Science.gov

Sample records for autophagy genes map1lc3b

  1. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression

    PubMed Central

    Wang, Ji; Kang, Rongyan; Huang, He; Xi, Xueyan; Wang, Bei; Wang, Jianwei; Zhao, Zhendong

    2014-01-01

    HCV infection induces autophagy, but how this occurs is unclear. Here, we report the induction of autophagy by the structural HCV core protein and subsequent endoplasmic reticular (ER) stress in Huh7 hepatoma cells. During ER stress, both the EIF2AK3 and ATF6 pathways of the unfolded protein response (UPR) were activated by HCV core protein. Then, these pathways upregulated transcription factors ATF4 and DDIT3. The ERN1-XBP1 pathway was not activated. Through ATF4 in the EIF2AK3 pathway, the autophagy gene ATG12 was upregulated. DDIT3 upregulated the transcription of autophagy gene MAP1LC3B (LC3B) by directly binding to the –253 to –99 base region of the LC3B promoter, contributing to the development of autophagy. Collectively, these data suggest not only a novel role for the HCV core protein in autophagy but also offer new insight into detailed molecular mechanisms with respect to HCV-induced autophagy, specifically how downstream UPR molecules regulate key autophagic gene expression. PMID:24589849

  2. MAP1LC3B overexpression protects against Hermansky-Pudlak syndrome type-1-induced defective autophagy in vitro

    PubMed Central

    Ahuja, Saket; Knudsen, Lars; Chillappagari, Shashi; Henneke, Ingrid; Ruppert, Clemens; Korfei, Martina; Gochuico, Bernadette R.; Bellusci, Saverio; Seeger, Werner; Ochs, Matthias; Mahavadi, Poornima

    2015-01-01

    Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder, and some patients with HPS develop pulmonary fibrosis, known as HPS-associated interstitial pneumonia (HPSIP). We have previously reported that HPSIP is associated with severe surfactant accumulation, lysosomal stress, and alveolar epithelial cell type II (AECII) apoptosis. Here, we hypothesized that defective autophagy might result in excessive lysosomal stress in HPSIP. Key autophagy proteins, including LC3B lipidation and p62, were increased in HPS1/2 mice lungs. Electron microscopy demonstrated a preferable binding of LC3B to the interior of lamellar bodies in the AECII of HPS1/2 mice, whereas in wild-type mice it was present on the limiting membrane in addition to the interior of the lamellar bodies. Similar observations were noted in human HPS1 lung sections. In vitro knockdown of HPS1 revealed increased LC3B lipidation and p62 accumulation, associated with an increase in proapoptotic caspases. Overexpression of LC3B decreased the HPS1 knockdown-induced p62 accumulation, whereas rapamycin treatment did not show the same effect. We conclude that loss of HPS1 protein results in impaired autophagy that is restored by exogenous LC3B and that defective autophagy might therefore play a critical role in the development and progression of HPSIP. PMID:26719147

  3. MAP1LC3B overexpression protects against Hermansky-Pudlak syndrome type-1-induced defective autophagy in vitro.

    PubMed

    Ahuja, Saket; Knudsen, Lars; Chillappagari, Shashi; Henneke, Ingrid; Ruppert, Clemens; Korfei, Martina; Gochuico, Bernadette R; Bellusci, Saverio; Seeger, Werner; Ochs, Matthias; Guenther, Andreas; Mahavadi, Poornima

    2016-03-15

    Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder, and some patients with HPS develop pulmonary fibrosis, known as HPS-associated interstitial pneumonia (HPSIP). We have previously reported that HPSIP is associated with severe surfactant accumulation, lysosomal stress, and alveolar epithelial cell type II (AECII) apoptosis. Here, we hypothesized that defective autophagy might result in excessive lysosomal stress in HPSIP. Key autophagy proteins, including LC3B lipidation and p62, were increased in HPS1/2 mice lungs. Electron microscopy demonstrated a preferable binding of LC3B to the interior of lamellar bodies in the AECII of HPS1/2 mice, whereas in wild-type mice it was present on the limiting membrane in addition to the interior of the lamellar bodies. Similar observations were noted in human HPS1 lung sections. In vitro knockdown of HPS1 revealed increased LC3B lipidation and p62 accumulation, associated with an increase in proapoptotic caspases. Overexpression of LC3B decreased the HPS1 knockdown-induced p62 accumulation, whereas rapamycin treatment did not show the same effect. We conclude that loss of HPS1 protein results in impaired autophagy that is restored by exogenous LC3B and that defective autophagy might therefore play a critical role in the development and progression of HPSIP.

  4. Autophagic Marker MAP1LC3B Expression Levels Are Associated with Carotid Atherosclerosis Symptomatology

    PubMed Central

    Swaminathan, Bhairavi; Goikuria, Haize; Vega, Reyes; Rodríguez-Antigüedad, Alfredo; López Medina, Antonio; Freijo, María del Mar; Vandenbroeck, Koen; Alloza, Iraide

    2014-01-01

    Objectives The mechanism by which atheroma plaque becomes unstable is not completely understood to date but analysis of differentially expressed genes in stable versus unstable plaques may provide clues. This will be crucial toward disclosing the mechanistic basis of plaque instability, and may help to identify prognostic biomarkers for ischaemic events. The objective of our study was to identify differences in expression levels of 59 selected genes between symptomatic patients (unstable plaques) and asymptomatic patients (stable plaques). Methods 80 carotid plaques obtained by carotid endarterectomy and classified as symptomatic (>70% stenosis) or asymptomatic (>80% stenosis) were used in this study. The expression levels of 59 genes were quantified by qPCR on RNA extracted from the carotid plaques obtained by endarterectomy and analyzed by means of various bioinformatic tools. Results Several genes associated with autophagy pathways displayed differential expression levels between asymptomatic and symptomatic (i.e. MAP1LC3B, RAB24, EVA1A). In particular, mRNA levels of MAP1LC3B, an autophagic marker, showed a 5−fold decrease in symptomatic samples, which was confirmed in protein blots. Immune system−related factors and endoplasmic reticulum-associated markers (i.e. ERP27, ITPR1, ERO1LB, TIMP1, IL12B) emerged as differently expressed genes between asymptomatic and symptomatic patients. Conclusions Carotid atherosclerotic plaques in which MAP1LC3B is underexpressed would not be able to benefit from MAP1LC3B−associated autophagy. This may lead to accumulation of dead cells at lesion site with subsequent plaque destabilization leading to cerebrovascular events. Identified biomarkers and network interactions may represent novel targets for development of treatments against plaque destabilization and thus for the prevention of cerebrovascular events. PMID:25503069

  5. Autophagy impairment by Helicobacter pylori-induced methylation silencing of MAP1LC3Av1 promotes gastric carcinogenesis.

    PubMed

    Muhammad, Jibran Sualeh; Nanjo, Sohachi; Ando, Takayuki; Yamashita, Satoshi; Maekita, Takao; Ushijima, Toshikazu; Tabuchi, Yoshiaki; Sugiyama, Toshiro

    2017-05-15

    Helicobacter pylori (H. pylori) infection induces methylation silencing of tumor suppressor genes causing gastric carcinogenesis. Impairment of autophagy induces DNA damage leading to genetic instability and carcinogenesis. We aimed to identify whether H. pylori infection induced methylation silencing of host autophagy-related (Atg) genes, impairing autophagy and enhancing gastric carcinogenesis. Gastric mucosae were obtained from 41 gastric cancer patients and 11 healthy volunteers (8 H. pylori-uninfected and 3 H. pylori-infected). Methylation status of Atg genes was analyzed by a methylation microarray and quantitative methylation-specific PCR (qMSP); mRNA expression was assessed by quantitative reverse transcription PCR (qRT-PCR). Cell proliferation, migration and invasion were assessed in normal rat gastric epithelial cells. Gene knock-down was performed by siRNA. Autophagy was assessed by western blotting. Of 34 Atg genes, MAP1LC3A variant 1 (MAP1LC3Av1) and ULK2 were identified by methylation microarray analysis as exhibiting specific methylation in H. pylori-infected mucosae and gastric cancer tissues. Methylation silencing of MAP1LC3Av1 was confirmed by qMSP, qRT-PCR and de-methylation treatment in two gastric cancer cell lines. Knock-down of map1lc3a, the rat homolog of the human MAP1LC3Av1, inhibited autophagy response and increased cell proliferation, migration and invasion in normal rat gastric epithelial cells, despite the presence of map1lc3b, the rat homolog of the human MAP1LC3B gene important for autophagy. Furthermore, MAP1LC3Av1 was methylation-silenced in 23.3% of gastric cancerous mucosae and 40% of non-cancerous mucosae with H. pylori infection. MAP1LC3Av1 is essential for autophagy and H. pylori-induced methylation silencing of MAP1LC3Av1 may impair autophagy, facilitating gastric carcinogenesis.

  6. Enhanced Autophagy in Polycystic Kidneys of AQP11 Null Mice

    PubMed Central

    Tanaka, Yasuko; Watari, Mayumi; Saito, Tatsuya; Morishita, Yoshiyuki; Ishibashi, Kenichi

    2016-01-01

    Aquaporin-11 (AQP11) is an intracellular water channel expressed at the endoplasmic reticulum (ER) of the proximal tubule. Its gene disruption in mice leads to intracellular vacuole formation at one week and the subsequent development of polycystic kidneys by three weeks. As the damaged proximal tubular cells with intracellular vacuoles form cysts later, we postulated that autophagy may play a role in the cyst formation and examined autophagy activity before and after cyst development in AQP11(−/−) kidneys. PCR analysis showed the increased expression of the transcript encoding LC3 (Map1lc3b) as well as other autophagy-related genes in AQP11(−/−) mice. Using green fluorescent protein (GFP)-LC3 transgenic mice and AQP11(−/−) mice, we found that the number of GFP-LC3–positive puncta was increased in the proximal tubule of AQP11(−/−) mice before the cyst formation. Interestingly, they were also observed in the cyst-lining epithelial cell. Further PCR analyses revealed the enhanced expression of apoptosis-related and ER stress–related caspase genes before and after the cyst formation, which may cause the enhanced autophagy. These results suggest the involvement of autophagy in the development and maintenance of kidney cysts in AQP11(−/−) mice. PMID:27916883

  7. Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    PubMed

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases.

  8. Cocaine-mediated microglial activation involves the ER stress-autophagy axis

    PubMed Central

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases. PMID:26043790

  9. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine

    PubMed Central

    Vucicevic, Ljubica; Misirkic-Marjanovic, Maja; Paunovic, Verica; Kravic-Stevovic, Tamara; Martinovic, Tamara; Ciric, Darko; Maric, Nadja; Petricevic, Sasa; Harhaji-Trajkovic, Ljubica; Bumbasirevic, Vladimir; Trajkovic, Vladimir

    2015-01-01

    We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug. PMID:25551567

  10. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine.

    PubMed

    Vucicevic, Ljubica; Misirkic-Marjanovic, Maja; Paunovic, Verica; Kravic-Stevovic, Tamara; Martinovic, Tamara; Ciric, Darko; Maric, Nadja; Petricevic, Sasa; Harhaji-Trajkovic, Ljubica; Bumbasirevic, Vladimir; Trajkovic, Vladimir

    2014-01-01

    We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug.

  11. Elastase induces lung epithelial cell autophagy through placental growth factor

    PubMed Central

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  12. Autophagy activation in COL6 myopathic patients by a low-protein-diet pilot trial

    PubMed Central

    Castagnaro, Silvia; Pellegrini, Camilla; Pellegrini, Massimo; Chrisam, Martina; Sabatelli, Patrizia; Toni, Silvia; Grumati, Paolo; Ripamonti, Claudio; Pratelli, Loredana; Maraldi, Nadir M.; Cocchi, Daniela; Righi, Valeria; Faldini, Cesare; Sandri, Marco; Bonaldo, Paolo; Merlini, Luciano

    2016-01-01

    ABSTRACT A pilot clinical trial based on nutritional modulation was designed to assess the efficacy of a one-year low-protein diet in activating autophagy in skeletal muscle of patients affected by COL6/collagen VI-related myopathies. Ullrich congenital muscular dystrophy and Bethlem myopathy are rare inherited muscle disorders caused by mutations of COL6 genes and for which no cure is yet available. Studies in col6 null mice revealed that myofiber degeneration involves autophagy defects and that forced activation of autophagy results in the amelioration of muscle pathology. Seven adult patients affected by COL6 myopathies underwent a controlled low-protein diet for 12 mo and we evaluated the presence of autophagosomes and the mRNA and protein levels for BECN1/Beclin 1 and MAP1LC3B/LC3B in muscle biopsies and blood leukocytes. Safety measures were assessed, including muscle strength, motor and respiratory function, and metabolic parameters. After one y of low-protein diet, autophagic markers were increased in skeletal muscle and blood leukocytes of patients. The treatment was safe as shown by preservation of lean:fat percentage of body composition, muscle strength and function. Moreover, the decreased incidence of myofiber apoptosis indicated benefits in muscle homeostasis, and the metabolic changes pointed at improved mitochondrial function. These data provide evidence that a low-protein diet is able to activate autophagy and is safe and tolerable in patients with COL6 myopathies, pointing at autophagy activation as a potential target for therapeutic applications. In addition, our findings indicate that blood leukocytes are a promising noninvasive tool for monitoring autophagy activation in patients. PMID:27656840

  13. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy.

    PubMed

    Yang, Chul-Su; Kim, Jwa-Jin; Lee, Hye-Mi; Jin, Hyo Sun; Lee, Sang-Hee; Park, Ji-Hoon; Kim, Soung Jung; Kim, Jin-Man; Han, Yong-Mahn; Lee, Myung-Shik; Kweon, Gi Ryang; Shong, Minho; Jo, Eun-Kyeong

    2014-05-01

    AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism.

  14. The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy

    PubMed Central

    Yang, Chul-Su; Kim, Jwa-Jin; Lee, Hye-Mi; Jin, Hyo Sun; Lee, Sang-Hee; Park, Ji-Hoon; Kim, Soung Jung; Kim, Jin-Man; Han, Yong-Mahn; Lee, Myung-Shik; Kweon, Gi Ryang; Shong, Minho; Jo, Eun-Kyeong

    2014-01-01

    AMP-activated protein kinase (AMPK) is a crucial energy sensor and plays a key role in integration of cellular functions to maintain homeostasis. Despite this, it is largely unknown whether targeting the AMPK pathway can be used as a therapeutic strategy for infectious diseases. Herein, we show that AMPK activation robustly induces antibacterial autophagy, which contributes to antimicrobial defense against Mycobacterium tuberculosis (Mtb). AMPK activation led to inhibition of Mtb-induced phosphorylation of the mechanistic target of rapamycin (MTOR) in macrophages. In addition, AMPK activation increased the genes involved in oxidative phosphorylation, mitochondrial ATP production, and biogenesis in Mtb-infected macrophages. Notably, peroxisome proliferator-activated receptor-gamma, coactivator 1α (PPARGC1A) was required for AMPK-mediated antimicrobial activity, as well as enhancement of mitochondrial function and biogenesis, in macrophages. Further, the AMPK-PPARGC1A pathway was involved in the upregulation of multiple autophagy-related genes via CCAAT/enhancer binding protein (C/EBP), β (CEBPB). PPARGC1A knockdown inhibited the AMPK-mediated induction of autophagy and impaired the fusion of phagosomes with MAP1LC3B (LC3B) autophagosomes in Mtb-infected macrophages. The link between autophagy, mitochondrial function, and antimicrobial activity was further demonstrated by studying LysMCre-mediated knockout of atg7, demonstrating mitochondrial ultrastructural defects and dysfunction, as well as blockade of antimicrobial activity against mycobacteria. Collectively, our results identify the AMPK-PPARGC1A axis as contributing to autophagy activation leading to an antimicrobial response, as a novel host defense mechanism. PMID:24598403

  15. Role of autophagy and autophagy genes in inflammatory bowel disease.

    PubMed

    Cadwell, Ken; Stappenbeck, Thaddeus S; Virgin, Herbert W

    2009-01-01

    Polymorphisms associated with two genes in the autophagy pathway, ATG16L1 and IRGM1, have been implicated in susceptibility to Crohn's disease, an idiopathic inflammatory disease typically involving the gastrointestinal tract. The intestinal mucosa is a site of careful immune regulation where the epithelium and immune cells encounter pathogens as well as a robust and diverse population of indigenous microbes that are predominately bacteria. Since the role of autophagy in immunity is broad and expanding, it is unclear which downstream functions of autophagy and which cell types are the key factors in Crohn's disease susceptibility. This chapter reviews the recent literature on the roles of ATG16L1 and IRGM1 in the autophagy pathway, inflammation, antimicrobial immunity, and the biology of the intestine, and discusses how these genes may contribute to Crohn's disease pathogenesis.

  16. Network analysis reveals crosstalk between autophagy genes and disease genes

    PubMed Central

    Wang, Ji-Ye; Yao, Wei-Xuan; Wang, Yun; Fan, Yi-lei; Wu, Jian-Bing

    2017-01-01

    Autophagy is a protective and life-sustaining process in which cytoplasmic components are packaged into double-membrane vesicles and targeted to lysosomes for degradation. Accumulating evidence supports that autophagy is associated with several pathological conditions. However, research on the functional cross-links between autophagy and disease genes remains in its early stages. In this study, we constructed a disease-autophagy network (DAN) by integrating known disease genes, known autophagy genes and protein-protein interactions (PPI). Dissecting the topological properties of the DAN suggested that nodes that both autophagy and disease genes (inter-genes), are topologically important in the DAN structure. Next, a core network from the DAN was extracted to analyze the functional links between disease and autophagy genes. The genes in the core network were significantly enriched in multiple disease-related pathways, suggesting that autophagy genes may function in various disease processes. Of 17 disease classes, 11 significantly overlapped with autophagy genes, including cancer diseases, metabolic diseases and hematological diseases, a finding that is supported by the literatures. We also found that autophagy genes have a bridging role in the connections between pairs of disease classes. Altogether, our study provides a better understanding of the molecular mechanisms underlying human diseases and the autophagy process. PMID:28295050

  17. Exocytosis of Varicella-Zoster Virus Virions Involves a Convergence of Endosomal and Autophagy Pathways

    PubMed Central

    Buckingham, Erin M.; Jarosinski, Keith W.; Jackson, Wallen; Carpenter, John E.

    2016-01-01

    ABSTRACT Varicella-zoster virus (VZV) is an extremely cell-associated herpesvirus with limited egress of viral particles. The induction of autophagy in VZV-infected monolayers is easily detectable; inhibition of autophagy leads to decreased VZV glycoprotein biosynthesis and diminished viral titers. To explain how autophagic flux could exert a proviral effect on the VZV infectious cycle, we postulated that the VZV exocytosis pathway following secondary envelopment may converge with the autophagy pathway. This hypothesis depended on known similarities between VZV gE and autophagy-related (Atg) Atg9/Atg16L1 trafficking pathways. Investigations were carried out with highly purified fractions of VZV virions. When the virion fraction was tested for the presence of autophagy and endosomal proteins, microtubule-associated protein 1 light chain (MAP1LC3B) and Ras-like GTPase 11 (Rab11) were detected. By two-dimensional (2D) and 3D imaging after immunolabeling, both proteins also colocalized with VZV gE in a proportion of cytoplasmic vesicles. When purified VZV virions were enumerated after immunoelectron microscopy, gold beads were detected on viruses following incubation with antibodies to VZV gE (∼100%), Rab11 (50%), and LC3B (30%). Examination of numerous electron micrographs demonstrated that enveloped virions were housed in single-membraned vesicles; viral particles were not observed in autophagosomes. Taken together, our data suggested that some viral particles after secondary envelopment accumulated in a heterogeneous population of single-membraned vesicular compartments, which were decorated with components from both the endocytic pathway (Rab11) and the autophagy pathway (LC3B). The latter cytoplasmic viral vesicles resembled an amphisome. IMPORTANCE VZV infection leads to increased autophagic flux, while inhibition of autophagy leads to a marked reduction in virus spread. In this investigation of the proviral role of autophagy, we found evidence for an

  18. Autophagy

    PubMed Central

    Hale, Amber N.; Ledbetter, Dan J.; Gawriluk, Thomas R.; Rucker, III, Edmund B.

    2013-01-01

    Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models. PMID:24121596

  19. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome

    PubMed Central

    Cho, Mi-Hyang; Cho, Kwangmin; Kang, Hoe-Jin; Jeon, Eun-Young; Kim, Hun-Sik; Kwon, Hyung-Joon; Kim, Hong-Mi; Kim, Dong-Hou; Yoon, Seung-Yong

    2014-01-01

    Accumulation of β-amyloid (Aβ) and resultant inflammation are critical pathological features of Alzheimer disease (AD). Microglia, a primary immune cell in brain, ingests and degrades extracellular Aβ fibrils via the lysosomal system. Autophagy is a catabolic process that degrades native cellular components, however, the role of autophagy in Aβ degradation by microglia and its effects on AD are unknown. Here we demonstrate a novel role for autophagy in the clearance of extracellular Aβ fibrils by microglia and in the regulation of the Aβ-induced NLRP3 (NLR family, pyrin domain containing 3) inflammasome using microglia specific atg7 knockout mice and cell cultures. We found in microglial cultures that Aβ interacts with MAP1LC3B-II via OPTN/optineurin and is degraded by an autophagic process mediated by the PRKAA1 pathway. We anticipate that enhancing microglial autophagy may be a promising new therapeutic strategy for AD. PMID:25126727

  20. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome.

    PubMed

    Cho, Mi-Hyang; Cho, Kwangmin; Kang, Hoe-Jin; Jeon, Eun-Young; Kim, Hun-Sik; Kwon, Hyung-Joon; Kim, Hong-Mi; Kim, Dong-Hou; Yoon, Seung-Yong

    2014-10-01

    Accumulation of β-amyloid (Aβ) and resultant inflammation are critical pathological features of Alzheimer disease (AD). Microglia, a primary immune cell in brain, ingests and degrades extracellular Aβ fibrils via the lysosomal system. Autophagy is a catabolic process that degrades native cellular components, however, the role of autophagy in Aβ degradation by microglia and its effects on AD are unknown. Here we demonstrate a novel role for autophagy in the clearance of extracellular Aβ fibrils by microglia and in the regulation of the Aβ-induced NLRP3 (NLR family, pyrin domain containing 3) inflammasome using microglia specific atg7 knockout mice and cell cultures. We found in microglial cultures that Aβ interacts with MAP1LC3B-II via OPTN/optineurin and is degraded by an autophagic process mediated by the PRKAA1 pathway. We anticipate that enhancing microglial autophagy may be a promising new therapeutic strategy for AD.

  1. Resveratrol attenuates vascular endothelial inflammation by inducing autophagy through the cAMP signaling pathway.

    PubMed

    Chen, Ming-Liang; Yi, Long; Jin, Xin; Liang, Xin-Yu; Zhou, Yong; Zhang, Ting; Xie, Qi; Zhou, Xi; Chang, Hui; Fu, Yu-Jie; Zhu, Jun-Dong; Zhang, Qian-Yong; Mi, Man-Tian

    2013-12-01

    Inflammation participates centrally in all stages of atherosclerosis (AS), which begins with inflammatory changes in the endothelium, characterized by expression of the adhesion molecules. Resveratrol (RSV) is a naturally occurring phytoalexin that can attenuate endothelial inflammation; however, the exact mechanisms have not been thoroughly elucidated. Autophagy refers to the normal process of cell degradation of proteins and organelles, and is protective against certain inflammatory injuries. Thus, we intended to determine the role of autophagy in the antiinflammatory effects of RSV in human umbilical vein endothelial cells (HUVECs). We found that RSV pretreatment reduced tumor necrosis factor ? (TNF/TNF?)-induced inflammation and increased MAP1LC3B2 (microtubule-associated protein 1 light chain 3 ? 2) expression and SQSTM1/p62 (sequestosome 1) degradation in a concentration-dependent manner. A bafilomycin A 1 (BafA1) challenge resulted in further accumulation of MAP1LC3B2 in HUVECs. Furthermore, autophagy inhibitors 3-methyladenine (3-MA), chloroquine as well as ATG5 and BECN1 siRNA significantly attenuated RSV-induced autophagy, which, subsequently, suppressed the downregulation of RSV-induced inflammatory factors expression. RSV also increased cAMP (cyclic adenosine monophosphate) content, the expression of PRKA (protein kinase A) and SIRT1 (sirtuin 1), as well as the activity of AMPK (AMP-activated protein kinase). RSV-induced autophagy in HUVECs was abolished in the presence of inhibitors of ADCY (adenylyl cyclase, KH7), PRKA (H-89), AMPK (compound C), or SIRT1 (nicotinamide and EX-527), as well as ADCY, PRKA, AMPK, and SIRT1 siRNA transfection, indicating that the effects of RSV on autophagy induction were dependent on cAMP, PRKA, AMPK and SIRT1. In conclusion, RSV attenuates endothelial inflammation by inducing autophagy, and the autophagy in part was mediated through the activation of the cAMP-PRKA-AMPK-SIRT1 signaling pathway.

  2. Viruses, autophagy genes, and Crohn's disease.

    PubMed

    Hubbard, Vanessa M; Cadwell, Ken

    2011-07-01

    The etiology of the intestinal disease Crohn's disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn's disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders.

  3. Autophagy suppresses melanoma tumorigenesis by inducing senescence.

    PubMed

    Liu, He; He, Zhaoyue; Simon, Hans-Uwe

    2014-02-01

    Whether and how autophagy is involved in tumorigenesis is poorly understood. We approached this question by investigating a relatively large cohort of patients with mostly early primary melanoma for their expression of 2 markers for autophagy, the protein ATG5 (autophagy-related 5) and MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3B). Surprisingly, we discovered that both ATG5 and LC3 levels are decreased in patients with melanomas as compared with those with benign nevi. We wondered why reduced autophagy should facilitate early tumor development. Using an in vitro model of melanoma tumorigenesis, in which a mutated oncogene, BRAF (v-raf murine sarcoma viral oncogene homolog B), had been introduced into normal human melanocytes, we were able to show that downregulation of ATG5 promoted the proliferation of melanocytes because it facilitated bypassing oncogene-induced senescence (OIS). Our work supports previous reports that had argued that autophagy actually suppresses tumorigenesis and explains the possible mechanism. Furthermore, our findings suggest that the status of ATG5 and autophagy could serve as a diagnostic marker for distinguishing benign from malignant tumors of melanocytes.

  4. Crosstalk of clock gene expression and autophagy in aging

    PubMed Central

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-01-01

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892

  5. Identification of autophagy genes in Ciona intestinalis: a new experimental model to study autophagy mechanism.

    PubMed

    Godefroy, Nelly; Hoa, Céline; Tsokanos, Foivos; Le Goff, Emilie; Douzery, Emmanuel J P; Baghdiguian, Stephen; Martinand-Mari, Camille

    2009-08-01

    Programmed cell death (PCD) is a mechanism implicated in many physiological and pathological processes. Until recently, apoptosis (self-killing) was the most largely studied mechanism of PCD but a growing number of laboratories are now interested in autophagy (self-eating). In the past few years data showing a tight link between both pathways has accumulated. Until now our laboratory used Ciona intestinalis, a chordate model in which in vivo experiments are possible, to study apoptosis. Recently, we showed that autophagy also occurs in the development of Ciona intestinalis and that the specific markers of both types of death are found in the same tissues and/or in the same cells. These results drove us to postulate that Ciona intestinalis can be a good model to study the link between apoptosis and autophagy. In this article, we conducted an in silico study of autophagy genes. We explored the genomes of Ciona intestinalis, of the second ascidian Ciona savignyi, and those of the classical biological models (Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and Homo sapiens) to extract and compare autophagy gene sequences. This genomic study was completed by an analysis of: (i) mRNA profile expression during development and (ii) the localization of Beclin protein by immunofluorescent staining in the Ciona intestinalis larvae. Taken together, the results allowed us to conclude that a complex autophagic machinery is present in Ciona intestinalis. Actually, the number of autophagy genes in Ciona intestinalis is comparable to the number of autophagy genes in human.

  6. Autophagy-related genes in Helicobacter pylori infection.

    PubMed

    Tanaka, Shingo; Nagashima, Hiroyuki; Uotani, Takahiro; Graham, David Y; Yamaoka, Yoshio

    2017-06-01

    In vitro studies have shown that Helicobacter pylori (H. pylori) infection induces autophagy in gastric epithelial cells. However, prolonged exposure to H. pylori reduces autophagy by preventing maturation of the autolysosome. The alterations of the autophagy-related genes in H. pylori infection are not yet fully understood. We analyzed autophagy-related gene expression in H. pylori-infected gastric mucosa compared with uninfected gastric mucosa obtained from 136 Bhutanese volunteers with mild dyspeptic symptoms. We also studied single nucleotide polymorphisms (SNPs) of autophagy-related gene in 283 Bhutanese participants to identify the influence on susceptibility to H. pylori infection. Microarray analysis of 226 autophagy-related genes showed that 16 genes were upregulated (7%) and nine were downregulated (4%). We used quantitative reverse transcriptase polymerase chain reaction to measure mRNA levels of the downregulated genes (ATG16L1, ATG5, ATG4D, and ATG9A) that were core molecules of autophagy. ATG16L1 and ATG5 mRNA levels in H. pylori-positive specimens (n=86) were significantly less than those in H. pylori-negative specimens (n=50). ATG16L1 mRNA levels were inversely related to H. pylori density. We also compared SNPs of ATG16L1 (rs2241880) among 206 H. pylori-positive and 77 H. pylori-negative subjects. The odds ratio for the presence of H. pylori in the GG genotype was 0.40 (95% CI: 0.18-0.91) relative to the AA/AG genotypes. Autophagy-related gene expression profiling using high-throughput microarray analysis indicated that downregulation of core autophagy machinery genes may depress autophagy functions and possibly provide a better intracellular habit for H. pylori in gastric epithelial cells. © 2017 John Wiley & Sons Ltd.

  7. TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autophagy in clear cell renal cell carcinoma.

    PubMed

    Hall, Daniel P; Cost, Nicholas G; Hegde, Shailaja; Kellner, Emily; Mikhaylova, Olga; Stratton, Yiwen; Ehmer, Birgit; Abplanalp, William A; Pandey, Raghav; Biesiada, Jacek; Harteneck, Christian; Plas, David R; Meller, Jarek; Czyzyk-Krzeska, Maria F

    2014-11-10

    Autophagy promotes tumor growth by generating nutrients from the degradation of intracellular structures. Here we establish, using shRNAs, a dominant-negative mutant, and a pharmacologic inhibitor, mefenamic acid (MFA), that the Transient Receptor Potential Melastatin 3 (TRPM3) channel promotes the growth of clear cell renal cell carcinoma (ccRCC) and stimulates MAP1LC3A (LC3A) and MAP1LC3B (LC3B) autophagy. Increased expression of TRPM3 in RCC leads to Ca(2+) influx, activation of CAMKK2, AMPK, and ULK1, and phagophore formation. In addition, TRPM3 Ca(2+) and Zn(2+) fluxes inhibit miR-214, which directly targets LC3A and LC3B. The von Hippel-Lindau tumor suppressor (VHL) represses TRPM3 directly through miR-204 and indirectly through another miR-204 target, Caveolin 1 (CAV1).

  8. Reciprocal regulation of autophagy and dNTP pools in human cancer cells

    PubMed Central

    Chen, Wei; Zhang, Lisheng; Zhang, Keqiang; Zhou, Bingsen; Kuo, Mei-Ling; Hu, Shuya; Chen, Linling; Tang, Michelle; Chen, Yun-Ru; Yang, Lixin; Ann, David K; Yen, Yun

    2014-01-01

    Ribonucleotide reductase (RNR) plays a critical role in catalyzing the biosynthesis and maintaining the intracellular concentration of 4 deoxyribonucleoside triphosphates (dNTPs). Unbalanced or deficient dNTP pools cause serious genotoxic consequences. Autophagy is the process by which cytoplasmic constituents are degraded in lysosomes to maintain cellular homeostasis and bioenergetics. However, the role of autophagy in regulating dNTP pools is not well understood. Herein, we reported that starvation- or rapamycin-induced autophagy was accompanied by a decrease in RNR activity and dNTP pools in human cancer cells. Furthermore, downregulation of the small subunit of RNR (RRM2) by siRNA or treatment with the RNR inhibitor hydroxyurea substantially induced autophagy. Conversely, cancer cells with abundant endogenous intracellular dNTPs or treated with dNTP precursors were less responsive to autophagy induction by rapamycin, suggesting that autophagy and dNTP pool levels are regulated through a negative feedback loop. Lastly, treatment with si-RRM2 caused an increase in MAP1LC3B, ATG5, BECN1, and ATG12 transcript abundance in xenografted Tu212 tumors in vivo. Together, our results revealed a previously unrecognized reciprocal regulation between dNTP pools and autophagy in cancer cells. PMID:24905824

  9. Analysis of Autophagy Genes in Microalgae: Chlorella as a Potential Model to Study Mechanism of Autophagy

    PubMed Central

    Jiang, Qiao; Zhao, Li; Dai, Junbiao; Wu, Qingyu

    2012-01-01

    Background Microalgae, with the ability to mitigate CO2 emission and produce carbohydrates and lipids, are considered one of the most promising resources for producing bioenergy. Recently, we discovered that autophagy plays a critical role in the metabolism of photosynthetic system and lipids production. So far, more than 30-autophagy related (ATG) genes in all subtypes of autophagy have been identified. However, compared with yeast and mammals, in silico and experimental research of autophagy pathways in microalgae remained limited and fragmentary. Principal Findings In this article, we performed a genome-wide analysis of ATG genes in 7 microalgae species and explored their distributions, domain structures and evolution. Eighteen “core autophagy machinery” proteins, four mammalian-specific ATG proteins and more than 30 additional proteins (including “receptor-adaptor” complexes) in all subtypes of autophagy were analyzed. Data revealed that receptor proteins in cytoplasm-to-vacuole targeting and mitophagy seem to be absent in microalgae. However, most of the “core autophagy machinery” and mammalian-specific proteins are conserved among microalgae, except for the ATG9-cycling system in Chlamydomonas reinhardtii and the second ubiquitin-like protein conjugation complex in several algal species. The catalytic and binding residues in ATG3, ATG5, ATG7, ATG8, ATG10 and ATG12 are also conserved and the phylogenetic tree of ATG8 coincides well with the phylogenies. Chlorella contains the entire set of the core autophagy machinery. In addition, RT-PCR analysis verified that all crucial ATG genes tested are expressed during autophagy in both Chlorella and Chlamydomonas reinhardtii. Finally, we discovered that addition of 3-Methyladenine (a PI3K specific inhibitor) could suppress the formation of autophagic vacuoles in Chlorella. Conclusions Taken together, Chlorella may represent a potential model organism to investigate autophagy pathways in photosynthetic

  10. Multifunction of autophagy-related genes in filamentous fungi.

    PubMed

    Khan, Irshad Ali; Lu, Jian-Ping; Liu, Xiao-Hong; Rehman, Abdur; Lin, Fu-Cheng

    2012-06-20

    Autophagy (macroautophagy), a highly conserved eukaryotic mechanism, is a non-selective degradation process, helping to maintain a balance between the synthesis, degradation and subsequent recycling of macromolecules to overcome various stress conditions. The term autophagy denotes any cellular process which involves the delivery of cytoplasmic material to the lysosome for degradation. Autophagy, in filamentous fungi plays a critical role during cellular development and pathogenicity. Autophagy, like the mitogen-activated protein (MAP) kinase cascade and nutrient-sensing cyclic AMP (cAMP) pathway, is also an important process for appressorium turgor accumulation in order to penetrate the leaf surface of host plant and destroy the plant defense. Yeast, an autophagy model, has been used to compare the multi-valued functions of ATG (autophagy-related genes) in different filamentous fungi. The autophagy machinery in both yeast and filamentous fungi is controlled by Tor kinase and both contain two distinct phosphatidylinositol 3-kinase complexes. In this review, we focus on the functions of ATG genes during pathogenic development in filamentous fungi. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    PubMed Central

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  12. Polymorphisms in Autophagy Genes and Susceptibility to Tuberculosis

    PubMed Central

    Alisjahbana, Bachti; Sahiratmadja, Edhyana; Parwati, Ida; Oosting, Marije; Plantinga, Theo S.; Joosten, Leo A. B.; Netea, Mihai G.; Ottenhoff, Tom H. M.; van de Vosse, Esther; van Crevel, Reinout

    2012-01-01

    Recent data suggest that autophagy is important for intracellular killing of Mycobacterium tuberculosis, and polymorphisms in the autophagy gene IRGM have been linked with susceptibility to tuberculosis (TB) among African-Americans, and with TB caused by particular M. tuberculosis genotypes in Ghana. We compared 22 polymorphisms of 14 autophagy genes between 1022 Indonesian TB patients and 952 matched controls, and between patients infected with different M. tuberculosis genotypes, as determined by spoligotyping. The same autophagy polymorphisms were studied in correlation with ex-vivo production of TNF, IL-1β, IL-6, IL-8, IFN-γ and IL-17 in healthy volunteers. No association was found between TB and polymorphisms in the genes ATG10, ATG16L2, ATG2B, ATG5, ATG9B, IRGM, LAMP1, LAMP3, P2RX7, WIPI1, MTOR and ATG4C. Associations were found between polymorphisms in LAMP1 (p = 0.02) and MTOR (p = 0.02) and infection with the successful M. tuberculosis Beijing genotype. The polymorphisms examined were not associated with M. tuberculosis induced cytokines, except for a polymorphism in ATG10, which was linked with IL-8 production (p = 0.04). All associations found lost statistical significance after correction for multiple testing. This first examination of a broad set of polymorphisms in autophagy genes fails to show a clear association with TB, with M. tuberculosis Beijing genotype infection or with ex-vivo pro-inflammatory cytokine production. PMID:22879892

  13. Mutation in TECPR2 Reveals a Role for Autophagy in Hereditary Spastic Paraparesis

    PubMed Central

    Oz-Levi, Danit; Ben-Zeev, Bruria; Ruzzo, Elizabeth K.; Hitomi, Yuki; Gelman, Amir; Pelak, Kimberly; Anikster, Yair; Reznik-Wolf, Haike; Bar-Joseph, Ifat; Olender, Tsviya; Alkelai, Anna; Weiss, Meira; Ben-Asher, Edna; Ge, Dongliang; Shianna, Kevin V.; Elazar, Zvulun; Goldstein, David B.; Pras, Elon; Lancet, Doron

    2012-01-01

    We studied five individuals from three Jewish Bukharian families affected by an apparently autosomal-recessive form of hereditary spastic paraparesis accompanied by severe intellectual disability, fluctuating central hypoventilation, gastresophageal reflux disease, wake apnea, areflexia, and unique dysmorphic features. Exome sequencing identified one homozygous variant shared among all affected individuals and absent in controls: a 1 bp frameshift TECPR2 deletion leading to a premature stop codon and predicting significant degradation of the protein. TECPR2 has been reported as a positive regulator of autophagy. We thus examined the autophagy-related fate of two key autophagic proteins, SQSTM1 (p62) and MAP1LC3B (LC3), in skin fibroblasts of an affected individual, as compared to a healthy control, and found that both protein levels were decreased and that there was a more pronounced decrease in the lipidated form of LC3 (LC3II). siRNA knockdown of TECPR2 showed similar changes, consistent with aberrant autophagy. Our results are strengthened by the fact that autophagy dysfunction has been implicated in a number of other neurodegenerative diseases. The discovered TECPR2 mutation implicates autophagy, a central intracellular mechanism, in spastic paraparesis. PMID:23176824

  14. Viruses, Autophagy Genes, and Crohn’s Disease

    PubMed Central

    Hubbard, Vanessa M.; Cadwell, Ken

    2011-01-01

    The etiology of the intestinal disease Crohn’s disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn’s disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders. PMID:21994779

  15. Aging is associated with hypermethylation of autophagy genes in macrophages.

    PubMed

    Khalil, Hany; Tazi, Mia; Caution, Kyle; Ahmed, Amr; Kanneganti, Apurva; Assani, Kaivon; Kopp, Benjamin; Marsh, Clay; Dakhlallah, Duaa; Amer, Amal O

    2016-05-03

    Autophagy is a biological process characterized by self-digestion and involves induction of autophagosome formation, leading to degradation of autophagic cargo. Aging is associated with the reduction of autophagy activity leading to neurodegenerative disorders, chronic inflammation, and susceptibility to infection; however, the underlying mechanism is unclear. DNA methylation by DNA methyltransferases reduces the expression of corresponding genes. Since macrophages are major players in inflammation and defense against infection we determined the differences in methylation of autophagy genes in macrophages derived from young and aged mice. We found that promoter regions of Atg5 and LC3B are hypermethylated in macrophages from aged mice and this is accompanied by low gene expression. Treatment of aged mice and their derived macrophages with methyltransferase inhibitor (2)-epigallocatechin-3-gallate (EGCG) or specific DNA methyltransferase 2 (DNMT2) siRNA restored the expression of Atg5 and LC3 in vivo and in vitro. Our study builds a foundation for the development of novel therapeutics aimed to improve autophagy in the elderly population and suggests a role for DNMT2 in DNA methylation activities.

  16. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    PubMed

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.

  17. Autophagy

    PubMed Central

    Lin, Tsung-Chin; Chen, Yun-Ru; Kensicki, Elizabeth; Li, Angela Ying-Jian; Kong, Mei; Li, Yang; Mohney, Robert P.; Shen, Han-Ming; Stiles, Bangyan; Mizushima, Noboru; Lin, Liang-In; Ann, David K.

    2012-01-01

    Autophagy is a catabolic process that functions in recycling and degrading cellular proteins, and is also induced as an adaptive response to the increased metabolic demand upon nutrient starvation. However, the prosurvival role of autophagy in response to metabolic stress due to deprivation of glutamine, the most abundant nutrient for mammalian cells, is not well understood. Here, we demonstrated that when extracellular glutamine was withdrawn, autophagy provided cells with sub-mM concentrations of glutamine, which played a critical role in fostering cell metabolism. Moreover, we uncovered a previously unknown connection between metabolic responses to ATG5 deficiency and glutamine deprivation, and revealed that WT and atg5−/− MEFs utilized both common and distinct metabolic pathways over time during glutamine deprivation. Although the early response of WT MEFs to glutamine deficiency was similar in many respects to the baseline metabolism of atg5−/− MEFs, there was a concomitant decrease in the levels of essential amino acids and branched chain amino acid catabolites in WT MEFs after 6 h of glutamine withdrawal that distinguished them from the atg5−/− MEFs. Metabolomic profiling, oxygen consumption and pathway focused quantitative RT-PCR analyses revealed that autophagy and glutamine utilization were reciprocally regulated to couple metabolic and transcriptional reprogramming. These findings provide key insights into the critical prosurvival role of autophagy in maintaining mitochondrial oxidative phosphorylation and cell growth during metabolic stress caused by glutamine deprivation. PMID:22906967

  18. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    SciTech Connect

    Yang, Xiaojun; Zhong, Xiaomin; Tanyi, Janos L.; Shen, Jianfeng; Xu, Congjian; Gao, Peng; Zheng, Tim M.; DeMichele, Angela; Zhang, Lin

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  19. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  20. SIRT5 regulation of ammonia-induced autophagy and mitophagy.

    PubMed

    Polletta, Lucia; Vernucci, Enza; Carnevale, Ilaria; Arcangeli, Tania; Rotili, Dante; Palmerio, Silvia; Steegborn, Clemens; Nowak, Theresa; Schutkowski, Mike; Pellegrini, Laura; Sansone, Luigi; Villanova, Lidia; Runci, Alessandra; Pucci, Bruna; Morgante, Emanuela; Fini, Massimo; Mai, Antonello; Russo, Matteo A; Tafani, Marco

    2015-01-01

    In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism.

  1. SIRT5 regulation of ammonia-induced autophagy and mitophagy

    PubMed Central

    Polletta, Lucia; Vernucci, Enza; Carnevale, Ilaria; Arcangeli, Tania; Rotili, Dante; Palmerio, Silvia; Steegborn, Clemens; Nowak, Theresa; Schutkowski, Mike; Pellegrini, Laura; Sansone, Luigi; Villanova, Lidia; Runci, Alessandra; Pucci, Bruna; Morgante, Emanuela; Fini, Massimo; Mai, Antonello; Russo, Matteo A; Tafani, Marco

    2015-01-01

    In liver the mitochondrial sirtuin, SIRT5, controls ammonia detoxification by regulating CPS1, the first enzyme of the urea cycle. However, while SIRT5 is ubiquitously expressed, urea cycle and CPS1 are only present in the liver and, to a minor extent, in the kidney. To address the possibility that SIRT5 is involved in ammonia production also in nonliver cells, clones of human breast cancer cell lines MDA-MB-231 and mouse myoblast C2C12, overexpressing or silenced for SIRT5 were produced. Our results show that ammonia production increased in SIRT5-silenced and decreased in SIRT5-overexpressing cells. We also obtained the same ammonia increase when using a new specific inhibitor of SIRT5 called MC3482. SIRT5 regulates ammonia production by controlling glutamine metabolism. In fact, in the mitochondria, glutamine is transformed in glutamate by the enzyme glutaminase, a reaction producing ammonia. We found that SIRT5 and glutaminase coimmunoprecipitated and that SIRT5 inhibition resulted in an increased succinylation of glutaminase. We next determined that autophagy and mitophagy were increased by ammonia by measuring autophagic proteolysis of long-lived proteins, increase of autophagy markers MAP1LC3B, GABARAP, and GABARAPL2, mitophagy markers BNIP3 and the PINK1-PARK2 system as well as mitochondrial morphology and dynamics. We observed that autophagy and mitophagy increased in SIRT5-silenced cells and in WT cells treated with MC3482 and decreased in SIRT5-overexpressing cells. Moreover, glutaminase inhibition or glutamine withdrawal completely prevented autophagy. In conclusion we propose that the role of SIRT5 in nonliver cells is to regulate ammonia production and ammonia-induced autophagy by regulating glutamine metabolism. PMID:25700560

  2. Autophagy-dependent PELI3 degradation inhibits proinflammatory IL1B expression.

    PubMed

    Giegerich, Annika Klara; Kuchler, Laura; Sha, Lisa Katharina; Knape, Tilo; Heide, Heinrich; Wittig, Ilka; Behrends, Christian; Brüne, Bernhard; von Knethen, Andreas

    2014-01-01

    Lipopolysaccharide (LPS)-induced activation of TLR4 (toll-like receptor 4) is followed by a subsequent overwhelming inflammatory response, a hallmark of the first phase of sepsis. Therefore, counteracting excessive innate immunity by autophagy is important to contribute to the termination of inflammation. However, the exact molecular details of this interplay are only poorly understood. Here, we show that PELI3/Pellino3 (pellino E3 ubiquitin protein ligase family member 3), which is an E3 ubiquitin ligase and scaffold protein in TLR4-signaling, is impacted by autophagy in macrophages (MΦ) after LPS stimulation. We noticed an attenuated mRNA expression of proinflammatory Il1b (interleukin 1, β) in Peli3 knockdown murine MΦ in response to LPS treatment. The autophagy adaptor protein SQSTM1/p62 (sequestosome 1) emerged as a potential PELI3 binding partner in TLR4-signaling. siRNA targeting Sqstm1 and Atg7 (autophagy related 7), pharmacological inhibition of autophagy by wortmannin as well as blocking the lysosomal vacuolar-type H(+)-ATPase by bafilomycin A1 augmented PELI3 protein levels, while inhibition of the proteasome had no effect. Consistently, treatment to induce autophagy by MTOR (mechanistic target of rapamycin (serine/threonine kinase)) inhibition or starvation enhanced PELI3 degradation and reduced proinflammatory Il1b expression. PELI3 was found to be ubiquitinated upon LPS stimulation and point mutation of PELI3-lysine residue 316 (Lys316Arg) attenuated Torin2-dependent degradation of PELI3. Immunofluorescence analysis revealed that PELI3 colocalized with the typical autophagy markers MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and LAMP2 (lysosomal-associated membrane protein 2). Our observations suggest that autophagy causes PELI3 degradation during TLR4-signaling, thereby impairing the hyperinflammatory phase during sepsis.

  3. Autophagy-related genes from a tick, Haemaphysalis longicornis.

    PubMed

    Umemiya, Rika; Matsuo, Tomohide; Hatta, Takeshi; Sakakibara, Shin-Ichi; Boldbaatar, Damdinsuren; Fujisaki, Kozo

    2008-01-01

    Ticks are gorging-fasting organisms;(1) their life cycle is characterized by alternate off-host (starvation) and on-host (meal) conditions. Their generation time is estimated in several years and many ticks spend more than 95% of their life off the host. They seem to have a unique strategy to endure the off-host state for a long period. Thus, we focused on autophagy, which is induced by starvation and is essential for extension of the lifespan,(2-4) and hypothesized that ticks also have a system of autophagy to overcome the starved condition. Recently, we showed the existence of a homologue of an ATG gene, ATG12, and its expression pattern from nymphal to adult stages in a three-host tick, Haemaphysalis longicornis. The expression level of HlATG12 was downregulated at the beginning of feeding and was highest at 3 months after engorgement. In addition, the HlAtg12 protein was localized to the region around granule-like structures within midgut cells of unfed adults. These results indicate that HlATG12 functions during unfed stages. Here, a potential role of autophagy in unfed ticks is discussed with regard to reports in other animals, such as yeast, mammal, and fruit fly.

  4. Control of autophagy by oncogenes and tumor suppressor genes.

    PubMed

    Maiuri, M C; Tasdemir, E; Criollo, A; Morselli, E; Vicencio, J M; Carnuccio, R; Kroemer, G

    2009-01-01

    Multiple oncogenes (in particular phosphatidylinositol 3-kinase, PI3K; activated Akt1; antiapoptotic proteins from the Bcl-2 family) inhibit autophagy. Similarly, several tumor suppressor proteins (such as BH3-only proteins; death-associated protein kinase-1, DAPK1; the phosphatase that antagonizes PI3K, PTEN; tuberous sclerosic complex 1 and 2, TSC1 and TSC2; as well as LKB1/STK11) induce autophagy, meaning that their loss reduces autophagy. Beclin-1, which is required for autophagy induction acts as a haploinsufficient tumor suppressor protein, and other essential autophagy mediators (such as Atg4c, UVRAG and Bif-1) are bona fide oncosuppressors. One of the central tumor suppressor proteins, p53 exerts an ambiguous function in the regulation of autophagy. Within the nucleus, p53 can act as an autophagy-inducing transcription factor. Within the cytoplasm, p53 exerts a tonic autophagy-inhibitory function, and its degradation is actually required for the induction of autophagy. The role of autophagy in oncogenesis and anticancer therapy is contradictory. Chronic suppression of autophagy may stimulate oncogenesis. However, once a tumor is formed, autophagy inhibition may be a therapeutic goal for radiosensitization and chemosensitization. Altogether, the current state-of-the art suggests a complex relationship between cancer and deregulated autophagy that must be disentangled by further in-depth investigation.

  5. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells.

    PubMed

    Cadwell, Ken; Liu, John Y; Brown, Sarah L; Miyoshi, Hiroyuki; Loh, Joy; Lennerz, Jochen K; Kishi, Chieko; Kc, Wumesh; Carrero, Javier A; Hunt, Steven; Stone, Christian D; Brunt, Elizabeth M; Xavier, Ramnik J; Sleckman, Barry P; Li, Ellen; Mizushima, Noboru; Stappenbeck, Thaddeus S; Virgin, Herbert W

    2008-11-13

    Susceptibility to Crohn's disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn's disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn's disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn's disease patients carrying the Crohn's disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn's disease patients homozygous for the ATG16L1 Crohn's disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn's disease patients by selective effects on the cell biology and specialized

  6. Detection of WIPI1 mRNA as an indicator of autophagosome formation.

    PubMed

    Tsuyuki, Satoshi; Takabayashi, Mei; Kawazu, Manami; Kudo, Kousei; Watanabe, Akari; Nagata, Yoshiki; Kusama, Yusuke; Yoshida, Kenichi

    2014-03-01

    Autophagy is a cellular bulk degradation system for long-lived proteins and organelles that operates during nutrient starvation and is thus a type of recycling system. In recent years, a series of mammalian orthologs of yeast autophagy-related (ATG) genes have been identified; however, the importance of the transcriptional regulation of ATG genes underlying autophagosome formation is poorly understood. In this study, we identified several ATG genes, including the genes ULK1, MAP1LC3B, GABARAPL1, ATG13, WIPI1, and WDR45/WIPI4, with elevated mRNA levels in thapsigargin-, C2-ceramide-, and rapamycin-treated as well as amino acid-depleted HeLa cells except for MAP1LC3B mRNA in rapamycin-treated HeLa cells. Rapamycin had a weaker effect on the expressions of ATG genes. The increase in WIPI1 and MAP1LC3B mRNA was induced prior to the accumulation of the autophagy marker protein MAP1LC3 in the thapsigargin- and C2-ceramide-treated A549 cells. By counting the puncta marked with MAP1LC3B in HeLa cells treated with different autophagy inducers, we revealed that the time-dependent mRNA elevation of a specific set of ATG genes was similar to that of autophagosome accumulation. The transcriptional attenuation of WIPI1 mRNA using RNA interference inhibited the puncta number in thapsigargin-treated HeLa cells. Remarkably, increases in the abundance of WIPI1 mRNA were also manifested in thapsigargin- and C2-ceramide-treated human fibroblasts (WI-38 and TIG-1), human cancer cells (U-2 OS, Saos-2, and MCF7), and rodent fibroblasts (Rat-1). Taken together, these results suggest that the detection of WIPI1 mRNA is likely to be a convenient method of monitoring autophagosome formation in a wide range of cell types.

  7. 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body

    PubMed Central

    Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng

    2013-01-01

    Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcRDN) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body. PMID:23674061

  8. 20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body.

    PubMed

    Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng

    2013-08-01

    Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcR (DN) ) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body.

  9. Suppression of MAPK/JNK-MTORC1 signaling leads to premature loss of organelles and nuclei by autophagy during terminal differentiation of lens fiber cells

    PubMed Central

    Basu, Subhasree; Rajakaruna, Suren; Reyes, Beverly; Van Bockstaele, Elisabeth; Menko, A Sue

    2014-01-01

    Although autophagic pathways are essential to developmental processes, many questions still remain regarding the initiation signals that regulate autophagy in the context of differentiation. To address these questions we studied the ocular lens, as the programmed elimination of nuclei and organelles occurs in a precisely regulated spatiotemporal manner to form the organelle-free zone (OFZ), a characteristic essential for vision acuity. Here, we report our discovery that inactivation of MAPK/JNK induces autophagy for formation of the OFZ through its regulation of MTORC1, where MAPK/JNK signaling is required for both MTOR activation and RPTOR/RAPTOR phosphorylation. Autophagy pathway proteins including ULK1, BECN1/Beclin 1, and MAP1LC3B2/LC3B-II were upregulated in the presence of inhibitors to either MAPK/JNK or MTOR, inducing autophagic loss of organelles to form the OFZ. These results reveal that MAPK/JNK is a positive regulator of MTORC1 signaling and its developmentally regulated inactivation provides an inducing signal for the coordinated autophagic removal of nuclei and organelles required for lens function. PMID:24813396

  10. PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells

    PubMed Central

    Rah, Bilal; Rasool, Reyaz ur; Nayak, Debasis; Yousuf, Syed Khalid; Mukherjee, Debaraj; Kumar, Lekha Dinesh; Goswami, Anindya

    2015-01-01

    An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential. PMID:25803782

  11. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy.

    PubMed

    Chua, Jason P; Reddy, Satya L; Merry, Diane E; Adachi, Hiroaki; Katsuno, Masahisa; Sobue, Gen; Robins, Diane M; Lieberman, Andrew P

    2014-03-01

    Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.

  12. Data supporting the activation of autophagy genes in the diabetic heart.

    PubMed

    Munasinghe, Pujika Emani; Riu, Federica; Dixit, Parul; Edamatsu, Midori; Saxena, Pankaj; Hamer, Nathan S J; Galvin, Ivor F; Bunton, Richard W; Lequeux, Sharon; Jones, Greg; Lamberts, Regis R; Emanueli, Costanza; Madeddu, Paolo; Katare, Rajesh

    2015-12-01

    This data article contains full list of autophagy related genes that are altered in diabetic heart. This article also shows data from in vitro cultured cardiomyocytes that are exposed the high glucose treatment to simulate hyperglycemic state in vitro. The interpretation of these data and further extensive insights into the regulation of SG biogenesis by AMPK can be found in "Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway" (Munasinghe et al., in press) [1].

  13. Systematic cloning and analysis of autophagy-related genes from the silkworm Bombyx mori.

    PubMed

    Zhang, Xuan; Hu, Zhan-Ying; Li, Wei-Fang; Li, Qing-Rong; Deng, Xiao-Juan; Yang, Wan-Ying; Cao, Yang; Zhou, Cong-Zhao

    2009-05-27

    Through the whole life of eukaryotes, autophagy plays an important role in various biological events including development, differentiation and determination of lifespan. A full set of genes and their encoded proteins of this evolutionarily conserved pathway have been identified in many eukaryotic organisms from yeast to mammals. However, this pathway in the insect model organism, the silkworm Bombyx mori, remains poorly investigated. Based on the autophagy pathway in several model organisms and a series of bioinformatic analyses, we have found more than 20 autophagy-related genes from the current database of the silkworm Bombyx mori. These genes could be further classified into the signal transduction pathway and two ubiquitin-like pathways. Using the mRNA extracted from the silkgland, we cloned the full length cDNA fragments of some key genes via reverse transcription PCR and 3' rapid amplification of cDNA ends (RACE). In addition, we found that the transcription levels of two indicator genes BmATG8 and BmATG12 in the silkgland tend to be increased from 1st to 8th day of the fifth instar larvae. Bioinformatics in combination with RT-PCR enable us to remodel a preliminary pathway of autophagy in the silkworm. Amplification and cloning of most autophagy-related genes from the silkgland indicated autophagy is indeed an activated process. Furthermore, the time-course transcriptional profiles of BmATG8 and BmATG12 revealed that both genes are up-regulated along the maturation of the silkgland during the fifth instar. These findings suggest that the autophagy should play an important role in Bombyx mori silkgland.

  14. Autophagy is involved in endogenous and NVP-AUY922-induced KIT degradation in gastrointestinal stromal tumors

    PubMed Central

    Hsueh, Yuan-Shuo; Yen, Chueh-Chuan; Shih, Neng-Yao; Chiang, Nai-Jung; Li, Chien-Feng; Chen, Li-Tzong

    2013-01-01

    Gastrointestinal stromal tumor (GIST) is a prototype of mutant KIT oncogene-driven tumor. Prolonged tyrosine kinase inhibitor (TKI) treatment may result in a resistant phenotype through acquired secondary KIT mutation. Heat shock protein 90 (HSP90AA1) is a chaperone protein responsible for protein maturation and stability, and KIT is a known client protein of HSP90AA1. Inhibition of HSP90AA1 has been shown to destabilize KIT protein by enhancing its degradation via the proteasome-dependent pathway. In this study, we demonstrated that NVP-AUY922 (AUY922), a new class of HSP90AA1 inhibitor, is effective in inhibiting the growth of GIST cells expressing mutant KIT protein, the imatinib-sensitive GIST882 and imatinib-resistant GIST48 cells. The growth inhibition was accompanied with a sustained reduction of both total and phosphorylated KIT proteins and the induction of apoptosis in both cell lines. Surprisingly, AUY922-induced KIT reduction could be partially reversed by pharmacological inhibition of either autophagy or proteasome degradation pathway. The blockade of autophagy alone led to the accumulation of the KIT protein, highlighting the role of autophagy in endogenous KIT turnover. The involvement of autophagy in endogenous and AUY922-induced KIT protein turnover was further confirmed by the colocalization of KIT with MAP1LC3B-, acridine orange- or SQSTM1-labeled autophagosome, and by the accumulation of KIT in GIST cells by silencing either BECN1 or ATG5 to disrupt autophagosome activity. Therefore, the results not only highlight the potential application of AUY922 for the treatment of KIT-expressing GISTs, but also provide the first evidence for the involvement of autophagy in endogenous and HSP90AA1 inhibitor-induced KIT degradation. PMID:23196876

  15. Global analysis of fission yeast mating genes reveals new autophagy factors.

    PubMed

    Sun, Ling-Ling; Li, Ming; Suo, Fang; Liu, Xiao-Man; Shen, En-Zhi; Yang, Bing; Dong, Meng-Qiu; He, Wan-Zhong; Du, Li-Lin

    2013-01-01

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12-Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy.

  16. Global Analysis of Fission Yeast Mating Genes Reveals New Autophagy Factors

    PubMed Central

    Sun, Ling-Ling; Shen, En-Zhi; Yang, Bing; Dong, Meng-Qiu; He, Wan-Zhong; Du, Li-Lin

    2013-01-01

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12–Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy. PMID:23950735

  17. Autophagy and formation of tubulovesicular autophagosomes provide a barrier against nonviral gene delivery.

    PubMed

    Roberts, Rebecca; Al-Jamal, Wafa' T; Whelband, Matthew; Thomas, Paul; Jefferson, Matthew; van den Bossche, Jeroen; Powell, Penny P; Kostarelos, Kostas; Wileman, Thomas

    2013-05-01

    Cationic liposome (lipoplex) and polymer (polyplex)-based vectors have been developed for nonviral gene delivery. These vectors bind DNA and enter cells via endosomes, but intracellular transfer of DNA to the nucleus is inefficient. Here we show that lipoplex and polyplex vectors enter cells in endosomes, activate autophagy and generate tubulovesicular autophagosomes. Activation of autophagy was dependent on ATG5, resulting in lipidation of LC3, but did not require the PtdIns 3-kinase activity of PIK3C3/VPS34. The autophagosomes generated by lipoplex fused with each other, and with endosomes, resulting in the delivery of vectors to large tubulovesicular autophagosomes, which accumulated next to the nucleus. The tubulovesicular autophagosomes contained autophagy receptor protein SQSTM1/p62 and ubiquitin, suggesting capture of autophagy cargoes, but fusion with lysosomes was slow. Gene delivery and expression from both lipoplex and polyplex increased 8-fold in atg5 (-/-) cells unable to generate tubulovesicular autophagosomes. Activation of autophagy and capture within tubulovesicular autophagosomes therefore provides a new cellular barrier against efficient gene transfer and should be considered when designing efficient nonviral gene delivery vectors.

