smart parking system on top of a VSN that takes into account the heterogeneity of cars and provides guidance to the best parking place for the autonomous car based on a collaborative approach that searches for the common good of all of them measured by the accessibility rate, which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate a real parking lot and the results show that the performance of our system is close to the optimum considering different communication ranges and penetration rates for the autonomous car. PMID:28406426
Voluntary facial action generates emotion-specific autonomic nervous system activity.
Levenson, R W; Ekman, P; Friesen, W V
1990-07-01
Four experiments were conducted to determine whether voluntarily produced emotional facial configurations are associated with differentiated patterns of autonomic activity, and if so, how this might be mediated. Subjects received muscle-by-muscle instructions and coaching to produce facial configurations for anger, disgust, fear, happiness, sadness, and surprise while heart rate, skin conductance, finger temperature, and somatic activity were monitored. Results indicated that voluntary facial activity produced significant levels of subjective experience of the associated emotion, and that autonomic distinctions among emotions: (a) were found both between negative and positive emotions and among negative emotions, (b) were consistent between group and individual subjects' data, (c) were found in both male and female subjects, (d) were found in both specialized (actors, scientists) and nonspecialized populations, (e) were stronger when the voluntary facial configurations most closely resembled actual emotional expressions, and (f) were stronger when experience of the associated emotion was reported. The capacity of voluntary facial activity to generate emotion-specific autonomic activity: (a) did not require subjects to see facial expressions (either in a mirror or on an experimenter's face), and (b) could not be explained by differences in the difficulty of making the expressions or by differences in concomitant somatic activity.
Resource allocation and supervisory control architecture for intelligent behavior generation
NASA Astrophysics Data System (ADS)
Shah, Hitesh K.; Bahl, Vikas; Moore, Kevin L.; Flann, Nicholas S.; Martin, Jason
2003-09-01
In earlier research the Center for Self-Organizing and Intelligent Systems (CSOIS) at Utah State University (USU) was funded by the US Army Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program to develop and demonstrate enhanced mobility concepts for unmanned ground vehicles (UGVs). As part of our research, we presented the use of a grammar-based approach to enabling intelligent behaviors in autonomous robotic vehicles. With the growth of the number of available resources on the robot, the variety of the generated behaviors and the need for parallel execution of multiple behaviors to achieve reaction also grew. As continuation of our past efforts, in this paper, we discuss the parallel execution of behaviors and the management of utilized resources. In our approach, available resources are wrapped with a layer (termed services) that synchronizes and serializes access to the underlying resources. The controlling agents (called behavior generating agents) generate behaviors to be executed via these services. The agents are prioritized and then, based on their priority and the availability of requested services, the Control Supervisor decides on a winner for the grant of access to services. Though the architecture is applicable to a variety of autonomous vehicles, we discuss its application on T4, a mid-sized autonomous vehicle developed for security applications.
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack
1998-01-01
An innovative approach to autonomous attitude and trajectory estimation is available using only magnetic field data and rate data. The estimation is performed simultaneously using an Extended Kalman Filter, a well known algorithm used extensively in onboard applications. The magnetic field is measured on a satellite by a magnetometer, an inexpensive and reliable sensor flown on virtually all satellites in low earth orbit. Rate data is provided by a gyro, which can be costly. This system has been developed and successfully tested in a post-processing mode using magnetometer and gyro data from 4 satellites supported by the Flight Dynamics Division at Goddard. In order for this system to be truly low cost, an alternative source for rate data must be utilized. An independent system which estimate spacecraft rate has been successfully developed and tested using only magnetometer data or a combination of magnetometer data and sun sensor data, which is less costly than a gyro. This system also uses an Extended Kalman Filter. Merging the two systems will provide an extremely low cost, autonomous approach to attitude and trajectory estimation. In this work we provide the theoretical background of the combined system. The measurement matrix is developed by combining the measurement matrix of the orbit and attitude estimation EKF with the measurement matrix of the rate estimation EKF, which is composed of a pseudo-measurement which makes the effective measurement a function of the angular velocity. Associated with this is the development of the noise covariance matrix associated with the original measurement combined with the new pseudo-measurement. In addition, the combination of the dynamics from the two systems is presented along with preliminary test results.
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Harman, Rick; Bar-Itzhack, Itzhack
1998-01-01
An innovative approach to autonomous attitude and trajectory estimation is available using only magnetic field data and rate data. The estimation is performed simultaneously using an Extended Kalman Filter (EKF), a well known algorithm used extensively in onboard applications. The magnetic field is measured on a satellite by a magnetometer, an inexpensive and reliable sensor flown on virtually all satellites in low earth orbit. Rate data is provided by a gyro, which can be costly. This system has been developed and successfully tested in a post-processing mode using magnetometer and gyro data from 4 satellites supported by the Flight Dynamics Division at Goddard. In order for this system to be truly low cost, an alternative source for rate data must be utilized. An independent system which estimates spacecraft rate has been successfully developed and tested using only magnetometer data or a combination of magnetometer data and sun sensor data, which is less costly than a gyro. This system also uses an EKF. Merging the two systems will provide an extremely low cost, autonomous approach to attitude and trajectory estimation. In this work we provide the theoretical background of the combined system. The measurement matrix is developed by combining the measurement matrix of the orbit and attitude estimation EKF with the measurement matrix of the rate estimation EKF, which is composed of a pseudo-measurement which makes the effective measurement a function of the angular velocity. Associated with this is the development of the noise covariance matrix associated with the original measurement combined with the new pseudo-measurement. In addition, the combination of the dynamics from the two systems is presented along with preliminary test results.
Steering a Tractor by Means of an EMG-Based Human-Machine Interface
Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio
2011-01-01
An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006
Steering a tractor by means of an EMG-based human-machine interface.
Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio
2011-01-01
An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver's scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.
Autonomous soaring and surveillance in wind fields with an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Gao, Chen
Small unmanned aerial vehicles (UAVs) play an active role in developing a low-cost, low-altitude autonomous aerial surveillance platform. The success of the applications needs to address the challenge of limited on-board power plant that limits the endurance performance in surveillance mission. This thesis studies the mechanics of soaring flight, observed in nature where birds utilize various wind patterns to stay airborne without flapping their wings, and investigates its application to small UAVs in their surveillance missions. In a proposed integrated framework of soaring and surveillance, a bird-mimicking soaring maneuver extracts energy from surrounding wind environment that improves surveillance performance in terms of flight endurance, while the surveillance task not only covers the target area, but also detects energy sources within the area to allow for potential soaring flight. The interaction of soaring and surveillance further enables novel energy based, coverage optimal path planning. Two soaring and associated surveillance strategies are explored. In a so-called static soaring surveillance, the UAV identifies spatially-distributed thermal updrafts for soaring, while incremental surveillance is achieved through gliding flight to visit concentric expanding regions. A Gaussian-process-regression-based algorithm is developed to achieve computationally-efficient and smooth updraft estimation. In a so-called dynamic soaring surveillance, the UAV performs one cycle of dynamic soaring to harvest energy from the horizontal wind gradient to complete one surveillance task by visiting from one target to the next one. A Dubins-path-based trajectory planning approach is proposed to maximize wind energy extraction and ensure smooth transition between surveillance tasks. Finally, a nonlinear trajectory tracking controller is designed for a full six-degree-of-freedom nonlinear UAV dynamics model and extensive simulations are carried to demonstrate the effectiveness of the proposed soaring and surveillance strategies.
NEMAR plotting computer program
NASA Technical Reports Server (NTRS)
Myler, T. R.
1981-01-01
A FORTRAN coded computer program which generates CalComp plots of trajectory parameters is examined. The trajectory parameters are calculated and placed on a data file by the Near Earth Mission Analysis Routine computer program. The plot program accesses the data file and generates the plots as defined by inputs to the plot program. Program theory, user instructions, output definitions, subroutine descriptions and detailed FORTRAN coding information are included. Although this plot program utilizes a random access data file, a data file of the same type and formatted in 102 numbers per record could be generated by any computer program and used by this plot program.
Rare behavior of growth processes via umbrella sampling of trajectories
NASA Astrophysics Data System (ADS)
Klymko, Katherine; Geissler, Phillip L.; Garrahan, Juan P.; Whitelam, Stephen
2018-03-01
We compute probability distributions of trajectory observables for reversible and irreversible growth processes. These results reveal a correspondence between reversible and irreversible processes, at particular points in parameter space, in terms of their typical and atypical trajectories. Thus key features of growth processes can be insensitive to the precise form of the rate constants used to generate them, recalling the insensitivity to microscopic details of certain equilibrium behavior. We obtained these results using a sampling method, inspired by the "s -ensemble" large-deviation formalism, that amounts to umbrella sampling in trajectory space. The method is a simple variant of existing approaches, and applies to ensembles of trajectories controlled by the total number of events. It can be used to determine large-deviation rate functions for trajectory observables in or out of equilibrium.
Hinnant, J. Benjamin; EL-Sheikh, Mona
2013-01-01
We investigated the roles of sex and respiratory sinus arrhythmia (RSA), an index of autonomic parasympathetic nervous system activity, as predictors of codeveloping externalizing and internalizing symptoms in middle childhood. We expected that sex, baseline RSA (RSA-B), and RSA reactivity (RSA-R) to two types of tasks would interact to differentiate co-occurring trajectories of symptoms. We tested these hypotheses by combining longitudinal data from two independent samples (n = 390; 210 girls, 180 boys) with repeated measures at ages 8, 9, 10, and 11. RSA-R was measured in response to a socially stressful and frustrating stressor. Indicators of growth in externalizing and internalizing symptoms were derived from multiple domain growth models and used in person-centered growth mixture analyses. Three groups of externalizing and internalizing trajectories were found. Profile membership was predicted by several two-way interactions among sex, RSA-B, or RSA-R but was not predicted by three-way interactions. Children with low RSA-B and strong RSA withdrawal, girls with low RSA-B, and girls with strong RSA withdrawal were more likely to be on a developmental trajectory of low externalizing symptoms and moderately elevated internalizing symptoms. Membership in the high externalizing and high internalizing trajectory was predicted by weak RSA withdrawal for boys and strong RSA withdrawal for girls. The type of stressor task also played a role in predicting probability of profile membership. Results are discussed in the context of developmental psychobiology and implications for the codevelopment of psychopathology symptoms in childhood. PMID:23627954
Planning and Execution for an Autonomous Aerobot
NASA Technical Reports Server (NTRS)
Gaines, Daniel M.; Estlin, Tara A.; Schaffer, Steven R.; Chouinard, Caroline M.
