Science.gov

Sample records for autophagy genes protect

  1. Network analysis reveals crosstalk between autophagy genes and disease genes

    PubMed Central

    Wang, Ji-Ye; Yao, Wei-Xuan; Wang, Yun; Fan, Yi-lei; Wu, Jian-Bing

    2017-01-01

    Autophagy is a protective and life-sustaining process in which cytoplasmic components are packaged into double-membrane vesicles and targeted to lysosomes for degradation. Accumulating evidence supports that autophagy is associated with several pathological conditions. However, research on the functional cross-links between autophagy and disease genes remains in its early stages. In this study, we constructed a disease-autophagy network (DAN) by integrating known disease genes, known autophagy genes and protein-protein interactions (PPI). Dissecting the topological properties of the DAN suggested that nodes that both autophagy and disease genes (inter-genes), are topologically important in the DAN structure. Next, a core network from the DAN was extracted to analyze the functional links between disease and autophagy genes. The genes in the core network were significantly enriched in multiple disease-related pathways, suggesting that autophagy genes may function in various disease processes. Of 17 disease classes, 11 significantly overlapped with autophagy genes, including cancer diseases, metabolic diseases and hematological diseases, a finding that is supported by the literatures. We also found that autophagy genes have a bridging role in the connections between pairs of disease classes. Altogether, our study provides a better understanding of the molecular mechanisms underlying human diseases and the autophagy process. PMID:28295050

  2. Role of autophagy and autophagy genes in inflammatory bowel disease.

    PubMed

    Cadwell, Ken; Stappenbeck, Thaddeus S; Virgin, Herbert W

    2009-01-01

    Polymorphisms associated with two genes in the autophagy pathway, ATG16L1 and IRGM1, have been implicated in susceptibility to Crohn's disease, an idiopathic inflammatory disease typically involving the gastrointestinal tract. The intestinal mucosa is a site of careful immune regulation where the epithelium and immune cells encounter pathogens as well as a robust and diverse population of indigenous microbes that are predominately bacteria. Since the role of autophagy in immunity is broad and expanding, it is unclear which downstream functions of autophagy and which cell types are the key factors in Crohn's disease susceptibility. This chapter reviews the recent literature on the roles of ATG16L1 and IRGM1 in the autophagy pathway, inflammation, antimicrobial immunity, and the biology of the intestine, and discusses how these genes may contribute to Crohn's disease pathogenesis.

  3. Autophagy

    PubMed Central

    Hale, Amber N.; Ledbetter, Dan J.; Gawriluk, Thomas R.; Rucker, III, Edmund B.

    2013-01-01

    Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models. PMID:24121596

  4. Autophagy Activation Protects from Mitochondrial Dysfunction in Human Chondrocytes

    PubMed Central

    de Figueroa, Paloma López; Lotz, Martin; Blanco, Francisco J.; Caramés, Beatriz

    2015-01-01

    Objective Autophagy, is a key pathway of cellular homeostasis for removing damaged macromolecules and organelles, including mitochondria. Recent studies indicate that autophagy activation is defective in aging and osteoarthritis (OA), contributing to the cell death and tissue damage. In addition, there is increasing evidence that mitochondrial dysfunction plays an important role in OA pathogenesis. The objective of this study is to determine whether activation of autophagy protects from mitochondrial dysfunction in human chondrocytes. Methods Human chondrocytes were treated with Oligomycin, an inhibitor of mitochondrial respiratory chain (MRC) complex V. Autophagy activation was analyzed by determination of LC3-II, a marker for autophagosome formation. To investigate whether autophagy protects from mitochondrial dysfunction, autophagy was induced by mammalian target of rapamycin complex 1 (mTORC1) selective inhibitor Rapamycin and the dual mTORC1 and mTORC2 inhibitor Torin 1. SiAtg5 was employed to evaluate the role of autophagy in mitochondrial dysfunction. Results Mitochondrial dysfunction was induced by treatment with Oligomycin, which significantly decreased mitochondrial membrane potential (Δψm). This was associated with increased ROS production and cell death. Autophagy activation, reflected by LC3-II, was decreased in a time dependent manner. To evaluate whether autophagy regulates mitochondrial function, chondrocytes were pre-treated with Rapamycin and Torin 1 before Oligomycin. Autophagy activation significantly protected against mitochondrial dysfunction. Conversely, genetic inhibition of autophagy induced significant mitochondrial function defects. Conclusion Our data highlight the role of autophagy as a critical protective mechanism against mitochondrial dysfunction. Pharmacological interventions that enhance autophagy may have chondroprotective activity in cartilage degenerative processes such as OA. PMID:25605458

  5. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway.

    PubMed

    Tang, Yulong; Li, Jianjun; Li, Fengna; Hu, Chien-An A; Liao, Peng; Tan, Kunrong; Tan, Bie; Xiong, Xia; Liu, Gang; Li, Tiejun; Yin, Yulong

    2015-12-01

    Autophagy is an intracellular process of homeostatic degradation that promotes cell survival under various stressors. Deoxynivalenol (DON), a fungal toxin, often causes diarrhea and disturbs the homeostasis of the intestinal system. To investigate the function of intestinal autophagy in response to DON and associated mechanisms, we firstly knocked out ATG5 (autophagy-related gene 5) in porcine intestinal epithelial cells (IPEC-J2) using CRISPR-Cas9 technology. When treated with DON, autophagy was induced in IPEC-J2 cells but not in IPEC-J2.Atg5ko cells. The deficiency in autophagy increased DON-induced apoptosis in IPEC-J2.atg5ko cells, in part, through the generation of reactive oxygen species (ROS). The cellular stress response can be restored in IPEC-J2.atg5ko cells by overexpressing proteins involved in protein folding. Interestingly, we found that autophagy deficiency downregulated the expression of endoplasmic reticulum folding proteins BiP and PDI when IPEC-J2.atg5ko cells were treated with DON. In addition, we investigated the molecular mechanism of autophagy involved in the IKK, AMPK, and mTOR signaling pathway and found that Bay-117082 and Compound C, specific inhibitors for IKK and AMPK, respectively, inhibited the induction of autophagy. Taken together, our results suggest that autophagy is pivotal for protection against DON in pig intestinal cells.

  6. Protective autophagy is involved in resistance towards MET inhibitors in human gastric adenocarcinoma cells.

    PubMed

    Humbert, Magali; Medová, Michaela; Aebersold, Daniel M; Blaukat, Andree; Bladt, Friedhelm; Fey, Martin F; Zimmer, Yitzhak; Tschan, Mario P

    2013-02-08

    MET, also known as hepatocyte growth factor receptor (HGFR), is a receptor tyrosine kinase with an important role, both in normal cellular function as well as in oncogenesis. In many cancer types, abnormal activation of MET is related to poor prognosis and various strategies to inhibit its function, including small molecule inhibitors, are currently in preclinical and clinical evaluation. Autophagy, a self-digesting recycling mechanism with cytoprotective functions, is induced by cellular stress. This process is also induced upon cytotoxic drug treatment of cancer cells and partially allows these cells to escape cell death. Thus, since autophagy protects different tumor cells from chemotherapy-induced cell death, current clinical trials aim at combining autophagy inhibitors with different cancer treatments. We found that in a gastric adenocarcinoma cell line GTL-16, where MET activity is deregulated due to receptor overexpression, two different MET inhibitors PHA665752 and EMD1214063 lead to cell death paralleled by the induction of autophagy. A combined treatment of MET inhibitors together with the autophagy inhibitor 3-MA or genetically impairing autophagy by knocking down the key autophagy gene ATG7 further decreased cell viability of gastric cancer cells. In general, we observed the induction of cytoprotective autophagy in MET expressing cells upon MET inhibition and a combination of MET and autophagy inhibition resulted in significantly decreased cell viability in gastric cancer cells.

  7. Overexpression of Annexin II Receptor-Induced Autophagy Protects Against Apoptosis in Uveal Melanoma Cells.

    PubMed

    Zhang, Yuelu; Song, Hongyuan; Guo, Ting; Zhu, Yongzhe; Tang, Hailin; Qi, Zhongtian; Zhao, Ping; Zhao, Shihong

    2016-05-01

    Uveal melanoma is the most common primary malignant intraocular tumor in adults and still lacks effective systemic therapies. Annexin A2 receptor (AXIIR), a receptor for Annexin II, was demonstrated to play an important role in multiple cells, but its role in uveal melanoma cells remains exclusive. Herein, the authors reported that overexpression of AXIIR was able to reduce cell viability and activate apoptosis apparently in the Mum2C uveal melanoma cell line. Meanwhile, overexpression of AXIIR could induce autophagy and increase autophagy flux. After autophagy was inhibited by chloroquine, enhanced apoptosis and cytotoxicity could be detected. In summary, these data highlighted the crucial role of AXIIR in reducing Mum2C cell viability through inducing apoptosis, while autophagy played a protective role in this process. Interference of this gene may be a promising method for uveal melanoma therapy and combination with specific inhibitor of autophagy may serve as a supplementary.

  8. Viruses, autophagy genes, and Crohn's disease.

    PubMed

    Hubbard, Vanessa M; Cadwell, Ken

    2011-07-01

    The etiology of the intestinal disease Crohn's disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn's disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders.

  9. Autophagy protects end plate chondrocytes from intermittent cyclic mechanical tension induced calcification.

    PubMed

    Xu, Hong-guang; Yu, Yun-fei; Zheng, Quan; Zhang, Wei; Wang, Chuang-dong; Zhao, Xiao-yn; Tong, Wen-xue; Wang, Hong; Liu, Ping; Zhang, Xiao-ling

    2014-09-01

    Calcification of end plate chondrocytes is a major cause of intervertebral disc (IVD) degeneration. However, the underlying molecular mechanism of end plate chondrocyte calcification is still unclear. The aim of this study was to clarify whether autophagy in end plate chondrocytes could protect the calcification of end plate chondrocytes. Previous studies showed that intermittent cyclic mechanical tension (ICMT) contributes to the calcification of end plate chondrocytes in vitro. While autophagy serves as a cell survival mechanism, the relationship of autophagy and induced end plate chondrocyte calcification by mechanical tension in vitro is unknown. Thus, we investigated autophagy, the expression of the autophagy genes, Beclin-1 and LC3, and rat end plate chondrocyte calcification by ICMT. The viability of end plate chondrocytes was examined using the LIVE/DEAD viability/cytotoxicity kit. The reverse transcription-polymerase chain reaction and western blotting were used to detect the expression of Beclin-1; LC3; type I, II and X collagen; aggrecan; and Sox-9 genes. Immunofluorescent and fluorescent microscopy showed decreased autophagy in the 10- and 20-day groups loaded with ICMT. Additionally, Alizarin red and alkaline phosphatase staining detected the palpable calcification of end plate chondrocytes after ICMT treatment. We found that increased autophagy induced by short-term ICMT treatment was accompanied by an insignificant calcification of end plate chondrocytes. To the contrary, the suppressive autophagy inhibited by long-term ICMT was accompanied by a more significant calcification. The process of calcification induced by ICMT was partially resisted by increased autophagy activity induced by rapamycin, implicating that autophagy may prevent end plate chondrocyte calcification. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Dichloroacetate induces protective autophagy in esophageal squamous carcinoma cells.

    PubMed

    Jia, Hong-Yu; Wang, He-Nan; Xia, Feng-Yu; Sun, Yan; Liu, Hong-Li; Yan, Li-Li; Li, Shan-Shan; Jiang, Dong-Chun; Xu, Mei-Mei

    2017-09-01

    Dichloroacetate (DCA) is an inhibitor of pyruvate dehydrogenase kinase, which promotes the flux of carbohydrates into mitochondria and enhances the aerobic oxidation of glucose. DCA has previously been demonstrated to exhibit antitumor properties. The present study revealed that treatment with DCA induced increased levels of autophagy-associated proteins in esophageal squamous carcinoma cells while minimally affecting apoptosis. The present study examined the localization of light chain (LC)-3 by adenovirus infection with a green fluorescent protein (FP)-red FP-LC3 reporter construction and confirmed that DCA treatment induced significant autophagy. Furthermore, the inhibition of DCA-induced autophagy facilitated cell apoptosis and improved the drug sensitivity of esophageal squamous carcinoma cells to DCA and 5-FU (5-fluorouracil). The proliferation of TE-1 cells was markedly inhibited at low concentrations of DCA and 5-FU treatment when subjected to Atg5 mRNA interference, indicating that autophagy performed a protective role in cell survival upon DCA treatment. To determine the underlying mechanism of DCA-induced autophagy, the present study measured alterations in autophagy-associated signaling pathways. Notably, the protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) signaling pathway, an important negative regulator of autophagy, was demonstrated to be suppressed by DCA treatment. These results may direct the development of novel strategies for the treatment of esophageal squamous carcinoma based on the combined use of DCA and autophagy inhibitors.

  11. Autophagy protects renal tubular cells against cyclosporine toxicity.

    PubMed

    Pallet, Nicolas; Bouvier, Nicolas; Legendre, Christophe; Gilleron, Jerome; Codogno, Patrice; Beaune, Philippe; Thervet, Eric; Anglicheau, Dany

    2008-08-01

    A major side effect of the powerful immunosuppressive drug cyclosporine (CsA) is the development of a chronic nephrotoxicity whose mechanisms are not fully understood. Recent data suggest that tubular cells play a central role in the pathogenesis of chronic nephropathies. We have shown that CsA is responsible for endoplasmic reticulum (ER) stress in tubular cells. Autophagy has recently been described to be induced by ER stress and to alleviate its deleterious effects. In this study, we demonstrate that CsA induces autophagy in primary cultured human renal tubular cells through LC3II expression and autophagosomes visualization by electron microscopy. Autophagy is dependant on ER stress because various ER stress inducers activate autophagy, and salubrinal, an inhibitor of eIF2alpha dephosphorylation that protects cells against ER stress, inhibited LC3II expression. Furthermore, autophagy inhibition during CsA treatment with beclin1 siRNA significantly increases tubular cell death. Finally, immunohistochemical analysis of rat kidneys demonstrates a positive LC3 staining on injured tubular cells, suggesting that CsA induces autophagy in vivo. Taken together, these results demonstrate that CsA, through ER stress induction, activates autophagy as a protection against cell death.

  12. Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity.

    PubMed

    Pizarro, Marcela; Troncoso, Rodrigo; Martínez, Gonzalo J; Chiong, Mario; Castro, Pablo F; Lavandero, Sergio

    2016-08-31

    Doxorubicin (Doxo) is one of the most effective anti-neoplastic agents but its cardiotoxicity has been an important clinical limitation. The major mechanism of Doxo-induced cardiotoxicity is associated to its oxidative capacity. However, other processes are also involved with significant consequences for the cardiomyocyte. In recent years, a number of studies have investigated the role of autophagy on Doxo-induced cardiotoxicity but to date it is not clear how Doxo alters that process and its consequence on cardiomyocytes viability. Here we investigated the effect of Doxo 1uM for 24h of stimulation on cultured neonatal rat cardiomyocytes. We showed that Doxo inhibits basal autophagy. This inhibition is due to both Akt/mTOR signaling pathway activation and Beclin 1 level decrease. To assess the role of autophagy on Doxo-induced cardiomyocyte death, we evaluated the effects 3-methyladenine (3-MA), bafilomycin A1 (BafA), siRNA Beclin 1 (siBeclin 1) and rapamycin (Rapa) on cell viability. Inhibition of autophagy with 3-MA, BafA and siBeclin 1 increased lactate dehydrogenase (LDH) release but, when autophagy was induced by Rapa, Doxo-induced cardiomyocyte death was decreased. These results suggest that Doxo inhibits basal autophagy and contributes to cardiomyocyte death. Activation of autophagy could be used as a strategy to protect the heart against Doxo toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress.

    PubMed

    Kimura, Tomonori; Takahashi, Atsushi; Takabatake, Yoshitsugu; Namba, Tomoko; Yamamoto, Takeshi; Kaimori, Jun-Ya; Matsui, Isao; Kitamura, Harumi; Niimura, Fumio; Matsusaka, Taiji; Soga, Tomoyoshi; Rakugi, Hiromi; Isaka, Yoshitaka

    2013-11-01

    Chronic metabolic stress is related to diseases, whereas autophagy supplies nutrients by recycling the degradative products. Cyclosporin A (CsA), a frequently used immunosuppressant, induces metabolic stress via effects on mitochondrial respiration, and thereby, its chronic usage is often limited. Here we show that autophagy plays a protective role against CsA-induced metabolic stress in kidney proximal tubule epithelial cells. Autophagy deficiency leads to decreased mitochondrial membrane potential, which coincides with metabolic abnormalities as characterized by decreased levels of amino acids, increased tricarboxylic acid (TCA) ratio (the levels of intermediates of the latter part of the TCA cycle, over levels of intermediates in the earlier part), and decreased products of oxidative phosphorylation (ATP). In addition to the altered profile of amino acids, CsA decreased the hyperpolarization of mitochondria with the disturbance of mitochondrial energy metabolism in autophagy-competent cells, i.e., increased TCA ratio and worsening of the NAD(+)/NADH ratio, coupled with decreased energy status, which suggests that adaptation to CsA employs autophagy to supply electron donors from amino acids via intermediates of the latter part of the TCA cycle. The TCA ratio of autophagy-deficient cells was further worsened with decreased levels of amino acids in response to CsA, and, as a result, the deficiency of autophagy failed to adapt to the CsA-induced metabolic stress. Deterioration of the TCA ratio further worsened energy status. The CsA-induced metabolic stress also activated regulatory genes of metabolism and apoptotic signals, whose expressions were accelerated in autophagy-deficient cells. These data provide new perspectives on autophagy in conditions of chronic metabolic stress in disease.

  14. Crosstalk of clock gene expression and autophagy in aging

    PubMed Central

    Kalfalah, Faiza; Janke, Linda; Schiavi, Alfonso; Tigges, Julia; Ix, Alexander; Ventura, Natascia; Boege, Fritz; Reinke, Hans

    2016-01-01

    Autophagy and the circadian clock counteract tissue degeneration and support longevity in many organisms. Accumulating evidence indicates that aging compromises both the circadian clock and autophagy but the mechanisms involved are unknown. Here we show that the expression levels of transcriptional repressor components of the circadian oscillator, most prominently the human Period homologue PER2, are strongly reduced in primary dermal fibroblasts from aged humans, while raising the expression of PER2 in the same cells partially restores diminished autophagy levels. The link between clock gene expression and autophagy is corroborated by the finding that the circadian clock drives cell-autonomous, rhythmic autophagy levels in immortalized murine fibroblasts, and that siRNA-mediated downregulation of PER2 decreases autophagy levels while leaving core clock oscillations intact. Moreover, the Period homologue lin-42 regulates autophagy and life span in the nematode Caenorhabditis elegans, suggesting an evolutionarily conserved role for Period proteins in autophagy control and aging. Taken together, this study identifies circadian clock proteins as set-point regulators of autophagy and puts forward a model, in which age-related changes of clock gene expression promote declining autophagy levels. PMID:27574892

  15. Identification of autophagy genes in Ciona intestinalis: a new experimental model to study autophagy mechanism.

    PubMed

    Godefroy, Nelly; Hoa, Céline; Tsokanos, Foivos; Le Goff, Emilie; Douzery, Emmanuel J P; Baghdiguian, Stephen; Martinand-Mari, Camille

    2009-08-01

    Programmed cell death (PCD) is a mechanism implicated in many physiological and pathological processes. Until recently, apoptosis (self-killing) was the most largely studied mechanism of PCD but a growing number of laboratories are now interested in autophagy (self-eating). In the past few years data showing a tight link between both pathways has accumulated. Until now our laboratory used Ciona intestinalis, a chordate model in which in vivo experiments are possible, to study apoptosis. Recently, we showed that autophagy also occurs in the development of Ciona intestinalis and that the specific markers of both types of death are found in the same tissues and/or in the same cells. These results drove us to postulate that Ciona intestinalis can be a good model to study the link between apoptosis and autophagy. In this article, we conducted an in silico study of autophagy genes. We explored the genomes of Ciona intestinalis, of the second ascidian Ciona savignyi, and those of the classical biological models (Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and Homo sapiens) to extract and compare autophagy gene sequences. This genomic study was completed by an analysis of: (i) mRNA profile expression during development and (ii) the localization of Beclin protein by immunofluorescent staining in the Ciona intestinalis larvae. Taken together, the results allowed us to conclude that a complex autophagic machinery is present in Ciona intestinalis. Actually, the number of autophagy genes in Ciona intestinalis is comparable to the number of autophagy genes in human.

  16. Autophagy-related genes in Helicobacter pylori infection.

    PubMed

    Tanaka, Shingo; Nagashima, Hiroyuki; Uotani, Takahiro; Graham, David Y; Yamaoka, Yoshio

    2017-06-01

    In vitro studies have shown that Helicobacter pylori (H. pylori) infection induces autophagy in gastric epithelial cells. However, prolonged exposure to H. pylori reduces autophagy by preventing maturation of the autolysosome. The alterations of the autophagy-related genes in H. pylori infection are not yet fully understood. We analyzed autophagy-related gene expression in H. pylori-infected gastric mucosa compared with uninfected gastric mucosa obtained from 136 Bhutanese volunteers with mild dyspeptic symptoms. We also studied single nucleotide polymorphisms (SNPs) of autophagy-related gene in 283 Bhutanese participants to identify the influence on susceptibility to H. pylori infection. Microarray analysis of 226 autophagy-related genes showed that 16 genes were upregulated (7%) and nine were downregulated (4%). We used quantitative reverse transcriptase polymerase chain reaction to measure mRNA levels of the downregulated genes (ATG16L1, ATG5, ATG4D, and ATG9A) that were core molecules of autophagy. ATG16L1 and ATG5 mRNA levels in H. pylori-positive specimens (n=86) were significantly less than those in H. pylori-negative specimens (n=50). ATG16L1 mRNA levels were inversely related to H. pylori density. We also compared SNPs of ATG16L1 (rs2241880) among 206 H. pylori-positive and 77 H. pylori-negative subjects. The odds ratio for the presence of H. pylori in the GG genotype was 0.40 (95% CI: 0.18-0.91) relative to the AA/AG genotypes. Autophagy-related gene expression profiling using high-throughput microarray analysis indicated that downregulation of core autophagy machinery genes may depress autophagy functions and possibly provide a better intracellular habit for H. pylori in gastric epithelial cells. © 2017 John Wiley & Sons Ltd.

  17. Salvianolic acid B inhibits autophagy and protects starving cardiac myocytes

    PubMed Central

    Han, Xiao; Liu, Jian-xun; Li, Xin-zhi

    2011-01-01

    Aim: To investigate the protective or lethal role of autophagy and the effects of Salvianolic acid B (Sal B) on autophagy in starving myocytes. Methods: Cardiac myocytes were incubated under starvation conditions (GD) for 0, 1, 2, 3, and 6 h. Autophagic flux in starving cells was measured via chloroquine (3 μmol/L). After myocytes were treated with Sal B (50 μmol/L) in the presence or absence of chloroquine (3 μmol/L) under GD 3 h, the amount of LC3-II, the abundance of LC3-positive fluorescent dots in cells, cell viability and cellular ATP levels were determined using immunoblotting, immunofluorescence microscopy, MTT assay and luminometer, respectively. Moreover, electron microscopy (EM) and immunofluorescent duel labeling of LC3 and Caspase-8 were used to examine the characteristics of autophagy and apoptosis. Results: Immunoblot analysis showed that the amount of LC3-II in starving cells increased in a time-dependent manner accompanied by increased LC3-positive fluorescence and decreased cell viability and ATP content. Sal B (50 μmol/L) inhibited the increase in LC3-II, reduced the abundance of LC3 immunofluorescence and intensity of Caspase-8 fluorescence, and enhanced cellular viability and ATP levels in myocytes under GD 3 h, regardless of whether chloroquine was present. Conclusion: Autophagy induced by starvation for 3 h led to cell injury. Sal B protected starving cells by blocking the early stage of autophagic flux and inhibiting apoptosis that occurred during autophagy. PMID:21113177

  18. Resveratrol protects podocytes against apoptosis via stimulation of autophagy in a mouse model of diabetic nephropathy

    PubMed Central

    Huang, Shan-Shan; Ding, Da-Fa; Chen, Sheng; Dong, Cheng-Long; Ye, Xiao-Long; Yuan, Yang-Gang; Feng, Ya-Min; You, Na; Xu, Jia-Rong; Miao, Heng; You, Qiang; Lu, Xiang; Lu, Yi-Bing

    2017-01-01

    Podocyte apoptosis coincides with albuminuria onset and precedes podocytopenia in diabetic nephropathy. However, there is a lack of effective therapeutic drugs to protect podocytes from apoptosis. Here, we demonstrated that resveratrol relieved a series of indicators of diabetic nephropathy and attenuated apoptosis of podocytes in db/db diabetic model mice. In addition, resveratrol induced autophagy in both db/db mice and human podocytes. Furthermore, inhibition of autophagy by 3-methyladenine (3-MA) and autophagy gene 5 (Atg5) short hairpin RNA (shRNA) reversed the protective effects of resveratrol on podocytes. Finally, we found that resveratrol might regulate autophagy and apoptosis in db/db mice and podocytes through the suppression of microRNA-383-5p (miR-383-5p). Together, our results indicate that resveratrol effectively attenuates high glucose-induced apoptosis via the activation of autophagy in db/db mice and podocytes, which involves miR-383-5p. Thus, this study reveals a new possible strategy to treat diabetic nephropathy. PMID:28374806

  19. Potential protective effects of autophagy activated in MPP+ treated astrocytes

    PubMed Central

    Shen, Cunzhou; Xian, Wenbiao; Zhou, Hongyan; Chen, Ling; Pei, Zhong

    2016-01-01

    Astrocytes, which have various important functions, have previously been associated with Parkinsons disease (PD), particularly in 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) models of PD. MPP+ is the toxic metabolite of MPTP and is generated by the enzymatic activity of monoamine oxidase B, which is predominantly located in astrocytes. MPP+ acts as a mitochondrial complex I inhibitor. Autophagy is an evolutionarily conserved self-digestion pathway in eukaryotic cells, which occurs in response to various types of stress, including starvation and oxidative stress. Lithium treatment has previously been shown to induce autophagy in astrocytes by inhibiting the enzyme inositol monophosphatase, which may aid in the treatment of neurodegenerative diseases, including Huntington's disease, in which the toxic protein is an autophagy substrate. Therefore, using western blotting and MTT assay, the present study aimed to investigate the protective effects of lithium-induced autophagy against astrocyte injury caused by MPP+ treatment, as well as the potential underlying mechanisms. The results of the present study suggested that lithium was able to induce autophagy in astrocytes treated with MPP+, and this likely occurred via activation of the phosphoinositide 3-kinase/AKT pathway. PMID:27882077

  20. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress

    PubMed Central

    Suzuki, Maiko; Bartlett, John D.

    2014-01-01

    Sirtuin1 (SIRT1) is an (NAD+)-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum stress and oxidative stress. Previously, we reported that fluoride induces endoplasmic reticulum (ER) stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augmented SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50 and 100 ppm) in drinking water for 6 weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis. PMID:24296261

  1. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress.

    PubMed

    Suzuki, Maiko; Bartlett, John D

    2014-02-01

    Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum (ER) stress and oxidative stress. Previously, we reported that fluoride induces ER-stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augment SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50, 100 and 125ppm) in drinking water for 6weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis.