  18. Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

    PubMed Central

    Shin, Ju-Hyun

    2016-01-01

    Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery. PMID:27847434

  19. MiR224-3p inhibits hypoxia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells

    PubMed Central

    Guo, Xing; Xue, Hao; Guo, Xiaofan; Gao, Xiao; Xu, Shugang; Yan, Shaofeng; Han, Xiao; Li, Tong; Shen, Jie; Li, Gang

    2015-01-01

    Human glioblastoma multiforme (GBM) is a malignant solid tumor characterized by severe hypoxia. Autophagy plays a protective role in cancer cells under hypoxia. However, the microRNA (miRNA)-related molecular mechanisms underlying hypoxia-reduced autophagy remain poorly understood in GBM. In this study, we performed a miRNA microarray analysis on GBM cells and found that numerous miRNAs were differentially expressed under hypoxic conditions. Further research showed that miR224-3p, one of the significantly down-regulated miRNAs, was involved in regulating hypoxia-induced autophagy in GBM cells. Overexpression of miR224-3p abolished hypoxia-induced autophagy, whereas knocking down endogenous miR224-3p increased autophagic activity under normoxia. In addition, we demonstrated that miR224-3p inhibited autophagy by directly suppressing the expression of two autophagy-related genes (ATGs), ATG5 and FAK family-interacting protein of 200 kDa (FIP200). Furthermore, in vitro, miR224-3p attenuated cell proliferation and promoted hypoxia-induced apoptosis, and in vivo, overexpression of miR224-3p inhibited tumorigenesis of GBM cells. Collectively, our study identified a novel hypoxia-down-regulated miRNA, miR224-3p, as a key modulator of autophagy by inhibiting ATGs in GBM cells. PMID:26536662

  20. Genetic variants in autophagy associated genes are associated with DNA damage levels in Chinese population.

    PubMed

    Li, Zhihua; Xin, Junyi; Chen, Weihong; Liu, Jia; Zhu, Meng; Zhao, Congwen; Yuan, Jing; Jin, Guangfu; Ma, Hongxia; Du, Jiangbo; Hu, Zhibin; Wu, Tangchun; Shen, Hongbing; Dai, Juncheng; Yu, Hao

    2017-08-30

    Autophagy associated genes (ATGs) played an important role in the repair process of DNA damage and decreased autophagy may weaken the repair process and aggravate DNA damage. Based on this, we hypothesized that DNA damage levels might be modified by genetic variants in autophagy associated genes. In order to validate our hypothesis, 307 subjects were recruited from three different cities (Zhuhai, Wuhan and Tianjin) in China. Demographic data, individual 24-h PM2.5 exposure and peripheral blood DNA damage levels were also detected. Seven potentially functional polymorphisms in four essential autophagy associated genes (ATG5, ATG7, ATG8 and ATG13) were screened to evaluate the relationship between the polymorphisms of autophagy associated genes and DNA damage levels. This association was assessed by using multivariable linear regression model, age, sex, smoke and PM2.5 exposure levels were adjusted in each city. We found that rs12599322 in ATG8 (A>G, β=0.263, 95% CI: 0.108-0.419, P=8.98×10(-4)) and rs7484002 in ATG13 (A>G, β=0.396, 95% CI: 0.085-0.708, P=0.013) were significantly associated with higher DNA damage levels. Furthermore, functional annotations showed that both rs12599322 and rs7484002 located at transcription factor binding sites (TFBS), indicating that they could regulate the expression of related genes through TF regulation. Following allelic trend analysis revealed that the DNA damage levels were significantly aggravated with the increasing number of risk variants in autophagy associated genes (P for trend: 8.09×10(-5)). Our findings suggested that the polymorphisms in ATGs may influence DNA damage levels in one of the Chinese population. Copyright © 2017. Published by Elsevier B.V.

  1. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell

    PubMed Central

    Li, Wei; Zou, Wei; Yang, Yihong; Chai, Yongping; Chen, Baohui; Cheng, Shiya; Tian, Dong

    2012-01-01

    Apoptotic cell degradation is a fundamental process for organism development, and impaired clearance causes inflammatory or autoimmune disease. Although autophagy genes were reported to be essential for exposing the engulfment signal on apoptotic cells, their roles in phagocytes for apoptotic cell removal are not well understood. In this paper, we develop live-cell imaging techniques to study apoptotic cell clearance in the Caenorhabditis elegans Q neuroblast lineage. We show that the autophagy proteins LGG-1/LC3, ATG-18, and EPG-5 were sequentially recruited to internalized apoptotic Q cells in the phagocyte. In atg-18 or epg-5 mutants, apoptotic Q cells were internalized but not properly degraded; this phenotype was fully rescued by the expression of autophagy genes in the phagocyte. Time-lapse analysis of autophagy mutants revealed that recruitment of the small guanosine triphosphatases RAB-5 and RAB-7 to the phagosome and the formation of phagolysosome were all significantly delayed. Thus, autophagy genes act within the phagocyte to promote apoptotic cell degradation. PMID:22451698

  2. Impaired autophagy and delayed autophagic clearance of transforming growth factor β-induced protein (TGFBI) in granular corneal dystrophy type 2

    PubMed Central

    Choi, Seung-Il; Kim, Bong-Yoon; Dadakhujaev, Shorafidinkhuja; Oh, Jun-Young; Kim, Tae-Im; Kim, Joo Young; Kim, Eung Kweon

    2012-01-01

    Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease characterized by a progressive age-dependent extracellular accumulation of transforming growth factor β-induced protein (TGFBI). Corneal fibroblasts from GCD2 patients also have progressive degenerative features, but the mechanism underlying this degeneration remains unknown. Here we observed that TGFBI was degraded by autophagy, but not by the ubiquitin/proteasome-dependent pathway. We also found that GCD2 homozygous corneal fibroblasts displayed a greater number of fragmented mitochondria. Most notably, mutant TGFBI (mut-TGFBI) extensively colocalized with microtubule-associated protein 1 light chain 3β (MAP1LC3B, hereafter referred to as LC3)-enriched cytosolic vesicles and CTSD in primary cultured GCD2 corneal fibroblasts. Levels of LC3-II, a marker of autophagy activation, were significantly increased in GCD2 corneal fibroblasts. Nevertheless, levels of SQSTM1/p62 and of polyubiquitinated protein were also significantly increased in GCD2 corneal fibroblasts compared with wild-type (WT) cells. However, LC3-II levels did not differ significantly between WT and GCD2 cells, as assessed by the presence of bafilomycin A1, the fusion blocker of autophagosomes and lysosomes. Likewise, bafilomycin A1 caused a similar change in levels of SQSTM1. Thus, the increase in autophagosomes containing mut-TGFBI may be due to inefficient fusion between autophagosomes and lysosomes. Rapamycin, an autophagy activator, decreased mut-TGFBI, whereas inhibition of autophagy increased active caspase-3, poly (ADP-ribose) polymerase 1 (PARP1) and reduced the viability of GCD2 corneal fibroblasts compared with WT controls. These data suggest that defective autophagy may play a critical role in the pathogenesis of GCD2. PMID:22995918

  3. Dual Roles of Two Isoforms of Autophagy-related Gene ATG10 in HCV-Subgenomic replicon Mediated Autophagy Flux and Innate Immunity.

    PubMed

    Zhao, Qiong; Hu, Zhan-Ying; Zhang, Jing-Pu; Jiang, Jian-Dong; Ma, Yuan-Yuan; Li, Jian-Rui; Peng, Zong-Gen; Chen, Jin-Hua

    2017-09-12

    Autophagy and immune response are two defense systems that human-body uses against viral infection. Previous studies documented that some viral mechanisms circumvented host immunity mechanisms and hijacked autophagy for its replication and survival. Here, we focus on interactions between autophagy mechanism and innate-immune-response in HCV-subgenomic replicon cells to find a mechanism linking the two pathways. We report distinct effects of two autophagy-related protein ATG10s on HCV-subgenomic replication. ATG10, a canonical long isoform in autophagy process, can facilitate HCV-subgenomic replicon amplification by promoting autophagosome formation and by combining with and detaining autophagosomes in cellular periphery, causing impaired autophagy flux. ATG10S, a non-canonical short isoform of ATG10 proteins, can activate expression of IL28A/B and immunity genes related to viral ds-RNA including ddx-58, tlr-3, tlr-7, irf-3 and irf-7, and promote autophagolysosome formation by directly combining and driving autophagosomes to perinuclear region where lysosomes gather, leading to lysosomal degradation of HCV-subgenomic replicon in HepG2 cells. ATG10S also can suppress infectious HCV virion replication in Huh7.5 cells. Another finding is that IL28A protein directly conjugates ATG10S and helps autophagosome docking to lysosomes. ATG10S might be a new host factor against HCV replication, and as a target for screening chemicals with new anti-virus mechanisms.

  4. Regulation of autophagy by two products of one gene: TRPM3 and miR-204.

    PubMed

    Cost, Nicolas G; Czyzyk-Krzeska, Maria F

    2015-01-01

    In clear cell renal cell carcinoma (ccRCC), oncogenic autophagy dependent on microtubule-associated protein 1 light chain 3 α and β (LC3A and LC3B) is stimulated by activity of the transient receptor potential melastatin 3 (TRPM3) channel through multiple complementary mechanisms. The Von Hippel-Lindau (VHL) tumor suppressor represses this oncogenic autophagy in a coordinated manner through the activity of miR-204, which is expressed from intron 6 of the gene encoding TRPM3. TRPM3 represents an actionable target for ccRCC treatment.

  5. Induction of the autophagy-associated gene MAP1S via PU.1 supports APL differentiation.

    PubMed

    Haimovici, Aladin; Brigger, Daniel; Torbett, Bruce E; Fey, Martin F; Tschan, Mario P

    2014-09-01

    The PU.1 transcription factor is essential for myeloid development. We investigated if the microtubule-associated protein 1S (MAP1S) is a novel PU.1 target with a link to autophagy, a cellular recycling pathway. Comparable to PU.1, MAP1S expression was significantly repressed in primary AML blasts as compared to mature neutrophils. Accordingly, MAP1S expression was induced during neutrophil differentiation of CD34(+) progenitor and APL cells. Moreover, PU.1 bound to the MAP1S promoter and induced MAP1S expression during APL differentiation. Inhibiting MAP1S resulted in aberrant neutrophil differentiation and autophagy. Taken together, our findings implicate the PU.1-regulated MAP1S gene in neutrophil differentiation and autophagy control.

  6. The c10orf10 gene product is a new link between oxidative stress and autophagy.

    PubMed

    Stepp, Marcus W; Folz, Rodney J; Yu, Jerry; Zelko, Igor N

    2014-06-01

    The human c10orf10 gene product, also known as decidual protein induced by progesterone (DEPP), is known to be differentially regulated in mouse tissues in response to hypoxia and oxidative stress, however its biological function remains unknown. We found that mice lacking extracellular superoxide dismutase (EC-SOD) show attenuated expression of DEPP in response to acute hypoxia. DEPP mRNA levels, as well as the activity of a reporter gene expressed under the control of the DEPP 5'-flanking region, were significantly upregulated in Hep3B and Vero cells overexpressing EC-SOD. Subcellular fractionation and immunofluorescent microscopy indicated that overexpressed DEPP is co-localized with both protein aggregates and aggresomes. Further biochemical characterization indicates that DEPP protein is unstable and undergoes rapid degradation. Inhibition of proteasome activities significantly increases DEPP protein levels in soluble and insoluble cytosolic fractions. Attenuation of autophagosomal activity by 3-methyladenine increases DEPP protein levels while activation of autophagy by rapamycin reduced DEPP protein levels. In addition, ectopic overexpression of DEPP leads to autophagy activation, while silencing of DEPP attenuates autophagy. Collectively, these results indicate that DEPP is a major hypoxia-inducible gene involved in the activation of autophagy and whose expression is regulated by oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Macrocerebellum, Epilepsy, Intellectual Disability and Gut Malrotation in a Child with a 16q24.1-q24.2 Contiguous Gene Deletion

    PubMed Central

    Seeley, Andrea H.; Durham, Mark A.; Micale, Mark A.; Wesolowski, Jeffrey; Foerster, Bradley R.; Martin, Donna M.

    2014-01-01

    Macrocerebellum is an extremely rare condition characterized by enlargement of the cerebellum with conservation of the overall shape and cytoarchitecture. Here, we report a child with a distinctive constellation of clinical features including macrocerebellum, epilepsy, apparent intellectual disability, dysautonomia, gut malrotation, and poor gut motility. Oligonucleotide chromosome microarray analysis identified a 16q24.1-q24.2 deletion that included four OMIM genes (FBXO31, MAP1LC3B, JPH3, and SLC7A5). Review of prior studies describing individuals with similar or overlapping16q24.1-q24.2 deletions identified no other reports of macrocerebellum. These observations highlight a potential genetic cause of this rare disorder and raise the possibility that one or more gene(s) in the 16q24.1-q24.2 interval regulate cerebellar development. PMID:24719385

  8. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma

    PubMed Central

    Chen, Ren; Li, Xiaohai; He, Bin; Hu, Wei

    2017-01-01

    Osteosarcoma, which is the most common type of primary bone tumor in adolescents, is characterized by complex genetic alterations and frequent resistance to conventional treatments. MicroRNAs (miRs) have emerged as fundamental regulators in gene expression through their ability to silence gene expression at post-transcriptional and translational levels. The present study investigated the role of miR-410 in the progression of osteosarcoma. The results demonstrated that the expression of miR-410 was markedly downregulated in human osteosarcoma tissues, and U2OS and MG-63 osteosarcoma cell lines. Clinicopathological significance suggested that miR-410 may be a potential biomarker for chemotherapy-resistant osteosarcoma. Furthermore, overexpression of miR-410 exhibited a limited effect on cell viability in U2OS and MG-63 cells. Target prediction algorithms (TargetScan and miRanda) indicated that autophagy related 16-like 1 (ATG16L1) was a potential target gene of miR-410. A luciferase reporter assay demonstrated that miR-410 directly decreased ATG16L1 expression by targeting its 3′-untranslated region. In addition, the results revealed that miR-410 was able to markedly inhibit autophagy. Accordingly, autophagy was activated as a protective mechanism when osteosarcoma cells were exposed to three common anticancer drugs, including rapamycin, doxorubicin and cisplatin. Furthermore, the autophagy inhibitor 3-methyladenine and miR-410 expression were able to improve the therapeutic response of the cells to chemotherapy drugs (rapamycin, doxorubicin and cisplatin), thus indicating that miR-410 enhanced chemosensitivity through autophagy inhibition in osteosarcoma cells. In conclusion, studies regarding the function of miR-410 on autophagy provided insight into the biological function of miR-410 in osteosarcoma and may offer a promising approach for the treatment of osteosarcoma. PMID:28138700

  9. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma.

    PubMed

    Chen, Ren; Li, Xiaohai; He, Bin; Hu, Wei

    2017-03-01

    Osteosarcoma, which is the most common type of primary bone tumor in adolescents, is characterized by complex genetic alterations and frequent resistance to conventional treatments. MicroRNAs (miRs) have emerged as fundamental regulators in gene expression through their ability to silence gene expression at post-transcriptional and translational levels. The present study investigated the role of miR‑410 in the progression of osteosarcoma. The results demonstrated that the expression of miR‑410 was markedly downregulated in human osteosarcoma tissues, and U2OS and MG‑63 osteosarcoma cell lines. Clinicopathological significance suggested that miR‑410 may be a potential biomarker for chemotherapy‑resistant osteosarcoma. Furthermore, overexpression of miR‑410 exhibited a limited effect on cell viability in U2OS and MG‑63 cells. Target prediction algorithms (TargetScan and miRanda) indicated that autophagy related 16‑like 1 (ATG16L1) was a potential target gene of miR‑410. A luciferase reporter assay demonstrated that miR‑410 directly decreased ATG16L1 expression by targeting its 3'‑untranslated region. In addition, the results revealed that miR‑410 was able to markedly inhibit autophagy. Accordingly, autophagy was activated as a protective mechanism when osteosarcoma cells were exposed to three common anticancer drugs, including rapamycin, doxorubicin and cisplatin. Furthermore, the autophagy inhibitor 3‑methyladenine and miR‑410 expression were able to improve the therapeutic response of the cells to chemotherapy drugs (rapamycin, doxorubicin and cisplatin), thus indicating that miR‑410 enhanced chemosensitivity through autophagy inhibition in osteosarcoma cells. In conclusion, studies regarding the function of miR‑410 on autophagy provided insight into the biological function of miR‑410 in osteosarcoma and may offer a promising approach for the treatment of osteosarcoma.

  10. Polymorphisms in Autophagy Genes Are Associated with Paget Disease of Bone

    PubMed Central

    2015-01-01

    Paget disease of bone (PDB) is a focal bone disorder affecting the skeleton segmentally. The main alteration resides in osteoclasts that increase in size, number and activity. Many osteoclasts have cytoplasmic inclusions that have been associated with protein aggregates, increasing the evidences of a possible deregulation of autophagy in the development of the PDB. Autophagy starts with encapsulation of the target into a double-membrane-bound structure called an “autophagosome.” It has been reported that at least 18 ATG genes (autophagy-related genes) are involved in autophagosome formation. We have studied the distribution of genotypes of the ATG2B rs3759601, ATG16L1 rs2241880, ATG10 rs1864183 and ATG5 rs2245214 polymorphisms in a Spanish cohort of subjects with PDB and compared with healthy subjects. Our results show that being a carrier of the C allele of the ATG16L1 rs2241880 and the G allele of ATG5 rs2245214 polymorphisms were associated with an increased risk of developing PDB, whereas being a carrier of the T allele of ATG10 rs1864183 polymorphism decreased the risk of suffering the disease in our series. This is the first report that shows an association between autophagy and Paget Disease of Bone and requires further confirmation in other series. PMID:26030385

  11. A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues

    PubMed Central

    Zhou, Xue-mei; Zhao, Peng; Wang, Wei; Zou, Jie; Cheng, Tian-he; Peng, Xiong-bo; Sun, Meng-xiang

    2015-01-01

    Autophagy is an evolutionarily conserved mechanism in both animals and plants, which has been shown to be involved in various essential developmental processes in plants. Nicotiana tabacum is considered to be an ideal model plant and has been widely used for the study of the roles of autophagy in the processes of plant development and in the response to various stresses. However, only a few autophagy-related genes (ATGs) have been identified in tobacco up to now. Here, we identified 30 ATGs belonging to 16 different groups in tobacco through a genome-wide survey. Comprehensive expression profile analysis reveals an abroad expression pattern of these ATGs, which could be detected in all tissues tested under normal growth conditions. Our series tests further reveal that majority of ATGs are sensitive and responsive to different stresses including nutrient starvation, plant hormones, heavy metal and other abiotic stresses, suggesting a central role of autophagy, likely as an effector, in plant response to various environmental cues. This work offers a detailed survey of all ATGs in tobacco and also suggests manifold functions of autophagy in both normal plant growth and plant response to environmental stresses. PMID:26205094

  12. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene

    PubMed Central

    He, Z; Liu, H; Agostini, M; Yousefi, S; Perren, A; Tschan, M P; Mak, T W; Melino, G; Simon, H U

    2013-01-01

    p73, a member of the p53 tumor suppressor family, is involved in neurogenesis, sensory pathways, immunity, inflammation, and tumorigenesis. How p73 is able to participate in such a broad spectrum of different biological processes is still largely unknown. Here, we report a novel role of p73 in regulating lipid metabolism by direct transactivation of the promoter of autophagy-related protein 5 (ATG5), a gene whose product is required for autophagosome formation. Following nutrient deprivation, the livers of p73-deficient mice demonstrate a massive accumulation of lipid droplets, together with a low level of autophagy, suggesting that triglyceride hydrolysis into fatty acids is blocked owing to deficient autophagy (macrolipophagy). Compared with wild-type mice, mice functionally deficient in all the p73 isoforms exhibit decreased ATG5 expression and lower levels of autophagy in multiple organs. We further show that the TAp73α is the critical p73 isoform responsible for inducing ATG5 expression in a p53-independent manner and demonstrate that ATG5 gene transfer can correct autophagy and macrolipophagy defects in p73-deficient hepatocytes. These data strongly suggest that the p73–ATG5 axis represents a novel, key pathway for regulating lipid metabolism through autophagy. The identification of p73 as a major regulator of autophagy suggests that it may have an important role in preventing or delaying disease and aging by maintaining a homeostatic control. PMID:23912709

  13. The BAX gene as a candidate for negative autophagy-related genes regulator on mRNA levels in colorectal cancer.

    PubMed

    Gil, Justyna; Ramsey, David; Szmida, Elzbieta; Leszczynski, Przemyslaw; Pawlowski, Pawel; Bebenek, Marek; Sasiadek, Maria M

    2017-02-01

    Autophagy is a catabolic process, which is involved in the maintenance of intracellular homeostasis by degrading redundant molecules and organelles. Autophagy begins with the formation of a double-membrane phagophore, followed by its enclosure, thus leading to the appearance of an autophagosome which fuses with lysosome. This process is highly conserved, precisely orchestrated and regulated by autophagy-related genes. Recently, autophagy has been widely studied in different types of cancers, including colorectal cancer. As it has been revealed, autophagy plays two opposite roles in tumorigenesis, as a tumor suppressor and a tumor enhancer/activator, and therefore is called a double-edge sword. Recently, interaction between autophagy and apoptosis has been found. Therefore, we aimed to study the mRNA levels of genes engaged in autophagy and apoptosis in colorectal cancer tissues. Colorectal cancer and adjacent healthy tissues were obtained from 73 patients diagnosed with primary colorectal cancer. Real-time PCR analysis employing Universal Probe Library was used to assess the expression of the seven following selected genes: BECN1, UVRAG, ULK1, ATG13, Bif-1, BCL2 and BAX. For all but one of the tested genes, a decrease in expression was observed. An increase in expression was observed for BAX. BAX expression decreases consistently from early to more advanced stages. High expression of BAX was strongly associated with negative UVRAG expression. The high expression of the BAX gene seems to be a negative regulator of autophagy in colorectal cancer cells. The relative downregulation of autophagy-related genes was observed in colorectal cancer samples.

  14. Characterization of an Autophagy-Related Gene MdATG8i from Apple

    PubMed Central

    Wang, Ping; Sun, Xun; Jia, Xin; Wang, Na; Gong, Xiaoqing; Ma, Fengwang

    2016-01-01

    Nutrient deficiencies restrict apple (Malus sp.) tree growth and productivity in Northwest China. The process of autophagy, a conserved degradation pathway in eukaryotic cells, has important roles in nutrient-recycling and helps improve plant performance during periods of nutrient-starvation. Little is known about the functioning of autophagy-related genes (ATGs) in apple. In this study, one of the ATG8 gene family members MdATG8i was isolated from Malus domestica. MdATG8i has conserved putative tubulin binding sites and ATG7 interaction domains. A 1865-bp promoter region cloned from apple genome DNA was predicated to have cis-regulatory elements responsive to light, environmental stresses, and hormones. MdATG8i transcriptions were induced in response to leaf senescence, nitrogen depletion, and oxidative stress. At cellular level, MdATG8i protein was expressed in the nucleus and cytoplasm of onion epidermal cells. Yeast two-hybrid tests showed that MdATG8i could interact with MdATG7a and MdATG7b. In Arabidopsis, its heterologous expression was associated with enhanced vegetative growth, leaf senescence, and tolerance to nitrogen- and carbon-starvation. MdATG8i-overexpressing “Orin” apple callus lines also displayed improved tolerance to nutrient-limited conditions. Our results demonstrate that MdATG8i protein could function in autophagy in a conserved way, as a positive regulator in the response to nutrient-starvation. PMID:27252732

  15. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator

    PubMed Central

    Jung, Jennifer; Nayak, Arnab; Schaeffer, Véronique; Starzetz, Tatjana; Kirsch, Achim K; Müller, Stefan; Dikic, Ivan; Mittelbronn, Michel; Behrends, Christian

    2017-01-01

    Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator. DOI: http://dx.doi.org/10.7554/eLife.23063.001 PMID:28195531

  16. Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192

    PubMed Central

    Shyu, Rong-Yaun; Wang, Chun-Hua; Wu, Chang-Chieh; Chen, Mao-Liang; Lee, Ming-Cheng; Wang, Lu-Kai; Jiang, Shun-Yuan; Tsai, Fu-Ming

    2016-01-01

    Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity. PMID:27989102

  17. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation

    PubMed Central

    Kabat, Agnieszka M; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4+ T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3+ Treg cells. Specific ablation of Atg16l1 in Foxp3+ Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. DOI: http://dx.doi.org/10.7554/eLife.12444.001 PMID:26910010

  18. Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication

    PubMed Central

    De Leo, A; Colavita, F; Ciccosanti, F; Fimia, G M; Lieberman, P M; Mattia, E

    2015-01-01

    Autophagy, an important degradation system involved in maintaining cellular homeostasis, serves also to eliminate pathogens and process their fragments for presentation to the immune system. Several viruses have been shown to interact with the host autophagic machinery to suppress or make use of this cellular catabolic pathway to enhance their survival and replication. Epstein Barr virus (EBV) is a γ-herpes virus associated with a number of malignancies of epithelial and lymphoid origin in which establishes a predominantly latent infection. Latent EBV can periodically reactivate to produce infectious particles that allow the virus to spread and can lead to the death of the infected cell. In this study, we analyzed the relationship between autophagy and EBV reactivation in Burkitt's lymphoma cells. By monitoring autophagy markers and EBV lytic genes expression, we demonstrate that autophagy is enhanced in the early phases of EBV lytic activation but decreases thereafter concomitantly with increased levels of EBV lytic proteins. In a cell line defective for late antigens expression, we found an inverse correlation between EBV early antigens expression and autophagosomes formation, suggesting that early after activation, the virus is able to suppress autophagy. We report here for the first time that inhibition of autophagy by Bafilomycin A1 or shRNA knockdown of Beclin1 gene, highly incremented EBV lytic genes expression as well as intracellular viral DNA and viral progeny yield. Taken together, these findings indicate that EBV activation induces the autophagic response, which is soon inhibited by the expression of EBV early lytic products. Moreover, our findings open the possibility that pharmacological inhibitors of autophagy may be used to enhance oncolytic viral therapy of EBV-related lymphomas. PMID:26335716

  19. The Selective Activation of p53 Target Genes Regulated by SMYD2 in BIX-01294 Induced Autophagy-Related Cell Death

    PubMed Central

    Fan, Jia-Dong; Lei, Pin-Ji; Zheng, Jun-Yi; Wang, Xiang; Li, Shangze; Liu, Huan; He, Yi-Lei; Wang, Zhao-Ning; Wei, Gang; Zhang, Xiaodong; Li, Lian-Yun; Wu, Min

    2015-01-01

    Transcription regulation emerged to be one of the key mechanisms in regulating autophagy. Inhibitors of H3K9 methylation activates the expression of LC3B, as well as other autophagy-related genes, and promotes autophagy process. However, the detailed mechanisms of autophagy regulated by nuclear factors remain elusive. In this study, we performed a drug screen of SMYD2-/- cells and discovered that SMYD2 deficiency enhanced the cell death induced by BIX01294, an inhibitor of histone H3K9 methylation. BIX-01294 induces accumulation of LC3 II and autophagy-related cell death, but not caspase-dependent apoptosis. We profiled the global gene expression pattern after treatment with BIX-01294, in comparison with rapamycin. BIX-01294 selectively activates the downstream genes of p53 signaling, such as p21 and DOR, but not PUMA, a typical p53 target gene inducing apoptosis. BIX-01294 also induces other autophagy-related genes, such as ATG4A and ATG9A. SMYD2 is a methyltransferase for p53 and regulates its transcription activity. Its deficiency enhances the BIX-01294-induced autophagy-related cell death through transcriptionally promoting the expression of p53 target genes. Taken together, our data suggest BIX-01294 induces autophagy-related cell death and selectively activates p53 target genes, which is repressed by SMYD2 methyltransferase. PMID:25562686

  20. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection

    PubMed Central

    Marchiando, Amanda M.; Ramanan, Deepshika; Ding, Yi; Gomez, Luis E.; Hubbard-Lucey, Vanessa M.; Maurer, Katie; Wang, Caihong; Ziel, Joshua W.; van Rooijen, Nico; Nuñez, Gabriel; Finlay, B. Brett; Mysorekar, Indira U.; Cadwell, Ken

    2013-01-01

    SUMMARY Polymorphisms in the essential autophagy gene Atg16L1 have been linked with susceptibility to Crohn’s disease, a major type of inflammatory bowel disease (IBD). Although the inability to control intestinal bacteria is thought to underlie IBD, the role of Atg16L1 during extracellular intestinal bacterial infections has not been sufficiently examined and compared to the function of other IBD susceptibility genes such as Nod2, which encodes a cytosolic bacterial sensor. We find that Atg16L1 mutant mice are resistant to intestinal disease induced by the model bacterial pathogen Citrobacter rodentium. An Atg16L1 deficiency alters the intestinal environment to mediate an enhanced immune response that is dependent on monocytic cells, but this hyper-immune phenotype and protective effects are lost in Atg16L1/Nod2 double mutant mice. These results reveal an immuno-suppressive function of Atg16L1, and suggest that gene variants affecting the autophagy pathway may have been evolutionarily maintained to protect against certain life-threatening infections. PMID:23954160

  1. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection.

    PubMed

    Marchiando, Amanda M; Ramanan, Deepshika; Ding, Yi; Gomez, Luis E; Hubbard-Lucey, Vanessa M; Maurer, Katie; Wang, Caihong; Ziel, Joshua W; van Rooijen, Nico; Nuñez, Gabriel; Finlay, B Brett; Mysorekar, Indira U; Cadwell, Ken

    2013-08-14

    Polymorphisms in the essential autophagy gene Atg16L1 have been linked with susceptibility to Crohn's disease, a major type of inflammatory bowel disease (IBD). Although the inability to control intestinal bacteria is thought to underlie IBD, the role of Atg16L1 during extracellular intestinal bacterial infections has not been sufficiently examined and compared to the function of other IBD susceptibility genes, such as Nod2, which encodes a cytosolic bacterial sensor. We find that Atg16L1 mutant mice are resistant to intestinal disease induced by the model bacterial pathogen Citrobacter rodentium. An Atg16L1 deficiency alters the intestinal environment to mediate an enhanced immune response that is dependent on monocytic cells, but this hyperimmune phenotype and its protective effects are lost in Atg16L1/Nod2 double-mutant mice. These results reveal an immunosuppressive function of Atg16L1 and suggest that gene variants affecting the autophagy pathway may have been evolutionarily maintained to protect against certain life-threatening infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes.

    PubMed

    Bolt, Alicia M; Douglas, Randi M; Klimecki, Walter T

    2010-11-30

    Chronic exposure to inorganic arsenic is associated with diverse, complex diseases, making the identification of the mechanism underlying arsenic-induced toxicity a challenge. An increasing body of literature from epidemiological and in vitro studies has demonstrated that arsenic is an immunotoxicant, but the mechanism driving arsenic-induced immunotoxicity is not well established. We have previously demonstrated that in human lymphoblastoid cell lines (LCLs), arsenic-induced cell death is strongly associated with the induction of autophagy. In this study we utilized genome-wide gene expression analysis and functional assays to characterize arsenic-induced effects in seven LCLs that were exposed to an environmentally relevant, minimally cytotoxic, concentration of arsenite (0.75 μM) over an eight-day time course. Arsenic exposure resulted in inhibition of cellular growth and induction of autophagy (measured by expansion of acidic vesicles) over the eight-day exposure duration. Gene expression analysis revealed that arsenic exposure increased global lysosomal gene expression, which was associated with increased functional activity of the lysosome protease, cathepsin D. The arsenic-induced expansion of the lysosomal compartment in LCL represents a novel target that may offer insight into the immunotoxic effects of arsenic.

  3. Expression analysis of autophagy-related genes in the hard tick Haemaphysalis longicornis.

    PubMed

    Umemiya-Shirafuji, Rika; Galay, Remil Linggatong; Maeda, Hiroki; Kawano, Suguru; Tanaka, Tetsuya; Fukumoto, Shinya; Suzuki, Hiroshi; Tsuji, Naotoshi; Fujisaki, Kozo

    2014-03-17

    Ticks are obligate hematophagous arthropods with unique life cycles characterized by relatively short feeding periods and long non-feeding periods. They ambush a suitable host animal while staying in a pasture without any food source for up to several months. To understand the molecular mechanisms underlying their exceptional viability, we focused on autophagy, a proteolysis system via the lysosomes that is induced by starvation in eukaryotes. We hypothesized that starved conditions facilitate autophagy during host-seeking periods in the life cycle of the tick. To date, homologues of five autophagy-related (ATG) genes, ATG3, ATG4, ATG6, ATG8, and ATG12, have been identified from the hard tick Haemaphysalis longicornis. We showed previously that the mRNA levels of H. longicornis ATG (HlATG) genes were higher during the non-feeding period than the feeding period in the nymphal to adult stages. In addition, the expressions of HlATG3, HlATG4, HlATG8 and HlATG12 were highest in the egg compared to the other developmental stages in the same tick. In the present study, we used real-time polymerase chain reaction to examine the expression profiles of HlATG genes in the embryonic stage, larval to nymphal stages, and in internal organs of female ticks. We found that the HlATG genes were expressed at the highest levels in developing eggs on day 0 after oviposition. The levels of HlATG4 and HlATG8 were higher during the non-feeding period than the feeding period in the larval to nymphal stages. In the adults, the unfed condition appeared to be associated with the increased expression of HlATG genes in the fat body and midgut, which are nutrient storage organs; however, the expression patterns of HlATG genes varied in other organs. These results suggest that an up-regulation of HlATG genes is not always induced in different organs of unfed female ticks. Taken together, our findings raise the new possibility that HlATG genes play distinct biological roles in eggs, unfed ticks

  4. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer.

    PubMed

    Capela, Carlos; Dossou, Ange Dodji; Silva-Gomes, Rita; Sopoh, Ghislain Emmanuel; Makoutode, Michel; Menino, João Filipe; Fraga, Alexandra Gabriel; Cunha, Cristina; Carvalho, Agostinho; Rodrigues, Fernando; Pedrosa, Jorge

    2016-04-01

    Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection. Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form. Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype) and 300 healthy endemic controls. The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR), 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02). Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes.

  5. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer

    PubMed Central

    Capela, Carlos; Dossou, Ange Dodji; Silva-Gomes, Rita; Sopoh, Ghislain Emmanuel; Makoutode, Michel; Menino, João Filipe; Fraga, Alexandra Gabriel; Cunha, Cristina; Carvalho, Agostinho; Rodrigues, Fernando; Pedrosa, Jorge

    2016-01-01

    Introduction Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection. Objective Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form. Methods Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype) and 300 healthy endemic controls. Results The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR), 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02). Conclusion Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes. PMID:27128681

  6. Evolution of bopA Gene in Burkholderia: A Case of Convergent Evolution as a Mechanism for Bacterial Autophagy Evasion

    PubMed Central

    Yu, Dong; Yin, Zhiqiu; Jin, Yuan; Zhou, Jing; Ren, Hongguang; Hu, Mingda; Li, Beiping; Zhou, Wei

    2016-01-01

    Autophagy is an important defense mechanism targeting intracellular bacteria to restrict their survival and growth. On the other hand, several intracellular pathogens have developed an antiautophagy mechanism to facilitate their own replication or intracellular survival. Up to now, no information about the origin or evolution of the antiautophagic genes in bacteria is available. BopA is an effector protein secreted by Burkholderia pseudomallei via the type three secretion system, and it has been shown to play a pivotal role in their escape from autophagy.  The evolutionary origin of bopA was examined in this work. Sequence similarity searches for BopA showed that no homolog of BopA was detected in eukaryotes. However, eukaryotic linear motifs were detected in BopA. The phylogenetic tree of the BopA proteins in our analysis is congruent with the species phylogeny derived from housekeeping genes. Moreover, there was no obvious difference in GC content values of bopA gene and their respective genomes. Integrated information on the taxonomic distribution, phylogenetic relationships, and GC content of the bopA gene of Burkholderia revealed that this gene was acquired via convergent evolution, not from eukaryotic host through horizontal gene transfer (HGT) event. This work has, for the first time, characterized the evolutionary mechanism of bacterial evasion of autophagy. The results of this study clearly demonstrated the role of convergent evolution in the evolution of how bacteria evade autophagy. PMID:28018913

  7. Altered Autophagy-Associated Genes Expression in T Cells of Oral Lichen Planus Correlated with Clinical Features

    PubMed Central

    Tan, Ya-Qin; Zhang, Jing; Du, Ge-Fei; Lu, Rui; Chen, Guan-Ying; Zhou, Gang

    2016-01-01

    Oral lichen planus (OLP) is a T cell-mediated inflammatory autoimmune disease. Autophagy has emerged as a fundamental trafficking event in mediating T cell response, which plays crucial roles in innate and adaptive immunity. The present study mainly investigated the mRNA expression of autophagy-associated genes in peripheral blood T cells of OLP patients and evaluated correlations between their expression and the clinical features of OLP. Five differentially expressed autophagy-associated genes were identified by autophagy array. Quantitative real-time RT-PCR results confirmed that IGF1 expression in the peripheral blood T cells of OLP patients was significantly higher than that in controls, especially in female and middle-aged (30–50 years old) OLP patients. In addition, ATG9B mRNA levels were significantly lower in nonerosive OLP patients. However, no significant differences were found in the expression of HGS, ESR1, and SNCA between OLP patients and controls. Taken together, dysregulation of T cell autophagy may be involved in immune response of OLP and may be correlated with clinical patterns. PMID:26980945

  8. Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy.

    PubMed

    Li, Xinjian; Yu, Willie; Qian, Xu; Xia, Yan; Zheng, Yanhua; Lee, Jong-Ho; Li, Wei; Lyu, Jianxin; Rao, Ganesh; Zhang, Xiaochun; Qian, Chao-Nan; Rozen, Steven G; Jiang, Tao; Lu, Zhimin

    2017-06-01

    Overcoming metabolic stress is a critical step in tumor growth. Acetyl coenzyme A (acetyl-CoA) generated from glucose and acetate uptake is important for histone acetylation and gene expression. However, how acetyl-CoA is produced under nutritional stress is unclear. We demonstrate here that glucose deprivation results in AMP-activated protein kinase (AMPK)-mediated acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659, which exposed the nuclear localization signal of ACSS2 for importin α5 binding and nuclear translocation. In the nucleus, ACSS2 binds to transcription factor EB and translocates to lysosomal and autophagy gene promoter regions, where ACSS2 incorporates acetate generated from histone acetylation turnover to locally produce acetyl-CoA for histone H3 acetylation in these regions and promote lysosomal biogenesis, autophagy, cell survival, and brain tumorigenesis. In addition, ACSS2 S659 phosphorylation positively correlates with AMPK activity in glioma specimens and grades of glioma malignancy. These results underscore the significance of nuclear ACSS2-mediated histone acetylation in maintaining cell homeostasis and tumor development. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular Wilt fungus Verticillium dahliae.

    PubMed

    Zhou, Lei; Zhao, Jun; Guo, Wangzhen; Zhang, Tianzhen

    2013-08-20

    Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in foliar infection by many plant pathogenic fungi. However, the role of autophagy in soil-borne fungal physiology and infection biology is poorly understood. Here, we report the establishment of an Agrobacterium tumefaciens-mediated transformation (ATMT) system and its application to investigate two autophagy genes, VdATG8 and VdATG12, by means of targeted gene replacement and complementation. Transformation of a cotton-infecting Verticillium dahliae strain Vd8 with a novel binary vector pCOM led to the production of 384 geneticin-resistant transformants per 1 × 10(6) conidia. V. dahliae mutants lacking either VdATG8 or VdATG12 exhibited reduced conidiation and impaired aerial hyphae production. Disease development on Arabidopsis plants was slightly delayed when inoculated with VdATG8 or VdATG12 gene deletion mutants, compared with the wild-type and gene complemented strains. Surprisingly, in vitro inoculation with unimpaired roots revealed that the abilities of root invasion were not affected in gene deletion mutants. These results indicate that autophagy is necessary for aerial hyphae development and plant colonization but not for root infection in V. dahliae.

  10. The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes

    PubMed Central

    Yin, Yiran; Tang, Lian; Shi, Lei

    2017-01-01

    The expression of the metastasis suppressor gene KISS-1 in osteosarcoma cells during apoptosis and autophagy was evaluated. MG-63 osteosarcoma cells were transfected with either KISS-1 overexpression or KISS-1 knockdown expression vector in vitro, and compared with cell lines transfected with empty vector. After 12, 24, 48 and 72 h of cell culture, the cell proliferation was examined. The MTT method was used to detect apoptosis by flow cytometry, and the mRNA levels of apoptosis and autophagy markers caspase-3, Bcl-2, Bax, LC3 and Beclin1 were assessed by RT-PCR. Our results showed that cells in the control and low expression group kept proliferating during the cell culture period of 72 h, while the cells in the overexpression group progressively decreased in number. Also, the proliferation rate of the low expression group was significantly higher than that of the control group. The relative mRNA expression levels of caspase-3 and Bax mRNA in the control and low expression group showed no change (the expression was lowest in the low expression group). Moreover, the mRNA level of Bcl-2 increased in both cell groups. The mRNA expression levels of caspase-3 and Bax in the overexpression group were increased, and the level of Bcl-2 was reduced significantly. At the same time, the relative expression level of LC3 and Beclin1 mRNA in the control and low expression groups remained the same, and that of the overexpression group increased. The mRNA levels of LC3 and Beclin1 in the overexpression group were the highest, and that of the low expression group the lowest. The differences were statistically significant (P<0.05). Based on these results, we showed that KISS-1 inhibited the proliferation of osteosarcoma in vitro, probably by accelerating the processes of apoptosis and autophagy in the cells. PMID:28075440

  11. Cloning and characterization of the autophagy-related gene 6 from the hard tick, Haemaphysalis longicornis.

    PubMed

    Kawano, Suguru; Umemiya-Shirafuji, Rika; Boldbaatar, Damdinsuren; Matsuoka, Kenji; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-11-01

    Autophagy is the intracellular protein degradation process which is induced by starvation. Ticks have a unique tolerance for starvation, and it is possible that this tolerance is associated with their longevity. Previously, we isolated the homologues of four autophagy-related (ATG) genes in the hard tick, Haemaphysalis longicornis, suggesting that autophagy appeared to play an important role in tolerance for starvation as well as the development of ticks. In this study, the homologue of ATG6 was isolated from H. longicornis (HlATG6). HlATG6 mRNA expression was higher in the egg and unfed larval stages than in other stages and upregulated in ovaries during the blood-feeding period. Moreover, HlATG6-knockdowned ticks laid a few and poorly developed eggs that were white brown in color and not well surface-coated with wax. However, the expression of vitellogenin (Vg)-2, HlVg-2, in the fat body of HlATG6-knockdowned ticks was significantly upregulated. In addition, hemolymph had a deep brown color in HlATG6-knockdowned ticks on day 21 after engorgement and drop-off, indicating that the Vgs synthesized by the fat body and midgut are retained and accumulated in the hemolymph of HlATG6-knockdowned ticks, probably due to the downregulation of the Vg uptake capability of oocytes. Interestingly, HlATG6 knockdown provided non-significant influences on the expression of the Vg receptor (HlVgR) at oocytes, suggesting a non-significant depression of VgR-mediated endocytosis in the oocytes of HlATG6-knockdowned ticks. Therefore, it was interpreted that the repression of Vg uptake in the oocytes of HlATG6-knockdowned ticks may be involved in endocytic processes other than the receptor recognition of Vgs in oocytes.

  12. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti.

    PubMed

    Eng, Matthew W; van Zuylen, Madeleine N; Severson, David W

    2016-09-01

    The mosquito Aedes aegypti is the primary urban vector for dengue virus (DENV) worldwide. Insight into interactions occurring between host and pathogen is important in understanding what factors contribute to vector competence. However, many of the molecular mechanisms for vector competence remain unknown. Our previous global transcriptional analysis suggested that differential expression of apoptotic proteins is involved in determining refractoriness vs susceptibility to DENV-2 infection in Ae. aegypti females following a DENV-infected blood meal. To determine whether DENV-refractory Ae. aegypti showed more robust apoptosis upon infection, we compared numbers of apoptotic cells from midguts of refractory and susceptible strains and observed increased numbers of apoptotic cells in only the refractory strain upon DENV-2 infection. Thereafter, we manipulated apoptosis through dsRNA interference of the initiator caspase, Aedronc. Unexpectedly, dsAedronc-treated females showed both decreased frequency of disseminated infection and decreased virus titer in infected individuals. Insect caspases have also previously been identified as regulators of the cellular recycling process known as autophagy. We observed activation of autophagy in midgut and fat body tissues following a blood meal, as well as programmed activation of several apoptosis-related genes, including the effector caspase, Casps7. To determine whether autophagy was affected by caspase knockdown, we silenced Aedronc and Casps7, and observed reduced activation of autophagy upon silencing. Our results provide evidence that apoptosis-related genes are also involved in regulating autophagy, and that Aedronc may play an important role in DENV-2 infection success in Ae. aegypti, possibly through its regulation of autophagy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state.

    PubMed

    Hanning, Jennifer E; Saini, Harpreet K; Murray, Matthew J; Caffarel, Maria M; van Dongen, Stijn; Ward, Dawn; Barker, Emily M; Scarpini, Cinzia G; Groves, Ian J; Stanley, Margaret A; Enright, Anton J; Pett, Mark R; Coleman, Nicholas

    2013-11-01

    In cervical carcinomas, high-risk human papillomavirus (HR-HPV) may be integrated into host chromosomes or remain extra-chromosomal (episomal). We used the W12 cervical keratinocyte model to investigate the effects of HPV16 early gene depletion on in vitro cervical carcinogenesis pathways, particularly effects shared by cells with episomal versus integrated HPV16 DNA. Importantly, we were able to study the specific cellular consequences of viral gene depletion by using short interfering RNAs known not to cause phenotypic or transcriptional off-target effects in keratinocytes. We found that while cervical neoplastic progression in vitro was characterized by dynamic changes in HPV16 transcript levels, viral early gene expression was required for cell survival at all stages of carcinogenesis, regardless of viral physical state, levels of early gene expression or histology in organotypic tissue culture. Moreover, HPV16 early gene depletion induced changes in host gene expression that were common to both episome-containing and integrant-containing cells. In particular, we observed up-regulation of autophagy genes, associated with enrichment of senescence and innate immune-response pathways, including the senescence-associated secretory phenotype (SASP). In keeping with these observations, HPV16 early gene depletion induced autophagy in both episome-containing and integrant-containing W12 cells, as evidenced by the appearance of autophagosomes, punctate expression of the autophagy marker LC3, conversion of LC3B-I to LC3B-II, and reduced levels of the autophagy substrate p62. Consistent with the reported association between autophagy and senescence pathways, HPV16 early gene depletion induced expression of the senescence marker beta-galactosidase and increased secretion of the SASP-related protein IGFBP3. Together, these data indicate that depleting HR-HPV early genes would be of potential therapeutic benefit in all cervical carcinogenesis pathways, regardless of viral

  14. Insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling.

    PubMed

    Paula-Gomes, S; Gonçalves, D A P; Baviera, A M; Zanon, N M; Navegantes, L C C; Kettelhut, I C

    2013-11-01

    Insulin is an important regulator of the ubiquitin-proteasome system (UPS) and of lysosomal proteolysis in cardiac muscle. However, the role of insulin in the regulation of the muscle atrophy-related Ub-ligases atrogin-1 and MuRF1 as well as in autophagy, a major adaptive response to nutritional stress, in the heart has not been characterized. We report here that acute insulin deficiency in the cardiac muscle of rats induced by streptozotocin increased the expression of atrogin-1 and MuRF1 as well as LC3 and Gabarapl1, 2 autophagy-related genes. These effects were associated with decreased phosphorylation levels of Akt and its downstream target Foxo3a; this phenomenon is a well-known effect that permits the maintenance of Foxo in the nucleus to activate protein degradation by proteasomal and autophagic processes. The administration of insulin increased Akt and Foxo3a phosphorylation and suppressed the diabetes-induced expression of Ub-ligases and autophagy-related genes. In cultured neonatal rat cardiomyocytes, nutritional stress induced by serum/glucose deprivation strongly increased the expression of Ub-ligases and autophagy-related genes; this effect was inhibited by insulin. Furthermore, the addition of insulin in vitro prevented the decrease in Akt/Foxo signaling induced by nutritional stress. These findings demonstrate that insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes, most likely through the phosphorylation of Akt and the inactivation of Foxo3a. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Variants in autophagy-related genes and clinical characteristics in melanoma: a population-based study.

    PubMed

    White, Kirsten A M; Luo, Li; Thompson, Todd A; Torres, Salina; Hu, Chien-An Andy; Thomas, Nancy E; Lilyquist, Jenna; Anton-Culver, Hoda; Gruber, Stephen B; From, Lynn; Busam, Klaus J; Orlow, Irene; Kanetsky, Peter A; Marrett, Loraine D; Gallagher, Richard P; Sacchetto, Lidia; Rosso, Stefano; Dwyer, Terence; Cust, Anne E; Begg, Colin B; Berwick, Marianne

    2016-11-01

    Autophagy has been linked with melanoma risk and survival, but no polymorphisms in autophagy-related (ATG) genes have been investigated in relation to melanoma progression. We examined five single-nucleotide polymorphisms (SNPs) in three ATG genes (ATG5; ATG10; and ATG16L) with known or suspected impact on autophagic flux in an international population-based case-control study of melanoma. DNA from 911 melanoma patients was genotyped. An association was identified between (GG) (rs2241880) and earlier stage at diagnosis (OR 0.47; 95% Confidence Intervals (CI) = 0.27-0.81, P = 0.02) and a decrease in Breslow thickness (P = 0.03). The ATG16L heterozygous genotype (AG) (rs2241880) was associated with younger age at diagnosis (P = 0.02). Two SNPs in ATG5 were found to be associated with increased stage (rs2245214 CG, OR 1.47; 95% CI = 1.11-1.94, P = 0.03; rs510432 CC, OR 1.84; 95% CI = 1.12-3.02, P = 0.05). Finally, we identified inverse associations between ATG5 (GG rs2245214) and melanomas on the scalp or neck (OR 0.20, 95% CI = 0.05-0.86, P = 0.03); ATG10 (CC) (rs1864182) and brisk tumor infiltrating lymphocytes (TILs) (OR 0.42; 95% CI = 0.21-0.88, P = 0.02), and ATG5 (CC) (rs510432) with nonbrisk TILs (OR 0.55; 95% CI = 0.34-0.87, P = 0.01). Our data suggest that ATG SNPs might be differentially associated with specific host and tumor characteristics including age at diagnosis, TILs, and stage. These associations may be critical to understanding the role of autophagy in cancer, and further investigation will help characterize the contribution of these variants to melanoma progression.

  16. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes

    PubMed Central

    Møller, Andreas Buch; Kampmann, Ulla; Hedegaard, Jakob; Thorsen, Kasper; Nordentoft, Iver; Vendelbo, Mikkel Holm; Møller, Niels; Jessen, Niels

    2017-01-01

    This case-control study was designed to investigate the gene expression profile in skeletal muscle from severely insulin resistant patients with long-standing type 2 diabetes (T2D), and to determine associated signaling pathways. Gene expression profiles were examined by whole transcriptome, strand-specific RNA-sequencing and associated signaling was determined by western blot. We identified 117 differentially expressed gene transcripts. Ingenuity Pathway Analysis related these differences to abnormal muscle morphology and mitochondrial dysfunction. Despite a ~5-fold difference in plasma insulin, we did not observe any difference in phosphorylation of AKT or AS160, although other insulin-sensitive cascades, as mTOR/4EBP1, had retained their sensitivity. Autophagy-related gene (ATG14, RB1CC1/FIP200, GABARAPL1, SQSTM1/p62, and WIPI1) and protein (LC3BII, SQSTM1/p62 and ATG5) expression were decreased in skeletal muscle from the patients, and this was associated with a trend to increased phosphorylation of the insulin-sensitive regulatory transcription factor FOXO3a. These data show that gene expression is highly altered and related to mitochondrial dysfunction and abnormal morphology in skeletal muscle from severely insulin resistant patients with T2D, and that this is associated with decreased expression of autophagy-related genes and proteins. We speculate that prolonged treatment with high doses of insulin may suppress autophagy thereby generating a vicious cycle maintaining insulin resistance. PMID:28252104

  17. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis.

    PubMed

    Zhang, Yong; Goldman, Scott; Baerga, Rebecca; Zhao, Yun; Komatsu, Masaaki; Jin, Shengkan

    2009-11-24

    White adipocytes have a unique structure in which nearly the entire cell volume is occupied by one large lipid droplet. However, the molecular and cellular processes involved in the cytoplasmic remodeling necessary to create this structure are poorly defined. Autophagy is a membrane trafficking process leading to lysosomal degradation. Here, we investigated the effect of the deletion of an essential autophagy gene, autophagy-related gene 7 (atg7), on adipogenesis. A mouse model with a targeted deletion of atg7 in adipose tissue was generated. The mutant mice were slim and contained only 20% of the mass of white adipose tissue (WAT) found in wild-type mice. Interestingly, approximately 50% of the mutant white adipocytes were multilocular. The mutant white adipocytes were smaller with a larger volume of cytosol and contained more mitochondria. These cells exhibited altered fatty acid metabolism with increased rates of beta-oxidation and reduced rates of hormone-induced lipolysis. Consistently, the mutant mice had lower fed plasma concentrations of fatty acids and the levels decreased at faster rates upon insulin stimuli. These mutant mice exhibited increased insulin sensitivity. The mutant mice also exhibited markedly decreased plasma concentrations of leptin but not adiponectin, lower plasma concentrations of triglyceride and cholesterol, and they had higher levels of basal physical activity. Strikingly, these mutant mice were resistant to high-fat-diet-induced obesity. Taken together, our results indicate that atg7, and by inference autophagy, plays an important role in normal adipogenesis and that inhibition of autophagy by disrupting the atg7 gene has a unique anti-obesity and insulin sensitization effect.

  18. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis

    PubMed Central

    Zhang, Yong; Goldman, Scott; Baerga, Rebecca; Zhao, Yun; Komatsu, Masaaki; Jin, Shengkan

    2009-01-01

    White adipocytes have a unique structure in which nearly the entire cell volume is occupied by one large lipid droplet. However, the molecular and cellular processes involved in the cytoplasmic remodeling necessary to create this structure are poorly defined. Autophagy is a membrane trafficking process leading to lysosomal degradation. Here, we investigated the effect of the deletion of an essential autophagy gene, autophagy-related gene 7 (atg7), on adipogenesis. A mouse model with a targeted deletion of atg7 in adipose tissue was generated. The mutant mice were slim and contained only 20% of the mass of white adipose tissue (WAT) found in wild-type mice. Interestingly, ≈50% of the mutant white adipocytes were multilocular. The mutant white adipocytes were smaller with a larger volume of cytosol and contained more mitochondria. These cells exhibited altered fatty acid metabolism with increased rates of β-oxidation and reduced rates of hormone-induced lipolysis. Consistently, the mutant mice had lower fed plasma concentrations of fatty acids and the levels decreased at faster rates upon insulin stimuli. These mutant mice exhibited increased insulin sensitivity. The mutant mice also exhibited markedly decreased plasma concentrations of leptin but not adiponectin, lower plasma concentrations of triglyceride and cholesterol, and they had higher levels of basal physical activity. Strikingly, these mutant mice were resistant to high-fat-diet-induced obesity. Taken together, our results indicate that atg7, and by inference autophagy, plays an important role in normal adipogenesis and that inhibition of autophagy by disrupting the atg7 gene has a unique anti-obesity and insulin sensitization effect. PMID:19910529

  19. Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation From Latency by Preventing Virus-induced Systemic Inflammation

    PubMed Central

    Park, Sunmin; Buck, Michael D.; Desai, Chandni; Zhang, Xin; Loginicheva, Ekaterina; Martinez, Jennifer; Freeman, Michael L.; Saitoh, Tatsuya; Akira, Shizuo; Guan, Jun-Lin; He, You-Wen; Blackman, Marcia A.; Handley, Scott A.; Levine, Beth; Green, Douglas R.; Reese, Tiffany A.; Artyomov, Maxim N.; Virgin, Herbert W.

    2016-01-01

    SUMMARY Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine γ-herpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by Interferon-γ (IFN-γ). Using a Lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16L1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5-deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency. PMID:26764599

  20. Effects of NVP-BEZ235 on the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells.

    PubMed

    Yu, Yang; Yu, Xiaofeng; Ma, Jianxia; Tong, Yili; Yao, Jianfeng

    2016-07-01

    The phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway plays a significant role in colorectal adenocarcinoma. NVP-BEZ235 (dactolisib) is a novel dual inhibitor of PI3K/mTOR. The effects of NVP-BEZ235 in human colorectal adenocarcinoma are still unclear. In the present study, we aimed to explore the proliferation, migration, apoptosis and autophagy in HT-29 human colorectal adenocarcinoma cells. HT-29 human colorectal adenocarcinoma cells were treated with NVP-BEZ235 (0, 0.001, 0.01, 0.1, 1 and 3 µM) for 24 and 48 h, respectively. Cells were also treated with NVP-BEZ235 (0.1 µM), DDP (100, 300 and 1,000 µM), and NVP-BEZ235 (0.1 µM) combined with DDP (100, 300 and 1,000 µM) respectively, and cultured for 24 h after treatment. MTT assay was utilized to evaluate the effects of NVP-BEZ235 alone or NVP-BEZ235 combined with cis-diamminedichloroplatinum (DDP) on proliferation of HT-29 cells. Cell wound-scratch assay was used detect cell migration. In addition, expression of microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B and LC3B) in HT-29 cells was detected by immunofluorescence at 48 h after NVP-BEZ235 (1 µM) treatment. Expression of proteins involved in cell cycle and proliferation (p-Akt, p-mTOR and cyclin D1), apoptosis (cleaved caspase-3), and autophagy (cleaved LC3B and Beclin-1) were detected by western blot analysis. NVP-BEZ235 inhibited the proliferation and migration of HT-29 human colorectal adenocarcinoma cells. NVP-BEZ235 decreased protein expression of p-Akt, p-mTOR and cyclin D1, and increased protein expression of cleaved caspase-3, cleaved LC3B and Beclin-1 as the concentrations and the incubation time of NVP-BEZ235 increased. In addition, NVP-BEZ235 and DDP had synergic effects in inhibiting cell proliferation and migration. The expression of protein involved in apoptosis (cleaved caspase-3) was higher in drug combination group compared to the NVP-BEZ235 single treatment group. NVP-BEZ235

  1. Enhanced autophagy ameliorates cardiac proteinopathy

    PubMed Central

    Bhuiyan, Md. Shenuarin; Pattison, J. Scott; Osinska, Hanna; James, Jeanne; Gulick, James; McLendon, Patrick M.; Hill, Joseph A.; Sadoshima, Junichi; Robbins, Jeffrey

    2013-01-01

    Basal autophagy is a crucial mechanism in cellular homeostasis, underlying both normal cellular recycling and the clearance of damaged or misfolded proteins, organelles and aggregates. We showed here that enhanced levels of autophagy induced by either autophagic gene overexpression or voluntary exercise ameliorated desmin-related cardiomyopathy (DRC). To increase levels of basal autophagy, we generated an inducible Tg mouse expressing autophagy-related 7 (Atg7), a critical and rate-limiting autophagy protein. Hearts from these mice had enhanced autophagy, but normal morphology and function. We crossed these mice with CryABR120G mice, a model of DRC in which autophagy is significantly attenuated in the heart, to test the functional significance of autophagy activation in a proteotoxic model of heart failure. Sustained Atg7-induced autophagy in the CryABR120G hearts decreased interstitial fibrosis, ameliorated ventricular dysfunction, decreased cardiac hypertrophy, reduced intracellular aggregates and prolonged survival. To determine whether different methods of autophagy upregulation have additive or even synergistic benefits, we subjected the autophagy-deficient CryABR120G mice and the Atg7-crossed CryABR120G mice to voluntary exercise, which also upregulates autophagy. The entire exercised Atg7-crossed CryABR120G cohort survived to 7 months. These findings suggest that activating autophagy may be a viable therapeutic strategy for improving cardiac performance under proteotoxic conditions. PMID:24177425

  2. Enhanced autophagy ameliorates cardiac proteinopathy.

    PubMed

    Bhuiyan, Md Shenuarin; Pattison, J Scott; Osinska, Hanna; James, Jeanne; Gulick, James; McLendon, Patrick M; Hill, Joseph A; Sadoshima, Junichi; Robbins, Jeffrey

    2013-12-01

    Basal autophagy is a crucial mechanism in cellular homeostasis, underlying both normal cellular recycling and the clearance of damaged or misfolded proteins, organelles and aggregates. We showed here that enhanced levels of autophagy induced by either autophagic gene overexpression or voluntary exercise ameliorated desmin-related cardiomyopathy (DRC). To increase levels of basal autophagy, we generated an inducible Tg mouse expressing autophagy-related 7 (Atg7), a critical and rate-limiting autophagy protein. Hearts from these mice had enhanced autophagy, but normal morphology and function. We crossed these mice with CryABR120G mice, a model of DRC in which autophagy is significantly attenuated in the heart, to test the functional significance of autophagy activation in a proteotoxic model of heart failure. Sustained Atg7-induced autophagy in the CryABR120G hearts decreased interstitial fibrosis, ameliorated ventricular dysfunction, decreased cardiac hypertrophy, reduced intracellular aggregates and prolonged survival. To determine whether different methods of autophagy upregulation have additive or even synergistic benefits, we subjected the autophagy-deficient CryABR120G mice and the Atg7-crossed CryABR120G mice to voluntary exercise, which also upregulates autophagy. The entire exercised Atg7-crossed CryABR120G cohort survived to 7 months. These findings suggest that activating autophagy may be a viable therapeutic strategy for improving cardiac performance under proteotoxic conditions.

  3. Enhancing Autophagy with Drugs or Lung-directed Gene Therapy Reverses the Pathological Effects of Respiratory Epithelial Cell Proteinopathy*

    PubMed Central

    Hidvegi, Tunda; Stolz, Donna B.; Alcorn, John F.; Yousem, Samuel A.; Wang, Jieru; Leme, Adriana S.; Houghton, A. McGarry; Hale, Pamela; Ewing, Michael; Cai, Houming; Garchar, Evelyn Akpadock; Pastore, Nunzia; Annunziata, Patrizia; Kaminski, Naftali; Pilewski, Joseph; Shapiro, Steven D.; Pak, Stephen C.; Silverman, Gary A.; Brunetti-Pierri, Nicola; Perlmutter, David H.