2010-01-01
The Aerial Onboard Autonomous Science Investigation System (AerOASIS) system provides autonomous planning and execution capabilities for aerial vehicles (see figure). The system is capable of generating high-quality operations plans that integrate observation requests from ground planning teams, as well as opportunistic science events detected onboard the vehicle while respecting mission and resource constraints. AerOASIS allows an airborne planetary exploration vehicle to summarize and prioritize the most scientifically relevant data; identify and select high-value science sites for additional investigation; and dynamically plan, schedule, and monitor the various science activities being performed, even during extended communications blackout periods with Earth.
POST II Trajectory Animation Tool Using MATLAB, V1.0
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad
2005-01-01
A trajectory animation tool has been developed for accurately depicting position and the attitude of the bodies in flight. The movies generated from This MATLAB based tool serve as an engineering analysis aid to gain further understanding into the dynamic behavior of bodies in flight. This tool has been designed to interface with the output generated from POST II simulations, and is able to animate a single as well as multiple vehicles in flight.
Four-body trajectory optimization
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1973-01-01
A collection of typical three-body trajectories from the L1 libration point on the sun-earth line to the earth is presented. These trajectories in the sun-earth system are grouped into four distinct families which differ in transfer time and delta V requirements. Curves showing the variations of delta V with respect to transfer time, and typical two and three-impulse primer vector histories, are included. The development of a four-body trajectory optimization program to compute fuel optimal trajectories between the earth and a point in the sun-earth-moon system are also discussed. Methods for generating fuel optimal two-impulse trajectories which originate at the earth or a point in space, and fuel optimal three-impulse trajectories between two points in space, are presented. A brief qualitative comparison of these methods is given. An example of a four-body two-impulse transfer from the Li libration point to the earth is included.
An Oceanographic Decision Support System for Scientific Field Experiments
NASA Astrophysics Data System (ADS)
Maughan, T.; Das, J.; McCann, M. P.; Rajan, K.
2011-12-01
Thom Maughan, Jnaneshwar Das, Mike McCann, Danelle Cline, Mike Godin, Fred Bahr, Kevin Gomes, Tom O'Reilly, Frederic Py, Monique Messie, John Ryan, Francisco Chavez, Jim Bellingham, Maria Fox, Kanna Rajan Monterey Bay Aquarium Research Institute Moss Lading, California, United States Many of the coastal ocean processes we wish to observe in order to characterize marine ecosystems have large spatial extant (tens of square km) and are dynamic moving kilometers in a day with biological processes spanning anywhere from minutes to days. Some like harmful algal blooms generate toxins which can significantly impact human health and coastal economies. In order to obtain a viable understanding of the biogeochemical processes which define their dynamics and ecology, it is necessary to persistently observe, track and sample within and near the dynamic fields using augmented methods of observation such as autonomous platforms like AUVs, gliders and surface craft. Field experiments to plan, execute and manage such multitude of assets are challenging. To alleviate this problem the autonomous systems group with its collaborators at MBARI and USC designed, built and fielded a prototype Oceanographic Decision Support System (ODSS) that provides situational awareness and a single portal to visualize and plan deployments for the large scale October 2010 CANON field program as well as a series of 2 week field programs in 2011. The field programs were conducted in Monterey Bay, a known 'red tide' incubator, and varied from as many as twenty autonomous platforms, four ships and 2 manned airplanes to coordinated AUV operations, drifters and a single ship. The ODSS web-based portal was used to assimilate information from a collection of sources at sea, including AUVs, moorings, radar data as well as remote sensing products generated by partner organizations to provide a synthesis of views useful to predict the movement of a chlorophyll patch in the confines of the northern Monterey Bay. The ODSS was used for automated shore-based control of mobile assets and was also used to compute safety bounds for operation of MBARI AUVs and provide projections of drifters advected [1,4] due to surface conditions. Scientist and operations teams use the ODSS during the daily planning meetings for situation awareness and real time access to data to support decisions on sampling strategies and platform logistics. References 1. J.Das, F. Py, T. Maughan, J Ryan , K. Rajan & G. Sukhatme, Simultaneous Tracking and Sampling of Dynamic Oceanographic Features with Autonomous Underwater Vehicles and Lagrangian Drifters, Accepted, Intnl. Symp. on Experimental Robotics (ISER), N. Delhi, India, Dec 2010. 2. S. Jiminez, F. Py & K. Rajan, Learning Identification Models for In-situ Sampling of Ocean features, Working notes of the RSS'10 Workshop on Active Learning for Robotics. Robotics Systems Sciences, Spain. 2010 3. Py, F. , Jiminez, S. , and Rajan, K. "Modeling dynamic coastal ocean features for in-situ identication and adaptive sampling", Journal of Atmospheric and Ocean Technology-Ocean(2010). Submitted, in Review. 4. J. Das, K. Rajan, S. Frolov, J. Ryan, F. Py, D. Caron & G. Sukhatme, Towards Marine Bloom Trajectory Prediction for AUV Mission Planning, ICRA, May 2010, Anchorage
Wind-based navigation of a hot-air balloon on Titan: a feasibility study
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Elfes, Alberto; Reh, Kim
2008-04-01
Current analysis of data streamed back to Earth by the Cassini spacecraft features Titan as one of the most exciting places in the solar system. NASA centers and universities around the US, as well as the European Space Agency, are studying the possibility of sending, as part of the next mission to this giant moon of Saturn, a hot-air balloon (Montgolfier-type) for further and more in-depth exploration. The basic idea would be to design a reliable, semi-autonomous, and yet cheap Montgolfier capable of using continuous flow of waste heat from a power source to lift the balloon and sustain its altitude in the Titan environment. In this paper we study the problem of locally navigating a hot-air balloon in the nitrogen-based Titan atmosphere. The basic idea is to define a strategy (i.e. design of a suitable guidance system) that allows autonomous and semi-autonomous navigation of the balloon using the available (and partial) knowledge of the wind structure blowing on the saturnian satellite surface. Starting from first principles we determined the appropriate thermal and dynamical models describing (a) the vertical dynamics of the balloon and (b) the dynamics of the balloon moving on a vertical plane (2-D motion). Next, various non-linear fuzzy-based control strategies have been evaluated, analyzed and implemented in MATLAB to numerically simulate the capability of the system to simultaneously maintain altitude, as well as a scientifically desirable trajectory. We also looked at the ability of the balloon to perform station keeping. The results of the simulation are encouraging and show the effectiveness of such a system to cheaply and effectively perform semi-autonomous exploration of Titan.
NASA Technical Reports Server (NTRS)
Elfes, Alberto; Hall, Jeffery L.; Kulczycki, Eric A.; Cameron, Jonathan M.; Morfopoulos, Arin C.; Clouse, Daniel S.; Montgomery, James F.; Ansar, Adnan I.; Machuzak, Richard J.
2009-01-01
An architecture for autonomous operation of an aerobot (i.e., a robotic blimp) to be used in scientific exploration of planets and moons in the Solar system with an atmosphere (such as Titan and Venus) is undergoing development. This architecture is also applicable to autonomous airships that could be flown in the terrestrial atmosphere for scientific exploration, military reconnaissance and surveillance, and as radio-communication relay stations in disaster areas. The architecture was conceived to satisfy requirements to perform the following functions: a) Vehicle safing, that is, ensuring the integrity of the aerobot during its entire mission, including during extended communication blackouts. b) Accurate and robust autonomous flight control during operation in diverse modes, including launch, deployment of scientific instruments, long traverses, hovering or station-keeping, and maneuvers for touch-and-go surface sampling. c) Mapping and self-localization in the absence of a global positioning system. d) Advanced recognition of hazards and targets in conjunction with tracking of, and visual servoing toward, targets, all to enable the aerobot to detect and avoid atmospheric and topographic hazards and to identify, home in on, and hover over predefined terrain features or other targets of scientific interest. The architecture is an integrated combination of systems for accurate and robust vehicle and flight trajectory control; estimation of the state of the aerobot; perception-based detection and avoidance of hazards; monitoring of the integrity and functionality ("health") of the aerobot; reflexive safing actions; multi-modal localization and mapping; autonomous planning and execution of scientific observations; and long-range planning and monitoring of the mission of the aerobot. The prototype JPL aerobot (see figure) has been tested extensively in various areas in the California Mojave desert.
Precisely and Accurately Inferring Single-Molecule Rate Constants
Kinz-Thompson, Colin D.; Bailey, Nevette A.; Gonzalez, Ruben L.
2017-01-01
The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state versus time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal versus time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restrict the precision of these approaches, and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories. PMID:27793280
Ares I-X Range Safety Simulation Verification and Analysis IV and V
NASA Technical Reports Server (NTRS)
Tarpley, Ashley; Beaty, James; Starr, Brett
2010-01-01
NASA s ARES I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) flight data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual 91-710. Some products included in the flight data package were a nominal ascent trajectory, ascent flight envelope trajectories, and malfunction turn trajectories. These data are used by the Air Force s 45th Space Wing (45SW) to ensure Eastern Range public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data in regards to public safety and mission success, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. Multiple NASA centers and contractor organizations were assigned specific products to IV&V. The data generation and IV&V work was coordinated through the Launch Constellation Range Safety Panel s Trajectory Working Group, which included members from the prime and IV&V organizations as well as the 45SW. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures ARES I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for an RS product. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.
Fleets of enduring drones to probe atmospheric phenomena with clouds
NASA Astrophysics Data System (ADS)
Lacroix, Simon; Roberts, Greg; Benard, Emmanuel; Bronz, Murat; Burnet, Frédéric; Bouhoubeiny, Elkhedim; Condomines, Jean-Philippe; Doll, Carsten; Hattenberger, Gautier; Lamraoui, Fayçal; Renzaglia, Alessandro; Reymann, Christophe
2016-04-01
A full spatio-temporal four-dimensional characterization of the microphysics and dynamics of cloud formation including the onset of precipitation has never been reached. Such a characterization would yield a better understanding of clouds, e.g. to assess the dominant mixing mechanism and the main source of cloudy updraft dilution. It is the sampling strategy that matters: fully characterizing the evolution over time of the various parameters (P, T, 3D wind, liquid water content, aerosols...) within a cloud volume requires dense spatial sampling for durations of the order of one hour. A fleet of autonomous lightweight UAVs that coordinate themselves in real-time as an intelligent network can fulfill this purpose. The SkyScanner project targets the development of a fleet of autonomous UAVs to adaptively sample cumuli, so as to provide relevant data to address long standing questions in atmospheric science. It mixes basic researches and experimental developments, and gathers scientists in UAV conception, in optimal flight control, in intelligent cooperative behaviors, and of course atmospheric scientists. Two directions of researches are explored: optimal UAV conception and control, and optimal control of a fleet of UAVs. The design of UAVs for atmospheric science involves the satisfaction of trade-offs between payload, endurance, ease of deployment... A rational conception scheme that integrates the constraints to optimize a series of criteria, in particular energy consumption, would yield the definition of efficient UAVs. This requires a fine modeling of each involved sub-system and phenomenon, from the motor/propeller efficiency to the aerodynamics at small scale, including the flight control algorithms. The definition of mission profiles is also essential, considering the aerodynamics of clouds, to allow energy harvesting schemes that exploit thermals or gusts. The conception also integrates specific sensors, in particular wind sensor, for which classic technologies are challenged at the low speeds of lightweight UAVs. The overall control of the fleet so as to gather series of synchronized data in the cloud volume is a poorly informed and highly constrained adaptive sampling problem, in which the UAV motions must be defined to maximize the amount of gathered information and the mission duration. The overall approach casts the problem in a hierarchy of two modeling and decision stages. A macroscopic parametrized model of the cloud is built from the gathered data and exploited at the higher level by an operator, who sets information gathering goals. A subset of the UAV fleet is allocated to each goal, considering the current fleet state. These high level goals are handled by the lower level, which autonomously optimizes the selected UAVs trajectories using an on-line updated dense model of the variables of interest. Building the models involves Gaussian processes techniques (kriging) to fuse the gathered data with a generic cumulus conceptual model, the latter being defined from thorough statistics on realistic MesoNH cloud simulations. The model is exploited by a planner to generate trajectories that minimize the uncertainty in the map, while steering the vehicles within the air flows to save energy.