  2. Tert-butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation

    PubMed Central

    Li, Songtao; Li, Jiaxin; Shen, Chen; Zhang, Ximei; Sun, Shan; Cho, Michael; Sun, Changhao; Song, Zhenyuan

    2013-01-01

    Saturated fatty acids (SFAs) induce hepatocyte cell death, wherein oxidative stress is mechanistically involved. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master transcriptional regulator of cellular antioxidant defense enzymes. Therefore, Nrf2 activation is regarded as an effective strategy against oxidative stress-triggered cellular damage. In this study, tert-butylhydroquinone (tBHQ), a widely used Nrf2 activator, was initially employed to investigate the potential protective role of Nrf2 activation in SFAs-induced hepatoxicity. As expected, SFAs-induced hepatocyte cell death was prevented by tBHQ in both AML-12 mouse hepatocytes and HepG2 human hepatoma cells. However, the protective effect of tBHQ is Nrf2-independent, because the siRNA-mediated Nrf2 silencing did not abrogate tBHQ-conferred protection. Alternatively, our results revealed that autophagy activation was critically involved in the protective effect of tBHQ on lipotoxicity. tBHQ induced autophagy activation and autophagy inhibitors abolished tBHQ’s protection. The induction of autophagy by tBHQ exposure was demonstrated by the increased accumulation of LC3 puncta, LC3-II conversion, and autophagic flux (LC3-II conversion in the presence of proteolysis inhibitors). Subsequent mechanistic investigation discovered that tBHQ exposure activated AMP-activated protein kinase (AMPK) and siRNA-mediated AMPK gene silencing abolished tBHQ-induced autophagy activation, indicating that AMPK is critically involved in tBHQ-triggered autophagy induction. Furthermore, our study provided evidence that tBHQ-induced autophagy activation is required for its Nrf2-activating property. Collectively, our data uncover a novel mechanism for tBHQ in protecting hepatocytes against SFAs-induced lipotoxicity. tBHQ-triggered autophagy induction contributes not only to its hepatoprotective effect, but also to its Nrf2-activating property. PMID:24055888

  3. tert-Butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation.

    PubMed

    Li, Songtao; Li, Jiaxin; Shen, Chen; Zhang, Ximei; Sun, Shan; Cho, Michael; Sun, Changhao; Song, Zhenyuan

    2014-01-01

    Saturated fatty acids (SFAs) induce hepatocyte cell death, wherein oxidative stress is mechanistically involved. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master transcriptional regulator of cellular antioxidant defense enzymes. Therefore, Nrf2 activation is regarded as an effective strategy against oxidative stress-triggered cellular damage. In this study, tert-butylhydroquinone (tBHQ), a widely used Nrf2 activator, was initially employed to investigate the potential protective role of Nrf2 activation in SFA-induced hepatoxicity. As expected, SFA-induced hepatocyte cell death was prevented by tBHQ in both AML-12 mouse hepatocytes and HepG2 human hepatoma cells. However, the protective effect of tBHQ is Nrf2-independent, because the siRNA-mediated Nrf2 silencing did not abrogate tBHQ-conferred protection. Alternatively, our results revealed that autophagy activation was critically involved in the protective effect of tBHQ on lipotoxicity. tBHQ induced autophagy activation and autophagy inhibitors abolished tBHQ's protection. The induction of autophagy by tBHQ exposure was demonstrated by the increased accumulation of LC3 puncta, LC3-II conversion, and autophagic flux (LC3-II conversion in the presence of proteolysis inhibitors). Subsequent mechanistic investigation discovered that tBHQ exposure activated AMP-activated protein kinase (AMPK) and siRNA-mediated AMPK gene silencing abolished tBHQ-induced autophagy activation, indicating that AMPK is critically involved in tBHQ-triggered autophagy induction. Furthermore, our study provided evidence that tBHQ-induced autophagy activation is required for its Nrf2-activating property. Collectively, our data uncover a novel mechanism for tBHQ in protecting hepatocytes against SFA-induced lipotoxicity. tBHQ-triggered autophagy induction contributes not only to its hepatoprotective effect, but also to its Nrf2-activating property. © 2013.

  4. Analysis of Autophagy Genes in Microalgae: Chlorella as a Potential Model to Study Mechanism of Autophagy

    PubMed Central

    Jiang, Qiao; Zhao, Li; Dai, Junbiao; Wu, Qingyu

    2012-01-01

    Background Microalgae, with the ability to mitigate CO2 emission and produce carbohydrates and lipids, are considered one of the most promising resources for producing bioenergy. Recently, we discovered that autophagy plays a critical role in the metabolism of photosynthetic system and lipids production. So far, more than 30-autophagy related (ATG) genes in all subtypes of autophagy have been identified. However, compared with yeast and mammals, in silico and experimental research of autophagy pathways in microalgae remained limited and fragmentary. Principal Findings In this article, we performed a genome-wide analysis of ATG genes in 7 microalgae species and explored their distributions, domain structures and evolution. Eighteen “core autophagy machinery” proteins, four mammalian-specific ATG proteins and more than 30 additional proteins (including “receptor-adaptor” complexes) in all subtypes of autophagy were analyzed. Data revealed that receptor proteins in cytoplasm-to-vacuole targeting and mitophagy seem to be absent in microalgae. However, most of the “core autophagy machinery” and mammalian-specific proteins are conserved among microalgae, except for the ATG9-cycling system in Chlamydomonas reinhardtii and the second ubiquitin-like protein conjugation complex in several algal species. The catalytic and binding residues in ATG3, ATG5, ATG7, ATG8, ATG10 and ATG12 are also conserved and the phylogenetic tree of ATG8 coincides well with the phylogenies. Chlorella contains the entire set of the core autophagy machinery. In addition, RT-PCR analysis verified that all crucial ATG genes tested are expressed during autophagy in both Chlorella and Chlamydomonas reinhardtii. Finally, we discovered that addition of 3-Methyladenine (a PI3K specific inhibitor) could suppress the formation of autophagic vacuoles in Chlorella. Conclusions Taken together, Chlorella may represent a potential model organism to investigate autophagy pathways in photosynthetic

  5. Multifunction of autophagy-related genes in filamentous fungi.

    PubMed

    Khan, Irshad Ali; Lu, Jian-Ping; Liu, Xiao-Hong; Rehman, Abdur; Lin, Fu-Cheng

    2012-06-20

    Autophagy (macroautophagy), a highly conserved eukaryotic mechanism, is a non-selective degradation process, helping to maintain a balance between the synthesis, degradation and subsequent recycling of macromolecules to overcome various stress conditions. The term autophagy denotes any cellular process which involves the delivery of cytoplasmic material to the lysosome for degradation. Autophagy, in filamentous fungi plays a critical role during cellular development and pathogenicity. Autophagy, like the mitogen-activated protein (MAP) kinase cascade and nutrient-sensing cyclic AMP (cAMP) pathway, is also an important process for appressorium turgor accumulation in order to penetrate the leaf surface of host plant and destroy the plant defense. Yeast, an autophagy model, has been used to compare the multi-valued functions of ATG (autophagy-related genes) in different filamentous fungi. The autophagy machinery in both yeast and filamentous fungi is controlled by Tor kinase and both contain two distinct phosphatidylinositol 3-kinase complexes. In this review, we focus on the functions of ATG genes during pathogenic development in filamentous fungi. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. MiR224-3p inhibits hypoxia-induced autophagy by targeting autophagy-related genes in human glioblastoma cells

    PubMed Central

    Guo, Xing; Xue, Hao; Guo, Xiaofan; Gao, Xiao; Xu, Shugang; Yan, Shaofeng; Han, Xiao; Li, Tong; Shen, Jie; Li, Gang

    2015-01-01

    Human glioblastoma multiforme (GBM) is a malignant solid tumor characterized by severe hypoxia. Autophagy plays a protective role in cancer cells under hypoxia. However, the microRNA (miRNA)-related molecular mechanisms underlying hypoxia-reduced autophagy remain poorly understood in GBM. In this study, we performed a miRNA microarray analysis on GBM cells and found that numerous miRNAs were differentially expressed under hypoxic conditions. Further research showed that miR224-3p, one of the significantly down-regulated miRNAs, was involved in regulating hypoxia-induced autophagy in GBM cells. Overexpression of miR224-3p abolished hypoxia-induced autophagy, whereas knocking down endogenous miR224-3p increased autophagic activity under normoxia. In addition, we demonstrated that miR224-3p inhibited autophagy by directly suppressing the expression of two autophagy-related genes (ATGs), ATG5 and FAK family-interacting protein of 200 kDa (FIP200). Furthermore, in vitro, miR224-3p attenuated cell proliferation and promoted hypoxia-induced apoptosis, and in vivo, overexpression of miR224-3p inhibited tumorigenesis of GBM cells. Collectively, our study identified a novel hypoxia-down-regulated miRNA, miR224-3p, as a key modulator of autophagy by inhibiting ATGs in GBM cells. PMID:26536662

  7. Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus.

    PubMed

    Tsuboi, Koichiro; Nishitani, Mayo; Takakura, Atsushi; Imai, Yasuyuki; Komatsu, Masaaki; Kawashima, Hiroto

    2015-08-14

    Genome-wide association studies of inflammatory bowel diseases identified susceptible loci containing an autophagy-related gene. However, the role of autophagy in the colon, a major affected area in inflammatory bowel diseases, is not clear. Here, we show that colonic epithelial cell-specific autophagy-related gene 7 (Atg7) conditional knock-out (cKO) mice showed exacerbation of experimental colitis with more abundant bacterial invasion into the colonic epithelium. Quantitative PCR analysis revealed that cKO mice had abnormal microflora with an increase of some genera. Consistently, expression of antimicrobial or antiparasitic peptides such as angiogenin-4, Relmβ, intelectin-1, and intelectin-2 as well as that of their inducer cytokines was significantly reduced in the cKO mice. Furthermore, secretion of colonic mucins that function as a mucosal barrier against bacterial invasion was also significantly diminished in cKO mice. Taken together, our results indicate that autophagy in colonic epithelial cells protects against colitis by the maintenance of normal gut microflora and secretion of mucus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus*

    PubMed Central

    Tsuboi, Koichiro; Nishitani, Mayo; Takakura, Atsushi; Imai, Yasuyuki; Komatsu, Masaaki; Kawashima, Hiroto

    2015-01-01

    Genome-wide association studies of inflammatory bowel diseases identified susceptible loci containing an autophagy-related gene. However, the role of autophagy in the colon, a major affected area in inflammatory bowel diseases, is not clear. Here, we show that colonic epithelial cell-specific autophagy-related gene 7 (Atg7) conditional knock-out (cKO) mice showed exacerbation of experimental colitis with more abundant bacterial invasion into the colonic epithelium. Quantitative PCR analysis revealed that cKO mice had abnormal microflora with an increase of some genera. Consistently, expression of antimicrobial or antiparasitic peptides such as angiogenin-4, Relmβ, intelectin-1, and intelectin-2 as well as that of their inducer cytokines was significantly reduced in the cKO mice. Furthermore, secretion of colonic mucins that function as a mucosal barrier against bacterial invasion was also significantly diminished in cKO mice. Taken together, our results indicate that autophagy in colonic epithelial cells protects against colitis by the maintenance of normal gut microflora and secretion of mucus. PMID:26149685

  9. Autophagy may protect MC3T3-E1 cells from fluoride-induced apoptosis.

    PubMed

    Wei, Min; Duan, Dongmei; Liu, Yujie; Wang, Zhigang; Li, Zhongli

    2014-06-01

    Fluoride is an essential trace element for all mammalian species; however, excess fluoride intake is known to be toxic to cells in animals and humans. The toxicity of fluoride is mainly exerted via induction of apoptosis. Autophagy is induced by numerous cytotoxic stimuli; however, it is often unclear whether, under specific conditions, autophagy has a pro‑survival or a pro‑apoptotic role. To answer this critical question, the present study assessed autophagy and apoptosis simultaneously in single cells. It was demonstrated that fluoride was able to inhibit cell proliferation and induce apoptosis and autophagy, whereas autophagy appeared to be protective. Further analysis revealed that MAPK/JNK‑dependent autophagy may be protective in fluoride‑induced apoptosis. It is anticipated that the presented single‑cell approach may be a powerful tool for gaining a quantitative understanding of the complex regulation of autophagy, its effect on cell fate and its association with other cellular pathways.

  10. Polymorphisms in Autophagy Genes and Susceptibility to Tuberculosis

    PubMed Central

    Alisjahbana, Bachti; Sahiratmadja, Edhyana; Parwati, Ida; Oosting, Marije; Plantinga, Theo S.; Joosten, Leo A. B.; Netea, Mihai G.; Ottenhoff, Tom H. M.; van de Vosse, Esther; van Crevel, Reinout

    2012-01-01

    Recent data suggest that autophagy is important for intracellular killing of Mycobacterium tuberculosis, and polymorphisms in the autophagy gene IRGM have been linked with susceptibility to tuberculosis (TB) among African-Americans, and with TB caused by particular M. tuberculosis genotypes in Ghana. We compared 22 polymorphisms of 14 autophagy genes between 1022 Indonesian TB patients and 952 matched controls, and between patients infected with different M. tuberculosis genotypes, as determined by spoligotyping. The same autophagy polymorphisms were studied in correlation with ex-vivo production of TNF, IL-1β, IL-6, IL-8, IFN-γ and IL-17 in healthy volunteers. No association was found between TB and polymorphisms in the genes ATG10, ATG16L2, ATG2B, ATG5, ATG9B, IRGM, LAMP1, LAMP3, P2RX7, WIPI1, MTOR and ATG4C. Associations were found between polymorphisms in LAMP1 (p = 0.02) and MTOR (p = 0.02) and infection with the successful M. tuberculosis Beijing genotype. The polymorphisms examined were not associated with M. tuberculosis induced cytokines, except for a polymorphism in ATG10, which was linked with IL-8 production (p = 0.04). All associations found lost statistical significance after correction for multiple testing. This first examination of a broad set of polymorphisms in autophagy genes fails to show a clear association with TB, with M. tuberculosis Beijing genotype infection or with ex-vivo pro-inflammatory cytokine production. PMID:22879892

  11. Dihydromyricetin protects against liver ischemia/reperfusion induced apoptosis via activation of FOXO3a-mediated autophagy

    PubMed Central

    Pi, Huifeng; Qin, Weijia; Chen, Jianwei; Guo, Dengfang; Lin, Jianyu; Chi, Xiaobing; Jiang, Zhelong; Yang, Hejun; Jiang, Yi

    2016-01-01

    Liver ischemia and reperfusion (I/R) injury is characterized by defective liver autophagy accompanied by alterations to the endogenous defense system. Dihydromyricetin (DHM) is a natural flavonoid that demonstrates a wide range of physiological functions, and has been implicated as a regulator of autophagy. This study investigates the protective effects of DHM pretreatment on liver injury caused by ischemia/reperfusion (I/R) and elucidates the potential mechanism of DHM-mediated protection. Mice were subjected to 60 minutes of ischemia followed by 5 hours of reperfusion. DHM (100 mg/kg bw/day) or the vehicle was administered daily by gavage 7 days before ischemia and immediately before reperfusion. In this study, DHM markedly decreased serum aminotransferase activity and inhibited liver I/R -stimulated apoptosis. Moreover, DHM exerted hepatoprotective effects by upregulating mRNA levels of various essential autophagy-related genes including ATG5, ATG12, BECN1, and LC3. Autophagy inhibitor chloroquine or Atg5 knockdown blocked DHM -mediated elevation in liver function. Specifically, DHM significantly increased FOXO3a expression, and enhanced FOXO3a nuclear translocation and Ser588 phosphorylation modification. Importantly, the inhibition of FOXO3a with FOXO3a-siRNA in mice decreased DHM-induced autophagy-related genes and diminished the protective effects of DHM against liver I/R injury. In summary, these findings identify DHM as a novel hepatoprotective small molecule by elevating FOXO3a expression and nuclear translocation, stimulating autophagy-related genes and suppressing liver I/R-induced apoptosis, suggesting FOXO3a may have therapeutic value in liver cell protection in liver I/R injury. PMID:27793014

  12. Viruses, Autophagy Genes, and Crohn’s Disease

    PubMed Central

    Hubbard, Vanessa M.; Cadwell, Ken

    2011-01-01

    The etiology of the intestinal disease Crohn’s disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn’s disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders. PMID:21994779

  13. Aging is associated with hypermethylation of autophagy genes in macrophages.

    PubMed

    Khalil, Hany; Tazi, Mia; Caution, Kyle; Ahmed, Amr; Kanneganti, Apurva; Assani, Kaivon; Kopp, Benjamin; Marsh, Clay; Dakhlallah, Duaa; Amer, Amal O

    2016-05-03

    Autophagy is a biological process characterized by self-digestion and involves induction of autophagosome formation, leading to degradation of autophagic cargo. Aging is associated with the reduction of autophagy activity leading to neurodegenerative disorders, chronic inflammation, and susceptibility to infection; however, the underlying mechanism is unclear. DNA methylation by DNA methyltransferases reduces the expression of corresponding genes. Since macrophages are major players in inflammation and defense against infection we determined the differences in methylation of autophagy genes in macrophages derived from young and aged mice. We found that promoter regions of Atg5 and LC3B are hypermethylated in macrophages from aged mice and this is accompanied by low gene expression. Treatment of aged mice and their derived macrophages with methyltransferase inhibitor (2)-epigallocatechin-3-gallate (EGCG) or specific DNA methyltransferase 2 (DNMT2) siRNA restored the expression of Atg5 and LC3 in vivo and in vitro. Our study builds a foundation for the development of novel therapeutics aimed to improve autophagy in the elderly population and suggests a role for DNMT2 in DNA methylation activities.

  14. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    PubMed

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.

  15. Autophagy protects against cholesterol-induced apoptosis in pancreatic β-cells.

    PubMed

    Wu, Jiahua; Kong, Feijuan; Pan, Qianqian; Du, Ying; Ye, Jun; Zheng, Fenping; Li, Hong; Zhou, Jiaqiang

    2017-01-22

    Autophagy is believed to play an important role in maintaining homeostasis in pancreatic β-cells during insulin resistance. This study investigated the role of autophagy in β-cell damage induced by cholesterol and its possible activation mechanism. Rat and mouse pancreatic β-cell lines INS-1 and βTC-6 were incubated with cholesterol alone or in combination with autophagy inhibitors E-64d/Pepstatin A or bafilomycin A1. DAPI staining, western blotting, transmission electron microscopy and immunofluorescence were conducted to assess the effects of autophagy inhibitors on cholesterol-induced apoptosis and autophagy activity. An increase in FITC-LC3 fluorescence dots, autophagic vacuoles and LC3-II protein indicated that autophagy was activated in cells treated with cholesterol. This was further confirmed by blocking the natural turnover processes in lysosomes and autolysosomes with autophagy inhibitors, suggesting enhanced autophagic activity rather than blockage of autophagy. Furthermore, inhibition of autophagy significantly augmented the activation of caspase 3 and the percentage of cholesterol-induced apoptotic nuclei. These results demonstrate that autophagy plays a protective role against cholesterol-induced apoptosis in pancreatic β-cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma

    PubMed Central

    Chen, Ren; Li, Xiaohai; He, Bin; Hu, Wei

    2017-01-01

    Osteosarcoma, which is the most common type of primary bone tumor in adolescents, is characterized by complex genetic alterations and frequent resistance to conventional treatments. MicroRNAs (miRs) have emerged as fundamental regulators in gene expression through their ability to silence gene expression at post-transcriptional and translational levels. The present study investigated the role of miR-410 in the progression of osteosarcoma. The results demonstrated that the expression of miR-410 was markedly downregulated in human osteosarcoma tissues, and U2OS and MG-63 osteosarcoma cell lines. Clinicopathological significance suggested that miR-410 may be a potential biomarker for chemotherapy-resistant osteosarcoma. Furthermore, overexpression of miR-410 exhibited a limited effect on cell viability in U2OS and MG-63 cells. Target prediction algorithms (TargetScan and miRanda) indicated that autophagy related 16-like 1 (ATG16L1) was a potential target gene of miR-410. A luciferase reporter assay demonstrated that miR-410 directly decreased ATG16L1 expression by targeting its 3′-untranslated region. In addition, the results revealed that miR-410 was able to markedly inhibit autophagy. Accordingly, autophagy was activated as a protective mechanism when osteosarcoma cells were exposed to three common anticancer drugs, including rapamycin, doxorubicin and cisplatin. Furthermore, the autophagy inhibitor 3-methyladenine and miR-410 expression were able to improve the therapeutic response of the cells to chemotherapy drugs (rapamycin, doxorubicin and cisplatin), thus indicating that miR-410 enhanced chemosensitivity through autophagy inhibition in osteosarcoma cells. In conclusion, studies regarding the function of miR-410 on autophagy provided insight into the biological function of miR-410 in osteosarcoma and may offer a promising approach for the treatment of osteosarcoma. PMID:28138700

  17. MicroRNA-410 regulates autophagy-related gene ATG16L1 expression and enhances chemosensitivity via autophagy inhibition in osteosarcoma.

    PubMed

    Chen, Ren; Li, Xiaohai; He, Bin; Hu, Wei

    2017-03-01

    Osteosarcoma, which is the most common type of primary bone tumor in adolescents, is characterized by complex genetic alterations and frequent resistance to conventional treatments. MicroRNAs (miRs) have emerged as fundamental regulators in gene expression through their ability to silence gene expression at post-transcriptional and translational levels. The present study investigated the role of miR‑410 in the progression of osteosarcoma. The results demonstrated that the expression of miR‑410 was markedly downregulated in human osteosarcoma tissues, and U2OS and MG‑63 osteosarcoma cell lines. Clinicopathological significance suggested that miR‑410 may be a potential biomarker for chemotherapy‑resistant osteosarcoma. Furthermore, overexpression of miR‑410 exhibited a limited effect on cell viability in U2OS and MG‑63 cells. Target prediction algorithms (TargetScan and miRanda) indicated that autophagy related 16‑like 1 (ATG16L1) was a potential target gene of miR‑410. A luciferase reporter assay demonstrated that miR‑410 directly decreased ATG16L1 expression by targeting its 3'‑untranslated region. In addition, the results revealed that miR‑410 was able to markedly inhibit autophagy. Accordingly, autophagy was activated as a protective mechanism when osteosarcoma cells were exposed to three common anticancer drugs, including rapamycin, doxorubicin and cisplatin. Furthermore, the autophagy inhibitor 3‑methyladenine and miR‑410 expression were able to improve the therapeutic response of the cells to chemotherapy drugs (rapamycin, doxorubicin and cisplatin), thus indicating that miR‑410 enhanced chemosensitivity through autophagy inhibition in osteosarcoma cells. In conclusion, studies regarding the function of miR‑410 on autophagy provided insight into the biological function of miR‑410 in osteosarcoma and may offer a promising approach for the treatment of osteosarcoma.

  18. Autophagy

    PubMed Central

    Lin, Tsung-Chin; Chen, Yun-Ru; Kensicki, Elizabeth; Li, Angela Ying-Jian; Kong, Mei; Li, Yang; Mohney, Robert P.; Shen, Han-Ming; Stiles, Bangyan; Mizushima, Noboru; Lin, Liang-In; Ann, David K.

    2012-01-01

    Autophagy is a catabolic process that functions in recycling and degrading cellular proteins, and is also induced as an adaptive response to the increased metabolic demand upon nutrient starvation. However, the prosurvival role of autophagy in response to metabolic stress due to deprivation of glutamine, the most abundant nutrient for mammalian cells, is not well understood. Here, we demonstrated that when extracellular glutamine was withdrawn, autophagy provided cells with sub-mM concentrations of glutamine, which played a critical role in fostering cell metabolism. Moreover, we uncovered a previously unknown connection between metabolic responses to ATG5 deficiency and glutamine deprivation, and revealed that WT and atg5−/− MEFs utilized both common and distinct metabolic pathways over time during glutamine deprivation. Although the early response of WT MEFs to glutamine deficiency was similar in many respects to the baseline metabolism of atg5−/− MEFs, there was a concomitant decrease in the levels of essential amino acids and branched chain amino acid catabolites in WT MEFs after 6 h of glutamine withdrawal that distinguished them from the atg5−/− MEFs. Metabolomic profiling, oxygen consumption and pathway focused quantitative RT-PCR analyses revealed that autophagy and glutamine utilization were reciprocally regulated to couple metabolic and transcriptional reprogramming. These findings provide key insights into the critical prosurvival role of autophagy in maintaining mitochondrial oxidative phosphorylation and cell growth during metabolic stress caused by glutamine deprivation. PMID:22906967

  19. Elevation of protective autophagy as a potential way for preventing developmental neurotoxicity of general anesthetics.

    PubMed

    Li, Guohui; Yu, Buwei

    2014-02-01

    Numerous animal studies have demonstrated that commonly used general anesthetics could cause cognitive impairment in the developing brain. However, the underlying mechanism remains unclear. Recently it is reported that autophagy activation can ameliorate developmental neurotoxicity of ethanol, which is the same GABAA agonist and NMDA antagonist as general anesthetics. We thus intend to propose the possible role of autophagy in the developmental neurotoxicity of general anesthetics. Oxidative stress and neuronal apoptosis can activate autophagy, while autophagy conversely alleviates their levels in the neuron. Crosstalk among neuronal apoptosis, oxidative stress and autophagy resembles the Yin-Yang relationship in Chinese philosophy. Neuronal apoptosis and oxidative stress represent destroyable Yin, while autophagy symbols protective Yang. The destroyable Yin and protective Yang promote and counteract each other. We hypothesize that the destroyable Yin (neuronal apoptosis and oxidative stress injury) prevails over protective Yang (autophagy) when developing brain exposes to general anesthetics. Elevating protective Yang autophagy potentially reverses the neurotoxicity of general anesthetics. Once this hypothesis is proved, it will provide a new perspective to understand the developmental neurotoxicity of general anesthetics and a new way to prevent it.

  20. Autophagy in Aging and Alzheimer’s Disease: Pathologic or Protective?

    PubMed Central

    Barnett, Aaron; Brewer, Gregory J.

    2013-01-01

    Some hypothesize that aging in humans is a cumulative process of macromolecular and mitochondrial damage starting years, even decades before any symptoms arise. Aging may begin when the rate of damage exceeds the rate of continual repair and turnover. Quality control for damaged mitochondria entails cellular digestion by mitophagy, a specialized kind of autophagy. Insufficient protective autophagy could cause damaged cellular components to accumulate over many years until they affect normal function in the cell. Alternatively, aging could be the result of overactive, pathologic autophagy. Current knowledge supports both hypotheses with conflicting data, depending on which stage of autophagy is examined. To distinguish these opposite hypotheses, two criteria need to be observed. First, is there a buildup of undigested waste that can be removed by stimulation of autophagy? Or second, if autophagy is overactive, does inhibition of autophagy rescue cell, organ and organism demise. Both of these are best determined by rate measures rather than measures at a single time point. Here, we review the generalized process of autophagy, with a focus on the limited information available for neuron mitophagy, aging and Alzheimer’s disease. In two mouse models, treatment with rapamycin abolishes the AD pathology and reverses memory deficits. As a working model, we hypothesize that insufficient protective autophagy accelerates both aging and Alzheimer’s disease pathology, possibly caused by defects in autophagosome fusion with lysosomes. PMID:21422527

  1. Alpha-lipoic acid protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy

    SciTech Connect

    Cao, Xueming; Chen, Aihua Yang, Pingzhen; Song, Xudong; Liu, Yingfeng; Li, Zhiliang; Wang, Xianbao; Wang, Lizi; Li, Yunpeng

    2013-11-29

    Highlights: •We observed the cell viability and death subjected to H/R in H9c2 cardiomyocytes. •We observed the degree of autophagy subjected to H/R in H9c2 cardiomyocytes. •LA inhibited the degree of autophagy in parallel to the enhanced cell survival. •LA inhibited the autophagy in parallel to the decreased total cell death. •We concluded that LA protected cardiomyocytes against H/R by inhibiting autophagy. -- Abstract: Hypoxia/reoxygenation (H/R) is an important in vitro model for exploring the molecular mechanisms and functions of autophagy during myocardial ischemia/reperfusion (I/R). Alpha-lipoic acid (LA) plays an important role in the etiology of cardiovascular disease. Autophagy is widely implicated in myocardial I/R injury. We assessed the degree of autophagy by pretreatment with LA exposed to H/R in H9c2 cell based on the expression levels of Beclin-1, LC3II/LC3I, and green fluorescent protein-labeled LC3 fusion proteins. Autophagic vacuoles were confirmed in H9c2 cells exposed to H/R using transmission electron microscopy. Our findings indicated that pretreatment with LA inhibited the degree of autophagy in parallel to the enhanced cell survival and decreased total cell death in H9c2 cells exposed to H/R. We conclude that LA protects cardiomyocytes against H/R injury by inhibiting autophagy.