    2015-01-01

    Recent studies have shown that autophagy mitigates the pathological effects of proteinopathies in the liver, heart, and skeletal muscle but this has not been investigated for proteinopathies that affect the lung. This may be due at least in part to the lack of an animal model robust enough for spontaneous pathological effects from proteinopathies even though several rare proteinopathies, surfactant protein A and C deficiencies, cause severe pulmonary fibrosis. In this report we show that the PiZ mouse, transgenic for the common misfolded variant α1-antitrypsin Z, is a model of respiratory epithelial cell proteinopathy with spontaneous pulmonary fibrosis. Intracellular accumulation of misfolded α1-antitrypsin Z in respiratory epithelial cells of the PiZ model resulted in activation of autophagy, leukocyte infiltration, and spontaneous pulmonary fibrosis severe enough to elicit functional restrictive deficits. Treatment with autophagy enhancer drugs or lung-directed gene transfer of TFEB, a master transcriptional activator of the autophagolysosomal system, reversed these proteotoxic consequences. We conclude that this mouse is an excellent model of respiratory epithelial proteinopathy with spontaneous pulmonary fibrosis and that autophagy is an important endogenous proteostasis mechanism and an attractive target for therapy. PMID:26494620

  4. Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: Utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment

    PubMed Central

    Corominas-Faja, Bruna; Urruticoechea, Ander; Martin-Castillo, Begoña; Menendez, Javier A.

    2012-01-01

    The autophagic process, which can facilitate breast cancer resistance to endocrine, cytotoxic, and molecularly targeted agents, is mainly regulated at the post-translational level. Although recent studies have suggested a possible transcriptome regulation of the autophagic genes, little is known about either the analysis tools that can be applied or the functional importance of putative candidate genes emerging from autophagy-dedicated transcriptome studies. In this context, we evaluated whether the constitutive activation of the autophagy machinery, as revealed by a transcriptome analysis using an autophagy-focused polymerase chain reaction (PCR) array, might allow for the identification of novel autophagy-specific biomarkers for intrinsic (primary) resistance to HER2-targeted therapies. Quantitative real-time PCR (qRT-PCR)-based profiling of 84 genes involved in autophagy revealed that, when compared to trastuzumab-sensitive SKBR3 cells, the positive regulator of autophagic vesicle formation ATG12 (autophagy-related gene 12) was the most differentially up-regulated gene in JIMT1 cells, a model of intrinsic cross-resistance to trastuzumab and other HER1/2-targeting drugs. An analysis of the transcriptional status of ATG12 in > 50 breast cancer cell lines suggested that the ATG12 transcript is commonly upregulated in trastuzumab-unresponsive HER2-overexpressing breast cancer cells. A lentiviral-delivered small hairpin RNA stable knockdown of the ATG12 gene fully suppressed the refractoriness of JIMT1 cells to trastuzumab, erlotinib, gefitinib, and lapatinib in vitro. ATG12 silencing significantly reduced JIMT1 tumor growth induced by subcutaneous injection in nude mice. Remarkably, the outgrowth of trastuzumab-unresponsive tumors was prevented completely when trastuzumab treatment was administered in an ATG12-silenced genetic background. We demonstrate for the first time the usefulness of low-density, autophagy-dedicated qRT-PCR-based platforms for monitoring

  5. Cloning and characterization of an autophagy-related gene, ATG12, from the three-host tick Haemaphysalis longicornis.

    PubMed

    Umemiya, Rika; Matsuo, Tomohide; Hatta, Takeshi; Sakakibara, Shin-ichi; Boldbaatar, Damdinsuren; Fujisaki, Kozo

    2007-09-01

    Ticks are obligate hematophagous ectoparasites with a life cycle characterized by a period of starvation; many ticks spend more than 95% of their life off the host. Autophagy, which is the process of bulk cytoplasmic degradation in eukaryotic cells, is induced by starvation and is essential for extension of the lifespan. Therefore, we hypothesized that autophagy also occurs in ticks; however, there has been no report on autophagy-related (ATG) genes in ticks. Here, we show the homologue of an ATG gene, ATG12, and its expression pattern from the nymphal to adult stages in the three-host tick Haemaphysalis longicornis. The sequence analysis showed that H. longicornis ATG12 (HlATG12) cDNA is 649bp, has a 411bp ORF coding for a 136-amino acid polypeptide with the carboxy-terminal glycine residue, and has a predicted molecular mass of 15.2kDa. Moreover, RT-PCR revealed that HlATG12 was downregulated at the beginning of feeding, upregulated after engorgement, and downregulated again after molting. The expression level of HlATG12 was highest at 3 months after engorgement. By immuno-electron microscopy, it was demonstrated that HlAtg12 was localized to the region around granule-like structures within midgut cells of unfed adults. In conclusion, HlATG12 might function during unfed and molting stages.

  6. Autophagy in autoimmune disease.

    PubMed

    Yang, Zhen; Goronzy, Jörg J; Weyand, Cornelia M

    2015-07-01

    Autophagy is a protective and life-sustaining process in which cytoplasmic components are packaged into double-membrane vesicles and targeted to lysosomes for degradation. This process of cellular self-digestion is an essential stress response and is cytoprotective by removing damaged organelles and proteins that threaten the cell's survival. Key outcomes include energy generation and recycling of metabolic precursors. In the immune system, autophagy regulates processes such as antigen uptake and presentation, removal of pathogens, survival of short- and long-lived immune cells, and cytokine-dependent inflammation. In all cases, a window of optimal autophagic activity appears critical to balance catabolic, reparative, and inflammation-inducing processes. Dysregulation of autophagosome formation and autophagic flux can have deleterious consequences, ranging from a failure to "clean house" to the induction of autophagy-induced cell death. Abnormalities in the autophagic pathway have been implicated in numerous autoimmune diseases. Genome-wide association studies have linked polymorphisms in autophagy-related genes with predisposition for tissue-destructive inflammatory disease, specifically in inflammatory bowel disease and systemic lupus erythematosus. Although the precise mechanisms by which dysfunctional autophagy renders the host susceptible to continuous inflammation remain unclear, autophagy's role in regulating the long-term survival of adaptive immune cells has recently surfaced as a defect in multiple sclerosis and rheumatoid arthritis. Efforts are underway to identify autophagy-inducing and autophagy-suppressing pharmacologic interventions that can be added to immunosuppressive therapy to improve outcomes of patients with autoimmune disease.

  7. Identification of Autophagy in the Pine Wood Nematode Bursaphelenchus xylophilus and the Molecular Characterization and Functional Analysis of Two Novel Autophagy-Related Genes, BxATG1 and BxATG8

    PubMed Central

    Deng, Li-Na; Wu, Xiao-Qin; Ye, Jian-Ren; Xue, Qi

    2016-01-01

    The pine wood nematode, Bursaphelenchus xylophilus, causes huge economic losses in pine forests, has a complex life cycle, and shows the remarkable ability to survive under unfavorable and changing environmental conditions. This ability may be related to autophagy, which is still poorly understood in B. xylophilus and no autophagy-related genes have been previously characterized. In this study, transmission electron microscopy was used to confirm that autophagy exists in B. xylophilus. The full-length cDNAs of BxATG1 and BxATG8 were first cloned from B. xylophilus, and BxATG1 and BxATG8 were characterized using bioinformatics methods. The expression pattern of the autophagy marker BxATG8 was investigated using in situ hybridization (ISH). BxATG8 was expressed in esophageal gland and hypodermal seam cells. We tested the effects of RNA interference (RNAi) on BxATG1 and BxATG8. The results revealed that BxATG1 and BxATG8 were likely associated with propagation of nematodes on fungal mats. This study confirmed the molecular characterization and functions of BxATG1 and BxATG8 in B. xylophilus and provided fundamental information between autophagy and B. xylophilus. PMID:26950119

  8. Single-cell RNA sequencing highlights transcription activity of autophagy-related genes during hematopoietic stem cell formation in mouse embryos.

    PubMed

    Hu, Yongfei; Huang, Yan; Yi, Ying; Wang, Hongwei; Liu, Bing; Yu, Jia; Wang, Dong

    2017-04-03

    Accumulating evidence has demonstrated that macroautophagy/autophagy plays an essential role in self-renewal and differentiation in embryonic hematopoiesis. Here, according to the RNA sequencing data sets of 5 population cells related to hematopoietic stem cell (HSC) formation during mouse embryogenesis (endothelial cells, PTPRC/CD45(-) and PTPRC/CD45(+) pre-HSCs in the E11 aorta-gonad-mesonephros (AGM) region, mature HSCs in E12 and E14 fetal liver), we explored the dynamic expression of mouse autophagy-related genes in this course at the single-cell level. Our results revealed that the transcription activity of autophagy-related genes had a substantial increase when endothelial cells (ECs) specified into pre-HSCs, and the upregulation of autophagy-essential genes correlated with reduced NOTCH signaling in pre-HSCs, suggesting the autophagy activity may be greatly enhanced during pre-HSC specification from endothelial precursors. In summary, our results presented strong evidence that autophagy plays a critical role in HSC emergence during mouse midgestation.

  9. Upregulation of autophagy genes and the unfolded protein response in human heart failure.

    PubMed

    Jensen, Brian C; Bultman, Scott J; Holley, Darcy; Tang, Wei; de Ridder, Gustaaf; Pizzo, Salvatore; Bowles, Dawn; Willis, Monte S

    2017-01-01

    The cellular environment of the mammalian heart constantly is challenged with environmental and intrinsic pathological insults, which affect the proper folding of proteins in heart failure. The effects of damaged or misfolded proteins on the cell can be profound and result in a process termed "proteotoxicity". While proteotoxicity is best known for its role in mediating the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, its role in human heart failure also has been recognized. The UPR involves three branches, including PERK, ATF6, and IRE1. In the presence of a misfolded protein, the GRP78 molecular chaperone that normally interacts with the receptors PERK, ATF6, and IRE-1 in the endoplasmic reticulum detaches to attempt to stabilize the protein. Mouse models of cardiac hypertrophy, ischemia, and heart failure demonstrate increases in activity of all three branches after removing GRP78 from these internal receptors. Recent studies have linked elevated PERK and CHOP in vitro with regulation of ion channels linked with human systolic heart failure. With this in mind, we specifically investigated ventricular myocardium from 10 patients with a history of conduction system defects or arrhythmias for expression of UPR and autophagy genes compared to myocardium from non-failing controls. We identified elevated Chop, Atf3, and Grp78 mRNA, along with XBP-1-regulated Cebpa mRNA, indicative of activation of the UPR in human heart failure with arrhythmias.

  10. Autophagy mediates the mitotic senescence transition.

    PubMed

    Young, Andrew R J; Narita, Masako; Ferreira, Manuela; Kirschner, Kristina; Sadaie, Mahito; Darot, Jeremy F J; Tavaré, Simon; Arakawa, Satoko; Shimizu, Shigeomi; Watt, Fiona M; Narita, Masashi

    2009-04-01

    As a stress response, senescence is a dynamic process involving multiple effector mechanisms whose combination determines the phenotypic quality. Here we identify autophagy as a new effector mechanism of senescence. Autophagy is activated during senescence and its activation is correlated with negative feedback in the PI3K-mammalian target of rapamycin (mTOR) pathway. A subset of autophagy-related genes are up-regulated during senescence: Overexpression of one of those genes, ULK3, induces autophagy and senescence. Furthermore, inhibition of autophagy delays the senescence phenotype, including senescence-associated secretion. Our data suggest that autophagy, and its consequent protein turnover, mediate the acquisition of the senescence phenotype.

  11. Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model.

    PubMed

    Li, Yuan-Yuan; Wang, Ting; Gao, Song; Xu, Guang-Mei; Niu, Hua; Huang, Rui; Wu, Shu-Yan

    2016-02-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is a facultative intracellular pathogen that can cause gastroenteritis and systemic infection in a wide range of hosts. Salmonella plasmid virulence gene spvB is closely related to bacterial virulence in different cells and animal models, and the encoded protein acts as an intracellular toxin required for ADP-ribosyl transferase activity. However, until now there is no report about the pathogenecity of spvB gene on zebrafish. Due to the outstanding advantages of zebrafish in analyzing bacteria-host interactions, a S. typhimurium infected zebrafish model was set up here to study the effect of spvB on autophagy and intestinal pathogenesis in vivo. We found that spvB gene could decrease the LD50 of S. typhimurium, and the strain carrying spvB promoted bacterial proliferation and aggravated the intestinal damage manifested by the narrowed intestines, fallen microvilli, blurred epithelium cell structure and infiltration of inflammatory cells. Results demonstrated the enhanced virulence induced by spvB in zebrafish. In spvB-mutant strain infected zebrafish, the levels of Lc3 turnover and Beclin1 expression increased, and the double-membraned autophagosome structures were observed, suggesting that spvB can inhibit autophagy activity. In summary, our results indicate that S. typhimurium strain containing spvB displays more virulence, triggering an increase in bacterial survival and intestine injuries by suppressing autophagy for the first time. This model provides novel insights into the role of Salmonella plasmid virulence gene in bacterial pathogenesis, and can help to further elucidate the relationship between bacteria and host immune response.

  12. Expression of autophagy and UPR genes in the developing brain during ethanol-sensitive and resistant periods.

    PubMed

    Alimov, Alexander; Wang, Haiping; Liu, Mei; Frank, Jacqueline A; Xu, Mei; Ou, Xiaoming; Luo, Jia

    2013-12-01

    Fetal alcohol spectrum disorders (FASD) results from ethanol exposure to the developing fetus and is the leading cause of mental retardation. FASD is associated with a broad range of neurobehavioral deficits which may be mediated by ethanol-induced neurodegeneration in the developing brain. An immature brain is more susceptible to ethanol neurotoxicity. We hypothesize that the enhanced sensitivity of the immature brain to ethanol is due to a limited capacity to alleviate cellular stress. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that subcutaneous injection of ethanol induced a wide-spread neuroapoptosis in postnatal day 4 (PD4) C57BL/6 mice, but had little effect on the brain of PD12 mice. We analyzed the expression profile of genes regulating apoptosis, and the pathways of ER stress response (also known as unfolded protein response, UPR) and autophagy during these ethanol-sensitive and resistant periods (PD4 versus PD12) using PCR microarray. The expression of pro-apoptotic genes, such as caspase-3, was much higher on PD4 than PD12; in contrast, the expression of genes that regulate UPR and autophagy, such as atf6, atg4, atg9, atg10, beclin1, bnip3, cebpb, ctsb, ctsd, ctss, grp78, ire1α, lamp, lc3 perk, pik3c3, and sqstm1 was significantly higher on PD12 than PD4. These results suggest that the vulnerability of the immature brain to ethanol could result from high expression of pro-apoptotic proteins and a deficiency in the stress responsive system, such as UPR and autophagy.

  13. Physiological roles of autophagy in plants: does plant autophagy have a pro-death function?

    PubMed

    Yoshimoto, Kohki

    2010-05-01

    Autophagy is an evolutionarily conserved intracellular process for vacuolar degradation of cytoplasmic components. Early morphological studies suggested that autophagy occurs in plant cells and predicted that autophagy has a variety of functions in plant growth and development. However, it is only since the identification of autophagy genes that the physiological roles of autophagy in plants have become apparent. Recent reverse genetic studies indicate that autophagy defects in higher plants result in early senescence and excessive immunity-related programmed cell death (PCD), irrespective of nutrient conditions, suggesting that plant autophagy has an important pro-survival function during these types of cell death. Further biochemical and pharmacological studies in combination with double mutant analyses revealed that excessive salicylic acid (SA) signaling is a major factor in autophagy-defective plant-dependent cell death and that the SA signal can induce autophagy. These results demonstrate a novel physiological function for plant autophagy that operates a negative feedback loop to modulate SA signaling.

  14. Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells.

    PubMed

    Hubbard-Lucey, Vanessa M; Shono, Yusuke; Maurer, Katie; West, Mallory L; Singer, Natalie V; Ziegler, Carly G K; Lezcano, Cecilia; Motta, Ana Carolina Fragoso; Schmid, Karin; Levi, Samuel M; Murphy, George F; Liu, Chen; Winkler, Jeffrey D; Amaravadi, Ravi K; Rogler, Gerhard; Dickinson, Anne M; Holler, Ernst; van den Brink, Marcel R M; Cadwell, Ken

    2014-10-16

    Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and costimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD.

  15. Autophagy gene Atg16l1 prevents lethal T cell alloreactivity mediated by dendritic cells

    PubMed Central

    Hubbard-Lucey, Vanessa M.; Shono, Yusuke; Maurer, Katie; West, Mallory L.; Singer, Natalie V.; Ziegler, Carly G. K.; Lezcano, Cecilia; Motta, Ana Carolina Fragoso; Schmid, Karin; Levi, Samuel M.; Murphy, George F.; Liu, Chen; Winkler, Jeffrey D.; Amaravadi, Ravi K.; Rogler, Gerhard; Dickinson, Anne M.; Holler, Ernst; van den Brink, Marcel RM; Cadwell, Ken

    2014-01-01

    SUMMARY Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and co-stimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD. PMID:25308334

  16. Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage.

    PubMed

    Lépine, Sandrine; Allegood, Jeremy C; Edmonds, Yvette; Milstien, Sheldon; Spiegel, Sarah

    2011-12-30

    Sphingosine 1-phosphate (S1P) and ceramide have been implicated in both autophagy and apoptosis. However, the roles of these sphingolipid metabolites in the links between these two processes are not completely understood. Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy (Lépine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., and Spiegel, S. (2011) Cell Death Differ. 18, 350-361). Surprisingly, however, treatment with doxorubicin, which by itself also induced autophagy, markedly reduced the extent of autophagy mediated by depletion of SPP1. Concomitantly, doxorubicin-induced apoptosis was greatly enhanced by down-regulation of SPP1. Autophagy and apoptosis seemed to be sequentially linked because inhibiting autophagy with 3-methyladenine also markedly attenuated apoptosis. Moreover, silencing Atg5 or the three sensors of the unfolded protein response, IRE1α, ATF6, and PKR-like eIF2α kinase (PERK), significantly decreased both autophagy and apoptosis. Doxorubicin stimulated calpain activity and Atg5 cleavage, which were significantly enhanced in SPP1-depleted cells. Inhibition or depletion of calpain not only suppressed Atg5 cleavage, it also markedly decreased the robust apoptosis induced by doxorubicin in SPP1-deficient cells. Importantly, doxorubicin also increased de novo synthesis of the pro-apoptotic sphingolipid metabolite ceramide. Elevation of ceramide in turn stimulated calpain; conversely, inhibiting ceramide formation suppressed Atg5 cleavage and apoptosis. Hence, doxorubicin switches protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated Atg5 cleavage.

  17. In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver.

    PubMed

    Donati, Alessio; Ventruti, Annamaria; Cavallini, Gabriella; Masini, Matilde; Vittorini, Simona; Chantret, Isabelle; Codogno, Patrice; Bergamini, Ettore

    2008-02-15

    Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis.

  18. In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver

    SciTech Connect

    Donati, Alessio; Ventruti, Annamaria; Cavallini, Gabriella; Masini, Matilde; Vittorini, Simona; Chantret, Isabelle; Codogno, Patrice; Bergamini, Ettore

    2008-02-15

    Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12 mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis.

  19. Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation ovarian cancer

    PubMed Central

    Delaney, Joe Ryan; Patel, Chandni B.; Willis, Katelyn McCabe; Haghighiabyaneh, Mina; Axelrod, Joshua; Tancioni, Isabelle; Lu, Dan; Bapat, Jaidev; Young, Shanique; Cadassou, Octavia; Bartakova, Alena; Sheth, Parthiv; Haft, Carley; Hui, Sandra; Saenz, Cheryl; Schlaepfer, David D.; Harismendy, Olivier; Stupack, Dwayne G.

    2017-01-01

    Identification of specific oncogenic gene changes has enabled the modern generation of targeted cancer therapeutics. In high-grade serous ovarian cancer (OV), the bulk of genetic changes is not somatic point mutations, but rather somatic copy-number alterations (SCNAs). The impact of SCNAs on tumour biology remains poorly understood. Here we build haploinsufficiency network analyses to identify which SCNA patterns are most disruptive in OV. Of all KEGG pathways (N=187), autophagy is the most significantly disrupted by coincident gene deletions. Compared with 20 other cancer types, OV is most severely disrupted in autophagy and in compensatory proteostasis pathways. Network analysis prioritizes MAP1LC3B (LC3) and BECN1 as most impactful. Knockdown of LC3 and BECN1 expression confers sensitivity to cells undergoing autophagic stress independent of platinum resistance status. The results support the use of pathway network tools to evaluate how the copy-number landscape of a tumour may guide therapy. PMID:28198375

  20. Haploinsufficiency networks identify targetable patterns of allelic deficiency in low mutation ovarian cancer.

    PubMed

    Delaney, Joe Ryan; Patel, Chandni B; Willis, Katelyn McCabe; Haghighiabyaneh, Mina; Axelrod, Joshua; Tancioni, Isabelle; Lu, Dan; Bapat, Jaidev; Young, Shanique; Cadassou, Octavia; Bartakova, Alena; Sheth, Parthiv; Haft, Carley; Hui, Sandra; Saenz, Cheryl; Schlaepfer, David D; Harismendy, Olivier; Stupack, Dwayne G

    2017-02-15

    Identification of specific oncogenic gene changes has enabled the modern generation of targeted cancer therapeutics. In high-grade serous ovarian cancer (OV), the bulk of genetic changes is not somatic point mutations, but rather somatic copy-number alterations (SCNAs). The impact of SCNAs on tumour biology remains poorly understood. Here we build haploinsufficiency network analyses to identify which SCNA patterns are most disruptive in OV. Of all KEGG pathways (N=187), autophagy is the most significantly disrupted by coincident gene deletions. Compared with 20 other cancer types, OV is most severely disrupted in autophagy and in compensatory proteostasis pathways. Network analysis prioritizes MAP1LC3B (LC3) and BECN1 as most impactful. Knockdown of LC3 and BECN1 expression confers sensitivity to cells undergoing autophagic stress independent of platinum resistance status. The results support the use of pathway network tools to evaluate how the copy-number landscape of a tumour may guide therapy.

  1. Secretory autophagy.

    PubMed

    Ponpuak, Marisa; Mandell, Michael A; Kimura, Tomonori; Chauhan, Santosh; Cleyrat, Cédric; Deretic, Vojo

    2015-08-01

    Autophagy, once viewed exclusively as a cytoplasmic auto-digestive process, has its less intuitive but biologically distinct non-degradative roles. One manifestation of these functions of the autophagic machinery is the process termed secretory autophagy. Secretory autophagy facilitates unconventional secretion of the cytosolic cargo such as leaderless cytosolic proteins, which unlike proteins endowed with the leader (N-terminal signal) peptides cannot enter the conventional secretory pathway normally operating via the endoplasmic reticulum and the Golgi apparatus. Secretory autophagy may also export more complex cytoplasmic cargo and help excrete particulate substrates. Autophagic machinery and autophagy as a process also affect conventional secretory pathways, including the constitutive and regulated secretion, as well as promote alternative routes for trafficking of integral membrane proteins to the plasma membrane. Thus, autophagy and autophagic factors are intimately intertwined at many levels with secretion and polarized sorting in eukaryotic cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Detection of Autophagy in Caenorhabditis elegans.

    PubMed

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-02-01

    Autophagy is a dynamic and catabolic process that results in the breakdown and recycling of cellular components through the autophagosomal-lysosomal pathway. Many autophagy genes identified in yeasts and mammals have orthologs in the nematode Caenorhabditis elegans. In recent years, gene inactivation by RNA interference (RNAi) and chromosomal mutations has been useful to probe the functions of autophagy in C. elegans, and a role for autophagy has been shown to contribute to multiple processes, such as the adaptation to stress, longevity, cell death, cell growth control, clearance of aggregation-prone proteins, degradation of P granules during embryogenesis, and apoptotic cell clearance. Here, we discuss some of these roles and describe methods that can be used to study autophagy in C. elegans. Specifically, we summarize how to visualize autophagy in embryos, larva, or adults, how to detect the lipidation of the ubiquitin-like modifier LGG-1 by western blot, and how to inactivate autophagy genes by RNAi.

  3. Detection of Autophagy in Caenorhabditis elegans

    PubMed Central

    Palmisano, Nicholas J.; Meléndez, Alicia

    2017-01-01

    Autophagy is a dynamic and catabolic process that results in the breakdown and recycling of cellular components through the autophagosomal-lysosomal pathway. Many autophagy genes identified in yeast and mammals have orthologs in C. elegans. In recent years, gene inactivation, by RNAi and/or chromosomal mutations, has been useful to probe the functions of autophagy in C. elegans, and a role for autophagy has been shown in multiple processes such as, the adaptation to stress, longevity, cell death, cell growth control, clearance of aggregate prone proteins, degradation of P granules during embryogenesis, and apoptotic cell clearance. Here we discuss some of these roles and describe methods that can be used to study autophagy in C. elegans. Specifically, we summarize how to visualize autophagy in embryos, larva, or adults, how to detect the lipidation of LGG-1 by western blot, and how to inactivate autophagy genes by RNAi. PMID:26729905

  4. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway.

    PubMed

    Bento, Carla F; Ashkenazi, Avraham; Jimenez-Sanchez, Maria; Rubinsztein, David C

    2016-06-09

    Forms of Parkinson's disease (PD) are associated with lysosomal and autophagic dysfunction. ATP13A2, which is mutated in some types of early-onset Parkinsonism, has been suggested as a regulator of the autophagy-lysosome pathway. However, little is known about the ATP13A2 effectors and how they regulate this pathway. Here we show that ATP13A2 depletion negatively regulates another PD-associated gene (SYT11) at both transcriptional and post-translational levels. Decreased SYT11 transcription is controlled by a mechanism dependent on MYCBP2-induced ubiquitination of TSC2, which leads to mTORC1 activation and decreased TFEB-mediated transcription of SYT11, while increased protein turnover is regulated by SYT11 ubiquitination and degradation. Both mechanisms account for a decrease in the levels of SYT11, which, in turn, induces lysosomal dysfunction and impaired degradation of autophagosomes. Thus, we propose that ATP13A2 and SYT11 form a new functional network in the regulation of the autophagy-lysosome pathway, which is likely to contribute to forms of PD-associated neurodegeneration.

  5. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.

    PubMed

    Maiese, Kenneth

    2017-01-01

    The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders

  6. Autophagy basics.

    PubMed

    Tanida, Isei

    2011-01-01

    Autophagy (macroautophagy) is a dynamic process for degradation of cytosolic components. Autophagy has intracellular anti-viral and anti-bacterial functions, and plays a role in the initiation of innate and adaptive immune system responses to viral and bacterial infections. Some viruses encode virulence factors for blocking autophagy, whereas others utilize some autophagy components for their intracellular growth or cellular budding. The "core" autophagy-related (Atg) complexes in mammals are ULK1 protein kinase, Atg9-WIPI-1 and Vps34-beclin1 class III PI3-kinase complexes, and the Atg12 and LC3 conjugation systems. In addition, PI(3)-binding proteins, PI3-phosphatases, and Rab proteins contribute to autophagy. The autophagy process consists of continuous dynamic membrane formation and fusion. In this review, the relationships between these Atg complexes and each process are described. Finally, the critical points for monitoring autophagy, including the use of GFP-LC3 and GFP-Atg5, are discussed. © 2010 The Societies and Blackwell Publishing Asia Pty Ltd.

  7. Comparative gene identification-58 (CGI-58) promotes autophagy as a putative lysophosphatidylglycerol acyltransferase.

    PubMed

    Zhang, Jun; Xu, Dan; Nie, Jia; Han, Ruili; Zhai, Yonggong; Shi, Yuguang

    2014-11-21

    CGI-58 is a lipid droplet-associated protein that, when mutated, causes Chanarin-Dorfman syndrome in humans, which is characterized by excessive storage of triglyceride in various tissues. However, the molecular mechanisms underlying the defect remain elusive. CGI-58 was previously reported to catalyze the resynthesis of phosphatidic acid as a lysophosphatidic acid acyltransferase. In addition to triglyceride, phosphatidic acid is also used a substrate for the synthesis of various mitochondrial phospholipids. In this report, we investigated the propensity of CGI-58 in the remodeling of various phospholipids. We found that the recombinant CGI-58 overexpressed in mammalian cells or purified from Sf9 insect cells catalyzed efficiently the reacylation of lysophosphatidylglycerol to phosphatidylglycerol (PG), which requires acyl-CoA as the acyl donor. In contrast, the recombinant CGI-58 was devoid of acyltransferase activity toward other lysophospholipids. Accordingly, overexpression and knockdown of CGI-58 adversely affected the endogenous PG level in C2C12 cells. PG is a substrate for the synthesis of cardiolipin, which is required for mitochondrial oxidative phosphorylation and mitophagy. Consequently, overexpression and knockdown of CGI-58 adversely affected autophagy and mitophagy in C2C12 cells. In support for a key role of CGI-58 in mitophagy, overexpression of CGI-58 significantly stimulated mitochondrial fission and translocation of PINK1 to mitochondria, key steps involved in mitophagy. Furthermore, overexpression of CGI-58 promoted mitophagic initiation through activation of 5'-AMP-activated protein kinase and inhibition of mTORC1 mammalian target of rapamycin complex 1 signaling, the positive and negative regulators of autophagy, respectively. Together, these findings identified novel molecular mechanisms by which CGI-58 regulates lipid homeostasis, because defective autophagy is implicated in dyslipidemia and fatty liver diseases. © 2014 by The American

  8. Autophagy in cancer: good, bad, or both?

    PubMed

    Hippert, Melanie M; O'Toole, Patrick S; Thorburn, Andrew

    2006-10-01

    Autophagy has been recognized as an important cellular process for at least 50 years; however, it is only with the recent identification of key regulators of autophagy (Atg genes) that we have begun a mechanistic exploration of its importance in cancer. Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy. However, the role of autophagy in these processes is complicated and may, depending on the circumstances, have diametrically opposite consequences for the tumor. In this article, we discuss recent discoveries regarding autophagy in cancer.

  9. Identification of Autophagy-Related Genes and Their Regulatory miRNAs Associated with Celiac Disease in Children.

    PubMed

    Comincini, Sergio; Manai, Federico; Meazza, Cristina; Pagani, Sara; Martinelli, Carolina; Pasqua, Noemi; Pelizzo, Gloria; Biggiogera, Marco; Bozzola, Mauro

    2017-02-12

    Celiac disease (CD) is a severe genetic autoimmune disorder, affecting about one in 100 people, where the ingestion of gluten leads to damage in the small intestine. Diagnosing CD is quite complex and requires blood tests and intestinal biopsy examinations. Controversy exists regarding making the diagnosis without biopsy, due to the large spectrum of manifesting symptoms; furthermore, small-intestinal gastroscopy examinations have a relatively complex management in the pediatric population. To identify novel molecular markers useful to increase the sensitivity and specificity in the diagnosis of pediatric CD patients, the expression levels of two key autophagy executor genes (ATG7 and BECN1) and their regulatory validated miRNAs (miR-17 and miR-30a, respectively) were analyzed by relative quantitative real-time-PCR on a cohort of confirmed CD patients compared to age-related controls. Among the investigated targets, the non-parametric Mann-Whitney U test and ROC analysis indicated the highest significant association of BECN1 with CD status in the blood, while in intestinal biopsies, all of the investigated sequences were positively associated with CD diagnosis. Nomogram-based analysis showed nearly opposite expression trends in blood compared to intestine tissue, while hierarchical clustering dendrograms enabled identifying CD and control subgroups based on specific genes and miRNA expression signatures. Next, using an established in vitro approach, through digested gliadin administration in Caco-2 cells, we also highlighted that the modulation of miR-17 endogenous levels using enriched exosomes increased the intracellular autophagosome content, thereby altering the autophagic status. Altogether, these results highlighted novel molecular markers that might be useful to increase the accuracy in CD diagnosis and in molecular-based stratification of the patients, further reinforcing the functional involvement of the regulation of the autophagy process within a

  10. Identification of Autophagy-Related Genes and Their Regulatory miRNAs Associated with Celiac Disease in Children

    PubMed Central

    Comincini, Sergio; Manai, Federico; Meazza, Cristina; Pagani, Sara; Martinelli, Carolina; Pasqua, Noemi; Pelizzo, Gloria; Biggiogera, Marco; Bozzola, Mauro

    2017-01-01

    Celiac disease (CD) is a severe genetic autoimmune disorder, affecting about one in 100 people, where the ingestion of gluten leads to damage in the small intestine. Diagnosing CD is quite complex and requires blood tests and intestinal biopsy examinations. Controversy exists regarding making the diagnosis without biopsy, due to the large spectrum of manifesting symptoms; furthermore, small-intestinal gastroscopy examinations have a relatively complex management in the pediatric population. To identify novel molecular markers useful to increase the sensitivity and specificity in the diagnosis of pediatric CD patients, the expression levels of two key autophagy executor genes (ATG7 and BECN1) and their regulatory validated miRNAs (miR-17 and miR-30a, respectively) were analyzed by relative quantitative real-time-PCR on a cohort of confirmed CD patients compared to age-related controls. Among the investigated targets, the non-parametric Mann–Whitney U test and ROC analysis indicated the highest significant association of BECN1 with CD status in the blood, while in intestinal biopsies, all of the investigated sequences were positively associated with CD diagnosis. Nomogram-based analysis showed nearly opposite expression trends in blood compared to intestine tissue, while hierarchical clustering dendrograms enabled identifying CD and control subgroups based on specific genes and miRNA expression signatures. Next, using an established in vitro approach, through digested gliadin administration in Caco-2 cells, we also highlighted that the modulation of miR-17 endogenous levels using enriched exosomes increased the intracellular autophagosome content, thereby altering the autophagic status. Altogether, these results highlighted novel molecular markers that might be useful to increase the accuracy in CD diagnosis and in molecular-based stratification of the patients, further reinforcing the functional involvement of the regulation of the autophagy process within a

  11. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.

    PubMed

    Sun, Qinwei; Yang, Yang; Li, Xi; He, Bin; Jia, Yimin; Zhang, Nana; Zhao, Ruqian

    2016-08-01

    Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (P<0.05) enhanced GR activation indicated by higher ratio of GR phosphorylation. Out of 17 autophagy-related genes determined, 8 was significantly (P<0.05) up-regulated in FD group, which includes ATG2b, ATG3, ATG4c, ATG5, ATG10, ATG12, ATG13 and ATG14. Meanwhile, 4 out of 7 circadian-related genes detected, Clock, Cry1, Cry2 and Per2, were significantly (P<0.05) up-regulated. The protein content of autophagy markers, LC3A and LC3B, was also increased significantly (P<0.05). ChIP assay showed that FD promoted (P<0.05) GR binding to the promoter sequence of ATG3 and Per2. Moreover, MeDIP analysis demonstrated significant (P<0.05) hypomethylation in the promoter sequence of ATG12, ATG13 and Per2 genes. Together, we speculate that FD increases the transcription of autophagy- and circadian-related genes through, at least partly, GR-mediated pathway. Our results provide a basis for future investigations into the intracellular regulatory network in response to folate deficiency.

  12. Cloning, expression analysis, and RNA interference study of a HORMA domain containing autophagy-related gene 13 (ATG13) from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Lee, Jung Hee; Jo, Yong Hun; Patnaik, Bharat Bhusan; Park, Ki Beom; Tindwa, Hamisi; Seo, Gi Won; Chandrasekar, Raman; Lee, Yong Seok; Han, Yeon Soo

    2015-01-01

    Autophagy is a process that is necessary during starvation, as it replenishes metabolic precursors by eliminating damaged organelles. Autophagy is mediated by more than 35 autophagy-related (Atg) proteins that participate in the nucleation, elongation, and curving of the autophagosome membrane. In a pursuit to address the role of autophagy during development and immune resistance of the mealworm beetle, Tenebrio molitor, we screened ATG gene sequences from the whole-larva transcriptome database. We identified a homolog of ATG13 gene in T. molitor (designated as TmATG13) that comprises a cDNA of 1176 bp open reading frame (ORF) encoding a protein of 391 amino acids. Analyses of the structure-specific features of TmAtg13 showed an intrinsically disordered middle and C-terminal region that was rich in regulatory phosphorylation sites. The N-terminal Atg13 domain had a HORMA (Hop1, Rev7, and Mad2) fold containing amino acid residues conserved across the Atg13 insect orthologs. A quantitative reverse-transcription-polymerase chain reaction analysis revealed that TmATG13 was expressed ubiquitously during all developmental stages of the insect. TmATG13 mRNA expression was high in the fat body and gut of the larval and adult stages of the insect. The TmATG13 transcripts were expressed at a high level until 6 days of ovarian development, followed by a significant decline. Silencing of ATG13 transcripts in T. molitor larvae showed a reduced survivability of 39 and 38% in response to Escherichia coli and Staphylococcus aureus infection. Furthermore, the role of TmAtg13 in initiating autophagy as a part of the host cell autophagic complex of the host cells against the intracellular pathogen Listeria monocytogenes is currently under study and will be critical to unfold the structure-function relationships.

  13. Cloning, expression analysis, and RNA interference study of a HORMA domain containing autophagy-related gene 13 (ATG13) from the coleopteran beetle, Tenebrio molitor

    PubMed Central

    Lee, Jung Hee; Jo, Yong Hun; Patnaik, Bharat Bhusan; Park, Ki Beom; Tindwa, Hamisi; Seo, Gi Won; Chandrasekar, Raman; Lee, Yong Seok; Han, Yeon Soo

    2015-01-01

    Autophagy is a process that is necessary during starvation, as it replenishes metabolic precursors by eliminating damaged organelles. Autophagy is mediated by more than 35 autophagy-related (Atg) proteins that participate in the nucleation, elongation, and curving of the autophagosome membrane. In a pursuit to address the role of autophagy during development and immune resistance of the mealworm beetle, Tenebrio molitor, we screened ATG gene sequences from the whole-larva transcriptome database. We identified a homolog of ATG13 gene in T. molitor (designated as TmATG13) that comprises a cDNA of 1176 bp open reading frame (ORF) encoding a protein of 391 amino acids. Analyses of the structure-specific features of TmAtg13 showed an intrinsically disordered middle and C-terminal region that was rich in regulatory phosphorylation sites. The N-terminal Atg13 domain had a HORMA (Hop1, Rev7, and Mad2) fold containing amino acid residues conserved across the Atg13 insect orthologs. A quantitative reverse-transcription-polymerase chain reaction analysis revealed that TmATG13 was expressed ubiquitously during all developmental stages of the insect. TmATG13 mRNA expression was high in the fat body and gut of the larval and adult stages of the insect. The TmATG13 transcripts were expressed at a high level until 6 days of ovarian development, followed by a significant decline. Silencing of ATG13 transcripts in T. molitor larvae showed a reduced survivability of 39 and 38% in response to Escherichia coli and Staphylococcus aureus infection. Furthermore, the role of TmAtg13 in initiating autophagy as a part of the host cell autophagic complex of the host cells against the intracellular pathogen Listeria monocytogenes is currently under study and will be critical to unfold the structure-function relationships. PMID:26136688

  14. Current questions and possible controversies in autophagy

    PubMed Central

    Lindqvist, L M; Simon, A K; Baehrecke, E H

    2015-01-01

    Interest in autophagy has exploded over the last decade, with publications highlighting crosstalk with several other cellular processes including secretion, endocytosis, and cell suicide pathways including apoptosis. Autophagy proteins have also been implicated in other cellular processes independently of their roles in autophagy, creating complexities in the interpretation of autophagy (Atg) mutant gene data. Interestingly, this self-eating process is a survival mechanism that can also promote cell death, but when and how autophagy may ‘switch’ its function is still under debate. Indeed, there are currently many models of how autophagy actually influences cell death. In this review, we highlight some outstanding questions and possible controversies in the autophagy field. PMID:26682061

  15. Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor.

    PubMed

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Lee, Yong Seok; Kang, Sang Sun; Han, Yeon Soo

    2015-07-01

    Macroautophagy (hereinafter called autophagy) is a highly regulated process used by eukaryotic cells to digest portions of the cytoplasm that remodels and recycles nutrients and disposes of unwanted cytoplasmic constituents. Currently 36 autophagy-related genes (ATG) and their homologs have been characterized in yeast and higher eukaryotes, including insects. In the present study, we identified and functionally characterized the immune function of an ATG8 homolog in a coleopteran insect, Tenebrio molitor (TmATG8). The cDNA of TmATG8 comprises of an ORF of 363 bp that encodes a protein of 120 amino acid residues. TmATG8 transcripts are detected in all the developmental stages analyzed. TmAtg8 protein contains a highly conserved C-terminal glycine residue (Gly116) and shows high amino acid sequence identity (98%) to its Tribolium castaneum homolog, TcAtg8. Loss of function of TmATG8 by RNAi led to a significant increase in the mortality rates of T. molitor larvae against Listeria monocytogenes. Unlike dsEGFP-treated control larvae, TmATG8-silenced larvae failed to turn-on autophagy in hemocytes after injection with L. monocytogenes. These data suggest that TmATG8 play a role in mediating autophagy-based clearance of Listeria in T. molitor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Autophagy inhibitors.

    PubMed

    Pasquier, Benoit

    2016-03-01

    Autophagy is a lysosome-dependent mechanism of intracellular degradation. The cellular and molecular mechanisms underlying this process are highly complex and involve multiple proteins, including the kinases ULK1 and Vps34. The main function of autophagy is the maintenance of cell survival when modifications occur in the cellular environment. During the past decade, extensive studies have greatly improved our knowledge and autophagy has exploded as a research field. This process is now widely implicated in pathophysiological processes such as cancer, metabolic, and neurodegenerative disorders, making it an attractive target for drug discovery. In this review, we will summarize the different types of inhibitors that affect the autophagy machinery and provide some potential therapeutic perspectives.

  17. Autophagy Negatively Regulates Transmissible Gastroenteritis Virus Replication.

    PubMed

    Guo, Longjun; Yu, Haidong; Gu, Weihong; Luo, Xiaolei; Li, Ren; Zhang, Jian; Xu, Yunfei; Yang, Lijun; Shen, Nan; Feng, Li; Wang, Yue

    2016-03-31

    Autophagy is an evolutionarily ancient pathway that has been shown to be important in the innate immune defense against several viruses. However, little is known about the regulatory role of autophagy in transmissible gastroenteritis virus (TGEV) replication. In this study, we found that TGEV infection increased the number of autophagosome-like double- and single-membrane vesicles in the cytoplasm of host cells, a phenomenon that is known to be related to autophagy. In addition, virus replication was required for the increased amount of the autophagosome marker protein LC3-II. Autophagic flux occurred in TGEV-infected cells, suggesting that TGEV infection triggered a complete autophagic response. When autophagy was pharmacologically inhibited by wortmannin or LY294002, TGEV replication increased. The increase in virus yield via autophagy inhibition was further confirmed by the use of siRNA duplexes, through which three proteins required for autophagy were depleted. Furthermore, TGEV replication was inhibited when autophagy was activated by rapamycin. The antiviral response of autophagy was confirmed by using siRNA to reduce the expression of gene p300, which otherwise inhibits autophagy. Together, the results indicate that TGEV infection activates autophagy and that autophagy then inhibits further TGEV replication.

  18. Allicin induces anti-human liver cancer cells through the p53 gene modulating apoptosis and autophagy.

    PubMed

    Chu, Yung-Lin; Ho, Chi-Tang; Chung, Jing-Gung; Raghu, Rajasekaran; Lo, Yi-Chen; Sheen, Lee-Yan

    2013-10-16

    Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer globally and ranks first among the cancer-related mortalities in Taiwan. This study aims to understand the modes of cell death mechanism induced by allicin, a major phytochemical of crushed garlic, in human hepatoma cells. Our earlier study indicated that allicin induced autophagic cell death in human HCC Hep G2 (p53(wild type)) cells, whereas in the present study, allicin induced apoptotic cell death through caspase-dependent and caspase-independent pathways by reactive oxygen species (ROS) overproduction in human HCC Hep 3B (p53(mutation)) cells. To gain insight into the cell death mechanism in p53 knocked down Hep G2, we silenced the p53 gene using siRNA-mediated silencing. Allicin treatment induced apoptotic cell death in p53 knocked down Hep G2 cells similar to that of Hep 3B cells. These results suggest that allicin induced cell death in human hepatoma cells through either autophagy or apoptosis and might be a potential novel complementary gene therapeutic agent for the treatment of apoptosis-resistant cancer cells.

  19. Feedback regulation between autophagy and PKA

    PubMed Central

    Torres-Quiroz, Francisco; Filteau, Marie; Landry, Christian R

    2015-01-01

    Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA. PMID:26046386

  20. Inducing autophagy

    PubMed Central

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S

    2014-01-01

    Autophagy is a lysosomal-mediated catabolic process, which through degradation of different cytoplasmic components aids in maintaining cellular homeostasis and survival during exposure to extra- or intracellular stresses. Ammonia is a potential toxic and stress-inducing byproduct of glutamine catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR activity was not affected, but indicated increased MAPK3 activity, regulation of proteins involved in Rho signal transduction, and a novel phosphorylation motif, serine-proline-threonine (SPT), which could be linked to cytoskeleton-associated proteins. MAPK3 could not be identified as the primary driver of ammonia-induced autophagy but instead the data suggested an upregulation of AMPK and the unfolded protein response (UPR), which might link ammonia to autophagy induction. Support of UPR induction was further obtained from the finding of increased protein levels of the ER stress markers DDIT3/CHOP and HSPA5 during ammonia treatment. The large-scale data set presented here comprises extensive high-quality quantitative information on phosphoprotein regulation in response to 2 very different autophagy inducers and should therefore be considered a general resource for the community. PMID:24300666

  1. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy

    PubMed Central

    Wang, Yu; Cai, Shuyu; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie

    2015-01-01

    Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomato tolerance to drought stress, in part through its positive role in induction of autophagy under drought stress. HsfA1a expression was induced by drought stress. Virus-induced HsfA1a gene silencing reduced while its overexpression increased plant drought tolerance based on both symptoms and membrane integrity. HsfA1a-silenced plants were more sensitive to endogenous ABA-mediated stomatal closure, while its overexpression lines were resistant under drought stress, indicating that phytohormone ABA did not play a major role in HsfA1a-induced drought tolerance. On the other hand, HsfA1a-silenced plants increased while its overexpression decreased the levels of insoluble proteins which were highly ubiquitinated under drought stress. Furthermore, drought stress induced numerous ATGs expression and autophagosome formation in wild-type plants. The expression of ATG10 and ATG18f, and the formation of autophagosomes were compromised in HsfA1a-silenced plants but were enhanced in HsfA1a-overexpressing plants. Both electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a bound to ATG10 and ATG18f gene promoters. Silencing of ATG10 and ATG18f reduced HsfA1a-induced drought tolerance and autophagosome formation in plants overexpressing HsfA1a. These results demonstrate that HsfA1a induces drought tolerance by activating ATG genes and inducing autophagy, which may promote plant survival by degrading ubiquitinated protein aggregates under drought stress. PMID:26649940

  2. Basal Autophagy Is Required for Herpes simplex Virus-2 Infection

    PubMed Central

    Yakoub, Abraam M.; Shukla, Deepak

    2015-01-01

    Autophagy is a conserved catabolic process of the cell, which plays an important role in regulating plethora of infections. The role of autophagy in Herpes simplex virus-2 (HSV-2) infection is unknown. Here, we found that HSV-2 does not allow induction of an autophagic response to infection, but maintains basal autophagy levels mostly unchanged during productive infection. Thus, we investigated the importance of basal autophagy for HSV-2 infection, using pharmacological autophagy suppression or cells genetically deficient in an autophagy-essential gene (ATG5). Interference with basal autophagy flux in cells significantly reduced viral replication and diminished the infection. These results indicate that basal autophagy plays an indispensable role required for a productive infection. Importantly, this study draws a sharp distinction between induced and basal autophagy, where the former acts as a viral clearance mechanism abrogating infection, while the latter supports infection. PMID:26248741

  3. Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer’s Disease

    PubMed Central

    Ułamek-Kozioł, Marzena; Kocki, Janusz; Bogucka-Kocka, Anna; Petniak, Alicja; Gil-Kulik, Paulina; Januszewski, Sławomir; Bogucki, Jacek; Jabłoński, Mirosław; Furmaga-Jabłońska, Wanda; Brzozowska, Judyta; Czuczwar, Stanisław J.; Pluta, Ryszard

    2016-01-01

    Ischemic brain damage is a pathological incident that is often linked with medial temporal lobe cortex injury and finally its atrophy. Post-ischemic brain injury associates with poor prognosis since neurons of selectively vulnerable ischemic brain areas are disappearing by apoptotic program of neuronal death. Autophagy has been considered, after brain ischemia, as a guardian against neurodegeneration. Consequently, we have examined changes in autophagy (BECN 1), mitophagy (BNIP 3), and apoptotic (caspase 3) genes in the medial temporal lobe cortex with the use of quantitative reverse-transcriptase PCR following transient 10-min global brain ischemia in rats with survival 2, 7, and 30 days. The intense significant overexpression of BECN 1 gene was noted on the 2nd day, while on days 7–30 the expression of this gene was still upregulated. BNIP 3 gene was downregulated on the 2nd day, but on days 7–30 post-ischemia, there was a significant reverse tendency. Caspase 3 gene, associated with apoptotic neuronal death, was induced in the same way as BNIP 3 gene after brain ischemia. Thus, the demonstrated changes indicate that the considerable dysregulation of expression of BECN 1, BNIP 3, and caspase 3 genes may be connected with a response of neuronal cells in medial temporal lobe cortex to transient complete brain ischemia. PMID:27472881

  4. Molecular cloning and characterization of two novel autophagy-related genes belonging to the ATG8 family from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Flores Fernández, José Miguel; Gutiérrez Ortega, Abel; Rosario Cruz, Rodrigo; Padilla Camberos, Eduardo; Alvarez, Angel H; Martínez Velázquez, Moisés

    2014-12-01

    Rhipicephalus (Boophilus) microplus is an obligate haematophagous arthropod and the major problem for cattle industry due to economic losses it causes. The parasite shows a remarkable adaptability to changing environmental conditions as well as an exceptional ability to survive long-term starvation. This ability has been related to a process of intracellular protein degradation called autophagy. This process in ticks is still poorly understood and only few autophagy-related (ATG) genes have been characterized. The aim of the present study was to examine the ESTs database, BmiGI, of R. microplus searching for ATG homologues. We predicted five putative ATG genes, ATG3, ATG4, ATG6 and two ATG8s. Further characterization led to the identification of RmATG8a and RmATG8b, homologues of GABARAP and MAP1LC3, respectively, and both of them belonging to the ATG8 family. PCR analyses showed that the expression level of RmATG8a and RmATG8b was higher in egg and larval stages when compared to ovary and midgut from adult ticks. This up-regulation coincides with the period in which ticks are in a starvation state, suggesting that autophagy is active in R. microplus.

  5. Molecular characterization and expression analysis of three novel autophagy-related genes from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Flores Fernández, José Miguel; Barragán Álvarez, Carla Patricia; Sánchez Hernández, Carla Vanessa; Padilla Camberos, Eduardo; González Castillo, Celia; Ortuño Sahagún, Daniel; Martínez Velázquez, Moisés

    2016-11-01

    The cattle tick Rhipicephalus (Boophilus) microplus is a hematophagous ectoparasite of major importance for the livestock industry. It shows a remarkable ability to survive over long periods without feeding. However, the mechanisms used to endure long-term starvation are poorly understood. It is believed that autophagy, a process of intracellular protein degradation, may play a significant role to confront adverse environmental conditions. To advance our understanding of autophagy in R. microplus, in the present study we report the molecular characterization of three autophagy-related (ATG) genes, namely, RmATG3, RmATG4 and RmATG6, as well as their expression profiles in different developmental stages and organs of the parasite. The deduced amino acid sequences derived from the characterized gene sequences were subjected to Basic Local Alignment Search Tool analysis. The testing produced significant alignments with respective ATG proteins from Haemaphysalis longicornis and Ixodes scapularis ticks. Real-time polymerase chain reaction assays revealed that RmATG4 and RmATG6 transcripts were elevated in egg and ovary tissue, when compared with larva and midgut samples, while RmATG3 expression in midgut was 2-fold higher than in egg, larva and ovary samples.

  6. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes

    PubMed Central

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E.; Thomas, Paul D.

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This ‘GO Phylogenetic Annotation’ approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations. Database URL: http://amigo.geneontology.org/amigo PMID:28025345

  7. Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24

    PubMed Central

    Agler, Caryline; Nielsen, Dahlia M.; Urkasemsin, Ganokon; Singleton, Andrew; Tonomura, Noriko; Sigurdsson, Snaevar; Tang, Ruqi; Linder, Keith; Arepalli, Sampath; Hernandez, Dena; Lindblad-Toh, Kerstin; van de Leemput, Joyce; Motsinger-Reif, Alison; O'Brien, Dennis P.; Bell, Jerold; Harris, Tonya; Steinberg, Steven; Olby, Natasha J.

    2014-01-01

    Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia. PMID:24516392

  8. Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses.

    PubMed

    Pei, Dan; Zhang, Wei; Sun, Hong; Wei, Xiaojing; Yue, Jieyu; Wang, Huazhong

    2014-10-01

    The genes coding for wheat ATG4 and ATG8 were cloned and their roles in autophagy were verified. Implications of ATG4/ATG8 in wheat responses to stresses were suggested by expression profiling. Autophagy-related proteins ATG4 and ATG8 are crucial for autophagy biogenesis. ATG4 processes ATG8 precursor to expose its C-terminal glycine for phosphatidyl ethanolamine (PE) lipidation. ATG8, in the form of ATG8-PE adduct, functions in the organization dynamics of autophagic membranes. Here, we report the identification of two/nine members of the ATG4/ATG8 family from common wheat (Triticum aestivum L.). Expression of each wheat ATG4/ATG8 could complement the autophagy activity of yeast atg4/atg8 mutant cells. GFP fusion proteins of ATG8s, especially of ATG8s with innate C-terminal-exposed glycines, localized to punctate autophagic membranes. Both of purified ATG4s could cleave ATG8s in vitro, but they had different activities and different preferences for ATG8 substrates. Two times of transcript accumulation, an early one and a late one, of ATG4s/ATG8s were detected in the early phases of the Pm21- and Pm3f-triggered wheat incompatible reactions to the powdery mildew causal fungus Blumeria graminis f. sp. tritici (Bgt), and fluorescence microscopy also revealed a Bgt-induced enhanced wheat autophagy level in the Pm21-triggered incompatible reaction. Only one time of Bgt-induced transcript accumulation of ATG4s/ATG8s, corresponding to but much higher than the late one in incompatible reactions, was detected in a susceptible line isogenic to the Pm21 resistance line. These results suggested positive roles of ATG4/ATG8-associated autophagy process in the early stage and possible negative roles in the late stage of wheat immunity response to Bgt. In addition, expression of wheat ATG4s/ATG8s was also found to be upregulated by abiotic stress factors and distinctively regulated by different phytohormones.

  9. Involvement of autophagy in T cell biology.

    PubMed

    Oral, Ozlem; Yedier, Ozlem; Kilic, Seval; Gozuacik, Devrim

    2017-01-01

    Autophagy is an essential cellular pathway that sequesters various cytoplasmic components, including accumulated proteins, damaged organelles or invading microorganisms and delivers them to lysosomes for degradation. The function of autophagy has been reported in various tissues and systems, including its role in the regulation of cellular immunity. Autophagy plays a fundamental role at various stages of T cell maturation. It regulates the thymocyte selection and the generation of T cell repertoire by presenting intracellular antigens to MHC class molecules. Autophagy is crucial for metabolic regulation of T cells, and therefore supports cell survival and homeostasis, particularly in activated mature T cells. Furthermore, deletion of specific autophagy-related genes induces several immunological alterations including differentiation of activated T cells into regulatory, memory or natural killer T cells. In this review, we emphasize the impact of autophagy on T cell development, activation and differentiation, which is pivotal for the adaptive immune system.

  10. Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma.

    PubMed

    Shuhua, Wu; Chenbo, Sun; Yangyang, Li; Xiangqian, Gao; Shuang, He; Tangyue, Li; Dong, Tian

    2015-11-01

    This study aims to evaluate the relationship between the expressions of autophagy-related genes Raptor, Rictor, and Beclin1 and the expression of multidrug resistance (MDR) gene in colorectal cancer (CRC) patients. Immunohistochemistry and real-time polymerase chain reaction were used to detect the protein and messenger RNA expressions of mammalian target of rapamycin (mTOR), Raptor, Rictor, Beclin1, light chain 3 (LC3), and MDR-1 in 279 CRC specimens. Patients were followed up annually by telephone or at an outpatient clinic. Results revealed that the protein and messenger RNA expressions of Beclin1, LC3, mTOR, Raptor, Rictor, and MDR-1 in CRC are significantly higher than in adjacent tissues. LC3 expression in poorly differentiated CRC is higher than that in well-differentiated CRC, and the expression of mTOR, Raptor, Rictor, and LC3 in lymph node metastasis is higher than that obtained in the absence of lymph node metastasis. The expression of LC3 is positively correlated with those of Beclin1 and Rictor and negatively correlated with Raptor and mTOR in CRC. The expression of Raptor is negatively correlated with Rictor. The expression of MDR-1 is positively correlated with those of Beclin1, LC3, and Rictor and negatively correlated with Raptor and mTOR. Kaplan-Meier analysis revealed that the 5-year survival rate of patients without lymph node metastasis; positive expression of Rictor, Beclin1, and LC3; and negative expression of Raptor and mTOR were higher than those with these characteristics. To conclude, the expressions of Beclin1, Raptor, and Rictor are related to the development and progression of colorectal carcinoma and MDR. ( 2014-009-01.). Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Investigating autophagy

    PubMed Central

    Swanlund, Jamie M.; Kregel, Kevin C.; Oberley, Terry D.

    2011-01-01

    Autophagy is a compensatory pathway involving isolation and subsequent degradation of cytosolic material and organelles in eukaryotic cells.1 The autophagic process can provide a “housekeeping” function by removing damaged proteins and organelles in a selective or nonselective fashion in order to exert a protective effect following stress.2 Remarkably, after being discovered to be much more of a targeted process than a random one, the role of autophagy became implicated in many normal cellular and disease processes.3 Several methodologies are routinely employed to monitor the entire autophagic process.4 Microtubule-associated protein light chain 3, a mammalian homolog of yeast Atg8, has been widely used as a specific marker to monitor autophagy in numerous cell types.5 While monitoring autophagic flux is extremely important, it is also beneficial to perform a detailed analysis by electron microscopy (EM) to evaluate changes in various autophagic structures, quantify the areas involved, and determine if any particular organelle(s) or area of the cell cytoplasm is being targeted for degradation.6 The following article describes methods to localize and quantify subcellular areas of autophagy using transmission EM. Also discussed are methods for subcellular localization of specific proteins by employing immunogold EM; this method becomes particularly useful in detecting early changes in cellular homeostasis that may occur before later signs of cellular insult can be observed morphologically. PMID:19923921

  12. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora

    PubMed Central

    Voigt, Oliver; Pöggeler, Stefanie

    2013-01-01

    Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions. PMID:23064313

  13. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora.

    PubMed

    Voigt, Oliver; Pöggeler, Stefanie

    2013-01-01

    Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions.

  14. Autophagy-related gene16L2, a potential serum biomarker of multiple sclerosis evaluated by bead-based proteomic technology.

    PubMed

    Yin, Linlin; Liu, Jianghong; Dong, Huiqing; Xu, Erhe; Qiao, Yuchen; Wang, Lin; Zhang, Lan; Jia, Jianping; Li, Lin; Geng, Xingchao

    2014-03-06

    Multiple sclerosis (MS) is an autoimmune disease characterized by neuroinflammation and demyelination that are mediated by T cells. The prolonged survival of autoreactive T cells acts as a primary event to trigger an inflammatory cascade that mediates myelin loss and clinical relapse in MS. Recently, T cell survival has been shown to be modulated by the autophagy-related gene (Atg). In the present study, we performed bead fractionation/matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analyses using serum from 54 MS patients and 55 healthy controls. Eleven peptides were significantly different between the two groups with one being identified as a fragment of Atg16L2. Then the decreased levels of Atg16L2 peptides in MS patients were validated by immunoblotting and real-time PCR. As the Atg12-Atg5·Atg16 multimeric complex plays an essential role in autophagy, our results suggest that Atg16L2 may play an important role in autophagy of T cells and serve as a potential biomarker to predict clinical relapse of MS.

  15. Recent insights into the function of autophagy in cancer

    PubMed Central

    Amaravadi, Ravi; Kimmelman, Alec C.; White, Eileen

    2016-01-01

    Macroautophagy (referred to here as autophagy) is induced by starvation to capture and degrade intracellular proteins and organelles in lysosomes, which recycles intracellular components to sustain metabolism and survival. Autophagy also plays a major homeostatic role in controlling protein and organelle quality and quantity. Dysfunctional autophagy contributes to many diseases. In cancer, autophagy can be neutral, tumor-suppressive, or tumor-promoting in different contexts. Large-scale genomic analysis of human cancers indicates that the loss or mutation of core autophagy genes is uncommon, whereas oncogenic events that activate autophagy and lysosomal biogenesis have been identified. Autophagic flux, however, is difficult to measure in human tumor samples, making functional assessment of autophagy problematic in a clinical setting. Autophagy impacts cellular metabolism, the proteome, and organelle numbers and quality, which alter cell functions in diverse ways. Moreover, autophagy influences the interaction between the tumor and the host by promoting stress adaptation and suppressing activation of innate and adaptive immune responses. Additionally, autophagy can promote a cross-talk between the tumor and the stroma, which can support tumor growth, particularly in a nutrient-limited microenvironment. Thus, the role of autophagy in cancer is determined by nutrient availability, microenvironment stress, and the presence of an immune system. Here we discuss recent developments in the role of autophagy in cancer, in particular how autophagy can promote cancer through suppressing p53 and preventing energy crisis, cell death, senescence, and an anti-tumor immune response. PMID:27664235

  16. FGF signalling regulates bone growth through autophagy.

    PubMed

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

  17. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways.