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.; Gracanin, Denis; Erickson, John
2005-01-01
Requirements-to-Design-to-Code (R2D2C) is an approach to the engineering of computer-based systems that embodies the idea of requirements-based programming in system development. It goes further; however, in that the approach offers not only an underlying formalism, but full formal development from requirements capture through to the automatic generation of provably-correct code. As such, the approach has direct application to the development of systems requiring autonomic properties. We describe a prototype tool to support the method, and illustrate its applicability to the development of LOGOS, a NASA autonomous ground control system, which exhibits autonomic behavior. Finally, we briefly discuss other areas where the approach and prototype tool are being considered for application.
Control of autonomous robot using neural networks
NASA Astrophysics Data System (ADS)
Barton, Adam; Volna, Eva
2017-07-01
The aim of the article is to design a method of control of an autonomous robot using artificial neural networks. The introductory part describes control issues from the perspective of autonomous robot navigation and the current mobile robots controlled by neural networks. The core of the article is the design of the controlling neural network, and generation and filtration of the training set using ART1 (Adaptive Resonance Theory). The outcome of the practical part is an assembled Lego Mindstorms EV3 robot solving the problem of avoiding obstacles in space. To verify models of an autonomous robot behavior, a set of experiments was created as well as evaluation criteria. The speed of each motor was adjusted by the controlling neural network with respect to the situation in which the robot was found.
Determination of trajectories of fireballs using seismic network data
NASA Astrophysics Data System (ADS)
Ishihara, Y.
2006-12-01
Fireballs, Bolides, which are caused by high velocity passages of meteoroids through the atmosphere, generate shockwaves. Meteor shockwave provide us very important information (arrival time and amplitude) to study meteor physics. The shockwave arrival time data enable us to determine trajectories of the fireballs. On the other hand, the shockwave amplitude tells us size and ablation history of the meteoroid. Infrasound observation is one of the ways of detecting bolide shockwaves. However, we have no infrasound observational networks extends for large area with enough spatial distribution for determination of trajectories and estimate ablation histories. We have only a few infrasound arrays that have three or four elements, in the Japanese islands. Last decade, digital seismic networks are greatly improved for the purpose of monitoring micro earthquakes. Those seismic networks are quite sensitive for detecting micro ground vibration, and then those networks could detect not only seismic wave generated by earthquakes, but also ground oscillations generated by coupling of meteor shockwave with the ground near station. Last years, I analyses this kind of ground motion data recorded by seismic network, as meteor shockwave signals. For example, we estimate some great fireball's aerial path from arrival times of shockwaves (e.g., Ishihara et. al., 2003 Earth Planets, and Space, 2004 Geophysical Research. Letters.; Pujol et al., 2006 Planetary and Space Science), and we estimate sizes and ablation history of some great fireball and a meteorite fall (Ishihara et al., 2004 Meteoroids2004). In Japan, some great fireball falls occurred during 2004 to 2005. In this presentation, I show the trajectories of these fireballs determined from shockwave analysis. Some fireballs trajectories are also determined from photographic records. The trajectories determined from shockwave and that from photos show good agreement.
Trajectory planning and optimal tracking for an industrial mobile robot
NASA Astrophysics Data System (ADS)
Hu, Huosheng; Brady, J. Michael; Probert, Penelope J.
1994-02-01
This paper introduces a unified approach to trajectory planning and tracking for an industrial mobile robot subject to non-holonomic constraints. We show (1) how a smooth trajectory is generated that takes into account the constraints from the dynamic environment and the robot kinematics; and (2) how a general predictive controller works to provide optimal tracking capability for nonlinear systems. The tracking performance of the proposed guidance system is analyzed by simulation.
Detailed description of the HP-9825A HFRMP trajectory processor (TRAJ)
NASA Technical Reports Server (NTRS)
Kindall, S. M.; Wilson, S. W.
1979-01-01
The computer code for the trajectory processor of the HP-9825A High Fidelity Relative Motion Program is described in detail. The processor is a 12-degrees-of-freedom trajectory integrator which can be used to generate digital and graphical data describing the relative motion of the Space Shuttle Orbiter and a free-flying cylindrical payload. Coding standards and flow charts are given and the computational logic is discussed.
Surface modifications with Lissajous trajectories using atomic force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu
2015-09-14
In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.
Fractional dynamics using an ensemble of classical trajectories
NASA Astrophysics Data System (ADS)
Sun, Zhaopeng; Dong, Hao; Zheng, Yujun
2018-01-01
A trajectory-based formulation for fractional dynamics is presented and the trajectories are generated deterministically. In this theoretical framework, we derive a new class of estimators in terms of confluent hypergeometric function (F11) to represent the Riesz fractional derivative. Using this method, the simulation of free and confined Lévy flight are in excellent agreement with the exact numerical and analytical results. In addition, the barrier crossing in a bistable potential driven by Lévy noise of index α is investigated. In phase space, the behavior of trajectories reveal the feature of Lévy flight in a better perspective.
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
NASA Technical Reports Server (NTRS)
Allan, Brian G.; Yao, Chung-Sheng; Lin, John C.
2002-01-01
Numerical simulations of a single low-profile vortex generator vane, which is only a small fraction of the boundary-layer thickness, and a vortex generating jet have been performed for flows over a flat plate. The numerical simulations were computed by solving the steady-state solution to the Reynolds-averaged Navier-Stokes equations. The vortex generating vane results were evaluated by comparing the strength and trajectory of the streamwise vortex to experimental particle image velocimetry measurements. From the numerical simulations of the vane case, it was observed that the Shear-Stress Transport (SST) turbulence model resulted in a better prediction of the streamwise peak vorticity and trajectory when compared to the Spalart-Allmaras (SA) turbulence model. It is shown in this investigation that the estimation of the turbulent eddy viscosity near the vortex core, for both the vane and jet simulations, was higher for the SA model when compared to the SST model. Even though the numerical simulations of the vortex generating vane were able to predict the trajectory of the stream-wise vortex, the initial magnitude and decay of the peak streamwise vorticity were significantly under predicted. A comparison of the positive circulation associated with the streamwise vortex showed that while the numerical simulations produced a more diffused vortex, the vortex strength compared very well to the experimental observations. A grid resolution study for the vortex generating vane was also performed showing that the diffusion of the vortex was not a result of insufficient grid resolution. Comparisons were also made between a fully modeled trapezoidal vane with finite thickness to a simply modeled rectangular thin vane. The comparisons showed that the simply modeled rectangular vane produced a streamwise vortex which had a strength and trajectory very similar to the fully modeled trapezoidal vane.
Information-Driven Autonomous Exploration for a Vision-Based Mav
NASA Astrophysics Data System (ADS)
Palazzolo, E.; Stachniss, C.
2017-08-01
Most micro aerial vehicles (MAV) are flown manually by a pilot. When it comes to autonomous exploration for MAVs equipped with cameras, we need a good exploration strategy for covering an unknown 3D environment in order to build an accurate map of the scene. In particular, the robot must select appropriate viewpoints to acquire informative measurements. In this paper, we present an approach that computes in real-time a smooth flight path with the exploration of a 3D environment using a vision-based MAV. We assume to know a bounding box of the object or building to explore and our approach iteratively computes the next best viewpoints using a utility function that considers the expected information gain of new measurements, the distance between viewpoints, and the smoothness of the flight trajectories. In addition, the algorithm takes into account the elapsed time of the exploration run to safely land the MAV at its starting point after a user specified time. We implemented our algorithm and our experiments suggest that it allows for a precise reconstruction of the 3D environment while guiding the robot smoothly through the scene.
Lean Development with the Morpheus Simulation Software
NASA Technical Reports Server (NTRS)
Brogley, Aaron C.
2013-01-01
The Morpheus project is an autonomous robotic testbed currently in development at NASA's Johnson Space Center (JSC) with support from other centers. Its primary objectives are to test new 'green' fuel propulsion systems and to demonstrate the capability of the Autonomous Lander Hazard Avoidance Technology (ALHAT) sensor, provided by the Jet Propulsion Laboratory (JPL) on a lunar landing trajectory. If successful, these technologies and lessons learned from the Morpheus testing cycle may be incorporated into a landing descent vehicle used on the moon, an asteroid, or Mars. In an effort to reduce development costs and cycle time, the project employs lean development engineering practices in its development of flight and simulation software. The Morpheus simulation makes use of existing software packages where possible to reduce the development time. The development and testing of flight software occurs primarily through the frequent test operation of the vehicle and incrementally increasing the scope of the test. With rapid development cycles, risk of loss of the vehicle and loss of the mission are possible, but efficient progress in development would not be possible without that risk.
Darabi, Mohammad Ali; Khosrozadeh, Ali; Mbeleck, Rene; Liu, Yuqing; Chang, Qiang; Jiang, Junzi; Cai, Jun; Wang, Quan; Luo, Gaoxing; Xing, Malcolm
2017-08-01
The advent of conductive self-healing (CSH) hydrogels, a class of novel materials mimicking human skin, may change the trajectory of the industrial process because of their potential applications in soft robots, biomimetic prostheses, and health-monitoring systems. Here, the development of a mechanically and electrically self-healing hydrogel based on physically and chemically cross-linked networks is reported. The autonomous intrinsic self-healing of the hydrogel is attained through dynamic ionic interactions between carboxylic groups of poly(acrylic acid) and ferric ions. A covalent cross-linking is used to support the mechanical structure of the hydrogel. Establishing a fair balance between the chemical and physical cross-linking networks together with the conductive nanostructure of polypyrrole networks leads to a double network hydrogel with bulk conductivity, mechanical and electrical self-healing properties (100% mechanical recovery in 2 min), ultrastretchability (1500%), and pressure sensitivity. The practical potential of CSH hydrogels is further revealed by their application in human motion detection and their 3D-printing performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laboratory testing of candidate robotic applications for space
NASA Technical Reports Server (NTRS)
Purves, R. B.