  2. mir-30d Regulates multiple genes in the autophagy pathway and impairs autophagy process in human cancer cells

    SciTech Connect

    Yang, Xiaojun; Zhong, Xiaomin; Tanyi, Janos L.; Shen, Jianfeng; Xu, Congjian; Gao, Peng; Zheng, Tim M.; DeMichele, Angela; Zhang, Lin

    2013-02-15

    Highlights: ► Gene set enrichment analysis indicated mir-30d might regulate the autophagy pathway. ► mir-30d represses the expression of BECN1, BNIP3L, ATG12, ATG5 and ATG2. ► BECN1, BNIP3L, ATG12, ATG5 and ATG2 are direct targets of mir-30d. ► mir-30d inhibits autophagosome formation and LC3B-I conversion to LC3B-II. ► mir-30d regulates the autophagy process. -- Abstract: In human epithelial cancers, the microRNA (miRNA) mir-30d is amplified with high frequency and serves as a critical oncomir by regulating metastasis, apoptosis, proliferation, and differentiation. Autophagy, a degradation pathway for long-lived protein and organelles, regulates the survival and death of many cell types. Increasing evidence suggests that autophagy plays an important function in epithelial tumor initiation and progression. Using a combined bioinformatics approach, gene set enrichment analysis, and miRNA target prediction, we found that mir-30d might regulate multiple genes in the autophagy pathway including BECN1, BNIP3L, ATG12, ATG5, and ATG2. Our further functional experiments demonstrated that the expression of these core proteins in the autophagy pathway was directly suppressed by mir-30d in cancer cells. Finally, we showed that mir-30d regulated the autophagy process by inhibiting autophagosome formation and LC3B-I conversion to LC3B-II. Taken together, our results provide evidence that the oncomir mir-30d impairs the autophagy process by targeting multiple genes in the autophagy pathway. This result will contribute to understanding the molecular mechanism of mir-30d in tumorigenesis and developing novel cancer therapy strategy.

  3. Autophagy protects meniscal cells from glucocorticoids-induced apoptosis via inositol trisphosphate receptor signaling.

    PubMed

    Shen, Chao; Gu, Wen; Cai, Gui-Quan; Peng, Jian-Ping; Chen, Xiao-Dong

    2015-09-01

    Intra-articular injection of glucocorticoids (GCs) has been widely used in the management of osteoarthritis and rheumatoid arthritis. Nevertheless, several studies showed that GCs had toxic effects on chondrocytes as well as synovial cells. Previously we reported the protective role of autophagy in the degeneration of meniscal tissues. However, the effects of GCs on autophagy in the meniscal cells have not been fully elucidated. To investigate whether GCs can regulate autophagy in human meniscal cells, the meniscal cells were cultured in vitro and exposed in the presence of dexamethasone. The levels of apoptosis and autophagy were investigated via flow cytometry as well as western blotting analysis. The changes of the aggrecanases were measured using real-time PCR. The role of autophagy in dexamethasone-induced apoptosis was investigated using pharmacological agents and RNA interference technique. An agonist of inositol 1,4,5-trisphosphate receptor (IP3R) was used to investigate the mechanism of dexamethasone-induced autophagy. The results showed that dexamethasone induced autophagy as well as apoptosis in normal human meniscal cells. Using RNA interference technique and pharmacological agents, our results showed that autophagy protected the meniscal cells from dexamethasone-induced apoptosis. Our results also indicated that dexamethasone increased the mRNA levels of aggrecanases. This catabolic effect of dexamethasone was enhanced by 3-MA, the autophagy inhibitor. Furthermore, our results showed that dexamethasone induced autophagy via suppressing the phosphorylation of IP3R. In summary, our results indicated that autophagy protected meniscal cells from GCs-induced apoptosis via inositol trisphosphate receptor signaling.

  4. Stimulation of autophagy by the p53 target gene Sestrin2.

    PubMed

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  5. Autophagy Protects from Raddeanin A-Induced Apoptosis in SGC-7901 Human Gastric Cancer Cells

    PubMed Central

    Liu, Shen-lin; Fang, Liang-hua; Zhou, Jin-yong; Wu, Jian; Xi, Song-yang; Chen, Yan; Zhang, Ying-ying; Xu, Song

    2016-01-01

    Raddeanin A (RA) is an extractive from Anemone raddeana Regel, a traditional Chinese medicine. The aim of this study is to assess the efficacy of RA against human gastric cancer (GC) cells (SGC-7901) and explore its mechanism. MTT assay showed that RA inhibition of proliferation of SGC-7901 cells increased in a dose-dependent manner. Flow cytometry analysis and Hoechst 33258 staining showed that RA induced apoptosis on SGC-7901 cells. Meanwhile, it induced autophagy. Western blotting analysis showed that the RA induces apoptosis and autophagy by activating p38 MAPK pathway and inhibiting mTOR pathway. Further studies showed that autophagy inhibition could protect from RA-induced apoptosis in SGC-7901 cells. In conclusion, RA can induce SGC-7901 cell apoptosis and autophagy by activating p38 MAPK pathway. And autophagy can protect SGC-7901 cells from apoptosis induced by RA. PMID:27974905

  6. Sestrin2 Protects Dopaminergic Cells against Rotenone Toxicity through AMPK-Dependent Autophagy Activation.

    PubMed

    Hou, Yi-Sheng; Guan, Jun-Jie; Xu, Hai-Dong; Wu, Feng; Sheng, Rui; Qin, Zheng-Hong

    2015-08-01

    Dysfunction of the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) was thought to be an important pathogenic mechanism in synuclein pathology and Parkinson's disease (PD). In the present study, we investigated the role of sestrin2 in autophagic degradation of α-synuclein and preservation of cell viability in a rotenone-induced cellular model of PD. We speculated that AMP-activated protein kinase (AMPK) was involved in regulation of autophagy and protection of dopaminergic cells against rotenone toxicity by sestrin2. The results showed that both the mRNA and protein levels of sestrin2 were increased in a TP53-dependent manner in Mes 23.5 cells after treatment with rotenone. Genetic knockdown of sestrin2 compromised the autophagy induction in response to rotenone, while overexpression of sestrin2 increased the basal autophagy activity. Sestrin2 presumably enhanced autophagy in an AMPK-dependent fashion, as sestrin2 overexpression activated AMPK, and genetic knockdown of AMPK abrogated autophagy induction by rotenone. Restoration of AMPK activity by metformin after sestrin2 knockdown recovered the autophagy activity. Sestrin2 overexpression ameliorated α-synuclein accumulation, inhibited caspase 3 activation, and reduced the cytotoxicity of rotenone. These results suggest that sestrin2 upregulation attempts to maintain autophagy activity and suppress rotenone cytotoxicity through activation of AMPK, and that sestrin2 exerts a protective effect on dopaminergic cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Sestrin2 Protects Dopaminergic Cells against Rotenone Toxicity through AMPK-Dependent Autophagy Activation

    PubMed Central

    Hou, Yi-Sheng; Guan, Jun-Jie; Xu, Hai-Dong; Wu, Feng; Sheng, Rui

    2015-01-01

    Dysfunction of the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) was thought to be an important pathogenic mechanism in synuclein pathology and Parkinson's disease (PD). In the present study, we investigated the role of sestrin2 in autophagic degradation of α-synuclein and preservation of cell viability in a rotenone-induced cellular model of PD. We speculated that AMP-activated protein kinase (AMPK) was involved in regulation of autophagy and protection of dopaminergic cells against rotenone toxicity by sestrin2. The results showed that both the mRNA and protein levels of sestrin2 were increased in a TP53-dependent manner in Mes 23.5 cells after treatment with rotenone. Genetic knockdown of sestrin2 compromised the autophagy induction in response to rotenone, while overexpression of sestrin2 increased the basal autophagy activity. Sestrin2 presumably enhanced autophagy in an AMPK-dependent fashion, as sestrin2 overexpression activated AMPK, and genetic knockdown of AMPK abrogated autophagy induction by rotenone. Restoration of AMPK activity by metformin after sestrin2 knockdown recovered the autophagy activity. Sestrin2 overexpression ameliorated α-synuclein accumulation, inhibited caspase 3 activation, and reduced the cytotoxicity of rotenone. These results suggest that sestrin2 upregulation attempts to maintain autophagy activity and suppress rotenone cytotoxicity through activation of AMPK, and that sestrin2 exerts a protective effect on dopaminergic cells. PMID:26031332

  8. Autophagy plays a protective role in cell death of osteoblasts exposure to lead chloride.

    PubMed

    Lv, Xiao-hua; Zhao, Da-hang; Cai, Shi-zhong; Luo, Shi-ying; You, Tingting; Xu, Bi-lian; Chen, Ke

    2015-12-03

    Lead (Pb) is a toxic heavy metal widespreadly used in industrial field. Prior studies showed that Pb exposure had detrimental effects on osteoblasts. The mechanisms underlying Pb-induced damage are complex. Autophagy can protect cells from various cytotoxic stimuli. In the present study, the aim of our research was to investigate whether Pb could activate autophagy to play a protective role against osteoblasts apoptosis. Our results indicated that PbCl2 induced autophagy and autophagic flux in MC3T3-E1 murine osteoblastic cell by RT-PCR, western blot, as well as fluorescence microscopy analysis of GFP-LC3, AO and MDC staining. Pb increased the apoptosis of osteoblasts, evidenced by western blot and Hoechst 33258 staining assessment. In addition, inhibiting autophagy by 3-MA further increased the osteoblasts apoptosis after Pb exposure, showed by flow cytometry and Hoechst 33258 staining. Furthermore, phosphorylation of mTOR and p70S6K was inhibited by Pb exposure, indicating that Pb might induce autophagy in osteoblasts via inhibiting mTOR pathway. Altogether, these evidence suggested that Pb exporsure promoted autophagy flux in osteoblasts. The activation of autophagy by Pb played a protective role in osteoblasts apoptosis, which might be mediated through the mTOR pathway.

  9. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    PubMed Central

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  10. Autophagy confers DNA damage repair pathways to protect the hematopoietic system from nuclear radiation injury

    PubMed Central

    Lin, Weiwei; Yuan, Na; Wang, Zhen; Cao, Yan; Fang, Yixuan; Li, Xin; Xu, Fei; Song, Lin; Wang, Jian; Zhang, Han; Yan, Lili; Xu, Li; Zhang, Xiaoying; Zhang, Suping; Wang, Jianrong

    2015-01-01

    Autophagy is essentially a metabolic process, but its in vivo role in nuclear radioprotection remains unexplored. We observed that ex vivo autophagy activation reversed the proliferation inhibition, apoptosis, and DNA damage in irradiated hematopoietic cells. In vivo autophagy activation improved bone marrow cellularity following nuclear radiation exposure. In contrast, defective autophagy in the hematopoietic conditional mouse model worsened the hematopoietic injury, reactive oxygen species (ROS) accumulation and DNA damage caused by nuclear radiation exposure. Strikingly, in vivo defective autophagy caused an absence or reduction in regulatory proteins critical to both homologous recombination (HR) and non-homologous end joining (NHEJ) DNA damage repair pathways, as well as a failure to induce these proteins in response to nuclear radiation. In contrast, in vivo autophagy activation increased most of these proteins in hematopoietic cells. DNA damage assays confirmed the role of in vivo autophagy in the resolution of double-stranded DNA breaks in total bone marrow cells as well as bone marrow stem and progenitor cells upon whole body irradiation. Hence, autophagy protects the hematopoietic system against nuclear radiation injury by conferring and intensifying the HR and NHEJ DNA damage repair pathways and by removing ROS and inhibiting apoptosis. PMID:26197097

  11. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    PubMed

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  12. Autophagy protects against de novo formation of the [PSI+] prion in yeast

    PubMed Central

    Speldewinde, Shaun H.; Doronina, Victoria A.; Grant, Chris M.

    2015-01-01

    Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI+], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mutating its core components elevates the frequency of spontaneous [PSI+] formation. Conversely, increasing autophagic flux by treating cells with the polyamine spermidine suppresses prion formation in mutants that normally show a high frequency of de novo prion formation. Autophagy also protects against the de novo formation of another prion, namely the Rnq1/[PIN+] prion, which is not related in sequence to the Sup35/[PSI+] prion. We show that growth under anaerobic conditions in the absence of molecular oxygen abrogates Sup35 protein damage and suppresses the high frequency of [PSI+] formation in an autophagy mutant. Autophagy therefore normally functions to remove oxidatively damaged Sup35, which accumulates in cells grown under aerobic conditions, but in the absence of autophagy, damaged/misfolded Sup35 undergoes structural transitions favoring its conversion to the propagatable [PSI+] form. PMID:26490118

  13. Autophagy-related genes from a tick, Haemaphysalis longicornis.

    PubMed

    Umemiya, Rika; Matsuo, Tomohide; Hatta, Takeshi; Sakakibara, Shin-Ichi; Boldbaatar, Damdinsuren; Fujisaki, Kozo

    2008-01-01

    Ticks are gorging-fasting organisms;(1) their life cycle is characterized by alternate off-host (starvation) and on-host (meal) conditions. Their generation time is estimated in several years and many ticks spend more than 95% of their life off the host. They seem to have a unique strategy to endure the off-host state for a long period. Thus, we focused on autophagy, which is induced by starvation and is essential for extension of the lifespan,(2-4) and hypothesized that ticks also have a system of autophagy to overcome the starved condition. Recently, we showed the existence of a homologue of an ATG gene, ATG12, and its expression pattern from nymphal to adult stages in a three-host tick, Haemaphysalis longicornis. The expression level of HlATG12 was downregulated at the beginning of feeding and was highest at 3 months after engorgement. In addition, the HlAtg12 protein was localized to the region around granule-like structures within midgut cells of unfed adults. These results indicate that HlATG12 functions during unfed stages. Here, a potential role of autophagy in unfed ticks is discussed with regard to reports in other animals, such as yeast, mammal, and fruit fly.

  14. Heat Shock Protein 72 Enhances Autophagy as a Protective Mechanism in Lipopolysaccharide-Induced Peritonitis in Rats

    PubMed Central

    Li, Shu; Zhou, Yi; Fan, Jinjin; Cao, Shirong; Cao, Tao; Huang, Fengxian; Zhuang, Shougang; Wang, Yihan; Yu, Xueqing; Mao, Haiping

    2011-01-01

    Peritoneal dialysis–related peritonitis causes the denudation of mesothelial cells and, ultimately, membrane integrity alterations and peritoneal dysfunction. Because heat shock protein 72 (HSP72) confers protection against apoptosis and because autophagy mediates survival in response to cellular stresses, we examined whether autophagy contributes to HSP72-mediated cytoprotection in lipopolysaccharide (LPS)-induced peritonitis. Exposure of cultured peritoneal mesothelial cells to LPS resulted first in autophagy and later, apoptosis. Inhibition of autophagy by 3-methyladenine or Beclin-1 small-interfering RNA sensitized cells to apoptosis and abolished the antiapoptotic effect of HSP72, suggesting that autophagy activation acts as a prosurvival mechanism. Overexpression of HSP72 augmented autophagy through c-Jun N-terminal kinase (JNK) phosphorylation and Beclin-1 up-regulation. Suppression of JNK activity reversed HSP72-mediated Beclin-1 up-regulation and autophagy, indicating that HSP72-mediated autophagy is JNK dependent. In a rat model of LPS-associated peritonitis, autophagy occurred before apoptosis in peritoneum. Up-regulation of HSP72 by geranylgeranylacetone increased autophagy, inhibited apoptosis, and attenuated peritoneal injury, and these effects were blunted by down-regulation of HSP72 with quercetin. Additionally, blocking autophagy by chloroquine promoted apoptosis and aggravated LPS-associated peritoneal dysfunction. Thus, HSP72 protects peritoneum from LPS-induced mesothelial cells injury, at least in part by enhancing JNK activation–dependent autophagy and inhibiting apoptosis. These findings imply that HSP72 induction might be a potential therapy for peritonitis. PMID:22001349

  15. Heat shock protein 72 enhances autophagy as a protective mechanism in lipopolysaccharide-induced peritonitis in rats.

    PubMed

    Li, Shu; Zhou, Yi; Fan, Jinjin; Cao, Shirong; Cao, Tao; Huang, Fengxian; Zhuang, Shougang; Wang, Yihan; Yu, Xueqing; Mao, Haiping

    2011-12-01

    Peritoneal dialysis-related peritonitis causes the denudation of mesothelial cells and, ultimately, membrane integrity alterations and peritoneal dysfunction. Because heat shock protein 72 (HSP72) confers protection against apoptosis and because autophagy mediates survival in response to cellular stresses, we examined whether autophagy contributes to HSP72-mediated cytoprotection in lipopolysaccharide (LPS)-induced peritonitis. Exposure of cultured peritoneal mesothelial cells to LPS resulted first in autophagy and later, apoptosis. Inhibition of autophagy by 3-methyladenine or Beclin-1 small-interfering RNA sensitized cells to apoptosis and abolished the antiapoptotic effect of HSP72, suggesting that autophagy activation acts as a prosurvival mechanism. Overexpression of HSP72 augmented autophagy through c-Jun N-terminal kinase (JNK) phosphorylation and Beclin-1 up-regulation. Suppression of JNK activity reversed HSP72-mediated Beclin-1 up-regulation and autophagy, indicating that HSP72-mediated autophagy is JNK dependent. In a rat model of LPS-associated peritonitis, autophagy occurred before apoptosis in peritoneum. Up-regulation of HSP72 by geranylgeranylacetone increased autophagy, inhibited apoptosis, and attenuated peritoneal injury, and these effects were blunted by down-regulation of HSP72 with quercetin. Additionally, blocking autophagy by chloroquine promoted apoptosis and aggravated LPS-associated peritoneal dysfunction. Thus, HSP72 protects peritoneum from LPS-induced mesothelial cells injury, at least in part by enhancing JNK activation-dependent autophagy and inhibiting apoptosis. These findings imply that HSP72 induction might be a potential therapy for peritonitis.

  16. SIRT1 protects against apoptosis by promoting autophagy in degenerative human disc nucleus pulposus cells

    PubMed Central

    Jiang, Wei; Zhang, Xuemei; Hao, Jie; Shen, Jieliang; Fang, Ji; Dong, Wen; Wang, Dawu; Zhang, Xiaojun; Shui, Wei; Luo, Yi; Lin, Liangbo; Qiu, Quanhe; Liu, Bin; Hu, Zhenming

    2014-01-01

    SIRT1 could protect degenerative human NP cells against apoptosis, and there were extensive and intimate connection between apoptosis and autophagy. Up to now, the role of autophagy in the process of human IVD degeneration is unclear. We sought to explore the relationship between autophagy and human IVD degeneration and to understand whether autophagy is involved in the protective effect of SIRT1 against apoptosis in NP cells. Our results showed that the autophagosomes number, the mRNA level of LC3 and Beclin-1, the protein expression of LC3-II/I and Beclin-1, decreased in NP from DDD. Resveratrol could increase the protein expression of LC3-II/I and Beclin-1, and reduce apoptosis in degenerative NP cells. In contrast, the protein levels of LC3-II/I and Beclin-1 were down-regulated and apoptosis level was significantly up-regulated in treatment with nicotinamide or SIRT1-siRNA transfection. Further analysis identified that the expression of cleaved Caspase3 and apoptosis incidence significantly increased with the pretreatment of bafilomycin A, whether resveratrol was added or not. These suggested that autophagy may play an important role in IVD degeneration, and SIRT1 protected degenerative human NP cells against apoptosis via promoting autophagy. These findings would aid in the development of novel therapeutic approaches for degenerative disc disease treatment. PMID:25503852

  17. Sinomenine hydrochloride protects against polymicrobial sepsis via autophagy.

    PubMed

    Jiang, Yu; Gao, Min; Wang, Wenmei; Lang, Yuejiao; Tong, Zhongyi; Wang, Kangkai; Zhang, Huali; Chen, Guangwen; Liu, Meidong; Yao, Yongming; Xiao, Xianzhong

    2015-01-23

    Sepsis, a systemic inflammatory response to infection, is the major cause of death in intensive care units (ICUs). The mortality rate of sepsis remains high even though the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN) is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl) is widely used to treat rheumatoid arthritis (RA). However, its role in sepsis remains unclear. In the present study, we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture (CLP) in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved the survival of BALB/c mice that were subjected to CLP and reduced multiple organ dysfunction and the release of systemic inflammatory mediators. Autophagy activities were examined using Western blotting. The results showed that CLP-induced autophagy was elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy blocker 3-methyladenine (3-MA) was used to investigate the mechanism of SIN-HCl in vitro. Autophagy activities were determined by examining the autophagosome formation, which was shown as microtubule-associated protein light chain 3 (LC3) puncta with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS)-induced inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM). 3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, and attenuate the release of inflammatory cytokines induced by CLP, at least in part through regulating autophagy activities.

  18. Sinomenine Hydrochloride Protects against Polymicrobial Sepsis via Autophagy

    PubMed Central

    Jiang, Yu; Gao, Min; Wang, Wenmei; Lang, Yuejiao; Tong, Zhongyi; Wang, Kangkai; Zhang, Huali; Chen, Guangwen; Liu, Meidong; Yao, Yongming; Xiao, Xianzhong

    2015-01-01

    Sepsis, a systemic inflammatory response to infection, is the major cause of death in intensive care units (ICUs). The mortality rate of sepsis remains high even though the treatment and understanding of sepsis both continue to improve. Sinomenine (SIN) is a natural alkaloid extracted from Chinese medicinal plant Sinomenium acutum, and its hydrochloride salt (Sinomenine hydrochloride, SIN-HCl) is widely used to treat rheumatoid arthritis (RA). However, its role in sepsis remains unclear. In the present study, we investigated the role of SIN-HCl in sepsis induced by cecal ligation and puncture (CLP) in BALB/c mice and the corresponding mechanism. SIN-HCl treatment improved the survival of BALB/c mice that were subjected to CLP and reduced multiple organ dysfunction and the release of systemic inflammatory mediators. Autophagy activities were examined using Western blotting. The results showed that CLP-induced autophagy was elevated, and SIN-HCl treatment further strengthened the autophagy activity. Autophagy blocker 3-methyladenine (3-MA) was used to investigate the mechanism of SIN-HCl in vitro. Autophagy activities were determined by examining the autophagosome formation, which was shown as microtubule-associated protein light chain 3 (LC3) puncta with green immunofluorescence. SIN-HCl reduced lipopolysaccharide (LPS)-induced inflammatory cytokine release and increased autophagy in peritoneal macrophages (PM). 3-MA significantly decreased autophagosome formation induced by LPS and SIN-HCl. The decrease of inflammatory cytokines caused by SIN-HCl was partially aggravated by 3-MA treatment. Taken together, our results indicated that SIN-HCl could improve survival, reduce organ damage, and attenuate the release of inflammatory cytokines induced by CLP, at least in part through regulating autophagy activities. PMID:25625512

  19. Integrin αvβ5 inhibition protects against ischemia-reperfusion-induced lung injury in an autophagy-dependent manner.

    PubMed

    Zhang, Dan; Li, Chichi; Song, Yuanlin; Zhou, Jian; Li, Yuping; Li, Jing; Bai, Chunxue

    2017-08-01

    Integrin αvβ5 mediates pulmonary endothelial barrier function and acute lung injury (LI), but its roles in cell apoptosis and autophagy are unclear. Thus, the aims of this study were to investigate the significance of αvβ5 in ischemia-reperfusion (I/R)-induced apoptosis and LI and to explore the relationship between αvβ5 and autophagy. Human pulmonary microvascular endothelial cells (HPMVECs) were pretreated with an αvβ5-blocking antibody (ALULA) and challenged with oxygen-glucose deprivation/oxygen-glucose restoration, which mimics I/R; then, cellular autophagy and apoptosis were detected, and cell permeability was assessed. In vivo, mice were pretreated with the autophagy inhibitor chloroquine (CLQ), followed by treatment with ALULA. The mice then underwent operative lung I/R. LI was assessed by performing a pathological examination, calculating the wet/dry lung weight ratio and detecting the bronchial alveolar lavage fluid (BALF) protein concentration. αvβ5 inhibition promoted HPMVEC autophagy under I/R in vitro, alleviated cell permeability, decreased the apoptosis ratio, and activated caspase-3 expression. These outcomes were significantly diminished when autophagy was inhibited with a small-interfering RNA construct targeting autophagy-related gene 7 (siATG7). Moreover, ALULA pretreatment alleviated I/R-induced LI (I/R-LI), which manifested as a decreased wet/dry lung weight ratio, an altered BALF protein concentration, and lung edema. Preinhibiting autophagy with CLQ, however, eliminated the protective effects of ALULA on I/R-LI. Therefore, inhibiting αvβ5 effectively ameliorated I/R-induced endothelial cell apoptosis and I/R-LI. This process was dependent on improved autophagy and its inhibitory effects on activated caspase-3. Copyright © 2017 the American Physiological Society.

  20. Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy.

    PubMed

    Yin, Wei-Yong; Ye, Qiang; Huang, Huan-Jie; Xia, Nian-Ge; Chen, Yan-Yan; Zhang, Yi; Qu, Qiu-Min

    2016-08-01

    Recent evidence suggests that glutamate-induced cytotoxicity contributes to autophagic neuron death and is partially mediated by increased oxidative stress. Salidroside has been demonstrated to have neuroprotective effects in glutamate-induced neuronal damage. The precise mechanism of its regulatory role in neuronal autophagy is, however, poorly understood. This study aimed to probe the effects and mechanisms of salidroside in glutamate-induced autophagy activation in cultured rat cortical neurons. Cell viability assay, Western blotting, coimmunoprecipitation, and small interfering RNA were performed to analyze autophagy activities during glutamate-evoked oxidative injury. We found that salidroside protected neonatal neurons from glutamate-induced apoptotic cell death. Salidroside significantly attenuated the LC3-II/LC3-I ratio and expression of Beclin-1, but increased (SQSTM1)/p62 expression under glutamate exposure. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, decreased LC3-II/LC3-I ratio, attenuated glutamate-induced cell injury, and mimicked some of the protective effects of salidroside against glutamate-induced cell injury. Molecular analysis demonstrated that salidroside inhibited cortical neuron autophagy in response to glutamate exposure through p53 signaling by increasing the accumulation of cytoplasmic p53. Salidroside inhibited the glutamate-induced dissociation of the Bcl-2-Beclin-1 complex with minor affects on the PI3K/Akt/mTOR signaling pathways. These data demonstrate that the inhibition of autophagy could be responsible for the neuroprotective effects of salidroside on glutamate-induced neuronal injury.

  1. Control of autophagy by oncogenes and tumor suppressor genes.

    PubMed

    Maiuri, M C; Tasdemir, E; Criollo, A; Morselli, E; Vicencio, J M; Carnuccio, R; Kroemer, G

    2009-01-01

    Multiple oncogenes (in particular phosphatidylinositol 3-kinase, PI3K; activated Akt1; antiapoptotic proteins from the Bcl-2 family) inhibit autophagy. Similarly, several tumor suppressor proteins (such as BH3-only proteins; death-associated protein kinase-1, DAPK1; the phosphatase that antagonizes PI3K, PTEN; tuberous sclerosic complex 1 and 2, TSC1 and TSC2; as well as LKB1/STK11) induce autophagy, meaning that their loss reduces autophagy. Beclin-1, which is required for autophagy induction acts as a haploinsufficient tumor suppressor protein, and other essential autophagy mediators (such as Atg4c, UVRAG and Bif-1) are bona fide oncosuppressors. One of the central tumor suppressor proteins, p53 exerts an ambiguous function in the regulation of autophagy. Within the nucleus, p53 can act as an autophagy-inducing transcription factor. Within the cytoplasm, p53 exerts a tonic autophagy-inhibitory function, and its degradation is actually required for the induction of autophagy. The role of autophagy in oncogenesis and anticancer therapy is contradictory. Chronic suppression of autophagy may stimulate oncogenesis. However, once a tumor is formed, autophagy inhibition may be a therapeutic goal for radiosensitization and chemosensitization. Altogether, the current state-of-the art suggests a complex relationship between cancer and deregulated autophagy that must be disentangled by further in-depth investigation.