    PubMed

    Zhang, Jianbin; Ng, Shukie; Wang, Jigang; Zhou, Jing; Tan, Shi-Hao; Yang, Naidi; Lin, Qingsong; Xia, Dajing; Shen, Han-Ming

    2015-04-03

    Autophagy is a catabolic process in response to starvation or other stress conditions to sustain cellular homeostasis. At present, histone deacetylase inhibitors (HDACIs) are known to induce autophagy in cells through inhibition of mechanistic target of rapamycin (MTOR) pathway. FOXO1, an important transcription factor regulated by AKT, is also known to play a role in autophagy induction. At present, the role of FOXO1 in the HDACIs-induced autophagy has not been reported. In this study, we first observed that HDACIs increased the expression of FOXO1 at the mRNA and protein level. Second, we found that FOXO1 transcriptional activity was enhanced by HDACIs, as evidenced by increased FOXO1 nuclear accumulation and transcriptional activity. Third, suppression of FOXO1 function by siRNA knockdown or by a chemical inhibitor markedly blocked HDACIs-induced autophagy. Moreover, we found that FOXO1-mediated autophagy is achieved via its transcriptional activation, leading to a dual effect on autophagy induction: (i) enhanced expression of autophagy-related (ATG) genes, and (ii) suppression of MTOR via transcription of the SESN3 (sestrin 3) gene. Finally, we found that inhibition of autophagy markedly enhanced HDACIs-mediated cell death, indicating that autophagy serves as an important cell survival mechanism. Taken together, our studies reveal a novel function of FOXO1 in HDACIs-mediated autophagy in human cancer cells and thus support the development of a novel therapeutic strategy by combining HDACIs and autophagy inhibitors in cancer therapy.

  18. Beyond autophagy

    PubMed Central

    Liang, Chengyu; Sir, Donna; Lee, Steven; Ou, Jing-hsiung James; Jung, Jae U.

    2009-01-01

    Autophagy is a lysosome-directed membrane trafficking event for the degradation of cytoplasmic components, including organelles. The past few years have seen a great advance in our understanding of the cellular machinery of autophagosome biogenesis, the hallmark of autophagy. However, our global understanding of autophagosome maturity remains relatively poor and fragmented. The topological similarity of autophagosome and endosome delivery to lysosomes suggests that autophagic and endosomal maturation may have evolved to share associated machinery to promote the lysosomal delivery of their cargoes. We have recently discovered that UVRAG, originally identified as a Beclin 1-binding autophagy protein, appears to be an important factor in autophagic and endosomal trafficking through its interaction with the class C Vps tethering complex. Given the ability of UVRAG to bind Beclin 1 and the class C Vps complex in a genetically and functionally separable manner, it may serve as an important regulator for the spatial and/or temporal control of diverse cellular trafficking events. As more non-autophagic functions of UVRAG are unveiled, our understanding of seemingly different cellular processes may move a step further. PMID:18612260

  19. Depletion of autophagy-related genes ATG3 and ATG5 in Tenebrio molitor leads to decreased survivability against an intracellular pathogen, Listeria monocytogenes.

    PubMed

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Noh, Mi Young; Kim, Dong Hyun; Kim, Iksoo; Han, Yeon Soo; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung

    2015-01-01

    Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy-related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open-reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58-95% to other insect Atg proteins. There exist clear one-to-one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post-Listeria challenge, the survival rate in the dsEGFP-injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double-stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy-based clearance of Listeria in T. molitor model. © 2014 Wiley Periodicals, Inc.

  20. bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora.

    PubMed

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2013-12-01

    Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster.

    PubMed

    M'Angale, P G; Staveley, B E

    2016-10-24

    Autophagy is a cellular mechanism implicated in the pathology of Parkinson's disease. The proteins Atg6 (Beclin 1) and Pi3K59F are involved in autophagosome formation, a key step in the initiation of autophagy. We first used the GMR-Gal4 driver to determine the effect of reducing the expression of the genes encoding these proteins on the developing Drosophila melanogaster eye. Subsequently, we inhibited their expression in D. melanogaster neurons under the direction of a Dopa decarboxylase (Ddc) transgene, and examined the effects on longevity and motor function. Decreased longevity coupled with an age-dependent loss of climbing ability was observed. In addition, we investigated the roles of these genes in the well-studied α-synuclein-induced Drosophila model of Parkinson's disease. In this context, lowered expression of Atg6 or Pi3K59F in Ddc-Gal4-expressing neurons results in decreased longevity and associated age-dependent loss of locomotor ability. Inhibition of Atg6 or Pi3K59F together with overexpression of the sole pro-survival Bcl-2 Drosophila homolog Buffy in Ddc-Gal4-expressing neurons resulted in further decrease in the survival and climbing ability of Atg6-RNAi flies, whereas these measures were ameliorated in Pi3K59F-RNAi flies.

  2. Autophagy: molecular machinery for self-eating

    PubMed Central

    Yorimitsu, T; Klionsky, DJ

    2006-01-01

    Autophagy is a highly conserved process in eukaryotes in which the cytoplasm, including excess or aberrant organelles, is sequestered into double-membrane vesicles and delivered to the degradative organelle, the lysosome/vacuole, for breakdown and eventual recycling of the resulting macromolecules. This process has an important role in various biological events such as adaptation to changing environmental conditions, cellular remodeling during development and differentiation, and determination of lifespan. Auto-phagy is also involved in preventing certain types of disease, although it may contribute to some pathologies. Recent studies have identified many components that are required to drive this complicated cellular process. Autophagy-related genes were first identified in yeast, but homologs are found in all eukaryotes. Analyses in a range of model systems have provided huge advances toward understanding the molecular basis of autophagy. Here we review our current knowledge on the machinery and molecular mechanism of autophagy. PMID:16247502

  3. Endocytosis and Autophagy: Exploitation or Cooperation?

    PubMed Central

    Tooze, Sharon A.; Abada, Adi; Elazar, Zvulun

    2014-01-01

    Autophagy is a lysosome-mediated degradative system that is a highly conserved pathway present in all eukaryotes. In all cells, double-membrane autophagosomes form and engulf cytoplasmic components, delivering them to the lysosome for degradation. Autophagy is essential for cell health and can be activated to function as a recycling pathway in the absence of nutrients or as a quality-control pathway to eliminate damaged organelles or even to eliminate invading pathogens. Autophagy was first identified as a pathway in mammalian cells using morphological techniques, but the Atg (autophagy-related) genes required for autophagy were identified in yeast genetic screens. Despite tremendous advances in elucidating the function of individual Atg proteins, our knowledge of how autophagosomes form and subsequently interact with the endosomal pathway has lagged behind. Recent progress toward understanding where and how both the endocytotic and autophagic pathways overlap is reviewed here. PMID:24789822

  4. Endocytosis and autophagy: exploitation or cooperation?

    PubMed

    Tooze, Sharon A; Abada, Adi; Elazar, Zvulun

    2014-05-01

    Autophagy is a lysosome-mediated degradative system that is a highly conserved pathway present in all eukaryotes. In all cells, double-membrane autophagosomes form and engulf cytoplasmic components, delivering them to the lysosome for degradation. Autophagy is essential for cell health and can be activated to function as a recycling pathway in the absence of nutrients or as a quality-control pathway to eliminate damaged organelles or even to eliminate invading pathogens. Autophagy was first identified as a pathway in mammalian cells using morphological techniques, but the Atg (autophagy-related) genes required for autophagy were identified in yeast genetic screens. Despite tremendous advances in elucidating the function of individual Atg proteins, our knowledge of how autophagosomes form and subsequently interact with the endosomal pathway has lagged behind. Recent progress toward understanding where and how both the endocytotic and autophagic pathways overlap is reviewed here.

  5. Ketogenic diet change cPLA2/clusterin and autophagy related gene expression and correlate with cognitive deficits and hippocampal MFs sprouting following neonatal seizures.

    PubMed

    Ni, Hong; Zhao, Dong-Jing; Tian, Tian

    2016-02-01

    Because the ketogenic diet (KD) was affecting expression of energy metabolism- related genes in hippocampus and because lipid membrane peroxidation and its associated autophagy stress were also found to be involved in energy depletion, we hypothesized that KD might exert its neuroprotective action via lipid membrane peroxidation and autophagic signaling. Here, we tested this hypothesis by examining the long-term expression of lipid membrane peroxidation-related cPLA2 and clusterin, its downstream autophagy marker Beclin-1, LC3 and p62, as well as its execution molecule Cathepsin-E following neonatal seizures and chronic KD treatment. On postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizures group and control group. On P28, they were further randomly divided into the seizure group without ketogenic diet (RS+ND), seizure plus ketogenic diet (RS+KD), the control group without ketogenic diet (NS+ND), and the control plus ketogenic diet (NS+KD). Morris water maze test was performed during P37-P43. Then mossy fiber sprouting and the protein levels were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced RS+ND rats show a long-term lower amount of cPLA2 and LC3II/I, and higher amount of clusterin, Beclin-1, p62 and Cathepsin-E which are in parallel with hippocampal mossy fiber sprouting and cognitive deficits. Furthermore, chronic KD treatment (RS+KD) is effective in restoring these molecular, neuropathological and cognitive changes. The results imply that a lipid membrane peroxidation and autophagy-associated pathway is involved in the aberrant hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures, which might be a potential target of KD for the treatment of neonatal seizure-induced brain damage.

  6. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Tumor Suppression and Promotion by Autophagy

    PubMed Central

    Ávalos, Yenniffer; Canales, Jimena; Criollo, Alfredo; Quest, Andrew F. G.

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer. PMID:25328887

  8. Tumor suppression and promotion by autophagy.

    PubMed

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  9. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  10. Autophagy, viruses, and intestinal immunity

    PubMed Central

    Kernbauer, Elisabeth; Cadwell, Ken

    2014-01-01

    Purpose of review To highlight recent findings that identify an essential role for the cellular degradative pathway of autophagy in governing a balanced response to intestinal pathogens and commensals. Recent findings Following the genetic association of autophagy with inflammatory bowel disease (IBD) susceptibility, increasing evidence indicate that this pathway functions in various epithelial lineages to support the intestinal barrier. New studies are also revealing that autophagy proteins dictate the quality and magnitude of immune responses. Mouse models in particular suggest that autophagy and IBD susceptibility genes regulate inflammatory responses to viruses, a finding that coincides with an increasing appreciation that viruses have intricate interactions with the host and the microbiota beyond the obvious host-pathogen relationship. Summary Autophagy and other immunological or stress response pathways intersect in mucosal immunity to dictate the response to pathogenic and commensal agents. The development of novel treatment strategies as well as prognostic and diagnostic tools for gastrointestinal disorders will be greatly facilitated by a deeper understanding of these interactions at the cell type and microbe-specific manner, which includes less appreciated components of the microbiota such as eukaryotic and prokaryotic viruses. PMID:25291356

  11. Autophagy, viruses, and intestinal immunity.

    PubMed

    Kernbauer, Elisabeth; Cadwell, Ken

    2014-11-01

    To highlight recent findings that identify an essential role for the cellular degradative pathway of autophagy in governing a balanced response to intestinal pathogens and commensals. Following the genetic association of autophagy with inflammatory bowel disease susceptibility, increasing evidence indicates that this pathway functions in various epithelial lineages to support the intestinal barrier. New studies are also revealing that autophagy proteins dictate the quality and magnitude of immune responses. Mouse models, in particular, suggest that autophagy and inflammatory bowel disease susceptibility genes regulate inflammatory responses to viruses, a finding that coincides with an increasing appreciation that viruses have intricate interactions with the host and the microbiota beyond the obvious host-pathogen relationship. Autophagy and other immunological or stress response pathways intersect in mucosal immunity to dictate the response to pathogenic and commensal agents. The development of novel treatment strategies, as well as prognostic and diagnostic tools for gastrointestinal disorders, will be greatly facilitated by a deeper understanding of these interactions at the cell type and microbe-specific manner, which includes less appreciated components of the microbiota, such as eukaryotic and prokaryotic viruses.

  12. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells.

    PubMed

    Sahni, Sumit; Bae, Dong-Hun; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Jansson, Patric J; Richardson, Des R

    2014-04-04

    N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.

  13. Effect of 1,25-dihydroxyvitamin D3 on the expression of mannose receptor, DC-SIGN and autophagy genes in pulmonary tuberculosis.

    PubMed

    Afsal, K; Selvaraj, P

    2016-07-01

    1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is a powerful immuno-modulator, which enhances expression of antimicrobial peptides and induces autophagy in monocytes/macrophages. Since 1,25(OH)2D3 increases the phagocytic potential of monocytes/macrophages, we have explored the effect of 1,25(OH)2D3 on the expression of receptors such as mannose receptor (CD206) and DC-SIGN (CD209) as well as autophagy genes such as ATG5 and Beclin-1 (BECN1) in monocytes/macrophages of healthy controls (HCs) and pulmonary tuberculosis (PTB) patients with and without cavitary disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 40 HCs and 40 PTB patients and were cultured for 72 h with Mtb in the presence or absence of 1,25(OH)2D3 at 10(-7) M concentration. 1,25(OH)2D3 significantly upregulated the expression of mannose receptor, ATG5 and BECN1; whereas DC-SIGN expression was suppressed in Mtb infected cells of both study groups (p < 0.05). The 1,25(OH)2D3-induced expression of CD206, ATG5 and BECN1 genes was lower in PTB patients compared to HCs, whereas expression of these genes was impaired in PTB patients with cavitary disease. Moreover, the relative expression of ATG5 and BECN1 was positively correlated with monocyte/macrophage phagocytosis and cathelicidin antimicrobial peptide gene expression in HCs and PTB patients (p < 0.05). Our study results suggest that vitamin D supplementation in PTB patients without cavitary disease could enhance innate immune functions and may help to control intracellular growth of mycobacteria in macrophages.

  14. Transcriptional regulation of autophagy by an FXR/CREB axis

    PubMed Central

    Seok, Sunmi; Fu, Ting; Choi, Sung-E; Li, Yang; Zhu, Rong; Kumar, Subodh; Sun, Xiaoxiao; Yoon, Gyesoon; Kang, Yup; Zhong, Wenxuan; Ma, Jian; Kemper, Byron; Kemper, Jongsook Kim

    2014-01-01

    Lysosomal degradation of cytoplasmic components by autophagy is essential for cellular survival and homeostasis under nutrient-deprived conditions1–4. Acute regulation of autophagy by nutrient-sensing kinases is well defined3, 5–7, but longer-term transcriptional regulation is relatively unknown. Here we show that the fed-state sensing nuclear receptor FXR8, 9 and the fasting transcriptional activator CREB10, 11 coordinately regulate the hepatic autophagy gene network. Pharmacological activation of FXR repressed many autophagy genes and inhibited autophagy even in fasted mice and feeding-mediated inhibition of macroautophagy was attenuated in FXR-knockout mice. From mouse liver ChIP-seq data12–15, FXR and CREB binding peaks were detected at 178 and 112, respectively, of 230 autophagy-related genes, and 78 genes showed shared binding, mostly in their promoter regions. CREB promoted lipophagy, autophagic degradation of lipids16, under nutrient-deprived conditions, and FXR inhibited this response. Mechanistically, CREB upregulated autophagy genes, including Atg7, Ulk1, and Tfeb, by recruiting the coactivator CRTC2. After feeding or pharmacological activation, FXR trans-repressed these genes by disrupting the functional CREB/CRTC2 complex. This study identifies the novel FXR/CREB axis as a key physiological switch regulating autophagy, resulting in sustained nutrient regulation of autophagy during feeding/fasting cycles. PMID:25383523

  15. Autophagy-related prognostic signature for breast cancer.

    PubMed

    Gu, Yunyan; Li, Pengfei; Peng, Fuduan; Zhang, Mengmeng; Zhang, Yuanyuan; Liang, Haihai; Zhao, Wenyuan; Qi, Lishuang; Wang, Hongwei; Wang, Chenguang; Guo, Zheng

    2016-03-01

    Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer.

  16. Microcephaly, intellectual impairment, bilateral vesicoureteral reflux, distichiasis, and glomuvenous malformations associated with a 16q24.3 contiguous gene deletion and a Glomulin mutation.

    PubMed

    Butler, Matthew G; Dagenais, Susan L; Garcia-Perez, José L; Brouillard, Pascal; Vikkula, Miikka; Strouse, Peter; Innis, Jeffrey W; Glover, Thomas W

    2012-04-01

    Two hereditary syndromes, lymphedema-distichiasis (LD) syndrome and blepharo-chelio-dontic (BCD) syndrome include the aberrant growth of eyelashes from the meibomian glands, known as distichiasis. LD is an autosomal dominant syndrome primarily characterized by distichiasis and the onset of lymphedema usually during puberty. Mutations in the forkhead transcription factor FOXC2 are the only known cause of LD. BCD syndrome consists of autosomal dominant abnormalities of the eyelid, lip, and teeth, and the etiology remains unknown. In this report, we describe a proband that presented with distichiasis, microcephaly, bilateral grade IV vesicoureteral reflux requiring ureteral re-implantation, mild intellectual impairment and apparent glomuvenous malformations (GVM). Distichiasis was present in three generations of the proband's maternal side of the family. The GVMs were severe in the proband, and maternal family members exhibited lower extremity varicosities of variable degree. A GLMN (glomulin) gene mutation was identified in the proband that accounts for the observed GVMs; no other family member could be tested. TIE2 sequencing revealed no mutations. In the proband, an additional submicroscopic 265 kb contiguous gene deletion was identified in 16q24.3, located 609 kb distal to the FOXC2 locus, which was inherited from the proband's mother. The deletion includes the C16ORF95, FBXO31, MAP1LC3B, and ZCCHC14 loci and 115 kb of a gene desert distal to FOXC2 and FOXL1. Thus, it is likely that the microcephaly, distichiasis, vesicoureteral, and intellectual impairment in this family may be caused by the deletion of one or more of these genes and/or deletion of distant cis-regulatory elements of FOXC2 expression.

  17. Microcephaly, Intellectual Impairment, Bilateral Vesicoureteral Reflux, Distichiasis and Glomuvenous Malformations Associated with a 16q24.3 Contiguous Gene Deletion and a Glomulin Mutation

    PubMed Central

    Butler, Matthew G.; Dagenais, Susan L.; Garcia-Perez, José L.; Brouillard, Pascal; Vikkula, Miikka; Strouse, Peter; Innis, Jeffrey W.; Glover, Thomas W.

    2012-01-01

    Two hereditary syndromes, lymphedema-distichiasis syndrome (LD) and blepharo-chelio-dontic (BCD) syndrome include the aberrant growth of eyelashes from the meibomian glands, known as distichiasis. LD is an autosomal dominant syndrome primarily characterized by distichiasis and the onset of lymphedema usually during puberty. Mutations in the forkhead transcription factor FOXC2 are the only known cause of LD. BCD syndrome consists of autosomal dominant abnormalities of the eyelid, lip, and teeth, and the etiology remains unknown. In this report, we describe a proband that presented with distichiasis, microcephaly, bilateral grade IV vesicoureteral reflux requiring ureteral re-implantation, mild intellectual impairment and apparent glomuvenous malformations. Distichiasis was present in three generations of the proband’s maternal side of the family. The glomuvenous malformations were severe in the proband, and maternal family members exhibited lower extremity varicosities of variable degree. A GLMN (glomulin) gene mutation was identified in the proband that accounts for the observed glomuvenous malformations; no other family member could be tested. TIE2 sequencing revealed no mutations. In the proband, an additional submicroscopic 265 kb contiguous gene deletion was identified in 16q24.3, located 609 kb distal to the FOXC2 locus, which was inherited from the proband’s mother. The deletion includes the C16ORF95, FBXO31, MAP1LC3B, and ZCCHC14 loci and 115 kb of a gene desert distal to FOXC2 and FOXL1. Thus, it is likely that the microcephaly, distichiasis, vesicoureteral and intellectual impairment in this family may be caused by the deletion of one or more of these genes and/or deletion of distant cis-regulatory elements of FOXC2 expression. PMID:22407726

  18. Regulation of autophagy by the inositol trisphosphate receptor.

    PubMed

    Criollo, A; Maiuri, M C; Tasdemir, E; Vitale, I; Fiebig, A A; Andrews, D; Molgó, J; Díaz, J; Lavandero, S; Harper, F; Pierron, G; di Stefano, D; Rizzuto, R; Szabadkai, G; Kroemer, G

    2007-05-01

    The reduction of intracellular 1,4,5-inositol trisphosphate (IP(3)) levels stimulates autophagy, whereas the enhancement of IP(3) levels inhibits autophagy induced by nutrient depletion. Here, we show that knockdown of the IP(3) receptor (IP(3)R) with small interfering RNAs and pharmacological IP(3)R blockade is a strong stimulus for the induction of autophagy. The IP(3)R is known to reside in the membranes of the endoplasmic reticulum (ER) as well as within ER-mitochondrial contact sites, and IP(3)R blockade triggered the autophagy of both ER and mitochondria, as exactly observed in starvation-induced autophagy. ER stressors such as tunicamycin and thapsigargin also induced autophagy of ER and, to less extent, of mitochondria. Autophagy triggered by starvation or IP(3)R blockade was inhibited by Bcl-2 and Bcl-X(L) specifically targeted to ER but not Bcl-2 or Bcl-X(L) proteins targeted to mitochondria. In contrast, ER stress-induced autophagy was not inhibited by Bcl-2 and Bcl-X(L). Autophagy promoted by IP(3)R inhibition could not be attributed to a modulation of steady-state Ca(2+) levels in the ER or in the cytosol, yet involved the obligate contribution of Beclin-1, autophagy-related gene (Atg)5, Atg10, Atg12 and hVps34. Altogether, these results strongly suggest that IP(3)R exerts a major role in the physiological control of autophagy.

  19. Autophagy, Metabolism, and Cancer.

    PubMed

    White, Eileen; Mehnert, Janice M; Chan, Chang S

    2015-11-15

    Macroautophagy (autophagy hereafter) captures intracellular proteins and organelles and degrades them in lysosomes. The degradation breakdown products are released from lysosomes and recycled into metabolic and biosynthetic pathways. Basal autophagy provides protein and organelle quality control by eliminating damaged cellular components. Starvation-induced autophagy recycles intracellular components into metabolic pathways to sustain mitochondrial metabolic function and energy homeostasis. Recycling by autophagy is essential for yeast and mammals to survive starvation through intracellular nutrient scavenging. Autophagy suppresses degenerative diseases and has a context-dependent role in cancer. In some models, cancer initiation is suppressed by autophagy. By preventing the toxic accumulation of damaged protein and organelles, particularly mitochondria, autophagy limits oxidative stress, chronic tissue damage, and oncogenic signaling, which suppresses cancer initiation. This suggests a role for autophagy stimulation in cancer prevention, although the role of autophagy in the suppression of human cancer is unclear. In contrast, some cancers induce autophagy and are dependent on autophagy for survival. Much in the way that autophagy promotes survival in starvation, cancers can use autophagy-mediated recycling to maintain mitochondrial function and energy homeostasis to meet the elevated metabolic demand of growth and proliferation. Thus, autophagy inhibition may be beneficial for cancer therapy. Moreover, tumors are more autophagy-dependent than normal tissues, suggesting that there is a therapeutic window. Despite these insights, many important unanswered questions remain about the exact mechanisms of autophagy-mediated cancer suppression and promotion, how relevant these observations are to humans, and whether the autophagy pathway can be modulated therapeutically in cancer. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy." ©2015

  20. Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice

    PubMed Central

    Sukseree, Supawadee; Chen, Ying-Ting; Laggner, Maria; Gruber, Florian; Petit, Valérie; Nagelreiter, Ionela-Mariana; Mlitz, Veronika; Rossiter, Heidemarie; Pollreisz, Andreas; Schmidt-Erfurth, Ursula; Larue, Lionel; Tschachler, Erwin

    2016-01-01

    Targeted gene knockout mouse models have helped to identify roles of autophagy in many tissues. Here, we investigated the retinal pigment epithelium (RPE) of Atg7f/f Tyr-Cre mice (on a C57BL/6 background), in which Cre recombinase is expressed under the control of the tyrosinase promoter to delete the autophagy gene Atg7. In line with pigment cell-directed blockade of autophagy, the RPE and the melanocytes of the choroid showed strong accumulation of the autophagy adaptor and substrate, sequestosome 1 (Sqstm1)/p62, relative to the levels in control mice. Immunofluorescence and Western blot analysis demonstrated that the RPE, but not the choroid melanocytes, of Atg7f/f Tyr-Cre mice also had strongly increased levels of retinoid isomerohydrolase RPE65, a pivotal enzyme for the maintenance of visual perception. In contrast to Sqstm1, genes involved in retinal regeneration, i.e. Lrat, Rdh5, Rgr, and Rpe65, were expressed at higher mRNA levels. Sequencing of the Rpe65 gene showed that Atg7f/f and Atg7f/f Tyr-Cre mice carry a point mutation (L450M) that is characteristic for the C57BL/6 mouse strain and reportedly causes enhanced degradation of the RPE65 protein by an as-yet unknown mechanism. These results suggest that the increased abundance of RPE65 M450 in the RPE of Atg7f/f Tyr-Cre mice is, at least partly, mediated by upregulation of Rpe65 transcription; however, our data are also compatible with the hypothesis that the RPE65 M450 protein is degraded by Atg7-dependent autophagy in Atg7f/f mice. Further studies in mice of different genetic backgrounds are necessary to determine the relative contributions of these mechanisms. PMID:27537685

  1. Autophagy: from basic research to its application in food biotechnology.

    PubMed

    Cebollero, Eduardo; Gonzalez, Ramon

    2007-01-01

    Autophagy is a catabolic process by which the cytoplasm is sequestered into double-membrane vesicles and delivered to the lysosome/vacuole for breaking down and recycling of the low molecular weight degradation products. The isolation in the yeast Saccharomyces cerevisiae of many of the genes involved in autophagy constituted a milestone in understanding the molecular bases of this pathway. The identification of ortholog genes in other eukaryotic models revealed that the mechanism of autophagy is conserved among all eukaryotes. This pathway has been shown to be involved in a growing number of physiological processes and conversely, its deregulation may contribute to the development of several diseases. Recent reports have also shown that autophagy may play an important role in biotechnological processes related with the food industry. In this review we discuss current knowledge of the molecular mechanism of autophagy, including some applied aspects of autophagy in the field of food biotechnology.

  2. A systems biology approach to learning autophagy.

    PubMed

    Klionsky, Daniel J; Kumar, Anuj

    2006-01-01

    With its relevance to our understanding of eukaryotic cell function in the normal and disease state, autophagy is an important topic in modern cell biology; yet, few textbooks discuss autophagy beyond a two- or three-sentence summary. Here, we report an undergraduate/graduate class lesson for the in-depth presentation of autophagy using an active learning approach. By our method, students will work in small groups to solve problems and interpret an actual data set describing genes involved in autophagy. The problem-solving exercises and data set analysis will instill within the students a much greater understanding of the autophagy pathway than can be achieved by simple rote memorization of lecture materials; furthermore, the students will gain a general appreciation of the process by which data are interpreted and eventually formed into an understanding of a given pathway. As the data sets used in these class lessons are largely genomic and complementary in content, students will also understand first-hand the advantage of an integrative or systems biology study: No single data set can be used to define the pathway in full-the information from multiple complementary studies must be integrated in order to recapitulate our present understanding of the pathways mediating autophagy. In total, our teaching methodology offers an effective presentation of autophagy as well as a general template for the discussion of nearly any signaling pathway within the eukaryotic kingdom.

  3. Guidelines for monitoring autophagy in Caenorhabditis elegans

    PubMed Central

    Zhang, Hong; Chang, Jessica T; Guo, Bin; Hansen, Malene; Jia, Kailiang; Kovács, Attila L; Kumsta, Caroline; Lapierre, Louis R; Legouis, Renaud; Lin, Long; Lu, Qun; Meléndez, Alicia; O'Rourke, Eyleen J; Sato, Ken; Sato, Miyuki; Wang, Xiaochen; Wu, Fan

    2015-01-01

    The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood. PMID:25569839

  4. Role of Autophagy in the Maintenance of Intestinal Homeostasis

    PubMed Central

    Baxt, Leigh A.; Xavier, Ramnik J.

    2015-01-01

    Genome-wide association studies of inflammatory bowel disease have identified several risk loci in genes that regulate autophagy, and studies have provided insight into the functional effects of these polymorphisms. We review the mechanisms by which autophagy contributes to intestinal homeostasis, focusing on its cell type-specific roles in regulating gut ecology, restricting pathogenic bacteria, and controlling inflammation. Based on this information, we are beginning to understand how alterations in autophagy can contribute to intestinal inflammation. PMID:26170139

  5. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    PubMed

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. [Aging and autophagy].

    PubMed

    Quy, Pham Nguyen; Mizushima, Noboru

    2013-01-01

    Autophagy, a major intracellular degradation system which is conserved from yeast to mammals, is essential for the cellular clearance and the maintenance of homeostasis inside the cell. The autophagic activity is reported to decrease in almost all cells and tissues following aging, and genetic inhibition of autophagy in mice leads to degenerative changes and diseases that are highly associated with aging. On the other hand, various intervention strategies that delay senescence or increase life span in model organisms often stimulate autophagy, and autophagy inhibition compromises these anti-aging effects. Here, we review recent evidences in support of tight connections between autophagy and aging.

  7. Autophagy, signaling and obesity.

    PubMed

    Lavallard, Vanessa J; Meijer, Alfred J; Codogno, Patrice; Gual, Philippe

    2012-12-01

    Autophagy is a cellular pathway crucial for development, differentiation, survival and homeostasis. Autophagy can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease and infection. Recent studies have reported new functions of autophagy in the regulation of cellular processes such as lipid metabolism and insulin sensitivity. Important links between the regulation of autophagy and obesity including food intake, adipose tissue development, β cell function, insulin sensitivity and hepatic steatosis exist. This review will provide insight into the current understanding of autophagy, its regulation, and its role in the complications associated with obesity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Autophagy in freshwater planarians.

    PubMed

    González-Estévez, Cristina

    2008-01-01

    Planarians provide a new and emergent in vivo model organism to study autophagy. On the whole, maintaining the normal homeostatic balance in planarians requires continuous dynamic adjustment of many processes, including proliferation, apoptosis, differentiation, and autophagy. This makes them very different from other models where autophagy only occurs at very specific times and/or in very specific organs. This chapter aims to offer a general vision of planarians as a model organism, placing more emphasis on those characteristics related to autophagy and describing how autophagy fits into the processes of body remodeling during regeneration and starvation. We also define exactly what is known about autophagy in these organisms and we discuss the techniques available to study the relevant processes, as well as the techniques that are currently being developed. As such, this chapter will serve as a compilation of the techniques available to investigate autophagy in planarians.

  9. Autophagy in the liver: functions in health and disease.

    PubMed

    Ueno, Takashi; Komatsu, Masaaki

    2017-03-01

    The concept of macroautophagy was established in 1963, soon after the discovery of lysosomes in rat liver. Over the 50 years since, studies of liver autophagy have produced many important findings. The liver is rich in lysosomes and possesses high levels of metabolic-stress-induced autophagy, which is precisely regulated by concentrations of hormones and amino acids. Liver autophagy provides starved cells with amino acids, glucose and free fatty acids for use in energy production and synthesis of new macromolecules, and also controls the quality and quantity of organelles such as mitochondria. Although the efforts of early investigators contributed markedly to our current knowledge of autophagy, the identification of autophagy-related genes represented a revolutionary breakthrough in our understanding of the physiological roles of autophagy in the liver. A growing body of evidence has shown that liver autophagy contributes to basic hepatic functions, including glycogenolysis, gluconeogenesis and β-oxidation, through selective turnover of specific cargos controlled by a series of transcription factors. In this Review, we outline the history of liver autophagy study, and then describe the roles of autophagy in hepatic metabolism under healthy and disease conditions, including the involvement of autophagy in α1-antitrypsin deficiency, NAFLD, hepatocellular carcinoma and viral hepatitis.

  10. Pyrvinium targets autophagy addiction to promote cancer cell death

    PubMed Central

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards III, Carl K; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-𝒟-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy. PMID:23640456

  11. New roles for autophagy and spermidine in T cells

    PubMed Central

    Puleston, D. J.; Simon, A. K.

    2015-01-01

    The conserved lysosomal degradation pathway autophagy is now recognised as an essential cog in immune function. While functionally widespread in the innate immune system, knowledge of its roles in adaptive immunity is more limited. Although autophagy has been implicated in naïve T cell homeostasis, its requirement in antigen-specific T cells during infection was unknown. Using a murine model where the essential autophagy gene Atg7 is deleted in the T cell lineage, we have shown that autophagy is dispensable for effector CD8+ T cell responses, but crucial for the formation of memory CD8+ T cells. Here, we suggest reasons why autophagy might be important for the formation of long-lasting immunity. Like in the absence of autophagy, T cell memory formation during ageing is also defective. We observed diminished autophagy levels in T cells from aged mice, linking autophagy to immunosenescence. Importantly, T cell responses to influenza vaccination could be significantly improved using the autophagy-inducing compound spermidine. These results suggest the autophagy pathway as a desirable target to improve aged immunity and modulate T cell function. PMID:28357282

  12. Mechanisms of neuronal homeostasis: Autophagy in the axon.

    PubMed

    Maday, Sandra

    2016-10-15

    Autophagy is an evolutionarily conserved lysosomal degradation pathway that removes damaged organelles and protein aggregates from the cytoplasm. Being post-mitotic, neurons are particularly vulnerable to the accumulation of proteotoxins and are thus heavily dependent on autophagy to maintain homeostasis. In fact, CNS-specific and neuron-specific loss of autophagy is sufficient to cause neurodegeneration in mice. Further, mutations in genes that encode PINK1 and Parkin, proteins that selectively remove damaged mitochondria, cause Parkinson's disease, linking defective autophagy with neurodegenerative disease in humans. This review provides an overview of the mechanisms of autophagy in the axon and the role of neuronal autophagy in axonal homeostasis and degeneration. The pathway for autophagosome biogenesis and maturation along the axon will be discussed as well as several key insights revealing the diverse functions of axonal autophagy. Evidence linking altered autophagy with axonal degeneration and neuronal death will be presented. Appropriate manipulation of autophagy may lead to promising therapeutics for neurodegenerative diseases. This article is part of a Special Issue entitled SI:Autophagy. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Pyrvinium targets autophagy addiction to promote cancer cell death.

    PubMed

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards, Carl K; Huang, Canhua; Wei, Yuquan

    2013-05-02

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-D-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy.

  14. The V471A Polymorphism in Autophagy-Related Gene ATG7 Modifies Age at Onset Specifically in Italian Huntington Disease Patients

    PubMed Central

    Metzger, Silke; Walter, Carolin; Riess, Olaf; Roos, Raymund A. C.; Nielsen, Jørgen E.; Craufurd, David; Nguyen, Huu Phuc

    2013-01-01

    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis. PMID:23894380

  15. The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients.

    PubMed

    Metzger, Silke; Walter, Carolin; Riess, Olaf; Roos, Raymund A C; Nielsen, Jørgen E; Craufurd, David; Nguyen, Huu Phuc

    2013-01-01

    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the "REGISTRY" cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis.

  16. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury

    PubMed Central

    Xie, Cuicui; Ginet, Vanessa; Sun, Yanyan; Koike, Masato; Zhou, Kai; Li, Tao; Li, Hongfu; Li, Qian; Wang, Xiaoyang; Uchiyama, Yasuo; Truttmann, Anita C.; Kroemer, Guido; Puyal, Julien; Blomgren, Klas; Zhu, Changlian

    2016-01-01

    ABSTRACT Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene on neuronal cell death and brain injury in a mouse model of severe neonatal hypoxia-ischemia. Neuronal deletion of Atg7 prevented HI-induced autophagy, resulted in 42% decrease of tissue loss compared to wild-type mice after the insult, and reduced cell death in multiple brain regions, including apoptosis, as shown by decreased caspase-dependent and -independent cell death. Moreover, we investigated the lentiform nucleus of human newborns who died after severe perinatal asphyxia and found increased neuronal autophagy after severe hypoxic-ischemic encephalopathy compared to control uninjured brains, as indicated by the numbers of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3)-, LAMP1 (lysosomal-associated membrane protein 1)-, and CTSD (cathepsin D)-positive cells. These findings reveal that selective neuronal deletion of Atg7 is strongly protective against neuronal death and overall brain injury occurring after HI and suggest that inhibition of HI-enhanced autophagy should be considered as a potential therapeutic target for the treatment of human newborns developing severe hypoxic-ischemic encephalopathy. PMID:26727396

  17. Strange bedfellows expose ancient secrets of autophagy in immunity.

    PubMed

    Deretic, Vojo

    2009-04-17

    Autophagy has many roles in immunity, including the control of intracellular microbes by a cell-autonomous mechanism. In this issue of Immunity, Shelly et al. (2009) use VSV infection in Drosophila to show the role of autophagy genes in controlling viruses.

  18. Systems biology of the autophagy-lysosomal pathway.

    PubMed

    Jegga, Anil G; Schneider, Lonnie; Ouyang, Xiaosen; Zhang, Jianhua

    2011-05-01

    The mechanisms of the control and activity of the autophagy-lysosomal protein degradation machinery are emerging as an important theme for neurodevelopment and neurodegeneration. However, the underlying regulatory and functional networks of known genes controlling autophagy and lysosomal function and their role in disease are relatively unexplored. We performed a systems biology-based integrative computational analysis to study the interactions between molecular components and to develop models for regulation and function of genes involved in autophagy and lysosomal function. Specifically, we analyzed transcriptional and microRNA-based post-transcriptional regulation of these genes and performed functional enrichment analyses to understand their involvement in nervous system-related diseases and phenotypes. Transcriptional regulatory network analysis showed that binding sites for transcription factors, SREBP1, USF, AP-1 and NFE2, are common among autophagy and lysosomal genes. MicroRNA enrichment analysis revealed miR-130, 98, 124, 204 and 142 as the putative post-transcriptional regulators of the autophagy-lysosomal pathway genes. Pathway enrichment analyses revealed that the mTOR and insulin signaling pathways are important in the regulation of genes involved in autophagy. In addition, we found that glycosaminoglycan and glycosphingolipid pathways also make a major contribution to lysosomal gene regulation. The analysis confirmed the known contribution of the autophagy-lysosomal genes to Alzheimer and Parkinson diseases and also revealed potential involvement in tuberous sclerosis, neuronal ceroidlipofuscinoses, sepsis and lung, liver and prostatic neoplasms. To further probe the impact of autophagy-lysosomal gene deficits on neurologically-linked phenotypes, we also mined the mouse knockout phenotype data for the autophagylysosomal genes and found them to be highly predictive of nervous system dysfunction. Overall this study demonstrates the utility of systems

  19. A Targeted Genetic Modifier Screen Links the SWI2/SNF2 Protein Domino to Growth and Autophagy Genes in Drosophila melanogaster

    PubMed Central

    Kwon, Matt Hyoung; Callaway, Heather; Zhong, Jim; Yedvobnick, Barry

    2013-01-01

    Targeted genetic studies can facilitate phenotypic analyses and provide important insights into development and other complex processes. The SWI2/SNF2 DNA-dependent ATPase Domino (Dom) of Drosophila melanogaster, a component of the Tip60 acetyltransferase complex, has been associated with a wide spectrum of cellular processes at multiple developmental stages. These include hematopoiesis, cell proliferation, homeotic gene regulation, histone exchange during DNA repair, and Notch signaling. To explore the wider gene network associated with Dom action, we used RNAi directed against domino (dom) to mediate loss-of-function at the wing margin, a tissue that is readily scored for phenotypic changes. Dom RNAi driven through GAL4-UAS elicited dominant wing nicking that responded phenotypically to the dose of dom and other loci known to function with dom. We screened for phenotypic modifiers of this wing phenotype among 2500 transpositions of the EP P element and found both enhancers and suppressors. Several classes of modifier were obtained, including those encoding transcription factors, RNA regulatory proteins, and factors that regulate cell growth, proliferation and autophagy, a lysosomal degradation pathway that affects cell growth under conditions of starvation and stress. Our analysis is consistent with prior studies, suggesting that Dom acts pleiotropically as a positive effector of Notch signaling and a repressor of proliferation. This genetic system should facilitate screens for additional loci associated with Dom function, and complement biochemical approaches to their regulatory activity. PMID:23550128

  20. Autophagy: A Druggable Process.

    PubMed

    Morel, Etienne; Mehrpour, Maryam; Botti, Joëlle; Dupont, Nicolas; Hamaï, Ahmed; Nascimbeni, Anna Chiara; Codogno, Patrice

    2017-01-06

    Macroautophagy (hereafter called autophagy) is a vacuolar, lysosomal pathway for catabolism of intracellular material that is conserved among eukaryotic cells. Autophagy plays a crucial role in tissue homeostasis, adaptation to stress situations, immune responses, and the regulation of the inflammatory response. Blockade or uncontrolled activation of autophagy is associated with cancer, diabetes, obesity, cardiovascular disease, neurodegenerative disease, autoimmune disease, infection, and chronic inflammatory disease. During the past decade, researchers have made major progress in understanding the three levels of regulation of autophagy in mammalian cells: signaling, autophagosome formation, and autophagosome maturation and lysosomal degradation. As we discuss in this review, each of these levels is potentially druggable, and, depending on the indication, may be able to stimulate or inhibit autophagy. We also summarize the different modulators of autophagy and their potential and limitations in the treatment of life-threatening diseases.

  1. Measuring autophagy in macrophages.

    PubMed

    Harris, James; Hanrahan, Orla; De Haro, Sergio A

    2009-11-01

    Macroautophagy is a conserved intracellular homeostatic mechanism for the degradation of cytosolic constituents. Autophagy can promote cell survival by providing essential amino acids from the breakdown of macromolecules during periods of nutrient deprivation, and can remove damaged or excess organelles, such as mitochondria and peroxisomes. More recently, autophagy has been shown to play an important role in innate and adaptive immune responses to pathogenic bacteria in macrophages and dendritic cells. This unit presents protocols for the measurement of autophagy in macrophages.

  2. AGEs Induced Autophagy Impairs Cutaneous Wound Healing via Stimulating Macrophage Polarization to M1 in Diabetes

    PubMed Central

    Guo, Yuanyuan; Lin, Cai; Xu, Peng; Wu, Shan; Fu, Xiujun; Xia, Weidong; Yao, Min

    2016-01-01

    Autophagy is essential in physiological and pathological processes, however, the role of autophagy in cutaneous wound healing and the underlying molecular mechanism remain elusive. We hypothesized that autophagy plays an important role in regulating wound healing. Here, we show that enhanced autophagy negatively impacts on normal cutaneous healing process and is related to chronic wounds as demonstrated by the increased LC3 in diabetic mice skin or patients’ chronic wounds. In addition, inhibition of autophagy by 3-MA restores delayed healing in C57BL/6 or db/db mice, demonstrating that autophagy is involved in regulating wound healing. Furthermore, we identify that macrophage is a major cell type underwent autophagy in wounds and increased autophagy induces macrophages polarization into M1 with elevated CD11c population and gene expressions of proinflammatory cytokines. To explore the mechanism underlying autophagy-impaired wound healing, we tested the role of IRF8, a regulator of autophagy, in autophagy-modulated macrophages polarization. IRF8 activation is up-regulating autophagy and M1 polarization of macrophages after AGEs (advanced glycation endproducts) treatment, blocking the IRF8 with shIRF8 inhibits autophagic activity and M1 polarization. In summary, this study elucidates that AGEs induces autophagy and modulates macrophage polarization to M1 via IRF8 activation in impairment of cutaneous wound healing. PMID:27805071

  3. Inhibition of Hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy.

    PubMed

    Tang, Xiaoli; Deng, Libin; Chen, Qi; Wang, Yao; Xu, Rong; Shi, Chao; Shao, Jia; Hu, Guohui; Gao, Meng; Rao, Hai; Luo, Shiwen; Lu, Quqin

    2015-05-01

    Multiple lines of evidence implicate that aberrant activation of Hedgehog (Hh) signaling is involved in a variety of human cancers. However, the molecular mechanisms underlying how cancer cells respond to Hh inhibition remain to be elucidated. In this study, we found that blockade of Hh signaling suppresses cell proliferation in human cancer cells. Microarray analysis revealed that differentially expressed genes (DEGs) in human cancer cells are enriched in autophagy pathway in response to the inhibition of Hh signaling. Interestingly, inhibition of Hh signaling induced autophagy, whereas activation of Hh signaling by ligand treatments prevented the induction of autophagy. In addition, inhibition of autophagy by 3-methyladenine (3-MA) partially suppressed cytotoxicity induced by inhibition of Hh signaling. Finally, in autophagy deficient cells, cytotoxic effect triggered by inhibition of Hh signaling was partially reversed, indicating the modulation of autophagy by Hh signaling is autophagy-specific. These results suggest that inhibition of Hh signaling impedes cancer cell proliferation in part through induction of autophagy.

  4. Autophagy and Cancer

    PubMed Central

    Aredia, Francesca; Ortiz, Luis Miguel Guamán; Giansanti, Vincenzo; Scovassi, A. Ivana

    2012-01-01

    Autophagy is a housekeeping survival mechanism with a protective function against stress conditions. However, when stress severity or duration increases, it may promote cell death. Paradoxically, autophagy favors cancer development, since cancer cells could enhance their proliferation potential (thus becoming able to resist anticancer therapy) thanks to the energetic supply provided by organelle degradation typically driven by autophagy following a stepwise pathway. The main actors of the autophagic machinery as well as the features shared with apoptosis will be described. Special attention will be paid to the effects of autophagy manipulation. PMID:24710488

  5. Autophagy: machinery and regulation

    PubMed Central

    Yin, Zhangyuan; Pascual, Clarence; Klionsky, Daniel J.

    2016-01-01

    Macroautophagy/autophagy is an evolutionarily conserved cellular degradation process that targets cytoplasmic materials including cytosol, macromolecules and unwanted organelles. The discovery and analysis of autophagy-related (Atg) proteins have unveiled much of the machinery of autophagosome formation. Although initially autophagy was regarded as a survival response to stress, recent studies have revealed its significance in cellular and organismal homeostasis, development and immunity. Autophagic dysfunction and dysregulation are implicated in various diseases. In this review, we briefly summarize the physiological roles, molecular mechanism, regulatory network, and pathophysiological roles of autophagy. PMID:28357331

  6. Autophagy, nutrition and immunology

    PubMed Central

    Cuervo, Ana Maria; Macian, Fernando

    2014-01-01

    Turnover of cellular components in lysosomes or autophagy is an essential mechanism for cellular quality control. Added to this cleaning role, autophagy has recently been shown to participate in the dynamic interaction of cells with the surrounding environment by acting as a point of integration of extracellular cues. In this review, we focus on the relationship between autophagy and two types of environmental factors: nutrients and pathogens. We describe their direct effect on autophagy and discuss how the autophagic reaction to these stimuli allows cells to accommodate the requirements of the cellular response to stress, including those specific to the immune responses. PMID:21982744

  7. Pharmacologic agents targeting autophagy

    PubMed Central

    Vakifahmetoglu-Norberg, Helin; Xia, Hong-guang; Yuan, Junying

    2015-01-01

    Autophagy is an important intracellular catabolic mechanism critically involved in regulating tissue homeostasis. The implication of autophagy in human diseases and the need to understand its regulatory mechanisms in mammalian cells have stimulated research efforts that led to the development of high-throughput screening protocols and small-molecule modulators that can activate or inhibit autophagy. Herein we review the current landscape in the development of screening technology as well as the molecules and pharmacologic agents targeting the regulatory mechanisms of autophagy. We also evaluate the potential therapeutic application of these compounds in different human pathologies. PMID:25654545

  8. Morphological analysis of autophagy.

    PubMed

    Tabata, Keisuke; Hayashi-Nishino, Mitsuko; Noda, Takeshi; Yamamoto, Akitsugu; Yoshimori, Tamotsu

    2013-01-01

    Autophagy is a bulk intracellular degradation process that is ubiquitous in eukaryotic cells and helps to recycle nutrients from catabolites by degrading proteins, lipids, and glycans, including organelles. Since autophagy has divergent physiological roles in cancer, infection, immunity, and other processes, it is important to accurately analyze autophagic activity. In this chapter, we describe methods that can be used to monitor autophagy in cultured mammalian cells by immunostaining and using fluorescently tagged autophagy-related proteins such as GFP- or mRFP-GFP-tandem-tagged proteins as well as electron microscopic methods, including electron tomography and immuno-electron microscopy.

  9. Autophagy during vertebrate development.

    PubMed

    Aburto, María R; Hurlé, Juan M; Varela-Nieto, Isabel; Magariños, Marta

    2012-08-02

    Autophagy is an evolutionarily conserved catabolic process by which cells degrade their own components through the lysosomal machinery. In physiological conditions, the mechanism is tightly regulated and contributes to maintain a balance between synthesis and degradation in cells undergoing intense metabolic activities. Autophagy is associated with major tissue remodeling processes occurring through the embryonic, fetal and early postnatal periods of vertebrates. Here we survey current information implicating autophagy in cellular death, proliferation or differentiation in developing vertebrates. In developing systems, activation of the autophagic machinery could promote different outcomes depending on the cellular context. Autophagy is thus an extraordinary tool for the developing organs and tissues.

  10. Nucleofection of rat pheochromocytoma PC-12 cells with human mutated beta-amyloid precursor protein gene (APP-sw) leads to reduced viability, autophagy-like process, and increased expression and secretion of beta amyloid.

    PubMed

    Pająk, Beata; Kania, Elżbieta; Orzechowski, Arkadiusz

    2015-01-01

    Pheochromocytoma PC-12 cells are immune to physiological stimuli directed to evoke programmed cell death. Besides, metabolic inhibitors are incapable of sensitizing PC-12 cells to extrinsic or intrinsic apoptosis unless they are used in toxic concentrations. Surprisingly, these cells become receptive to cell deletion after human APP-sw gene expression. We observed reduced cell viability in GFP vector + APP-sw-nucleofected cells (drop by 36%) but not in GFP vector - or GFP vector + APP-wt-nucleofected cells. Lower viability was accompanied by higher expression of Aβ 1-16 and elevated secretion of Aβ 1-40 (in average 53.58 pg/mL). At the ultrastructural level autophagy-like process was demonstrated to occur in APP-sw-nucleofected cells with numerous autophagosomes and multivesicular bodies but without autolysosomes. Human APP-sw gene is harmful to PC-12 cells and cells are additionally driven to incomplete autophagy-like process. When stimulated by TRAIL or nystatin, CLU protein expression accompanies early phase of autophagy.

  11. Nucleofection of Rat Pheochromocytoma PC-12 Cells with Human Mutated Beta-Amyloid Precursor Protein Gene (APP-sw) Leads to Reduced Viability, Autophagy-Like Process, and Increased Expression and Secretion of Beta Amyloid

    PubMed Central

    Pająk, Beata; Kania, Elżbieta

    2015-01-01

    Pheochromocytoma PC-12 cells are immune to physiological stimuli directed to evoke programmed cell death. Besides, metabolic inhibitors are incapable of sensitizing PC-12 cells to extrinsic or intrinsic apoptosis unless they are used in toxic concentrations. Surprisingly, these cells become receptive to cell deletion after human APP-sw gene expression. We observed reduced cell viability in GFP vector + APP-sw-nucleofected cells (drop by 36%) but not in GFP vector − or GFP vector + APP-wt-nucleofected cells. Lower viability was accompanied by higher expression of Aβ 1-16 and elevated secretion of Aβ 1-40 (in average 53.58 pg/mL). At the ultrastructural level autophagy-like process was demonstrated to occur in APP-sw-nucleofected cells with numerous autophagosomes and multivesicular bodies but without autolysosomes. Human APP-sw gene is harmful to PC-12 cells and cells are additionally driven to incomplete autophagy-like process. When stimulated by TRAIL or nystatin, CLU protein expression accompanies early phase of autophagy. PMID:25821818

  12. Apoptosis and autophagy in photoreceptors exposed to oxidative stress.

    PubMed

    Kunchithapautham, Kannan; Rohrer, Bärbel

    2007-01-01

    Studies on human and animal models of retinal dystrophy have suggested that apoptosis may be the common pathway of photoreceptor cell death. Autophagy, the major cellular degradation process in animal cells, is important in normal development and tissue remodeling, as well as under pathological conditions. Previously we provided evidence that genes, whose products are involved in apoptosis and autophagy, may be coexpressed in photoreceptors undergoing degeneration. Here, we investigated autophagy in oxidative stress-mediated cell death in photoreceptors, analyzing the light-damage mouse model and 661W photoreceptor cells challenged with H(2)O(2). In the in vivo model, we demonstrated a time-dependent increase in the number of TUNEL-positive cells, concomitant with the formation of autophagosomes. In vitro, oxidative stress increased mRNA levels of apoptotic and autophagic marker genes. H(2)O(2) treatment resulted in the accumulation of TUNEL-positive cells, the majority of which contain autophagosomes. To determine whether autophagy and apoptosis might precede each other or co-occur, we performed inhibitor studies. The autophagy inhibitor 3-methyladenine (3-MA), silencing RNA (siRNA) against two genes whose products are required for autophagy (autophagy-related (ATG) gene 5 and beclin 1), as well as the pan-caspase-3 inhibitor, Zvad-fmk, were both found to partially block cell death. Blocking autophagy also significantly decreased caspase-3 activity, whereas blocking apoptosis increased the formation of autophagosomes. The survival effects of 3?MA and zVAD-fmk were not additive; rather treatment with both inhibitors lead to increased cell death by necrosis. In summary, the study first suggests that autophagy participates in photoreceptor cell death possibly by initiating apoptosis. Second, it confirms that cells that normally die by apoptosis will execute cell death by necrosis if the normal pathway is blocked. And third, these results argue that the up

  13. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control[W

    PubMed Central

    Ramundo, Silvia; Casero, David; Mühlhaus, Timo; Hemme, Dorothea; Sommer, Frederik; Crèvecoeur, Michèle; Rahire, Michèle; Schroda, Michael; Rusch, Jannette; Goodenough, Ursula; Pellegrini, Matteo; Perez-Perez, Maria Esther; Crespo, José Luis; Schaad, Olivier; Civic, Natacha; Rochaix, Jean David

    2014-01-01

    Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria. PMID:24879428

  14. Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control.

    PubMed

    Ramundo, Silvia; Casero, David; Mühlhaus, Timo; Hemme, Dorothea; Sommer, Frederik; Crèvecoeur, Michèle; Rahire, Michèle; Schroda, Michael; Rusch, Jannette; Goodenough, Ursula; Pellegrini, Matteo; Perez-Perez, Maria Esther; Crespo, José Luis; Schaad, Olivier; Civic, Natacha; Rochaix, Jean David

    2014-05-01

    Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.

  15. Autophagy meets phagocytosis.

    PubMed

    Cadwell, Ken; Philips, Jennifer A

    2013-09-19

    Autophagy can degrade intracellular bacteria, but how this pathway contributes to phagocytosis is unclear. In this issue of Immunity, Bonilla et al. (2013) demonstrate an additional role for autophagy in Mycobacterium tuberculosis internalization by macrophages. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Autophagy and Skeletal Muscles in Sepsis

    PubMed Central

    Mofarrahi, Mahroo; Sigala, Ioanna; Guo, Yeting; Godin, Richard; Davis, Elaine C.; Petrof, Basil; Sandri, Marco

    2012-01-01

    Background Mitochondrial injury develops in skeletal muscles during the course of severe sepsis. Autophagy is a protein and organelle recycling pathway which functions to degrade or recycle unnecessary, redundant, or inefficient cellular components. No information is available regarding the degree of sepsis-induced mitochondrial injury and autophagy in the ventilatory and locomotor muscles. This study tests the hypotheses that the locomotor muscles are more prone to sepsis-induced mitochondrial injury, depressed biogenesis and autophagy induction compared with the ventilatory muscles. Methodology/Principal Findings Adult male C57/Bl6 mice were injected with i.p. phosphate buffered saline (PBS) or E. coli lipopolysaccharide (LPS, 20 mg/kg) and sacrificed 24 h later. The tibialis anterior (TA), soleus (SOLD) and diaphragm (DIA) muscles were quickly excised and examined for mitochondrial morphological injury, Ca++ retention capacity and biogenesis. Autophagy was detected with electron microscopy, lipidation of Lc3b proteins and by measuring gene expression of several autophagy-related genes. Electron microscopy revealed ultrastructural injuries in the mitochondria of each muscle, however, injuries were more severe in the TA and SOL muscles than they were in the DIA. Gene expressions of nuclear and mitochondrial DNA transcription factors and co-activators (indicators of biogenesis) were significantly depressed in all treated muscles, although to a greater extent in the TA and SOL muscles. Significant autophagosome formation, Lc3b protein lipidation and upregulation of autophagy-related proteins were detected to a greater extent in the TA and SOL muscles and less so in the DIA. Lipidation of Lc3b and the degree of induction of autophagy-related proteins were significantly blunted in mice expressing a muscle-specific IκBα superrepresor. Conclusion/Significance We conclude that locomotor muscles are more prone to sepsis-induced mitochondrial injury, decreased biogenesis

  17. Parkinson's disease and autophagy.

    PubMed

    Sánchez-Pérez, Ana María; Claramonte-Clausell, Berta; Sánchez-Andrés, Juan Vicente; Herrero, María Trinidad

    2012-01-01

    It is generally accepted that a correlation between neurodegenerative disease and protein aggregation in the brain exists; however, a causal relationship has not been elucidated. In neurons, failure of autophagy may result in the accumulation of aggregate-prone proteins and subsequent neurodegeneration. Thus, pharmacological induction of autophagy to enhance the clearance of intracytoplasmic aggregate-prone proteins has been considered as a therapeutic strategy to ameliorate pathology in cell and animal models of neurodegenerative disorders. However, autophagy has also been found to be a factor in the onset of these diseases, which raises the question of whether autophagy induction is an effective therapeutic strategy, or, on the contrary, can result in cell death. In this paper, we will first describe the autophagic machinery, and we will consider the literature to discuss the neuroprotective effects of autophagy.

  18. Parkinson's Disease and Autophagy

    PubMed Central

    Sánchez-Pérez, Ana María; Claramonte-Clausell, Berta; Sánchez-Andrés, Juan Vicente; Herrero, María Trinidad

    2012-01-01

    It is generally accepted that a correlation between neurodegenerative disease and protein aggregation in the brain exists; however, a causal relationship has not been elucidated. In neurons, failure of autophagy may result in the accumulation of aggregate-prone proteins and subsequent neurodegeneration. Thus, pharmacological induction of autophagy to enhance the clearance of intracytoplasmic aggregate-prone proteins has been considered as a therapeutic strategy to ameliorate pathology in cell and animal models of neurodegenerative disorders. However, autophagy has also been found to be a factor in the onset of these diseases, which raises the question of whether autophagy induction is an effective therapeutic strategy, or, on the contrary, can result in cell death. In this paper, we will first describe the autophagic machinery, and we will consider the literature to discuss the neuroprotective effects of autophagy. PMID:23125941

  19. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies

    PubMed Central

    Haidar, Mansour; Timmerman, Vincent

    2017-01-01

    The inherited peripheral neuropathies (IPNs) comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer’s, Parkinson’s, and Huntington’s diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting. PMID:28553203

  20. Autophagy as an Emerging Common Pathomechanism in Inherited Peripheral Neuropathies.

    PubMed

    Haidar, Mansour; Timmerman, Vincent

    2017-01-01

    The inherited peripheral neuropathies (IPNs) comprise a growing list of genetically heterogeneous diseases. With mutations in more than 80 genes being reported to cause IPNs, a wide spectrum of functional consequences is expected to follow this genotypic diversity. Hence, the search for a common pathomechanism among the different phenotypes has become the holy grail of functional research into IPNs. During the last decade, studies on several affected genes have shown a direct and/or indirect correlation with autophagy. Autophagy, a cellular homeostatic process, is required for the removal of cell aggregates, long-lived proteins and dead organelles from the cell in double-membraned vesicles destined for the lysosomes. As an evolutionarily highly conserved process, autophagy is essential for the survival and proper functioning of the cell. Recently, neuronal cells have been shown to be particularly vulnerable to disruption of the autophagic pathway. Furthermore, autophagy has been shown to be affected in various common neurodegenerative diseases of both the central and the peripheral nervous system including Alzheimer's, Parkinson's, and Huntington's diseases. In this review we provide an overview of the genes involved in hereditary neuropathies which are linked to autophagy and we propose the disruption of the autophagic flux as an emerging common pathomechanism. We also shed light on the different steps of the autophagy pathway linked to these genes. Finally, we review the concept of autophagy being a therapeutic target in IPNs, and the possibilities and challenges of this pathway-specific targeting.

  1. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.

    PubMed

    Li, Weiwei; Chen, Ming; Wang, Erhui; Hu, Liqin; Hawkesford, Malcolm J; Zhong, Li; Chen, Zhu; Xu, Zhaoshi; Li, Liancheng; Zhou, Yongbin; Guo, Changhong; Ma, Youzhi

    2016-10-12

    Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Our results deepen understanding about the characteristics and functions of ATG genes in

  2. Microgravity control of autophagy modulates osteoclastogenesis.

    PubMed

    Sambandam, Yuvaraj; Townsend, Molly T; Pierce, Jason J; Lipman, Cecilia M; Haque, Azizul; Bateman, Ted A; Reddy, Sakamuri V

    2014-04-01

    Evidence indicates that astronauts experience significant bone loss during space mission. Recently, we used the NASA developed rotary cell culture system (RCCS) to simulate microgravity (μXg) conditions and demonstrated increased osteoclastogenesis in mouse bone marrow cultures. Autophagy is a cellular recycling process of nutrients. Therefore, we hypothesize that μXg control of autophagy modulates osteoclastogenesis. Real-time PCR analysis of total RNA isolated from mouse bone marrow derived non-adherent cells subjected to modeled μXg showed a significant increase in autophagic marker Atg5, LC3 and Atg16L mRNA expression compared to ground based control (Xg) cultures. Western blot analysis of total cell lysates identified an 8.0-fold and 7.0-fold increase in the Atg5 and LC3-II expression, respectively. Confocal microscopy demonstrated an increased autophagosome formation in μXg subjected RAW 264.7 preosteoclast cells. RT(2) profiler PCR array screening for autophagy related genes identified that μXg upregulates intracellular signaling molecules associated with autophagy, autophagosome components and inflammatory cytokines/growth factors which coregulate autophagy in RAW 264.7 preosteoclast cells. Autophagy inhibitor, 3-methyladenine (3-MA) treatment of mouse bone marrow derived non-adherent mononuclear cells showed a significant decrease in μXg induced Atg5 and LC3 mRNA expression in the presence or absence of RANK ligand (RANKL) stimulation. Furthermore, RANKL treatment significantly increased (8-fold) p-CREB transcription factor levels under μXg as compared to Xg cultures and 3-MA inhibited RANKL increased p-CREB expression in these cells. Also, 3-MA suppresses μXg elevated osteoclast differentiation in mouse bone marrow cultures. Thus, our results suggest that μXg induced autophagy plays an important role in enhanced osteoclast differentiation and could be a potential therapeutic target to prevent bone loss in astronauts during space flight missions.

  3. Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis.