1987-01-01
Robots have potential for increasing the value of man's presence in space. Some categories with potential benefit are: (1) performing extravehicular tasks like satellite and station servicing, (2) supporting the science mission of the station by manipulating experiment tasks, and (3) performing intravehicular activities which would be boring, tedious, exacting, or otherwise unpleasant for astronauts. An important issue in space robotics is selection of an appropriate level of autonomy. In broad terms three levels of autonomy can be defined: (1) teleoperated - an operator explicitly controls robot movement; (2) telerobotic - an operator controls the robot directly, but by high-level commands, without, for example, detailed control of trajectories; and (3) autonomous - an operator supplies a single high-level command, the robot does all necessary task sequencing and planning to satisfy the command. Researchers chose three projects for their exploration of technology and implementation issues in space robots, one each of the three application areas, each with a different level of autonomy. The projects were: (1) satellite servicing - teleoperated; (2) laboratory assistant - telerobotic; and (3) on-orbit inventory manager - autonomous. These projects are described and some results of testing are summarized.
Roth, Gerhard; Strüber, Daniel
2009-01-01
Impulsive-reactive violent offenders show increased autonomic activity in response to negative emotional and threatening stimuli. A volume reduction and/or activity decrease of frontal brain structures associated with impulse control and the regulation of fear and anger are likewise found in combination with a fear-related hyperactivity of the amygdala. In addition, impulsive aggression is facilitated by variants of gene polymorphisms influencing the serotonergic system. Conversely, proactive-instrumental violent offender with psychopathy, who are characterized by a lack of empathy and remorse, demonstrate an autonomic hypo-responsivity as well as dysfunctions of the amygdala and of cortical regions related to empathic and social behavior. Developmentally, aggressive children exhibit temperamental differences from early childhood on that are characteristic of a developmental pathway towards either reactive or proactive violence later in life. Exposure to negative environmental factors like ineffective parenting or childhood maltreatment has been related to a heightened risk for developing reactive violence. A developmental trajectory of proactive violence, however, has been related to a mostly genetically determined callous unemotional temperament of the child that disrupts the parental socialization efforts during childhood.
Lane changing trajectory planning and tracking control for intelligent vehicle on curved road.
Wang, Lukun; Zhao, Xiaoying; Su, Hao; Tang, Gongyou
2016-01-01
This paper explores lane changing trajectory planning and tracking control for intelligent vehicle on curved road. A novel arcs trajectory is planned for the desired lane changing trajectory. A kinematic controller and a dynamics controller are designed to implement the trajectory tracking control. Firstly, the kinematic model and dynamics model of intelligent vehicle with non-holonomic constraint are established. Secondly, two constraints of lane changing on curved road in practice (LCCP) are proposed. Thirdly, two arcs with same curvature are constructed for the desired lane changing trajectory. According to the geometrical characteristics of arcs trajectory, equations of desired state can be calculated. Finally, the backstepping method is employed to design a kinematic trajectory tracking controller. Then the sliding-mode dynamics controller is designed to ensure that the motion of the intelligent vehicle can follow the desired velocity generated by kinematic controller. The stability of control system is proved by Lyapunov theory. Computer simulation demonstrates that the desired arcs trajectory and state curves with B-spline optimization can meet the requirements of LCCP constraints and the proposed control schemes can make tracking errors to converge uniformly.
Ballistic projectile trajectory determining system
Karr, T.J.
1997-05-20
A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.
Kinematic Optimization of Robot Trajectories for Thermal Spray Coating Application
NASA Astrophysics Data System (ADS)
Deng, Sihao; Liang, Hong; Cai, Zhenhua; Liao, Hanlin; Montavon, Ghislain
2014-12-01
Industrial robots are widely used in the field of thermal spray nowadays. Due to their characteristics of high-accuracy and programmable flexibility, spraying on complex geometrical workpieces can be realized in the equipped spray room. However, in some cases, the robots cannot guarantee the process parameters defined by the robot movement, such as the scanning trajectory, spray angle, relative speed between the torch and the substrate, etc., which have distinct influences on heat and mass transfer during the generation of any thermally sprayed coatings. In this study, an investigation on the robot kinematics was proposed to find the rules of motion in a common case. The results showed that the motion behavior of each axis of robot permits to identify the motion problems in the trajectory. This approach allows to optimize the robot trajectory generation in a limited working envelop. It also minimizes the influence of robot performance to achieve a more constant relative scanning speed which is represented as a key parameter in thermal spraying.
NASA Technical Reports Server (NTRS)
Mann, F. I.; Horsewood, J. L.
1974-01-01
A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.
Delivering Sound Energy along an Arbitrary Convex Trajectory
Zhao, Sipei; Hu, Yuxiang; Lu, Jing; Qiu, Xiaojun; Cheng, Jianchun; Burnett, Ian
2014-01-01
Accelerating beams have attracted considerable research interest due to their peculiar properties and various applications. Although there have been numerous research on the generation and application of accelerating light beams, few results have been published on the generation of accelerating acoustic beams. Here we report on the experimental observation of accelerating acoustic beams along arbitrary convex trajectories. The desired trajectory is projected to the spatial phase profile on the boundary which is discretized and sampled spatially. The sound field distribution is formulated with the Green function and the integral equation method. Both the paraxial and the non-paraxial regimes are examined and observed in the experiments. The effect of obstacle scattering in the sound field is also investigated and the results demonstrate that the approach is robust against obstacle scattering. The realization of accelerating acoustic beams will have an impact on various applications where acoustic information and energy are required to be delivered along an arbitrary convex trajectory. PMID:25316353
Morrison, Andrew; McGrath, Denise; Wallace, Eric S
2018-02-01
The trajectory of the clubhead close to ball impact during the golf swing has previously been shown to be planar. However, the relationship between the plane orientation and the orientation characteristics of the clubhead at ball impact has yet to be defined. Fifty-two male golfers (27 high skilled, 25 intermediate skilled) hit 40 drives each in an indoor biomechanics laboratory. This study successfully fitted the trajectory of the clubhead near impact to an ellipse for each swing for players of different skill levels to help better explain this relationship. Additionally, the eccentricities of the ellipses were investigated for links to skill level. The trajectory of the clubhead was found to fit to an ellipse with RMSE of 1.2 mm. The eccentricity of the ellipse was found to be greater in the high-skilled golfers. The club path and angle of attack generated from the ellipse fitted clubhead trajectory were found to have a normalised bias-corrected RMSE of 2% and 3%, respectively. A set of "rule of thumb" values for the relationship between the club path, angle of attack and delivery plane angle was generated for use by coaches.
Moving-window dynamic optimization: design of stimulation profiles for walking.
Dosen, Strahinja; Popović, Dejan B
2009-05-01
The overall goal of the research is to improve control for electrical stimulation-based assistance of walking in hemiplegic individuals. We present the simulation for generating offline input (sensors)-output (intensity of muscle stimulation) representation of walking that serves in synthesizing a rule-base for control of electrical stimulation for restoration of walking. The simulation uses new algorithm termed moving-window dynamic optimization (MWDO). The optimization criterion was to minimize the sum of the squares of tracking errors from desired trajectories with the penalty function on the total muscle efforts. The MWDO was developed in the MATLAB environment and tested using target trajectories characteristic for slow-to-normal walking recorded in healthy individual and a model with the parameters characterizing the potential hemiplegic user. The outputs of the simulation are piecewise constant intensities of electrical stimulation and trajectories generated when the calculated stimulation is applied to the model. We demonstrated the importance of this simulation by showing the outputs for healthy and hemiplegic individuals, using the same target trajectories. Results of the simulation show that the MWDO is an efficient tool for analyzing achievable trajectories and for determining the stimulation profiles that need to be delivered for good tracking.
Loganathan, Muthukumaran; Bristow, Douglas A
2014-04-01
This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.
Depolymerization-powered autonomous motors using biocompatible fuel.
Zhang, Hua; Duan, Wentao; Liu, Lei; Sen, Ayusman
2013-10-23
We report the design of autonomous motors powered by the rapid depolymerization reaction of poly(2-ethyl cyanoacrylate) (PECA), an FDA-approved polymer. Motors were fabricated in two different length scales, 3 cm and 300 μm. The motion of the motors is induced by self-generated surface tension gradients along their bodies. The motors are capable of moving in various media, including salt solutions and artificial serum.
The Vite Model: A Neural Command Circuit for Generating Arm and Articulator Trajectories,
1988-03-01
Principles of Learning, Perception, Development , Cognition , and Motor Control. Boston: Reidel Press, (1982). Grossberg, S . and Kuperstein, M., Neural...AD-RI92 705 THE YITE MODEL: A NEURAL COMMAND CIRCUIT FO R .# GENERATING ARM AND ARTUCULA..(U) BOSTON UNJY MA CENTER FOR ADAPTIVE SYSTEMS S GROSSUERO...and Articulator Trajectories 6 EFRIGOG EOTNME 7. AUTHOR( s ) 5. CONTRACT OR GRANT NUMBER( s ) Stephen Grossberg XM- F49620-86-C-0O37 Daniel Bullock 9. S
Szuplewska, Magdalena; Ludwiczak, Marta; Lyzwa, Katarzyna; Czarnecki, Jakub; Bartosik, Dariusz
2014-01-01
Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.
Image encryption using random sequence generated from generalized information domain
NASA Astrophysics Data System (ADS)
Xia-Yan, Zhang; Guo-Ji, Zhang; Xuan, Li; Ya-Zhou, Ren; Jie-Hua, Wu
2016-05-01
A novel image encryption method based on the random sequence generated from the generalized information domain and permutation-diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security.