  2. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection

    PubMed Central

    Marchiando, Amanda M.; Ramanan, Deepshika; Ding, Yi; Gomez, Luis E.; Hubbard-Lucey, Vanessa M.; Maurer, Katie; Wang, Caihong; Ziel, Joshua W.; van Rooijen, Nico; Nuñez, Gabriel; Finlay, B. Brett; Mysorekar, Indira U.; Cadwell, Ken

    2013-01-01

    SUMMARY Polymorphisms in the essential autophagy gene Atg16L1 have been linked with susceptibility to Crohn’s disease, a major type of inflammatory bowel disease (IBD). Although the inability to control intestinal bacteria is thought to underlie IBD, the role of Atg16L1 during extracellular intestinal bacterial infections has not been sufficiently examined and compared to the function of other IBD susceptibility genes such as Nod2, which encodes a cytosolic bacterial sensor. We find that Atg16L1 mutant mice are resistant to intestinal disease induced by the model bacterial pathogen Citrobacter rodentium. An Atg16L1 deficiency alters the intestinal environment to mediate an enhanced immune response that is dependent on monocytic cells, but this hyper-immune phenotype and protective effects are lost in Atg16L1/Nod2 double mutant mice. These results reveal an immuno-suppressive function of Atg16L1, and suggest that gene variants affecting the autophagy pathway may have been evolutionarily maintained to protect against certain life-threatening infections. PMID:23954160

  3. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection.

    PubMed

    Marchiando, Amanda M; Ramanan, Deepshika; Ding, Yi; Gomez, Luis E; Hubbard-Lucey, Vanessa M; Maurer, Katie; Wang, Caihong; Ziel, Joshua W; van Rooijen, Nico; Nuñez, Gabriel; Finlay, B Brett; Mysorekar, Indira U; Cadwell, Ken

    2013-08-14

    Polymorphisms in the essential autophagy gene Atg16L1 have been linked with susceptibility to Crohn's disease, a major type of inflammatory bowel disease (IBD). Although the inability to control intestinal bacteria is thought to underlie IBD, the role of Atg16L1 during extracellular intestinal bacterial infections has not been sufficiently examined and compared to the function of other IBD susceptibility genes, such as Nod2, which encodes a cytosolic bacterial sensor. We find that Atg16L1 mutant mice are resistant to intestinal disease induced by the model bacterial pathogen Citrobacter rodentium. An Atg16L1 deficiency alters the intestinal environment to mediate an enhanced immune response that is dependent on monocytic cells, but this hyperimmune phenotype and its protective effects are lost in Atg16L1/Nod2 double-mutant mice. These results reveal an immunosuppressive function of Atg16L1 and suggest that gene variants affecting the autophagy pathway may have been evolutionarily maintained to protect against certain life-threatening infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells.

    PubMed

    Cadwell, Ken; Liu, John Y; Brown, Sarah L; Miyoshi, Hiroyuki; Loh, Joy; Lennerz, Jochen K; Kishi, Chieko; Kc, Wumesh; Carrero, Javier A; Hunt, Steven; Stone, Christian D; Brunt, Elizabeth M; Xavier, Ramnik J; Sleckman, Barry P; Li, Ellen; Mizushima, Noboru; Stappenbeck, Thaddeus S; Virgin, Herbert W

    2008-11-13

    Susceptibility to Crohn's disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn's disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn's disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn's disease patients carrying the Crohn's disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn's disease patients homozygous for the ATG16L1 Crohn's disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn's disease patients by selective effects on the cell biology and specialized

  5. DRAM1 protects neuroblastoma cells from oxygen-glucose deprivation/reperfusion-induced injury via autophagy.

    PubMed

    Yu, Mengqiang; Jiang, Yugang; Feng, Qingliang; Ouyang, Yi'an; Gan, Jie

    2014-10-23

    DNA damage-regulated autophagy modulator protein 1 (DRAM1), a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53) target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R) injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein-Green fluorescent protein-microtubule associated protein 1 light chain 3 (RFP-GFP-LC3) construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I) are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA) inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  6. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Miao, Yanyan; Zhang, Yunjiao; Liu, Liang; Lin, Jun; Yang, James Y.; Xie, Yi; Wen, Longping

    2013-04-01

    A variety of inorganic nanomaterials have been shown to induce autophagy, a cellular degradation process critical for the maintenance of cellular homeostasis. The overwhelming majority of autophagic responses elicited by nanomaterials were detrimental to cell fate and contributed to increased cell death. A widely held view is that the inorganic nanoparticles, when encapsulated and trapped by autophagosomes, may compromise the normal autophagic process due to the inability of the cells to degrade these materials and thus they manifest a detrimental effect on the well-being of a cell. Here we show that, contrary to this notion, nano-sized paramontroseite VO2 nanocrystals (P-VO2) induced cyto-protective, rather than death-promoting, autophagy in cultured HeLa cells. P-VO2 also caused up-regulation of heme oxygenase-1 (HO-1), a cellular protein with a demonstrated role in protecting cells against death under stress situations. The autophagy inhibitor 3-methyladenine significantly inhibited HO-1 up-regulation and increased the rate of cell death in cells treated with P-VO2, while the HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) enhanced the occurrence of cell death in the P-VO2-treated cells while having no effect on the autophagic response induced by P-VO2. On the other hand, Y2O3 nanocrystals, a control nanomaterial, induced death-promoting autophagy without affecting the level of expression of HO-1, and the pro-death effect of the autophagy induced by Y2O3. Our results represent the first report on a novel nanomaterial-induced cyto-protective autophagy, probably through up-regulation of HO-1, and may point to new possibilities for exploiting nanomaterial-induced autophagy for therapeutic applications.

  7. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    SciTech Connect

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  8. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation.

    PubMed

    Yang, Chunguang; Ma, Xueyou; Wang, Zhihua; Zeng, Xing; Hu, Zhiquan; Ye, Zhangqun; Shen, Guanxin

    2017-01-01

    Curcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC) cells through its iron-chelating properties. CRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC). Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II) using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1) and iron regulatory protein 1 (IRP1) were examined by Western blot. Curcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA]) synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin. Together, our results indicate that curcumin induces apoptosis and protective autophagy in CRPC cells, which are at least partially dependent on its iron-chelating properties.

  9. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation

    PubMed Central

    Yang, Chunguang; Ma, Xueyou; Wang, Zhihua; Zeng, Xing; Hu, Zhiquan; Ye, Zhangqun; Shen, Guanxin

    2017-01-01

    Background Curcumin induces apoptosis and autophagy in different cancer cells. Moreover, chemical and biological experiments have evidenced that curcumin is a biologically active iron chelator and induces cytotoxicity through iron chelation. We thus hypothesized that curcumin may induce apoptosis and autophagy in castration-resistant prostate cancer (CRPC) cells through its iron-chelating properties. Materials and methods CRPC cells were loaded with curcumin alone or in combination with ferric ammonium citrate (FAC). Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was assessed by flow cytometry, terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay and caspase activity. Autophagy status was analyzed by the detection of autophagosomes and light chain 3-II (LC3-II) using transmission electron microscopy and Western blot. Iron-binding activity of curcumin was assessed by spectrophotometry and MTT assay. The expression levels of transferrin receptor 1 (TfR1) and iron regulatory protein 1 (IRP1) were examined by Western blot. Results Curcumin induced apoptosis and autophagy in CRPC cells. Combining curcumin with autophagy inhibitors (3-methyladenine [3-MA]) synergized the apoptotic effect of curcumin. Moreover, curcumin bound to FAC at a ratio of ~1:1, as assessed by spectrophotometry and MTT assay. Apoptosis and autophagy induced by curcumin were counteracted by equal amounts of FAC. At apoptosis- and autophagy-inducing concentrations, curcumin enhanced the expression levels of TfR1 and IRP1, indicative of iron deprivation induced by curcumin. Conclusion Together, our results indicate that curcumin induces apoptosis and protective autophagy in CRPC cells, which are at least partially dependent on its iron-chelating properties. PMID:28243065

  10. Corosolic acid protects hepatocytes against ethanol-induced damage by modulating mitogen-activated protein kinases and activating autophagy.

    PubMed

    Guo, Xiaolan; Cui, Ruibing; Zhao, Jianjian; Mo, Rui; Peng, Lei; Yan, Ming

    2016-11-15

    The reactive oxygen species(ROS)/mitogen-activated protein kinase (MAPK) destroyed autophagy and the reactive oxygen species/mitogen-activated protein kinase (MAPK) pathway are considered closely related to ethanol-induced hepatocellular injury. Previous work indicated that corosolic acid, the natural extracts of leaves of the banaba tree, Lagerstroemia speciosa L., could protect the liver against ethanol-induced damage, but the underlying mechanism is unclear. In the study we found that corosolic acid significantly inhibited ethanol-induced apoptosis, increased level of tumor necrosis factor-α(TNF-α) and reactive oxygen species accumulation in vitro. Corosolic acid inhibited ethanol-activated p38 and c-Jun N-terminal kinase MAPK signaling in BRL-3A and HepG2 cells as well as in experimental rats. Corosolic acid restored the ethanol-suppressed expression of autophagy-related genes, including beclin-1 and the ratio of microtubule-associated protein light chain 3II/I (LC3II/I) via AMP-activated protein kinase (AMPK) activation both in vitro and in vivo. In experimental rats, corosolic acid ameliorated the detrimental histopathological findings. Corosolic acid may protect the liver against ethanol-induced injury by modulation of MAPK signaling and autophagy activation. These findings suggested that corosolic acid might be a promising agent in treatment of alcoholic liver diseases.

  11. Heme oxygenase-1 enhances autophagy in podocytes as a protective mechanism against high glucose-induced apoptosis

    SciTech Connect

    Dong, Chenglong; Zheng, Haining; Huang, Shanshan; You, Na; Xu, Jiarong; Ye, Xiaolong; Zhu, Qun; Feng, Yamin; You, Qiang; Miao, Heng; Ding, Dafa; Lu, Yibing

    2015-10-01

    Injury and loss of podocytes play vital roles in diabetic nephropathy progression. Emerging evidence suggests autophagy, which is induced by multiple stressors including hyperglycemia, plays a protective role. Meanwhile, heme oxygenase-1 (HO-1) possesses powerful anti-apoptotic properties. Therefore, we investigated the impact of autophagy on podocyte apoptosis under diabetic conditions and its association with HO-1. Mouse podocytes were cultured in vitro; apoptosis was detected by flow cytometry. Transmission electron microscopy and biochemical autophagic flux assays were used to measure the autophagy markers microtubule-associated protein 1 light chain 3-II (LC3-II) and beclin-1. LC3-II and beclin-1 expression peaked 12–24 h after exposing podocytes to high glucose. Inhibition of autophagy with 3-methyladenine or Beclin-1 siRNAs or Atg 5 siRNAs sensitized cells to apoptosis, suggesting autophagy is a survival mechanism. HO-1 inactivation inhibited autophagy, which aggravated podocyte injury in vitro. Hemin-induced autophagy also protected podocytes from hyperglycemia in vitro and was abrogated by HO-1 siRNA. Adenosine monophosphate-activated protein kinase phosphorylation was higher in hemin-treated and lower in HO-1 siRNA-treated podocytes. Suppression of AMPK activity reversed HO-1-mediated Beclin-1 upregulation and autophagy, indicating HO-1-mediated autophagy is AMPK dependent. These findings suggest HO-1 induction and regulation of autophagy are potential therapeutic targets for diabetic nephropathy. - Highlights: • High glucose leads to increased autophagy in podocytes at an early stage. • The early autophagic response protects against high glucose-induced apoptosis. • Heme oxygenase-1 enhances autophagy and decreases high glucose -mediated apoptosis. • Heme oxygenase-1 induces autophagy through the activation of AMPK.

  12. Nano-TiO2 induces autophagy to protect against cell death through antioxidative mechanism in podocytes.

    PubMed

    Zhang, Xiaochen; Yin, Hongqiang; Li, Zhigui; Zhang, Tao; Yang, Zhuo

    2016-12-01

    Autophagy is a cellular pathway involved in degradation of damaged organelles and proteins in order to keep cellular homeostasis. It plays vital role in podocytes. Titanium dioxide nanoparticles (nano-TiO2) are known to induce autophagy in cells, but little has been reported about the mechanism of this process in podocytes and the role of autophagy in podocyte death. In the present study, we examined how nano-TiO2 induced authophagy. Besides that, whether autophagy could protect podocytes from the damage induced by nano-TiO2 and its mechanism was also investigated. Western blot assay and acridine orange staining presented that nano-TiO2 significantly enhanced autophagy flux in podocytes. In addition, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) were involved in such process. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay indicated that upregulated level of autophagy induced by rapamycin in high concentration nano-TiO2-treated podocytes could significantly reduce the level of oxidative stress and alleviate podocyte death. Downregulating the level of autophagy with 3-methyladenine had the opposite effects. These findings indicate that nano-TiO2 induces autophagy through activating AMPK to inhibit mTOR in podocytes, and such autophagy plays a protecting role against oxidative stress on the cell proliferation. Changing autophagy level may become a new treatment strategy to relieve the damage induced by nano-TiO2 in podocytes.

  13. Autophagy in autoimmune disease.

    PubMed

    Yang, Zhen; Goronzy, Jörg J; Weyand, Cornelia M

    2015-07-01

    Autophagy is a protective and life-sustaining process in which cytoplasmic components are packaged into double-membrane vesicles and targeted to lysosomes for degradation. This process of cellular self-digestion is an essential stress response and is cytoprotective by removing damaged organelles and proteins that threaten the cell's survival. Key outcomes include energy generation and recycling of metabolic precursors. In the immune system, autophagy regulates processes such as antigen uptake and presentation, removal of pathogens, survival of short- and long-lived immune cells, and cytokine-dependent inflammation. In all cases, a window of optimal autophagic activity appears critical to balance catabolic, reparative, and inflammation-inducing processes. Dysregulation of autophagosome formation and autophagic flux can have deleterious consequences, ranging from a failure to "clean house" to the induction of autophagy-induced cell death. Abnormalities in the autophagic pathway have been implicated in numerous autoimmune diseases. Genome-wide association studies have linked polymorphisms in autophagy-related genes with predisposition for tissue-destructive inflammatory disease, specifically in inflammatory bowel disease and systemic lupus erythematosus. Although the precise mechanisms by which dysfunctional autophagy renders the host susceptible to continuous inflammation remain unclear, autophagy's role in regulating the long-term survival of adaptive immune cells has recently surfaced as a defect in multiple sclerosis and rheumatoid arthritis. Efforts are underway to identify autophagy-inducing and autophagy-suppressing pharmacologic interventions that can be added to immunosuppressive therapy to improve outcomes of patients with autoimmune disease.

  14. Increased autophagy in peripheral nerves may protect Wistar Ottawa Karlsburg W rats against neuropathy.

    PubMed

    Kosacka, J; Nowicki, M; Blüher, M; Baum, P; Stockinger, M; Toyka, K V; Klöting, I; Stumvoll, M; Serke, H; Bechmann, I; Klöting, N

    2013-12-01

    Wistar Ottawa Karlsburg W (RT1(u)) rats (WOKW) develop obesity, dyslipidemia, moderate hypertension, hyperinsulinemia and impaired glucose tolerance prone to induce peripheral neuropathy (PN). Autophagy has been shown to prevent neurodegeneration in the central and peripheral nervous system. We analyzed the potential protective role of autophagy in an established rat model in preventing PN. We examined electrophysiology (motor-and sensory/mixed afferent conduction velocities and the minimal F-wave latency) and morphology, including ultrathin sections, myelin sheath thickness (g-ratio) and immunohistochemical markers of autophagy and inflammation in the sciatic nerve of five-month-old, male WOKW as compared to Wistar derived, congenic LEW.1W control rats, characterized by the same major histocompatibility complex as WOKW rats (RT1(u)). Moreover, the expression of axonal and synaptic proteins (NF68, GAP43, MP0), autophagy- (Atg5, Atg7, LC3), and apoptosis (cleaved caspase-3)-related markers was measured using Western blot. No abnormalities in nerve electrophysiology and morphology were found in WOKW compared to LEW.1W rats. However, autophagosomes were more frequently apparent in sciatic nerves of WOKW rats. In Western blot analyses no significant differences in expression of neuronal structural proteins were found, but autophagy markers were up-regulated in WOKW compared to LEW.1W sciatic nerves. Immunostaining revealed a greater infiltration of Iba1/ED-1-positive macrophages, CD-3-positive T-cells and LC3-expression in sciatic nerves of WOKW rats. Our results indicate that WOKW rats show an up-regulated autophagy and a mild inflammatory response but do not develop overt neuropathy. We suggest that autophagy and inflammatory cells may exert a protective role in preventing neuropathy in this rat model of the metabolic syndrome but the mechanism of action is still unclear. © 2013.

  15. Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway.

    PubMed

    Chang, Weilong; Bai, Jie; Tian, Shaobo; Ma, Muyuan; Li, Wei; Yin, Yuping; Deng, Rui; Cui, Jinyuan; Li, Jinjin; Wang, Guobin; Zhang, Peng; Tao, Kaixiong

    2017-05-01

    Alcohol abuse is an important cause of gastric mucosal epithelial cell injury and gastric ulcers. A number of studies have demonstrated that autophagy, an evolutionarily conserved cellular mechanism, has a protective effect on cell survival. However, it is not known whether autophagy can protect gastric mucosal epithelial cells against the toxic effects of ethanol. In the present study, gastric mucosal epithelial cells (GES-1 cells) and Wistar rats were treated with ethanol to detect the adaptive response of autophagy. Our results demonstrated that ethanol exposure induced gastric mucosal epithelial cell damage, which was accompanied by the downregulation of mTOR signaling pathway and activation of autophagy. Suppression of autophagy with pharmacological agents resulted in a significant increase of GES-1 cell apoptosis and gastric mucosa injury, suggesting that autophagy could protect cells from ethanol toxicity. Furthermore, we evaluated the cellular oxidative stress response following ethanol treatment and found that autophagy induced by ethanol inhibited generation of reactive oxygen species and degradation of antioxidant and lipid peroxidation. In conclusion, these findings provide evidence that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate oxidative damage induced by ethanol in gastric mucosal epithelial cells. Therefore, modifying autophagy may provide a therapeutic strategy against alcoholic gastric mucosa injury. Impact statement The effect and mechanism of autophagy on ethanol-induced cell damage remain controversial. In this manuscript, we report the results of our study demonstrating that autophagy can protect gastric mucosal epithelial cells against ethanol toxicity in vitro and in vivo. We have shown that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate ethanol-induced oxidative damage in

  16. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage.

    PubMed

    Han, Jing; Pan, Xue-Yang; Xu, Yan; Xiao, Yuan; An, Yu; Tie, Lu; Pan, Yan; Li, Xue-Jun

    2012-05-01

    Our study first proposed that curcumin could protect human endothelial cells from the damage caused by oxidative stress via autophagy. Furthermore, our results revealed that curcumin causes some novel cellular mechanisms that promote autophagy as a protective effect. Pretreatment with curcumin remarkably improves the survival of human umbilical vein endothelial cells (HUVECs) from H 2O 2-induced viability loss, which specifically evokes an autophagic response. Exposed to H 2O 2, curcumin-treated HUVECs upregulate the level of microtubule-associated protein 1 light chain 3-II (LC3-II), the number of autophagosomes, and the degradation of p62. We show that this compound promotes BECN1 expression and inhibits the phosphatidylinositol 3-kinase (PtdIns3K)-AKT-mechanistic target of rapamycin (MTOR) signaling pathway. Curcumin can also reverse FOXO1 (a mediator of autophagy) nuclear localization along with causing an elevated level of cytoplasmic acetylation of FOXO1 and the interaction of acetylated FOXO1 and ATG7, under the circumstance of oxidative stress. Additionally, knockdown of FOXO1 by shRNA inhibits not only the protective effects that curcumin induced, but the autophagic process, from the quantity of LC3-II to the expression of RAB7. These results suggest that curcumin induces autophagy, indicating that curcumin has the potential for use as an autophagic-related antioxidant for prevention and treatment of oxidative stress. These data uncover a brand new protective mechanism involving FOXO1 as having a critical role in regulating autophagy in HUVECs, and suggest a novel role for curcumin in inducing a beneficial form of autophagy in HUVECs, which may be a potential multitargeted therapeutic avenue for the treatment of oxidative stress-related cardiovascular diseases.

  17. Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement.

    PubMed

    Guo, Yanchun; Wang, Jianfei; Wang, Zhongqiang; Yang, Yi; Wang, Ximing; Duan, Qiuhong

    2010-02-01

    Researches have shown that melatonin is neuroprotectant in ischemia/reperfusion-mediated injury. Although melatonin is known as an effective antioxidant, the mechanism of the protection cannot be explained merely by antioxidation. This study was devoted to explore other existing mechanisms by investigating whether melatonin protects ischemia/reperfusion-injured neurons through elevating autophagy, since autophagy has been frequently suggested to play a crucial role in neuron survival. To find it out, an ischemia/reperfusion model in N2a cells was established for examinations. The results showed that autophagy was significantly enhanced in N2a cells treated with melatonin at reperfusion onset following ischemia and greatly promoted cell survival, while autophagy blockage by 3-MA led to the shortened N2a cell survival as assessed by MTT, transmission electron microscopy, and laser confocal scanning microscopy. Besides, the protein levels of LC3II and Beclin1 were remarkably increased in ischemia/reperfusion-injured N2a in the presence of melatonin, whereas the expression of p-PKB, key kinase in PI3K/PKB signaling pathway, showed a decrease when compared with untreated subjects as accessed by immunoblotting. Taken together these data suggest that autophagy is possibly one of the mechanisms underlying neuroprotection of melatonin.

  18. New homoisoflavonoid analogues protect cells by regulating autophagy.

    PubMed

    Gan, Li-She; Zeng, Lin-Wei; Li, Xiang-Rong; Zhou, Chang-Xin; Li, Jie

    2017-03-15

    As a special group of naturally occurring flavonoids, homoisoflavonoids have been discovered as active components of several traditional Chinese medicines for nourishing heart and mind. In this study, twenty homoisoflavonoid analogues, including different substitution groups on rings A and B, as well as heteroaromatic B ring, were synthesized and evaluated for their cardioprotective and neuroprotective activities. In a H2O2-induced H9c2 cardiomyocytes injury assay, nine homoisoflavonoid analogues showed promising activities in the same level as the positive control, diazoxide. Six cardioprotective compounds with representative structure diversities were then evaluated for their neuroprotective effects on MPP+ induced SH-SY5Y cell injury model. Furthermore, autophagy inducing monodansylcadaverine (MDC) fluorescence staining methods and molecular docking studies indicated the action mechanism of these compounds may involve autophagy regulating via class I PI3K signaling pathway.

  19. 20-hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body

    PubMed Central

    Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng

    2013-01-01

    Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcRDN) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body. PMID:23674061

  20. 20-Hydroxyecdysone upregulates Atg genes to induce autophagy in the Bombyx fat body.

    PubMed

    Tian, Ling; Ma, Li; Guo, Enen; Deng, Xiaojuan; Ma, Sanyuan; Xia, Qingyou; Cao, Yang; Li, Sheng

    2013-08-01

    Autophagy is finely regulated at multiple levels and plays crucial roles in development and disease. In the fat body of the silkworm, Bombyx mori, autophagy occurs and Atg gene expression peaks during the nonfeeding molting and pupation stages when the steroid hormone (20-hydroxyecdysone; 20E) is high. Injection of 20E into the feeding larvae upregulated Atg genes and reduced TORC1 activity resulting in autophagy induction in the fat body. Conversely, RNAi knockdown of the 20E receptor partner (USP) or targeted overexpression of a dominant negative mutant of the 20E receptor (EcR (DN) ) in the larval fat body reduced autophagy and downregulated the Atg genes, confirming the importance of 20E-induction of Atg gene expression during pupation. Moreover, in vitro treatments of the larval fat body with 20E upregulated the Atg genes. Five Atg genes were potentially 20E primary-responsive, and a 20E response element was identified in the Atg1 (ortholog of human ULK1) promoter region. Furthermore, RNAi knockdown of 4 key genes (namely Br-C, E74, HR3 and βftz-F1) in the 20E-triggered transcriptional cascade reduced autophagy and downregulated Atg genes to different levels. Taken together, we conclude that in addition to blocking TORC1 activity for autophagosome initiation, 20E upregulates Atg genes to induce autophagy in the Bombyx fat body.

  1. Heat Acclimation Regulates the Autophagy-Lysosome Function to Protect Against Heat Stroke-Induced Brain Injury in Mice.

    PubMed

    Yi, Junfeng; He, Genlin; Yang, Ju; Luo, Zhen; Yang, Xuesen; Luo, Xue

    2017-01-01

    The mechanisms underlying the protective role of heat acclimation (HA) in heat stroke (HS)-induced brain injury are still unclear. The autophagy-lysosome pathway is known to pay an important role in protecting stressed or diseased cells from death. Nevertheless, whether autophagy and lysosomes are involved in HA-mediated neuroprotection following HS exposure remains unclear. The protective effects of HA were assessed by rectal temperature, hematoxylin-eosin staining, transmission electron microscopic analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining, and Fluoro Jade B staining, after mice were subjected to HS. The effects of HA on autophagy and lysosomes were assessed in the presence of the autophagy inhibitor 3-methyladenine (3MA). Autophagy and lysosome-associated proteins were analysed by Western blotting. We found that HA protected against HS-induced death and brain injury. HS can robustly induce autophagy and impair lysosome function. HA pre-conditioning significantly modulated the autophagy level, and improved lysosome function in HS mice. Furthermore, 3MA completely abolished the neuroprotective effect of HA on HS. HS may induce brain injury through lysosomal dysfunction and impaired autophagic flux. HA protected against HS-induced brain injury via a mechanism involving the autophagy-lysosome pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Beclin-1-mediated autophagy protects spinal cord neurons against mechanical injury-induced apoptosis.

    PubMed

    Wang, Zhen-Yu; Lin, Jian-Hua; Muharram, Akram; Liu, Wen-Ge

    2014-06-01

    Apoptosis has been widely reported to be involved in the pathogenesis associated with spinal cord injury (SCI). Recently, autophagy has also been implicated in various neuronal damage models. However, the role of autophagy in SCI is still controversial and its interrelationship with apoptosis remains unclear. Here, we used an in vitro SCI model to observe a time-dependent induction of autophagy and apoptosis. Mechanical injury induced autophagy markers such as LC3 lipidation, LC3II/LC3I conversion, and Beclin-1 expression. Injured neurons showed decreased cell viability and increased apoptosis. To elucidate the effect of autophagy on apoptosis, the mechanically-injured neurons were treated with the mTOR inhibitor rapamycin and 3-methyl adenine (3-MA), which are known to regulate autophagy positively and negatively, respectively. Rapamycin-treated neurons showed the highest level of cell viability and lowest level of apoptosis among the injured neurons and those treated with 3-MA showed the reciprocal effect. Notably, rapamycin-treated neurons exhibited slightly reduced Bax expression and significantly increased Bcl-2 expression. Furthermore, by plasmid transfection, we showed that Beclin-1-overexpressing neuronal cells responded to mechanical injury with greater LC3II/LC3I conversion and cell viability, lower levels of apoptosis, higher Bcl-2 expression, and unaltered Bax expression as compared to vector control cells. Beclin-1-knockdown neurons showed almost the opposite effects. Taken together, our results suggest that autophagy may serve as a protection against apoptosis in mechanically-injured spinal cord neurons. Targeting mTOR and/or enhancing Beclin-1 expression might be alternative therapeutic strategies for SCI.

  3. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer.

    PubMed

    Capela, Carlos; Dossou, Ange Dodji; Silva-Gomes, Rita; Sopoh, Ghislain Emmanuel; Makoutode, Michel; Menino, João Filipe; Fraga, Alexandra Gabriel; Cunha, Cristina; Carvalho, Agostinho; Rodrigues, Fernando; Pedrosa, Jorge

    2016-04-01

    Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection. Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form. Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype) and 300 healthy endemic controls. The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR), 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02). Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes.