    PubMed

    Whelan, Kelly A; Merves, Jamie F; Giroux, Veronique; Tanaka, Koji; Guo, Andy; Chandramouleeswaran, Prasanna M; Benitez, Alain J; Dods, Kara; Que, Jianwen; Masterson, Joanne C; Fernando, Shahan D; Godwin, Bridget C; Klein-Szanto, Andres J; Chikwava, Kudakwashe; Ruchelli, Eduardo D; Hamilton, Kathryn E; Muir, Amanda B; Wang, Mei-Lun; Furuta, Glenn T; Falk, Gary W; Spergel, Jonathan M; Nakagawa, Hiroshi

    2017-07-01

    The influence of eosinophilic oesophagitis (EoE)-associated inflammation upon oesophageal epithelial biology remains poorly understood. We investigated the functional role of autophagy in oesophageal epithelial cells (keratinocytes) exposed to the inflammatory EoE milieu. Functional consequences of genetic or pharmacological autophagy inhibition were assessed in endoscopic oesophageal biopsies, human oesophageal keratinocytes, single cell-derived ex vivo murine oesophageal organoids as well as a murine model recapitulating EoE-like inflammation and basal cell hyperplasia. Gene expression, morphological and functional characterisation of autophagy and oxidative stress were performed by transmission electron microscopy, immunostaining, immunoblotting, live cell imaging and flow cytometry. EoE-relevant inflammatory conditions promoted autophagy and basal cell hyperplasia in three independent murine EoE models and oesophageal organoids. Inhibition of autophagic flux via chloroquine treatment augmented basal cell hyperplasia in these model systems. Oesophageal keratinocytes stimulated with EoE-relevant cytokines, including tumour necrosis factor-α and interleukin-13 exhibited activation of autophagic flux in a reactive oxygen species-dependent manner. Autophagy inhibition via chloroquine treatment or depletion of Beclin-1 or ATG-7, augmented oxidative stress induced by EoE-relevant stimuli in murine EoE, oesophageal organoids and human oesophageal keratinocytes. Oesophageal epithelia of paediatric EoE patients with active inflammation displayed increased autophagic vesicle content compared with normal and EoE remission subjects. Functional flow cytometric analysis revealed autophagic flux in human oesophageal biopsies. Our findings reveal for the first time that autophagy may function as a cytoprotective mechanism to maintain epithelial redox balance and homeostasis under EoE inflammation-associated stress, providing mechanistic insights into the role of autophagy in

  4. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    PubMed Central

    Mulakkal, Nitha C.; Nagy, Peter; Takats, Szabolcs; Tusco, Radu; Juhász, Gábor; Nezis, Ioannis P.

    2014-01-01

    The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy. PMID:24949430

  5. Translational Control of Autophagy by Orb in the Drosophila Germline.

    PubMed

    Rojas-Ríos, Patricia; Chartier, Aymeric; Pierson, Stéphanie; Séverac, Dany; Dantec, Christelle; Busseau, Isabelle; Simonelig, Martine

    2015-12-07

    Drosophila Orb, the homolog of vertebrate CPEB, is a key translational regulator involved in oocyte polarity and maturation through poly(A) tail elongation of specific mRNAs. orb also has an essential function during early oogenesis that has not been addressed at the molecular level. Here, we show that orb prevents cell death during early oogenesis, thus allowing oogenesis to progress. It does so through the repression of autophagy by directly repressing, together with the CCR4 deadenylase, the translation of Autophagy-specific gene 12 (Atg12) mRNA. Autophagy and cell death observed in orb mutant ovaries are reduced by decreasing Atg12 or other Atg mRNA levels. These results reveal a role of Orb in translational repression and identify autophagy as an essential pathway regulated by Orb during early oogenesis. Importantly, they also establish translational regulation as a major mode of control of autophagy, a key process in cell homeostasis in response to environmental cues.

  6. Autophagy Paradox and Ceramide

    PubMed Central

    Jiang, Wenhui; Ogretmen, Besim

    2013-01-01

    Sphingolipid molecules act as bioactive lipid messengers and exert their actions on the regulation of various cellular signaling pathways. Sphingolipids play essential roles in numerous cellular functions, including controlling cell inflammation, proliferation, death, migration, senescence, tumor metastasis and/or autophagy. Dysregulated sphingolipid metabolism has been also implicated in many human cancers. Macroatuophagy (referred to here as autophagy) “self-eating”, is characterized by nonselective sequestering of cytosolic materials by an isolation membrane, which can be either protective or lethal for cells. Ceramide (Cer), a central molecule of sphingolipid metabolism, has been extensively implicated in the control of autophagy. The increasing evidence suggests Cer is highly involved in mediating two opposing autophagic pathways, which regulate either cell survival or death, autophagy paradox. However, the underlying mechanism that regulates the autophagy paradox remains unclear. Therefore, this review focuses on recent studies with regard to the regulation of autophagy by Cer and elucidate the roles and mechanisms of action of Cer in controlling autophagy paradox. PMID:24055889

  7. Autophagy in unicellular eukaryotes

    PubMed Central

    Kiel, Jan A. K. W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components will be catabolized by (macro)autophagy in order to re-use building blocks and to support ATP production. In many cases, autophagy takes care of cellular housekeeping to sustain cellular viability. Autophagy encompasses a multitude of related and often highly specific processes that are implicated in both biogenetic and catabolic processes. Recent data indicate that in some unicellular eukaryotes that undergo profound differentiation during their life cycle (e.g. kinetoplastid parasites and amoebes), autophagy is essential for the developmental change that allows the cell to adapt to a new host or form spores. This review summarizes the knowledge on the molecular mechanisms of autophagy as well as the cytoplasm-to-vacuole-targeting pathway, pexophagy, mitophagy, ER-phagy, ribophagy and piecemeal microautophagy of the nucleus, all highly selective forms of autophagy that have first been uncovered in yeast species. Additionally, a detailed analysis will be presented on the state of knowledge on autophagy in non-yeast unicellular eukaryotes with emphasis on the role of this process in differentiation. PMID:20124347

  8. Autophagy in unicellular eukaryotes.

    PubMed

    Kiel, Jan A K W

    2010-03-12

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components will be catabolized by (macro)autophagy in order to re-use building blocks and to support ATP production. In many cases, autophagy takes care of cellular housekeeping to sustain cellular viability. Autophagy encompasses a multitude of related and often highly specific processes that are implicated in both biogenetic and catabolic processes. Recent data indicate that in some unicellular eukaryotes that undergo profound differentiation during their life cycle (e.g. kinetoplastid parasites and amoebes), autophagy is essential for the developmental change that allows the cell to adapt to a new host or form spores. This review summarizes the knowledge on the molecular mechanisms of autophagy as well as the cytoplasm-to-vacuole-targeting pathway, pexophagy, mitophagy, ER-phagy, ribophagy and piecemeal microautophagy of the nucleus, all highly selective forms of autophagy that have first been uncovered in yeast species. Additionally, a detailed analysis will be presented on the state of knowledge on autophagy in non-yeast unicellular eukaryotes with emphasis on the role of this process in differentiation.

  9. Role of autophagy in the pathogenesis of multiple sclerosis.

    PubMed

    Liang, Peizhou; Le, Weidong

    2015-08-01

    Autophagy plays an important role in maintaining the cellular homeostasis. One of its functions is to degrade unnecessary organelles and proteins for energy recycling or amino-acids for cell survival. Ablation of autophagy leads to neurodegeneration. Multiple sclerosis (MS), a permanent neurological impairment typical of chronic inflammatory demyelinating disorder, is an auto-immune disease of the central nervous system (CNS). Autophagy is tightly linked to the innate and adaptive immune systems during the autoimmune process, and several studies have shown that autophagy directly participates in the progress of MS or experimental autoimmune encephalomyelitis (EAE, a mouse model of MS). Dysfunction of mitochondria that intensively influences the autophagy pathway is one of the important factors in the pathogenesis of MS. Autophagy-related gene (ATG) 5 and immune-related GTPase M (IRGM) 1 are increased, while ATG16L2 is decreased, in T-cells in EAE and active relapsing-remitting MS brains. Administration of rapamycin, an inhibitor of mammalian target of rapamycin ( mTOR), ameliorates relapsing-remitting EAE. Inflammation and oxidative stress are increased in MS lesions and EAE, but Lamp2 and the LC3-II/LC3-I ratio are decreased. Furthermore, autophagy in various glial cells plays important roles in regulating neuro-inflammation in the CNS, implying potential roles in MS. In this review, we discuss the role of autophagy in the peripheral immune system and the CNS in neuroinflammation associated with the pathogenesis of MS.

  10. Sestrin 1 ameliorates cardiac hypertrophy via autophagy activation.

    PubMed

    Xue, Ruicong; Zeng, Junyi; Chen, Yili; Chen, Cong; Tan, Weiping; Zhao, Jingjing; Dong, Bin; Sun, Yu; Dong, Yugang; Liu, Chen

    2017-02-09

    Cardiac hypertrophy is one of the major risk factors of cardiovascular morbidity and mortality. Autophagy is acknowledged to be an important mechanism regulating cardiac hypertrophy. Sestrin 1, a downstream target gene of p53, has been proven to regulate autophagy. However, the role of Sestrin 1 in cardiac hypertrophy remains unknown. Our study showed that Sestrin 1 mRNA and protein expression declined in pressure overload cardiac hypertrophy and phenylephrine (PE)-induced cardiac hypertrophy. Knockdown of Sestrin 1 by RNAi deteriorated PE-induced cardiac hypertrophy, whereas the overexpression of Sestrin 1 by adenovirus transfection blunted hypertrophy. We discovered that knockdown of Sestrin 1 resulted in impaired autophagy while overexpression of Sestrin 1 resulted in increased autophagy without affecting lysosomal function. In addition, the antihypertrophic effect of Sestrin 1 overexpression was eliminated by autophagy blockade. Importantly, Sestrin 1 targets at the AMPK/mTORC1/autophagy pathway to inhibit cardiac hypertrophy by interaction with AMPK which is responsible for autophagy regulation. Taken together, our data indicate that Sestrin 1 regulates AMPK/mTORC1/autophagy axis to attenuate cardiac hypertrophy.

  11. Autophagy Is Associated with Pathogenesis of Haemophilus parasuis

    PubMed Central

    Zhang, Yaning; Li, Yufeng; Yuan, Wentao; Xia, Yuting; Shen, Yijuan

    2016-01-01

    Haemophilus parasuis (H. parasuis) is a common commensal Gram-negative extracellular bacterium in the upper respiratory tract of swine, which can cause Glässer's disease in stress conditions. Research on the pathogenicity of H. parasuis has mainly focused on immune evasion and bacterial virulence factors, while few studies have examined the interactions of H. parasuis and its host. Autophagy is associated with the replication and proliferation of many pathogenic bacteria, but whether it plays a role during infection by H. parasuis is unknown. In this study, an adenovirus construct expressing GFP, RFP, and LC3 was used to infect H. parasuis. Western blotting, laser confocal microscopy, and electron microscopy showed that Hps5 infection induced obvious autophagy in PK-15 cells. In cells infected with strains of H. parasuis differing in invasiveness, the levels of autophagy were positively correlated with the presence of alive bacteria in PK-15 cells. In addition, autophagy inhibited the invasion of Hps5 in PK-15 cells. Autophagy related genes Beclin, Atg5 and Atg7 were silenced with RNA interference, the results showed that autophagy induced by H. parasuis infection is a classical pathway. Our observations demonstrate that H. parasuis can induce autophagy and that the levels of autophagy are associated with the presence of alive bacteria in cells, which opened novel avenues to further our understanding of H. parasuis-host interplay and pathogenesis. PMID:27703447

  12. Links of autophagy dysfunction to inflammatory bowel disease onset

    PubMed Central

    El-Khider, Faris; McDonald, Christine

    2017-01-01

    Introduction Autophagy is a cellular stress response that plays key roles in physiological processes, such as adaptation to starvation, degradation of aberrant proteins or organelles, anti-microbial defense, protein secretion, and innate and adaptive immunity. Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including inflammatory bowel disease (IBD). Genetic studies have identified multiple IBD-associated risk loci that include genes required for autophagy, and several lines of evidence demonstrate that autophagy is impaired in IBD patients. How dysfunctional autophagy contributes to IBD onset is currently under investigation by researchers. Key messages Dysfunctional autophagy has been identified to play a role IBD pathogenesis by altering processes that include: (1) intracellular bacterial killing, (2) anti-microbial peptide secretion by Paneth cells, (3) pro-inflammatory cytokine production by macrophages, (4) antigen presentation by dendritic cells, (5) goblet cell function, and (6) the endoplasmic reticulum stress response in enterocytes. The overall effect of dysregulation of these processes varies by cell type, stimulus, as well as cellular context. Manipulation of the autophagic pathway may provide a new avenue in the search for effective therapies for IBD. Conclusion Autophagy plays multiple roles in IBD pathogenesis. A better understanding of the role of autophagy in IBD patients may provide better subclassification of IBD phenotypes and novel approaches to disease management. PMID:26982478

  13. Autophagy in protists

    PubMed Central

    Duszenko, Michael; Ginger, Michael L; Brennand, Ana; Gualdrón-López, Melisa; Colombo, Maria-Isabel; Coombs, Graham H; Coppens, Isabelle; Jayabalasingham, Bamini; Langsley, Gordon; de Castro, Solange Lisboa; Menna-Barreto, Rubem; Mottram, Jeremy C; Navarro, Miguel; Rigden, Daniel J; Romano, Patricia S; Stoka, Veronika; Turk, Boris

    2011-01-01

    Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles and defense against parasitic invaders. During the past 10–20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target. PMID:20962583

  14. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes.

    PubMed

    Lim, Yu-Mi; Lim, Hyejin; Hur, Kyu Yeon; Quan, Wenying; Lee, Hae-Youn; Cheon, Hwanju; Ryu, Dongryeol; Koo, Seung-Hoi; Kim, Hong Lim; Kim, Jin; Komatsu, Masaaki; Lee, Myung-Shik

    2014-09-26

    Despite growing interest in the relationship between autophagy and systemic metabolism, how global changes in autophagy affect metabolism remains unclear. Here we show that mice with global haploinsufficiency of an essential autophagy gene (Atg7(+/-) mice) do not show metabolic abnormalities but develop diabetes when crossed with ob/ob mice. Atg7(+/-)-ob/ob mice show aggravated insulin resistance with increased lipid content and inflammatory changes, suggesting that autophagy haploinsufficiency impairs the adaptive response to metabolic stress. We further demonstrate that intracellular lipid content and insulin resistance after lipid loading are increased as a result of autophagy insufficiency, and provide evidence for increased inflammasome activation in Atg7(+/-)-ob/ob mice. Imatinib or trehalose improves metabolic parameters of Atg7(+/-)-ob/ob mice and enhances autophagic flux. These results suggest that systemic autophagy insufficiency could be a factor in the progression from obesity to diabetes, and autophagy modulators have therapeutic potential against diabetes associated with obesity and inflammation.

  15. Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines.

    PubMed

    Cebollero, Eduardo; Gonzalez, Ramon

    2006-06-01

    Autophagy is a transport system mediated by vesicles, ubiquitous in eukaryotic cells, by which bulk cytoplasm is targeted to a lysosome or vacuole for degradation. In the yeast Saccharomyces cerevisiae, autophagy is triggered by nutritional stress conditions (e.g., carbon- or nitrogen-depleted medium). In this study we showed that there is induction of autophagy in second-fermentation yeasts during sparkling wine making. Two methods were employed to detect autophagy: a biochemical approach based on depletion of the protein acetaldehyde dehydrogenase Ald6p and a morphological strategy consisting of visualization of autophagic bodies and autophagosomes, which are intermediate vesicles in the autophagic process, by transmission electron microscopy. This study provides the first demonstration of autophagy in second-fermentation yeasts under enological conditions. The correlation between autophagy and yeast autolysis during sparkling wine production is discussed, and genetic engineering of autophagy-related genes in order to accelerate the aging steps in wine making is proposed.

  16. Induction of Autophagy by Second-Fermentation Yeasts during Elaboration of Sparkling Wines

    PubMed Central

    Cebollero, Eduardo; Gonzalez, Ramon

    2006-01-01

    Autophagy is a transport system mediated by vesicles, ubiquitous in eukaryotic cells, by which bulk cytoplasm is targeted to a lysosome or vacuole for degradation. In the yeast Saccharomyces cerevisiae, autophagy is triggered by nutritional stress conditions (e.g., carbon- or nitrogen-depleted medium). In this study we showed that there is induction of autophagy in second-fermentation yeasts during sparkling wine making. Two methods were employed to detect autophagy: a biochemical approach based on depletion of the protein acetaldehyde dehydrogenase Ald6p and a morphological strategy consisting of visualization of autophagic bodies and autophagosomes, which are intermediate vesicles in the autophagic process, by transmission electron microscopy. This study provides the first demonstration of autophagy in second-fermentation yeasts under enological conditions. The correlation between autophagy and yeast autolysis during sparkling wine production is discussed, and genetic engineering of autophagy-related genes in order to accelerate the aging steps in wine making is proposed. PMID:16751523

  17. Lithium and Autophagy

    PubMed Central

    2014-01-01

    Lithium, a drug used to treat bipolar disorders, has a variety of neuroprotective mechanisms, including autophagy regulation, in various neuropsychiatric conditions. In neurodegenerative diseases, lithium enhances degradation of aggregate-prone proteins, including mutated huntingtin, phosphorylated tau, and α-synuclein, and causes damaged mitochondria to degrade, while in a mouse model of cerebral ischemia and Alzheimer’s disease autophagy downregulation by lithium is observed. The signaling pathway of lithium as an autophagy enhancer might be associated with the mammalian target of rapamycin (mTOR)-independent pathway, which is involved in myo-inositol-1,4,5-trisphosphate (IP3) in Huntington’s disease and Parkinson’s disease. However, the mTOR-dependent pathway might be involved in inhibiting glycogen synthase kinase-3β (GSK3β) in other diseases. Lithium’s autophagy-enhancing property may contribute to the therapeutic benefit of patients with neuropsychiatric disorders. PMID:24738557

  18. Targeted Deletion of Autophagy Genes Atg5 or Atg7 in the Chondrocytes Promotes Caspase-Dependent Cell Death and Leads to Mild Growth Retardation.

    PubMed

    Vuppalapati, Karuna K; Bouderlique, Thibault; Newton, Phillip T; Kaminskyy, Vitaliy O; Wehtje, Henrik; Ohlsson, Claes; Zhivotovsky, Boris; Chagin, Andrei S

    2015-12-01

    Longitudinal bone growth takes place in epiphyseal growth plates located in the ends of long bones. The growth plate consists of chondrocytes traversing from the undifferentiated (resting zone) to the terminally differentiated (hypertrophic zone) stage. Autophagy is an intracellular catabolic process of lysosome-dependent recycling of intracellular organelles and protein complexes. Autophagy is activated during nutritionally depleted or hypoxic conditions in order to facilitate cell survival. Chondrocytes in the middle of the growth plate are hypoxic and nutritionally depleted owing to the avascular nature of the growth plate. Accordingly, autophagy may facilitate their survival. To explore the role of autophagy in chondrocyte survival and constitutional bone growth, we generated mice with cartilage-specific ablation of either Atg5 (Atg5cKO) or Atg7 (Atg7cKO) by crossing Atg5 or Atg7 floxed mice with cartilage-specific collagen type 2 promoter-driven Cre. Both Atg5cKO and Atg7cKO mice showed growth retardation associated with enhanced chondrocyte cell death and decreased cell proliferation. Similarly, inhibition of autophagy by Bafilomycin A1 (Baf) or 3-methyladenine (3MA) promoted cell death in cultured slices of human growth plate tissue. To delineate the underlying mechanisms we employed ex vivo cultures of mouse metatarsal bones and RCJ3.IC5.18 rat chondrogenic cell line. Baf or 3MA impaired metatarsal bone growth associated with processing of caspase-3 and massive cell death. Similarly, treatment of RCJ3.IC5.18 chondrogenic cells by Baf also showed massive cell death and caspase-3 cleavage. This was associated with activation of caspase-9 and cytochrome C release. Altogether, our data suggest that autophagy is important for chondrocyte survival, and inhibition of this process leads to stunted growth and caspase-dependent death of chondrocytes.

  19. Autophagy Is an Innate Mechanism Associated with Leprosy Polarization

    PubMed Central

    Andrade, Priscila Ribeiro; Ferreira, Helen; Nery, José Augusto da Costa; Côrte-Real, Suzana; da Silva, Gilberto Marcelo Sperandio; Rosa, Patricia Sammarco; Fabri, Mario; Sarno, Euzenir Nunes

    2017-01-01

    Leprosy is a chronic infectious disease that may present different clinical forms according to the immune response of the host. Levels of IFN-γ are significantly raised in paucibacillary tuberculoid (T-lep) when compared with multibacillary lepromatous (L-lep) patients. IFN-γ primes macrophages for inflammatory activation and induces the autophagy antimicrobial mechanism. The involvement of autophagy in the immune response against Mycobacterium leprae remains unexplored. Here, we demonstrated by different autophagic assays that LC3-positive autophagosomes were predominantly observed in T-lep when compared with L-lep lesions and skin-derived macrophages. Accumulation of the autophagic receptors SQSTM1/p62 and NBR1, expression of lysosomal antimicrobial peptides and colocalization analysis of autolysosomes revealed an impairment of the autophagic flux in L-lep cells, which was restored by IFN-γ or rapamycin treatment. Autophagy PCR array gene-expression analysis revealed a significantly upregulation of autophagy genes (BECN1, GPSM3, ATG14, APOL1, and TPR) in T-lep cells. Furthermore, an upregulation of autophagy genes (TPR, GFI1B and GNAI3) as well as LC3 levels was observed in cells of L-lep patients that developed type 1 reaction (T1R) episodes, an acute inflammatory condition associated with increased IFN-γ levels. Finally, we observed increased BCL2 expression in L-lep cells that could be responsible for the blockage of BECN1-mediated autophagy. In addition, in vitro studies demonstrated that dead, but not live M. leprae can induce autophagy in primary and lineage human monocytes, and that live mycobacteria can reduce the autophagy activation triggered by dead mycobacteria, suggesting that M. leprae may hamper the autophagic machinery as an immune escape mechanism. Together, these results indicate that autophagy is an important innate mechanism associated with the M. leprae control in skin macrophages. PMID:28056107

  20. [Autophagy in the kidney].

    PubMed

    Pallet, Nicolas

    2017-03-01

    Autophagy is a highly conserved, physiological, catabolic process, involving the lysosomal degradation of cytosolic components, including macromolecules (such as proteins and lipids) and cytosolic organelles. Autophagy is believed to be essential for the maintenance of cellular homeostasis, for a number of fundamental biological activities, and an important component of the complex response of cells to multiple forms of stress. Autophagy is involved in the pathogenesis of a number of clinically important disorders but, until recently, little was known about its connection to kidney diseases. However, there is now growing evidence that autophagy is specifically linked to the pathogenesis of important renal diseases such as acute kidney injury, diabetic nephropathy and polycystic kidney disease. However, an understanding of the precise role of autophagy in the course of kidney diseases is still in its infancy. The review points out areas of particular interest for future research, and also discusses the importance of such information on whether the pharmacologic agents that modulate autophagy are potentially usable as novel forms of treatment for various kidney diseases. © 2017 médecine/sciences – Inserm.

  1. Ghrelin and autophagy.

    PubMed

    Ezquerro, Silvia; Frühbeck, Gema; Rodríguez, Amaia

    2017-09-01

    A compromised autophagy is associated with the onset of obesity, type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases. Our aim is to review the potential role of ghrelin, a gut hormone involved in energy homeostasis, in the regulation of autophagy. In the recent years, it has been demonstrated that autophagy constitutes an important mechanism by which ghrelin exerts a plethora of central and peripheral actions. Ghrelin enhances autophagy through the activation of AMP-activated protein kinase in different target organs to regulate lipid and glucose metabolism, the remodeling and protection of small intestine mucosa, protection against cardiac ischemia as well as higher brain functions such as learning and memory consolidation. Nonetheless, in inflammatory states, such as acute hepatitis, liver fibrosis or adipose tissue inflammation, ghrelin acts as an anti-inflammatory factor reducing the autophagic flux to prevent further cell injury. Interestingly, several cardiometabolic disorders, including obesity, type 2 diabetes, nonalcoholic fatty liver disease or chronic heart failure are accompanied by low ghrelin levels in addition to altered autophagy. Ghrelin represents an attractive target for development of therapeutics for prevention or treatment of metabolic, cardiac or neuronal disorders, in which autophagy is impaired.

  2. Autophagy in Cancer Metastasis

    PubMed Central

    Mowers, Erin E.; Sharifi, Marina N.; Macleod, Kay F.

    2016-01-01

    Autophagy is a highly conserved self-degradative process that plays a key role in cellular stress responses and survival. Recent work has begun to explore the function of autophagy in cancer metastasis, which is of particular interest given the dearth of effective therapeutic options for metastatic disease. Autophagy is induced upon progression of various human cancers to metastasis and together with data from genetically engineered mice and experimental metastasis models, a role for autophagy at nearly every phase of the metastatic cascade has been identified. Specifically, autophagy has been shown to be involved in modulating tumor cell motility and invasion, cancer stem cell viability and differentiation, resistance to anoikis, epithelial-to-mesenchymal transition, tumor cell dormancy and escape from immune surveillance, with emerging functions in establishing the pre-metastatic niche and other aspects of metastasis. In this review, we provide a general overview of how autophagy modulates cancer metastasis and discuss the significance of new findings for disease management. PMID:27593926

  3. Autophagy in Trypanosomatids

    PubMed Central

    Brennand, Ana; Rico, Eva; Michels, Paul A. M.

    2012-01-01

    Autophagy is a ubiquitous eukaryotic process that also occurs in trypanosomatid parasites, protist organisms belonging to the supergroup Excavata, distinct from the supergroup Opistokontha that includes mammals and fungi. Half of the known yeast and mammalian AuTophaGy (ATG) proteins were detected in trypanosomatids, although with low sequence conservation. Trypanosomatids such as Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. are responsible for serious tropical diseases in humans. The parasites are transmitted by insects and, consequently, have a complicated life cycle during which they undergo dramatic morphological and metabolic transformations to adapt to the different environments. Autophagy plays a major role during these transformations. Since inhibition of autophagy affects the transformation, survival and/or virulence of the parasites, the ATGs offer promise for development of drugs against tropical diseases. Furthermore, various trypanocidal drugs have been shown to trigger autophagy-like processes in the parasites. It is inferred that autophagy is used by the parasites in an—not always successful—attempt to cope with the stress caused by the toxic compounds. PMID:24710480

  4. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep?

    PubMed

    Goehe, Rachel W; Di, Xu; Sharma, Khushboo; Bristol, Molly L; Henderson, Scott C; Valerie, Kristoffer; Rodier, Francis; Davalos, Albert R; Gewirtz, David A

    2012-12-01

    Exposure of MCF-7 breast tumor cells or HCT-116 colon carcinoma cells to clinically relevant concentrations of doxorubicin (Adriamycin; Farmitalia Research Laboratories, Milan, Italy) or camptothecin results in both autophagy and senescence. To determine whether autophagy is required for chemotherapy-induced senescence, reactive oxygen generation induced by Adriamycin was suppressed by N-acetyl cysteine and glutathione, and the induction of ataxia telangiectasia mutated, p53, and p21 was modulated pharmacologically and/or genetically. In all cases, autophagy and senescence were collaterally suppressed. The close association between autophagy and senescence indicated by these experiments reflects their collateral regulation via common signaling pathways. The potential relationship between autophagy and senescence was further examined through pharmacologic inhibition of autophagy with chloroquine and 3-methyl-adenine and genetic ablation of the autophagy-related genes ATG5 and ATG7. However, inhibition of autophagy by pharmacological and genetic approaches could not entirely abrogate the senescence response, which was only reduced and/or delayed. Taken together, our findings suggest that autophagy and senescence tend to occur in parallel, and furthermore that autophagy accelerates the development of the senescent phenotype. However, these responses are not inexorably linked or interdependent, as senescence can occur when autophagy is abrogated.

  5. Increased autophagy contributes to the inflammatory phenotype of juvenile idiopathic arthritis synovial fluid T cells.

    PubMed

    Peeters, Janneke G C; de Graeff, Nienke; Lotz, Martin; Albani, Salvatore; de Roock, Sytze; van Loosdregt, Jorg

    2017-10-01

    JIA is an autoimmune disease involving disturbed T-cell homeostasis, marked by highly activated effector T cells. Autophagy, a lysosomal degradation pathway, is crucial for maintaining cellular homeostasis by regulating the survival, differentiation and function of a large variety of cells, including T cells. The aim of this study was to examine the rate of autophagy in JIA T cells and to investigate the effect of inhibition of autophagy on the inflammatory phenotype of JIA T cells. Autophagy-related gene expression was analysed in CD4+ T cells from the SF of JIA patients and healthy controls using RNA sequencing. Autophagy was measured by flow cytometry and western blot. The effect of inhibition of autophagy, using HCQ, on the cellular activation status was analysed using flow cytometry and multiplex immunoassay. Autophagy was increased in T cells derived from the site of inflammation compared with cells from the peripheral blood of patients and healthy controls. This increase in autophagy was not induced by JIA SF, but is more likely to be the result of increased cellular activation. Inhibition of autophagy reduced proliferation, cytokine production and activation marker expression of JIA SF-derived CD4+ T cells. These data indicate that autophagy is increased in JIA SF-derived T cells and that targeting autophagy could be a promising therapeutic strategy to restore the disrupted T-cell homeostasis in JIA.

  6. The Autophagy-Senescence Connection in Chemotherapy: Must Tumor Cells (Self) Eat Before They Sleep?

    PubMed Central

    Goehe, Rachel W.; Di, Xu; Sharma, Khushboo; Bristol, Molly L.; Henderson, Scott C.; Valerie, Kristoffer; Rodier, Francis; Davalos, Albert R.

    2012-01-01

    Exposure of MCF-7 breast tumor cells or HCT-116 colon carcinoma cells to clinically relevant concentrations of doxorubicin (Adriamycin; Farmitalia Research Laboratories, Milan, Italy) or camptothecin results in both autophagy and senescence. To determine whether autophagy is required for chemotherapy-induced senescence, reactive oxygen generation induced by Adriamycin was suppressed by N-acetyl cysteine and glutathione, and the induction of ataxia telangiectasia mutated, p53, and p21 was modulated pharmacologically and/or genetically. In all cases, autophagy and senescence were collaterally suppressed. The close association between autophagy and senescence indicated by these experiments reflects their collateral regulation via common signaling pathways. The potential relationship between autophagy and senescence was further examined through pharmacologic inhibition of autophagy with chloroquine and 3-methyl-adenine and genetic ablation of the autophagy-related genes ATG5 and ATG7. However, inhibition of autophagy by pharmacological and genetic approaches could not entirely abrogate the senescence response, which was only reduced and/or delayed. Taken together, our findings suggest that autophagy and senescence tend to occur in parallel, and furthermore that autophagy accelerates the development of the senescent phenotype. However, these responses are not inexorably linked or interdependent, as senescence can occur when autophagy is abrogated. PMID:22927544

  7. Assessing Metabolic Stress and Autophagy Status in Epithelial Tumors

    PubMed Central

    Mathew, Robin; Karantza-Wadsworth, Vassiliki; White, Eileen

    2010-01-01

    Autophagy is a survival mechanism activated in response to metabolic stress. In normal tissues autophagy plays a major role in energy homeostasis through catabolic self-digestion of damaged proteins and organelles. Contrary to its survival function, autophagy defects are implicated in tumorigenesis suggesting that autophagy is a tumor suppression mechanism. Although the exact mechanism of this tumor suppressor function is not known, it likely involves mitigation of cellular damage leading to chromosomal instability. The complex role of functional autophagy in tumors calls for model systems that allow the assessment of autophagy status, stress management and the impact on oncogenesis both in vitro as well as in vivo. We developed model systems that involve generation of genetically defined, isogenic and immortal epithelial cells from different tissue types that are applicable to both wild-type and mutant mice. This permits the study of tissue- as well as gene-specific tumor promoting functions. We successfully employed this strategy to generate isogenic, immortal epithelial cell lines from wild-type and mutant mice deficient in essential autophagy genes such as beclin 1 (beclin 1+/-) and atg5 (atg 5-/-). As these cell lines are amenable to further genetic manipulation, they allowed us to generate cell lines with apoptosis defects and stable expression of the autophagy marker EGFP-LC3 that facilitate in vitro and in vivo assessment of stress-mediated autophagy induction. We applied this model system to directly monitor autophagy in cells and 3D-morphogenesis in vitro as well as in tumor allografts in vivo. Using this model system we demonstrated that autophagy is a survival response in solid tumors that co-localizes with hypoxic regions, allowing tolerance to metabolic stress. Furthermore, our studies have established that autophagy also protects tumor cells from genome damage and limits cell death and inflammation as possible means to tumor suppression. Additionally

  8. PINK1 deficiency enhances autophagy and mitophagy induction.

    PubMed

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A

    2016-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control.

  9. PINK1 deficiency enhances autophagy and mitophagy induction

    PubMed Central

    Gómez-Sánchez, Rubén; Yakhine-Diop, Sokhna M S; Bravo-San Pedro, José M; Pizarro-Estrella, Elisa; Rodríguez-Arribas, Mario; Climent, Vicente; Martin-Cano, Francisco E; González-Soltero, María E; Tandon, Anurag; Fuentes, José M; González-Polo, Rosa A

    2016-01-01

    Parkinson's disease (PD) is a neurodegenerative disorder with poorly understood etiology. Increasing evidence suggests that age-dependent compromise of the maintenance of mitochondrial function is a key risk factor. Several proteins encoded by PD-related genes are associated with mitochondria including PTEN-induced putative kinase 1 (PINK1), which was first identified as a gene that is upregulated by PTEN. Loss-of-function PINK1 mutations induce mitochondrial dysfunction and, ultimately, neuronal cell death. To mitigate the negative effects of altered cellular functions cells possess a degradation mechanism called autophagy for recycling damaged components; selective elimination of dysfunctional mitochondria by autophagy is termed mitophagy. Our study indicates that autophagy and mitophagy are upregulated in PINK1-deficient cells, and is the first report to demonstrate efficient fluxes by one-step analysis. We propose that autophagy is induced to maintain cellular homeostasis under conditions of non-regulated mitochondrial quality control. PMID:27308585

  10. Autophagy supports survival and phototransduction protein levels in rod photoreceptors

    PubMed Central

    Zhou, Z; Doggett, T A; Sene, A; Apte, R S; Ferguson, T A

    2015-01-01

    Damage and loss of the postmitotic photoreceptors is a leading cause of blindness in many diseases of the eye. Although the mechanisms of photoreceptor death have been extensively studied, few studies have addressed mechanisms that help sustain these non-replicating neurons for the life of an organism. Autophagy is an intracellular pathway where cytoplasmic constituents are delivered to the lysosomal pathway for degradation. It is not only a major pathway activated in response to cellular stress, but is also important for cytoplasmic turnover and to supply the structural and energy needs of cells. We examined the importance of autophagy in photoreceptors by deleting the essential autophagy gene Atg5 specifically in rods. Loss of autophagy led to progressive degeneration of rod photoreceptors beginning at 8 weeks of age such that by 44 weeks few rods remained. Cone photoreceptor numbers were only slightly diminished following rod degeneration but their function was significantly decreased. Rod cell death was apoptotic but was not dependent on daily light exposure or accelerated by intense light. Although the light-regulated translocation of the phototransduction proteins arrestin and transducin were unaffected in rods lacking autophagy, Atg5-deficient rods accumulated transducin-α as they degenerated suggesting autophagy might regulate the level of this protein. This was confirmed when the light-induced decrease in transducin was abolished in Atg5-deficient rods and the inhibition of autophagy in retinal explants cultures prevented its degradation. These results demonstrate that basal autophagy is essential to the long-term health of rod photoreceptors and a critical process for maintaining optimal levels of the phototransduction protein transducin-α. As the lack of autophagy is associated with retinal degeneration and altered phototransduction protein degradation in the absence of harmful gene products, this process may be a viable therapeutic target where rod

  11. Autophagy impairment induces premature senescence in primary human fibroblasts.

    PubMed

    Kang, Hyun Tae; Lee, Ki Baek; Kim, Sung Young; Choi, Hae Ri; Park, Sang Chul

    2011-01-01

    Recent studies have demonstrated that activation of autophagy increases the lifespan of organisms from yeast to flies. In contrast to the lifespan extension effect in lower organisms, it has been reported that overexpression of unc-51-like kinase 3 (ULK3), the mammalian homolog of autophagy-specific gene 1 (ATG1), induces premature senescence in human fibroblasts. Therefore, we assessed whether the activation of autophagy would genuinely induce premature senescence in human cells. Depletion of ATG7, ATG12, or lysosomal-associated membrane protein 2 (Lamp2) by transfecting siRNA or infecting cells with a virus containing gene-specific shRNA resulted in a senescence-like state in two strains of primary human fibroblasts. Prematurely senescent cells induced by autophagy impairment exhibited the senescent phenotypes, similar to the replicatively senescent cells, such as increased senescence associated β-galactosidase (SA-β-gal) activity, reactive oxygen species (ROS) generation, and accumulation of lipofuscin. In addition, expression levels of ribosomal protein S6 kinase1 (S6K1), p-S6K1, p-S6, and eukaryotic translation initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) in the mammalian target of rapamycin (mTOR) pathway and beclin-1, ATG7, ATG12-ATG5 conjugate, and the sequestosome 1 (SQSTM1/p62) monomer in the autophagy pathway were decreased in both the replicatively and the autophagy impairment-induced prematurely senescent cells. Furthermore, it was found that ROS scavenging by N-acetylcysteine (NAC) and inhibition of p53 activation by pifithrin-α or knockdown of p53 using siRNA, respectively, delayed autophagy impairment-induced premature senescence and restored the expression levels of components in the mTOR and autophagy pathways. Taken together, we concluded that autophagy impairment induces premature senescence through a ROS- and p53-dependent manner in primary human fibroblasts.

  12. The autophagy interaction network of the aging model Podospora anserina.

    PubMed

    Philipp, Oliver; Hamann, Andrea; Osiewacz, Heinz D; Koch, Ina

    2017-03-27

    Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables

  13. Here, there be dragons: charting autophagy-related alterations in human tumors.

    PubMed

    Lebovitz, Chandra B; Bortnik, Svetlana B; Gorski, Sharon M

    2012-03-01

    Macroautophagy (or autophagy) is a catabolic cellular process that is both homeostatic and stress adaptive. Normal cells rely on basal levels of autophagy to maintain cellular integrity (via turnover of long-lived proteins and damaged organelles) and increased levels of autophagy to buoy cell survival during various metabolic stresses (via nutrient and energy provision through lysosomal degradation of cytoplasmic components). Autophagy can function in both tumor suppression and tumor progression, and is under investigation in clinical trials as a novel target for anticancer therapy. However, its role in cancer pathogenesis has yet to be fully explored. In particular, it remains unknown whether in vitro observations will be applicable to human cancer patients. Another outstanding question is whether there exists tumor-specific selection for alterations in autophagy function. In this review, we survey reported mutations in autophagy genes and key autophagy regulators identified in human tumor samples and summarize the literature regarding expression levels of autophagy genes and proteins in various cancer tissues. Although it is too early to draw inferences from this collection of in vivo studies of autophagy-related alterations in human cancers, their results highlight the challenges that must be overcome before we can accurately assess the scope of autophagy's predicted role in tumorigenesis.

  14. Intestinal autophagy activity is essential for host defense against Salmonella typhimurium infection in Caenorhabditis elegans.

    PubMed

    Curt, Alexander; Zhang, Jiuli; Minnerly, Justin; Jia, Kailiang

    2014-08-01

    Salmonella typhimurium infects both intestinal epithelial cells and macrophages. Autophagy is a lysosomal degradation pathway that is present in all eukaryotes. Autophagy has been reported to limit the Salmonella replication in Caenorhabditis elegans and in mammals. However, it is unknown whether intestinal autophagy activity plays a role in host defense against Salmonella infection in C. elegans. In this study, we inhibited the autophagy gene bec-1 in different C. elegans tissues and examined the survival of these animals following Salmonella infection. Here we show that inhibition of the bec-1 gene in the intestine but not in other tissues confers susceptibility to Salmonella infection, which is consistent with recent studies in mice showing that autophagy is involved in clearance of Salmonella in the intestinal epithelial cells. Therefore, the intestinal autophagy activity is essential for host defense against Salmonella infection from C. elegans to mice, perhaps also in humans.

  15. An expanded role for mTORC1 in autophagy.

    PubMed

    Kim, Young-Mi; Park, Ji-Man; Grunwald, Douglas; Kim, Do-Hyung

    2016-01-01

    Mechanistic target of rapamycin complex 1 (mTORC1) negatively regulates autophagy at early stages by phosphorylating Unc51-like kinase 1 (ULK1). Our recent study expanded the roles of mTORC1 in autophagy by identifying ultraviolet radiation resistance-associated gene product (UVRAG) as a substrate of mTORC1. This finding has provided new insight into the roles of mTORC1 in cellular membrane processes and cancer.

  16. Overcoming Autophagy to Induce Apoptosis in Castration Resistant Prostate Cancer

    DTIC Science & Technology

    2015-10-01

    of this study and the results proved that autophagy is the escape mechanism for tumor cells when challenged by small molecule inhibitors such as Src...Autophagy Blockade Sensitizes Prostate Cancer Cells towards Src Family Kinase Inhibitors . Genes Cancer, 2010. 1(1): p. 40-9. 6. Gillman, P.K., Tricyclic... inhibitor saracatinib or the androgen receptor signaling inhibitor enzalutamide. When stresses such as metabolic and genotoxic stress caused by

  17. Toxic metals and autophagy.

    PubMed

    Chatterjee, Sarmishtha; Sarkar, Shuvasree; Bhattacharya, Shelley

    2014-11-17

    The earth's resources are finite, and it can no longer be considered a source of inexhaustible bounty for the human population. However, this realization has not been able to contain the human desire for rapid industrialization. The collateral to overusing environmental resources is the high-level contamination of undesirable toxic metals, leading to bioaccumulation and cellular damage. Cytopathological features of biological systems represent a key variable in several diseases. A review of the literature revealed that autophagy (PCDII), a high-capacity process, may consist of selective elimination of vital organelles and/or proteins that intiate mechanisms of cytoprotection and homeostasis in different biological systems under normal physiological and stress conditions. However, the biological system does survive under various environmental stressors. Currently, there is no consensus that specifies a particular response as being a dependable biomarker of toxicology. Autophagy has been recorded as the initial response of a cell to a toxic metal in a concentration- and time-dependent manner. Various signaling pathways are triggered through cellular proteins and/or protein kinases that can lead to autophagy, apoptosis (or necroptosis), and necrosis. Although the role of autophagy in tumorigenesis is associated with promoting tumor cell survival and/or acting as a tumor suppressive mechanism, PCDII in metal-induced toxicity has not been extensively studied. The aim of this review is to analyze the comparative cytotoxicity of metals/metalloids and nanoparticles (As, Cd, Cr, Hg, Fe, and metal-NP) in cells enduring autophagy. It is noted that metals/metalloids and nanoparticles prefer ATG8/LC3 as a potent inducer of autophagy in several cell lines or animal cells. MAP kinases, death protein kinases, PI3K, AKT, mTOR, and AMP kinase have been found to be the major components of autophagy induction or inhibition in the context of cellular responses to metals/metalloids and

  18. The autophagy-related genes BbATG1 and BbATG8 have different functions in differentiation, stress resistance and virulence of mycopathogen Beauveria bassiana

    PubMed Central

    Ying, Sheng-Hua; Liu, Jing; Chu, Xin-Ling; Xie, Xue-Qin; Feng, Ming-Guang

    2016-01-01

    Autophagy-related proteins play significantly different roles in eukaryotes. In the entomopathogenic fungus Beauveria bassiana, autophagy is associated with fungal growth and development. BbATG1 (a serine/threonine protein kinase) and BbATG8 (a ubiquitin-like protein) have similar roles in autophagy, but different roles in other processes. Disruption mutants of BbATG1 and BbATG8 had impaired conidial germination under starvation stress. The mutant ΔBbATG8 exhibited enhanced sensitivity to oxidative stress, while a ΔBbATG1 mutant did not. BbATG1 and BbATG8 showed different roles in spore differentiation. The blastospore yield was reduced by 70% and 92% in ΔBbATG1 and ΔBbATG8 mutants, respectively, and the double mutant had a reduction of 95%. Conidial yield was reduced by approximately 90% and 50% in ΔBbATG1 and ΔBbATG8 mutants, respectively. A double mutant had a reduction similar to ΔBbATG1. Additionally, both BbATG1 and BbATG8 affected the levels of conidial protein BbCP15p required for conidiation. The virulence of each autophagy-deficient mutant was considerably weakened as indicated in topical and intrahemocoel injection assays, and showed a greater reduction in topical infection. However, BbATG1 and BbATG8 had different effects on fungal virulence. Our data indicate that these autophagy-related proteins have different functions in fungal stress response, asexual development and virulence. PMID:27197558

  19. The autophagy-related genes BbATG1 and BbATG8 have different functions in differentiation, stress resistance and virulence of mycopathogen Beauveria bassiana.

    PubMed

    Ying, Sheng-Hua; Liu, Jing; Chu, Xin-Ling; Xie, Xue-Qin; Feng, Ming-Guang

    2016-05-20

    Autophagy-related proteins play significantly different roles in eukaryotes. In the entomopathogenic fungus Beauveria bassiana, autophagy is associated with fungal growth and development. BbATG1 (a serine/threonine protein kinase) and BbATG8 (a ubiquitin-like protein) have similar roles in autophagy, but different roles in other processes. Disruption mutants of BbATG1 and BbATG8 had impaired conidial germination under starvation stress. The mutant ΔBbATG8 exhibited enhanced sensitivity to oxidative stress, while a ΔBbATG1 mutant did not. BbATG1 and BbATG8 showed different roles in spore differentiation. The blastospore yield was reduced by 70% and 92% in ΔBbATG1 and ΔBbATG8 mutants, respectively, and the double mutant had a reduction of 95%. Conidial yield was reduced by approximately 90% and 50% in ΔBbATG1 and ΔBbATG8 mutants, respectively. A double mutant had a reduction similar to ΔBbATG1. Additionally, both BbATG1 and BbATG8 affected the levels of conidial protein BbCP15p required for conidiation. The virulence of each autophagy-deficient mutant was considerably weakened as indicated in topical and intrahemocoel injection assays, and showed a greater reduction in topical infection. However, BbATG1 and BbATG8 had different effects on fungal virulence. Our data indicate that these autophagy-related proteins have different functions in fungal stress response, asexual development and virulence.

  20. A dual role of p53 in the control of autophagy.

    PubMed

    Tasdemir, Ezgi; Chiara Maiuri, M; Morselli, Eugenia; Criollo, Alfredo; D'Amelio, Marcello; Djavaheri-Mergny, Mojgan; Cecconi, Francesco; Tavernarakis, Nektarios; Kroemer, Guido

    2008-08-01

    Genotoxic stress can induce autophagy in a p53-dependent fashion and p53 can transactivate autophagy-inducing genes. We have observed recently that inactivation of p53 by deletion, depletion or inhibition can trigger autophagy. Thus, human and mouse cells subjected to knockout, knockdown or pharmacological inhibition of p53 manifest signs of autophagy such as depletion of p62/SQSTM1, LC3 lipidation, redistribution of GFP-LC3 in cytoplasmic puncta, and accumulation of autophagosomes and autolysosomes, both in vitro and in vivo. Inhibition of p53 causes autophagy in enucleated cells, indicating that the cytoplasmic, non-nuclear pool of p53 can regulate autophagy. Accordingly, retransfection of p53(-/-) cells with wild-type p53 as well as a p53 mutant that is excluded from the nucleus (due to the deletion of the nuclear localization sequence) can inhibit autophagy, whereas retransfection with a nucleus-restricted p53 mutant (in which the nuclear localization sequence has been deleted) does not inhibit autophagy. Several distinct autophagy inducers (e.g., starvation, rapamycin, lithium, tunicamycin and thapsigargin) stimulate the rapid degradation of p53. In these conditions, inhibition of the p53-specific E3 ubiquitin ligase HDM2 can avoid p53 depletion and simultaneously prevent the activation of autophagy. Moreover, a p53 mutant that lacks the HDM2 ubiquitinylation site and hence is more stable than wild-type p53 is particularly efficient in suppressing autophagy. In conclusion, p53 plays a dual role in the control of autophagy. On the one hand, nuclear p53 can induce autophagy through transcriptional effects. On the other hand, cytoplasmic p53 may act as a master repressor of autophagy.

  1. Autophagy and Transporter-Based Multi-Drug Resistance

    PubMed Central

    Kumar, Priyank; Zhang, Dong-Mei; Degenhardt, Kurt; Chen, Zhe-Sheng

    2012-01-01

    All the therapeutic strategies for treating cancers aim at killing the cancer cells via apoptosis (programmed cell death type I). Defective apoptosis endow tumor cells with survival. The cell can respond to such defects with autophagy. Autophagy is a cellular process by which cytoplasmic material is either degraded to maintain homeostasis or recycled for energy and nutrients in starvation. A plethora of evidence has shown that the role of autophagy in tumors is complex. A lot of effort is needed to underline the functional status of autophagy in tumor progression and treatment, and elucidate how to tweak autophagy to treat cancer. Furthermore, during the treatment of cancer, the limitation for the cure rate and survival is the phenomenon of multi drug resistance (MDR). The development of MDR is an intricate process that could be regulated by drug transporters, enzymes, anti-apoptotic genes or DNA repair mechanisms. Reports have shown that autophagy has a dual role in MDR. Furthermore, it has been reported that activation of a death pathway may overcome MDR, thus pointing the importance of other death pathways to regulate tumor cell progression and growth. Therefore, in this review we will discuss the role of autophagy in MDR tumors and a possible link amongst these phenomena. PMID:24710490

  2. Autophagy in osteoblasts is involved in mineralization and bone homeostasis

    PubMed Central

    Nollet, Marie; Santucci-Darmanin, Sabine; Breuil, Véronique; Al-Sahlanee, Rasha; Cros, Chantal; Topi, Majlinda; Momier, David; Samson, Michel; Pagnotta, Sophie; Cailleteau, Laurence; Battaglia, Séverine; Farlay, Delphine; Dacquin, Romain; Barois, Nicolas; Jurdic, Pierre; Boivin, Georges; Heymann, Dominique; Lafont, Frank; Lu, Shi Shou; Dempster, David W; Carle, Georges F; Pierrefite-Carle, Valérie

    2014-01-01

    Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies. PMID:25484092

  3. Human Diversity in a Cell Surface Receptor that Inhibits Autophagy.

    PubMed

    Chaudhary, Anu; Leite, Mara; Kulasekara, Bridget R; Altura, Melissa A; Ogahara, Cassandra; Weiss, Eli; Fu, Wenqing; Blanc, Marie-Pierre; O'Keeffe, Michael; Terhorst, Cox; Akey, Joshua M; Miller, Samuel I

    2016-07-25

    Mutations in genes encoding autophagy proteins have been associated with human autoimmune diseases, suggesting that diversity in autophagy responses could be associated with disease susceptibility or severity. A cellular genome-wide association study (GWAS) screen was performed to explore normal human diversity in responses to rapamycin, a microbial product that induces autophagy. Cells from several human populations demonstrated variability in expression of a cell surface receptor, CD244 (SlamF4, 2B4), that correlated with changes in rapamycin-induced autophagy. High expression of CD244 and receptor activation with its endogenous ligand CD48 inhibited starvation- and rapamycin-induced autophagy by promoting association of CD244 with the autophagy complex proteins Vps34 and Beclin-1. The association of CD244 with this complex reduced Vps34 lipid kinase activity. Lack of CD244 is associated with auto-antibody production in mice, and lower expression of human CD244 has previously been implicated in severity of human rheumatoid arthritis and systemic lupus erythematosus, indicating that increased autophagy as a result of low levels of CD244 may alter disease outcomes.

  4. Autophagy in osteoblasts is involved in mineralization and bone homeostasis.

    PubMed

    Nollet, Marie; Santucci-Darmanin, Sabine; Breuil, Véronique; Al-Sahlanee, Rasha; Cros, Chantal; Topi, Majlinda; Momier, David; Samson, Michel; Pagnotta, Sophie; Cailleteau, Laurence; Battaglia, Séverine; Farlay, Delphine; Dacquin, Romain; Barois, Nicolas; Jurdic, Pierre; Boivin, Georges; Heymann, Dominique; Lafont, Frank; Lu, Shi Shou; Dempster, David W; Carle, Georges F; Pierrefite-Carle, Valérie

    2014-01-01

    Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies.

  5. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway

    PubMed Central

    Bento, Carla F.; Ashkenazi, Avraham; Jimenez-Sanchez, Maria; Rubinsztein, David C.

    2016-01-01

    Forms of Parkinson's disease (PD) are associated with lysosomal and autophagic dysfunction. ATP13A2, which is mutated in some types of early-onset Parkinsonism, has been suggested as a regulator of the autophagy–lysosome pathway. However, little is known about the ATP13A2 effectors and how they regulate this pathway. Here we show that ATP13A2 depletion negatively regulates another PD-associated gene (SYT11) at both transcriptional and post-translational levels. Decreased SYT11 transcription is controlled by a mechanism dependent on MYCBP2-induced ubiquitination of TSC2, which leads to mTORC1 activation and decreased TFEB-mediated transcription of SYT11, while increased protein turnover is regulated by SYT11 ubiquitination and degradation. Both mechanisms account for a decrease in the levels of SYT11, which, in turn, induces lysosomal dysfunction and impaired degradation of autophagosomes. Thus, we propose that ATP13A2 and SYT11 form a new functional network in the regulation of the autophagy–lysosome pathway, which is likely to contribute to forms of PD-associated neurodegeneration. PMID:27278822

  6. Oxidative stress contributes to autophagy induction in response to endoplasmic reticulum stress in Chlamydomonas reinhardtii.

    PubMed

    Pérez-Martín, Marta; Pérez-Pérez, María Esther; Lemaire, Stéphane D; Crespo, José L

    2014-10-01

    The accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) results in the activation of stress responses, such as the unfolded protein response or the catabolic process of autophagy to ultimately recover cellular homeostasis. ER stress also promotes the production of reactive oxygen species, which play an important role in autophagy regulation. However, it remains unknown whether reactive oxygen species are involved in ER stress-induced autophagy. In this study, we provide evidence connecting redox imbalance caused by ER stress and autophagy activation in the model unicellular green alga Chlamydomonas reinhardtii. Treatment of C. reinhardtii cells with the ER stressors tunicamycin or dithiothreitol resulted in up-regulation of the expression of genes encoding ER resident endoplasmic reticulum oxidoreductin1 oxidoreductase and protein disulfide isomerases. ER stress also triggered autophagy in C. reinhardtii based on the protein abundance, lipidation, cellular distribution, and mRNA levels of the autophagy marker ATG8. Moreover, increases in the oxidation of the glutathione pool and the expression of oxidative stress-related genes were detected in tunicamycin-treated cells. Our results revealed that the antioxidant glutathione partially suppressed ER stress-induced autophagy and decreased the toxicity of tunicamycin, suggesting that oxidative stress participates in the control of autophagy in response to ER stress in C. reinhardtii In close agreement, we also found that autophagy activation by tunicamycin was more pronounced in the C. reinhardtii sor1 mutant, which shows increased expression of oxidative stress-related genes.

  7. Gestational diabetes affects fetal autophagy.

    PubMed

    Avagliano, Laura; Massa, Valentina; Terraneo, Laura; Samaja, Michele; Doi, Patrizia; Bulfamante, Gaetano Pietro; Marconi, Anna Maria

    2017-07-01

    Autophagy is a catabolic process involved in the preservation of energy homeostasis and its dysregulation has been implicated in the development of metabolic disorders, including diabetes mellitus. Gestational diabetes mellitus represents a risk for fetal morbidity and mortality. The present study focuses on the autophagy process in human diabetic placenta and fetal pancreas, compared with controls. Analysis of the autophagy markers LC3, Beclin-1 and p62 suggests an impairment of the autophagy process in diabetic placentas. Results indicate an association between gestational diabetes and autophagy, emphasizing the importance of unravelling the mechanisms regulating this relationship. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Autophagy activation attenuates renal ischemia-reperfusion injury in rats

    PubMed Central

    Zhang, Ya-Li; Cui, Li-Yan; Yang, Shuo

    2015-01-01

    Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future. PMID:25898836

  9. Essential role for autophagy during invariant NKT cell development

    PubMed Central

    Salio, Mariolina; Puleston, Daniel J.; Mathan, Till S. M.; Shepherd, Dawn; Stranks, Amanda J.; Adamopoulou, Eleni; Veerapen, Natacha; Besra, Gurdyal S.; Hollander, Georg A.; Simon, Anna Katharina; Cerundolo, Vincenzo

    2014-01-01

    Autophagy is an evolutionarily conserved cellular homeostatic pathway essential for development, immunity, and cell death. Although autophagy modulates MHC antigen presentation, it remains unclear whether autophagy defects impact on CD1d lipid loading and presentation to invariant natural killer T (iNKT) cells and on iNKT cell differentiation in the thymus. Furthermore, it remains unclear whether iNKT and conventional T cells have similar autophagy requirements for differentiation, survival, and/or activation. We report that, in mice with a conditional deletion of the essential autophagy gene Atg7 in the T-cell compartment (CD4 Cre-Atg7−/−), thymic iNKT cell development—unlike conventional T-cell development—is blocked at an early stage and mature iNKT cells are absent in peripheral lymphoid organs. The defect is not due to altered loading of intracellular iNKT cell agonists; rather, it is T-cell–intrinsic, resulting in enhanced susceptibility of iNKT cells to apoptosis. We show that autophagy increases during iNKT cell thymic differentiation and that it developmentally regulates mitochondrial content through mitophagy in the thymus of mice and humans. Autophagy defects result in the intracellular accumulation of mitochondrial superoxide species and subsequent apoptotic cell death. Although autophagy-deficient conventional T cells develop normally, they show impaired peripheral survival, particularly memory CD8+ T cells. Because iNKT cells, unlike conventional T cells, differentiate into memory cells while in the thymus, our results highlight a unique autophagy-dependent metabolic regulation of adaptive and innate T cells, which is required for transition to a quiescent state after population expansion. PMID:25512546

  10. Autophagy and Immune Senescence.

    PubMed

    Zhang, Hanlin; Puleston, Daniel J; Simon, Anna Katharina

    2016-08-01

    With extension of the average lifespan, aging has become a heavy burden in society. Immune senescence is a key risk factor for many age-related diseases such as cancer and increased infections in the elderly, and hence has elicited much attention in recent years. As our body's guardian, the immune system maintains systemic health through removal of pathogens and damage. Autophagy is an important cellular 'clearance' process by which a cell internally delivers damaged organelles and macromolecules to lysosomes for degradation. Here, we discuss the most current knowledge of how impaired autophagy can lead to cellular and immune senescence. We also provide an overview, with examples, of the clinical potential of exploiting autophagy to delay immune senescence and/or rejuvenate immunity to treat various age-related diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Trehalose Accumulation Triggers Autophagy during Plant Desiccation.

    PubMed

    Williams, Brett; Njaci, Isaac; Moghaddam, Lalehvash; Long, Hao; Dickman, Martin B; Zhang, Xiuren; Mundree, Sagadevan

    2015-12-01

    Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops.

  12. Trehalose Accumulation Triggers Autophagy during Plant Desiccation

    PubMed Central

    Moghaddam, Lalehvash; Long, Hao; Dickman, Martin B; Zhang, Xiuren; Mundree, Sagadevan

    2015-01-01

    Global climate change, increasingly erratic weather and a burgeoning global population are significant threats to the sustainability of future crop production. There is an urgent need for the development of robust measures that enable crops to withstand the uncertainty of climate change whilst still producing maximum yields. Resurrection plants possess the unique ability to withstand desiccation for prolonged periods, can be restored upon watering and represent great potential for the development of stress tolerant crops. Here, we describe the remarkable stress characteristics of Tripogon loliiformis, an uncharacterised resurrection grass and close relative of the economically important cereals, rice, sorghum, and maize. We show that T. loliiformis survives extreme environmental stress by implementing autophagy to prevent Programmed Cell Death. Notably, we identified a novel role for trehalose in the regulation of autophagy in T.loliiformis. Transcriptome, Gas Chromatography Mass Spectrometry, immunoblotting and confocal microscopy analyses directly linked the accumulation of trehalose with the onset of autophagy in dehydrating and desiccated T. loliiformis shoots. These results were supported in vitro with the observation of autophagosomes in trehalose treated T. loliiformis leaves; autophagosomes were not detected in untreated samples. Presumably, once induced, autophagy promotes desiccation tolerance in T.loliiformis, by removal of cellular toxins to suppress programmed cell death and the recycling of nutrients to delay the onset of senescence. These findings illustrate how resurrection plants manipulate sugar metabolism to promote desiccation tolerance and may provide candidate genes that are potentially useful for the development of stress tolerant crops. PMID:26633550

  13. Avermectin induced autophagy in pigeon spleen tissues.

    PubMed

    Liu, Ci; Zhao, Yanbing; Chen, Lijie; Zhang, Ziwei; Li, Ming; Li, Shu

    2015-12-05

    The level of autophagy is considered as an indicator for monitoring the toxic impact of pesticide exposure. Avermectin (AVM), a widely used insecticide, has immunotoxic effects on the pigeon spleen. The aim of this study was to investigate the status of autophagy and the expression levels of microtubule-associated protein1 light chain 3 (LC3), beclin-1, dynein, autophagy associated gene (Atg) 4B, Atg5, target of rapamycin complex 1 (TORC1) and target of rapamycin complex 2 (TORC2) in AVM-treated pigeon spleens. Eighty two-month-old pigeons were randomly divided into four groups: a control group, a low-dose group, a medium-dose group and a high-dose group, which were fed a basal diet spiked with 0, 20, 40 and 60 mg AVM/kg diet, respectively. Microscopic cellular morphology revealed a significant increase in autophagic structures in the AVM-treated groups. The expression of LC3, beclin-1, dynein, Atg4B and Atg5 increased, while mRNA levels of TORC1 and TORC2 were decreased in the AVM-treated groups relative to the control groups at 30, 60 and 90 days in the pigeon spleen. These results indicated that AVM exposure could up-regulate the level of autophagy in a dose-time-dependent manner in the pigeon spleen.

  14. Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger.