Assured Human-Autonomy Interaction through Machine Self-Confidence
NASA Astrophysics Data System (ADS)
Aitken, Matthew
Autonomous systems employ many layers of approximations in order to operate in increasingly uncertain and unstructured environments. The complexity of these systems makes it hard for a user to understand the systems capabilities, especially if the user is not an expert. However, if autonomous systems are to be used efficiently, their users must trust them appropriately. This purpose of this work is to implement and assess an 'assurance' that an autonomous system can provide to the user to elicit appropriate trust. Specifically, the autonomous system's perception of its own capabilities is reported to the user as the self-confidence assurance. The self-confidence assurance should allow the user to more quickly and accurately assess the autonomous system's capabilities, generating appropriate trust in the autonomous system. First, this research defines self-confidence and discusses what the self-confidence assurance is attempting to communicate to the user. Then it provides a framework for computing the autonomous system's self-confidence as a function of self-confidence factors which correspond to individual elements in the autonomous system's process. In order to explore this idea, self-confidence is implemented on an autonomous system that uses a mixed observability Markov decision process model to solve a pursuit-evasion problem on a road network. The implementation of a factor assessing the goodness of the autonomy's expected performance is focused on in particular. This work highlights some of the issues and considerations in the design of appropriate metrics for the self-confidence factors, and provides the basis for future research for computing self-confidence in autonomous systems.
PointCom: semi-autonomous UGV control with intuitive interface
NASA Astrophysics Data System (ADS)
Rohde, Mitchell M.; Perlin, Victor E.; Iagnemma, Karl D.; Lupa, Robert M.; Rohde, Steven M.; Overholt, James; Fiorani, Graham
2008-04-01
Unmanned ground vehicles (UGVs) will play an important role in the nation's next-generation ground force. Advances in sensing, control, and computing have enabled a new generation of technologies that bridge the gap between manual UGV teleoperation and full autonomy. In this paper, we present current research on a unique command and control system for UGVs named PointCom (Point-and-Go Command). PointCom is a semi-autonomous command system for one or multiple UGVs. The system, when complete, will be easy to operate and will enable significant reduction in operator workload by utilizing an intuitive image-based control framework for UGV navigation and allowing a single operator to command multiple UGVs. The project leverages new image processing algorithms for monocular visual servoing and odometry to yield a unique, high-performance fused navigation system. Human Computer Interface (HCI) techniques from the entertainment software industry are being used to develop video-game style interfaces that require little training and build upon the navigation capabilities. By combining an advanced navigation system with an intuitive interface, a semi-autonomous control and navigation system is being created that is robust, user friendly, and less burdensome than many current generation systems. mand).
Scalable autonomous operations of unmanned assets
NASA Astrophysics Data System (ADS)
Jung, Sunghun
Although there have been great theoretical advances in the region of Unmanned Aerial Vehicle (UAV) autonomy, applications of those theories into real world are still hesitated due to unexpected disturbances. Most of UAVs which are currently used are mainly, strictly speaking, Remotely Piloted Vehicles (RPA) since most works related with the flight control, sensor data analysis, and decision makings are done by human operators. To increase the degree of autonomy, many researches are focused on developing Unmanned Autonomous Aerial Vehicle (UAAV) which can takeoff, fly to the interested area by avoiding unexpected obstacles, perform various missions with decision makings, come back to the base station, and land on by itself without any human operators. To improve the performance of UAVs, the accuracies of position and orientation sensors are enhanced by integrating a Unmanned Ground Vehicle (UGV) or a solar compass to a UAV; Position sensor accuracy of a GPS sensor on a UAV is improved by referencing the position of a UGV which is calculated by using three GPS sensors and Weighted Centroid Localization (WCL) method; Orientation sensor accuracy is improved as well by using Three Pixel Theorem (TPT) and integrating a solar compass which composed of nine light sensors to a magnetic compass. Also, improved health management of a UAV is fulfilled by developing a wireless autonomous charging station which uses four pairs of transmitter and receiver magnetic loops with four robotic arms. For the software aspect, I also analyze the error propagation of the proposed mission planning hierarchy to achieve the safest size of the buffer zone. In addition, among seven future research areas regarding UAV, this paper mainly focuses on developing algorithms of path planning, trajectory generation, and cooperative tactics for the operations of multiple UAVs using GA based multiple Traveling Salesman Problem (mTSP) which is solved by dividing into m number of Traveling Salesman Problems (TSP) using two region division methods such as Uniform Region Division (URD) and K-means Voronoi Region Division (KVRD). The topic of the maximum fuel efficiency is also dealt to ensure the minimum amount fuel consumption to perform surveillance on a given region using multiple UAVs. Last but not least, I present an application example of cattle roundup with two UAVs and two animals using the feedback linearization controller.
The role of automation and artificial intelligence
NASA Astrophysics Data System (ADS)
Schappell, R. T.
1983-07-01
Consideration is given to emerging technologies that are not currently in common use, yet will be mature enough for implementation in a space station. Artificial intelligence (AI) will permit more autonomous operation and improve the man-machine interfaces. Technology goals include the development of expert systems, a natural language query system, automated planning systems, and AI image understanding systems. Intelligent robots and teleoperators will be needed, together with improved sensory systems for the robotics, housekeeping, vehicle control, and spacecraft housekeeping systems. Finally, NASA is developing the ROBSIM computer program to evaluate level of automation, perform parametric studies and error analyses, optimize trajectories and control systems, and assess AI technology.
Moon Age and Regolith Explorer (MARE) Mission Design and Performance
NASA Technical Reports Server (NTRS)
Condon, Gerald L.; Lee, David E.; Carson, John M., III
2017-01-01
On December 11, 1972, Apollo 17 marked the last controlled U.S. lunar landing and was followed by an absence of methodical in-situ investigation of the lunar surface. The Moon Age and Regolith Explorer (MARE) proposal provides scientific measurement of the age and composition of a relatively young portion of the lunar surface near Aristarchus Plateau and the first post-Apollo U.S. soft lunar landing. It includes the first demonstration of a crew survivability-enhancing autonomous hazard detection and avoidance system. This report focuses on the mission design and performance associated with the MARE robotic lunar landing subject to mission and trajectory constraints.
Optimal and Autonomous Control Using Reinforcement Learning: A Survey.
Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L
2018-06-01
This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.
Instantons re-examined: dynamical tunneling and resonant tunneling.
Le Deunff, Jérémy; Mouchet, Amaury
2010-04-01
Starting from trace formulas for the tunneling splittings (or decay rates) analytically continued in the complex time domain, we obtain explicit semiclassical expansions in terms of complex trajectories that are selected with appropriate complex-time paths. We show how this instantonlike approach, which takes advantage of an incomplete Wick rotation, accurately reproduces tunneling effects not only in the usual double-well potential but also in situations where a pure Wick rotation is insufficient, for instance dynamical tunneling or resonant tunneling. Even though only one-dimensional autonomous Hamiltonian systems are quantitatively studied, we discuss the relevance of our method for multidimensional and/or chaotic tunneling.
Gasser, Constantine E; Kerr, Jessica A; Mensah, Fiona K; Wake, Melissa
2017-04-01
This study aimed to derive and compare longitudinal trajectories of dietary scores and patterns from 2-3 to 10-11 years and from 4-5 to 14-15 years of age. In waves two to six of the Baby (B) Cohort and one to six of the Kindergarten (K) Cohort of the population-based Longitudinal Study of Australian Children, parents or children reported biennially on the study child's consumption of twelve to sixteen healthy and less healthy food or drink items for the previous 24 h. For each wave, we derived a dietary score from 0 to 14, based on the 2013 Australian Dietary Guidelines (higher scores indicating healthier diet). We then used factor analyses to empirically derive dietary patterns for separate waves. Using group-based trajectory modelling, we generated trajectories of dietary scores and empirical patterns in 4504 B and 4640 K Cohort children. Four similar trajectories of dietary scores emerged for the B and K Cohorts, containing comparable proportions of children in each cohort: 'never healthy' (8·8 and 11·9 %, respectively), 'moderately healthy' (24·0 and 20·7 %), 'becoming less healthy' (16·6 and 27·3 %) and 'always healthy' (50·7 and 40·2 %). Deriving trajectories based on dietary patterns, rather than dietary scores, produced similar findings. For 'becoming less healthy' trajectories, dietary quality appeared to worsen from 7 years of age in both cohorts. In conclusion, a brief dietary measure administered repeatedly across childhood generated robust, nuanced dietary trajectories that were replicable across two cohorts and two methodologies. These trajectories appear ideal for future research into dietary determinants and health outcomes.
Hammad, Mohanad M; Elshenawy, Ahmed K; El Singaby, M I
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment.
Elshenawy, Ahmed K.; El Singaby, M.I.
2017-01-01
In this work a design for self-tuning non-linear Fuzzy Proportional Integral Derivative (FPID) controller is presented to control position and speed of Multiple Input Multiple Output (MIMO) fully-actuated Autonomous Underwater Vehicles (AUV) to follow desired trajectories. Non-linearity that results from the hydrodynamics and the coupled AUV dynamics makes the design of a stable controller a very difficult task. In this study, the control scheme in a simulation environment is validated using dynamic and kinematic equations for the AUV model and hydrodynamic damping equations. An AUV configuration with eight thrusters and an inverse kinematic model from a previous work is utilized in the simulation. In the proposed controller, Mamdani fuzzy rules are used to tune the parameters of the PID. Nonlinear fuzzy Gaussian membership functions are selected to give better performance and response in the non-linear system. A control architecture with two feedback loops is designed such that the inner loop is for velocity control and outer loop is for position control. Several test scenarios are executed to validate the controller performance including different complex trajectories with and without injection of ocean current disturbances. A comparison between the proposed FPID controller and the conventional PID controller is studied and shows that the FPID controller has a faster response to the reference signal and more stable behavior in a disturbed non-linear environment. PMID:28683071
Results of the Magnetometer Navigation (MAGNAV)lnflight Experiment
NASA Technical Reports Server (NTRS)
Thienel, Julie K.; Harman, Richard R.; Bar-Itzhack, Itzhack Y.; Lambertson, Mike
2004-01-01
The Magnetometer Navigation (MAGNAV) algorithm is currently running as a flight experiment as part of the Wide Field Infrared Explorer (WIRE) Post-Science Engineering Testbed. Initialization of MAGNAV occurred on September 4, 2003. MAGNAV is designed to autonomously estimate the spacecraft orbit, attitude, and rate using magnetometer and sun sensor data. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed magnetic field and measured magnetic field components, as measured by the magnetometer throughout the entire spacecraft orbit, are a function of the spacecraft trajectory and attitude errors. Therefore, these errors are used to estimate both trajectory and attitude. In addition, the time rate of change of the magnetic field vector is used to estimate the spacecraft rotation rate. The estimation of the attitude and trajectory is augmented with the rate estimation into an Extended Kalman filter blended with a pseudo-linear Kalman filter. Sun sensor data is also used to improve the accuracy and observability of the attitude and rate estimates. This test serves to validate MAGNAV as a single low cost navigation system which utilizes reliable, flight qualified sensors. MAGNAV is intended as a backup algorithm, an initialization algorithm, or possibly a prime navigation algorithm for a mission with coarse requirements. Results from the first six months of operation are presented.