  4. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer

    PubMed Central

    Capela, Carlos; Dossou, Ange Dodji; Silva-Gomes, Rita; Sopoh, Ghislain Emmanuel; Makoutode, Michel; Menino, João Filipe; Fraga, Alexandra Gabriel; Cunha, Cristina; Carvalho, Agostinho; Rodrigues, Fernando; Pedrosa, Jorge

    2016-01-01

    Introduction Buruli ulcer (BU) is a severe necrotizing human skin disease caused by Mycobacterium ulcerans. Clinically, presentation is a sum of these diverse pathogenic hits subjected to critical immune-regulatory mechanisms. Among them, autophagy has been demonstrated as a cellular process of critical importance. Since microtubules and dynein are affected by mycolactone, the critical pathogenic exotoxin produced by M. ulcerans, cytoskeleton-related changes might potentially impair the autophagic process and impact the risk and progression of infection. Objective Genetic variants in the autophagy-related genes NOD2, PARK2 and ATG16L1 has been associated with susceptibility to mycobacterial diseases. Here, we investigated their association with BU risk, its severe phenotypes and its progression to an ulcerative form. Methods Genetic variants were genotyped using KASPar chemistry in 208 BU patients (70.2% with an ulcerative form and 28% in severe WHO category 3 phenotype) and 300 healthy endemic controls. Results The rs1333955 SNP in PARK2 was significantly associated with increased susceptibility to BU [odds ratio (OR), 1.43; P = 0.05]. In addition, both the rs9302752 and rs2066842 SNPs in NOD2 gee significantly increased the predisposition of patients to develop category 3 (OR, 2.23; P = 0.02; and OR 12.7; P = 0.03, respectively, whereas the rs2241880 SNP in ATG16L1 was found to significantly protect patients from presenting the ulcer phenotype (OR, 0.35; P = 0.02). Conclusion Our findings indicate that specific genetic variants in autophagy-related genes influence susceptibility to the development of BU and its progression to severe phenotypes. PMID:27128681

  5. Orientin protects myocardial cells against hypoxia-reoxygenation injury through induction of autophagy.

    PubMed

    Liu, Liya; Wu, Youxi; Huang, Xiulan

    2016-04-05

    Orientin, a flavonoid exists in Chinese traditional herbal Polygonum orientale L., has been previously demonstrated to protect against myocardial ischemia reperfusion injury (MIRI) through inhibition of apoptosis. However, the underlying mechanisms remain to be elucidated and we therefore in this study investigated the effects of orientin on autophagy during MIRI in rats. The results indicate that orientin, at the concentrations of 10 and 30 μM in the cultures of neonatal rat cardiomyocytes, promoted the induction of autophagy, increasing the formation of autophagosomes and enhancing the expression of LC3 puncta, LC3-II/LC3-I ratio and Beclin 1 after hypoxia/reoxygenation. The induction of autophagy by orientin correlated with enhanced cell viability and decreased apoptosis, which was significantly attenuated by autophagy inhibitor wortmannin, a phosphatidylinositol-3-kinase (PI3K) inhibitor. Moreover, application of orientin increased the activation of AMPK and Akt, downregulated the phosphorylation of mammalian target of rapamycin (mTOR) and the expression of Raptor, and enhanced the interaction between Beclin 1 and Bcl-2 in endoplasmic reticulum due to increased phosphorylation of Beclin 1 and decreased phosphorylation of Bcl-2. Our investigation suggests that the cardioprotective effects of orientin during MIRI may be mediated through the balance of autophagy through regulating AMPK, Akt, mTOR, and Bcl-2 associated signaling pathways.

  6. Autophagy protects cardiomyocytes from the myocardial ischaemia-reperfusion injury through the clearance of CLP36

    PubMed Central

    Li, Shiguo; Liu, Chao; Gu, Lei; Wang, Lina; Shang, Yongliang; Liu, Qiong; Wan, Junyi; Shi, Jian; Wang, Fang; Xu, Zhiliang; Ji, Guangju

    2016-01-01

    Cardiovascular disease (CVD) is the leading cause of the death worldwide. An increasing number of studies have found that autophagy is involved in the progression or prevention of CVD. However, the precise mechanism of autophagy in CVD, especially the myocardial ischaemia-reperfusion injury (MI/R injury), is unclear and controversial. Here, we show that the cardiomyocyte-specific disruption of autophagy by conditional knockout of Atg7 leads to severe contractile dysfunction, myofibrillar disarray and vacuolar cardiomyocytes. A negative cytoskeleton organization regulator, CLP36, was found to be accumulated in Atg7-deficient cardiomyocytes. The cardiomyocyte-specific knockout of Atg7 aggravates the MI/R injury with cardiac hypertrophy, contractile dysfunction, myofibrillar disarray and severe cardiac fibrosis, most probably due to CLP36 accumulation in cardiomyocytes. Altogether, this work reveals autophagy may protect cardiomyocytes from the MI/R injury through the clearance of CLP36, and these findings define a novel relationship between autophagy and the regulation of stress fibre in heart. PMID:27512143

  7. Probiotic Bacillus amyloliquefaciens SC06 Induces Autophagy to Protect against Pathogens in Macrophages

    PubMed Central

    Wu, Yanping; Wang, Yang; Zou, Hai; Wang, Baikui; Sun, Qiming; Fu, Aikun; Wang, Yuanyuan; Wang, Yibing; Xu, Xiaogang; Li, Weifen

    2017-01-01

    Probiotics are increasingly applied in popularity in both humans and animals. Decades of research has revealed their beneficial effects, including the immune modulation in intestinal pathogens inhibition. Autophagy—a cellular process that involves the delivery of cytoplasmic proteins and organelles to the lysosome for degradation and recirculation—is essential to protect cells against bacterial pathogens. However, the mechanism of probiotics-mediated autophagy and its role in the elimination of pathogens are still unknown. Here, we evaluated Bacillus amyloliquefaciens SC06 (Ba)-induced autophagy and its antibacterial activity against Escherichia coli (E. coli) in murine macrophage cell line RAW264.7 cells. Western blotting and confocal laser scanning analysis showed that Ba activated autophagy in a dose- and time-dependent manner. Ba-induced autophagy was found to play a role in the elimination of intracellular bacteria when RAW264.7 cells were challenged with E. coli. Ba induced autophagy by increasing the expression of Beclin1 and Atg5-Atg12-Atg16 complex, but not the AKT/mTOR signaling pathway. Moreover, Ba pretreatment attenuated the activation of JNK in RAW264.7 cells during E. coli infection, further indicating a protective role for probiotics via modulating macrophage immunity. The above findings highlight a novel mechanism underlying the antibacterial activity of probiotics. This study enriches the current knowledge on probiotics-mediated autophagy, and provides a new perspective on the prevention of bacterial infection in intestine, which further the application of probiotics in food products. PMID:28382029

  8. Glucosamine protects nucleus pulposus cells and induces autophagy via the mTOR-dependent pathway.

    PubMed

    Jiang, LiBo; Jin, YongLong; Wang, HuiRen; Jiang, YunQi; Dong, Jian

    2014-11-01

    Although glucosamine has been suggested to be effective in the treatment of osteoarthritis, its effect on disc degeneration remains unclear. We sought to explore whether glucosamine can activate autophagy in rat nucleus pulposus (NP) cells and protect cells treated with IL-1β or hydrogen peroxide (H2 O2 ). Autophagy in cells was examined by detecting for LC3, Beclin-1, m-TOR, and p70S6K, as well as by analyzing autophagosomes. To inhibit autophagy, 3-methyladenine (3-MA) was used. In the cells treated with IL-1β, the levels of Adamts-4, Mmp-13, aggrecan, and Col2a1 were analyzed by real-time PCR and immunofluorescence. Apoptosis was analyzed by TUNEL. Cell senescence under H2 O2 was revealed by SA-β-Gal staining. Glucosamine could activate autophagy in a dose-dependent manner within 24 h and inhibit the phosphorylation of m-TOR and p70S6K. Autophagy in IL-1β or H2 O2 -treated cells was increased by glucosamine. Glucosamine attenuated the decrease of aggrecan and prevented the apoptosis of the NP cells induced by IL-1β, whereas 3-MA partly reversed these effects. The percentage of SA-β-Gal-positive cells induced by H2 O2 treatment was decreased by glucosamine, accompanied by the decline of p70S6K phosphorylation. Glucosamine protects NP cells and up-regulates autophagy by inhibiting the m-TOR pathway, which might point a potential therapeutic agent for disc degeneration.

  9. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy.

    PubMed

    Chua, Jason P; Reddy, Satya L; Merry, Diane E; Adachi, Hiroaki; Katsuno, Masahisa; Sobue, Gen; Robins, Diane M; Lieberman, Andrew P

    2014-03-01

    Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.

  10. Autophagy Protects Advanced Glycation End Product-Induced Apoptosis and Expression of MMP-3 and MMP-13 in Rat Chondrocytes

    PubMed Central

    Wu, Tianlong

    2017-01-01

    Aging is one of the most prominent risk factors for the pathological progression of osteoarthritis (OA). One feature of age-related changes in OA is advanced glycation end products (AGEs) accumulation in articular cartilage. Autophagy plays a cellular housekeeping role by removing dysfunctional cellular organelles and proteins. However, the relationship between autophagy and AGE-associated OA is unknown. The aim of this study is to determine whether autophagy participates in the pathology of AGE-treated chondrocytes and to investigate the exact role of autophagy in AGE-induced cell apoptosis and expression of matrix metalloproteinase- (MMP-) 3 and MMP-13. AGEs induced notable apoptosis that was detected by Annexin V/PI double-staining, and the upregulation of MMP-3 and MMP-13 was confirmed by Western blotting. Autophagy-related proteins were also determined by Western blotting, and chondrocytes were transfected with mCherry-GFP-LC3B-adenovirus to monitor autophagic flux. As a result, autophagy significantly increased in chondrocytes and peaked at 6 h. Furthermore, rapamycin (RA) attenuated AGE-induced apoptosis and expression of MMP-3 and MMP-13 by autophagy activation. In contrast, pretreatment with autophagy inhibitor 3-methyladenine (3-MA) enhanced the abovementioned effects of AGEs. We therefore demonstrated that autophagy is linked with AGE-related pathology in rat chondrocytes and plays a protective role in AGE-induced apoptosis and expression of MMP-3 and MMP-13. PMID:28265573

  11. Autophagy Constitutes a Protective Mechanism against Ethanol Toxicity in Mouse Astrocytes and Neurons.

    PubMed

    Pla, Antoni; Pascual, María; Guerri, Consuelo

    2016-01-01

    Ethanol induces brain damage and neurodegeneration by triggering inflammatory processes in glial cells through activation of Toll-like receptor 4 (TLR4) signaling. Recent evidence indicates the role of protein degradation pathways in neurodegeneration and alcoholic liver disease, but how these processes affect the brain remains elusive. We have demonstrated that chronic ethanol consumption impairs proteolytic pathways in mouse brain, and the immune response mediated by TLR4 receptors participates in these dysfunctions. We evaluate the in vitro effects of an acute ethanol dose on the autophagy-lysosome pathway (ALP) on WT and TLR4-/- mouse astrocytes and neurons in primary culture, and how these changes affect cell survival. Our results show that ethanol induces overexpression of several autophagy markers (ATG12, LC3-II, CTSB), and increases the number of lysosomes in WT astrocytes, effects accompanied by a basification of lysosomal pH and by lowered phosphorylation levels of autophagy inhibitor mTOR, along with activation of complexes beclin-1 and ULK1. Notably, we found only minor changes between control and ethanol-treated TLR4-/- mouse astroglial cells. Ethanol also triggers the expression of the inflammatory mediators iNOS and COX-2, but induces astroglial death only slightly. Blocking autophagy by using specific inhibitors increases both inflammation and cell death. Conversely, in neurons, ethanol down-regulates the autophagy pathway and triggers cell death, which is partially recovered by using autophagy enhancers. These results support the protective role of the ALP against ethanol-induced astroglial cell damage in a TLR4-dependent manner, and provide new insight into the mechanisms that underlie ethanol-induced brain damage and are neuronal sensitive to the ethanol effects.

  12. Calorie restriction combined with resveratrol induces autophagy and protects 26-month-old rat hearts from doxorubicin-induced toxicity

    PubMed Central

    Dutta, Debariya; Xu, Jinze; Dirain, Marvin L.S.; Leeuwenburgh, Christiaan

    2014-01-01

    The multiple beneficial effects of calorie restriction (CR) on several organs, including the heart, are widely known. Recently, the plant polyphenol resveratrol has been shown to possess beneficial effects similar to that of CR. Among the host of effects on cardiac muscle, a cellular self-eating process called autophagy has been shown to be induced by both CR and resveratrol. Autophagy is vital in removing dysfunctional organelles and damaged proteins from the cell, thereby maintaining cellular quality control. In this study, we explored whether short-term moderate CR (20%), either alone or in combination with resveratrol, can induce autophagy in the hearts of 26-month old Fischer 344 × Brown Norway (FBN) rats. Autophagy stimulation was investigated by measuring protein expression levels of autophagy proteins Beclin-1, Atg5, p62, and LC3-II/LC3-I ratio. We found that 20% CR or resveratrol alone for 6 weeks could not induce autophagy, but 20% CR in combination with 50 mg/kg/day resveratrol resulted in an induction of autophagy in the hearts of 26 month old rats. Although oxidative stress has been proposed to be an inducer of autophagy, treatment with the chemotherapeutic drug doxorubicin was unable to stimulate autophagy. The enhanced autophagy due to CR + resveratrol was associated with protection from doxorubicin-induced damage, as measured by cardiac apoptotic levels, serum creatine kinase (CK) and lactate dehydrogenase (LDH) activity. We propose that a combinatorial approach of low-dose CR and resveratrol has the potential to be used therapeutically to induce autophagy and provides protection against doxorubicin-mediated toxicity. PMID:24975655

  13. Data supporting the activation of autophagy genes in the diabetic heart.

    PubMed

    Munasinghe, Pujika Emani; Riu, Federica; Dixit, Parul; Edamatsu, Midori; Saxena, Pankaj; Hamer, Nathan S J; Galvin, Ivor F; Bunton, Richard W; Lequeux, Sharon; Jones, Greg; Lamberts, Regis R; Emanueli, Costanza; Madeddu, Paolo; Katare, Rajesh

    2015-12-01

    This data article contains full list of autophagy related genes that are altered in diabetic heart. This article also shows data from in vitro cultured cardiomyocytes that are exposed the high glucose treatment to simulate hyperglycemic state in vitro. The interpretation of these data and further extensive insights into the regulation of SG biogenesis by AMPK can be found in "Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway" (Munasinghe et al., in press) [1].

  14. Systematic cloning and analysis of autophagy-related genes from the silkworm Bombyx mori.

    PubMed

    Zhang, Xuan; Hu, Zhan-Ying; Li, Wei-Fang; Li, Qing-Rong; Deng, Xiao-Juan; Yang, Wan-Ying; Cao, Yang; Zhou, Cong-Zhao

    2009-05-27

    Through the whole life of eukaryotes, autophagy plays an important role in various biological events including development, differentiation and determination of lifespan. A full set of genes and their encoded proteins of this evolutionarily conserved pathway have been identified in many eukaryotic organisms from yeast to mammals. However, this pathway in the insect model organism, the silkworm Bombyx mori, remains poorly investigated. Based on the autophagy pathway in several model organisms and a series of bioinformatic analyses, we have found more than 20 autophagy-related genes from the current database of the silkworm Bombyx mori. These genes could be further classified into the signal transduction pathway and two ubiquitin-like pathways. Using the mRNA extracted from the silkgland, we cloned the full length cDNA fragments of some key genes via reverse transcription PCR and 3' rapid amplification of cDNA ends (RACE). In addition, we found that the transcription levels of two indicator genes BmATG8 and BmATG12 in the silkgland tend to be increased from 1st to 8th day of the fifth instar larvae. Bioinformatics in combination with RT-PCR enable us to remodel a preliminary pathway of autophagy in the silkworm. Amplification and cloning of most autophagy-related genes from the silkgland indicated autophagy is indeed an activated process. Furthermore, the time-course transcriptional profiles of BmATG8 and BmATG12 revealed that both genes are up-regulated along the maturation of the silkgland during the fifth instar. These findings suggest that the autophagy should play an important role in Bombyx mori silkgland.

  15. Autophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway.

    PubMed

    Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin

    2016-01-01

    Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway.

  16. Autophagy activation protects shock wave induced renal tubular epithelial cell apoptosis may through modulation of Akt/ GSK-3β pathway

    PubMed Central

    Long, Qingzhi; Li, Xiang; He, Hui; He, Dalin

    2016-01-01

    Purpose: Extracorporeal shock wave lithotripsy (ESWL) is well documented to exert destructive effect to renal cells and its mechanism is not clear. Autophagy is one of cell basic response for stressful conditions and it is important to determine cell's fate. The aim of this study is to elucidate the role of autophagy in the process of shock wave-induced renal cells injury. Methods: NRK-52E cell, a rat renal tubular epithelial cell, was exposed to shock wave at the voltage of 14KV. GFP-LC3 puncta was used to monitor Autophagy flux in the process of shock wave injury. Autophagic relative proteins, such as light chain 3 (LC3), beclin-1 and p62, were also examined. Cell variability and apoptosis were detected when inhibition autophagy with 3-methyladenine (3MA) or stimulating its activity with rapamycin during the process of shock wave injury. The role of Akt/ GSK-3β and its connection with autophagy in the process of shock wave injury were also investigated. Results: Shock wave was confirmed to activate autophagy in renal cells, which was manifested in LC3-II turnover, beclin-1 induction and degradation of p62. Inhibition autophagy enhanced cell damage or apoptosis, whereas its stimulating was able to exert protection from shock wave injury. Akt/ GSK-3β, a cell-survival signaling pathway, can also be activated during the process. And its activation could be suppressed by blockade autophagy. Conclusion: Autophagy is a self-protective response for renal cells from shock wave injury. The cyto-protection of autophagy may be connected with modulation Akt/ GSK-3β pathway. PMID:27994511

  17. Autophagy protects type II alveolar epithelial cells from Mycobacterium tuberculosis infection

    SciTech Connect

    Guo, Xu-Guang; Ji, Tian-Xing; Xia, Yong; Ma, Yue-Yun

    2013-03-08

    Highlights: ► We investigated the protective effect of autophagy pathway against MTB infection. ► MTB-infected A549 cells had higher LDH release. ► Inhibition of autophagy signaling significantly enhanced the MTB-induced necrosis. ► Autophagy prevents apoptosis and promotes cell survival in infected cells. -- Abstract: This study was designed to investigate the protective effect of the autophagy signaling pathway against Mycobacterium tuberculosis infection in type II alveolar epithelial cells. An in vitro M. tuberculosis system was established using human A549 cells. Infection-induced changes in the expression of the autophagic marker LC3 were assessed by reverse transcription-PCR and Western blotting. Morphological changes in autophagosomes were detected by transmission electron microscopy (TEM). The function of the autophagy signaling pathway during infection was assessed by measuring the level of cell death and the amount of lactate dehydrogenase (LDH) released in the presence or absence of the inhibitor 3-methyladenine (3-MA). In addition, effects on LDH release were assessed after the siRNA-mediated knockdown of the essential autophagosomal structural membrane protein Atg5. LC3 mRNA expression was significantly reduced in M.tuberculosis-infected A549 cells (16888.76 ± 1576.34 vs. uninfected: 12744.29 ± 1089.37; P < 0.05). TEM revealed M.tuberculosis bacilli-containing compartments that were surrounded by double membranes characteristic of the autophagic process. M.tuberculosis-infected A549 cells released more LDH (1.45 ± 0.12 vs. uninfected: 0.45 ± 0.04; P < 0.05). The inhibition of autophagy signaling significantly enhanced M.tuberculosis-induced necrosis (3-MA: 75 ± 5% vs. untreated: 15 ± 1%; P < 0.05) and LDH release (3-MA: 2.50 ± 0.24 vs. untreated: 0.45 ± 0.04; Atg5 knockdown: 3.19 ± 0.29 vs. untreated: 1.28 ± 0.11; P < 0.05). Our results indicate that autophagy signaling pathway prevents apoptosis in type II alveolar epithelial cells

  18. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    PubMed

    Wu, Ya C; Wang, Xiao J; Yu, Le; Chan, Francis K L; Cheng, Alfred S L; Yu, Jun; Sung, Joseph J Y; Wu, William K K; Cho, Chi H

    2012-01-01

    Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.

  19. Heat stroke induces autophagy as a protection mechanism against neurodegeneration in the brain.

    PubMed

    Liu, Tsung-Ta; Hu, Chou-Hui; Tsai, Chu-Dang; Li, Chuan-Wang; Lin, Yuh-Feng; Wang, Jia-Yi

    2010-12-01

    Heat stroke (HS) is defined clinically as a condition when core body temperature rises above 40°C and is accompanied by central nervous system abnormalities. In this study, we established a rat model of HS by exposing anesthetized rats to elevated ambient temperature (40°C) until core temperature reaching 40.5°C (HS onset). The rat was immediately removed from heating chamber, allowed recovery for various time periods, and killed for histological and biochemical studies. Our results indicated neuronal shrinkage and pyknosis of the nucleus and sustained up to 12 h recovery time in cerebral cortex. Elevated expression of autophagy-related proteins, including microtubule associated protein light chain 3 and beclin 1 in cortical tissue at various times (3, 6, 12 h) of recovery was observed. In addition, the number of autophagosomes stained by monodansylcadaverine, a specific autophagosome marker, increased after heat exposure but was reduced by pretreatment with 3-methyladenine, an autophagy inhibitor. Furthermore, heat exposure increased neuronal degeneration in cortical tissue, as evidenced by staining with the fluorescent dye Fluoro-Jade B for degenerating neuron. Pretreatment with 3-methyladenine in HS rats aggravated neurodegeneration. Taken together, these results suggest that HS induces autophagy as a protection mechanism against neurodegeneration. Modulation of autophagy may provide a potential therapeutic approach for HS and await further research.

  20. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis

    PubMed Central

    Lenoir, Olivia; Jasiek, Magali; Hénique, Carole; Guyonnet, Léa; Hartleben, Björn; Bork, Tillmann; Chipont, Anna; Flosseau, Kathleen; Bensaada, Imane; Schmitt, Alain; Massé, Jean-Marc; Souyri, Michèle; Huber, Tobias B; Tharaux, Pierre-Louis

    2015-01-01

    The glomerulus is a highly specialized capillary tuft, which under pressure filters large amounts of water and small solutes into the urinary space, while retaining albumin and large proteins. The glomerular filtration barrier (GFB) is a highly specialized filtration interface between blood and urine that is highly permeable to small and midsized solutes in plasma but relatively impermeable to macromolecules such as albumin. The integrity of the GFB is maintained by molecular interplay between its 3 layers: the glomerular endothelium, the glomerular basement membrane and podocytes, which are highly specialized postmitotic pericytes forming the outer part of the GFB. Abnormalities of glomerular ultrafiltration lead to the loss of proteins in urine and progressive renal insufficiency, underlining the importance of the GFB. Indeed, albuminuria is strongly predictive of the course of chronic nephropathies especially that of diabetic nephropathy (DN), a leading cause of renal insufficiency. We found that high glucose concentrations promote autophagy flux in podocyte cultures and that the abundance of LC3B II in podocytes is high in diabetic mice. Deletion of Atg5 specifically in podocytes resulted in accelerated diabetes-induced podocytopathy with a leaky GFB and glomerulosclerosis. Strikingly, genetic alteration of autophagy on the other side of the GFB involving the endothelial-specific deletion of Atg5 also resulted in capillary rarefaction and accelerated DN. Thus autophagy is a key protective mechanism on both cellular layers of the GFB suggesting autophagy as a promising new therapeutic strategy for DN. PMID:26039325

  1. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells

    PubMed Central

    Zhang, Zhe; Mao, Lin; Han, Yangyang; Yan, Jun; Lei, Ming

    2016-01-01

    Triptolide, an active compound extracted from the Chinese herb thunder god vine (Tripterygium wilfordii Hook F.), has potent anti-tumor activity. Recently, triptolide was found to induce autophagy in cancer cells. However, the effects of triptolide on autophagy in human prostate cancer (PCa) cells have not yet been clearly elucidated. In this study, we demonstrated that triptolide induces autophagy in three PCa cell lines, PC-3, LNCaP and C4–2. Furthermore, we found that triptolide mediates intracellular accumulation of free calcium by stimulating the endoplasmic reticulum (ER) stress response. This activates the CaMKKβ-AMPK signaling pathway, which in turn inhibits mTOR and activates both ULK1 and Beclin 1, finally resulting in autophagy. Moreover, we found that treatment with autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) enhances triptolide-induced PCa cell death and growth inhibition. Using a PC-3-xenografted mouse model, we showed that blocking autophagy with CQ significantly promoted triptolide-induced tumor growth inhibition in vivo. Overall, our results show that triptolide induces protective autophagy through the CaMKKβ-AMPK pathway in PCa cells, implying that a combination of triptolide with autophagy inhibitors may potentially be an effective therapeutic strategy for PCa. PMID:26734992

  2. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells.

    PubMed

    Zhao, Fei; Huang, Weiwei; Zhang, Zhe; Mao, Lin; Han, Yangyang; Yan, Jun; Lei, Ming

    2016-02-02

    Triptolide, an active compound extracted from the Chinese herb thunder god vine (Tripterygium wilfordii Hook F.), has potent anti-tumor activity. Recently, triptolide was found to induce autophagy in cancer cells. However, the effects of triptolide on autophagy in human prostate cancer (PCa) cells have not yet been clearly elucidated. In this study, we demonstrated that triptolide induces autophagy in three PCa cell lines, PC-3, LNCaP and C4-2. Furthermore, we found that triptolide mediates intracellular accumulation of free calcium by stimulating the endoplasmic reticulum (ER) stress response. This activates the CaMKKβ-AMPK signaling pathway, which in turn inhibits mTOR and activates both ULK1 and Beclin 1, finally resulting in autophagy. Moreover, we found that treatment with autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) enhances triptolide-induced PCa cell death and growth inhibition. Using a PC-3-xenografted mouse model, we showed that blocking autophagy with CQ significantly promoted triptolide-induced tumor growth inhibition in vivo. Overall, our results show that triptolide induces protective autophagy through the CaMKKβ-AMPK pathway in PCa cells, implying that a combination of triptolide with autophagy inhibitors may potentially be an effective therapeutic strategy for PCa.

  3. Global analysis of fission yeast mating genes reveals new autophagy factors.

    PubMed

    Sun, Ling-Ling; Li, Ming; Suo, Fang; Liu, Xiao-Man; Shen, En-Zhi; Yang, Bing; Dong, Meng-Qiu; He, Wan-Zhong; Du, Li-Lin

    2013-01-01

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12-Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy.