    PubMed

    Nitsche, Benjamin M; Burggraaf-van Welzen, Anne-Marie; Lamers, Gerda; Meyer, Vera; Ram, Arthur F J

    2013-09-01

    Autophagy is a well-conserved catabolic process constitutively active in eukaryotes that is involved in maintaining cellular homeostasis by the targeting of cytoplasmic content and organelles to vacuoles. Autophagy is strongly induced by the limitation of nutrients including carbon, nitrogen, and oxygen and is clearly associated with cell death. It has been demonstrated that the accumulation of empty hyphal compartments and cryptic growth in carbon-starved submerged cultures of the filamentous fungus Aspergillus niger is accompanied by a joint transcriptional induction of autophagy genes. This study examines the role of autophagy by deleting the atg1, atg8, and atg17 orthologs in A. niger and phenotypically analyzing the deletion mutants in surface and submerged cultures. The results indicate that atg1 and atg8 are essential for efficient autophagy, whereas deletion of atg17 has little to no effect on autophagy in A. niger. Depending on the kind of oxidative stress confronted with, autophagy deficiency renders A. niger either more resistant (menadione) or more sensitive (H2O2) to oxidative stress. Fluorescence microscopy showed that mitochondrial turnover upon carbon depletion in submerged cultures is severely blocked in autophagy-impaired A. niger mutants. Furthermore, automated image analysis demonstrated that autophagy promotes survival in maintained carbon-starved cultures of A. niger. Taken together, the results suggest that besides its function in nutrient recycling, autophagy plays important roles in physiological adaptation by organelle turnover and protection against cell death upon carbon depletion in submerged cultures.

  15. A pathway of targeted autophagy is induced by DNA damage in budding yeast

    PubMed Central

    Eapen, Vinay V.; Waterman, David P.; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G.; Loewith, Robbie J.; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J.; Haber, James E.

    2017-01-01

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response. PMID:28154131

  16. A pathway of targeted autophagy is induced by DNA damage in budding yeast.

    PubMed

    Eapen, Vinay V; Waterman, David P; Bernard, Amélie; Schiffmann, Nathan; Sayas, Enrich; Kamber, Roarke; Lemos, Brenda; Memisoglu, Gonen; Ang, Jessie; Mazella, Allison; Chuartzman, Silvia G; Loewith, Robbie J; Schuldiner, Maya; Denic, Vladimir; Klionsky, Daniel J; Haber, James E

    2017-02-14

    Autophagy plays a central role in the DNA damage response (DDR) by controlling the levels of various DNA repair and checkpoint proteins; however, how the DDR communicates with the autophagy pathway remains unknown. Using budding yeast, we demonstrate that global genotoxic damage or even a single unrepaired double-strand break (DSB) initiates a previously undescribed and selective pathway of autophagy that we term genotoxin-induced targeted autophagy (GTA). GTA requires the action primarily of Mec1/ATR and Rad53/CHEK2 checkpoint kinases, in part via transcriptional up-regulation of central autophagy proteins. GTA is distinct from starvation-induced autophagy. GTA requires Atg11, a central component of the selective autophagy machinery, but is different from previously described autophagy pathways. By screening a collection of ∼6,000 yeast mutants, we identified genes that control GTA but do not significantly affect rapamycin-induced autophagy. Overall, our findings establish a pathway of autophagy specific to the DNA damage response.

  17. p73 regulates DRAM-independent autophagy that does not contribute to programmed cell death.

    PubMed

    Crighton, D; O'Prey, J; Bell, H S; Ryan, K M

    2007-06-01

    Evading programmed cell death is a common event in tumour development. The p53 family member, p73, is a potent inducer of death and a determinant of chemotherapeutic response, but different to p53, is rarely mutated in cancer. Understanding cell death pathways downstream of p53 and p73 is therefore pivotal to understand both the development and treatment of malignant disease. Recently, p53 has been shown to modulate autophagy--a membrane trafficking process, which degrades long-lived proteins and organelles. This requires a p53 target gene, DRAM, and both DRAM and autophagy are critical for p53-mediated death. We report here that TA-p73 also regulates DRAM and autophagy, with different TA-p73 isoforms regulating DRAM and autophagy to varying extents. RNAi knockdown of DRAM, however, revealed that p73's modulation of autophagy is DRAM-independent. Also, p73's ability to induce death, again different to p53, is neither dependent on DRAM nor autophagy. In contrast to TA-p73, deltaN-p73 is a negative regulator of p53-induced and p73-induced autophagy, but does not affect autophagy induced by amino-acid starvation. These studies, therefore, represent not only the first report that p73 modulates autophagy but also highlight important differences in the mechanism by which starvation, p53 and p73 regulate autophagy and how this contributes to programmed cell death.

  18. Autophagy: An overview and its roles in cancer and obesity.

    PubMed

    Jacob, Joe Antony; Salmani, Jumah Masoud Mohammad; Jiang, Ziyu; Feng, Liang; Song, Jie; Jia, Xiaobin; Chen, Baoan

    2017-05-01

    Autophagy is a normal physiological process necessary for cellular homeostasis to maintain adequate levels of cellular components. It is essential to stabilize the source of energy during development and nutritional stress and plays the dual role of survival or cell killing in various diseases including cancer. The selectivity of the response to removal of selected organelles may vary according to the each type. Macroautophagy forms a double-membraned autophagosome around the organelle destined for processing. Microautophagy involves direct engulfment of the cellular components by lysosomal invagination. Chaperone mediated autophagy (CMA) is highly selective and is dependent on the chaperone hsc70 for its activity. The effects of all these types are implemented by autophagy related genes. In this review, the markers, activators, inhibitors biological effects and roles of the three classes of autophagy in cancer and obesity are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Autophagy signal transduction by ATG proteins: from hierarchies to networks.

    PubMed

    Wesselborg, Sebastian; Stork, Björn

    2015-12-01

    Autophagy represents an intracellular degradation process which is involved in both cellular homeostasis and disease settings. In the last two decades, the molecular machinery governing this process has been characterized in detail. To date, several key factors regulating this intracellular degradation process have been identified. The so-called autophagy-related (ATG) genes and proteins are central to this process. However, several additional molecules contribute to the outcome of an autophagic response. Several review articles describing the molecular process of autophagy have been published in the recent past. In this review article we would like to add the most recent findings to this knowledge, and to give an overview of the network character of the autophagy signaling machinery.

  20. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    SciTech Connect

    Orfali, Nina; McKenna, Sharon L.; Cahill, Mary R.; Gudas, Lorraine J.; Mongan, Nigel P.

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  1. Autophagy is an adaptive response in desmin-related cardiomyopathy

    PubMed Central

    Tannous, Paul; Zhu, Hongxin; Johnstone, Janet L.; Shelton, John M.; Rajasekaran, Namakkal S.; Benjamin, Ivor J.; Nguyen, Lan; Gerard, Robert D.; Levine, Beth; Rothermel, Beverly A.; Hill, Joseph A.

    2008-01-01

    A missense mutation in the αB-crystallin (CryAB) gene triggers a severe form of desmin-related cardiomyopathy (DRCM) characterized by accumulation of misfolded proteins. We hypothesized that autophagy increases in response to protein aggregates and that this autophagic activity is adaptive. Mutant CryAB (CryABR120G) triggered a >2-fold increase in cardiomyocyte autophagic activity, and blunting autophagy increased the rate of aggregate accumulation and the abundance of insoluble CryABR120G-associated aggregates. Cardiomyocyte-restricted overexpression of CryABR120G in mice induced intracellular aggregate accumulation and systolic heart failure by 12 months. As early as 2 months (well before the earliest declines in cardiac function), we detected robust autophagic activity. To test the functional significance of autophagic activation, we crossed CryABR120G mice with animals harboring heterozygous inactivation of beclin 1, a gene required for autophagy. Blunting autophagy in vivo dramatically hastened heart failure progression with a 3-fold increase in interstitial fibrosis, greater accumulation of polyubiquitinated proteins, larger and more extensive intracellular aggregates, accelerated ventricular dysfunction, and early mortality. This study reports activation of autophagy in DRCM. Further, our findings point to autophagy as an adaptive response in this proteotoxic form of heart disease. PMID:18621691

  2. Role of autophagy in the pathogenesis of inflammatory bowel disease

    PubMed Central

    Iida, Tomoya; Onodera, Kei; Nakase, Hiroshi

    2017-01-01

    Inflammatory bowel disease (IBD) results from a complex series of interactions between susceptibility genes, the environment, and the immune system. Recently, some studies provided strong evidence that the process of autophagy affects several aspects of mucosal immune responses. Autophagy is a cellular stress response that plays key roles in physiological processes, such as innate and adaptive immunity, adaptation to starvation, degradation of aberrant proteins or organelles, antimicrobial defense, and protein secretion. Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including IBD. Autophagy plays multiple roles in IBD pathogenesis by altering processes that include intracellular bacterial killing, antimicrobial peptide secretion by Paneth cells, goblet cell function, proinflammatory cytokine production by macrophages, antigen presentation by dendritic cells, and the endoplasmic reticulum stress response in enterocytes. Recent studies have identified susceptibility genes involved in autophagy, such as NOD2, ATG16L1, and IRGM, and active research is ongoing all over the world. The aim of this review is a systematic appraisal of the current literature to provide a better understanding of the role of autophagy in the pathogenesis of IBD. Understanding these mechanisms will bring about new strategies for the treatment and prevention of IBD. PMID:28373760

  3. Autophagy functions as an antiviral mechanism against geminiviruses in plants

    PubMed Central

    Haxim, Yakupjan; Ismayil, Asigul; Jia, Qi; Wang, Yan; Zheng, Xiyin; Chen, Tianyuan; Qian, Lichao; Liu, Na; Wang, Yunjing; Han, Shaojie; Cheng, Jiaxuan; Qi, Yijun; Hong, Yiguo; Liu, Yule

    2017-01-01

    Autophagy is an evolutionarily conserved process that recycles damaged or unwanted cellular components, and has been linked to plant immunity. However, how autophagy contributes to plant immunity is unknown. Here we reported that the plant autophagic machinery targets the virulence factor βC1 of Cotton leaf curl Multan virus (CLCuMuV) for degradation through its interaction with the key autophagy protein ATG8. A V32A mutation in βC1 abolished its interaction with NbATG8f, and virus carrying βC1V32A showed increased symptoms and viral DNA accumulation in plants. Furthermore, silencing of autophagy-related genes ATG5 and ATG7 reduced plant resistance to the DNA viruses CLCuMuV, Tomato yellow leaf curl virus, and Tomato yellow leaf curl China virus, whereas activating autophagy by silencing GAPC genes enhanced plant resistance to viral infection. Thus, autophagy represents a novel anti-pathogenic mechanism that plays an important role in antiviral immunity in plants. DOI: http://dx.doi.org/10.7554/eLife.23897.001 PMID:28244873

  4. TRAF3IP3, a novel autophagy up-regulated gene, is involved in marginal zone B lymphocyte development and survival.

    PubMed

    Peng, S; Wang, K; Gu, Y; Chen, Y; Nan, X; Xing, J; Cui, Q; Chen, Y; Ge, Q; Zhao, H

    2015-10-01

    Tumour necrosis factor receptor-associated factor 3 (TRAF3) interacting protein 3 (TRAF3IP3; also known as T3JAM) is expressed specifically in immune organs and tissues. To investigate the impact of TRAF3IP3 on immunity, we generated Traf3ip3 knock-out (KO) mice. Interestingly, these mice exhibited a significant reduction in the number of common lymphoid progenitors (CLPs) and inhibition of B cell development in the bone marrow. Furthermore, Traf3ip3 KO mice lacked marginal zone (MZ) B cells in the spleen. Traf3ip3 KO mice also exhibited a reduced amount of serum natural antibodies and impaired T cell-independent type II (TI-II) responses to trinitrophenol (TNP)-Ficoll antigen. Additionally, our results showed that Traf3ip3 promotes autophagy via an ATG16L1-binding motif, and MZ B cells isolated from mutant mice showed a diminished level of autophagy and a high rate of apoptosis. These results suggest that TRAF3IP3 contributes to MZ B cell survival by up-regulating autophagy, thereby promoting the TI-II immune response.

  5. Autophagy sustains the replication of porcine reproductive and respiratory virus in host cells

    SciTech Connect

    Liu, Qinghao; Qin, Yixian; Zhou, Lei; Kou, Qiuwen; Guo, Xin; Ge, Xinna; Yang, Hanchun; Hu, Hongbo

    2012-08-01

    In this study, we confirmed the autophagy induced by porcine reproductive and respiratory syndrome virus (PRRSV) in permissive cells and investigated the role of autophagy in the replication of PRRSV. We first demonstrated that PRRSV infection significantly results in the increased double-membrane vesicles, the accumulation of LC3 fluorescence puncta, and the raised ratio of LC3-II/{beta}-actin, in MARC-145 cells. Then we discovered that induction of autophagy by rapamycin significantly enhances the viral titers of PRRSV, while inhibition of autophagy by 3-MA and silencing of LC3 gene by siRNA reduces the yield of PRRSV. The results showed functional autolysosomes can be formed after PRRSV infection and the autophagosome-lysosome-fusion inhibitor decreases the virus titers. We also examined the induction of autophagy by PRRSV infection in pulmonary alveolar macrophages. These findings indicate that autophagy induced by PRRSV infection plays a role in sustaining the replication of PRRSV in host cells.

  6. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay.

    PubMed

    Kim, Myungjin; Sandford, Erin; Gatica, Damian; Qiu, Yu; Liu, Xu; Zheng, Yumei; Schulman, Brenda A; Xu, Jishu; Semple, Ian; Ro, Seung-Hyun; Kim, Boyoung; Mavioglu, R Nehir; Tolun, Aslıhan; Jipa, Andras; Takats, Szabolcs; Karpati, Manuela; Li, Jun Z; Yapici, Zuhal; Juhasz, Gabor; Lee, Jun Hee; Klionsky, Daniel J; Burmeister, Margit

    2016-01-26

    Autophagy is required for the homeostasis of cellular material and is proposed to be involved in many aspects of health. Defects in the autophagy pathway have been observed in neurodegenerative disorders; however, no genetically-inherited pathogenic mutations in any of the core autophagy-related (ATG) genes have been reported in human patients to date. We identified a homozygous missense mutation, changing a conserved amino acid, in ATG5 in two siblings with congenital ataxia, mental retardation, and developmental delay. The subjects' cells display a decrease in autophagy flux and defects in conjugation of ATG12 to ATG5. The homologous mutation in yeast demonstrates a 30-50% reduction of induced autophagy. Flies in which Atg5 is substituted with the mutant human ATG5 exhibit severe movement disorder, in contrast to flies expressing the wild-type human protein. Our results demonstrate the critical role of autophagy in preventing neurological diseases and maintaining neuronal health.

  7. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma.

    PubMed

    Liu, Yuan-Ling; Yang, Pei-Ming; Shun, Chia-Tung; Wu, Ming-Shiang; Weng, Jing-Ru; Chen, Ching-Chow

    2010-11-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. Drug treatments for HCC have been largely unsuccessful. Histone deacetylase inhibitors can reactivate tumor suppressor genes in cancer cells and serve as potential anti-cancer drugs. Two potent HDAC inhibitors OSU-HDAC42 and SAHA induced autophagy in HCC cells as revealed by transmission electron microscopy, immunofluorescence and LC3-II accumulation. We found that SAHA and OSU-HDAC42 induced autophagy through downregulation of Akt/mTOR signaling and induction of ER stress response. Inhibition of autophagy by 3-MA or Atg5 knockout reduced SAHA-induced cytotoxicity, indicating that SAHA-induced autophagy led to cell death. Our results show that the combination of autophagy inducers with SAHA might be attractive for the treatment of HCC and pharmacological targeting of autophagy provides promise for the management of cancer therapy.

  8. Defective autophagy is a key feature of cerebral cavernous malformations

    PubMed Central

    Marchi, Saverio; Corricelli, Mariangela; Trapani, Eliana; Bravi, Luca; Pittaro, Alessandra; Delle Monache, Simona; Ferroni, Letizia; Patergnani, Simone; Missiroli, Sonia; Goitre, Luca; Trabalzini, Lorenza; Rimessi, Alessandro; Giorgi, Carlotta; Zavan, Barbara; Cassoni, Paola; Dejana, Elisabetta; Retta, Saverio Francesco; Pinton, Paolo

    2015-01-01

    Cerebral cavernous malformation (CCM) is a major cerebrovascular disease affecting approximately 0.3–0.5% of the population and is characterized by enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhages. Cerebral cavernous malformation is a genetic disease that may arise sporadically or be inherited as an autosomal dominant condition with incomplete penetrance and variable expressivity. Causative loss-of-function mutations have been identified in three genes, KRIT1 (CCM1), CCM2 (MGC4607), and PDCD10 (CCM3), which occur in both sporadic and familial forms. Autophagy is a bulk degradation process that maintains intracellular homeostasis and that plays essential quality control functions within the cell. Indeed, several studies have identified the association between dysregulated autophagy and different human diseases. Here, we show that the ablation of the KRIT1 gene strongly suppresses autophagy, leading to the aberrant accumulation of the autophagy adaptor p62/SQSTM1, defective quality control systems, and increased intracellular stress. KRIT1 loss-of-function activates the mTOR-ULK1 pathway, which is a master regulator of autophagy, and treatment with mTOR inhibitors rescues some of the mole-cular and cellular phenotypes associated with CCM. Insufficient autophagy is also evident in CCM2-silenced human endothelial cells and in both cells and tissues from an endothelial-specific CCM3-knockout mouse model, as well as in human CCM lesions. Furthermore, defective autophagy is highly correlated to endothelial-to-mesenchymal transition, a crucial event that contributes to CCM progression. Taken together, our data point to a key role for defective autophagy in CCM disease pathogenesis, thus providing a novel framework for the development of new pharmacological strategies to prevent or reverse adverse clinical outcomes of CCM lesions. PMID:26417067

  9. Defective autophagy is a key feature of cerebral cavernous malformations.

    PubMed

    Marchi, Saverio; Corricelli, Mariangela; Trapani, Eliana; Bravi, Luca; Pittaro, Alessandra; Delle Monache, Simona; Ferroni, Letizia; Patergnani, Simone; Missiroli, Sonia; Goitre, Luca; Trabalzini, Lorenza; Rimessi, Alessandro; Giorgi, Carlotta; Zavan, Barbara; Cassoni, Paola; Dejana, Elisabetta; Retta, Saverio Francesco; Pinton, Paolo

    2015-11-01

    Cerebral cavernous malformation (CCM) is a major cerebrovascular disease affecting approximately 0.3-0.5% of the population and is characterized by enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhages. Cerebral cavernous malformation is a genetic disease that may arise sporadically or be inherited as an autosomal dominant condition with incomplete penetrance and variable expressivity. Causative loss-of-function mutations have been identified in three genes, KRIT1 (CCM1), CCM2 (MGC4607), and PDCD10 (CCM3), which occur in both sporadic and familial forms. Autophagy is a bulk degradation process that maintains intracellular homeostasis and that plays essential quality control functions within the cell. Indeed, several studies have identified the association between dysregulated autophagy and different human diseases. Here, we show that the ablation of the KRIT1 gene strongly suppresses autophagy, leading to the aberrant accumulation of the autophagy adaptor p62/SQSTM1, defective quality control systems, and increased intracellular stress. KRIT1 loss-of-function activates the mTOR-ULK1 pathway, which is a master regulator of autophagy, and treatment with mTOR inhibitors rescues some of the mole-cular and cellular phenotypes associated with CCM. Insufficient autophagy is also evident in CCM2-silenced human endothelial cells and in both cells and tissues from an endothelial-specific CCM3-knockout mouse model, as well as in human CCM lesions. Furthermore, defective autophagy is highly correlated to endothelial-to-mesenchymal transition, a crucial event that contributes to CCM progression. Taken together, our data point to a key role for defective autophagy in CCM disease pathogenesis, thus providing a novel framework for the development of new pharmacological strategies to prevent or reverse adverse clinical outcomes of CCM lesions.

  10. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation

    PubMed Central

    2012-01-01

    Background Periodontitis, the most prevalent chronic inflammatory disease, has been related to cardiovascular diseases. Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. The aim of this research was to study the role of autophagy in peripheral blood mononuclear cells from patients with periodontitis and gingival fibroblasts treated with a lipopolysaccharide of Porphyromonas gingivalis. Autophagy-dependent mechanisms have been proposed in the pathogenesis of inflammatory disorders and in other diseases related to periodontitis, such as cardiovascular disease and diabetes. Thus it is important to study the role of autophagy in the pathophysiology of periodontitis. Methods Peripheral blood mononuclear cells from patients with periodontitis (n = 38) and without periodontitis (n = 20) were used to study autophagy. To investigate the mechanism of autophagy, we evaluated the influence of a lipopolysaccharide from P. gingivalis in human gingival fibroblasts, and autophagy was monitored morphologically and biochemically. Autophagosomes were observed by immunofluorescence and electron microscopy. Results We found increased levels of autophagy gene expression and high levels of mitochondrial reactive oxygen species production in peripheral blood mononuclear cells from patients with periodontitis compared with controls. A significantly positive correlation between both was observed. In human gingival fibroblasts treated with lipopolysaccharide from P. gingivalis, there was an increase of protein and transcript of autophagy-related protein 12 (ATG12) and microtubule-associated protein 1 light chain 3 alpha LC3. A reduction of mitochondrial reactive oxygen species induced a decrease in autophagy whereas inhibition of autophagy in infected cells increased apoptosis, showing the protective role of autophagy. Conclusion Results from the present study suggest that autophagy is an important and shared

  11. A vitamin for autophagy.

    PubMed

    Fabri, Mario; Modlin, Robert L

    2009-09-17

    Recent discoveries have revealed the importance of the vitamin D-dependent generation of antimicrobial peptides in human host defense against Mycobacterium tuberculosis. Now, Yuk et al. (2009) show how vitamin D induces autophagy and mediates colocalization of Mycobacterium tuberculosis and antimicrobial peptides within an autophagolysosome, leading to killing of the bacterium.

  12. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells

    PubMed Central

    Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie

    2015-01-01

    Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer. PMID:26473737

  13. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells.

    PubMed

    Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie

    2015-01-01

    Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer.

  14. Microenvironmental autophagy promotes tumour growth.

    PubMed

    Katheder, Nadja S; Khezri, Rojyar; O'Farrell, Fergal; Schultz, Sebastian W; Jain, Ashish; Rahman, Mohammed M; Schink, Kay O; Theodossiou, Theodossis A; Johansen, Terje; Juhász, Gábor; Bilder, David; Brech, Andreas; Stenmark, Harald; Rusten, Tor Erik

    2017-01-19

    As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.

  15. Cytoplastic Glyceraldehyde-3-Phosphate Dehydrogenases Interact with ATG3 to Negatively Regulate Autophagy and Immunity in Nicotiana benthamiana

    PubMed Central

    Han, Shaojie; Wang, Yan; Zheng, Xiyin; Jia, Qi; Zhao, Jinping; Bai, Fan; Hong, Yiguo; Liu, Yule

    2015-01-01

    Autophagy as a conserved catabolic pathway can respond to reactive oxygen species (ROS) and plays an important role in degrading oxidized proteins in plants under various stress conditions. However, how ROS regulates autophagy in response to oxidative stresses is largely unknown. Here, we show that autophagy-related protein 3 (ATG3) interacts with the cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) to regulate autophagy in Nicotiana benthamiana plants. We found that oxidative stress inhibits the interaction of ATG3 with GAPCs. Silencing of GAPCs significantly activates ATG3-dependent autophagy, while overexpression of GAPCs suppresses autophagy in N. benthamiana plants. Moreover, silencing of GAPCs enhances N gene-mediated cell death and plant resistance against both incompatible pathogens Tobacco mosaic virus and Pseudomonas syringae pv tomato DC3000, as well as compatible pathogen P. syringae pv tabaci. These results indicate that GAPCs have multiple functions in the regulation of autophagy, hypersensitive response, and plant innate immunity. PMID:25829441

  16. The acquisition of resistance to TNFα in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray.

    PubMed

    Moussay, Etienne; Kaoma, Tony; Baginska, Joanna; Muller, Arnaud; Van Moer, Kris; Nicot, Nathalie; Nazarov, Petr V; Vallar, Laurent; Chouaib, Salem; Berchem, Guy; Janji, Bassam

    2011-07-01

    While the autophagic process is mainly regulated at the post-translational level, a growing body of evidence suggests that autophagy might also be regulated at the transcriptional level. The identification of transcription factors involved in the regulation of autophagy genes has provided compelling evidence for such regulation. In this context, a powerful high throughput analysis tool to simultaneously monitor the expression level of autophagy genes is urgently needed. Here we describe setting up the first comprehensive human autophagy database (HADb, available at www.autophagy.lu) and the development of a companion Human Autophagy-dedicated cDNA Microarray which comprises 234 genes involved in or related to autophagy. The autophagy microarray tool used on breast adenocarcinoma MCF-7 cell line allowed the identification of 47 differentially expressed autophagy genes associated with the acquisition of resistance to the cytotoxic effect of TNFα. The autophagy-core machinery genes DRAM (Damage-Regulated Autophagy Modulator), BNIP3L (BCL2/adenovirus E1B 19 kDa interacting protein 3-like), BECN1 (Beclin 1), GABARAP (Gamma-AminoButyric Acid Receptor-Associated Protein) and UVRAG (UV radiation resistance associated gene) were found upregulated in TNF-resistant cells, suggesting a constitutive activation of the autophagy machinery in these cells. More interestingly, we identified NPC1 as the most upregulated genes in TNF-resistant compared to TNF-sensitive MCF-7 cells, suggesting a relation between the intracellular transport of cholesterol, the regulation of autophagy and NPC1 expression in TNF-resistant tumor cells. In conclusion, we describe here new tools that may help investigating autophagy gene regulation in various cellular models and diseases.

  17. Autophagy Controls Acquisition of Aging Features in Macrophages.

    PubMed

    Stranks, Amanda J; Hansen, Anne Louise; Panse, Isabel; Mortensen, Monika; Ferguson, David J P; Puleston, Daniel J; Shenderov, Kevin; Watson, Alexander Scarth; Veldhoen, Marc; Phadwal, Kanchan; Cerundolo, Vincenzo; Simon, Anna Katharina

    2015-01-01

    Macrophages provide a bridge linking innate and adaptive immunity. An increased frequency of macrophages and other myeloid cells paired with excessive cytokine production is commonly seen in the aging immune system, known as 'inflamm-aging'. It is presently unclear how healthy macrophages are maintained throughout life and what connects inflammation with myeloid dysfunction during aging. Autophagy, an intracellular degradation mechanism, has known links with aging and lifespan extension. Here, we show for the first time that autophagy regulates the acquisition of major aging features in macrophages. In the absence of the essential autophagy gene Atg7, macrophage populations are increased and key functions such as phagocytosis and nitrite burst are reduced, while the inflammatory cytokine response is significantly increased - a phenotype also observed in aged macrophages. Furthermore, reduced autophagy decreases surface antigen expression and skews macrophage metabolism toward glycolysis. We show that macrophages from aged mice exhibit significantly reduced autophagic flux compared to young mice. These data demonstrate that autophagy plays a critical role in the maintenance of macrophage homeostasis and function, regulating inflammation and metabolism and thereby preventing immunosenescence. Thus, autophagy modulation may prevent excess inflammation and preserve macrophage function during aging, improving immune responses and reducing the morbidity and mortality associated with inflamm-aging.

  18. Crosstalk between apoptosis and autophagy within the Beclin 1 interactome.

    PubMed

    Maiuri, Maria Chiara; Criollo, Alfredo; Kroemer, Guido

    2010-02-03

    Although the essential genes for autophagy (Atg) have been identified, the molecular mechanisms through which Atg proteins control 'self eating' in mammalian cells remain elusive. Beclin 1 (Bec1), the mammalian orthologue of yeast Atg6, is part of the class III phosphatidylinositol 3-kinase (PI3K) complex that induces autophagy. The first among an increasing number of Bec1-interacting proteins that has been identified is the anti-apoptotic protein Bcl-2. The dissociation of Bec1 from Bcl-2 is essential for its autophagic activity, and Bcl-2 only inhibits autophagy when it is present in the endoplasmic reticulum (ER). A paper in this issue of the EMBO Journal has identified a novel protein, NAF-1 (nutrient-deprivation autophagy factor-1), that binds Bcl-2 at the ER. NAF-1 is a component of the inositol-1,4,5 trisphosphate (IP3) receptor complex, which contributes to the interaction of Bcl-2 with Bec1 and is required for Bcl-2 to functionally antagonize Bec1-mediated autophagy. This work provides mechanistic insights into how autophagy- and apoptosis-regulatory molecules crosstalk at the ER.

  19. Autophagy functions on EMT in gastrulation of avian embryo

    PubMed Central

    Lu, Wen-Hui; Wang, Guang; Li, Yan; Li, Shuai; Song, Xiao-Yu; Wang, Xiao-Yu; Chuai, Manli; Lee, Kenneth Ka Ho; Cao, Liu; Yang, Xuesong

    2014-01-01

    Autophagy is important for cell renewing for its contribution to the degradation of bulk cytoplasm, long-lived proteins, and entire organelles and its role in embryonic development is largely unknown. In our study, we investigated the function of autophagy in gastrulation of the chick embryo using both in vivo and in vitro approaches, especially in the EMT process, and we found that autophagy gene Atg7 was expressed on the apical side of the ectoderm and endoderm. Over-expression of Atg7 could enhance the expression of Atg8 and the E-cadherin, the latter of which is a crucial marker of the EMT process. We also found that the disturbance of autophagy could retard the development of chick embryos in HH4 with shorter primitive steak than that in the control group, which is a newly formed structure during EMT process. So we assumed that autophagy could affect EMT process by adhesion molecule expression. Moreover, more molecules, such as slug, chordin, shh et., which were all involved in EMT process, were detected to address the mechanism of this phenomena. We established that the inhibition of autophagy could cause developmental delay by affecting EMT process in gastrulation of chick embryos. PMID:25486362

  20. Autophagy and ageing: insights from invertebrate model organisms.

    PubMed

    Lionaki, Eirini; Markaki, Maria; Tavernarakis, Nektarios

    2013-01-01

    Ageing in diverse species ranging from yeast to humans is associated with the gradual, lifelong accumulation of molecular and cellular damage. Autophagy, a conserved lysosomal, self-destructive process involved in protein and organelle degradation, plays an essential role in both cellular and whole-animal homeostasis. Accumulating evidence now indicates that autophagic degradation declines with age and this gradual reduction of autophagy might have a causative role in the functional deterioration of biological systems during ageing. Indeed, loss of autophagy gene function significantly influences longevity. Moreover, genetic or pharmacological manipulations that extend lifespan in model organisms often activate autophagy. Interestingly, conserved signalling pathways and environmental factors that regulate ageing, such as the insulin/IGF-1 signalling pathway and oxidative stress response pathways converge on autophagy. In this article, we survey recent findings in invertebrates that contribute to advance our understanding of the molecular links between autophagy and the regulation of ageing. In addition, we consider related mechanisms in other organisms and discuss their similarities and idiosyncratic features in a comparative manner.

  1. Autophagy is involved in aldosterone-induced mesangial cell proliferation

    PubMed Central

    Yang, Min; Wang, Bin; Miao, Liying; Xu, Xianlin; He, Xiaozhou

    2016-01-01

    The aim of the present study was to investigate whether autophagy is involved in aldosterone (Aldo)-induced mesangial cell (MC) proliferation. MCs were incubated with 10−7 M Aldo for 24 h. Proliferation of MCs, and the underlying mechanisms, were subsequently analyzed using [3H]thymidine assay, cell counting assay, western blotting and RNA interference (RNAi). Aldo was revealed to induce autophagy, as indicated by the increased conversion from microtubule-associated protein 1A/1B-light chain 3 (LC3)-I to LC3-II, the increased expression levels of autophagy-related gene 7 (Atg7) and the increased degradation of p62, which was accompanied by MC proliferation. Notably, pharmacological inhibition of autophagy or RNAi-mediated knockdown of Atg7 attenuated Aldo-induced MC proliferation, suggesting that autophagy was at least partially responsible for this effect. The results of the present study provided evidence that autophagy is critical for regulating Aldo-induced MC proliferation. PMID:27748808

  2. Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.

    PubMed

    Kramer, Michael H; Farré, Jean-Claude; Mitra, Koyel; Yu, Michael Ku; Ono, Keiichiro; Demchak, Barry; Licon, Katherine; Flagg, Mitchell; Balakrishnan, Rama; Cherry, J Michael; Subramani, Suresh; Ideker, Trey

    2017-02-16

    We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.

  3. Autophagy Controls Acquisition of Aging Features in Macrophages

    PubMed Central

    Stranks, Amanda J.; Hansen, Anne Louise; Panse, Isabel; Mortensen, Monika; Ferguson, David J.P.; Puleston, Daniel J.; Shenderov, Kevin; Watson, Alexander Scarth; Veldhoen, Marc; Phadwal, Kanchan; Cerundolo, Vincenzo; Simon, Anna Katharina

    2015-01-01

    Macrophages provide a bridge linking innate and adaptive immunity. An increased frequency of macrophages and other myeloid cells paired with excessive cytokine production is commonly seen in the aging immune system, known as ‘inflamm-aging’. It is presently unclear how healthy macrophages are maintained throughout life and what connects inflammation with myeloid dysfunction during aging. Autophagy, an intracellular degradation mechanism, has known links with aging and lifespan extension. Here, we show for the first time that autophagy regulates the acquisition of major aging features in macrophages. In the absence of the essential autophagy gene Atg7, macrophage populations are increased and key functions such as phagocytosis and nitrite burst are reduced, while the inflammatory cytokine response is significantly increased – a phenotype also observed in aged macrophages. Furthermore, reduced autophagy decreases surface antigen expression and skews macrophage metabolism toward glycolysis. We show that macrophages from aged mice exhibit significantly reduced autophagic flux compared to young mice. These data demonstrate that autophagy plays a critical role in the maintenance of macrophage homeostasis and function, regulating inflammation and metabolism and thereby preventing immunosenescence. Thus, autophagy modulation may prevent excess inflammation and preserve macrophage function during aging, improving immune responses and reducing the morbidity and mortality associated with inflamm-aging. PMID:25764971

  4. Autophagy Regulates Colistin-Induced Apoptosis in PC-12 Cells

    PubMed Central

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli

    2015-01-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons. PMID:25645826

  5. FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice.

    PubMed

    Liu, Tong-Yan; Xiong, Xiao-Qing; Ren, Xing-Sheng; Zhao, Ming-Xia; Shi, Chang-Xiang; Wang, Jue-Jin; Zhou, Ye-Bo; Zhang, Feng; Han, Ying; Gao, Xing-Ya; Chen, Qi; Li, Yue-Hua; Kang, Yu-Ming; Zhu, Guo-Qing

    2016-11-01

    Fibronectin type III domain-containing 5 (FNDC5) protein induces browning of subcutaneous fat and mediates the beneficial effects of exercise on metabolism. However, whether FNDC5 is associated with hepatic steatosis, autophagy, fatty acid oxidation (FAO), and lipogenesis remains unknown. Herein, we show the roles and mechanisms of FNDC5 in hepatic steatosis, autophagy, and lipid metabolism. Fasted FNDC5(-/-) mice exhibited severe steatosis, reduced autophagy, and FAO, and enhanced lipogenesis in the liver compared with wild-type mice. Energy deprivation-induced autophagy, FAO, and AMPK activity were attenuated in FNDC5(-/-) hepatocytes, which were restored by activating AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Inhibition of mammalian target of rapamycin (mTOR) complex 1 with rapamycin enhanced autophagy and FAO and attenuated lipogenesis and steatosis in FNDC5(-/-) livers. FNDC5 deficiency exacerbated hyperlipemia, hepatic FAO and autophagy impairment, hepatic lipogenesis, and lipid accumulation in obese mice. Exogenous FNDC5 stimulated autophagy and FAO gene expression in hepatocytes and repaired the attenuated autophagy and palmitate-induced steatosis in FNDC5(-/-) hepatocytes. FNDC5 overexpression prevented hyperlipemia, hepatic FAO and autophagy impairment, hepatic lipogenesis, and lipid accumulation in obese mice. These results indicate that FNDC5 deficiency impairs autophagy and FAO and enhances lipogenesis via the AMPK/mTOR pathway. FNDC5 deficiency aggravates whereas FNDC5 overexpression prevents the HFD-induced hyperlipemia, hepatic lipid accumulation, and impaired FAO and autophagy in the liver.

  6. Autophagy and ethanol-induced liver injury

    PubMed Central

    Jr, Terrence M Donohue

    2009-01-01

    The majority of ethanol metabolism occurs in the liver. Consequently, this organ sustains the greatest damage from ethanol abuse. Ethanol consumption disturbs the delicate balance of protein homeostasis in the liver, causing intracellular protein accumulation due to a disruption of hepatic protein catabolism. Evidence indicates that ethanol or its metabolism impairs trafficking events in the liver, including the process of macroautophagy, which is the engulfment and degradation of cytoplasmic constituents by the lysosomal system. Autophagy is an essential, ongoing cellular process that is highly regulated by nutrients, endocrine factors and signaling pathways. A great number of the genes and gene products that govern the autophagic response have been characterized and the major metabolic and signaling pathways that activate or suppress autophagy have been identified. This review describes the process of autophagy, its regulation and the possible mechanisms by which ethanol disrupts the process of autophagic degradation. The implications of autophagic suppression are discussed in relation to the pathogenesis of alcohol-induced liver injury. PMID:19291817

  7. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs

    PubMed Central

    Bowman, Christopher John; Ayer, Donald E.; Dynlacht, Brian David

    2014-01-01

    Summary Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes via Foxk-Sin3-mediated transcriptional control. PMID:25402684

  8. Foxk proteins repress the initiation of starvation-induced atrophy and autophagy programs.

    PubMed

    Bowman, Christopher John; Ayer, Donald E; Dynlacht, Brian David

    2014-12-01

    Autophagy is the primary catabolic process triggered in response to starvation. Although autophagic regulation within the cytosolic compartment is well established, it is becoming clear that nuclear events also regulate the induction or repression of autophagy. Nevertheless, a thorough understanding of the mechanisms by which sequence-specific transcription factors modulate expression of genes required for autophagy is lacking. Here, we identify Foxk proteins (Foxk1 and Foxk2) as transcriptional repressors of autophagy in muscle cells and fibroblasts. Interestingly, Foxk1/2 serve to counter-balance another forkhead transcription factor, Foxo3, which induces an overlapping set of autophagic and atrophic targets in muscle. Foxk1/2 specifically recruits Sin3A-HDAC complexes to restrict acetylation of histone H4 and expression of critical autophagy genes. Remarkably, mTOR promotes the transcriptional activity of Foxk1 by facilitating nuclear entry to specifically limit basal levels of autophagy in nutrient-rich conditions. Our study highlights an ancient, conserved mechanism whereby nutritional status is interpreted by mTOR to restrict autophagy by repressing essential autophagy genes through Foxk-Sin3-mediated transcriptional control.

  9. Critical Role of FoxO3a in Alcohol-Induced Autophagy and Hepatotoxicity

    PubMed Central

    Ni, Hong-Min; Du, Kuo; You, Min; Ding, Wen-Xing

    2014-01-01

    Autophagy is a lysosomal degradation process that degrades long-lived cellular proteins and damaged organelles as a critical cell survival mechanism in response to stress. We recently reported that acute ethanol induces autophagy, which then reduces ethanol-induced liver injury. However, the mechanisms by which ethanol induces autophagy are not known. In the present study, ethanol treatment significantly increased both mRNA and protein levels of various essential autophagy-related genes in primary cultured mouse hepatocytes and in mouse liver. Both nuclear translocation of FoxO3a and expression of FoxO3a target genes were increased in ethanol-treated primary hepatocytes and mouse liver. Overexpression of a dominant negative form of FoxO3a inhibited ethanol-induced autophagy-related gene expression and enhanced ethanol-induced cell death in primary hepatocytes, which suggests that FoxO3a is a key factor in regulating ethanol-induced autophagy and cell survival. Resveratrol, a well-known SIRT1 agonist, further enhanced ethanol-induced expression of autophagy-related genes, likely via increased deacetylation of FoxO3a. Moreover, acute ethanol–treated Foxo3a−/− mice exhibited decreased autophagy-related gene expression, but enhanced steatosis and liver injury, compared with wild-type mice. FoxO3a thus plays a critical role in ethanol-induced autophagy in mouse liver. Modulating the FoxO3a autophagy pathway may offer novel therapeutic approaches for treating alcoholic liver pathogenesis. PMID:24095927

  10. Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity.

    PubMed

    Ni, Hong-Min; Du, Kuo; You, Min; Ding, Wen-Xing

    2013-12-01

    Autophagy is a lysosomal degradation process that degrades long-lived cellular proteins and damaged organelles as a critical cell survival mechanism in response to stress. We recently reported that acute ethanol induces autophagy, which then reduces ethanol-induced liver injury. However, the mechanisms by which ethanol induces autophagy are not known. In the present study, ethanol treatment significantly increased both mRNA and protein levels of various essential autophagy-related genes in primary cultured mouse hepatocytes and in mouse liver. Both nuclear translocation of FoxO3a and expression of FoxO3a target genes were increased in ethanol-treated primary hepatocytes and mouse liver. Overexpression of a dominant negative form of FoxO3a inhibited ethanol-induced autophagy-related gene expression and enhanced ethanol-induced cell death in primary hepatocytes, which suggests that FoxO3a is a key factor in regulating ethanol-induced autophagy and cell survival. Resveratrol, a well-known SIRT1 agonist, further enhanced ethanol-induced expression of autophagy-related genes, likely via increased deacetylation of FoxO3a. Moreover, acute ethanol-treated Foxo3a(-/-) mice exhibited decreased autophagy-related gene expression, but enhanced steatosis and liver injury, compared with wild-type mice. FoxO3a thus plays a critical role in ethanol-induced autophagy in mouse liver. Modulating the FoxO3a autophagy pathway may offer novel therapeutic approaches for treating alcoholic liver pathogenesis. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Autophagy in the endocrine glands.

    PubMed

    Weckman, Andrea; Di Ieva, Antonio; Rotondo, Fabio; Syro, Luis V; Ortiz, Leon D; Kovacs, Kalman; Cusimano, Michael D

    2014-04-01

    Autophagy is an important cellular process involving the degradation of intracellular components. Its regulation is complex and while there are many methods available, there is currently no single effective way of detecting and monitoring autophagy. It has several cellular functions that are conserved throughout the body, as well as a variety of different physiological roles depending on the context of its occurrence in the body. Autophagy is also involved in the pathology of a wide range of diseases. Within the endocrine system, autophagy has both its traditional conserved functions and specific functions. In the endocrine glands, autophagy plays a critical role in controlling intracellular hormone levels. In peptide-secreting cells of glands such as the pituitary gland, crinophagy, a specific form of autophagy, targets the secretory granules to control the levels of stored hormone. In steroid-secreting cells of glands such as the testes and adrenal gland, autophagy targets the steroid-producing organelles. The dysregulation of autophagy in the endocrine glands leads to several different endocrine diseases such as diabetes and infertility. This review aims to clarify the known roles of autophagy in the physiology of the endocrine system, as well as in various endocrine diseases.

  12. Autophagy, Immunity, and Microbial Adaptations

    PubMed Central

    Deretic, Vojo; Levine, Beth

    2009-01-01

    Autophagy adjusts cellular biomass and function in response to diverse stimuli, including infection. Autophagy plays specific roles in shaping immune system development, fueling host innate and adaptive immune responses, and directly controlling intracellular microbes as a cell-autonomous innate defense. As an evolutionary counterpoint, intracellular pathogens have evolved to block autophagic microbicidal defense and subvert host autophagic responses for their survival or growth. The ability of eukaryotic pathogens to deploy their own autophagic machinery may also contribute to microbial pathogenesis. Thus, a complex interplay between autophagy and microbial adaptations against autophagy governs the net outcome of host-microbe encounters. PMID:19527881

  13. The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII).

    PubMed

    Nascimbeni, A C; Fanin, M; Masiero, E; Angelini, C; Sandri, M

    2012-10-01

    Regulated removal of proteins and organelles by autophagy-lysosome system is critical for muscle homeostasis. Excessive activation of autophagy-dependent degradation contributes to muscle atrophy and cachexia. Conversely, inhibition of autophagy causes accumulation of protein aggregates and abnormal organelles, leading to myofiber degeneration and myopathy. Defects in lysosomal function result in severe muscle disorders such as Pompe (glycogen storage disease type II (GSDII)) disease, characterized by an accumulation of autophagosomes. However, whether autophagy is detrimental or not in muscle function of Pompe patients is unclear. We studied infantile and late-onset GSDII patients and correlated impairment of autophagy with muscle wasting. We also monitored autophagy in patients who received recombinant α-glucosidase. Our data show that infantile and late-onset patients have different levels of autophagic flux, accumulation of p62-positive protein aggregates and expression of atrophy-related genes. Although the infantile patients show impaired autophagic function, the late-onset patients display an interesting correlation among autophagy impairment, atrophy and disease progression. Moreover, reactivation of autophagy in vitro contributes to acid α-glucosidase maturation in both healthy and diseased myotubes. Together, our data suggest that autophagy protects myofibers from disease progression and atrophy in late-onset patients.

  14. Starvation-response may not involve Atg1-dependent autophagy induction in non-unikont parasites

    PubMed Central

    Földvári-Nagy, László; Ari, Eszter; Csermely, Péter; Korcsmáros, Tamás; Vellai, Tibor

    2014-01-01

    Autophagy, the lysosome-mediated self-degradation process, is implicated in survival during starvation in yeast, Dictyostelium and animals. In these eukaryotic taxa (collectively called Unikonts), autophagy is induced primarily through the Atg1/ULK1 complex in response to nutrient depletion. Autophagy has also been well-studied in non-unikont parasites, such as Trypanosoma and Plasmodium, and found important in their life-cycle transitions. However, how autophagy is induced in non-unikonts remains largely unrevealed. Using a bioinformatics approach, we examined the presence of Atg1 and of its complex in the genomes of 40 non-unikonts. We found that these genomes do not encode typical Atg1 proteins: BLAST and HMMER queries matched only with the kinase domain of Atg1, while other segments responsible for regulation and protein-binding were missing. Non-unikonts also lacked other components of the Atg1-inducing complex. Orthologs of an alternative autophagy inducer, Atg6 were found only in the half of the species, indicating that the other half may possess other inducing mechanisms. As key autophagy genes have differential expression patterns during life-cycle, we raise the possibility that autophagy in these protists is induced mainly at the post-transcriptional level. Understanding Atg1-independent autophagy induction mechanisms in these parasites may lead to novel pharmacological interventions, not affecting human Atg1-dependent autophagy. PMID:25059978

  15. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway.

    PubMed

    Tang, Yulong; Li, Jianjun; Li, Fengna; Hu, Chien-An A; Liao, Peng; Tan, Kunrong; Tan, Bie; Xiong, Xia; Liu, Gang; Li, Tiejun; Yin, Yulong

    2015-12-01

    Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine intestinal epithelial cells (IPEC-J2) using CRISPR-Cas9 technology. When treated with DON, autophagy was induced in IPEC-J2 cells but not in IPEC-J2.Atg5ko cells. The deficiency in autophagy increased DON-induced apoptosis in IPEC-J2.atg5ko cells, in part, through the generation of reactive oxygen species (ROS). The cellular stress response can be restored in IPEC-J2.atg5ko cells by overexpressing proteins involved in protein folding. Interestingly, we found that autophagy deficiency downregulated the expression of endoplasmic reticulum folding proteins BiP and PDI when IPEC-J2.atg5ko cells were treated with DON. In addition, we investigated the molecular mechanism of autophagy involved in the IKK, AMPK, and mTOR signaling pathway and found that Bay-117082 and Compound C, specific inhibitors for IKK and AMPK, respectively, inhibited the induction of autophagy. Taken together, our results suggest that autophagy is pivotal for protection against DON in pig intestinal cells.

  16. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization

    PubMed Central

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury. PMID:25650776

  17. Inhibition of autophagy enhances Hydroquinone-induced TK6 cell death.

    PubMed

    Xu, Longmei; Liu, Jiaxian; Chen, Yuting; Yun, Lin; Chen, Shaoyun; Zhou, Kairu; Lai, Bei; Song, Li; Yang, Hui; Liang, Hairong; Tang, Huanwen

    2017-03-02

    Hydroquinone (HQ), one of the metabolic products of benzene, is a carcinogen. It can induce apoptosis in lymphoma cells. However, whether HQ can induce autophagy and what roles autophagy plays in TK6 cells exposured to HQ remains unclear. In this study, we found that HQ could induce autophagy through techniques of qRT-PCR, Western blot, immunofluorescent assay of LC3 and transmission electron microscope. Furthermore, inhibiting autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) significantly enhanced HQ-induced cell apoptosis, suggesting that autophagy may be a survival mechanism. Our study also showed that HQ activated PARP-1. Moreover, knockdown of PARP-1 strongly exhibited decreased autophagy related genes expression. In contrast, the absence of SIRT1 increased that. Altogether, our data provided evidence that HQ induced autophagy in TK6 cells and autophagy protected TK6 from HQ attack-induced injury in vitro, and the autophagy was partially mediated via activation of the PARP-1-SIRT1 signaling pathway.

  18. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    PubMed

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  19. Protective autophagy is involved in resistance towards MET inhibitors in human gastric adenocarcinoma cells.

    PubMed

    Humbert, Magali; Medová, Michaela; Aebersold, Daniel M; Blaukat, Andree; Bladt, Friedhelm; Fey, Martin F; Zimmer, Yitzhak; Tschan, Mario P

    2013-02-08

    MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.

  20. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling

    PubMed Central

    Ko, A; Kanehisa, A; Martins, I; Senovilla, L; Chargari, C; Dugue, D; Mariño, G; Kepp, O; Michaud, M; Perfettini, J-L; Kroemer, G; Deutsch, E

    2014-01-01

    Clinical oncology heavily relies on the use of radiotherapy, which often leads to merely transient responses that are followed by local or distant relapse. The molecular mechanisms explaining radioresistance are largely elusive. Here, we identified a dual role of autophagy in the response of cancer cells to ionizing radiation. On one hand, we observed that the depletion of essential autophagy-relevant gene products, such as ATG5 and Beclin 1, increased the sensitivity of human or mouse cancer cell lines to irradiation, both in vitro (where autophagy inhibition increased radiation-induced cell death and decreased clonogenic survival) and in vivo, after transplantation of the cell lines into immunodeficient mice (where autophagy inhibition potentiated the tumour growth-inhibitory effect of radiotherapy). On the other hand, when tumour proficient or deficient for autophagy were implanted in immunocompetent mice, it turned out that defective autophagy reduced the efficacy of radiotherapy. Indeed, radiotherapy elicited an anti-cancer immune response that was dependent on autophagy-induced ATP release from stressed or dying tumour cells and was characterized by dense lymphocyte infiltration of the tumour bed. Intratumoural injection of an ecto-ATPase inhibitor restored the immune infiltration of autophagy-deficient tumours post radiotherapy and improved the growth-inhibitory effect of ionizing irradiation. Altogether, our results reveal that beyond its cytoprotective function, autophagy confers immunogenic properties to tumours, hence amplifying the efficacy of radiotherapy in an immunocompetent context. This has far-reaching implications for the development of pharmacological radiosensitizers. PMID:24037090

  1. Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma

    PubMed Central

    Ma, Xiaohong; Piao, Shengfu; Wang, Dan; Mcafee, Quentin; Nathanson, Katherine L.; Lum, Julian J.; Li, Lin Z.; Amaravadi, Ravi K.

    2011-01-01

    Purpose Autophagy consists of lysosome-dependent degradation of cytoplasmic contents sequestered by autophagic vesicles (AV). The role of autophagy in determining tumor aggressiveness and response to therapy in melanoma was investigated in this study. Experimental Design Autophagy was measured in tumor biopsies obtained from metastatic melanoma patients enrolled on a phase II trial of temozolomide and sorafenib and correlated to clinical outcome. These results were compared to autophagy measurements in aggressive and indolent melanoma cells grown in two and three dimensional culture and as xenograft tumors. The effects of autophagy inhibition with either hydroxychloroquine or inducible shRNA against the autophagy gene ATG5 were assessed in three dimensional spheroids. Results Patients whose tumors had a high autophagic index were less likely to respond to treatment and had a shorter survival compared to those with a low autophagic index. Differences in autophagy were less evident in aggressive and indolent melanoma cells grown in monolayer culture. In contrast, autophagy was increased in aggressive compared to indolent melanoma xenograft tumors. This difference was recapitulated when aggressive and indolent melanoma cells were grown as spheroids. Autophagy inhibition with either hydroxychloroquine or inducible shRNA against ATG5 resulted in cell death in aggressive melanoma spheroids, and significantly augmented temozolomide-induced cell death. Conclusions Autophagy is a potential prognostic factor and therapeutic target in melanoma. Three dimensional culture mimics the tumor microenvironment better than monolayer culture and is an appropriate model for studying therapeutic combinations involving autophagy modulators autophagy inhibition should be tested clinically in patients with melanoma. PMID:21325076

  2. Lutein Induces Autophagy via Beclin-1 Upregulation in IEC-6 Rat Intestinal Epithelial Cells.

    PubMed

    Chang, Chi-Jen; Lin, Ji-Fan; Hsiao, Chien-Yu; Chang, Hsun-Hao; Li, Hsin-Ju; Chang, Hsun-Hsien; Lee, Gon-Ann; Hung, Chi-Feng

    2017-01-01

    Lutein is a carotenoid with anti-oxidant properties. Autophagy, an evolutionarily conserved catabolic cellular pathway for coping with stress conditions, is responsive to reactive oxygen species (ROS) and degrades damaged organelles. We previously demonstrated that lutein can induce anti-oxidant enzymes to relieve methotrexate-induced ROS stress. We therefore hypothesized that lutein, which activates ROS-scavenging enzymes, can also induce autophagy for cell survival. In this study, we demonstrated that lutein treatment attenuated the reduction in cell viability caused by H2O2. Lutein dose-dependently induced the processing of microtubule-associated protein light chain 3 (LC3)-II, an autophagy marker protein, and accumulation of LC3-positive puncta in rat intestinal IEC-6 cells. Furthermore, (a) direct observation of autophagosome formation through transmission electron microscopy, (b) upregulation of autophagy-related genes including ATG4A, ATG5, ATG7, ATG12, and beclin-1 (BENC1), and (c) increased BECN1/Bcl-2 ratio confirmed the induction of autophagy by lutein. The results revealed that bafilomycin-A1-induced inhibition of autophagy reduced cell viability and increased apoptosis in lutein-treated cells, indicating a protective role of lutein-induced autophagy. Lutein treatment also activated adenosine monophosphate-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK), and p-38, but had no effects on the induction of extracellular signal-related kinase or inhibition of mTOR; however, the inhibition of activated AMPK, JNK, or p-38 did not attenuate lutein-induced autophagy. Finally, increased BECN1 expression levels were detected in lutein-treated cells, and BECN1 knockdown abolished autophagy induction. These results suggest that lutein-induced autophagy was mediated by the upregulation of BECN1 in IEC-6 cells. We are the first to demonstrate that lutein induces autophagy. Elevated autophagy in lutein-treated IEC-6 cells may have a protective role

  3. Naoxintong/PPARγ Signaling Inhibits Cardiac Hypertrophy via Activation of Autophagy

    PubMed Central

    Yuan, Shuping; Jin, Jianhua; Chen, Lu

    2017-01-01

    As a traditional Chinese medicine, Naoxintong capsule (NXT) has been approved by China Food and Drug Administration (CFDA), which is used for cardiocerebrovascular disease treatment. Here we found that NXT extract significantly promoted H9c2 cardiomyocyte cell autophagy involved in increased autophagy-associated gene expression leading to inhibition of mTOR signaling. Moreover, NXT extract increased PPARγ protein expression and transcription activity of H9c2 cell. Consistent with this, in PPARγ gene silenced H9c2 cells, NXT had no effect on autophagy and mTOR signaling. Furthermore, NXT/PPARγ-mediated H9c2 autophagy led to inhibition of cardiomyocyte cell hypertrophy. These findings suggest that the extract of NXT inhibited H9c2 cardiomyocyte cell hypertrophy via PPARγ-mediated cell autophagy. PMID:28293264

  4. Deletion of autophagy-related 5 (Atg5) and Pik3c3 genes in the lens causes cataract independent of programmed organelle degradation.

    PubMed

    Morishita, Hideaki; Eguchi, Satoshi; Kimura, Hirotaka; Sasaki, Junko; Sakamaki, Yuriko; Robinson, Michael L; Sasaki, Takehiko; Mizushima, Noboru

    2013-04-19

    The lens of the eye is composed of fiber cells, which differentiate from epithelial cells and undergo programmed organelle degradation during terminal differentiation. Although autophagy, a major intracellular degradation system, is constitutively active in these cells, its physiological role has remained unclear. We have previously shown that Atg5-dependent macroautophagy is not necessary for lens organelle degradation, at least during the embryonic period. Here, we generated lens-specific Atg5 knock-out mice and showed that Atg5 is not required for lens organelle degradation at any period of life. However, deletion of Atg5 in the lens results in age-related cataract, which is accompanied by accumulation of polyubiquitinated and oxidized proteins, p62, and insoluble crystallins, suggesting a defect in intracellular quality control. We also produced lens-specific Pik3c3 knock-out mice to elucidate the possible involvement of Atg5-independent alternative autophagy, which is proposed to be dependent on Pik3c3 (also known as Vps34), in lens organelle degradation. Deletion of Pik3c3 in the lens does not affect lens organelle degradation, but it leads to congenital cataract and a defect in lens development after birth likely due to an impairment of the endocytic pathway. Taken together, these results suggest that clearance of lens organelles is independent of macroautophagy. These findings also clarify the physiological role of Atg5 and Pik3c3 in quality control and development of the lens, respectively.

  5. Autophagy in cardiovascular biology

    PubMed Central

    Lavandero, Sergio; Chiong, Mario; Rothermel, Beverly A.; Hill, Joseph A.

    2015-01-01

    Cardiovascular disease is the leading cause of death worldwide. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, and macrophages. In all cases, a window of optimal autophagic activity appears to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. In this Review, we discuss the potential for targeting autophagy therapeutically and our vision for where this exciting biology may lead in the future. PMID:25654551

  6. Chaperones in autophagy

    PubMed Central

    Kaushik, Susmita; Cuervo, Ana Maria

    2012-01-01

    Cells continuously turn over proteins through cycles of synthesis and degradation in order to maintain a functional proteome and to exert a tight control in the levels of regulatory proteins. Selective degradation of proteins was initially thought to be an exclusive function of the ubiquitin-proteasome system however, over the years, the contribution of lysosomes to this selective degradation, through the process of autophagy, has become consolidated. In this context, molecular chaperones, classically associated with protein folding, unfolding and assembling, have been revealed as important modulators of selectivity during the autophagic process. Here, we review this relatively new role of chaperones in mediating selective autophagy and comment on how alterations of this function can lead to human pathologies associated to proteotoxicity. PMID:23059540

  7. Autophagy in Helicobacter pylori Infection and Related Gastric Cancer.

    PubMed

    Castaño-Rodríguez, Natalia; Kaakoush, Nadeem O; Goh, Khean-Lee; Fock, Kwong Ming; Mitchell, Hazel M

    2015-10-01

    Autophagy, a degradation pathway in which cytoplasmic content is engulfed and degraded by lysosomal hydrolases, plays a pivotal role in infection and inflammation. Given that defects in autophagy lead to increased susceptibility to infection, we investigated the role of autophagy in Helicobacter pylori-related gastric cancer (GC). Gene expression of 84 molecules was examined through quantitative real-time PCR in gastric epithelial cells (AGS) and macrophages (THP-1) upon exposure to H. pylori GC026 (GC) and 26695 (gastritis). Further, ATG16L1 rs2241880, IRGM rs13361189, and IRGM rs4958847, polymorphisms that have been investigated in relation to H. pylori infection or GC in Caucasians, were detected by MALDI-TOF mass spectrometry in 304 ethnic Chinese (86 noncardia GC cases/218 functional dyspepsia controls). Gene expression analyses showed twenty-eight molecules involved in vesicle nucleation, elongation, and maturation to be significantly down-regulated in H. pylori GC026-challenged AGS cells. Further, core autophagy proteins and autophagy regulators were differentially expressed in H. pylori-challenged THP-1-derived macrophages. Analyses of the selected polymorphisms showed that ATG16L1 rs2241880 increased the risk of GC (OR: 2.38, 95% CI: 1.34-4.24) and H. pylori infection (OR: 1.49, 95% CI: 1.02-2.16) while IRGM rs4958847 decreased GC risk (OR: 0.26, 95% CI: 0.09-0.74) in ethnic Chinese, these effect sizes being especially strong in H. pylori-infected individuals (ATG16L1 rs2241880 and IRGM rs13361189). Our findings indicate that highly virulent H. pylori strains markedly modulate autophagy in the host cell. Further, for the first time, autophagy polymorphisms were associated with GC in Chinese, a high GC-risk population. © 2015 John Wiley & Sons Ltd.

  8. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  9. Autophagy in Huntington disease and huntingtin in autophagy.

    PubMed

    Martin, Dale D O; Ladha, Safia; Ehrnhoefer, Dagmar E; Hayden, Michael R

    2015-01-01

    Autophagy is an important biological process that is essential for the removal of damaged organelles and toxic or aggregated proteins by delivering them to the lysosome for degradation. Consequently, autophagy has become a primary target for the treatment of neurodegenerative diseases that involve aggregating proteins. In Huntington disease (HD), an expansion of the polyglutamine (polyQ) tract in the N-terminus of the huntingtin (HTT) protein leads to protein aggregation. However, HD is unique among the neurodegenerative proteinopathies in that autophagy is not only dysfunctional but wild type (wt) HTT also appears to play several roles in regulating the dynamics of autophagy. Herein, we attempt to integrate the recently described novel roles of wtHTT and altered autophagy in HD.