A biologically inspired neural net for trajectory formation and obstacle avoidance.
Glasius, R; Komoda, A; Gielen, S C
1996-06-01
In this paper we present a biologically inspired two-layered neural network for trajectory formation and obstacle avoidance. The two topographically ordered neural maps consist of analog neurons having continuous dynamics. The first layer, the sensory map, receives sensory information and builds up an activity pattern which contains the optimal solution (i.e. shortest path without collisions) for any given set of current position, target positions and obstacle positions. Targets and obstacles are allowed to move, in which case the activity pattern in the sensory map will change accordingly. The time evolution of the neural activity in the second layer, the motor map, results in a moving cluster of activity, which can be interpreted as a population vector. Through the feedforward connections between the two layers, input of the sensory map directs the movement of the cluster along the optimal path from the current position of the cluster to the target position. The smooth trajectory is the result of the intrinsic dynamics of the network only. No supervisor is required. The output of the motor map can be used for direct control of an autonomous system in a cluttered environment or for control of the actuators of a biological limb or robot manipulator. The system is able to reach a target even in the presence of an external perturbation. Computer simulations of a point robot and a multi-joint manipulator illustrate the theory.
A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases
Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting
2014-01-01
In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028
A hybrid spatio-temporal data indexing method for trajectory databases.
Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting
2014-07-21
In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type.
Planification de trajectoires pour une flotte d'UAVs
NASA Astrophysics Data System (ADS)
Ait El Cadi, Abdessamad
In this thesis we address the problem of coordinating and controlling a fleet of Unmanned Aerial Vehicles (UAVs) during a surveillance mission in a dynamic context. The problem is vast and is related to several scientific domains. We have studied three important parts of this problem: • modeling the ground with all its constraints; • computing a shortest non-holonomic continuous path in a risky environment with a presence of obstacles; • planning a surveillance mission for a fleet of UAVs in a real context. While investigating the scientific literature related to these topics, we have detected deficiencies in the modeling of the ground and in the computation of the shortest continuous path, two critical aspects for the planning of a mission. So after the literature review, we have proposed answers to these two aspects and have applied our developments to the planning of a mission of a fleet of UAVs in a risky environment with the presence of obstacles. Obstacles could be natural like mountain or any non flyable zone. We have first modeled the ground as a directed graph. However, instead of using a classic mesh, we opted for an intelligent modeling that reduces the computing time on the graph without losing accuracy. The proposed model is based on the concept of visibility graph, and it also takes into account the obstacles, the danger areas and the constraint of non-holonomy of the UAVs- the kinematic constraint of the planes that imposes a maximum steering angle. The graph is then cleaned to keep only the minimum information needed for the calculation of trajectories. The generation of this graph possibly requires a lot of computation time, but it is done only once before the planning and will not affect the performance of trajectory calculations. We have also developed another simpler graph that does not take into account the constraint of non-holonomy. The advantage of this second graph is that it reduces the computation time. However, it requires the use of a correction procedure to make the resulting trajectory non-holonomic. This correction is possible within the context of our missions, but not for all types of autonomous vehicles. Once the directed graph is generated, we propose the use of a procedure for calculating the shortest continuous non-holonomic path in a risky environment with the presence of obstacles. The directed graph already incorporates all the constraints, which makes it possible to model the problem as a shortest path problem with resource a resource constraint (the resource here is the amount of permitted risk). The results are very satisfactory since the resulting routes are non-holonomic paths that meet all constraints. Moreover, the computing time is very short. For cases based on the simpler graph, we have created a procedure for correcting the trajectory to make it non-holonomic. All calculations of non-holonomy are based on Dubins curves (1957). We have finally applied our results to the planning of a mission of a fleet of UAVs in a risky environment with the presence of obstacles. For this purpose, we have developed a directed multi-graph where, for each pair of targets (points of departure and return of the mission included), we calculate a series of shorter trajectories with different limits of risk -- from the risk-free path to the riskiest path. We then use a Tabu Search with two tabu lists. Using these procedures, we have been able to produce routes for a fleet of UAVs that minimize the cost of the mission while respecting the limit of risk and avoiding obstacles. Tests are conducted on examples created on the basis of descriptions given by the Canadian Defense and, also on some instances of the CVRP (Capacitated Vehicle Routing Problem), those described by Christofides et Elion and those described by Christofides, Mingozzi et Toth. The results are of very satisfactory since all trajectories are non-holonomic and the improvement of the objective, when compared to a simple constructive method, achieves in some cases between 10 % and 43 %. We have even obtained an improvement of 69 %, but on a poor solution generated by a greedy algorithm. (Abstract shortened by UMI.)
Trajectory optimization for the National Aerospace Plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1993-01-01
The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.
Real-time UAV trajectory generation using feature points matching between video image sequences
NASA Astrophysics Data System (ADS)
Byun, Younggi; Song, Jeongheon; Han, Dongyeob
2017-09-01
Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system
Mining continuous activity patterns from animal trajectory data
Wang, Y.; Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.
2014-01-01
The increasing availability of animal tracking data brings us opportunities and challenges to intuitively understand the mechanisms of animal activities. In this paper, we aim to discover animal movement patterns from animal trajectory data. In particular, we propose a notion of continuous activity pattern as the concise representation of underlying similar spatio-temporal movements, and develop an extension and refinement framework to discover the patterns. We first preprocess the trajectories into significant semantic locations with time property. Then, we apply a projection-based approach to generate candidate patterns and refine them to generate true patterns. A sequence graph structure and a simple and effective processing strategy is further developed to reduce the computational overhead. The proposed approaches are extensively validated on both real GPS datasets and large synthetic datasets.
Cyclic nocturnal awakening: a warning sign of a cluster bout.
Martins, Isabel Pavão
2015-04-01
Cluster headache is an excruciating unilateral headache with autonomic symptoms whose periodic nocturnal activity, which interrupts sleep, has been attributed to a hypothalamic generator. We describe a patient with a longstanding episodic cluster headache who experienced, on two occasions, a period of nocturnal awakenings without pain or autonomic symptoms, lasting one week before the onset of a cluster bout. Awakenings occurred twice/night at the same hours of impending cluster attacks and had no apparent trigger, being unusual for this patient who had no previous sleep disturbances. Neurological examination and brain imaging were normal. This case documents two new aspects of cluster headache. It suggests that repeated nocturnal awakenings can be a warning sign of an impending cluster period, a finding that may have therapeutic implications, and also that hypothalamic activation may begin several days before trigemino-autonomic symptoms, thus behaving as a true bout generator. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Barnawi, Abdulwasa Bakr
Hybrid power generation system and distributed generation technology are attracting more investments due to the growing demand for energy nowadays and the increasing awareness regarding emissions and their environmental impacts such as global warming and pollution. The price fluctuation of crude oil is an additional reason for the leading oil producing countries to consider renewable resources as an alternative. Saudi Arabia as the top oil exporter country in the word announced the "Saudi Arabia Vision 2030" which is targeting to generate 9.5 GW of electricity from renewable resources. Two of the most promising renewable technologies are wind turbines (WT) and photovoltaic cells (PV). The integration or hybridization of photovoltaics and wind turbines with battery storage leads to higher adequacy and redundancy for both autonomous and grid connected systems. This study presents a method for optimal generation unit planning by installing a proper number of solar cells, wind turbines, and batteries in such a way that the net present value (NPV) is minimized while the overall system redundancy and adequacy is maximized. A new renewable fraction technique (RFT) is used to perform the generation unit planning. RFT was tested and validated with particle swarm optimization and HOMER Pro under the same conditions and environment. Renewable resources and load randomness and uncertainties are considered. Both autonomous and grid-connected system designs were adopted in the optimal generation units planning process. An uncertainty factor was designed and incorporated in both autonomous and grid connected system designs. In the autonomous hybrid system design model, the strategy including an additional amount of operation reserve as a percent of the hourly load was considered to deal with resource uncertainty since the battery storage system is the only backup. While in the grid-connected hybrid system design model, demand response was incorporated to overcome the impact of uncertainty and perform energy trading between the hybrid grid utility and main grid utility in addition to the designed uncertainty factor. After the generation unit planning was carried out and component sizing was determined, adequacy evaluation was conducted by calculating the loss of load expectation adequacy index for different contingency criteria considering probability of equipment failure. Finally, a microgrid planning was conducted by finding the proper size and location to install distributed generation units in a radial distribution network.
Optimization of dynamic soaring maneuvers to enhance endurance of a versatile UAV
NASA Astrophysics Data System (ADS)
Mir, Imran; Maqsood, Adnan; Akhtar, Suhail
2017-06-01
Dynamic soaring is a process of acquiring energy available in atmospheric wind shears and is commonly exhibited by soaring birds to perform long distance flights. This paper aims to demonstrate a viable algorithm which can be implemented in near real time environment to formulate optimal trajectories for dynamic soaring maneuvers for a small scale Unmanned Aerial Vehicle (UAV). The objective is to harness maximum energy from atmosphere wind shear to improve loiter time for Intelligence, Surveillance and Reconnaissance (ISR) missions. Three-dimensional point-mass UAV equations of motion and linear wind gradient profile are used to model flight dynamics. Utilizing UAV states, controls, operational constraints, initial and terminal conditions that enforce a periodic flight, dynamic soaring problem is formulated as an optimal control problem. Optimized trajectories of the maneuver are subsequently generated employing pseudo spectral techniques against distant UAV performance parameters. The discussion also encompasses the requirement for generation of optimal trajectories for dynamic soaring in real time environment and the ability of the proposed algorithm for speedy solution generation. Coupled with the fact that dynamic soaring is all about immediately utilizing the available energy from the wind shear encountered, the proposed algorithm promises its viability for practical on board implementations requiring computation of trajectories in near real time.
NASA Astrophysics Data System (ADS)
Wood, Michael J.; Aristizabal, Felipe; Coady, Matthew; Nielson, Kent; Ragogna, Paul J.; Kietzig, Anne-Marie
2018-02-01
The production of millimetric liquid droplets has importance in a wide range of applications both in the laboratory and industrially. As such, much effort has been put forth to devise methods to generate these droplets on command in a manner which results in high diameter accuracy and precision, well-defined trajectories followed by successive droplets and low oscillations in droplet shape throughout their descents. None of the currently employed methods of millimetric droplet generation described in the literature adequately addresses all of these desired droplet characteristics. The reported methods invariably involve the cohesive separation of the desired volume of liquid from the bulk supply in the same step that separates the single droplet from the solid generator. We have devised a droplet generation device which separates the desired volume of liquid within a tee-apparatus in a step prior to the generation of the droplet which has yielded both high accuracy and precision of the diameters of the final droplets produced. Further, we have engineered a generating tip with extreme antiwetting properties which has resulted in reduced adhesion forces between the liquid droplet and the solid tip. This has yielded the ability to produce droplets of low mass without necessitating different diameter generating tips or the addition of surfactants to the liquid, well-defined droplet trajectories, and low oscillations in droplet volume. The trajectories and oscillations of the droplets produced have been assessed and presented quantitatively in a manner that has been lacking in the current literature.