  4. Global Analysis of Fission Yeast Mating Genes Reveals New Autophagy Factors

    PubMed Central

    Sun, Ling-Ling; Shen, En-Zhi; Yang, Bing; Dong, Meng-Qiu; He, Wan-Zhong; Du, Li-Lin

    2013-01-01

    Macroautophagy (autophagy) is crucial for cell survival during starvation and plays important roles in animal development and human diseases. Molecular understanding of autophagy has mainly come from the budding yeast Saccharomyces cerevisiae, and it remains unclear to what extent the mechanisms are the same in other organisms. Here, through screening the mating phenotype of a genome-wide deletion collection of the fission yeast Schizosaccharomyces pombe, we obtained a comprehensive catalog of autophagy genes in this highly tractable organism, including genes encoding three heretofore unidentified core Atg proteins, Atg10, Atg14, and Atg16, and two novel factors, Ctl1 and Fsc1. We systematically examined the subcellular localization of fission yeast autophagy factors for the first time and characterized the phenotypes of their mutants, thereby uncovering both similarities and differences between the two yeasts. Unlike budding yeast, all three Atg18/WIPI proteins in fission yeast are essential for autophagy, and we found that they play different roles, with Atg18a uniquely required for the targeting of the Atg12–Atg5·Atg16 complex. Our investigation of the two novel factors revealed unforeseen autophagy mechanisms. The choline transporter-like protein Ctl1 interacts with Atg9 and is required for autophagosome formation. The fasciclin domain protein Fsc1 localizes to the vacuole membrane and is required for autophagosome-vacuole fusion but not other vacuolar fusion events. Our study sheds new light on the evolutionary diversity of the autophagy machinery and establishes the fission yeast as a useful model for dissecting the mechanisms of autophagy. PMID:23950735

  5. HMGB1/RAGE axis promotes autophagy and protects keratinocytes from ultraviolet radiation-induced cell death.

    PubMed

    Mou, Kuanhou; Liu, Wei; Han, Dan; Li, Pan

    2017-03-01

    The primary cause of skin cancer is ultraviolet (UV) light from the sun. Keratinocytes are the predominant cell type in the epidermis and form a barrier against environmental damage, especially from UV light irradiation. Autophagy is a self-digestion mechanism for energy homeostasis at critical times during development and as a response to stress. High-mobility group protein 1 (HMGB1) is a highly conserved nuclear protein that is associated with cell autophagy. We investigated the role of HMGB1 in keratinocytes exposed to UV irradiation and its regulation of keratinocyte autophagy. Specimens of UV-exposed human skin were assayed immunohistochemically for HMGB1. HaCaT immortalized human keratinocytes were used to investigate the mechanism of HMGB1 translocation induced by UV irradiation. Levels of cytosolic reactive oxygen species (ROS) were determined by H2DCF assay, apoptosis was assayed by flow cytometry and western-blot after lentivirus-mediated shRNA targeting of HMGB1 in keratinocytes by UV irradiation. Phosphorylated-Erk1/2 expression was assayed by western blotting. HMGB1 and its receptor (receptor for advanced glycation end products, RAGE) were both expressed by HaCaT cells, and HMGB1 was transferred from the nucleus to the cytoplasm after UV irradiation in both HaCaT and human skin keratinocytes. Knockdown of HMGB1 expression by lentivirus-mediated shRNA limited UV-induced autophagy and led to increased apoptosis of HaCaT cells. Pharmacological inhibition of HMGB1 cytoplasmic translocation by agents such as ethyl pyruvate limits starvation-induced autophagy. UV irradiation led to phosphorylation of Erk1/2 in HaCaT cells. Inhibition of RAGE and Erk1/2 limited HaCaT cell autophagy. Autocrine HMGB1 modulated HaCaT autophagy via a RAGE/HMGB1/extracellular signal-regulated Erk1/2-dependent pathway to protect keratinocytes from apoptosis during UV irradiation. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All

  6. Autophagy and formation of tubulovesicular autophagosomes provide a barrier against nonviral gene delivery.

    PubMed

    Roberts, Rebecca; Al-Jamal, Wafa' T; Whelband, Matthew; Thomas, Paul; Jefferson, Matthew; van den Bossche, Jeroen; Powell, Penny P; Kostarelos, Kostas; Wileman, Thomas

    2013-05-01

    Cationic liposome (lipoplex) and polymer (polyplex)-based vectors have been developed for nonviral gene delivery. These vectors bind DNA and enter cells via endosomes, but intracellular transfer of DNA to the nucleus is inefficient. Here we show that lipoplex and polyplex vectors enter cells in endosomes, activate autophagy and generate tubulovesicular autophagosomes. Activation of autophagy was dependent on ATG5, resulting in lipidation of LC3, but did not require the PtdIns 3-kinase activity of PIK3C3/VPS34. The autophagosomes generated by lipoplex fused with each other, and with endosomes, resulting in the delivery of vectors to large tubulovesicular autophagosomes, which accumulated next to the nucleus. The tubulovesicular autophagosomes contained autophagy receptor protein SQSTM1/p62 and ubiquitin, suggesting capture of autophagy cargoes, but fusion with lysosomes was slow. Gene delivery and expression from both lipoplex and polyplex increased 8-fold in atg5 (-/-) cells unable to generate tubulovesicular autophagosomes. Activation of autophagy and capture within tubulovesicular autophagosomes therefore provides a new cellular barrier against efficient gene transfer and should be considered when designing efficient nonviral gene delivery vectors.

  7. Novel functional roles of caspase-related genes in the regulation of apoptosis and autophagy

    PubMed Central

    Shin, Ju-Hyun

    2016-01-01

    Caspases, a family of cysteine proteases, cleave substrates and play significant roles in apoptosis, autophagy, and development. Recently, our group identified 72 genes that interact with Death Caspase-1 (DCP-1) proteins in Drosophila by genetic screening of 15,000 EP lines. However, the cellular functions and molecular mechanisms of the screened genes, such as their involvement in apoptosis and autophagy, are poorly understood in mammalian cells. In order to study the functional characterizations of the genes in human cells, we investigated 16 full-length human genes in mammalian expression vectors and tested their effects on apoptosis and autophagy in human cell lines. Our studies revealed that ALFY, BIRC4, and TAK1 induced autophagy, while SEC61A2, N-PAC, BIRC4, WIPI1, and FALZ increased apoptotic cell death. BIRC4 was involved in both autophagy and apoptosis. Western blot analysis and luciferase reporter activity indicated that ALFY, BIRC4, PDGFA, and TAK1 act in a p53-dependent manner, whereas CPSF1, SEC61A2, N-PAC, and WIPI1 appear to be p53-independent. Overexpression of BIRC4 and TAK1 caused upregulation of p53 and accumulation of its target proteins as well as an increase in p53 mRNA levels, suggesting that these genes are involved in p53 transcription and expression of its target genes followed by p53 protein accumulation. In conclusion, apoptosis and/or autophagy mediated by BIRC4 and TAK1 may be regulated by p53 and caspase activity. These novel findings may provide valuable information that will aid in a better understanding of the roles of caspase-related genes in human cell lines and be useful for the process of drug discovery. PMID:27847434

  8. DT-diaphorase Protects Against Autophagy Induced by Aminochrome-Dependent Alpha-Synuclein Oligomers.

    PubMed

    Muñoz, Patricia S; Segura-Aguilar, Juan

    2017-05-06

    Alpha-synuclein (SNCA) oligomers have been reported to inhibit autophagy. Aminochrome-induced SNCA oligomers are neurotoxic, but the flavoenzyme DT-diaphorase prevents both their formation and their neurotoxicity. However, the possible protective role of DT-diaphorase against autophagy impairment by aminochrome-induced SNCA oligomers remains unclear. To test this idea, we used the cell line RCSN-3NQ7SNCA, with constitutive expression of a siRNA against DT-diaphorase and overexpression SNCA, and RCSN-3 as control cells. A significant increase in LC3-II expression was observed in RCSN-3 cells treated with 20 μM aminochrome and 10 μM rapamycin followed by a decrease in cell death compared to RCSN-3 cells incubated with 20 μM aminochrome alone. The incubation of RCSN-3NQ7SNCA cells with 20 μM aminochrome and 10 μM rapamycin does not change the expression of LC3-II in comparison with RCSN-3NQ7SNCA cells incubated with 20 μM aminochrome alone. The incubation of both cell lines preincubated with 100 nM bafilomycin and 20 μM aminochrome increases the level of LC3-II. Under the same conditions, cell death increases in both cell lines in comparison with cells incubated with 20 μM aminochrome. These results support the protective role of DT-diaphorase against SNCA oligomers-induced autophagy inhibition.

  9. Resveratrol protects against mitochondrial dysfunction through autophagy activation in human nucleus pulposus cells.

    PubMed

    Zhang, Baolong; Xu, Linfei; Zhuo, Naiqiang; Shen, Jieliang

    2017-09-05

    Intervertebral disc degeneration (IVDD) is closely related with aging, whereas mitochondrial damage is a common feature of aging that results in cell apoptosis. Resveratrol (RES) is a natural antioxidant that protects against mitochondrial dysfunction in various cells. This study aimed to investigate the protective role of RES against mitochondrial dysfunction and human nucleus pulposus cell (NPC) apoptosis. We found that mitochondrial dysfunction and NPC apoptosis could be induced under oxidative stress by 100 μmol/l of H2O2. However, RES tended to attenuate the H2O2-mediated cytotoxicity. Therefore, autophagic state was evaluated in NPCs to further reveal the underlying mechanism. Results showed that RES reversed the impaired autophagy induced by H2O2, and this increased autophagic flux was confirmed by the addition of bafilomycin A1. Moreover, pretreatment with 3-methyladenine showed that the potential mechanism of RES to prevent deteriorating mitochondrial function and cell apoptosis was related to autophagy activation. Furthermore, MRI and histological detection were employed to provide more solid evidence that RES injection in an IVDD rabbit model effectively retards the degenerative process of the intervertebral discs in vivo. In summary, these results suggested that RES could alleviate mitochondrial dysfunction and cell apoptosis under oxidative stress and may delay the progression of disc degeneration, whose mechanism is associated with an advantageous role of autophagy induced by RES. Copyright © 2017. Published by Elsevier Inc.

  10. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection.

    PubMed

    Tan, Valerie P; Miyamoto, Shigeki

    2015-01-01

    Hexokinases (HKs) catalyze the first step of glucose metabolism, phosphorylating glucose to glucose 6-phosphate (G6P). HK2/hexokinase-II is a predominant isoform in insulin-sensitive tissues such as heart, skeletal muscle, and adipose tissues and is also upregulated in many types of tumors associated with enhanced aerobic glycolysis (the Warburg effect). Accumulating evidence indicates that HK2 plays an important role not only in glycolysis but also in cell survival. Although there is increasing recognition that cellular metabolism and cell survival are closely related, the molecular link between metabolism and autophagic pathways has not been fully elucidated. We recently discovered that HK2 facilitates autophagy in response to glucose deprivation (HK substrate deprivation) to protect cardiomyocytes, and suggest that HK2 functions as a molecular switch from glycolysis to autophagy to ensure cellular energy homeostasis under starvation conditions.

  11. Genetic variants in autophagy associated genes are associated with DNA damage levels in Chinese population.

    PubMed

    Li, Zhihua; Xin, Junyi; Chen, Weihong; Liu, Jia; Zhu, Meng; Zhao, Congwen; Yuan, Jing; Jin, Guangfu; Ma, Hongxia; Du, Jiangbo; Hu, Zhibin; Wu, Tangchun; Shen, Hongbing; Dai, Juncheng; Yu, Hao

    2017-08-30

    Autophagy associated genes (ATGs) played an important role in the repair process of DNA damage and decreased autophagy may weaken the repair process and aggravate DNA damage. Based on this, we hypothesized that DNA damage levels might be modified by genetic variants in autophagy associated genes. In order to validate our hypothesis, 307 subjects were recruited from three different cities (Zhuhai, Wuhan and Tianjin) in China. Demographic data, individual 24-h PM2.5 exposure and peripheral blood DNA damage levels were also detected. Seven potentially functional polymorphisms in four essential autophagy associated genes (ATG5, ATG7, ATG8 and ATG13) were screened to evaluate the relationship between the polymorphisms of autophagy associated genes and DNA damage levels. This association was assessed by using multivariable linear regression model, age, sex, smoke and PM2.5 exposure levels were adjusted in each city. We found that rs12599322 in ATG8 (A>G, β=0.263, 95% CI: 0.108-0.419, P=8.98×10(-4)) and rs7484002 in ATG13 (A>G, β=0.396, 95% CI: 0.085-0.708, P=0.013) were significantly associated with higher DNA damage levels. Furthermore, functional annotations showed that both rs12599322 and rs7484002 located at transcription factor binding sites (TFBS), indicating that they could regulate the expression of related genes through TF regulation. Following allelic trend analysis revealed that the DNA damage levels were significantly aggravated with the increasing number of risk variants in autophagy associated genes (P for trend: 8.09×10(-5)). Our findings suggested that the polymorphisms in ATGs may influence DNA damage levels in one of the Chinese population. Copyright © 2017. Published by Elsevier B.V.

  12. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell

    PubMed Central

    Li, Wei; Zou, Wei; Yang, Yihong; Chai, Yongping; Chen, Baohui; Cheng, Shiya; Tian, Dong

    2012-01-01

    Apoptotic cell degradation is a fundamental process for organism development, and impaired clearance causes inflammatory or autoimmune disease. Although autophagy genes were reported to be essential for exposing the engulfment signal on apoptotic cells, their roles in phagocytes for apoptotic cell removal are not well understood. In this paper, we develop live-cell imaging techniques to study apoptotic cell clearance in the Caenorhabditis elegans Q neuroblast lineage. We show that the autophagy proteins LGG-1/LC3, ATG-18, and EPG-5 were sequentially recruited to internalized apoptotic Q cells in the phagocyte. In atg-18 or epg-5 mutants, apoptotic Q cells were internalized but not properly degraded; this phenotype was fully rescued by the expression of autophagy genes in the phagocyte. Time-lapse analysis of autophagy mutants revealed that recruitment of the small guanosine triphosphatases RAB-5 and RAB-7 to the phagosome and the formation of phagolysosome were all significantly delayed. Thus, autophagy genes act within the phagocyte to promote apoptotic cell degradation. PMID:22451698

  13. Electroacupuncture protects against ischemic stroke by reducing autophagosome formation and inhibiting autophagy through the mTORC1-ULK1 complex-Beclin1 pathway

    PubMed Central

    LIU, WEILIN; SHANG, GUANHAO; YANG, SHANLI; HUANG, JIA; XUE, XIEHUA; LIN, YUNJIAO; ZHENG, YI; WANG, XIAN; WANG, LULU; LIN, RUHUI; TAO, JING; CHEN, LIDIAN

    2016-01-01

    In a previous study by our group, we demonstrated that electroacupuncture (EA) activates the class I phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. There is considerable evidence that the downstream mammalian target of rapamycin complex 1 (mTORC1) plays an important role in autophagy following ischemic stroke. The aim of the present study was to determine whether EA exerts a neuroprotective effect through mTORC1-mediated autophagy following ischemia/reperfusion injury. Our results revealed that EA at the LI11 and ST36 acupoints attenuated motor dysfunction, improved neurological deficit outcomes and decreased the infarct volumes. The number of autophagosomes, autolysosomes and lysosomes was decreased following treatment with EA. Simultaneously, the levels of the autophagosome membrane maker, microtubule-associated protein 1 light chain 3 beta (LC3B)II/I, Unc-51-like kinase 1 (ULK1), autophagy related gene 13 Atg13) and Beclin1 (ser14) were decreased, whereas mTORC1 expression was increased in the peri-infarct cortex. These results suggest that EA protects against ischemic stroke through the inhibition of autophagosome formation and autophagy, which is mediated through the mTORC1-ULK complex-Beclin1 pathway. PMID:26647915

  14. Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling.

    PubMed

    Wang, Kui; Liu, Rui; Li, Jingyi; Mao, Jiali; Lei, Yunlong; Wu, Jinhua; Zeng, Jun; Zhang, Tao; Wu, Hong; Chen, Lijuan; Huang, Canhua; Wei, Yuquan

    2011-09-01

    Quercetin, a dietary antioxidant present in fruits and vegetables, is a promising cancer chemopreventive agent that inhibits tumor promotion by inducing cell cycle arrest and promoting apoptotic cell death. In this study, we examined the biological activities of quercetin against gastric cancer. Our studies demonstrated that exposure of gastric cancer cells AGS and MKN28 to quercetin resulted in pronounced pro-apoptotic effect through activating the mitochondria pathway. Meanwhile, treatment with quercetin induced appearance of autophagic vacuoles, formation of acidic vesicular organelles (AVOs), conversion of LC3-I to LC3-II, recruitment of LC3-II to the autophagosomes as well as activation of autophagy genes, suggesting that quercetin initiates the autophagic progression in gastric cancer cells. Furthermore, either administration of autophagic inhibitor chloroquine or selective ablation of atg5 or beclin 1 using small interfering RNA (siRNA) could augment quercetin-induced apoptotic cell death, suggesting that autophagy plays a protective role against quercetin-induced apoptosis. Moreover, functional studies revealed that quercetin activated autophagy by modulation of Akt-mTOR signaling and hypoxia-induced factor 1α (HIF-1α) signaling. Finally, a xenograft model provided additional evidence for occurrence of quercetin-induced apoptosis and autophagy in vivo. Together, our studies provided new insights regarding the biological and anti-proliferative activities of quercetin against gastric cancer, and may contribute to rational utility and pharmacological study of quercetin in future anti-cancer research.

  15. Bacopa monnieri-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis.

    PubMed

    Das, Durgesh Nandini; Naik, Prajna Paramita; Nayak, Aditi; Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Sinha, Niharika; Bhutia, Sujit K

    2016-11-01

    Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Agonist antibodies activating the Met receptor protect cardiomyoblasts from cobalt chloride-induced apoptosis and autophagy.

    PubMed

    Gallo, S; Gatti, S; Sala, V; Albano, R; Costelli, P; Casanova, E; Comoglio, P M; Crepaldi, T

    2014-04-17

    Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF), mainly activates prosurvival pathways, including protection from apoptosis. In this work, we investigated the cardioprotective mechanisms of Met activation by agonist monoclonal antibodies (mAbs). Cobalt chloride (CoCl2), a chemical mimetic of hypoxia, was used to induce cardiac damage in H9c2 cardiomyoblasts, which resulted in reduction of cell viability by (i) caspase-dependent apoptosis and (ii) - surprisingly - autophagy. Blocking either apoptosis with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethylketone or autophagosome formation with 3-methyladenine prevented loss of cell viability, which suggests that both processes contribute to cardiomyoblast injury. Concomitant treatment with Met-activating antibodies or HGF prevented apoptosis and autophagy. Pro-autophagic Redd1, Bnip3 and phospho-AMPK proteins, which are known to promote autophagy through inactivation of the mTOR pathway, were induced by CoCl2. Mechanistically, Met agonist antibodies or HGF prevented the inhibition of mTOR and reduced the flux of autophagosome formation. Accordingly, their anti-autophagic function was completely blunted by Temsirolimus, a specific mTOR inhibitor. Targeted Met activation was successful also in the setting of low oxygen conditions, in which Met agonist antibodies or HGF demonstrated anti-apoptotic and anti-autophagic effects. Activation of the Met pathway is thus a promising novel therapeutic tool for ischaemic injury.

  17. Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage.

    PubMed

    Lépine, Sandrine; Allegood, Jeremy C; Edmonds, Yvette; Milstien, Sheldon; Spiegel, Sarah

    2011-12-30

    Sphingosine 1-phosphate (S1P) and ceramide have been implicated in both autophagy and apoptosis. However, the roles of these sphingolipid metabolites in the links between these two processes are not completely understood. Depletion of S1P phosphohydrolase-1 (SPP1), which degrades intracellular S1P, induces the unfolded protein response and endoplasmic reticulum stress-induced autophagy (Lépine, S., Allegood, J. C., Park, M., Dent, P., Milstien, S., and Spiegel, S. (2011) Cell Death Differ. 18, 350-361). Surprisingly, however, treatment with doxorubicin, which by itself also induced autophagy, markedly reduced the extent of autophagy mediated by depletion of SPP1. Concomitantly, doxorubicin-induced apoptosis was greatly enhanced by down-regulation of SPP1. Autophagy and apoptosis seemed to be sequentially linked because inhibiting autophagy with 3-methyladenine also markedly attenuated apoptosis. Moreover, silencing Atg5 or the three sensors of the unfolded protein response, IRE1α, ATF6, and PKR-like eIF2α kinase (PERK), significantly decreased both autophagy and apoptosis. Doxorubicin stimulated calpain activity and Atg5 cleavage, which were significantly enhanced in SPP1-depleted cells. Inhibition or depletion of calpain not only suppressed Atg5 cleavage, it also markedly decreased the robust apoptosis induced by doxorubicin in SPP1-deficient cells. Importantly, doxorubicin also increased de novo synthesis of the pro-apoptotic sphingolipid metabolite ceramide. Elevation of ceramide in turn stimulated calpain; conversely, inhibiting ceramide formation suppressed Atg5 cleavage and apoptosis. Hence, doxorubicin switches protective autophagy in SPP1-depleted cells to apoptosis by calpain-mediated Atg5 cleavage.

  18. Calpain Inhibition Is Protective in Machado-Joseph Disease Zebrafish Due to Induction of Autophagy.

    PubMed

    Watchon, Maxinne; Yuan, Kristy C; Mackovski, Nick; Svahn, Adam J; Cole, Nicholas J; Goldsbury, Claire; Rinkwitz, Silke; Becker, Thomas S; Nicholson, Garth A; Laird, Angela S

    2017-08-09

    The neurodegenerative disease Machado-Joseph disease (MJD), also known as spinocerebellar ataxin-3, affects neurons of the brain and spinal cord, disrupting control of the movement of muscles. We have successfully established the first transgenic zebrafish (Danio rerio) model of MJD by expressing human ataxin-3 protein containing either 23 glutamines (23Q, wild-type) or 84Q (MJD-causing) within neurons. Phenotypic characterization of the zebrafish (male and female) revealed that the ataxin-3-84Q zebrafish have decreased survival compared with ataxin-3-23Q and develop ataxin-3 neuropathology, ataxin-3 cleavage fragments and motor impairment. Ataxin-3-84Q zebrafish swim shorter distances than ataxin-3-23Q zebrafish as early as 6 days old, even if expression of the human ataxin-3 protein is limited to motor neurons. This swimming phenotype provides a valuable readout for drug treatment studies. Treating the EGFP-ataxin-3-84Q zebrafish with the calpain inhibitor compound calpeptin decreased levels of ataxin-3 cleavage fragments, but also removed all human ataxin-3 protein (confirmed by ELISA) and prevented the early MJD zebrafish motor phenotype. We identified that this clearance of ataxin-3 protein by calpeptin treatment resulted from an increase in autophagic flux (indicated by decreased p62 levels and increased LC3II). Cotreatment with the autophagy inhibitor chloroquine blocked the decrease in human ataxin-3 levels and the improved movement produced by calpeptin treatment. This study demonstrates that this first transgenic zebrafish model of MJD is a valuable tool for testing potential treatments for MJD. Calpeptin treatment is protective in this model of MJD and removal of human ataxin-3 through macro-autophagy plays an important role in this beneficial effect.SIGNIFICANCE STATEMENT We have established the first transgenic zebrafish model of the neurodegenerative disease MJD, and identified relevant disease phenotypes, including impaired movement from an early age

  19. PTEN Activation by DNA Damage Induces Protective Autophagy in Response to Cucurbitacin B in Hepatocellular Carcinoma Cells

    PubMed Central

    Niu, Yanan; Sun, Wen; Lu, Jin-Jian; Pei, Lixia

    2016-01-01

    Cucurbitacin B (Cuc B), a natural product, induced both protective autophagy and DNA damage mediated by ROS while the detailed mechanisms remain unclear. This study explored the mechanism of Cuc B-induced DNA damage and autophagy. Cuc B decreased cell viability in concentration- and time-dependent manners. Cuc B caused long comet tails and increased expression of γ-H2AX, phosphorylation of ATM/ATR, and Chk1/Chk2. Cuc B induced autophagy as evidenced by monodansylcadaverine (MDC) staining, increased expression of LC3II, phosphorylated ULK1, and decreased expression of phosphorylated AKT, mTOR. Cuc B induced apoptosis mediated by Bcl-2 family proteins and caspase activation. Furthermore, Cuc B induced ROS formation, which was inhibited by N-acetyl-L-cysteine (NAC). NAC pretreatment dramatically reversed Cuc B-induced DNA damage, autophagy, and apoptosis. Cuc B-induced apoptosis was reversed by NAC but enhanced by 3-methyladenine (3-MA), chloroquine (CQ), and silencing phosphatase and tensin homolog (PTEN). 3-MA and CQ showed no effect on Cuc B-induced DNA damage. In addition, Cuc B increased PTEN phosphorylation and silence PTEN restored Cuc B-induced autophagic protein expressions without affecting DNA damage. In summary, Cuc B induced DNA damage, apoptosis, and protective autophagy mediated by ROS. PTEN activation in response to DNA damage bridged DNA damage and prosurvival autophagy. PMID:28042385

  20. Dual Roles of Two Isoforms of Autophagy-related Gene ATG10 in HCV-Subgenomic replicon Mediated Autophagy Flux and Innate Immunity.

    PubMed

    Zhao, Qiong; Hu, Zhan-Ying; Zhang, Jing-Pu; Jiang, Jian-Dong; Ma, Yuan-Yuan; Li, Jian-Rui; Peng, Zong-Gen; Chen, Jin-Hua

    2017-09-12

    Autophagy and immune response are two defense systems that human-body uses against viral infection. Previous studies documented that some viral mechanisms circumvented host immunity mechanisms and hijacked autophagy for its replication and survival. Here, we focus on interactions between autophagy mechanism and innate-immune-response in HCV-subgenomic replicon cells to find a mechanism linking the two pathways. We report distinct effects of two autophagy-related protein ATG10s on HCV-subgenomic replication. ATG10, a canonical long isoform in autophagy process, can facilitate HCV-subgenomic replicon amplification by promoting autophagosome formation and by combining with and detaining autophagosomes in cellular periphery, causing impaired autophagy flux. ATG10S, a non-canonical short isoform of ATG10 proteins, can activate expression of IL28A/B and immunity genes related to viral ds-RNA including ddx-58, tlr-3, tlr-7, irf-3 and irf-7, and promote autophagolysosome formation by directly combining and driving autophagosomes to perinuclear region where lysosomes gather, leading to lysosomal degradation of HCV-subgenomic replicon in HepG2 cells. ATG10S also can suppress infectious HCV virion replication in Huh7.5 cells. Another finding is that IL28A protein directly conjugates ATG10S and helps autophagosome docking to lysosomes. ATG10S might be a new host factor against HCV replication, and as a target for screening chemicals with new anti-virus mechanisms.

  1. Exogenous H2S Protects Against Diabetic Cardiomyopathy by Activating Autophagy via the AMPK/mTOR Pathway.

    PubMed

    Yang, Fan; Zhang, Linxue; Gao, Zhaopeng; Sun, Xiaojiao; Yu, Miao; Dong, Shiyun; Wu, Jichao; Zhao, Yajun; Xu, Changqing; Zhang, Weihua; Lu, Fanghao

    2017-10-05

    Autophagy plays an important role in cellular homeostasis through the disposal and recycling of cellular components. Hydrogen sulphide (H2S) is the third endogenous gas that has been shown to confer cardiac protective effects. Given the regulation of autophagy in cardioprotection, this study aimed to investigate the protective effects of H2S via autophagy during high glucose treatment. This study investigated the content of H2S in the plasma as well as myocardial, ultrastructural changes in mitochondria and autophagosomes. This study also investigated the apoptotic rate using Hoechst/PI as well as expression of autophagy-associated proteins and mitochondrial apoptotic proteins in H9C2 cells treated with or without GYY4137. Mitochondria of cardiac tissues were isolated and RCR and ADP/O were also detected. AMPK knockdown was performed with siRNA transfection. In a STZ-induced diabetic model, NaHS treatment not only increased the expression of p-AMPK in diabetic group but further activated cell autophagy. Following 48h high glucose, autophagosomes and cell viability were reduced. The present results showed that autophagy could be induced by H2S, which was verified by autophagic ultrastructural observation and LC3-I/LC3-II conversion. In addition, the mitochondrial membrane potential (MMP) was significantly decreased. The expressions levels of autophagic-related proteins were significantly elevated. Moreover, H2S activated the AMPK/rapamycin (mTOR) signalling pathway. Our findings demonstrated that H2S decreases oxidative stress and protects against mitochondria injury, activates autophagy, and eventually leads to cardiac protection via the AMPK/mTOR pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  2. Regulation of autophagy by two products of one gene: TRPM3 and miR-204.

    PubMed

    Cost, Nicolas G; Czyzyk-Krzeska, Maria F

    2015-01-01

    In clear cell renal cell carcinoma (ccRCC), oncogenic autophagy dependent on microtubule-associated protein 1 light chain 3 α and β (LC3A and LC3B) is stimulated by activity of the transient receptor potential melastatin 3 (TRPM3) channel through multiple complementary mechanisms. The Von Hippel-Lindau (VHL) tumor suppressor represses this oncogenic autophagy in a coordinated manner through the activity of miR-204, which is expressed from intron 6 of the gene encoding TRPM3. TRPM3 represents an actionable target for ccRCC treatment.

  3. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy.

    PubMed

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-03-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy.

  4. Induction of the autophagy-associated gene MAP1S via PU.1 supports APL differentiation.

    PubMed

    Haimovici, Aladin; Brigger, Daniel; Torbett, Bruce E; Fey, Martin F; Tschan, Mario P

    2014-09-01

    The PU.1 transcription factor is essential for myeloid development. We investigated if the microtubule-associated protein 1S (MAP1S) is a novel PU.1 target with a link to autophagy, a cellular recycling pathway. Comparable to PU.1, MAP1S expression was significantly repressed in primary AML blasts as compared to mature neutrophils. Accordingly, MAP1S expression was induced during neutrophil differentiation of CD34(+) progenitor and APL cells. Moreover, PU.1 bound to the MAP1S promoter and induced MAP1S expression during APL differentiation. Inhibiting MAP1S resulted in aberrant neutrophil differentiation and autophagy. Taken together, our findings implicate the PU.1-regulated MAP1S gene in neutrophil differentiation and autophagy control.