  10. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis

    PubMed Central

    Inokuchi-Shimizu, Sayaka; Park, Eek Joong; Roh, Yoon Seok; Yang, Ling; Zhang, Bi; Song, Jingyi; Liang, Shuang; Pimienta, Michael; Taniguchi, Koji; Wu, Xuefeng; Asahina, Kinji; Lagakos, William; Mackey, Mason R.; Akira, Shizuo; Ellisman, Mark H.; Sears, Dorothy D.; Olefsky, Jerrold M.; Karin, Michael; Brenner, David A.; Seki, Ekihiro

    2014-01-01

    The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice with hepatocyte-specific deletion of Tak1 exhibited severe hepatosteatosis with increased mTORC1 activity and suppression of autophagy compared with their WT counterparts. TAK1-deficient hepatocytes exhibited suppressed AMPK activity and autophagy in response to starvation or metformin treatment; however, ectopic activation of AMPK restored autophagy in these cells. Peroxisome proliferator–activated receptor α (PPARα) target genes and β-oxidation, which regulate hepatic lipid degradation, were also suppressed in hepatocytes lacking TAK1. Due to suppression of autophagy and β-oxidation, a high-fat diet challenge aggravated steatohepatitis in mice with hepatocyte-specific deletion of Tak1. Notably, inhibition of mTORC1 restored autophagy and PPARα target gene expression in TAK1-deficient livers, indicating that TAK1 acts upstream of mTORC1. mTORC1 inhibition also suppressed spontaneous liver fibrosis and hepatocarcinogenesis in animals with hepatocyte-specific deletion of Tak1. These data indicate that TAK1 regulates hepatic lipid metabolism and tumorigenesis via the AMPK/mTORC1 axis, affecting both autophagy and PPARα activity. PMID:24983318

  11. TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis.

    PubMed

    Inokuchi-Shimizu, Sayaka; Park, Eek Joong; Roh, Yoon Seok; Yang, Ling; Zhang, Bi; Song, Jingyi; Liang, Shuang; Pimienta, Michael; Taniguchi, Koji; Wu, Xuefeng; Asahina, Kinji; Lagakos, William; Mackey, Mason R; Akira, Shizuo; Ellisman, Mark H; Sears, Dorothy D; Olefsky, Jerrold M; Karin, Michael; Brenner, David A; Seki, Ekihiro

    2014-08-01

    The MAP kinase kinase kinase TGFβ-activated kinase 1 (TAK1) is activated by TLRs, IL-1, TNF, and TGFβ and in turn activates IKK-NF-κB and JNK, which regulate cell survival, growth, tumorigenesis, and metabolism. TAK1 signaling also upregulates AMPK activity and autophagy. Here, we investigated TAK1-dependent regulation of autophagy, lipid metabolism, and tumorigenesis in the liver. Fasted mice with hepatocyte-specific deletion of Tak1 exhibited severe hepatosteatosis with increased mTORC1 activity and suppression of autophagy compared with their WT counterparts. TAK1-deficient hepatocytes exhibited suppressed AMPK activity and autophagy in response to starvation or metformin treatment; however, ectopic activation of AMPK restored autophagy in these cells. Peroxisome proliferator-activated receptor α (PPARα) target genes and β-oxidation, which regulate hepatic lipid degradation, were also suppressed in hepatocytes lacking TAK1. Due to suppression of autophagy and β-oxidation, a high-fat diet challenge aggravated steatohepatitis in mice with hepatocyte-specific deletion of Tak1. Notably, inhibition of mTORC1 restored autophagy and PPARα target gene expression in TAK1-deficient livers, indicating that TAK1 acts upstream of mTORC1. mTORC1 inhibition also suppressed spontaneous liver fibrosis and hepatocarcinogenesis in animals with hepatocyte-specific deletion of Tak1. These data indicate that TAK1 regulates hepatic lipid metabolism and tumorigenesis via the AMPK/mTORC1 axis, affecting both autophagy and PPARα activity.

  12. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy.

    PubMed

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Autophagy in stem cell aging.

    PubMed

    Revuelta, Miren; Matheu, Ander

    2017-10-01

    Aging is responsible for changes in mammalian tissues that result in an imbalance to tissue homeostasis and a decline in the regeneration capacity of organs due to stem cell exhaustion. Autophagy is a constitutive pathway necessary to degrade damaged organelles and protein aggregates. Autophagy is one of the hallmarks of aging, which involves a decline in the number and functionality of stem cells. Recent studies show that stem cells require autophagy to get rid of cellular waste produced during the quiescent stage. In particular, two independent studies in muscle and hematopoietic stem cells demonstrate the relevance of the autophagy impairment for stem cell exhaustion and aging. In this review, we summarize the main results of these works, which helped to elucidate the impact of autophagy in stem cell activity as well as in age-associated diseases. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Targeting autophagy in skin diseases.

    PubMed

    Yu, Teng; Zuber, Joshua; Li, Jinchao

    2015-01-01

    Autophagy is a major intracellular degradative process by which cytoplasmic materials are sequestered in double-membraned vesicles and degraded upon fusion with lysosomes. Under normal circumstances, basal autophagy is necessary to maintain cellular homeostasis by scavenging dysfunctional or damaged organelles or proteins. In addition to its vital homeostatic role, this degradation pathway has been implicated in many different cellular processes such as cell apoptosis, inflammation, pathogen clearance, and antigen presentation and thereby has been linked to a variety of human disorders, including metabolic conditions, neurodegenerative diseases, cancers, and infectious diseases. The skin, the largest organ of the body, serves as the first line of defense against many different environmental insults; however, only a few studies have examined the effect of autophagy on the pathogenesis of skin diseases. This review provides an overview of the mechanisms of autophagy and highlights recent findings relevant to the role of autophagy in skin diseases and strategies for therapeutic modulation.

  15. p53-regulated autophagy is controlled by glycolysis and determines cell fate.

    PubMed

    Duan, Lei; Perez, Ricardo E; Davaadelger, Batzaya; Dedkova, Elena N; Blatter, Lothar A; Maki, Carl G

    2015-09-15

    The tumor suppressor p53 regulates downstream targets that determine cell fate. Canonical p53 functions include inducing apoptosis, growth arrest, and senescence. Non-canonical p53 functions include its ability to promote or inhibit autophagy and its ability to regulate metabolism. The extent to which autophagy and/or metabolic regulation determines cell fate by p53 is unclear. To address this, we compared cells resistant or sensitive to apoptosis by the p53 activator Nutlin-3a. In resistant cells, glycolysis was maintained upon Nutlin-3a treatment, and activated p53 promoted prosurvival autophagy. In contrast, in apoptosis sensitive cells activated p53 increased superoxide levels and inhibited glycolysis through repression of glycolytic pathway genes. Glycolysis inhibition and increased superoxide inhibited autophagy by repressing ATG genes essential for autophagic vesicle maturation. Inhibiting glycolysis increased superoxide and blocked autophagy in apoptosis-resistant cells, causing p62-dependent caspase-8 activation. Finally, treatment with 2-DG or the autophagy inhibitors chloroquine or bafilomycin A1 sensitized resistant cells to Nutlin-3a-induced apoptosis. Together, these findings reveal novel links between glycolysis and autophagy that determine apoptosis-sensitivity in response to p53. Specifically, the findings indicate 1) that glycolysis plays an essential role in autophagy by limiting superoxide levels and maintaining expression of ATG genes required for autophagic vesicle maturation, 2) that p53 can promote or inhibit autophagy depending on the status of glycolysis, and 3) that inhibiting protective autophagy can expand the breadth of cells susceptible to Nutlin-3a induced apoptosis.

  16. p53-regulated autophagy is controlled by glycolysis and determines cell fate

    PubMed Central

    Duan, Lei; Perez, Ricardo E.; Davaadelger, Batzaya; Dedkova, Elena N.; Blatter, Lothar A.; Maki, Carl G.

    2015-01-01

    The tumor suppressor p53 regulates downstream targets that determine cell fate. Canonical p53 functions include inducing apoptosis, growth arrest, and senescence. Non-canonical p53 functions include its ability to promote or inhibit autophagy and its ability to regulate metabolism. The extent to which autophagy and/or metabolic regulation determines cell fate by p53 is unclear. To address this, we compared cells resistant or sensitive to apoptosis by the p53 activator Nutlin-3a. In resistant cells, glycolysis was maintained upon Nutlin-3a treatment, and activated p53 promoted prosurvival autophagy. In contrast, in apoptosis sensitive cells activated p53 increased superoxide levels and inhibited glycolysis through repression of glycolytic pathway genes. Glycolysis inhibition and increased superoxide inhibited autophagy by repressing ATG genes essential for autophagic vesicle maturation. Inhibiting glycolysis increased superoxide and blocked autophagy in apoptosis-resistant cells, causing p62-dependent caspase-8 activation. Finally, treatment with 2-DG or the autophagy inhibitors chloroquine or bafilomycin A1 sensitized resistant cells to Nutlin-3a-induced apoptosis. Together, these findings reveal novel links between glycolysis and autophagy that determine apoptosis-sensitivity in response to p53. Specifically, the findings indicate 1) that glycolysis plays an essential role in autophagy by limiting superoxide levels and maintaining expression of ATG genes required for autophagic vesicle maturation, 2) that p53 can promote or inhibit autophagy depending on the status of glycolysis, and 3) that inhibiting protective autophagy can expand the breadth of cells susceptible to Nutlin-3a induced apoptosis. PMID:26337205

  17. Autophagy as a pro-death pathway.

    PubMed

    Denton, Donna; Xu, Tianqi; Kumar, Sharad

    2015-01-01

    The evolutionarily conserved catabolic process of autophagy involves the degradation of cytoplasmic components through lysosomal enzymes. Basal levels of autophagy maintain cellular homeostasis and under stress conditions high levels of autophagy are induced. It is often under such stress conditions that high levels of autophagy and cell death have been observed, leading to the idea that autophagy may act as an executioner of cell death. However the notion of autophagy as a cell death mechanism has been controversial and remains mechanistically undefined. There is now growing evidence that in specific contexts autophagy can indeed facilitate cell death. The pro-death role of autophagy is however complicated due to the extensive cross-talk between different signalling pathways. This review summarises the examples of where autophagy acts as a means of cell death and discusses the association of autophagy with the different cell death pathways.

  18. Autophagy in Antarctica: combating dehydration stress in the world's southernmost insect.

    PubMed

    Teets, Nicholas M; Denlinger, David L

    2013-04-01

    The midge Belgica antarctica is the only insect endemic to Antarctica and has the southernmost range of any insect. In its natural environment, B. antarctica frequently faces desiccating conditions, as environmental water is frozen for up to 9 months annually. The molecular mechanisms by which B. antarctica tolerates extreme dehydration are poorly understood, but recent work from our laboratory reports genome-wide expression changes in response to extreme dehydration (~40% water loss), the first genome-scale transcriptome reported for an Antarctic animal. Among transcripts differentially regulated during dehydration, there is coordinated upregulation of numerous genes involved in autophagy, including genes responsible for autophagosome synthesis and autophagy-associated transcription factors. Also, several genes and pathways that interact with and regulate autophagy, e.g., sestrins and proteasomal genes, are concurrently upregulated. This suggests that autophagy and related processes are key elements regulating stress tolerance in this extreme environment.

  19. Hydrogel Environment Supports Cell Culture Expansion of a Grade IV Astrocytoma.

    PubMed

    Jogalekar, Manasi P; Cooper, Leigh G; Serrano, Elba E

    2017-06-07

    Malignant astrocytomas are aggressive cancers of glial origin that can develop into invasive brain tumors. The disease has poor prognosis and high recurrence rate. Astrocytoma cell lines of human origin are an important tool in the experimental pathway from bench to bedside because they afford a convenient intermediate system for in vitro analysis of brain cancer pathogenesis and treatment options. We undertook the current study to determine whether hydrogel culture methods could be adapted to support the growth of astrocytoma cell lines, thereby facilitating a system that may be biologically more similar to in vivo tumor tissue. Our experimental protocols enabled maintenance of Grade IV astrocytoma cell lines in conventional monolayer culture and in the extracellular matrix hydrogel, Geltrex(™). Light and fluorescence microscopy showed that hydrogel environments promoted cellular reorganization from dispersed cells into multilayered aggregates. Transmission electron microscopy revealed the prevalence of autophagy and nuclear membrane distortions in both culture systems. Analysis of microarray Gene Expression Omnibus (GEO) DataSets highlighted expression of genes implicated in pathways for cancer progression and autophagy. A pilot quantitative polymerase chain reaction (qPCR) analysis of the autophagic biomarkers, Beclin 1 (BECN1) and microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B), with two reference genes (beta actin, ACTB; glyceraldehyde 3-phosphate dehydrogenase, GAPDH), uncovered a relative increase of BECN1 and LC3B in hydrogel cultures of astrocytoma as compared to the monolayer. Taken together, results establish that ultrastructural and molecular characteristics of autophagy are features of this astrocytoma cell line, and that hydrogel culture systems can afford novel opportunities for in vitro studies of glioma.

  20. Obesity-Mediated Autophagy Insufficiency Exacerbates Proteinuria-induced Tubulointerstitial Lesions

    PubMed Central

    Yamahara, Kosuke; Kume, Shinji; Koya, Daisuke; Tanaka, Yuki; Morita, Yoshikata; Chin-Kanasaki, Masami; Araki, Hisazumi; Isshiki, Keiji; Araki, Shin-ichi; Haneda, Masakazu; Matsusaka, Taiji; Kashiwagi, Atsunori; Maegawa, Hiroshi

    2013-01-01

    Obesity is an independent risk factor for renal dysfunction in patients with CKDs, including diabetic nephropathy, but the mechanism underlying this connection remains unclear. Autophagy is an intracellular degradation system that maintains intracellular homeostasis by removing damaged proteins and organelles, and autophagy insufficiency is associated with the pathogenesis of obesity-related diseases. We therefore examined the role of autophagy in obesity-mediated exacerbation of proteinuria-induced proximal tubular epithelial cell damage in mice and in human renal biopsy specimens. In nonobese mice, overt proteinuria, induced by intraperitoneal free fatty acid–albumin overload, led to mild tubular damage and apoptosis, and activated autophagy in proximal tubules reabsorbing urinary albumin. In contrast, diet-induced obesity suppressed proteinuria-induced autophagy and exacerbated proteinuria-induced tubular cell damage. Proximal tubule-specific autophagy-deficient mice, resulting from an Atg5 gene deletion, subjected to intraperitoneal free fatty acid–albumin overload developed severe proteinuria-induced tubular damage, suggesting that proteinuria-induced autophagy is renoprotective. Mammalian target of rapamycin (mTOR), a potent suppressor of autophagy, was activated in proximal tubules of obese mice, and treatment with an mTOR inhibitor ameliorated obesity-mediated autophagy insufficiency. Furthermore, both mTOR hyperactivation and autophagy suppression were observed in tubular cells of specimens obtained from obese patients with proteinuria. Thus, in addition to enhancing the understanding of obesity-related cell vulnerability in the kidneys, these results suggest that restoring the renoprotective action of autophagy in proximal tubules may improve renal outcomes in obese patients. PMID:24092929

  1. Autophagy in 5-Fluorouracil Therapy in Gastrointestinal Cancer: Trends and Challenges

    PubMed Central

    Tang, Jia-Cheng; Feng, Yi-Li; Liang, Xiao; Cai, Xiu-Jun

    2016-01-01

    Objective: 5-Fluorouracil (5-FU)-based combination therapies are standard treatments for gastrointestinal cancer, where the modulation of autophagy is becoming increasingly important in offering effective treatment for patients in clinical practice. This review focuses on the role of autophagy in 5-FU-induced tumor suppression and cancer therapy in the digestive system. Data Sources: All articles published in English from 1996 to date those assess the synergistic effect of autophagy and 5-FU in gastrointestinal cancer therapy were identified through a systematic online search by use of PubMed. The search terms were “autophagy” and “5-FU” and (“colorectal cancer” or “hepatocellular carcinoma” or “pancreatic adenocarcinoma” or “esophageal cancer” or “gallbladder carcinoma” or “gastric cancer”). Study Selection: Critical reviews on relevant aspects and original articles reporting in vitro and/or in vivo results regarding the efficiency of autophagy and 5-FU in gastrointestinal cancer therapy were reviewed, analyzed, and summarized. The exclusion criteria for the articles were as follows: (1) new materials (e.g., nanomaterial)-induced autophagy; (2) clinical and experimental studies on diagnostic and/or prognostic biomarkers in digestive system cancers; and (3) immunogenic cell death for anticancer chemotherapy. Results: Most cell and animal experiments showed inhibition of autophagy by either pharmacological approaches or via genetic silencing of autophagy regulatory gene, resulting in a promotion of 5-FU-induced cancer cells death. Meanwhile, autophagy also plays a pro-death role and may mediate cell death in certain cancer cells where apoptosis is defective or difficult to induce. The dual role of autophagy complicates the use of autophagy inhibitor or inducer in cancer chemotherapy and generates inconsistency to an extent in clinic trials. Conclusion: Autophagy might be a therapeutic target that sensitizes the 5-FU treatment in

  2. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    SciTech Connect

    Sukseree, Supawadee; Rossiter, Heidemarie; Mildner, Michael; Pammer, Johannes; Buchberger, Maria; Gruber, Florian; Watanapokasin, Ramida; Tschachler, Erwin; Eckhart, Leopold

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  3. A river runs through it: how autophagy, senescence, and phagocytosis could be linked to phospholipase D by Wnt signaling.

    PubMed

    Gomez-Cambronero, Julian; Kantonen, Samuel

    2014-11-01

    Neutrophils and macrophages are professional phagocytic cells, extremely efficient at the process of engulfing and killing bacteria. Autophagy is a similar process, by which phagosomes recycle internal cell structures during nutrient shortages. Some pathogens are able to subvert the autophagy process, funneling nutrients for their own use and for the host's detriment. Additionally, a failure to mount an efficient autophagy is a deviation on the cell's part from normal cellular function into cell senescence and cessation of the cell cycle. In spite of these reasons, the mechanism of autophagy and senescence in leukocytes has been under studied. We advance here the concept of a common thread underlying both autophagy and senescence, which implicates PLD. Such a PLD-based autophagy mechanism would involve two positive inputs: the generation of PA to help the initiation of the autophagosome and a protein-protein interaction between PLD and PKC that leads to enhanced PA. One negative input is also involved in this process: down-regulation of PLD gene expression by mTOR. Additionally, a dual positive/negative input plays a role in PLD-mediated autophagy, β-catenin increase of autophagy through PLD up-regulation, and a subsequent feedback termination by Dvl degradation in case of excessive autophagy. An abnormal PLD-mTOR-PKC-β-catenin/Wnt network function could lead to faulty autophagy and a means for opportunistic pathogens to survive inside of the cell. © 2014 Society for Leukocyte Biology.

  4. Role of Autophagy in Glycogen Breakdown and Its Relevance to Chloroquine Myopathy

    PubMed Central

    Zirin, Jonathan; Nieuwenhuis, Joppe; Perrimon, Norbert

    2013-01-01

    Several myopathies are associated with defects in autophagic and lysosomal degradation of glycogen, but it remains unclear how glycogen is targeted to the lysosome and what significance this process has for muscle cells. We have established a Drosophila melanogaster model to study glycogen autophagy in skeletal muscles, using chloroquine (CQ) to simulate a vacuolar myopathy that is completely dependent on the core autophagy genes. We show that autophagy is required for the most efficient degradation of glycogen in response to starvation. Furthermore, we show that CQ-induced myopathy can be improved by reduction of either autophagy or glycogen synthesis, the latter possibly due to a direct role of Glycogen Synthase in regulating autophagy through its interaction with Atg8. PMID:24265594

  5. Overexpression of Annexin II Receptor-Induced Autophagy Protects Against Apoptosis in Uveal Melanoma Cells.

    PubMed

    Zhang, Yuelu; Song, Hongyuan; Guo, Ting; Zhu, Yongzhe; Tang, Hailin; Qi, Zhongtian; Zhao, Ping; Zhao, Shihong

    2016-05-01

    Uveal melanoma is the most common primary malignant intraocular tumor in adults and still lacks effective systemic therapies. Annexin A2 receptor (AXIIR), a receptor for Annexin II, was demonstrated to play an important role in multiple cells, but its role in uveal melanoma cells remains exclusive. Herein, the authors reported that overexpression of AXIIR was able to reduce cell viability and activate apoptosis apparently in the Mum2C uveal melanoma cell line. Meanwhile, overexpression of AXIIR could induce autophagy and increase autophagy flux. After autophagy was inhibited by chloroquine, enhanced apoptosis and cytotoxicity could be detected. In summary, these data highlighted the crucial role of AXIIR in reducing Mum2C cell viability through inducing apoptosis, while autophagy played a protective role in this process. Interference of this gene may be a promising method for uveal melanoma therapy and combination with specific inhibitor of autophagy may serve as a supplementary.

  6. Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy

    PubMed Central

    Cullup, Thomas; Kho, Ay L.; Dionisi-Vici, Carlo; Brandmeier, Birgit; Smith, Frances; Urry, Zoe; Simpson, Michael A.; Yau, Shu; Bertini, Enrico; McClelland, Verity; Al-Owain, Mohammed; Koelker, Stefan; Koerner, Christian; Hoffmann, Georg F.; Wijburg, Frits A.; Hoedt, Amber E. ten; Rogers, Curtis; Manchester, David; Miyata, Rie; Hayashi, Masaharu; Said, Elizabeth; Soler, Doriette; Kroisel, Peter M.; Windpassinger, Christian; Filloux, Francis M.; Al-Kaabi, Salwa; Hertecant, Jozef; Del Campo, Miguel; Buk, Stefan; Bodi, Istvan; Goebel, Hans-Hilmar; Sewry, Caroline A.; Abbs, Stephen; Mohammed, Shehla; Josifova, Dragana; Gautel, Mathias; Jungbluth, Heinz

    2012-01-01

    Vici syndrome is a recessively inherited multisystem disorder characterized by callosal agenesis, cataracts, cardiomyopathy, combined immunodeficiency and hypopigmentation. To investigate the molecular basis of Vici syndrome, we carried out exome and Sanger sequence analysis in a cohort of 18 patients. We identified recessive mutations in EPG5 (previously KIAA1632), indicating a causative role in Vici syndrome. EPG5 is the human homologue of the metazoan-specific autophagy gene epg-5, encoding a key autophagy regulator (ectopic P-granules autophagy protein 5) implicated in the formation of autolysosomes. Further studies demonstrated a severe block of autophagosomal clearance in muscle and fibroblasts from EPG5 mutant patients, resulting in autophagic cargo accumulation in autophagosomes. These findings indicate Vici syndrome as a paradigm of a human multisystem disorder associated with defective autophagy, and suggest a fundamental role of the autophagy pathway in the anatomical and functional formation of organs such as the brain, the heart and the immune system. PMID:23222957

  7. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin.

    PubMed

    Yuk, Jae-Min; Shin, Dong-Min; Lee, Hye-Mi; Yang, Chul-Su; Jin, Hyo Sun; Kim, Kwang-Kyu; Lee, Zee-Won; Lee, Sang-Hee; Kim, Jin-Man; Jo, Eun-Kyeong

    2009-09-17

    Autophagy and vitamin D3-mediated innate immunity have been shown to confer protection against infection with intracellular Mycobacterium tuberculosis. Here, we show that these two antimycobacterial defenses are physiologically linked via a regulatory function of human cathelicidin (hCAP-18/LL-37), a member of the cathelicidin family of antimicrobial proteins. We show that 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, induced autophagy in human monocytes via cathelicidin, which activated transcription of the autophagy-related genes Beclin-1 and Atg5. 1,25D3 also induced the colocalization of mycobacterial phagosomes with autophagosomes in human macrophages in a cathelicidin-dependent manner. Furthermore, the antimycobacterial activity in human macrophages mediated by physiological levels of 1,25D3 required autophagy and cathelicidin. These results indicate that human cathelicidin, a protein that has direct antimicrobial activity, also serves as a mediator of vitamin D3-induced autophagy.

  8. How and why to study autophagy in Drosophila: it's more than just a garbage chute.

    PubMed

    Nagy, Péter; Varga, Ágnes; Kovács, Attila L; Takáts, Szabolcs; Juhász, Gábor

    2015-03-01

    During the catabolic process of autophagy, cytoplasmic material is transported to the lysosome for degradation and recycling. This way, autophagy contributes to the homeodynamic turnover of proteins, lipids, nucleic acids, glycogen, and even whole organelles. Autophagic activity is increased by adverse conditions such as nutrient limitation, growth factor withdrawal and oxidative stress, and it generally protects cells and organisms to promote their survival. Misregulation of autophagy is likely involved in numerous human pathologies including aging, cancer, infections and neurodegeneration, so its biomedical relevance explains the still growing interest in this field. Here we discuss the different microscopy-based, biochemical and genetic methods currently available to study autophagy in various tissues of the popular model Drosophila. We show examples for results obtained in different assays, explain how to interpret these with regard to autophagic activity, and how to find out which step of autophagy a given gene product is involved in.

  9. Autophagy Promotes Microglia Activation Through Beclin-1-Atg5 Pathway in Intracerebral Hemorrhage.

    PubMed

    Yuan, Bangqing; Shen, Hanchao; Lin, Li; Su, Tonggang; Zhong, Lina; Yang, Zhao

    2017-01-01

    Previous study demonstrates that intracerebral hemorrhage (ICH) promotes microglia activation and inflammation. However, the exact mechanism of microglia activation induced by ICH is not clear. In this experiment, microglia autophagy was examined using electron microscopy, conversion of light chain 3(LC3), and monodansylcadaverine (MDC) staining to detect autophagic vacuoles. We found that ICH induced microglia autophagy and activation. The suppression of autophagy using either pharmacologic inhibitors (3-methyladenine, bafilomycin A1) or RNA interference in essential autophagy genes (BECN1 and ATG5) decreased the microglia activation and inflammation in ICH. Moreover, autophagy inhibitors reduced brain damage in ICH. In conclusion, these data indicate that ICH contributes to microglia autophagic activation through BECN1 and ATG5 and provide the therapeutical strategy for ICH.

  10. MiR-30-regulated autophagy mediates angiotensin II-induced myocardial hypertrophy.

    PubMed

    Pan, Wei; Zhong, Yun; Cheng, Chuanfang; Liu, Benrong; Wang, Li; Li, Aiqun; Xiong, Longgen; Liu, Shiming

    2013-01-01

    Dysregulated autophagy may lead to the development of disease. Role of autophagy and the diagnostic potential of microRNAs that regulate the autophagy in cardiac hypertrophy have not been evaluated. A rat model of cardiac hypertrophy was established using transverse abdominal aortic constriction (operation group). Cardiomyocyte autophagy was enhanced in rats from the operation group, compared with those in the sham operation group. Moreover, the operation group showed up-regulation of beclin-1 (an autophagy-related gene), and down-regulation of miR-30 in cardiac tissue. The effects of inhibition and over-expression of the beclin-1 gene on the expression of hypertrophy-related genes and on autophagy were assessed. Angiotensin II-induced myocardial hypertrophy was found to be mediated by over-expression of the beclin-1 gene. A dual luciferase reporter assay confirmed that beclin-1 was a target gene of miR-30a. miR-30a induced alterations in beclin-1 gene expression and autophagy in cardiomyocytes. Treatment of cardiomyocytes with miR-30a mimic attenuated the Angiotensin II-induced up-regulation of hypertrophy-related genes and decreased in the cardiomyocyte surface area. Conversely, treatment with miR-30a inhibitor enhanced the up-regulation of hypertrophy-related genes and increased the surface area of cardiomyocytes induced by Angiotensin II. In addition, circulating miR-30 was elevated in patients with left ventricular hypertrophy, and circulating miR-30 was positively associated with left ventricular wall thickness. Collectively, these above-mentioned results suggest that Angiotensin II induces down-regulation of miR-30 in cardiomyocytes, which in turn promotes myocardial hypertrophy through excessive autophagy. Circulating miR-30 may be an important marker for the diagnosis of left ventricular hypertrophy.

  11. MiR-30-Regulated Autophagy Mediates Angiotensin II-Induced Myocardial Hypertrophy

    PubMed Central

    Pan, Wei; Zhong, Yun; Cheng, Chuanfang; Liu, Benrong; Wang, Li; Li, Aiqun; Xiong, Longgen; Liu, Shiming

    2013-01-01

    Dysregulated autophagy may lead to the development of disease. Role of autophagy and the diagnostic potential of microRNAs that regulate the autophagy in cardiac hypertrophy have not been evaluated. A rat model of cardiac hypertrophy was established using transverse abdominal aortic constriction (operation group). Cardiomyocyte autophagy was enhanced in rats from the operation group, compared with those in the sham operation group. Moreover, the operation group showed up-regulation of beclin-1 (an autophagy-related gene), and down-regulation of miR-30 in cardiac tissue. The effects of inhibition and over-expression of the beclin-1 gene on the expression of hypertrophy-related genes and on autophagy were assessed. Angiotensin II-induced myocardial hypertrophy was found to be mediated by over-expression of the beclin-1 gene. A dual luciferase reporter assay confirmed that beclin-1 was a target gene of miR-30a. miR-30a induced alterations in beclin-1 gene expression and autophagy in cardiomyocytes. Treatment of cardiomyocytes with miR-30a mimic attenuated the Angiotensin II-induced up-regulation of hypertrophy-related genes and decreased in the cardiomyocyte surface area. Conversely, treatment with miR-30a inhibitor enhanced the up-regulation of hypertrophy-related genes and increased the surface area of cardiomyocytes induced by Angiotensin II. In addition, circulating miR-30 was elevated in patients with left ventricular hypertrophy, and circulating miR-30 was positively associated with left ventricular wall thickness. Collectively, these above-mentioned results suggest that Angiotensin II induces down-regulation of miR-30 in cardiomyocytes, which in turn promotes myocardial hypertrophy through excessive autophagy. Circulating miR-30 may be an important marker for the diagnosis of left ventricular hypertrophy. PMID:23326547

  12. UTX coordinates steroid hormone-mediated autophagy and cell death

    PubMed Central

    Denton, Donna; Aung-Htut, May T.; Lorensuhewa, Nirmal; Nicolson, Shannon; Zhu, Wenying; Mills, Kathryn; Cakouros, Dimitrios; Bergmann, Andreas; Kumar, Sharad

    2014-01-01

    Correct spatial and temporal induction of numerous cell type-specific genes during development requires regulated removal of the repressive histone H3 lysine 27 trimethylation (H3K27me3) modification. Here we show that the H3K27me3 demethylase dUTX is required for hormone-mediated transcriptional regulation of apoptosis and autophagy genes during ecdysone-regulated programmed cell death of Drosophila salivary glands. We demonstrate that dUTX binds to the nuclear hormone receptor complex Ecdysone Receptor/Ultraspiracle, and is recruited to the promoters of key apoptosis and autophagy genes. Salivary gland cell death is delayed in dUTX mutants, with reduced caspase activity and autophagy that coincides with decreased apoptosis and autophagy gene transcripts. We further show that salivary gland degradation requires dUTX catalytic activity. Our findings provide evidence for an unanticipated role for UTX demethylase activity in regulating hormone-dependent cell death and demonstrate how a single transcriptional regulator can modulate a specific complex functional outcome during animal development. PMID:24336022

  13. Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana

    PubMed Central

    Chen, Liang; Liao, Bin; Qi, Hua; Xie, Li-Juan; Huang, Li; Tan, Wei-Juan; Zhai, Ning; Yuan, Li-Bing; Zhou, Ying; Yu, Lu-Jun; Chen, Qin-Fang; Shu, Wensheng; Xiao, Shi

    2015-01-01

    Autophagy involves massive degradation of intracellular components and functions as a conserved system that helps cells to adapt to adverse conditions. In mammals, hypoxia rapidly stimulates autophagy as a cell survival response. Here, we examine the function of autophagy in the regulation of the plant response to submergence, an abiotic stress that leads to hypoxia and anaerobic respiration in plant cells. In Arabidopsis thaliana, submergence induces the transcription of autophagy-related (ATG) genes and the formation of autophagosomes. Consistent with this, the autophagy-defective (atg) mutants are hypersensitive to submergence stress and treatment with ethanol, the end product of anaerobic respiration. Upon submergence, the atg mutants have increased levels of transcripts of anaerobic respiration genes (alcohol dehydrogenase 1, ADH1 and pyruvate decarboxylase 1, PDC1), but reduced levels of transcripts of other hypoxia- and ethylene-responsive genes. Both submergence and ethanol treatments induce the accumulation of reactive oxygen species (ROS) in the rosettes of atg mutants more than in the wild type. Moreover, the production of ROS by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases is necessary for plant tolerance to submergence and ethanol, submergence-induced expression of ADH1 and PDC1, and activation of autophagy. The submergence- and ethanol-sensitive phenotypes in the atg mutants depend on a complete salicylic acid (SA) signaling pathway. Together, our findings demonstrate that submergence-induced autophagy functions in the hypoxia response in Arabidopsis by modulating SA-mediated cellular homeostasis. PMID:26566261

  14. Suppression of autophagy by mycophenolic acid contributes to inhibition of HCV replication in human hepatoma cells

    PubMed Central

    Fang, Shoucai; Su, Jinming; Liang, Bingyu; Li, Xu; Li, Yu; Jiang, Junjun; Huang, Jiegang; Zhou, Bo; Ning, Chuanyi; Li, Jieliang; Ho, Wenzhe; Li, Yiping; Chen, Hui; Liang, Hao; Ye, Li

    2017-01-01

    Previous studies have shown that mycophenolic acid (MPA) has an anti-HCV activity. However, the mechanism of MPA-mediated inhibition of HCV replication remains to be determined. This study investigated whether MPA has an effect on autophagy, a cellular machinery required for HCV replication, thereby, inhibits HCV replication in Huh7 cells. MPA treatment of Huh7 cells could suppress autophagy, evidenced by decreased LC3B-II level and conversion of LC3B-I to LC3B-II, decreased autophagosome formation, and increased p62 level compared to MPA-untreated cells. Tunicamycin treatment or HCV infection could induce cellular autophagy, however, MPA also exhibited its inhibitory effect on tunicamycin- or HCV infection-induced autophagy. The expression of three autophagy-related genes, Atg3, Atg5, and Atg7 were identified to be inhibited by MPA treatment. Over-expression of these genes could partly recover HCV replication inhibited by MPA; however, silencing their expression by siRNAs could enhance the inhibitory effect of MPA on HCV. Collectively, these results reveal that suppression of autophagy by MPA plays a role in its anti-HCV activity. Down-regulating the expression of three autophagy-related genes by MPA involves in its antiviral mechanism. PMID:28276509

  15. Targeting autophagy in multiple myeloma.

    PubMed

    Yun, Zhuang; Zhichao, Jin; Hao, Yao; Ou, Ji; Ran, Yang; Wen, Dong; Qun, Shen

    2017-08-01

    Autophagy plays an important role in plasma cell ontogeny and in the pathophysiology of multiple myeloma. Autophagy is usually considered a pro-survival mechanism, and cooperates with the ubiquitin proteasome system in maintaining the homeostasis of myeloma cells by degrading excessive and misfolded proteins for energy recycling. Therefore, the inhibition of autophagy could effectively induce death in myeloma cells, and could synergize with proteasome inhibitors. However, the excessive activation of autophagy could also lead to the extreme degradation of the organelles that induce autophagic cell death. Hence, the activation of autophagic cell death might also represent a promising approach for treating myeloma. Recent studies have demonstrated that autophagy also mediates drug resistance in myeloma cells and the complications of myeloma, while the inhibition of autophagy may reverse the response to drugs. In this study, we have mainly reviewed recent research on autophagy in relationship to the therapeutic effect, the reversal of drug resistance, and the mediation of complications. Copyright © 2017. Published by Elsevier Ltd.

  16. Autophagy mediates proteolysis of NPM1 and HEXIM1 and sensitivity to BET inhibition in AML cells

    PubMed Central

    Huang, Min; Garcia, Jacqueline S.; Thomas, Daniel; Zhu, Li; Nguyen, Le Xuan Truong; Chan, Steven M.; Majeti, Ravindra; Medeiros, Bruno C.; Mitchell, Beverly S.

    2016-01-01

    The mechanisms underlying activation of the BET pathway in AML cells remain poorly understood. We have discovered that autophagy is activated in acute leukemia cells expressing mutant nucleophosmin 1 (NPMc+) or MLL-fusion proteins. Autophagy activation results in the degradation of NPM1 and HEXIM1, two negative regulators of BET pathway activation. Inhibition of autophagy with pharmacologic inhibitors or through knocking down autophagy-related gene 5 (Atg5) expression increases the expression of both NPM1 and HEXIM1. The Brd4 inhibitors JQ1 and I-BET-151 also inhibit autophagy and increase NPM1 and HEXIM1 expression. We conclude that the degradation of NPM1 and HEXIM1 through autophagy in certain AML subsets contributes to the activation of the BET pathway in these cells. PMID:27732946

  17. Rejuvenation of MPTP-induced human neural precursor cell senescence by activating autophagy

    SciTech Connect

    Zhu, Liang; Dong, Chuanming; Sun, Chenxi; Ma, Rongjie; Yang, Danjing; Zhu, Hongwen; Xu, Jun

    2015-08-21

    Aging of neural stem cell, which can affect brain homeostasis, may be caused by many cellular mechanisms. Autophagy dysfunction was found in aged and neurodegenerative brains. However, little is known about the relationship between autophagy and human neural stem cell (hNSC) aging. The present study used 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to treat neural precursor cells (NPCs) derived from human embryonic stem cell (hESC) line H9 and investigate related molecular mechanisms involved in this process. MPTP-treated NPCs were found to undergo premature senescence [determined by increased senescence-associated-β-galactosidase (SA-β-gal) activity, elevated intracellular reactive oxygen species level, and decreased proliferation] and were associated with impaired autophagy. Additionally, the cellular senescence phenotypes were manifested at the molecular level by a significant increase in p21 and p53 expression, a decrease in SOD2 expression, and a decrease in expression of some key autophagy-related genes such as Atg5, Atg7, Atg12, and Beclin 1. Furthermore, we found that the senescence-like phenotype of MPTP-treated hNPCs was rejuvenated through treatment with a well-known autophagy enhancer rapamycin, which was blocked by suppression of essential autophagy gene Beclin 1. Taken together, these findings reveal the critical role of autophagy in the process of hNSC aging, and this process can be reversed by activating autophagy. - Highlights: • We successfully establish hESC-derived neural precursor cells. • MPTP treatment induced senescence-like state in hESC-derived NPCs. • MPTP treatment induced impaired autophagy of hESC-derived NPCs. • MPTP-induced hESC-derived NPC senescence was rejuvenated by activating autophagy.

  18. Enhanced Autophagy of Adipose-Derived Stem Cells Grown on Chitosan Substrates

    PubMed Central

    Yang, Ching-Ming; Huang, Yen-Jang; Hsu, Shan-hui

    2015-01-01

    Abstract Autophagy is an important protein quality control mechanism for cells under stress conditions to promote cell survival. Modulation of autophagy on biomaterial substrates is rarely reported. In this study, the autophagy of adipose-derived stem cells (ADSCs) cultured on chitosan (CS) substrates was examined. Compared to the traditional monolayer culture, ADSCs cultured on CS substrates showed spheroid formation as well as a prolonged upregulation of autophagosomal marker-microtubule-associated protein 1 light chain 3 (LC3) II protein expression. In addition, the green fluorescent protein tagged-LC3 (GFP-LC3) expressing ADSCs also revealed more GFP-LC3 puncta on CS substrates. The enhanced autophagy on CS substrates was associated with Ca2+, while ethylene glycol tetraacetic acid (EGTA), a Ca2+ chelator, repressed the autophagy in a dose-dependent manner. Moreover, ADSC spheroids on CS substrates demonstrated a higher survival rate and autophagy response upon H2O2 treatment. The upstream components of autophagy signal pathway-UNC51-like kinase 1 (Ulk1), autophagy-related protein 13 (Atg13), and autophagy/beclin-1 regulator 1 (Ambra1) genes were more highly expressed in ADSC spheroids before and after adding H2O2 than those in the conventional culture. EGTA also decreased the cell viability and autophagy-associated gene expression for ADSC spheroids on CS substrates after H2O2 treatment. Therefore, we suggest that three-dimensional (3D) cell culture on CS may confer ADSCs the ability to increase the autophagic flux in response to stimulations in a Ca2+-dependent manner. PMID:26309785

  19. Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification.

    PubMed

    Xu, Hong-guang; Yu, Yun-fei; Zheng, Quan; Zhang, Wei; Wang, Chuang-dong; Zhao, Xiao-yn; Tong, Wen-xue; Wang, Hong; Liu, Ping; Zhang, Xiao-ling

    2014-09-01

    Calcification of end plate chondrocytes is a major cause of intervertebral disc (IVD) degeneration. However, the underlying molecular mechanism of end plate chondrocyte calcification is still unclear. The aim of this study was to clarify whether autophagy in end plate chondrocytes could protect the calcification of end plate chondrocytes. Previous studies showed that intermittent cyclic mechanical tension (ICMT) contributes to the calcification of end plate chondrocytes in vitro. While autophagy serves as a cell survival mechanism, the relationship of autophagy and induced end plate chondrocyte calcification by mechanical tension in vitro is unknown. Thus, we investigated autophagy, the expression of the autophagy genes, Beclin-1 and LC3, and rat end plate chondrocyte calcification by ICMT. The viability of end plate chondrocytes was examined using the LIVE/DEAD viability/cytotoxicity kit. The reverse transcription-polymerase chain reaction and western blotting were used to detect the expression of Beclin-1; LC3; type I, II and X collagen; aggrecan; and Sox-9 genes. Immunofluorescent and fluorescent microscopy showed decreased autophagy in the 10- and 20-day groups loaded with ICMT. Additionally, Alizarin red and alkaline phosphatase staining detected the palpable calcification of end plate chondrocytes after ICMT treatment. We found that increased autophagy induced by short-term ICMT treatment was accompanied by an insignificant calcification of end plate chondrocytes. To the contrary, the suppressive autophagy inhibited by long-term ICMT was accompanied by a more significant calcification. The process of calcification induced by ICMT was partially resisted by increased autophagy activity induced by rapamycin, implicating that autophagy may prevent end plate chondrocyte calcification. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Autophagy Contributes to Leaf Starch Degradation[C][W

    PubMed Central

    Wang, Yan; Yu, Bingjie; Zhao, Jinping; Guo, Jiangbo; Li, Ying; Han, Shaojie; Huang, Lei; Du, Yumei; Hong, Yiguo; Tang, Dingzhong; Liu, Yule

    2013-01-01

    Transitory starch, a major photosynthetic product in the leaves of land plants, accumulates in chloroplasts during the day and is hydrolyzed to maltose and Glc at night to support respiration and metabolism. Previous studies in Arabidopsis thaliana indicated that the degradation of transitory starch only occurs in the chloroplasts. Here, we report that autophagy, a nonplastidial process, participates in leaf starch degradation. Excessive starch accumulation was observed in Nicotiana benthamiana seedlings treated with an autophagy inhibitor and in autophagy-related (ATG) gene-silenced N. benthamiana and in Arabidopsis atg mutants. Autophagic activity in the leaves responded to the dynamic starch contents during the night. Microscopy showed that a type of small starch granule-like structure (SSGL) was localized outside the chloroplast and was sequestered by autophagic bodies. Moreover, an increased number of SSGLs was observed during starch depletion, and disruption of autophagy reduced the number of vacuole-localized SSGLs. These data suggest that autophagy contributes to transitory starch degradation by sequestering SSGLs to the vacuole for their subsequent breakdown. PMID:23564204

  1. Autophagy-mediated longevity is modulated by lipoprotein biogenesis

    PubMed Central

    Seah, Nicole E.; de Magalhaes Filho, C. Daniel; Petrashen, Anna P.; Henderson, Hope R.; Laguer, Jade; Gonzalez, Julissa; Dillin, Andrew; Hansen, Malene; Lapierre, Louis R.

    2016-01-01

    ABSTRACT Autophagy-dependent longevity models in C. elegans display altered lipid storage profiles, but the contribution of lipid distribution to life-span extension is not fully understood. Here we report that lipoprotein production, autophagy and lysosomal lipolysis are linked to modulate life span in a conserved fashion. We find that overexpression of the yolk lipoprotein VIT/vitellogenin reduces the life span of long-lived animals by impairing the induction of autophagy-related and lysosomal genes necessary for longevity. Accordingly, reducing vitellogenesis increases life span via induction of autophagy and lysosomal lipolysis. Life-span extension due to reduced vitellogenesis or enhanced lysosomal lipolysis requires nuclear hormone receptors (NHRs) NHR-49 and NHR-80, highlighting novel roles for these NHRs in lysosomal lipid signaling. In dietary-restricted worms and mice, expression of VIT and hepatic APOB (apolipoprotein B), respectively, are significantly reduced, suggesting a conserved longevity mechanism. Altogether, our study demonstrates that lipoprotein biogenesis is an important mechanism that modulates aging by impairing autophagy and lysosomal lipolysis. PMID:26671266

  2. Autophagy is required for the activation of NFκB.

    PubMed

    Criollo, Alfredo; Chereau, Fanny; Malik, Shoaib Ahmad; Niso-Santano, Mireia; Mariño, Guillermo; Galluzzi, Lorenzo; Maiuri, Maria Chiara; Baud, Véronique; Kroemer, Guido

    2012-01-01

    It is well-established that the activation of the inhibitor of NFκB (IκBα) kinase (IKK) complex is required for autophagy induction by multiple stimuli. Here, we show that in autophagy-competent mouse embryonic fibroblasts (MEFs), distinct autophagic triggers, including starvation, mTOR inhibition with rapamycin and p53 inhibition with cyclic pifithrin α lead to the activation of IKK, followed by the phosphorylation-dependent degradation of IκBα and nuclear translocation of NFκB. Remarkably, the NFκB signaling pathway was blocked in MEFs lacking either the essential autophagy genes Atg5 or Atg7. In addition, we found that tumor necrosis factor α (TNFα)-induced NFκB nuclear translocation is abolished in both Atg5- and Atg7-deficient MEFs. Similarly, the depletion of essential autophagy modulators, including ATG5, ATG7, Beclin 1 and VPS34, by RNA interference inhibited TNFα-driven NFκB activation in two human cancer cell lines. In conclusion, it appears that, at least in some instances, autophagy is required for NFκB activation, highlighting an intimate crosstalk between these two stress response signaling pathways.

  3. Pollination induces autophagy in petunia petals via ethylene.

    PubMed

    Shibuya, Kenichi; Niki, Tomoko; Ichimura, Kazuo

    2013-02-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.

  4. Pollination induces autophagy in petunia petals via ethylene

    PubMed Central

    Shibuya, Kenichi

    2013-01-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence. PMID:23349142

  5. Viral subversion of autophagy impairs oncogene-induced senescence.

    PubMed

    Leidal, Andrew M; Lee, Patrick W K; McCormick, Craig

    2012-07-01

    Many viruses have evolved elegant strategies to co-opt cellular autophagic responses to facilitate viral propagation and evasion of immune surveillance. Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a life-long persistent infection in its human host, and is etiologically linked to several cancers. KSHV gene products have been shown to modulate autophagy but their contribution to pathogenesis remains unclear. Our recent study demonstrated that KSHV subversion of autophagy promotes bypass of oncogene-induced senescence (OIS), an important host barrier to tumor initiation. These findings suggest that KSHV has evolved to subvert autophagy, at least in part, to establish an optimal niche for infection, concurrently dampening host antiviral defenses and allowing the ongoing proliferation of infected cells.

  6. Mitochondrial autophagy as a compensatory response to PINK1 deficiency.

    PubMed

    Cherra, Salvatore J; Dagda, Ruben K; Tandon, Anurag; Chu, Charleen T

    2009-11-01

    Macroautophagy (hereafter, autophagy) plays a critical role in maintaining cellular homeostasis by degrading protein aggregates and dysfunctional/damaged organelles. We recently reported that silencing the recessive familial Parkinson disease gene encoding PTEN-induced kinase 1 (PINK1) leads to neuronal cell death accompanied by mitochondrial dysfunction and Drp1-dependent fragmentation. In this model, mitochondrial fission and Beclin 1-dependent autophagy play protective roles, cooperating to sequester and eliminate damaged mitochondria. We discuss the role of superoxide and other reactive oxygen species upstream of mitochondrial depolarization, fission and autophagy in PINK1 knockdown lines. PINK1 deficiency appears to trigger several compensatory responses that together facilitate clearance of depolarized mitochondria, through a mechanism that is further enhanced by increased expression of parkin. These data offer additional insights that broaden the spectrum of potential interactions between PINK1 and parkin with respect to the regulation of mitochondrial homeostasis and mitophagy.

  7. Autophagy, inflammation and neurodegenerative disease

    PubMed Central

    Alirezaei, Mehrdad; Kemball, Christopher C.; Whitton, J. Lindsay

    2010-01-01

    Autophagy is emerging as a central regulator of cellular health and disease and, in the central nervous system (CNS), this homeostatic process appears to influence synaptic growth and plasticity. Herein, we review the evidence that dysregulation of autophagy may contribute to several neurodegenerative diseases of the CNS. Up-regulation of autophagy may prevent, delay or ameliorate at least some of these disorders, and – based on recent findings from our laboratory – we speculate that this goal may be achieved using a safe, simple, and inexpensive approach. PMID:21138487

  8. EGFR inhibitors and autophagy in cancer treatment.

    PubMed

    Cui, Jie; Hu, Yun-Feng; Feng, Xie-Min; Tian, Tao; Guo, Ya-Huan; Ma, Jun-Wei; Nan, Ke-Jun; Zhang, Hong-Yi

    2014-12-01

    Epidermal growth factor receptor (EGFR) inhibitor treatment is a strategy for cancer therapy. However, innate and acquired resistance is a major obstacle of the efficacy. Autophagy is a self-digesting process in cells, which is considered to be associated with anti-cancer drug resistance. The activation of EGFR can regulate autophagy through multiple signal pathways. EGFR inhibitors can induce autophagy, but the specific function of the induction of autophagy by EGFR inhibitors remains biphasic. On the one hand, autophagy induced by EGFR inhibitors acts as a cytoprotective response in cancer cells, and autophagy inhibitors can enhance the cytotoxic effects of EGFR inhibitors. On the other hand, a high level of autophagy after treatment of EGFR inhibitors can also result in autophagic cell death lacking features of apoptosis, and the combination of EGFR inhibitors with an autophagy inducer might be beneficial. Thus, autophagy regulation represents a promising approach for improving the efficacy of EGFR inhibitors in the treatment of cancer patients.

  9. Manipulation or capitulation: virus interactions with autophagy

    PubMed Central

    Jordan, Tristan X.; Randall, Glenn

    2011-01-01

    Autophagy is a homeostatic process that functions to balance cellular metabolism and promote cell survival during stressful conditions by delivering cytoplasmic components for lysosomal degradation and subsequent recycling. During viral infection, autophagy can act as a surveillance mechanism that delivers viral antigens to the endosomal/lysosomal compartments that are enriched in immune sensors. Additionally, activated immune sensors can signal to activate autophagy. To evade this antiviral activity, many viruses elaborate functions to block the autophagy pathway at a variety of steps. Alternatively, some viruses actively subvert autophagy for their own benefit. Manipulated autophagy has been proposed to facilitate nearly every stage of the viral lifecycle in direct and indirect ways. In this review, we synthesize the extensive literature on virus-autophagy interactions, emphasizing the role of autophagy in antiviral immunity and the mechanisms by which viruses subvert autophagy for their own benefit. PMID:22051604

  10. Autophagy Signaling in Skeletal Muscle of Infarcted Rats

    PubMed Central

    Jannig, Paulo R.; Moreira, Jose B. N.; Bechara, Luiz R. G.; Bozi, Luiz H. M.; Bacurau, Aline V.; Monteiro, Alex W. A.; Dourado, Paulo M.; Wisløff, Ulrik; Brum, Patricia C.

    2014-01-01

    Background Heart failure (HF)-induced skeletal muscle atrophy is often associated to exercise intolerance and poor prognosis. Better understanding of the molecular mechanisms underlying HF-induced muscle atrophy may contribute to the development of pharmacological strategies to prevent or treat such condition. It has been shown that autophagy-lysosome system is an important mechanism for maintenance of muscle mass. However, its role in HF-induced myopathy has not been addressed yet. Therefore, the aim of the present study was to evaluate autophagy signaling in myocardial infarction (MI)-induced muscle atrophy in rats. Methods/Principal Findings Wistar rats underwent MI or Sham surgeries, and after 12 weeks were submitted to echocardiography, exercise tolerance and histology evaluations. Cathepsin L activity and expression of autophagy-related genes and proteins were assessed in soleus and plantaris muscles by fluorimetric assay, qRT-PCR and immunoblotting, respectively. MI rats displayed exercise intolerance, left ventricular dysfunction and dilation, thereby suggesting the presence of HF. The key findings of the present study were: a) upregulation of autophagy-related genes (GABARAPL1, ATG7, BNIP3, CTSL1 and LAMP2) was observed only in plantaris while muscle atrophy was observed in both soleus and plantaris muscles, and b) Cathepsin L activity, Bnip3 and Fis1 protein levels, and levels of lipid hydroperoxides were increased specifically in plantaris muscle of MI rats. Conclusions Altogether our results provide evidence for autophagy signaling regulation in HF-induced plantaris atrophy but not soleus atrophy. Therefore, autophagy-lysosome system is differentially regulated in atrophic muscles comprising different fiber-types and metabolic characteristics. PMID:24427319

  11. Autophagy modulates the effects of bis-anthracycline WP631 on p53-deficient prostate cancer cells

    PubMed Central

    Mansilla, Sylvia; Vizcaíno, Carolina; Rodríguez-Sánchez, Maria A; Priebe, Waldemar; Portugal, José

    2015-01-01

    Treatment of p53-deficient PC-3 human prostate carcinoma cells with nanomolar concentrations of bis-anthracycline WP631 induced changes in gene expression, which resulted in G2/M cell cycle arrest, autophagy and cell death. The presence of 2-deoxy-D-glucose (2-DG), which induces metabolic stress and autophagy, enhanced the antiproliferative effects of WP631. Changes induced by WP631, 2-DG, or co-treatments with both compounds, in the expression of a variety of genes involved in autophagy and apoptosis were quantified by real-time PCR. They were consistent with a raise in autophagy followed by cell death. Some cells dying from G2/M phase showed features of necrosis like early changes in membrane permeability, while others were dying by apoptosis that occurred in presence of little caspase-3 activity. Our results indicate that WP631 is not only an antiproliferative agent acting on gene transcription, but it can also induce autophagy regardless of the presence of other pro-autophagy stimuli. The development of autophagy seemed to improve the cytotoxicity of WP631 in PC-3 cells. Our results indicate that autophagy would enhance the activity of DNA-binding drugs like WP631 that are potent inhibitors of gene transcription. PMID:25689150

  12. Autophagy in the Degenerating Human Intervertebral Disc: In Vivo Molecular and Morphological Evidence, and Induction of Autophagy in Cultured Annulus Cells Exposed to Proinflammatory Cytokines-Implications for Disc Degeneration.

    PubMed

    Gruber, Helen E; Hoelscher, Gretchen L; Ingram, Jane A; Bethea, Synthia; Hanley, Edward N

    2015-06-01

    Autophagy-related gene expression and ultrastructural features of autophagy were studied in human discs. To obtain molecular/morphological data on autophagy in human disc degeneration and cultured human annulus cells exposed to proinflammatory cytokines. Autophagy is an important process by which cytoplasm and organelles are degraded; this adaptive response to sublethal stresses (such as nutrient deprivation present in disc degeneration) supplies needed metabolites. Little is known about autophagic processes during disc degeneration. Human disc specimens were obtained after institutional review board approval. Annulus mRNA was analyzed to determine autophagy-related gene expression levels. Immunolocalization and ultrastructural studies for p62, ATG3, ATG4B, ATG4C, ATG7, L3A, ULK-2, and beclin were conducted. In vitro experiments used IL-1β- or TNF-α-treated human annulus cells to test for autophagy-related gene expression. More degenerated versus healthier discs showed significantly greater upregulation of well-recognized autophagy-related genes (P ≤ 0.028): beclin 1 (upregulated 1.6-fold); ATG8 (LC3) (upregulated 2.0-fold); ATG12 (upregulated 4.0-fold); presenilin 1 (upregulated 1.6-fold); cathepsin B (upregulated 4.5-fold). p62 was localized, and ultrastructure showed autophagic vacuolization and autophagosomes with complex, redundant whorls of membrane-derived material. In vitro, proinflammatory cytokines significantly upregulated autophagy-related genes (P ≤ 0.04): DRAM1 (6.24-fold); p62 (4.98-fold); PIM-2 oncogene, a positive regulator of autophagy (3-fold); WIPI49 (linked to starvation-induced autophagy) (upregulated 2.3-fold). Data provide initial molecular and morphological evidence for the presence of autophagy in the degenerating human annulus. In vivo gene analyses showed greater autophagy-related gene expression in more degenerated than healthier discs. In vitro data suggested a mechanism implicating a role of TNF-α and IL-1β in disc autophagy

  13. Epigenetic Regulation of Autophagy by the Methyltransferase G9a

    PubMed Central

    Artal-Martinez de Narvajas, Amaia; Gomez, Timothy S.; Zhang, Jin-San; Mann, Alexander O.; Taoda, Yoshiyuki; Gorman, Jacquelyn A.; Herreros-Villanueva, Marta; Gress, Thomas M.; Ellenrieder, Volker; Bujanda, Luis; Kim, Do-Hyung; Kozikowski, Alan P.

    2013-01-01

    Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the cytoplasmic machinery that orchestrates autophagy induction during starvation, hypoxia, or receptor stimulation has been widely studied, the key epigenetic events that initiate and maintain the autophagy process remain unknown. Here we show that the methyltransferase G9a coordinates the transcriptional activation of key regulators of autophagosome formation by remodeling the chromatin landscape. Pharmacological inhibition or RNA interference (RNAi)-mediated suppression of G9a induces LC3B expression and lipidation that is dependent on RNA synthesis, protein translation, and the methyltransferase activity of G9a. Under normal conditions, G9a associates with the LC3B, WIPI1, and DOR gene promoters, epigenetically repressing them. However, G9a and G9a-repressive histone marks are removed during starvation and receptor-stimulated activation of naive T cells, two physiological inducers of macroautophagy. Moreover, we show that the c-Jun N-terminal kinase (JNK) pathway is involved in the regulation of autophagy gene expression during naive-T-cell activation. Together, these findings reveal that G9a directly represses genes known to participate in the autophagic process and that inhibition of G9a-mediated epigenetic repression represents an important regulatory mechanism during autophagy. PMID:23918802

  14. Transcriptional and epigenetic regulation of autophagy in aging.

    PubMed

    Lapierre, Louis R; Kumsta, Caroline; Sandri, Marco; Ballabio, Andrea; Hansen, Malene

    2015-01-01

    Macroautophagy is a major intracellular degradation process recognized as playing a central role in cell survival and longevity. This multistep process is extensively regulated at several levels, including post-translationally through the action of conserved longevity factors such as the nutrient sensor TOR. More recently, transcriptional regulation of autophagy genes has emerged as an important mechanism for ensuring the somatic maintenance and homeostasis necessary for a long life span. Autophagy is increased in many long-lived model organisms and contributes significantly to their longevity. In turn, conserved transcription factors, particularly the helix-loop-helix transcription factor TFEB and the forkhead transcription factor FOXO, control the expression of many autophagy-related genes and are important for life-span extension. In this review, we discuss recent progress in understanding the contribution of these transcription factors to macroautophagy regulation in the context of aging. We also review current research on epigenetic changes, such as histone modification by the deacetylase SIRT1, that influence autophagy-related gene expression and additionally affect aging. Understanding the molecular regulation of macroautophagy in relation to aging may offer new avenues for the treatment of age-related diseases.

  15. Transcriptional and epigenetic regulation of autophagy in aging

    PubMed Central

    Lapierre, Louis R; Kumsta, Caroline; Sandri, Marco; Ballabio, Andrea; Hansen, Malene

    2015-01-01

    Macroautophagy is a major intracellular degradation process recognized as playing a central role in cell survival and longevity. This multistep process is extensively regulated at several levels, including post-translationally through the action of conserved longevity factors such as the nutrient sensor TOR. More recently, transcriptional regulation of autophagy genes has emerged as an important mechanism for ensuring the somatic maintenance and homeostasis necessary for a long life span. Autophagy is increased in many long-lived model organisms and contributes significantly to their longevity. In turn, conserved transcription factors, particularly the helix-loop-helix transcription factor TFEB and the forkhead transcription factor FOXO, control the expression of many autophagy-related genes and are important for life-span extension. In this review, we discuss recent progress in understanding the contribution of these transcription factors to macroautophagy regulation in the context of aging. We also review current research on epigenetic changes, such as histone modification by the deacetylase SIRT1, that influence autophagy-related gene expression and additionally affect aging. Understanding the molecular regulation of macroautophagy in relation to aging may offer new avenues for the treatment of age-related diseases. PMID:25836756

  16. Autophagy and Autophagy-Related Proteins in CNS Autoimmunity

    PubMed Central

    Keller, Christian W.; Lünemann, Jan D.

    2017-01-01

    Autophagy comprises a heterogeneous group of cellular pathways that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients, and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses and to shape CD4+ T cell immunity through delivery of peptides to major histocompatibility complex (MHC) class II-containing compartments (MIICs). Individual autophagy proteins additionally modulate expression of MHC class I molecules for CD8+ T cell activation. The emergence and expansion of autoreactive CD4+ and CD8+ T cells are considered to play a key role in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. Expression of the essential autophagy-related protein 5 (Atg5), which supports T lymphocyte survival and proliferation, is increased in T cells isolated from blood or brain tissues from patients with relapsing-remitting MS. Whether Atgs contribute to the activation of autoreactive T cells through autophagy-mediated antigen presentation is incompletely understood. Here, we discuss the complex functions of autophagy proteins and pathways in regulating T cell immunity and its potential role in the development and progression of MS. PMID:28289410

  17. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway

    PubMed Central

    Yang, Xiao-Jun; Si, Ruo-Huang; Liang, Yu-He; Ma, Bing-Qiang; Jiang, Ze-Bin; Wang, Bin; Gao, Peng

    2016-01-01

    AIM: To determine if mir-30d inhibits the autophagy response to Helicobacter pylori (H. pylori) invasion and increases H. pylori intracellular survival. METHODS: The expression of mir-30d was detected by quantitative polymerase chain reaction (PCR), and autophagy level was examined by transmission electron microscopy, western blot, and GFP-LC3 puncta assay in human AGS cells and GES-1 cells. Luciferase reporter assay was applied to confirm the specificity of mir-30d regulation on the expression of several core molecules involved in autophagy pathway. The expression of multiple core proteins were analyzed at both the mRNA and protein level, and the intracellular survival of H. pylori after different treatments was detected by gentamicin protection assay. RESULTS: Autophagy level was increased in AGS and GES-1 cells in response to H. pylori infection, which was accompanied by upregulation of mir-30d expression (P < 0.05, vs no H. pylori infection). In the two gastric epithelial cell lines, mimic mir-30d was found to repress the autophagy process, whereas mir-30d inhibitor increased autophagy response to H. pylori invasion. mir-30d mimic decreased the luciferase activity of wild type reporter plasmids carrying the 3′ untranslated region (UTR) of all five tested genes (ATG2B, ATG5, ATG12, BECN1, and BNIP3L), whereas it had no effect on the mutant reporter plasmids. These five genes are core genes of autophagy pathway, and their expression was reduced significantly after mir-30d mimic transfection (P < 0.05, vs control cells without mir-30d mimic treatment). Mir-30d mimic transfection and direct inhibition of autophagy increased the intracellular survival of H. pylori in AGS cells. CONCLUSION: Mir-30d increases intracellular survival of H. pylori in gastric epithelial cells through inhibition of multiple core proteins in the autophagy pathway. PMID:27099441

  18. Autophagy is required for G₁/G₀ quiescence in response to nitrogen starvation in Saccharomyces cerevisiae.

    PubMed

    An, Zhenyi; Tassa, Amina; Thomas, Collin; Zhong, Rui; Xiao, Guanghua; Fotedar, Rati; Tu, Benjamin P; Klionsky, Daniel J; Levine, Beth

    2014-10-01

    In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G₁/G₀ in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G₂/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G₂/M transition and arrest in G₁/G 0₀ autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G₁/G₀ quiescent state.