The dynamics and control of solar-sail spacecraft in displaced lunar orbits
NASA Astrophysics Data System (ADS)
Wawrzyniak, Geoffrey George
Trajectory generation for any spacecraft mission application typically involves either well-developed analytical approximations or a linearization with respect to a known solution. Such approximations are based on the well-understood dynamics of behavior in the system. However, when two or more large bodies (e.g., the Earth and the Moon or the Sun, the Earth and the Moon) are present, trajectories in the multi-body gravitational field can evolve chaotically. The problem is further complicated when an additional force from a solar sail is included. Solar sail trajectories are often developed in a Sun-centered reference frame in which the sunlight direction is fixed. New challenges arise when modeling a solar-sail trajectory in a reference frame attached to the Earth and the Moon (a frame that rotates in inertial space). Advantages accrue from geometry and symmetry properties that are available in this Earth--Moon reference frame, but the Sun location and the sunlight direction change with time. Current trajectory design tools can reveal many solutions within these regimes. Recent work using numerical boundary value problem (BVP) solvers has demonstrated great promise for uncovering additional and, sometimes, "better" solutions to problems in spacecraft trajectory design involving solar sails. One such approach to solving BVPs is the finite-difference method. Derivatives that appear in the differential equations are replaced with their respective finite differences and evaluated at node points along the trajectory. The solution process is iterative. A candidate solution, such as an offset circle or a point, is discretized into nodes, and the equations that represent the relationships at the nodes are solved simultaneously. Finite-difference methods (FDMs) exploit coarse initial approximations and, with the system constraints (such as the continuous visibility of the spacecraft from a point on the lunar surface), to develop orbital solutions in regions where the structure of the solution space is not well known. Because of their simplicity and speed, the FDM is used to populate a survey to assist in the understanding of the available design space. Trajectories generated by FDMs can also be used to initialize other nonlinear BVP solvers. Any solution is only as accurate as the model used to generate it, especially when the trajectory is dynamically unstable, certainly the case when an orbit is purposefully offset from the Moon. Perturbations, such as unmodeled gravitational forces, variations in the solar flux, as well as mis-modeling of the sail and bus properties, all shift the spacecraft off the reference trajectory and, potentially, into a regime from which the vehicle is unrecoverable. Therefore, some type of flight-path control is required to maintain the vehicle near the reference path. Reference trajectories, supplied by FDMs, are used to develop guidance algorithms based on other, more accurate, numerical procedures, such as multiple shooting. The primary motivation of this investigation is to determine what level of technology is required to displace a solar sail spacecraft sufficiently such that a vehicle equipped with a sail supplies a continuous relay between the Earth and an outpost at the lunar south pole. To accomplish this objective, numerical methods to generate reference orbits that meet mission constraints are examined, as well as flight-path control strategies to ensure that a sailcraft follows those reference trajectories. A survey of the design space is also performed to highlight vehicle-performance and ground-based metrics critical to a mission that monitors the lunar south pole at all times. Finally, observations about the underlying dynamical structure of solar sail motion in a multi-body system are summarized.
Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy.
Wang, Wei; Viswanathan, Akila N; Damato, Antonio L; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T; Dumoulin, Charles L; Schmidt, Ehud J; Cormack, Robert A
2015-12-01
In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter's trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter's imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet's orientation deviated from the main magnetic field direction. Fifteen catheters' trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage.
Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy
Wang, Wei; Viswanathan, Akila N.; Damato, Antonio L.; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T.; Dumoulin, Charles L.; Schmidt, Ehud J.; Cormack, Robert A.
2015-01-01
Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter’s imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. Results: The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet’s orientation deviated from the main magnetic field direction. Fifteen catheters’ trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. Conclusions: The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage. PMID:26632065
Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei, E-mail: wwang21@partners.org; Viswanathan, Akila N.; Damato, Antonio L.
2015-12-15
Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization usingmore » magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter’s imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. Results: The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet’s orientation deviated from the main magnetic field direction. Fifteen catheters’ trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. Conclusions: The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage.« less
NASA Technical Reports Server (NTRS)
Miele, A.; Zhao, Z. G.; Lee, W. Y.
1989-01-01
The determination of optimal trajectories for the aeroassisted flight experiment (AFE) is discussed. The AFE refers to the study of the free flight of an autonomous spacecraft, shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric entry environmental data for use in designing aeroassisted orbital transfer vehicles (AOTV). It is assumed that: (1) the spacecraft is a particle of constant mass; (2) the Earth is rotating with constant angular velocity; (3) the Earth is an oblate planet, and the gravitational potential depends on both the radial distance and the latitude (harmonics of order higher than four are ignored); and (4) the atmosphere is at rest with respect to the Earth. Under these assumptions, the equations of motion for hypervelocity atmospheric flight (which can be used not only for AFE problems, but also for AOT problems and space shuttle problems) are derived in an inertial system. Transformation relations are supplied which allow one to pass from quantities computed in an inertial system to quantities computed in an Earth-fixed system and vice versa.
NASA Technical Reports Server (NTRS)
Miele, A.; Zhao, Z. G.; Lee, W. Y.
1989-01-01
The determination of optimal trajectories for the aeroassisted flight experiment (AFE) is discussed. The AFE refers to the study of the free flight of an autonomous spacecraft, shuttle-launched and shuttle-recovered. Its purpose is to gather atmospheric entry environmental data for use in designing aeroassisted orbital transfer vehicles (AOTV). It is assumed that: (1) the spacecraft is a particle of constant mass; (2) the Earth is rotating with constant angular velocity; (3) the Earth is an oblate planet, and the gravitational potential depends on both the radial distance and the latitude (harmonics of order higher than four are ignored); and (4) the atmosphere is at rest with respect to the Earth. Under these assumptions, the equations of motion for hypervelocity atmospheric flight (which can be used not only for AFE problems, but also for AOT problems and space shuttle problems) are derived in an Earth-fixed system. Transformation relations are supplied which allow one to pass from quantities computed in an Earth-fixed system to quantities computed in an inertial system, and vice versa.
Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Woods, William C.; Engelund, Walter C.
2000-01-01
This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize. and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cowl-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale. risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.
Improved Modeling in a Matlab-Based Navigation System
NASA Technical Reports Server (NTRS)
Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Larimore, Wallace E.
1999-01-01
An innovative approach to autonomous navigation is available for low earth orbit satellites. The system is developed in Matlab and utilizes an Extended Kalman Filter (EKF) to estimate the attitude and trajectory based on spacecraft magnetometer and gyro data. Preliminary tests of the system with real spacecraft data from the Rossi X-Ray Timing Explorer Satellite (RXTE) indicate the existence of unmodeled errors in the magnetometer data. Incorporating into the EKF a statistical model that describes the colored component of the effective measurement of the magnetic field vector could improve the accuracy of the trajectory and attitude estimates and also improve the convergence time. This model is identified as a first order Markov process. With the addition of the model, the EKF attempts to identify the non-white components of the noise allowing for more accurate estimation of the original state vector, i.e. the orbital elements and the attitude. Working in Matlab allows for easy incorporation of new models into the EKF and the resulting navigation system is generic and can easily be applied to future missions resulting in an alternative in onboard or ground-based navigation.
A Simple Method to Improve Autonomous GPS Positioning for Tractors
Gomez-Gil, Jaime; Alonso-Garcia, Sergio; Gómez-Gil, Francisco Javier; Stombaugh, Tim
2011-01-01
Error is always present in the GPS guidance of a tractor along a desired trajectory. One way to reduce GPS guidance error is by improving the tractor positioning. The most commonly used ways to do this are either by employing more precise GPS receivers and differential corrections or by employing GPS together with some other local positioning systems such as electronic compasses or Inertial Navigation Systems (INS). However, both are complex and expensive solutions. In contrast, this article presents a simple and low cost method to improve tractor positioning when only a GPS receiver is used as the positioning sensor. The method is based on placing the GPS receiver ahead of the tractor, and on applying kinematic laws of tractor movement, or a geometric approximation, to obtain the midpoint position and orientation of the tractor rear axle more precisely. This precision improvement is produced by the fusion of the GPS data with tractor kinematic control laws. Our results reveal that the proposed method effectively reduces the guidance GPS error along a straight trajectory. PMID:22163917
Hyper-X Research Vehicle (HXRV) Experimental Aerodynamics Test Program Overview
NASA Technical Reports Server (NTRS)
Holland, Scott D.; Woods, William C.; Engelund, Walter C.
2000-01-01
This paper provides an overview of the experimental aerodynamics test program to ensure mission success for the autonomous flight of the Hyper-X Research Vehicle (HXRV). The HXRV is a 12-ft long, 2700 lb lifting body technology demonstrator designed to flight demonstrate for the first time a fully airframe integrated scramjet propulsion system. Three flights are currently planned, two at Mach 7 and one at Mach 10, beginning in the fall of 2000. The research vehicles will be boosted to the prescribed scramjet engine test point where they will separate from the booster, stabilize, and initiate engine test. Following 5+ seconds of powered flight and 15 seconds of cow-open tares, the cowl will close and the vehicle will fly a controlled deceleration trajectory which includes numerous control doublets for in-flight aerodynamic parameter identification. This paper reviews the preflight testing activities, wind tunnel models, test rationale, risk reduction activities, and sample results from wind tunnel tests supporting the flight trajectory of the HXRV from hypersonic engine test point through subsonic flight termination.
Rapid near-optimal aerospace plane trajectory generation and guidance
NASA Technical Reports Server (NTRS)
Calise, A. J.; Corban, J. E.; Markopoulos, N.
1991-01-01
Effort was directed toward the problems of the real time trajectory optimization and guidance law development for the National Aerospace Plane (NASP) applications. In particular, singular perturbation methods were used to develop guidance algorithms suitable for onboard, real time implementation. The progress made in this research effort is reported.