  5. The c10orf10 gene product is a new link between oxidative stress and autophagy.

    PubMed

    Stepp, Marcus W; Folz, Rodney J; Yu, Jerry; Zelko, Igor N

    2014-06-01

    The human c10orf10 gene product, also known as decidual protein induced by progesterone (DEPP), is known to be differentially regulated in mouse tissues in response to hypoxia and oxidative stress, however its biological function remains unknown. We found that mice lacking extracellular superoxide dismutase (EC-SOD) show attenuated expression of DEPP in response to acute hypoxia. DEPP mRNA levels, as well as the activity of a reporter gene expressed under the control of the DEPP 5'-flanking region, were significantly upregulated in Hep3B and Vero cells overexpressing EC-SOD. Subcellular fractionation and immunofluorescent microscopy indicated that overexpressed DEPP is co-localized with both protein aggregates and aggresomes. Further biochemical characterization indicates that DEPP protein is unstable and undergoes rapid degradation. Inhibition of proteasome activities significantly increases DEPP protein levels in soluble and insoluble cytosolic fractions. Attenuation of autophagosomal activity by 3-methyladenine increases DEPP protein levels while activation of autophagy by rapamycin reduced DEPP protein levels. In addition, ectopic overexpression of DEPP leads to autophagy activation, while silencing of DEPP attenuates autophagy. Collectively, these results indicate that DEPP is a major hypoxia-inducible gene involved in the activation of autophagy and whose expression is regulated by oxidative stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Polymorphisms in Autophagy Genes Are Associated with Paget Disease of Bone

    PubMed Central

    2015-01-01

    Paget disease of bone (PDB) is a focal bone disorder affecting the skeleton segmentally. The main alteration resides in osteoclasts that increase in size, number and activity. Many osteoclasts have cytoplasmic inclusions that have been associated with protein aggregates, increasing the evidences of a possible deregulation of autophagy in the development of the PDB. Autophagy starts with encapsulation of the target into a double-membrane-bound structure called an “autophagosome.” It has been reported that at least 18 ATG genes (autophagy-related genes) are involved in autophagosome formation. We have studied the distribution of genotypes of the ATG2B rs3759601, ATG16L1 rs2241880, ATG10 rs1864183 and ATG5 rs2245214 polymorphisms in a Spanish cohort of subjects with PDB and compared with healthy subjects. Our results show that being a carrier of the C allele of the ATG16L1 rs2241880 and the G allele of ATG5 rs2245214 polymorphisms were associated with an increased risk of developing PDB, whereas being a carrier of the T allele of ATG10 rs1864183 polymorphism decreased the risk of suffering the disease in our series. This is the first report that shows an association between autophagy and Paget Disease of Bone and requires further confirmation in other series. PMID:26030385

  7. Autophagy Protects Against Aminochrome-Induced Cell Death in Substantia Nigra-Derived Cell Line

    PubMed Central

    Paris, Irmgard; Muñoz, Patricia; Huenchuguala, Sandro; Couve, Eduardo; Sanders, Laurie H.; Greenamyre, John Timothy; Caviedes, Pablo; Segura-Aguilar, Juan

    2011-01-01

    Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson’s disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes. PMID:21427056

  8. Lead toxicity induces autophagy to protect against cell death through mTORC1 pathway in cardiofibroblasts.

    PubMed

    Sui, Li; Zhang, Rui-Hong; Zhang, Ping; Yun, Ke-Li; Zhang, Hong-Cai; Liu, Li; Hu, Ming-Xu

    2015-03-31

    Heavy metals, such as lead (Pb(2+)), are usually accumulated in human bodies and impair human's health. Lead is a metal with many recognized adverse health side effects and yet the molecular processes underlying lead toxicity are still poorly understood. In the present study, we proposed to investigate the effects of lead toxicity in cultured cardiofibroblasts. After lead treatment, cultured cardiofibroblasts showed severe endoplasmic reticulum (ER) stress. However, the lead-treated cardiofibroblasts were not dramatically apoptotic. Further, we found that these cells determined to undergo autophagy through inhibiting mammalian target of rapamycin complex 1 (mTORC1) pathway. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) may dramatically enhance lead toxicity in cardiofibroblasts and cause cell death. Our data establish that lead toxicity induces cell stress in cardiofibroblasts and protective autophagy is activated by inhibition of mTORC1 pathway. These findings describe a mechanism by which lead toxicity may promote the autophagy of cardiofibroblasts cells, which protects cells from cell stress. Our findings provide evidence that autophagy may help cells to survive under ER stress conditions in cardiofibroblasts and may set up an effective therapeutic strategy for heavy metal toxicity.

  9. A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues

    PubMed Central

    Zhou, Xue-mei; Zhao, Peng; Wang, Wei; Zou, Jie; Cheng, Tian-he; Peng, Xiong-bo; Sun, Meng-xiang

    2015-01-01

    Autophagy is an evolutionarily conserved mechanism in both animals and plants, which has been shown to be involved in various essential developmental processes in plants. Nicotiana tabacum is considered to be an ideal model plant and has been widely used for the study of the roles of autophagy in the processes of plant development and in the response to various stresses. However, only a few autophagy-related genes (ATGs) have been identified in tobacco up to now. Here, we identified 30 ATGs belonging to 16 different groups in tobacco through a genome-wide survey. Comprehensive expression profile analysis reveals an abroad expression pattern of these ATGs, which could be detected in all tissues tested under normal growth conditions. Our series tests further reveal that majority of ATGs are sensitive and responsive to different stresses including nutrient starvation, plant hormones, heavy metal and other abiotic stresses, suggesting a central role of autophagy, likely as an effector, in plant response to various environmental cues. This work offers a detailed survey of all ATGs in tobacco and also suggests manifold functions of autophagy in both normal plant growth and plant response to environmental stresses. PMID:26205094

  10. Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells.

    PubMed

    Kim, Hyeonji; Moon, Jeong Yong; Ahn, Kwang Seok; Cho, Somi Kim

    2013-01-01

    Quercetin is a dietary flavonoid with known antitumor effects against several types of cancers by promoting apoptotic cell death and inducing cell cycle arrest. However, U373MG malignant glioma cells expressing mutant p53 are resistant to a 24 h quercetin treatment. In this study, the anticancer effect of quercetin was reevaluated in U373MG cells, and quercetin was found to be significantly effective in inhibiting proliferation of U373MG cells in a concentration-dependent manner after 48 and 72 h of incubation. Quercetin induced U373MG cell death through apoptosis, as evidenced by the increased number of cells in the sub-G1 phase, the appearance of fragmented nuclei, decreased mitochondrial membrane potential, proteolytic activation of caspase-3 and caspase-7, an increase in caspase-3 and 9 activities, and degradation of poly(ADP-ribose) polymerase protein. Furthermore, quercetin activated JNK and increased the expression of p53, which translocated to the mitochondria and simultaneously led to the release of cytochrome c from mitochondria to the cytosol. We also found that quercetin induced autophagy. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells.

  11. Quercetin Induces Mitochondrial Mediated Apoptosis and Protective Autophagy in Human Glioblastoma U373MG Cells

    PubMed Central

    Moon, Jeong Yong; Ahn, Kwang Seok; Cho, Somi Kim

    2013-01-01

    Quercetin is a dietary flavonoid with known antitumor effects against several types of cancers by promoting apoptotic cell death and inducing cell cycle arrest. However, U373MG malignant glioma cells expressing mutant p53 are resistant to a 24 h quercetin treatment. In this study, the anticancer effect of quercetin was reevaluated in U373MG cells, and quercetin was found to be significantly effective in inhibiting proliferation of U373MG cells in a concentration-dependent manner after 48 and 72 h of incubation. Quercetin induced U373MG cell death through apoptosis, as evidenced by the increased number of cells in the sub-G1 phase, the appearance of fragmented nuclei, decreased mitochondrial membrane potential, proteolytic activation of caspase-3 and caspase-7, an increase in caspase-3 and 9 activities, and degradation of poly(ADP-ribose) polymerase protein. Furthermore, quercetin activated JNK and increased the expression of p53, which translocated to the mitochondria and simultaneously led to the release of cytochrome c from mitochondria to the cytosol. We also found that quercetin induced autophagy. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in U373MG cells, indicating that quercetin induced protective autopagy in U373MG cells. PMID:24379902

  12. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice

    PubMed Central

    Surolia, Ranu; Karki, Suman; Kim, Hyunki; Yu, Zhihong; Kulkarni, Tejaswini; Mirov, Sergey B.; Carter, A. Brent; Rowe, Steven M.; Matalon, Sadis; Thannickal, Victor J.; Agarwal, Anupam

    2015-01-01

    Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1+/+, HO-1−/−, and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1−/− mice exhibited more severe emphysema compared with HO-1+/+ or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1+/+, HO-1−/−, and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1−/− PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1+/+ PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema. PMID:26071551

  13. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice.

    PubMed

    Surolia, Ranu; Karki, Suman; Kim, Hyunki; Yu, Zhihong; Kulkarni, Tejaswini; Mirov, Sergey B; Carter, A Brent; Rowe, Steven M; Matalon, Sadis; Thannickal, Victor J; Agarwal, Anupam; Antony, Veena B

    2015-08-01

    Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1(+/+), HO-1(-/-), and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1(-/-) mice exhibited more severe emphysema compared with HO-1(+/+) or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1(+/+), HO-1(-/-), and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1(-/-) PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1(+/+) PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema.

  14. Taurine protects against As2O3-induced autophagy in livers of rat offsprings through PPARγ pathway

    PubMed Central

    Bai, Jie; Yao, Xiaofeng; Jiang, Liping; Zhang, Qiaoting; Guan, Huai; Liu, Shuang; Wu, Wei; Qiu, Tianming; Gao, Ni; Yang, Lei; Yang, Guang; Sun, Xiance

    2016-01-01

    Chronic exposures to arsenic had been associated with metabolism diseases. Peroxisome proliferator-activated receptor gamma (PPARγ) was found in the liver, regulated metabolism. Here, we found that the expression of PPARγ was decreased, the generation of reactive oxygen species (ROS) and autophagy were increased after treatment with As2O3 in offsprings’ livers. Taurine (Tau), a sulfur-containing β–amino acid could reverse As2O3-inhibited PPARγ. Tau also inhibit the generation of ROS and autophagy. We also found that As2O3 caused autophagic cell death and ROS accelerated in HepG2 cells. Before incubation with As2O3, the cells were pretreated with PPARγ activator Rosiglitazone (RGS), we found that autophagy and ROS was inhibited in HepG2 cells, suggesting that inhibition of PPARγ contributed to As2O3-induced autophagy and the generation of ROS. After pretreatment with Tau, the level of PPARγ was improved and the autophagy and ROS was inhibited in As2O3-treated cells, suggesting that Tau could protect hepatocytes against As2O3 through modulating PPARγ pathway. PMID:27291853

  15. Taurine protects against As2O3-induced autophagy in livers of rat offsprings through PPARγ pathway.

    PubMed

    Bai, Jie; Yao, Xiaofeng; Jiang, Liping; Zhang, Qiaoting; Guan, Huai; Liu, Shuang; Wu, Wei; Qiu, Tianming; Gao, Ni; Yang, Lei; Yang, Guang; Sun, Xiance

    2016-06-13

    Chronic exposures to arsenic had been associated with metabolism diseases. Peroxisome proliferator-activated receptor gamma (PPARγ) was found in the liver, regulated metabolism. Here, we found that the expression of PPARγ was decreased, the generation of reactive oxygen species (ROS) and autophagy were increased after treatment with As2O3 in offsprings' livers. Taurine (Tau), a sulfur-containing β-amino acid could reverse As2O3-inhibited PPARγ. Tau also inhibit the generation of ROS and autophagy. We also found that As2O3 caused autophagic cell death and ROS accelerated in HepG2 cells. Before incubation with As2O3, the cells were pretreated with PPARγ activator Rosiglitazone (RGS), we found that autophagy and ROS was inhibited in HepG2 cells, suggesting that inhibition of PPARγ contributed to As2O3-induced autophagy and the generation of ROS. After pretreatment with Tau, the level of PPARγ was improved and the autophagy and ROS was inhibited in As2O3-treated cells, suggesting that Tau could protect hepatocytes against As2O3 through modulating PPARγ pathway.

  16. Metformin Protects Against Cisplatin-Induced Tubular Cell Apoptosis and Acute Kidney Injury via AMPKα-regulated Autophagy Induction.

    PubMed

    Li, Jianzhong; Gui, Yuan; Ren, Jiafa; Liu, Xin; Feng, Ye; Zeng, Zhifeng; He, Weichun; Yang, Junwei; Dai, Chunsun

    2016-04-07

    Metformin, one of the most common prescriptions for patients with type 2 diabetes, is reported to protect the kidney from gentamicin-induced nephrotoxicity. However, the role and mechanisms for metformin in preventing cisplatin-induced nephrotoxicity remains largely unknown. In this study, a single intraperitoneal injection of cisplatin was employed to induce acute kidney injury (AKI) in CD1 mice. The mice exhibited severe kidney dysfunction and histological damage at day 2 after cisplatin injection. Pretreatment of metformin could markedly attenuate cisplatin-induced acute kidney injury, tubular cell apoptosis and inflammatory cell accumulation in the kidneys. Additionally, pretreatment of metformin could enhance both AMPKα phosphorylation and autophagy induction in the kidneys after cisplatin injection. In cultured NRK-52E cells, a rat kidney tubular cell line, metformin could stimulate AMPKα phosphorylation, induce autophagy and inhibit cisplatin-induced cell apoptosis. Blockade of either AMPKα activation or autophagy induction could largely abolish the protective effect of metformin in cisplatin-induced cell death. Together, this study demonstrated that metformin may protect against cisplatin-induced tubular cell apoptosis and AKI through stimulating AMPKα activation and autophagy induction in the tubular cells.

  17. Metformin Protects Against Cisplatin-Induced Tubular Cell Apoptosis and Acute Kidney Injury via AMPKα-regulated Autophagy Induction

    PubMed Central

    Li, Jianzhong; Gui, Yuan; Ren, Jiafa; Liu, Xin; Feng, Ye; Zeng, Zhifeng; He, Weichun; Yang, Junwei; Dai, Chunsun

    2016-01-01

    Metformin, one of the most common prescriptions for patients with type 2 diabetes, is reported to protect the kidney from gentamicin-induced nephrotoxicity. However, the role and mechanisms for metformin in preventing cisplatin-induced nephrotoxicity remains largely unknown. In this study, a single intraperitoneal injection of cisplatin was employed to induce acute kidney injury (AKI) in CD1 mice. The mice exhibited severe kidney dysfunction and histological damage at day 2 after cisplatin injection. Pretreatment of metformin could markedly attenuate cisplatin-induced acute kidney injury, tubular cell apoptosis and inflammatory cell accumulation in the kidneys. Additionally, pretreatment of metformin could enhance both AMPKα phosphorylation and autophagy induction in the kidneys after cisplatin injection. In cultured NRK-52E cells, a rat kidney tubular cell line, metformin could stimulate AMPKα phosphorylation, induce autophagy and inhibit cisplatin-induced cell apoptosis. Blockade of either AMPKα activation or autophagy induction could largely abolish the protective effect of metformin in cisplatin-induced cell death. Together, this study demonstrated that metformin may protect against cisplatin-induced tubular cell apoptosis and AKI through stimulating AMPKα activation and autophagy induction in the tubular cells. PMID:27052588

  18. Autophagy induced by silica nanoparticles protects RAW264.7 macrophages from cell death.

    PubMed

    Marquardt, Clarissa; Fritsch-Decker, Susanne; Al-Rawi, Marco; Diabaté, Silvia; Weiss, Carsten

    2017-03-15

    Although the technological and economic benefits of engineered nanomaterials are obvious, concerns have been raised about adverse effects if such material is inhaled, ingested, applied to the skin or even released into the environment. Here we studied the cytotoxic effects of the most abundant nanomaterial, silica nanoparticles (SiO2-NPs), in murine RAW264.7 macrophages. SiO2-NPs dose-dependently induce membrane leakage and cell death without obvious involvement of reactive oxygen species. Interestingly, at low concentrations SiO2-NPs trigger autophagy, evidenced by morphological and biochemical hallmarks such as autophagolysosomes or increased levels of LC3-II, which serves to protect cells from cytotoxicity. Hence SiO2-NPs initiate an adaptive stress response which dependent on dose serve to balance survival and death and ultimately dictates the cellular fate.

  19. p73 regulates autophagy and hepatocellular lipid metabolism through a transcriptional activation of the ATG5 gene

    PubMed Central

    He, Z; Liu, H; Agostini, M; Yousefi, S; Perren, A; Tschan, M P; Mak, T W; Melino, G; Simon, H U

    2013-01-01

    p73, a member of the p53 tumor suppressor family, is involved in neurogenesis, sensory pathways, immunity, inflammation, and tumorigenesis. How p73 is able to participate in such a broad spectrum of different biological processes is still largely unknown. Here, we report a novel role of p73 in regulating lipid metabolism by direct transactivation of the promoter of autophagy-related protein 5 (ATG5), a gene whose product is required for autophagosome formation. Following nutrient deprivation, the livers of p73-deficient mice demonstrate a massive accumulation of lipid droplets, together with a low level of autophagy, suggesting that triglyceride hydrolysis into fatty acids is blocked owing to deficient autophagy (macrolipophagy). Compared with wild-type mice, mice functionally deficient in all the p73 isoforms exhibit decreased ATG5 expression and lower levels of autophagy in multiple organs. We further show that the TAp73α is the critical p73 isoform responsible for inducing ATG5 expression in a p53-independent manner and demonstrate that ATG5 gene transfer can correct autophagy and macrolipophagy defects in p73-deficient hepatocytes. These data strongly suggest that the p73–ATG5 axis represents a novel, key pathway for regulating lipid metabolism through autophagy. The identification of p73 as a major regulator of autophagy suggests that it may have an important role in preventing or delaying disease and aging by maintaining a homeostatic control. PMID:23912709

  20. Pyrvinium targets autophagy addiction to promote cancer cell death

    PubMed Central

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards III, Carl K; Huang, Canhua; Wei, Yuquan

    2013-01-01

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-𝒟-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy. PMID:23640456

  1. Pyrvinium targets autophagy addiction to promote cancer cell death.

    PubMed

    Deng, Longfei; Lei, Yunlong; Liu, Rui; Li, Jingyi; Yuan, Kefei; Li, Yi; Chen, Yi; Liu, Yi; Lu, You; Edwards, Carl K; Huang, Canhua; Wei, Yuquan

    2013-05-02

    Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-D-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy.

  2. AMP-activated protein kinase-dependent autophagy mediated the protective effect of sonic hedgehog pathway on oxygen glucose deprivation-induced injury of cardiomyocytes.

    PubMed

    Xiao, Qing; Yang, Ya; Qin, Yuan; He, Yan-Hua; Chen, Kui-Xiang; Zhu, Jian-Wei; Zhang, Gui-Ping; Luo, Jian-Dong

    2015-02-13

    Sonic hedgehog (Shh) pathway has been reported to protect cardiomyocytes in myocardial infarction (MI), but the underlying mechanism is not clear. Here, we provide evidence that Shh pathway induces cardiomyocytes survival through AMP-activated protein kinase-dependent autophagy. Shh pathway agonist SAG increased the expression of LC3-II, and induced the formation of autophagosomes in cultured H9c2 cardiomyocytes under oxygen glucose deprivation (OGD) 1 h and 4 h. Moreover, SAG induced a profound AMP-activated protein kinase (AMPK) activation, and then directly phosphorylated and activated the downstream autophagy initiator Ulk1, independent of the autophagy suppressor mammalian target of rapamycin (mTOR) complex 1. Taken together, our results have shown that Shh activates AMPK-dependent autophagy in cardiomyocytes under OGD, suggesting a role of autophagy in Shh-induced cellular protection.

  3. Liver X receptor activation protects against inflammation and enhances autophagy in myocardium of neonatal mouse challenged by lipopolysaccharides.

    PubMed

    Liu, Peng; He, Siyi; Gao, Junwei; Li, Jingwei; Fan, Xiaotang; Xiao, Ying-Bin

    2014-01-01

    Liver X receptors (LXRs) has been emerged as negative regulators of cardiomyocytic inflammation. The cellular process of autophagy is believed to play a protective role in myocardium during the inflammatory status. In this study, we investigated the role of LXRs agonist TO901317 (TO) on lipopolysaccharides (LPS)-induced myocardial inflammation and autophagy. The results showed that TO pretreatment significantly reduced the LPS-induced infiltration of inflammatory cells, elevation of NF-κB protein, TNF-α, and IL-6 mRNA levels in the myocardium. Moreover, LPS stimulated autophagy in neonatal mice heart, and this effect was further enhanced by TO pretreatment as evidenced by increased LC3-II/GAPDH ratio increment. Furthermore, TUNEL assay revealed LPS stimulation also increased the number of apoptotic cells in the myocardium, and the increment was inhibited by TO pretreatment. Our findings suggested that attenuation of inflammation and apoptosis, and enhancement of autophagy by TO may contribute to the protection of myocardium under inflammatory condition.

  4. The BAX gene as a candidate for negative autophagy-related genes regulator on mRNA levels in colorectal cancer.

    PubMed

    Gil, Justyna; Ramsey, David; Szmida, Elzbieta; Leszczynski, Przemyslaw; Pawlowski, Pawel; Bebenek, Marek; Sasiadek, Maria M

    2017-02-01

    Autophagy is a catabolic process, which is involved in the maintenance of intracellular homeostasis by degrading redundant molecules and organelles. Autophagy begins with the formation of a double-membrane phagophore, followed by its enclosure, thus leading to the appearance of an autophagosome which fuses with lysosome. This process is highly conserved, precisely orchestrated and regulated by autophagy-related genes. Recently, autophagy has been widely studied in different types of cancers, including colorectal cancer. As it has been revealed, autophagy plays two opposite roles in tumorigenesis, as a tumor suppressor and a tumor enhancer/activator, and therefore is called a double-edge sword. Recently, interaction between autophagy and apoptosis has been found. Therefore, we aimed to study the mRNA levels of genes engaged in autophagy and apoptosis in colorectal cancer tissues. Colorectal cancer and adjacent healthy tissues were obtained from 73 patients diagnosed with primary colorectal cancer. Real-time PCR analysis employing Universal Probe Library was used to assess the expression of the seven following selected genes: BECN1, UVRAG, ULK1, ATG13, Bif-1, BCL2 and BAX. For all but one of the tested genes, a decrease in expression was observed. An increase in expression was observed for BAX. BAX expression decreases consistently from early to more advanced stages. High expression of BAX was strongly associated with negative UVRAG expression. The high expression of the BAX gene seems to be a negative regulator of autophagy in colorectal cancer cells. The relative downregulation of autophagy-related genes was observed in colorectal cancer samples.

  5. Characterization of an Autophagy-Related Gene MdATG8i from Apple

    PubMed Central

    Wang, Ping; Sun, Xun; Jia, Xin; Wang, Na; Gong, Xiaoqing; Ma, Fengwang

    2016-01-01

    Nutrient deficiencies restrict apple (Malus sp.) tree growth and productivity in Northwest China. The process of autophagy, a conserved degradation pathway in eukaryotic cells, has important roles in nutrient-recycling and helps improve plant performance during periods of nutrient-starvation. Little is known about the functioning of autophagy-related genes (ATGs) in apple. In this study, one of the ATG8 gene family members MdATG8i was isolated from Malus domestica. MdATG8i has conserved putative tubulin binding sites and ATG7 interaction domains. A 1865-bp promoter region cloned from apple genome DNA was predicated to have cis-regulatory elements responsive to light, environmental stresses, and hormones. MdATG8i transcriptions were induced in response to leaf senescence, nitrogen depletion, and oxidative stress. At cellular level, MdATG8i protein was expressed in the nucleus and cytoplasm of onion epidermal cells. Yeast two-hybrid tests showed that MdATG8i could interact with MdATG7a and MdATG7b. In Arabidopsis, its heterologous expression was associated with enhanced vegetative growth, leaf senescence, and tolerance to nitrogen- and carbon-starvation. MdATG8i-overexpressing “Orin” apple callus lines also displayed improved tolerance to nutrient-limited conditions. Our results demonstrate that MdATG8i protein could function in autophagy in a conserved way, as a positive regulator in the response to nutrient-starvation. PMID:27252732

  6. Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator

    PubMed Central

    Jung, Jennifer; Nayak, Arnab; Schaeffer, Véronique; Starzetz, Tatjana; Kirsch, Achim K; Müller, Stefan; Dikic, Ivan; Mittelbronn, Michel; Behrends, Christian

    2017-01-01

    Autophagy is an intracellular recycling and degradation pathway that depends on membrane trafficking. Rab GTPases are central for autophagy but their regulation especially through the activity of Rab GEFs remains largely elusive. We employed a RNAi screen simultaneously monitoring different populations of autophagosomes and identified 34 out of 186 Rab GTPase, GAP and GEF family members as potential autophagy regulators, amongst them SMCR8. SMCR8 uses overlapping binding regions to associate with C9ORF72 or with a C9ORF72-ULK1 kinase complex holo-assembly, which function in maturation and formation of autophagosomes, respectively. While focusing on the role of SMCR8 during autophagy initiation, we found that kinase activity and gene expression of ULK1 are increased upon SMCR8 depletion. The latter phenotype involved association of SMCR8 with the ULK1 gene locus. Global mRNA expression analysis revealed that SMCR8 regulates transcription of several other autophagy genes including WIPI2. Collectively, we established SMCR8 as multifaceted negative autophagy regulator. DOI: http://dx.doi.org/10.7554/eLife.23063.001 PMID:28195531

  7. Autophagy protects against dasatinib-induced hepatotoxicity via p38 signaling

    PubMed Central

    Yang, Xiaochun; Wang, Jincheng; Dai, Jiabin; Shao, Jinjin; Ma, Jian; Chen, Chao; Ma, Shenglin; He, Qiaojun; Luo, Peihua; Yang, Bo

    2015-01-01

    Liver dysfunction is a common side effect associated with the treatment of dasatinib and its mechanism is poorly understood. Autophagy has been thought to be a potent survival or death factor for liver dysfunction, which may shed the light on a novel strategy for the intervention of hepatotoxicity caused by dasatinib. In this study, we show for the first time that autophagy is induced, which is consistent with the formation of liver damage. Autophagy inhibition exacerbated dasatinib-induced liver failure, suggesting that autophagy acted as a self-defense mechanism to promote survival. Oxidative stress has been shown to be an important stimulus for autophagy and hepatotoxicity. Interestingly, dasatinib increased the activity of p38, which is a critical modulator of the oxidative stress related to liver injury and autophagy. p38 silencing significantly blocked LC3-II induction and p62 reduction by dasatinib, which was accompanied by increased caspase-3 and PARP cleavage, indicating that autophagy alleviated dasatinib-induced hepatotoxicity via p38 signaling. Finally, the p38 agonist isoproterenol hydrochloride (ISO) alleviated dasatinib-induced liver failure by enhancing autophagy without affecting the anticancer activity of dasatinib. Thus, this study revealed that p38-activated autophagy promoted survival during liver injury, which may provide novel approaches for managing the clinical applications of dasatinib. PMID:25749037

  8. Autophagy, signaling and obesity.

    PubMed

    Lavallard, Vanessa J; Meijer, Alfred J; Codogno, Patrice; Gual, Philippe

    2012-12-01

    Autophagy is a cellular pathway crucial for development, differentiation, survival and homeostasis. Autophagy can provide protection against aging and a number of pathologies such as cancer, neurodegeneration, cardiac disease and infection. Recent studies have reported new functions of autophagy in the regulation of cellular processes such as lipid metabolism and insulin sensitivity. Important links between the regulation of autophagy and obesity including food intake, adipose tissue development, β cell function, insulin sensitivity and hepatic steatosis exist. This review will provide insight into the current understanding of autophagy, its regulation, and its role in the complications associated with obesity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192

    PubMed Central

    Shyu, Rong-Yaun; Wang, Chun-Hua; Wu, Chang-Chieh; Chen, Mao-Liang; Lee, Ming-Cheng; Wang, Lu-Kai; Jiang, Shun-Yuan; Tsai, Fu-Ming

    2016-01-01

    Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity. PMID:27989102

  10. Curcumin protects neuronal cells against status-epilepticus-induced hippocampal damage through induction of autophagy and inhibition of necroptosis.