  19. Autophagy in Hydra: a response to starvation and stress in early animal evolution.

    PubMed

    Chera, Simona; Buzgariu, Wanda; Ghila, Luiza; Galliot, Brigitte

    2009-09-01

    The Hydra polyp provides a powerful model system to investigate the regulation of cell survival and cell death in homeostasis and regeneration as Hydra survive weeks without feeding and regenerates any missing part after bisection. Induction of autophagy during starvation is the main surviving strategy in Hydra as autophagic vacuoles form in most myoepithelial cells after several days. When the autophagic process is inhibited, animal survival is actually rapidly jeopardized. An appropriate regulation of autophagy is also essential during regeneration as Hydra RNAi knocked-down for the serine protease inhibitor Kazal-type (SPINK) gene Kazal1, exhibit a massive autophagy after amputation that rapidly compromises cell and animal survival. This excessive autophagy phenotype actually mimics that observed in the mammalian pancreas when SPINK genes are mutated, highlighting the paradigmatic value of the Hydra model system for deciphering pathological processes. Interestingly autophagy during starvation predominantly affects ectodermal epithelial cells and lead to cell survival whereas Kazal1(RNAi)-induced autophagy is restricted to endodermal digestive cells that rapidly undergo cell death. This indicates that distinct regulations that remain to be identified, are at work in these two contexts. Cnidarian express orthologs for most components of the autophagy and TOR pathways suggesting evolutionarily-conserved roles during starvation.

  20. Suppression of autophagy dysregulates the antioxidant response and causes premature senescence of melanocytes.

    PubMed

    Zhang, Cheng-Feng; Gruber, Florian; Ni, Chunya; Mildner, Michael; Koenig, Ulrich; Karner, Susanne; Barresi, Caterina; Rossiter, Heidemarie; Narzt, Marie-Sophie; Nagelreiter, Ionela M; Larue, Lionel; Tobin, Desmond J; Eckhart, Leopold; Tschachler, Erwin

    2015-05-01

    Autophagy is the central cellular mechanism for delivering organelles and cytoplasm to lysosomes for degradation and recycling of their molecular components. To determine the contribution of autophagy to melanocyte (MC) biology, we inactivated the essential autophagy gene Atg7 specifically in MCs using the Cre-loxP system. This gene deletion efficiently suppressed a key step in autophagy, lipidation of microtubule-associated protein 1 light chain 3 beta (LC3), in MCs and induced slight hypopigmentation of the epidermis in mice. The melanin content of hair was decreased by 10-15% in mice with autophagy-deficient MC as compared with control animals. When cultured in vitro, MCs from mutant and control mice produced equal amounts of melanin per cell. However, Atg7-deficient MCs entered into premature growth arrest and accumulated reactive oxygen species (ROS) damage, ubiquitinated proteins, and the multi-functional adapter protein SQSTM1/p62. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent expression of NAD(P)H dehydrogenase, quinone 1, and glutathione S-transferase Mu 1 was increased, indicating a contribution of autophagy to redox homeostasis in MCs. In summary, the results of our study suggest that Atg7-dependent autophagy is dispensable for melanogenesis but necessary for achieving the full proliferative capacity of MCs.

  1. Interferon-regulatory factor-1 (IRF1) regulates bevacizumab induced autophagy

    PubMed Central

    Henry, Verlene; Tiao, Ningyi; de Groot, John F.

    2015-01-01

    Purpose Antiangiogenic therapy is commonly being used for the treatment of glioblastoma. However, the benefits of angiogenesis inhibitors are typically transient and resistance often develops. Determining the mechanism of treatment failure of the VEGF monoclonal antibody bevacizumab for malignant glioma would provide insight into approaches to overcome therapeutic resistance. Experimental Design In this study, we evaluated the effects of bevacizumab on the autophagy of glioma cells and determined target genes involving in the regulation of bevacizumab-induced autophagy. Results We demonstrated that bevacizumab treatment increased expression of autophagy markers and autophagosome formation in cell culture experiments as well as in in vivo studies. Gene expression profile analysis performed on murine xenograft models of glioblastoma showed increased transcriptional levels of STAT1/IRF1 signaling in bevacizumab resistant tumors compared to control tumors. In vitro experiments showed that bevacizumab treatment increased IRF1 expression in a dose and time dependent manner, which was coincident with bevacizumab-mediated autophagy. Down regulation of IRF1 by shRNA blocked autophagy and increased AIF-dependent apoptosis in bevacizumab-treated glioma cells. Consistently, IRF1 depletion increased the efficacy of anti-VEGF therapy in a glioma xenograft model, which was due to less bevacizumab-promoted autophagy and increased apoptosis in tumors with down-regulated IRF1. Conclusions These data suggest that IRF1 may regulate bevacizumab-induced autophagy, and may be one important mediator of glioblastoma resistant to bevacizumab. PMID:26362401

  2. EGFR-independent autophagy induction with gefitinib and enhancement of its cytotoxic effect by targeting autophagy with clarithromycin in non-small cell lung cancer cells.

    PubMed

    Sugita, Shohei; Ito, Kentaro; Yamashiro, Yutaro; Moriya, Shota; Che, Xiao-Fang; Yokoyama, Tomohisa; Hiramoto, Masaki; Miyazawa, Keisuke

    2015-05-22

    Gefitinib (GEF), an inhibitor for EGFR tyrosine kinase, potently induces autophagy in non-small cell lung cancer (NSCLC) cell lines such as PC-9 cells expressing constitutively activated EGFR kinase by EGFR gene mutation as well as A549 and H226 cells with wild-type EGFR. Unexpectedly, GEF-induced autophagy was also observed in non-NSCLC cells such as murine embryonic fibroblasts (MEF) and leukemia cell lines K562 and HL-60 without EGFR expression. Knockout of EGFR gene in A549 cells by CRISPR/Cas9 system still exhibited autophagy induction after treatment with GEF, indicating that the autophagy induction by GEF is not mediated through inhibiting EGFR kinase activity. Combined treatment with GEF and clarithromycin (CAM), a macrolide antibiotic having the effect of inhibiting autophagy flux, enhances the cytotoxic effect in NSCLC cell lines, although treatment with CAM alone exhibits no cytotoxicity. GEF treatment induced up-regulation of endoplasmic reticulum (ER)-stress related genes such as CHOP/GADD153 and GRP78. Knockdown of CHOP in PC-9 cells and Chop-knockout MEF both exhibited less sensitivity to GEF than controls. Addition of CAM in culture medium resulted in further pronounced GEF-induced ER stress loading, while CAM alone exhibited no effect. These data suggest that GEF-induced autophagy functions as cytoprotective and indicates the potential therapeutic possibility of using CAM for GEF therapy. Furthermore, it is suggested that the intracellular signaling for autophagy initiation in response to GEF can be completely dissociated from EGFR, but unknown target molecule(s) of GEF for autophagy induction might exist.

  3. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure

    PubMed Central

    Corcelle-Termeau, Elisabeth; Vindeløv, Signe Diness; Hämälistö, Saara; Mograbi, Baharia; Keldsbo, Anne; Bräsen, Jan Hinrich; Favaro, Elena; Adam, Dieter; Szyniarowski, Piotr; Hofman, Paul; Krautwald, Stefan; Farkas, Thomas; Petersen, Nikolaj H.T.; Rohde, Mikkel; Linkermann, Andreas; Jäättelä, Marja

    2016-01-01

    ABSTRACT Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by sphingomyelin accumulation and severely disturbed tissue homeostasis. Here, we report that sphingomyelin overload disturbs the maturation and closure of autophagic membranes. Niemann-Pick type A patient fibroblasts and SMPD1-depleted cancer cells accumulate elongated and unclosed autophagic membranes as well as abnormally swollen autophagosomes in the absence of normal autophagosomes and autolysosomes. The immature autophagic membranes are rich in WIPI2, ATG16L1 and MAP1LC3B but display reduced association with ATG9A. Contrary to its normal trafficking between plasma membrane, intracellular organelles and autophagic membranes, ATG9A concentrates in transferrin receptor-positive juxtanuclear recycling endosomes in SMPD1-deficient cells. Supporting a causative role for ATG9A mistrafficking in the autophagy defect observed in SMPD1-deficient cells, ectopic ATG9A effectively reverts this phenotype. Exogenous C12-sphingomyelin induces a similar juxtanuclear accumulation of ATG9A and subsequent defect in the maturation of autophagic membranes in healthy cells while the main sphingomyelin metabolite, ceramide, fails to revert the autophagy defective phenotype in SMPD1-deficient cells. Juxtanuclear accumulation of ATG9A and defective autophagy are also evident in tissues of smpd1-deficient mice with a subsequent inability to cope with kidney ischemia-reperfusion stress. These data reveal sphingomyelin as an important regulator of ATG9A trafficking and maturation of early autophagic membranes. PMID:27070082

  4. Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy.

    PubMed

    Hussain, Sabah N A; Mofarrahi, Mahroo; Sigala, Ioanna; Kim, Ho Cheol; Vassilakopoulos, Theodoros; Maltais, Francois; Bellenis, Ion; Chaturvedi, Rakesh; Gottfried, Stewart B; Metrakos, Peter; Danialou, Gawiyou; Matecki, Stefan; Jaber, Samir; Petrof, Basil J; Goldberg, Peter

    2010-12-01

    Controlled mechanical ventilation (CMV) results in atrophy of the human diaphragm. The autophagy-lysosome pathway (ALP) contributes to skeletal muscle proteolysis, but its contribution to diaphragmatic protein degradation in mechanically ventilated patients is unknown. To evaluate the autophagy pathway responses to CMV in the diaphragm and limb muscles of humans and to identify the roles of FOXO transcription factors in these responses. Muscle biopsies were obtained from nine control subjects and nine brain-dead organ donors. Subjects were mechanically ventilated for 2 to 4 hours and 15 to 276 hours, respectively. Activation of the ubiquitin-proteasome system was detected by measuring mRNA expressions of Atrogin-1, MURF1, and protein expressions of UBC2, UBC4, and the α subunits of the 20S proteasome (MCP231). Activation of the ALP was detected by electron microscopy and by measuring the expressions of several autophagy-related genes. Total carbonyl content and HNE-protein adduct formation were measured to assess oxidative stress. Total AKT, phosphorylated and total FOXO1, and FOXO3A protein levels were also measured. Prolonged CMV triggered activation of the ALP as measured by the appearance of autophagosomes in the diaphragm and increased expressions of autophagy-related genes, as compared with controls. Induction of autophagy was associated with increased protein oxidation and enhanced expression of the FOXO1 gene, but not the FOXO3A gene. CMV also triggered the inhibition of both AKT expression and FOXO1 phosphorylation. We propose that prolonged CMV causes diaphragm disuse, which, in turn, leads to activation of the ALP through oxidative stress and the induction of the FOXO1 transcription factor.

  5. Downregulation of SIRT1 signaling underlies hepatic autophagy impairment in glycogen storage disease type Ia.

    PubMed

    Cho, Jun-Ho; Kim, Goo-Young; Pan, Chi-Jiunn; Anduaga, Javier; Choi, Eui-Ju; Mansfield, Brian C; Chou, Janice Y

    2017-05-01

    A deficiency in glucose-6-phosphatase-α (G6Pase-α) in glycogen storage disease type Ia (GSD-Ia) leads to impaired glucose homeostasis and metabolic manifestations including hepatomegaly caused by increased glycogen and neutral fat accumulation. A recent report showed that G6Pase-α deficiency causes impairment in autophagy, a recycling process important for cellular metabolism. However, the molecular mechanism underlying defective autophagy is unclear. Here we show that in mice, liver-specific knockout of G6Pase-α (L-G6pc-/-) leads to downregulation of sirtuin 1 (SIRT1) signaling that activates autophagy via deacetylation of autophagy-related (ATG) proteins and forkhead box O (FoxO) family of transcriptional factors which transactivate autophagy genes. Consistently, defective autophagy in G6Pase-α-deficient liver is characterized by attenuated expressions of autophagy components, increased acetylation of ATG5 and ATG7, decreased conjugation of ATG5 and ATG12, and reduced autophagic flux. We further show that hepatic G6Pase-α deficiency results in activation of carbohydrate response element-binding protein, a lipogenic transcription factor, increased expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), a lipid regulator, and suppressed expression of PPAR-α, a master regulator of fatty acid β-oxidation, all contributing to hepatic steatosis and downregulation of SIRT1 expression. An adenovirus vector-mediated increase in hepatic SIRT1 expression corrects autophagy defects but does not rectify metabolic abnormalities associated with G6Pase-α deficiency. Importantly, a recombinant adeno-associated virus (rAAV) vector-mediated restoration of hepatic G6Pase-α expression corrects metabolic abnormalities, restores SIRT1-FoxO signaling, and normalizes defective autophagy. Taken together, these data show that hepatic G6Pase-α deficiency-mediated down-regulation of SIRT1 signaling underlies defective hepatic autophagy in GSD-Ia.

  6. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    SciTech Connect

    Li, Yangling; Luo, Peihua; Wang, Jincheng; Dai, Jiabin; Yang, Xiaochun; Wu, Honghai; Yang, Bo He, Qiaojun

    2014-01-15

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 and 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.

  7. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    SciTech Connect

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua Liu, Fenju

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  8. Targeted cytoplasmic irradiation and autophagy.

    PubMed

    Wu, Jinhua; Zhang, Bo; Wuu, Yen-Ruh; Davidson, Mercy M; Hei, Tom K

    2017-03-01

    The effect of ionizing irradiation on cytoplasmic organelles is often underestimated because the general dogma considers direct DNA damage in the nuclei to be the primary cause of radiation induced toxicity. Using a precision microbeam irradiator, we examined the changes in mitochondrial dynamics and functions triggered by targeted cytoplasmic irradiation with α-particles. Mitochondrial dysfunction induced by targeted cytoplasmic irradiation led to activation of autophagy, which degraded dysfunctional mitochondria in order to maintain cellular energy homeostasis. The activation of autophagy was cytoplasmic irradiation-specific and was not detected in nuclear irradiated cells. This autophagic process was oxyradical-dependent and required the activity of the mitochondrial fission protein dynamin related protein 1 (DRP1). The resultant mitochondrial fission induced phosphorylation of AMP activated protein kinase (AMPK) which leads to further activation of the extracellular signal-related kinase (ERK) 1/2 with concomitant inhibition of the mammalian target of rapamycin (mTOR) to initiate autophagy. Inhibition of autophagy resulted in delayed DNA damage repair and decreased cell viability, which supports the cytoprotective function of autophagy. Our results reveal a novel mechanism in which dysfunctional mitochondria are degraded by autophagy in an attempt to protect cells from toxic effects of targeted cytoplasmic radiation.

  9. Autophagy: Friend or Foe in Lung Disease?

    PubMed Central

    Mizumura, Kenji; Cloonan, Suzanne; Hashimoto, Shu; Nakahira, Kiichi; Ryter, Stefan W.; Choi, Augustine M. K.

    2016-01-01

    Autophagy is a highly conserved process by which cells can recycle organelles and proteins by degrading them in the lysosomes. Although autophagy is considered a dynamic system responsible for cellular renovation and homeostasis under physiological conditions, it is increasingly clear that autophagy is directly relevant to clinical disease. During disease progression, autophagy not only serves as a cellular protective mechanism but also can represent a harmful event under certain conditions. In addition, although autophagy can act as a nonselective bulk degradation process, recent research shows that autophagy can selectively degrade specific proteins, organelles, and invading bacteria, in processes termed “selective autophagy.” Selective autophagy has drawn the attention of researchers because of its potential importance in clinical diseases. In this article, we outline the most recent studies implicating autophagy and selective autophagy in human lung diseases, including chronic obstructive pulmonary disease, pulmonary hypertension, idiopathic pulmonary fibrosis, and sepsis. We also discuss the relationship between autophagy and other molecular mechanisms related to disease progression, including programmed necrosis (necroptosis) and the inflammasome, an inflammatory signaling platform that regulates the secretion of IL-1β and IL-18. Finally, we examine the dual nature of autophagy and selective autophagy in the lung, which have both protective and injurious effects for human lung disease. PMID:27027951

  10. Expression of autophagy related genes mTOR, Becline-1, LC3 and p62 in the peripheral blood mononuclear cells of systemic lupus erythematosus.

    PubMed

    Wu, Zhen-Zhen; Zhang, Jun-Jun; Gao, Cong-Cong; Zhao, Man; Liu, Sheng-Yun; Gao, Guan-Min; Zheng, Zhao-Hui

    2017-01-01

    To determine the expression of mTOR, Becline-1, LC3 and p62 in the peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematosus (SLE) and assess their relationship with disease activity and immunologic features. The expression of mTOR, Becline-1, LC3 and p62 was detected by RT-PCR in 81 SLE subjects and 86 age- and sex-matched healthy controls. Data regarding demographics and clinical parameters were collected. Disease activity of SLE was evaluated according to the SLE Disease Activity Index (SLEDAI) score. Independent sample t-test was used to analyze the expression of mTOR, Becline-1, LC3, and p62 in the two groups. Pearson's or Spearman's correlation was performed to analyze their relationship with disease activity and immunologic features. The mean levels of Becline-1, LC3 and p62 mRNA were significantly higher in SLE patients than the controls (9.96×10(-4) vs 7.38×10(-4) for Becline-1 with P<0.001; 4.04×10(-5) vs 2.62×10(-5) for LC3 with P<0.001; 9.51×10(-4) vs 7.59×10(-4) for p62 with P=0.008). However, the levels of mTOR mRNA in SLE patients were not significantly different from that in controls. Correlation analysis showed that Becline-1, LC3 and p62 mRNA levels correlated positively with SLEDAI, IgG and ds-DNA, negatively with C3. Our results suggested that autophagosomes formation were activated and their degradation were blocked in SLE. Moreover, the maintenance of autophagy balance can improve disease activity and immune disorders in SLE patients.

  11. Expression of autophagy related genes mTOR, Becline-1, LC3 and p62 in the peripheral blood mononuclear cells of systemic lupus erythematosus

    PubMed Central

    Wu, Zhen-Zhen; Zhang, Jun-Jun; Gao, Cong-Cong; Zhao, Man; Liu, Sheng-Yun; Gao, Guan-Min; Zheng, Zhao-Hui

    2017-01-01

    To determine the expression of mTOR, Becline-1, LC3 and p62 in the peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematosus (SLE) and assess their relationship with disease activity and immunologic features. The expression of mTOR, Becline-1, LC3 and p62 was detected by RT-PCR in 81 SLE subjects and 86 age- and sex-matched healthy controls. Data regarding demographics and clinical parameters were collected. Disease activity of SLE was evaluated according to the SLE Disease Activity Index (SLEDAI) score. Independent sample t-test was used to analyze the expression of mTOR, Becline-1, LC3, and p62 in the two groups. Pearson’s or Spearman’s correlation was performed to analyze their relationship with disease activity and immunologic features. The mean levels of Becline-1, LC3 and p62 mRNA were significantly higher in SLE patients than the controls (9.96×10-4 vs 7.38×10-4 for Becline-1 with P<0.001; 4.04×10-5 vs 2.62×10-5 for LC3 with P<0.001; 9.51×10-4 vs 7.59×10-4 for p62 with P=0.008). However, the levels of mTOR mRNA in SLE patients were not significantly different from that in controls. Correlation analysis showed that Becline-1, LC3 and p62 mRNA levels correlated positively with SLEDAI, IgG and ds-DNA, negatively with C3. Our results suggested that autophagosomes formation were activated and their degradation were blocked in SLE. Moreover, the maintenance of autophagy balance can improve disease activity and immune disorders in SLE patients. PMID:28123902

  12. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells.

    PubMed

    Peng, Yuan-Fei; Shi, Ying-Hong; Ding, Zhen-Bin; Ke, Ai-Wu; Gu, Cheng-Yu; Hui, Bo; Zhou, Jian; Qiu, Shuang-Jian; Dai, Zhi; Fan, Jia

    2013-12-01

    Metastasis is one of the main causes of poor prognosis for hepatocellular carcinoma (HCC), which has been linked to cell-death resistance. Autophagy is an important survival mechanism under conditions of cell stress. We hypothesized that autophagy may play a role in HCC metastasis due to its prosurvival effect. Highly metastatic HCC cell lines with stable autophagy inhibition were established via lentivirus-mediated silencing of BECN1 and ATG5 genes. Mouse models of pulmonary metastasis were then developed using the cells with or without autophagy inhibition. The analysis of lung metastasis by histopathological examination and small animal imaging showed that autophagy inhibition significantly decreased the incidence of pulmonary metastases in vivo. Further invasion, migration, detachment, lung colonization, and epithelial-mesenchymal transition (EMT) assays indicated that autophagy inhibition did not affect cell invasiveness, migration or EMT but attenuated the anoikis-resistance and lung colonization of HCC cells. Investigation of the molecular mechanisms underlying showed that the autophagy-inhibition-mediated anoikis-resistance attenuation was associated with the regulation of apoptotic signaling. As autophagy inhibition was shown to be able to suppress HCC metastasis, an autophagy-based HCC tissue-specific target therapy system (AFP-Cre/LoxP-shRNA) was constructed. In vitro and in vivo analyses showed that the system was able to efficiently inhibit autophagy of HCC cells and tissue in a tissue-specific manner. Further in vivo metastasis assay showed that intratumoral administration of the system could significantly suppress lung metastasis. Together, our findings suggest that autophagy may be involved in HCC metastasis through facilitating anoikis resistance and lung colonization of HCC cells. Autophagy-based HCC tissue-specific target therapy may be a new strategy for the management of HCC metastasis.

  13. Autophagy plays a dual role during intracellular siRNA delivery by lipoplex and polyplex nanoparticles.

    PubMed

    Song, Wen; Ma, Zhiwei; Zhang, Yumei; Yang, Chuanxu

    2017-08-01

    Growing evidence indicates that autophagy plays a vital role during intracellular DNA delivery mediated by lipoplex and polyplex nanoparticles. However, autophagy in intracellular siRNA delivery has not been well understood. In this study, lipofectamine 2000 and chitosan were used to formulate lipoplex and polyplex with siRNA for systematically investigating the interplay between siRNA delivery and autophagy. After transfection of H1299 cells with lipoplex and polyplex, the number of autophagic vacuoles was increased significantly indicated by the accumulation of monodansylcadaverine (MDC) staining. Western blot revealed that the LC3-II expression was significantly increased after transfection, whereas p-mTOR expression was not influenced apparently. In addition, small-molecule autophagy modulators significantly affected transfection efficiency. Specifically, the mTOR-dependent autophagy inducer rapamycin enhanced the knockdown efficiency of both lipoplex and polyplex, whereas mTOR-dependent autophagy inhibitor 3-methyladenine (3-MA) suppressed their silencing efficiency. On the contrary, mTOR-independent autophagy inducer LiBr decreased whereas mTOR-independent autophagy inhibitor thapsigargin (TG) increased the knockdown efficacy. Immunofluorescence staining showed that siRNA was partially co-localized with autophagosomes and the percentage of co-localized siRNA was significantly affected by autophagy modulators in the opposite trend of gene knockdown efficacy. In conclusion, our study suggests that autophagy plays an important role during the intracellular siRNA trafficking mediated by both lipoplex and polyplex. Modulating autophagy process will result in distinct knockdown efficiency, which may be applied as a potential convenient way for improving siRNA delivery efficacy. Although tremendous effects has been made in the development of non-viral siRNA delivery systems, the intracellular siRNA trafficking has not been elucidated clearly. In this study, we

  14. Interactions between Autophagy and Inhibitory Cytokines

    PubMed Central

    Wu, Tian-tian; Li, Wei-Min; Yao, Yong-Ming

    2016-01-01

    Autophagy is a degradative pathway that plays an essential role in maintaining cellular homeostasis. Most early studies of autophagy focused on its involvement in age-associated degeneration and nutrient deprivation. However, the immunological functions of autophagy have become more widely studied in recent years. Autophagy has been shown to be an intrinsic cellular defense mechanism in the innate and adaptive immune responses. Cytokines belong to a broad and loose category of proteins and are crucial for innate and adaptive immunity. Inhibitory cytokines have evolved to permit tolerance to self while also contributing to the eradication of invading pathogens. Interactions between inhibitory cytokines and autophagy have recently been reported, revealing a novel mechanism by which autophagy controls the immune response. In this review, we discuss interactions between autophagy and the regulatory cytokines IL-10, transforming growth factor-β, and IL-27. We also mention possible interactions between two newly discovered cytokines, IL-35 and IL-37, and autophagy. PMID:27313501

  15. Focus Issue: Autophagy as hero and villain.

    PubMed

    Wong, Wei

    2017-02-28

    This Focus Issue explores autophagic responses to stress in cardiometabolic disease, reveals how autophagy limits pathological hypertrophy in the heart, and describes how autophagy itself can regulate transcriptional responses to stress.

  16. Nrf2-mediated cardiac maladaptive remodeling and dysfunction in a setting of autophagy insufficiency

    PubMed Central

    Qin, Qingyun; Qu, Chen; Niu, Ting; Zang, Huimei; Qi, Lei; Lyu, Linmao; Wang, Xuejun; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2016-01-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2) appears to exert either a protective or detrimental effect on the heart; however, the underlying mechanism remains poorly understood. Herein, we uncovered a novel mechanism for turning off the Nrf2-mediated cardioprotection while switching on Nrf2-mediated cardiac dysfunction. In a murine model of pressure overload-induced cardiac remodeling and dysfunction via transverse aortic arch constriction (TAC), knockout of Nrf2 enhanced myocardial necrosis and death rate during an initial stage of cardiac adaptation when myocardial autophagy function is intact. However, knockout of Nrf2 turned out to be cardioprotective throughout the later stage of cardiac maladaptive remodeling when myocardial autophagy function became insufficient. TAC-induced activation of Nrf2 was dramatically enhanced in the heart with impaired autophagy which is induced by cardiomyocyte-specific knockout of autophagy related gene (Atg)5. Notably, Nrf2 activation coincided with upregulation of angiotensinogen (Agt) only in the autophagy impaired heart after TAC. Agt5 and Nrf2 gene loss of function approaches in combination with Jak2 and Fyn kinase inhibitors revealed that suppression of autophagy inactivated Jak2 and Fyn as well as nuclear translocation of Fyn while enhancing nuclear translocation of Nrf2 and Nrf2-driven Agt expression in cardiomyocytes. Taken together; these results indicate that the pathophysiological consequences of Nrf2 activation are closely linked with the functional integrity of myocardial autophagy during cardiac remodeling. When autophagy is intact, Nrf2 is required for cardiac adaptive responses; however, autophagy impairment most likely turns off Fyn-operated Nrf2 nuclear export thus activating Nrf2-driven Agt transcription, which exacerbates cardiac maladaptation leading to dysfunction. PMID:26573705

  17. IL13 activates autophagy to regulate secretion in airway epithelial cells.

    PubMed

    Dickinson, John D; Alevy, Yael; Malvin, Nicole P; Patel, Khushbu K; Gunsten, Sean P; Holtzman, Michael J; Stappenbeck, Thaddeus S; Brody, Steven L

    2016-01-01

    Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.

  18. Alcohol-induced autophagy contributes to loss in skeletal muscle mass

    PubMed Central

    Thapaliya, Samjhana; Runkana, Ashok; McMullen, Megan R; Nagy, Laura E; McDonald, Christine; Prasad, Sathyamangla V Naga; Dasarathy, Srinivasan

    2014-01-01

    Patients with alcoholic cirrhosis and hepatitis have severe muscle loss. Since ethanol impairs skeletal muscle protein synthesis but does not increase ubiquitin proteasome-mediated proteolysis, we investigated whether alcohol-induced autophagy contributes to muscle loss. Autophagy induction was studied in: A) Human skeletal muscle biopsies from alcoholic cirrhotics and controls, B) Gastrocnemius muscle from ethanol and pair-fed mice, and C) Ethanol-exposed murine C2C12 myotubes, by examining the expression of autophagy markers assessed by immunoblotting and real-time PCR. Expression of autophagy genes and markers were increased in skeletal muscle from humans and ethanol-fed mice, and in myotubes following ethanol exposure. Importantly, pulse-chase experiments showed suppression of myotube proteolysis upon ethanol-treatment with the autophagy inhibitor, 3-methyladenine (3MA) and not by MG132, a proteasome inhibitor. Correspondingly, ethanol-treated C2C12 myotubes stably expressing GFP-LC3B showed increased autophagy flux as measured by accumulation of GFP-LC3B vesicles with confocal microscopy. The ethanol-induced increase in LC3B lipidation was reversed upon knockdown of Atg7, a critical autophagy gene and was associated with reversal of the ethanol-induced decrease in myotube diameter. Consistently, CT image analysis of muscle area in alcoholic cirrhotics was significantly reduced compared with control subjects. In order to determine whether ethanol per se or its metabolic product, acetaldehyde, stimulates autophagy, C2C12 myotubes were treated with ethanol in the presence of the alcohol dehydrogenase inhibitor (4-methylpyrazole) or the acetaldehyde dehydrogenase inhibitor (cyanamide). LC3B lipidation increased with acetaldehyde treatment and increased further with the addition of cyanamide. We conclude that muscle autophagy is increased by ethanol exposure and contributes to sarcopenia. PMID:24492484

  19. Cross-cancer profiling of molecular alterations within the human autophagy interaction network

    PubMed Central

    Lebovitz, Chandra B; Robertson, A Gordon; Goya, Rodrigo; Jones, Steven J; Morin, Ryan D; Marra, Marco A; Gorski, Sharon M

    2015-01-01

    Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival. PMID:26208877

  20. Autophagy regulation in macrophages and neutrophils.

    PubMed

    Mihalache, Cristina C; Simon, Hans-Uwe

    2012-07-01

    Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Accumulating evidence exists that autophagy also plays a major role in immunity and inflammation. Specifically, it appears that autophagy protects against infections and inflammation. Here, we review recent work performed in macrophages and neutrophils, which both represent critical phagocytes in mammalians. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A rapid and high content assay that measures cyto-ID-stained autophagic compartments and estimates autophagy flux with potential clinical applications.

    PubMed

    Guo, Sujuan; Liang, Yanping; Murphy, Susan F; Huang, Angela; Shen, Haihong; Kelly, Deborah F; Sobrado, Pablo; Sheng, Zhi

    2015-01-01

    The lack of a rapid and quantitative autophagy assay has substantially hindered the development and implementation of autophagy-targeting therapies for a variety of human diseases. To address this critical issue, we developed a novel autophagy assay using the newly developed Cyto-ID fluorescence dye. We first verified that the Cyto-ID dye specifically labels autophagic compartments with minimal staining of lysosomes and endosomes. We then developed a new Cyto-ID fluorescence spectrophotometric assay that makes it possible to estimate autophagy flux based on measurements of the Cyto-ID-stained autophagic compartments. By comparing to traditional autophagy approaches, we found that this assay yielded a more sensitive, yet less variable, quantification of the stained autophagic compartments and the estimate of autophagy flux. Furthermore, we tested the potential application of this autophagy assay in high throughput research by integrating it into an RNA interference (RNAi) screen and a small molecule screen. The RNAi screen revealed WNK2 and MAP3K6 as autophagy-modulating genes, both of which inhibited the MTOR pathway. Similarly, the small molecule screen identified sanguinarine and actinomycin D as potent autophagy inducers in leukemic cells. Moreover, we successfully detected autophagy responses to kinase inhibitors and chloroquine in normal or leukemic mice using this assay. Collectively, this new Cyto-ID fluorescence spectrophotometric assay provides a rapid, reliable quantification of autophagic compartments and estimation of autophagy flux with potential applications in developing autophagy-related therapies and as a test to monitor autophagy responses in patients being treated with autophagy-modulating drugs.

  2. Crosstalk between autophagy and apoptosis in RAW 264.7 macrophages infected with ectromelia orthopoxvirus.

    PubMed

    Martyniszyn, Lech; Szulc-Dąbrowska, Lidia; Boratyńska-Jasińska, Anna; Struzik, Justyna; Winnicka, Anna; Niemiałtowski, Marek

    2013-10-01

    Several studies have provided evidence that complex relationships between autophagic and apoptotic cell death pathways occur in cancer and virus-infected cells. Previously, we demonstrated that infection of macrophages with Moscow strain of ectromelia virus (ECTV-MOS) induces apoptosis under in vitro and in vivo conditions. Here, we found that autophagy was induced in RAW 264.7 cells during infection with ECTV-MOS. Silencing of beclin 1, an autophagy-related gene, reduced the percentage of late apoptotic cells in virus-infected RAW 264.7 macrophages. Pharmacological modulation of autophagy by wortmannin (inhibitor) or rapamycin (inductor) did not affect or cause increased apoptosis in ECTV-MOS-infected RAW 264.7 cells, respectively. Meantime, blocking apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, increased the formation of autophagosomes in infected macrophages. Taken together, three important points arise from our study. First, autophagy may co-occur with apoptosis in RAW 264.7 cells exposed to ECTV-MOS. Second, at later stages of infection, autophagy may partially participate in the execution of macrophage cell death by enhancing apoptosis. Third, when apoptosis is blocked infected macrophages undergo increased autophagy. Our results provide new information about the relationship between autophagy and apoptosis in ECTV-MOS-infected macrophages.

  3. The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms.

    PubMed

    Ramadan, Azza; Al-Omran, Mohammed; Verma, Subodh

    2017-02-01

    Abdominal aortic aneurysms (AAA) are a significant cause of worldwide mortality and morbidity. While the histopathological characteristics of AAA are well documented, the cellular and molecular mechanisms involved in the pathogenesis of AAA are not entirely understood. Autophagy is a highly conserved basal cellular process in eukaryotic cells that involves the turnover of organelles and proteins. It is also activated as an adaptive response to stressful conditions to promote cell survival. While autophagy typically promotes pro-survival processes, it can sometimes lead to cellular demise. Preclinical studies have revealed autophagy to be a protective mechanism in certain vascular diseases with several autophagy-related genes reported to be markedly upregulated in human aneurysmal tissue. The role autophagy plays in the pathogenesis of AAA, however, remains poorly defined. In this review, we discuss the putative role of autophagy in AAA by reviewing several in vitro and in vivo studies that address the functional significance of autophagy in cells that are involved in the pathophysiology of AAA, amongst which are macrophages, smooth muscle and endothelial cells.

  4. Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy.

    PubMed

    Xu, Fei; Fang, Yixuan; Yan, Lili; Xu, Lan; Zhang, Suping; Cao, Yan; Xu, Li; Zhang, Xiaoying; Xie, Jialing; Jiang, Gaoyue; Ge, Chaorong; An, Ni; Zhou, Daohong; Yuan, Na; Wang, Jianrong

    2017-03-27

    Beclin 1 is a well-established core mammalian autophagy protein that is embryonically indispensable and has been presumed to suppress oncogenesis via an autophagy-mediated mechanism. Here, we show that Beclin 1 is a prenatal primary cytoplasmic protein but rapidly relocated into the nucleus during postnatal development in mice. Surprisingly, deletion of beclin1 in in vitro human cells did not block an autophagy response, but attenuated the expression of several DNA double-strand break (DSB) repair proteins and formation of repair complexes, and reduced an ability to repair DNA in the cells exposed to ionizing radiation (IR). Overexpressing Beclin 1 improved the repair of IR-induced DSB, but did not restore an autophagy response in cells lacking autophagy gene Atg7, suggesting that Beclin 1 may regulate DSB repair independent of autophagy in the cells exposed to IR. Indeed, we found that Beclin 1 could directly interact with DNA topoisomerase IIβ and was recruited to the DSB sites by the interaction. These findings reveal a novel function of Beclin 1 in regulation of DNA damage repair independent of its role in autophagy particularly when the cells are under radiation insult.

  5. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast.

    PubMed

    Matsuhara, Hirotada; Yamamoto, Ayumu

    2016-01-01

    Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis.

  6. Crosstalk Between Autophagy and Apoptosis in RAW 264.7 Macrophages Infected with Ectromelia Orthopoxvirus

    PubMed Central

    Martyniszyn, Lech; Szulc-Dąbrowska, Lidia; Boratyńska-Jasińska, Anna; Struzik, Justyna; Winnicka, Anna

    2013-01-01

    Abstract Several studies have provided evidence that complex relationships between autophagic and apoptotic cell death pathways occur in cancer and virus-infected cells. Previously, we demonstrated that infection of macrophages with Moscow strain of ectromelia virus (ECTV-MOS) induces apoptosis under in vitro and in vivo conditions. Here, we found that autophagy was induced in RAW 264.7 cells during infection with ECTV-MOS. Silencing of beclin 1, an autophagy-related gene, reduced the percentage of late apoptotic cells in virus-infected RAW 264.7 macrophages. Pharmacological modulation of autophagy by wortmannin (inhibitor) or rapamycin (inductor) did not affect or cause increased apoptosis in ECTV-MOS-infected RAW 264.7 cells, respectively. Meantime, blocking apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, increased the formation of autophagosomes in infected macrophages. Taken together, three important points arise from our study. First, autophagy may co-occur with apoptosis in RAW 264.7 cells exposed to ECTV-MOS. Second, at later stages of infection, autophagy may partially participate in the execution of macrophage cell death by enhancing apoptosis. Third, when apoptosis is blocked infected macrophages undergo increased autophagy. Our results provide new information about the relationship between autophagy and apoptosis in ECTV-MOS-infected macrophages. PMID:24116707

  7. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy.

    PubMed

    Shin, Hi-Jai R; Kim, Hyunkyung; Oh, Sungryong; Lee, Jun-Gi; Kee, Minjung; Ko, Hyun-Jeong; Kweon, Mi-Na; Won, Kyoung-Jae; Baek, Sung Hee

    2016-06-23

    Autophagy is a highly conserved self-digestion process, which is essential for maintaining homeostasis and viability in response to nutrient starvation. Although the components of autophagy in the cytoplasm have been well studied, the molecular basis for the transcriptional and epigenetic regulation of autophagy is poorly understood. Here we identify co-activator-associated arginine methyltransferase 1 (CARM1) as a crucial component of autophagy in mammals. Notably, CARM1 stability is regulated by the SKP2-containing SCF (SKP1-cullin1-F-box protein) E3 ubiquitin ligase in the nucleus, but not in the cytoplasm, under nutrient-rich conditions. Furthermore, we show that nutrient starvation results in AMP-activated protein kinase (AMPK)-dependent phosphorylation of FOXO3a in the nucleus, which in turn transcriptionally represses SKP2. This repression leads to increased levels of CARM1 protein and subsequent increases in histone H3 Arg17 dimethylation. Genome-wide analyses reveal that CARM1 exerts transcriptional co-activator function on autophagy-related and lysosomal genes through transcription factor EB (TFEB). Our findings demonstrate that CARM1-dependent histone arginine methylation is a crucial nuclear event in autophagy, and identify a new signalling axis of AMPK-SKP2-CARM1 in the regulation of autophagy induction after nutrient starvation.

  8. Induction of Autophagy interferes the tachyzoite to bradyzoite transformation of Toxoplasma gondii.

    PubMed

    Li, Xiangzhi; Chen, Di; Hua, Qianqian; Wan, Yujing; Zheng, Lina; Liu, Yangyang; Lin, Jiaxin; Pan, Changwang; Hu, Xin; Tan, Feng

    2016-04-01

    Autophagy process in Toxoplasma gondii plays a vital role in regulating parasite survival or death. Thus, once having an understanding of certain effects of autophagy on the transformation of tachyzoite to bradyzoite this will allow us to elucidate the function of autophagy during parasite development. Herein, we used three TgAtg proteins involved in Atg8 conjugation system, TgAtg3, TgAtg7 and TgAtg8 to evaluate the autophagy level in tachyzoite and bradyzoite of Toxoplasma in vitro based on Pru TgAtg7-HA transgenic strains. We showed that both TgAtg3 and TgAtg8 were expressed at a significantly lower level in bradyzoites than in tachyzoites. Importantly, the number of parasites containing fluorescence-labelled TgAtg8 puncta was significantly reduced in bradyzoites than in tachyzoites, suggesting that autophagy is downregulated in Toxoplasma bradyzoite in vitro. Moreover, after treatment with drugs, bradyzoite-specific gene BAG1 levels decreased significantly in rapamycin-treated bradyzoites and increased significantly in 3-MA-treated bradyzoites in comparison with control bradyzoites, indicating that Toxoplasma autophagy is involved in the transformation of tachyzoite to bradyzoite in vitro. Together, it is suggested that autophagy may serve as a potential strategy to regulate the transformation.

  9. The fucosylated CD147 enhances the autophagy in epithelial ovarian cancer cells

    PubMed Central

    Hu, Zhenhua; Cai, Mingbo; Deng, Lu; Zhu, Liancheng; Gao, Jian; Tan, Mingzi; Liu, Juanjuan; Lin, Bei

    2016-01-01

    Autophagy is modulated by multiple factors including CD147, but little is know about the effects and mechanism by which the modification of CD147 by Lewis y antigen regulates autophagy of ovarian cancer cell. Here, we reported that Lewis y antigen can promote basic autophagy activity and restrain autophagic cell death in ovarian cancer cells. Furthermore, human whole genome expression profile microarrays and massage pathway analysis revealed that during early stages of autophagy in ovarian cancer cells with highly expressing Lewis y antigen, PI3K/Akt-mTOR activity was reduced, in contrast, the PI3K/Akt-mTOR signaling pathway was activated as the length of amino acid deprivation increased, which inhibited eIF4G2 expression, further decreased the transcription of autophagy-related genes, suppressed autophagic cell death. we also elaborated that co-regulates protein degradation in cells via the ubiquitin-proteasome system and the autophagy-lysosome pathway. These findings suggested that the modification of CD147 by Lewis y antigen enhanced the survival ability by promoting basic autophagy activity and restraining autophagic cell death in ovarian cancer, thus playing an important role in ovarian cancer malignant progression. PMID:27863372

  10. Autophagy-Related Proteins Target Ubiquitin-Free Mycobacterial Compartment to Promote Killing in Macrophages

    PubMed Central

    Bah, Aïcha; Lacarrière, Camille; Vergne, Isabelle

    2016-01-01

    Autophagy is a lysosomal degradative process that plays essential functions in innate immunity, particularly, in the clearance of intracellular bacteria such as Mycobacterium tuberculosis. The molecular mechanisms involved in autophagy activation and targeting of mycobacteria, in innate immune responses of macrophages, are only partially characterized. Autophagy targets pathogenic M. tuberculosis via a cytosolic DNA recognition- and an ubiquitin-dependent pathway. In this report, we show that non-pathogenic M. smegmatis induces a robust autophagic response in THP-1 macrophages with an up regulation of several autophagy-related genes. Autophagy activation relies in part on recognition of mycobacteria by Toll-like receptor 2 (TLR2). Notably, LC3 targeting of M. smegmatis does not rely on membrane damage, ubiquitination, or autophagy receptor recruitment. Lastly, M. smegmatis promotes recruitment of several autophagy proteins, which are required for mycobacterial killing. In conclusion, our study uncovered an alternative autophagic pathway triggered by mycobacteria which involves cell surface recognition but not bacterial ubiquitination. PMID:27242971

  11. Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy

    PubMed Central

    Xu, Fei; Fang, Yixuan; Yan, Lili; Xu, Lan; Zhang, Suping; Cao, Yan; Xu, Li; Zhang, Xiaoying; Xie, Jialing; Jiang, Gaoyue; Ge, Chaorong; An, Ni; Zhou, Daohong; Yuan, Na; Wang, Jianrong

    2017-01-01

    Beclin 1 is a well-established core mammalian autophagy protein that is embryonically indispensable and has been presumed to suppress oncogenesis via an autophagy-mediated mechanism. Here, we show that Beclin 1 is a prenatal primary cytoplasmic protein but rapidly relocated into the nucleus during postnatal development in mice. Surprisingly, deletion of beclin1 in in vitro human cells did not block an autophagy response, but attenuated the expression of several DNA double-strand break (DSB) repair proteins and formation of repair complexes, and reduced an ability to repair DNA in the cells exposed to ionizing radiation (IR). Overexpressing Beclin 1 improved the repair of IR-induced DSB, but did not restore an autophagy response in cells lacking autophagy gene Atg7, suggesting that Beclin 1 may regulate DSB repair independent of autophagy in the cells exposed to IR. Indeed, we found that Beclin 1 could directly interact with DNA topoisomerase IIβ and was recruited to the DSB sites by the interaction. These findings reveal a novel function of Beclin 1 in regulation of DNA damage repair independent of its role in autophagy particularly when the cells are under radiation insult. PMID:28345663

  12. Endoglin Regulation of Smad2 Function Mediates Beclin1 Expression and Endothelial Autophagy*

    PubMed Central

    Pan, Christopher C.; Kumar, Sanjay; Shah, Nirav; Bloodworth, Jeffrey C.; Hawinkels, Lukas J. A. C.; Mythreye, Karthikeyan; Hoyt, Dale G.; Lee, Nam Y.

    2015-01-01

    Autophagy is the targeted degradation of proteins and organelles critical for homeostasis and cell survival. Transforming growth factor β (TGF-β) differentially regulates autophagy in a context-specific manner, although the precise intracellular mechanisms remain less clear. Importantly, how TGF-β controls autophagic responses in endothelial cells (EC) during angiogenesis is unknown. Here we identified endoglin, an EC-specific TGF-β co-receptor essential for angiogenesis, as a key determinant of autophagy. Among the two opposing TGF-β Smad pathways in the EC system (Smad1/5/8 and Smad2/3), we found Smad2 as the major transcriptional regulator of autophagy that targets beclin1 (BECN1) gene expression. Smad2, but not Smad3, acts as a repressor upstream of the BECN1 promoter region. Overall, endoglin promotes autophagy by impeding Smad2 transcriptional repressor activity. Notably, increased beclin1 levels upon Smad2 knockdown directly correlated with enhanced autophagy during angiogenesis. Taken together, these results establish endoglin as a critical mediator of autophagy and demonstrate a new transcriptional mechanism by which Smad2 inhibits angiogenesis. PMID:25931117

  13. A curated census of autophagy-modulating proteins and small molecules

    PubMed Central

    Lorenzi, Philip L; Claerhout, Sofie; Mills, Gordon B; Weinstein, John N

    2014-01-01

    Autophagy, a programmed process in which cell contents are delivered to lysosomes for degradation, appears to have both tumor-suppressive and tumor-promoting functions; both stimulation and inhibition of autophagy have been reported to induce cancer cell death, and particular genes and proteins have been associated both positively and negatively with autophagy. To provide a basis for incisive analysis of those complexities and ambiguities and to guide development of new autophagy-targeted treatments for cancer, we have compiled a comprehensive, curated inventory of autophagy modulators by integrating information from published siRNA screens, multiple pathway analysis algorithms, and extensive, manually curated text-mining of the literature. The resulting inventory includes 739 proteins and 385 chemicals (including drugs, small molecules, and metabolites). Because autophagy is still at an early stage of investigation, we provide extensive analysis of our sources of information and their complex relationships with each other. We conclude with a discussion of novel strategies that could potentially be used to target autophagy for cancer therapy. PMID:24906121

  14. Age-related changes in the function of autophagy in rat kidneys.

    PubMed

    Cui, Jing; Bai, Xue-Yuan; Shi, Suozhu; Cui, Shaoyuan; Hong, Quan; Cai, Guangyan; Chen, Xiangmei

    2012-04-01

    Autophagy is a highly regulated intracellular process for the degradation of cytoplasmic components, especially protein aggregates and damaged organelles. It is essential for maintaining healthy cells. Impaired or deficient autophagy is believed to cause or contribute to aging and age-related disease. In this study, we investigated the effects of age on autophagy in the kidneys of 3-, 12-, and 24-month-old Fischer 344 rats. The results revealed that autophagy-related gene (Atg)7 was significantly downregulated in kidneys of increasing age. The protein expression level of the autophagy marker light chain 3/Atg8 exhibited a marked decline in aged kidneys. The levels of p62/SQSTM1 and polyubiquitin aggregates, representing the function of autophagy and proteasomal degradation, increased in older kidneys. The level of 8-hydroxydeoxyguanosine, a marker of mitochondrial DNA oxidative damage, was also increased in older kidneys. Analysis by transmission electron microscope demonstrated swelling and disintegration of cristae in the mitochondria of aged kidneys. These results suggest that autophagic function decreases with age in the kidneys of Fischer 344 rats, and autophagy may mediate the process of kidney aging, leading to the accumulation of damaged mitochondria.

  15. Molecular interplay between mutant p53 proteins and autophagy in cancer cells.

    PubMed

    Cordani, Marco; Butera, Giovanna; Pacchiana, Raffaella; Donadelli, Massimo

    2017-01-01

    An increasing number of studies highlight the role of mutant p53 proteins in cancer cell growth and in the worsening of cancer patients' clinical outcome. Autophagy has been widely recognized as a main biological event involved in both the regulation of cancer cell proliferation and in the response of several anticancer drugs. A thorough analysis of scientific literature underlines the reciprocal interplay between mutant p53 proteins and autophagy regulation. In this review, we analytically summarize recent findings, which indicate that gain-of-function (GOF) mutant p53 proteins counteract the autophagic machinery by various molecular mechanisms including the regulation of AMPK and Akt/mTOR pathways, autophagy-related genes (ATGs), HIF-1α target genes, and the mitochondrial citrate carrier CIC. Moreover, we report that mutant p53 protein stability is affected by lysosome-mediated degradation through macroautophagy or chaperone-mediated autophagy, suggesting the use of autophagy stimulators to counteract mutant p53 oncogenic activity. Finally, we discuss the functional role of the interplay between mutant p53 proteins and autophagy in cancer progression, a fundamental knowledge to design more effective therapies against cancers bearing mutant TP53 gene.

  16. IRF8 directs stress induced autophagy in macrophages and promotes clearance of Listeria monocytogenes

    PubMed Central

    Gupta, Monica; Shin, Dong-Mi; Ramakrishna, Lakshmi; Goussetis, Dennis J.; Platanias, Leonidas C.; Xiong, Huabao; Morse, Herbert C.; Ozato, Keiko

    2015-01-01

    Autophagy, activated by many stresses, plays a critical role in innate immune responses. Here we show that Interferon Regulatory Factor 8 (IRF8) is required for expression of autophagy-related genes in dendritic cells. Furthermore in macrophages, IRF8 is induced by multiple autophagy-inducing stresses, including IFNγ and toll like receptor stimulation, bacterial infection, starvation and by macrophage colony-stimulating factor. IRF8 directly activates many genes involved in various steps of autophagy, promoting autophagosome formation and lysosomal fusion. Consequently, Irf8-/- macrophages are deficient in autophagic activity, and excessively accumulate SQSTM1 and ubiquitin-bound proteins. We show that clearance of Listeria monocytogenes in macrophages requires IRF8-dependent activation of autophagy genes and subsequent autophagic capturing and degradation of Listeria antigens. These processes are defective in Irf8-/- macrophages where uninhibited bacterial growth ensues. Together, these data suggest that IRF8 is a major autophagy regulator in macrophages, essential for macrophage maturation, survival and innate immune responses. PMID:25775030

  17. IRF8 directs stress-induced autophagy in macrophages and promotes clearance of Listeria monocytogenes.

    PubMed

    Gupta, Monica; Shin, Dong-Mi; Ramakrishna, Lakshmi; Goussetis, Dennis J; Platanias, Leonidas C; Xiong, Huabao; Morse, Herbert C; Ozato, Keiko

    2015-03-16

    Autophagy, activated by many stresses, plays a critical role in innate immune responses. Here we show that interferon regulatory factor 8 (IRF8) is required for the expression of autophagy-related genes in dendritic cells. Furthermore in macrophages, IRF8 is induced by multiple autophagy-inducing stresses, including IFNγ and Toll-like receptor stimulation, bacterial infection, starvation and by macrophage colony-stimulating factor. IRF8 directly activates many genes involved in various steps of autophagy, promoting autophagosome formation and lysosomal fusion. Consequently, Irf8(-/-) macrophages are deficient in autophagic activity, and excessively accumulate SQSTM1 and ubiquitin-bound proteins. We show that clearance of Listeria monocytogenes in macrophages requires IRF8-dependent activation of autophagy genes and subsequent autophagic capturing and degradation of Listeria antigens. These processes are defective in Irf8(-/-) macrophages where uninhibited bacterial growth ensues. Together these data suggest that IRF8 is a major autophagy regulator in macrophages, essential for macrophage maturation, survival and innate immune responses.

  18. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise

    PubMed Central

    Wohlgemuth, Stephanie Eva; Seo, Arnold Young; Marzetti, Emanuele; Lees, Hazel Anne; Leeuwenburgh, Christiaan

    2009-01-01

    Sarcopenia, loss of muscle mass and function, is a common feature of aging. Oxidative damage and apoptosis are likely underlying factors. Autophagy, a process for the degradation of cellular constituents, may be a mechanism to combat cell damage and death. We investigated the effect of age on autophagy and apoptosis in plantaris muscle of male Fischer344 rats that were either fed ad libitum, or mild, life-long calorie restricted (CR) alone or combined with life-long voluntary exercise. Upstream autophagy regulatory proteins were either upregulated with age (Beclin-1) or unchanged (Atg7 and 9). LC3 gene and protein expression pattern as well as LAMP-2 gene expression, both downstream regulators of autophagy, however, suggested an age-related decline in autophagic degradation. Atg protein expression and LC3 and LAMP-2 gene expression were improved in CR rats with or without exercise. The age-related increase in oxidative damage and apoptosis were attenuated by the treatments. Both, oxidative damage and apoptosis correlated negatively with autophagy. We conclude that mild CR attenuates the age-related impairment of autophagy in rodent skeletal muscle, which might be one of the mechanisms by which CR attenuates age-related cellular damage and cell death in skeletal muscle in vivo. PMID:19903516

  19. Precision autophagy: Will the next wave of selective autophagy markers and specific autophagy inhibitors feed clinical pipelines?

    PubMed

    Lebovitz, Chandra B; DeVorkin, Lindsay; Bosc, Damien; Rothe, Katharina; Singh, Jagbir; Bally, Marcel; Jiang, Xiaoyan; Young, Robert N; Lum, Julian J; Gorski, Sharon M

    2015-01-01

    Research presented at the Vancouver Autophagy Symposium (VAS) 2014 suggests that autophagy's influence on health and disease depends on tight regulation and precision targeting of substrates. Discussions recognized a pressing need for robust biomarkers that accurately assess the clinical utility of modulating autophagy in disease contexts. Biomarker discovery could flow from investigations of context-dependent triggers, sensors, and adaptors that tailor the autophagy machinery to achieve target specificity. In his keynote address, Dr. Vojo Deretic (University of New Mexico) described the discovery of a cargo receptor family that utilizes peptide motif-based cargo recognition, a mechanism that may be more precise than generic substrate tagging. The keynote by Dr. Alec Kimmelman (Harvard Medical School) emphasized that unbiased screens for novel selective autophagy factors may accelerate the development of autophagy-based therapies. Using a quantitative proteomics screen for de novo identification of autophagosome substrates in pancreatic cancer, Kimmelman's group discovered a new type of selective autophagy that regulates bioavailable iron. Additional presentations revealed novel autophagy regulators and receptors in metabolic diseases, proteinopathies, and cancer, and outlined the development of specific autophagy inhibitors and treatment regimens that combine autophagy modulation with anticancer therapies. VAS 2014 stimulated interdisciplinary discussions focused on the development of biomarkers, drugs, and preclinical models to facilitate clinical translation of key autophagy discoveries.

  20. Defective autophagy leads to the suppression of stem-like features of CD271(+) osteosarcoma cells.

    PubMed

    Zhang, Dong; Zhao, Qing; Sun, Hao; Yin, Lijuan; Wu, Jiajun; Xu, Jun; He, Tianxiang; Yang, Chunlei; Liang, Chengwei

    2016-11-18

    As an important stress-response mechanism, autophagy plays crucial role in the tumor formation and drug resistance of cancer cells including osteosarcoma (OS). OS cancer stem cells (CSCs) also are considered a key factor of tumorigenesis, drug resistance and tumor recurrence. However, the relationship between autophagy and OS CSCs still remains unclear. CD271+ OS CSCs and CD271- OS cells were isolated by magnetic activated cell sorting. The autophagy level was evaluated by the mRNA expression of autophagy genes, the protein level of LC3II and p62, and the mean number of GFP-LC3 dot per cell. Lentivirus-delivered specific shRNA was utilized to inhibit the corresponding gene expression. The cell viability was examined with CCK8 assay. The cell proliferation level was detected with BrdU staining assay. Cell death was determined by Annexin V/PI double staining of fluorescence activated cell sorting, lactate dehydrogenase release and caspase-3 activity. Tumorigenicity ability was evaluated by colony and sphere formation assay, the protein expression of stemness markers and tumor formation in nude mice. Our data indicated that CD271+ OS CSCs had a similar basic autophagy level with CD271- OS cells. Autophagy deficiency had no observable effects on the levels of cell proliferation and death both in CD271+ and CD271- OS cells under normal condition. However, CD271+ OS cells showed a higher autophagy activity than CD271- OS cells under hypoxia and low nutrient (LH) condition. Moreover, autophagy-deficient CD271+ OS cells lost the advantage of tolerance to LH condition compared to CD271- OS cells. Meanwhile, autophagy deficiency enhanced the sensitivity to chemotherapeutics in the CD271+ cells to the comparable level in the CD271- cells. More importantly, deficient-autophagy decreased the protein expression of stemness markers and caused the disappearance of the superiority in tumorigenicity in vitro and vivo in CD271+ OS cells. The results above demonstrated that autophagy

  1. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  2. Autophagy contributes to nighttime energy availability for growth in Arabidopsis.

    PubMed

    Izumi, Masanori; Hidema, Jun; Makino, Amane; Ishida, Hiroyuki

    2013-04-01

    Autophagy is an intracellular process leading to the vacuolar degradation of cytoplasmic components. Autophagic degradation of chloroplasts is particularly activated in leaves under conditions of low sugar availability. Here, we investigated the importance of autophagy in the energy availability and growth of Arabidopsis (Arabidopsis thaliana). autophagy-deficient (atg) mutants showed reduced growth under short-day conditions. This growth inhibition was largely relieved under continuous light or under short-day conditions combined with feeding of exogenous sucrose, suggesting that autophagy is involved in energy production at night for growth. Arabidopsis accumulates starch during the day and degrades it for respiration at night. Nighttime energy availability is perturbed in starchless mutants, in which a lack of starch accumulation causes a transient sugar deficit at night. We generated starchless and atg double mutants and grew them under different photoperiods. The double mutants showed more severe phenotypes than did atg or starchless single mutants: reduced growth and early cell death in leaves were observed when plants were grown under 10-h photoperiods. Transcript analysis of dark-inducible genes revealed that the sugar starvation symptoms observed in starchless mutants became more severe in starchless atg double mutants. The contents of free amino acids (AAs) increased, and transcript levels of several genes involved in AA catabolism were elevated in starchless mutant leaves. The increases in branched-chain AA and aromatic AA contents were partially compromised in starchless atg double mutants. We conclude that autophagy can contribute to energy availability at night by providing a supply of alternative energy sources such as AAs.

  3. Boning up on autophagy

    PubMed Central

    Shapiro, Irving M; Layfield, Robert; Lotz, Martin; Settembre, Carmine; Whitehouse, Caroline

    2014-01-01

    From an evolutionary perspective, the major function of bone is to provide stable sites for muscle attachment and affording protection of vital organs, especially the heart and lungs (ribs) and spinal cord (vertebrae and intervertebral discs). However, bone has a considerable number of other functions: serving as a store for mineral ions, providing a site for blood cell synthesis and participating in a complex system-wide endocrine system. Not surprisingly, bone and cartilage cell homeostasis is tightly controlled, as is the maintenance of tissue structure and mass. While a great deal of new information is accruing concerning skeletal cell homeostasis, one relatively new observation is that the cells of bone (osteoclasts osteoblasts and osteocytes) and cartilage (chondrocytes) exhibit autophagy. The focus of this review is to examine the significance of this process in terms of the functional demands of the skeleton in health and during growth and to provide evidence that dysregulation of the autophagic response is involved in the pathogenesis of diseases of bone (Paget disease of bone) and cartilage (osteoarthritis and the mucopolysaccharidoses). Delineation of molecular changes in the autophagic process is uncovering new approaches for the treatment of diseases that affect the axial and appendicular skeleton. PMID:24225636

  4. Autophagy in infection, inflammation, and immunity

    PubMed Central

    Saitoh, Tatsuya; Akira, Shizuo

    2017-01-01

    Preface Autophagy is a fundamental cell biological pathway affecting immunity. Whereas autophagy is an antimicrobial effector of conventional pattern recognition receptors (PRRs), autophagic adaptors termed SLRs represent a new subset of PRRs and provide the mechanistic basis for autophagic elimination of intracellular microbes. Autophagy controls inflammation via regulatory interactions with innate immunity signalling, by removing endogenous inflammasome agonists, and thorough effects on secretion of immune mediators. Autophagy contributes to antigen presentation, T cell homeostasis, and affects T cell repertories and polarization including Th17 inflammation. Here, we review the above relationships organized into four principal roles of autophagy in infection, inflammation, and immunity. PMID:24064518

  5. Untangling Autophagy Measurements: All Fluxed Up

    PubMed Central

    Gottlieb, Roberta A.; Andres, Allen M.; Sin, Jon; Taylor, David

    2015-01-01

    Autophagy is an important physiological process in the heart, and alterations in autophagic activity can exacerbate or mitigate injury during various pathological processes. Methods to assess autophagy have changed rapidly as the field of research has expanded. As with any new field, methods and standards for data analysis and interpretation evolve as investigators acquire experience and insight. The purpose of this review is to summarize current methods to measure autophagy, selective mitochondrial autophagy (mitophagy), and autophagic flux. We will examine several published studies where confusion arose in in data interpretation, in o