Foreword to the theme issue on geospatial computer vision
NASA Astrophysics Data System (ADS)
Wegner, Jan Dirk; Tuia, Devis; Yang, Michael; Mallet, Clement
2018-06-01
Geospatial Computer Vision has become one of the most prevalent emerging fields of investigation in Earth Observation in the last few years. In this theme issue, we aim at showcasing a number of works at the interface between remote sensing, photogrammetry, image processing, computer vision and machine learning. In light of recent sensor developments - both from the ground as from above - an unprecedented (and ever growing) quantity of geospatial data is available for tackling challenging and urgent tasks such as environmental monitoring (deforestation, carbon sequestration, climate change mitigation), disaster management, autonomous driving or the monitoring of conflicts. The new bottleneck for serving these applications is the extraction of relevant information from such large amounts of multimodal data. This includes sources, stemming from multiple sensors, that exhibit distinct physical nature of heterogeneous quality, spatial, spectral and temporal resolutions. They are as diverse as multi-/hyperspectral satellite sensors, color cameras on drones, laser scanning devices, existing open land-cover geodatabases and social media. Such core data processing is mandatory so as to generate semantic land-cover maps, accurate detection and trajectories of objects of interest, as well as by-products of superior added-value: georeferenced data, images with enhanced geometric and radiometric qualities, or Digital Surface and Elevation Models.
Piao, Jin-Chun; Kim, Shin-Dug
2017-01-01
Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual–inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual–inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual–inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual–inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method. PMID:29112143
NASA Tech Briefs, February 2009
NASA Technical Reports Server (NTRS)
2009-01-01
Tech Briefs are short announcements of innovations originating from research and development activities of the National Aeronautics and Space Administration. They emphasize information considered likely to be transferable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. Topics covered include: Measuring Low Concentrations of Liquid Water in Soil; The Mars Science Laboratory Touchdown Test Facility; Non-Contact Measurement of Density and Thickness Variation in Dielectric Materials; Compact Microwave Fourier Spectrum Analyzer; InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz; Combinatorial Generation of Test Suites; In-Phase Power-Combined Frequency Tripler at 300 GHz; Electronic System for Preventing Airport Runway Incursions; Smaller but Fully Functional Backshell for Cable Connector; Glove-Box or Desktop Virtual-Reality System; Composite Layer Manufacturing with Fewer Interruptions; Improved Photoresist Coating for Making CNT Field Emitters; A Simplified Diagnostic Method for Elastomer Bond Durability; Complex Multifunctional Polymer/Carbon-Nanotube Composites; Very High Output Thermoelectric Devices Based on ITO Nanocomposites; Reducing Unsteady Loads on a Piggyback Miniature Submarine; Ultrasonic/Sonic Anchor; Grooved Fuel Rings for Nuclear Thermal Rocket Engines; Pulsed Operation of an Ion Accelerator; Autonomous Instrument Placement for Mars Exploration Rovers; Mission and Assets Database; TCP/IP Interface for the Satellite Orbit Analysis Program (SOAP); Trajectory Calculator for Finite-Radius Cutter on a Lathe; Integrated System Health Management Development Toolkit.
Probability-based hazard avoidance guidance for planetary landing
NASA Astrophysics Data System (ADS)
Yuan, Xu; Yu, Zhengshi; Cui, Pingyuan; Xu, Rui; Zhu, Shengying; Cao, Menglong; Luan, Enjie
2018-03-01
Future landing and sample return missions on planets and small bodies will seek landing sites with high scientific value, which may be located in hazardous terrains. Autonomous landing in such hazardous terrains and highly uncertain planetary environments is particularly challenging. Onboard hazard avoidance ability is indispensable, and the algorithms must be robust to uncertainties. In this paper, a novel probability-based hazard avoidance guidance method is developed for landing in hazardous terrains on planets or small bodies. By regarding the lander state as probabilistic, the proposed guidance algorithm exploits information on the uncertainty of lander position and calculates the probability of collision with each hazard. The collision probability serves as an accurate safety index, which quantifies the impact of uncertainties on the lander safety. Based on the collision probability evaluation, the state uncertainty of the lander is explicitly taken into account in the derivation of the hazard avoidance guidance law, which contributes to enhancing the robustness to the uncertain dynamics of planetary landing. The proposed probability-based method derives fully analytic expressions and does not require off-line trajectory generation. Therefore, it is appropriate for real-time implementation. The performance of the probability-based guidance law is investigated via a set of simulations, and the effectiveness and robustness under uncertainties are demonstrated.
NASA Technical Reports Server (NTRS)
Robinson, John E., III; Lee, Alan; Lai, Chok Fung
2017-01-01
This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.
NASA Astrophysics Data System (ADS)
Bartolo, Nicola; Minganti, Fabrizio; Lolli, Jared; Ciuti, Cristiano
2017-07-01
We investigate two different kinds of quantum trajectories for a nonlinear photon resonator subject to two-photon pumping, a configuration recently studied for the generation of photonic Schrödinger cat states. In the absence of feedback control and in the strong-driving limit, the steady-state density matrix is a statistical mixture of two states with equal weight. While along a single photon-counting trajectory the systems intermittently switches between an odd and an even cat state, we show that upon homodyne detection the situation is different. Indeed, homodyne quantum trajectories reveal switches between coherent states of opposite phase.
Non-gaussian signatures of general inflationary trajectories
NASA Astrophysics Data System (ADS)
Horner, Jonathan S.; Contaldi, Carlo R.
2014-09-01
We carry out a numerical calculation of the bispectrum in generalised trajectories of canonical, single-field inflation. The trajectories are generated in the Hamilton-Jacobi (HJ) formalism based on Hubble Slow Roll (HSR) parameters. The calculation allows generally shape and scale dependent bispectra, or dimensionless fNL, in the out-of-slow-roll regime. The distributions of fNL for various shapes and HSR proposals are shown as an example of how this procedure can be used within the context of Monte Carlo exploration of inflationary trajectories. We also show how allowing out-of-slow-roll behaviour can lead to a bispectrum that is relatively large for equilateral shapes.
Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission
NASA Technical Reports Server (NTRS)
Dichmann, Donald
2016-01-01
The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.
Planning strategies for the Ambler walking robot
NASA Technical Reports Server (NTRS)
Wettergreen, David; Thomas, Hans; Thorpe, Chuck
1990-01-01
A hierarchy of planning strategies is proposed and explained for a walking robot called the Ambler. The hierarchy decomposes planning into levels of trajectory, gait, and footfall. An abstraction of feasible traversability allows the Ambler's trajectory planner to identify acceptable trajectories by finding paths that guarantee footfalls without specifying exactly which footfalls. Leg and body moves that achieve this trajectory can be generated by the Ambler's gait planner, which incorporates pattern constraints and measures of utility to search for the best next move. By combining constraints from the quality and details of the terrain, the Ambler's footfall planner can select footfalls that insure stability and remain within the tolerances of the gait.
A multi-state trajectory method for non-adiabatic dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Guohua, E-mail: taogh@pkusz.edu.cn
2016-03-07
A multi-state trajectory approach is proposed to describe nuclear-electron coupled dynamics in nonadiabatic simulations. In this approach, each electronic state is associated with an individual trajectory, among which electronic transition occurs. The set of these individual trajectories constitutes a multi-state trajectory, and nuclear dynamics is described by one of these individual trajectories as the system is on the corresponding state. The total nuclear-electron coupled dynamics is obtained from the ensemble average of the multi-state trajectories. A variety of benchmark systems such as the spin-boson system have been tested and the results generated using the quasi-classical version of the method showmore » reasonably good agreement with the exact quantum calculations. Featured in a clear multi-state picture, high efficiency, and excellent numerical stability, the proposed method may have advantages in being implemented to realistic complex molecular systems, and it could be straightforwardly applied to general nonadiabatic dynamics involving multiple states.« less
Four-body trajectory optimization
NASA Technical Reports Server (NTRS)
Pu, C. L.; Edelbaum, T. N.
1974-01-01
A comprehensive optimization program has been developed for computing fuel-optimal trajectories between the earth and a point in the sun-earth-moon system. It presents methods for generating fuel optimal two-impulse trajectories which may originate at the earth or a point in space and fuel optimal three-impulse trajectories between two points in space. The extrapolation of the state vector and the computation of the state transition matrix are accomplished by the Stumpff-Weiss method. The cost and constraint gradients are computed analytically in terms of the terminal state and the state transition matrix. The 4-body Lambert problem is solved by using the Newton-Raphson method. An accelerated gradient projection method is used to optimize a 2-impulse trajectory with terminal constraint. The Davidon's Variance Method is used both in the accelerated gradient projection method and the outer loop of a 3-impulse trajectory optimization problem.
Feedback Implementation of Zermelo's Optimal Control by Sugeno Approximation
NASA Technical Reports Server (NTRS)
Clifton, C.; Homaifax, A.; Bikdash, M.
1997-01-01
This paper proposes an approach to implement optimal control laws of nonlinear systems in real time. Our methodology does not require solving two-point boundary value problems online and may not require it off-line either. The optimal control law is learned using the original Sugeno controller (OSC) from a family of optimal trajectories. We compare the trajectories generated by the OSC and the trajectories yielded by the optimal feedback control law when applied to Zermelo's ship steering problem.
Trajectory Design for a Single-String Impactor Concept
NASA Technical Reports Server (NTRS)
Dono Perez, Andres; Burton, Roland; Stupl, Jan; Mauro, David
2017-01-01
This paper introduces a trajectory design for a secondary spacecraft concept to augment science return in interplanetary missions. The concept consist of a single-string probe with a kinetic impactor on board that generates an artificial plume to perform in-situ sampling. The trajectory design was applied to a particular case study that samples ejecta particles from the Jovian moon Europa. Results were validated using statistical analysis. Details regarding the navigation, targeting and disposal challenges related to this concept are presented herein.
Ascent trajectory dispersion analysis for WTR heads-up space shuttle trajectory
NASA Technical Reports Server (NTRS)
1986-01-01
The results of a Space Transportation System ascent trajectory dispersion analysis are discussed. The purpose is to provide critical trajectory parameter values for assessing the Space Shuttle in a heads-up configuration launched from the Western Test Range (STR). This analysis was conducted using a trajectory profile based on a launch from the WTR in December. The analysis consisted of the following steps: (1) nominal trajectories were simulated under the conditions as specified by baseline reference mission guidelines; (2) dispersion trajectories were simulated using predetermined parametric variations; (3) requirements for a system-related composite trajectory were determined by a root-sum-square (RSS) analysis of the positive deviations between values of the aerodynamic heating indicator (AHI) generated by the dispersion and nominal trajectories; (4) using the RSS assessment as a guideline, the system related composite trajectory was simulated by combinations of dispersion parameters which represented major contributors; (5) an assessment of environmental perturbations via a RSS analysis was made by the combination of plus or minus 2 sigma atmospheric density variation and 95% directional design wind dispersions; (6) maximum aerodynamic heating trajectories were simulated by variation of dispersion parameters which would emulate the summation of the system-related RSS and environmental RSS values of AHI. The maximum aerodynamic heating trajectories were simulated consistent with the directional winds used in the environmental analysis.