    PubMed

    Wang, Jin; Liu, Yuan; Li, Xiao-Hui; Zeng, Xiang-Chang; Li, Jian; Zhou, Jun; Xiao, Bo; Hu, Kai

    2017-05-01

    Status epilepticus, the most severe form of epilepsy, is characterized by progressive functional and structural damage in the hippocampus, ultimately leading to the development and clinical appearance of spontaneous, recurrent seizures. Although the pathogenesis underlying epileptogenesis processes remains unclear, a substantial body of evidence has shown that status epilepticus acts as an important initial factor in triggering epileptogenesis. Notably, besides classical cell death mechanisms such as apoptosis and necrosis, 2 novel regulators of cell fate known as necroptosis and autophagy, are demonstrated to be involved in neuronal damage in various neurodegenerative and neuropsychiatric disorders. However, whether necroptosis and autophagy play a role in post-status-epilepticus rat hippocampus and other epilepsy mechanisms deserves further research effort. In addition, research is needed to determine whether compounds from traditional Chinese herbs possess antiepileptic effects through the modulation of necroptosis and autophagy. In this study, we found that curcumin, a polyphenolic phytochemical extracted from the Curcuma longa plant, protects neuronal cells against status-epilepticus-induced hippocampal neuronal damage in the lithium-pilocarpine-induced status epilepticus rat model through induction of autophagy and inhibition of necroptosis.

  11. Deep hypothermia-enhanced autophagy protects PC12 cells against oxygen glucose deprivation via a mitochondrial pathway.

    PubMed

    Tang, Dang; Wang, Cheng; Gao, Yongjun; Pu, Jun; Long, Jiang; Xu, Wei

    2016-10-06

    Deep hypothermia is known for its organ-preservation properties, which is introduced into surgical operations on the brain and heart, providing both safety in stopping circulation as well as an attractive bloodless operative field. However, the molecular mechanisms have not been clearly identified. This study was undertaken to determine the influence of deep hypothermia on neural apoptosis and the potential mechanism of these effects in PC12 cells following oxygen-glucose deprivation. Deep hypothermia (18°C) was given to PC12 cells while the model of oxygen-glucose deprivation (OGD) induction for 1h. After 24h of reperfusion, the results showed that deep hypothermia decreased the neural apoptosis, and significantly suppressed overexpression of Bax, CytC, Caspase 3, Caspase 9 and cleaved PARP-1, and inhibited the reduction of Bcl-2 expression. While deep hypothermia increased the LC3II/LC3I and Beclin 1, an autophagy marker, which can be inhibited by 3-methyladenine (3-MA), indicating that deep hypothermia-enhanced autophagy ameliorated apoptotic cell death in PC12 cells subjected to OGD. Based on these findings we propose that deep hypothermia protects against neural apoptosis after the induction of OGD by attenuating the mitochondrial apoptosis pathway, moreover, the mechanism of these antiapoptosis effects is related to the enhancement of autophagy, which autophagy might provide a means of neuroprotection against OGD.

  12. p27 Protein Protects Metabolically Stressed Cardiomyocytes from Apoptosis by Promoting Autophagy*

    PubMed Central

    Sun, Xuetao; Momen, Abdul; Wu, Jun; Noyan, Hossein; Li, Renke; von Harsdorf, Rüdiger; Husain, Mansoor

    2014-01-01

    p27Kip1 (p27), a key regulator of cell division, has been implicated in autophagy of cancer cells. However, its role in autophagy, the evolutionarily conserved catabolic process that enables cells to remove unwanted proteins and damaged organelles, had not been examined in the heart. Here we report that ectopic delivery of a p27 fusion protein (TAT-p27) was sufficient to induce autophagy in neonatal rat ventricular cardiomyocytes in vitro, under basal conditions and after glucose deprivation. Conversely, lentivirus-delivered shRNA against p27 successfully reduced p27 levels and suppressed basal and glucose-deprived levels of autophagy in cardiomyocytes in vitro. Glucose deprivation mimics myocardial ischemia and induces apoptosis in cardiomyocytes. During glucose deprivation, TAT-p27 inhibited apoptosis, whereas down-regulation of p27 decreased survival of cardiomyocytes. However, inhibition of autophagy by pharmacological (3-methyladenine, chloroquine, or bafilomycin A1) or genetic approaches (siRNA-mediated knockdown of Atg5) sensitized cardiomyocytes to glucose deprivation-induced apoptosis, even in the presence of TAT-p27. TAT-p27 was also able to provoke greater levels of autophagy in resting and fasting cardiomyocytes in vivo. Further, TAT-p27 enhanced autophagy and repressed cardiomyocytes apoptosis, improved cardiac function, and reduced infarct size following myocardial infarction. Again, these effects were lost when cardiac autophagy in vivo was blocked by chloroquine. Taken together, these data show that p27 positively regulates cardiac autophagy in vitro and in vivo, at rest and after metabolic stress, and that TAT-p27 inhibits apoptosis by promoting autophagy in glucose-deprived cardiomyocytes in vitro and in post-myocardial infarction hearts in vivo. PMID:24794871

  13. Simultaneous activation of mitophagy and autophagy by staurosporine protects against dopaminergic neuronal cell death.

    PubMed

    Ha, Ji-Young; Kim, Ji-Soo; Kim, Seo-Eun; Son, Jin H

    2014-02-21

    Abnormal autophagy is frequently observed during dopaminergic neurodegeneration in Parkinson's disease (PD). However, it is not yet firmly established whether active autophagy is beneficial or pathogenic with respect to dopaminergic cell loss. Staurosporine, a common inducer of apoptosis, is often used in mechanistic studies of dopaminergic cell death. Here we report that staurosporine activates both autophagy and mitophagy simultaneously during dopaminergic neuronal cell death, and evaluate the physiological significance of these processes during cell death. First, staurosporine treatment resulted in induction of autophagy in more than 75% of apoptotic cells. Pharmacological inhibition of autophagy by bafilomycin A1 decreased significantly cell viability. In addition, staurosporine treatment resulted in activation of the PINK1-Parkin mitophagy pathway, of which deficit underlies some familial cases of PD, in the dopaminergic neuronal cell line, SN4741. The genetic blockade of this pathway by PINK1 null mutation also dramatically increased staurosporine-induced cell death. Taken together, our data suggest that staurosporine induces both mitophagy and autophagy, and that these pathways exert a significant neuroprotective effect, rather than a contribution to autophagic cell death. This model system may therefore be useful for elucidating the mechanisms underlying crosstalk between autophagy, mitophagy, and cell death in dopaminergic neurons.

  14. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation

    PubMed Central

    Kabat, Agnieszka M; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4+ T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3+ Treg cells. Specific ablation of Atg16l1 in Foxp3+ Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. DOI: http://dx.doi.org/10.7554/eLife.12444.001 PMID:26910010

  15. Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication

    PubMed Central

    De Leo, A; Colavita, F; Ciccosanti, F; Fimia, G M; Lieberman, P M; Mattia, E

    2015-01-01

    Autophagy, an important degradation system involved in maintaining cellular homeostasis, serves also to eliminate pathogens and process their fragments for presentation to the immune system. Several viruses have been shown to interact with the host autophagic machinery to suppress or make use of this cellular catabolic pathway to enhance their survival and replication. Epstein Barr virus (EBV) is a γ-herpes virus associated with a number of malignancies of epithelial and lymphoid origin in which establishes a predominantly latent infection. Latent EBV can periodically reactivate to produce infectious particles that allow the virus to spread and can lead to the death of the infected cell. In this study, we analyzed the relationship between autophagy and EBV reactivation in Burkitt's lymphoma cells. By monitoring autophagy markers and EBV lytic genes expression, we demonstrate that autophagy is enhanced in the early phases of EBV lytic activation but decreases thereafter concomitantly with increased levels of EBV lytic proteins. In a cell line defective for late antigens expression, we found an inverse correlation between EBV early antigens expression and autophagosomes formation, suggesting that early after activation, the virus is able to suppress autophagy. We report here for the first time that inhibition of autophagy by Bafilomycin A1 or shRNA knockdown of Beclin1 gene, highly incremented EBV lytic genes expression as well as intracellular viral DNA and viral progeny yield. Taken together, these findings indicate that EBV activation induces the autophagic response, which is soon inhibited by the expression of EBV early lytic products. Moreover, our findings open the possibility that pharmacological inhibitors of autophagy may be used to enhance oncolytic viral therapy of EBV-related lymphomas. PMID:26335716

  16. The Selective Activation of p53 Target Genes Regulated by SMYD2 in BIX-01294 Induced Autophagy-Related Cell Death

    PubMed Central

    Fan, Jia-Dong; Lei, Pin-Ji; Zheng, Jun-Yi; Wang, Xiang; Li, Shangze; Liu, Huan; He, Yi-Lei; Wang, Zhao-Ning; Wei, Gang; Zhang, Xiaodong; Li, Lian-Yun; Wu, Min

    2015-01-01

    Transcription regulation emerged to be one of the key mechanisms in regulating autophagy. Inhibitors of H3K9 methylation activates the expression of LC3B, as well as other autophagy-related genes, and promotes autophagy process. However, the detailed mechanisms of autophagy regulated by nuclear factors remain elusive. In this study, we performed a drug screen of SMYD2-/- cells and discovered that SMYD2 deficiency enhanced the cell death induced by BIX01294, an inhibitor of histone H3K9 methylation. BIX-01294 induces accumulation of LC3 II and autophagy-related cell death, but not caspase-dependent apoptosis. We profiled the global gene expression pattern after treatment with BIX-01294, in comparison with rapamycin. BIX-01294 selectively activates the downstream genes of p53 signaling, such as p21 and DOR, but not PUMA, a typical p53 target gene inducing apoptosis. BIX-01294 also induces other autophagy-related genes, such as ATG4A and ATG9A. SMYD2 is a methyltransferase for p53 and regulates its transcription activity. Its deficiency enhances the BIX-01294-induced autophagy-related cell death through transcriptionally promoting the expression of p53 target genes. Taken together, our data suggest BIX-01294 induces autophagy-related cell death and selectively activates p53 target genes, which is repressed by SMYD2 methyltransferase. PMID:25562686

  17. Arsenite exposure in human lymphoblastoid cell lines induces autophagy and coordinated induction of lysosomal genes.

    PubMed

    Bolt, Alicia M; Douglas, Randi M; Klimecki, Walter T

    2010-11-30

    Chronic exposure to inorganic arsenic is associated with diverse, complex diseases, making the identification of the mechanism underlying arsenic-induced toxicity a challenge. An increasing body of literature from epidemiological and in vitro studies has demonstrated that arsenic is an immunotoxicant, but the mechanism driving arsenic-induced immunotoxicity is not well established. We have previously demonstrated that in human lymphoblastoid cell lines (LCLs), arsenic-induced cell death is strongly associated with the induction of autophagy. In this study we utilized genome-wide gene expression analysis and functional assays to characterize arsenic-induced effects in seven LCLs that were exposed to an environmentally relevant, minimally cytotoxic, concentration of arsenite (0.75 μM) over an eight-day time course. Arsenic exposure resulted in inhibition of cellular growth and induction of autophagy (measured by expansion of acidic vesicles) over the eight-day exposure duration. Gene expression analysis revealed that arsenic exposure increased global lysosomal gene expression, which was associated with increased functional activity of the lysosome protease, cathepsin D. The arsenic-induced expansion of the lysosomal compartment in LCL represents a novel target that may offer insight into the immunotoxic effects of arsenic.

  18. Expression analysis of autophagy-related genes in the hard tick Haemaphysalis longicornis.

    PubMed

    Umemiya-Shirafuji, Rika; Galay, Remil Linggatong; Maeda, Hiroki; Kawano, Suguru; Tanaka, Tetsuya; Fukumoto, Shinya; Suzuki, Hiroshi; Tsuji, Naotoshi; Fujisaki, Kozo

    2014-03-17

    Ticks are obligate hematophagous arthropods with unique life cycles characterized by relatively short feeding periods and long non-feeding periods. They ambush a suitable host animal while staying in a pasture without any food source for up to several months. To understand the molecular mechanisms underlying their exceptional viability, we focused on autophagy, a proteolysis system via the lysosomes that is induced by starvation in eukaryotes. We hypothesized that starved conditions facilitate autophagy during host-seeking periods in the life cycle of the tick. To date, homologues of five autophagy-related (ATG) genes, ATG3, ATG4, ATG6, ATG8, and ATG12, have been identified from the hard tick Haemaphysalis longicornis. We showed previously that the mRNA levels of H. longicornis ATG (HlATG) genes were higher during the non-feeding period than the feeding period in the nymphal to adult stages. In addition, the expressions of HlATG3, HlATG4, HlATG8 and HlATG12 were highest in the egg compared to the other developmental stages in the same tick. In the present study, we used real-time polymerase chain reaction to examine the expression profiles of HlATG genes in the embryonic stage, larval to nymphal stages, and in internal organs of female ticks. We found that the HlATG genes were expressed at the highest levels in developing eggs on day 0 after oviposition. The levels of HlATG4 and HlATG8 were higher during the non-feeding period than the feeding period in the larval to nymphal stages. In the adults, the unfed condition appeared to be associated with the increased expression of HlATG genes in the fat body and midgut, which are nutrient storage organs; however, the expression patterns of HlATG genes varied in other organs. These results suggest that an up-regulation of HlATG genes is not always induced in different organs of unfed female ticks. Taken together, our findings raise the new possibility that HlATG genes play distinct biological roles in eggs, unfed ticks

  19. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  20. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.

    PubMed

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.

  1. Autophagy regulated by prolyl isomerase Pin1 and phospho-Ser-GSK3αβ involved in protection of oral squamous cell carcinoma against cadmium toxicity

    SciTech Connect

    So, Keum-Young; Ahn, Sang-Gun; Oh, Seon-Hee

    2015-10-23

    Prolyl isomerase Pin1 plays an important role in cell proliferation and is overexpressed in many human tumors. However, its role in autophagy induction remains undefined. Here we show that Pin1 regulates cell survival via autophagy in cadmium (Cd)-exposed oral squamous cell carcinoma (OSCC). OSCC exposure to Cd induced autophagy, as demonstrated by the formation of green fluorescent punctae in transfected cells expressing GFP-conjugated microtubule-associated protein light chain 3 (LC3) and by LC3 flux in the presence of autophagy inhibitors. Suppression of Atg5 enhanced Cd-induced apoptosis, indicating that autophagy is involved in cell protection. In dose–response experiments, cleavage of procaspase-3, PARP-1, and LC3-II was induced by Cd with an IC{sub 50} of 45 μM. Expression of Pin1 was decreased at or above the Cd IC{sub 50} value and was inversely correlated with the level of phospho(p)-Ser-GSK3αβ. Genetic or pharmacologic inhibition of Pin1 suppressed Cd-induced autophagy, but increased p-Akt-mediated p-Ser-GSK3αβ; this was reversed by overexpression of Pin1. However, suppression of GSK3αβ inhibited Cd-induced autophagy and induced apoptosis, which could be reversed by overexpression of GSK3β. The PI3K inhibitor Ly294002 blocked p-Akt-mediated increases in p-Ser-GSK3αβ and autophagy and induced apoptosis. Therefore, p-Ser-GSK3αβ can directly regulate Cd-induced autophagy, although its function is suppressed by Pin1. Collectively, the present results indicate that targeting Pin1 and GSK3αβ at the same time could be an effective therapeutic tool for Cd-induced carcinogenesis. - Highlights: • Pin1 regulated autophagy to protect cells from cadmium toxicity. • Pin1 suppression inhibited cadmium-induced autophagy and induced apoptosis. • Pin1 inhibited the function of p-Ser-GSK3αβ in autophagy regulation. • p-Ser-GSK3αβ regulated autophagy independently of Pin1.

  2. Evolution of bopA Gene in Burkholderia: A Case of Convergent Evolution as a Mechanism for Bacterial Autophagy Evasion

    PubMed Central

    Yu, Dong; Yin, Zhiqiu; Jin, Yuan; Zhou, Jing; Ren, Hongguang; Hu, Mingda; Li, Beiping; Zhou, Wei

    2016-01-01

    Autophagy is an important defense mechanism targeting intracellular bacteria to restrict their survival and growth. On the other hand, several intracellular pathogens have developed an antiautophagy mechanism to facilitate their own replication or intracellular survival. Up to now, no information about the origin or evolution of the antiautophagic genes in bacteria is available. BopA is an effector protein secreted by Burkholderia pseudomallei via the type three secretion system, and it has been shown to play a pivotal role in their escape from autophagy.  The evolutionary origin of bopA was examined in this work. Sequence similarity searches for BopA showed that no homolog of BopA was detected in eukaryotes. However, eukaryotic linear motifs were detected in BopA. The phylogenetic tree of the BopA proteins in our analysis is congruent with the species phylogeny derived from housekeeping genes. Moreover, there was no obvious difference in GC content values of bopA gene and their respective genomes. Integrated information on the taxonomic distribution, phylogenetic relationships, and GC content of the bopA gene of Burkholderia revealed that this gene was acquired via convergent evolution, not from eukaryotic host through horizontal gene transfer (HGT) event. This work has, for the first time, characterized the evolutionary mechanism of bacterial evasion of autophagy. The results of this study clearly demonstrated the role of convergent evolution in the evolution of how bacteria evade autophagy. PMID:28018913

  3. Pharmacological modulation of autophagy to protect cardiomyocytes according to the time windows of ischaemia/reperfusion

    PubMed Central

    Xu, Qiulin; Li, Xixian; Lu, Yongkang; Shen, Liang; Zhang, Jingwen; Cao, Shiping; Huang, Xiaobo; Bin, Jianping; Liao, Yulin

    2015-01-01

    Background and Purpose Targeted modulation of autophagy induced by myocardial ischaemia/reperfusion has been the subject of intensive investigation, but it is debatable whether autophagy is beneficial or harmful. Hence, we evaluated the effects of pharmacological manipulation of autophagy on the survival of cardiomyocytes in different time windows of ischaemia/reperfusion. Experimental Approach We examined the autophagy and apoptosis in cardiomyocytes subjected to different durations of anoxia/re-oxygenation or ischaemia/reperfusion, and evaluated the effects of the autophagic enhancer rapamycin and inhibitor wortmannin on cell survival. Key Results In neonatal rat cardiomyocytes (NRCs) or murine hearts, autophagy was increased in response to anoxia/reoxygenation or ischaemia/reperfusion in a time-dependent manner. Rapamycin-enhanced autophagy in NRCs led to higher cell viability and less apoptosis when anoxia was sustained for ≦6 h. When anoxia was prolonged to 12 h, rapamycin did not increase cell viability, induced less apoptosis and more autophagic cell death. When anoxia was prolonged to 24 h, rapamycin increased autophagic cell death, while wortmannin reduced autophagic cell death and apoptosis. Similar results were obtained in mice subjected to ischaemia/reperfusion. Rapamycin inhibited the opening of mitochondrial transition pore in NRCs exposed to 6 h anoxia/4 h re-oxygenation but did not exert any effect when anoxia was extended to 24 h. Similarly, rapamycin reduced the myocardial expression of Bax in mice subjected to short-time ischaemia, but this effect disappeared when ischaemia was extended to 24 h. Conclusions and Implications The cardioprotection of autophagy is context-dependent and therapies involving the modification of autophagy should be determined according to the duration of ischaemia/reperfusion. PMID:25660104

  4. L-Ascorbate Protects Against Methamphetamine-Induced Neurotoxicity of Cortical Cells via Inhibiting Oxidative Stress, Autophagy, and Apoptosis.

    PubMed

    Huang, Ya-Ni; Yang, Ling-Yu; Wang, Jing-Ya; Lai, Chien-Cheng; Chiu, Chien-Tsai; Wang, Jia-Yi

    2017-01-01

    Methamphetamine (METH)-induced cell death contributes to the pathogenesis of neurotoxicity; however, the relative roles of oxidative stress, apoptosis, and autophagy remain unclear. L-Ascorbate, also called vitamin (Vit.) C, confers partial protection against METH neurotoxicity via induction of heme oxygenase-1. We further investigated the role of Vit. C in METH-induced oxidative stress, apoptosis, and autophagy in cortical cells. Exposure to lower concentrations (0.1, 0.5, 1 mM) of METH had insignificant effects on ROS production, whereas cells exposed to 5 mM METH exhibited ROS production in a time-dependent manner. We confirmed METH-induced apoptosis (by nuclear morphology revealed by Hoechst 33258 staining and Western blot showing the protein levels of pro-caspase 3 and cleaved caspase 3) and autophagy (by Western blot showing the protein levels of Belin-1 and conversion of microtubule-associated light chain (LC)3-I to LC3-II and autophagosome staining by monodansylcadaverine). The apoptosis as revealed by cleaved caspase-3 expression marked an increase at 18 h after METH exposure while both autophagic markers, Beclin 1 and LC3-II, marked an increase in cells exposed to METH for 6 and 24 h, respectively. Treating cells with Vit. C 30 min before METH exposure time-dependently attenuated the production of ROS. Vitamin C also attenuated METH-induced Beclin 1 and LC3-II expression and METH toxicity. Treatment of cells with Vit. C before METH exposure attenuated the expression of cleaved caspase-3 and reduced the number of METH-induced apoptotic cells. We suggest that the protective effect of Vit. C against METH toxicity might be through attenuation of ROS production, autophagy, and apoptosis.

  5. Altered Autophagy-Associated Genes Expression in T Cells of Oral Lichen Planus Correlated with Clinical Features

    PubMed Central

    Tan, Ya-Qin; Zhang, Jing; Du, Ge-Fei; Lu, Rui; Chen, Guan-Ying; Zhou, Gang

    2016-01-01

    Oral lichen planus (OLP) is a T cell-mediated inflammatory autoimmune disease. Autophagy has emerged as a fundamental trafficking event in mediating T cell response, which plays crucial roles in innate and adaptive immunity. The present study mainly investigated the mRNA expression of autophagy-associated genes in peripheral blood T cells of OLP patients and evaluated correlations between their expression and the clinical features of OLP. Five differentially expressed autophagy-associated genes were identified by autophagy array. Quantitative real-time RT-PCR results confirmed that IGF1 expression in the peripheral blood T cells of OLP patients was significantly higher than that in controls, especially in female and middle-aged (30–50 years old) OLP patients. In addition, ATG9B mRNA levels were significantly lower in nonerosive OLP patients. However, no significant differences were found in the expression of HGS, ESR1, and SNCA between OLP patients and controls. Taken together, dysregulation of T cell autophagy may be involved in immune response of OLP and may be correlated with clinical patterns. PMID:26980945

  6. Nucleus-Translocated ACSS2 Promotes Gene Transcription for Lysosomal Biogenesis and Autophagy.

    PubMed

    Li, Xinjian; Yu, Willie; Qian, Xu; Xia, Yan; Zheng, Yanhua; Lee, Jong-Ho; Li, Wei; Lyu, Jianxin; Rao, Ganesh; Zhang, Xiaochun; Qian, Chao-Nan; Rozen, Steven G; Jiang, Tao; Lu, Zhimin

    2017-06-01

    Overcoming metabolic stress is a critical step in tumor growth. Acetyl coenzyme A (acetyl-CoA) generated from glucose and acetate uptake is important for histone acetylation and gene expression. However, how acetyl-CoA is produced under nutritional stress is unclear. We demonstrate here that glucose deprivation results in AMP-activated protein kinase (AMPK)-mediated acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659, which exposed the nuclear localization signal of ACSS2 for importin α5 binding and nuclear translocation. In the nucleus, ACSS2 binds to transcription factor EB and translocates to lysosomal and autophagy gene promoter regions, where ACSS2 incorporates acetate generated from histone acetylation turnover to locally produce acetyl-CoA for histone H3 acetylation in these regions and promote lysosomal biogenesis, autophagy, cell survival, and brain tumorigenesis. In addition, ACSS2 S659 phosphorylation positively correlates with AMPK activity in glioma specimens and grades of glioma malignancy. These results underscore the significance of nuclear ACSS2-mediated histone acetylation in maintaining cell homeostasis and tumor development. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Functional analysis of autophagy genes via Agrobacterium-mediated transformation in the vascular Wilt fungus Verticillium dahliae.

    PubMed

    Zhou, Lei; Zhao, Jun; Guo, Wangzhen; Zhang, Tianzhen

    2013-08-20

    Autophagy is a widely conserved intracellular process for degradation and recycling of proteins, organelles and cytoplasm in eukaryotic organisms and is now emerging as an important process in foliar infection by many plant pathogenic fungi. However, the role of autophagy in soil-borne fungal physiology and infection biology is poorly understood. Here, we report the establishment of an Agrobacterium tumefaciens-mediated transformation (ATMT) system and its application to investigate two autophagy genes, VdATG8 and VdATG12, by means of targeted gene replacement and complementation. Transformation of a cotton-infecting Verticillium dahliae strain Vd8 with a novel binary vector pCOM led to the production of 384 geneticin-resistant transformants per 1 × 10(6) conidia. V. dahliae mutants lacking either VdATG8 or VdATG12 exhibited reduced conidiation and impaired aerial hyphae production. Disease development on Arabidopsis plants was slightly delayed when inoculated with VdATG8 or VdATG12 gene deletion mutants, compared with the wild-type and gene complemented strains. Surprisingly, in vitro inoculation with unimpaired roots revealed that the abilities of root invasion were not affected in gene deletion mutants. These results indicate that autophagy is necessary for aerial hyphae development and plant colonization but not for root infection in V. dahliae.

  8. Time course study of Aβ formation and neurite outgrowth disruption in differentiated human neuroblastoma cells exposed to H2O2: protective role of autophagy.

    PubMed

    Ashabi, Ghorbangol; Ahmadiani, Abolhassan; Abdi, Azadeh; Abraki, Shahnaz Babaei; Khodagholi, Fariba

    2013-09-01

    Here, we tried to elucidate the possible role of autophagy against H2O2 and Amyloid beta (Aβ) induced neurotoxicity using retinoic acid differentiated SH-SY5Y cells. We found that H2O2 disrupted neurite outgrowth concomitant with production of Aβ. Furthermore, we showed that H2O2 could increase the apoptotic factors such as Bax/Bcl-2 ratio, caspase-3 level, and PARP activity in a time course manner. These findings were confirmed by acridine orange/ethidium bromide and Hoechst staining. In addition, we observed that H2O2 led to conversion of LC3 protein from LC3I to LC3II and an increase in autophagy flux. Autophagy factors including LC3B, Atg7, and Atg12 increased and reached their highest level after 2h of insulting and then dropped to a lower level. Our results showed that autophagy could internalize and degrade intra- and extracellular Aβ after 3h treatment with H2O2. However, the remaining amount of Aβ accelerated morphological atrophy and, as a result, increased neuronal death (apoptosis). Inhibition of autophagy influx, using 3-methyl-adenine, increased intra- and extracellular levels of Aβ, providing more proof for a protective role of autophagy against oxidative stress. Further studies can shed light on the important role of autophagy by finding new pathways involved in Aβ degeneration.

  9. The metastasis suppressor gene KISS-1 regulates osteosarcoma apoptosis and autophagy processes

    PubMed Central

    Yin, Yiran; Tang, Lian; Shi, Lei

    2017-01-01

    The expression of the metastasis suppressor gene KISS-1 in osteosarcoma cells during apoptosis and autophagy was evaluated. MG-63 osteosarcoma cells were transfected with either KISS-1 overexpression or KISS-1 knockdown expression vector in vitro, and compared with cell lines transfected with empty vector. After 12, 24, 48 and 72 h of cell culture, the cell proliferation was examined. The MTT method was used to detect apoptosis by flow cytometry, and the mRNA levels of apoptosis and autophagy markers caspase-3, Bcl-2, Bax, LC3 and Beclin1 were assessed by RT-PCR. Our results showed that cells in the control and low expression group kept proliferating during the cell culture period of 72 h, while the cells in the overexpression group progressively decreased in number. Also, the proliferation rate of the low expression group was significantly higher than that of the control group. The relative mRNA expression levels of caspase-3 and Bax mRNA in the control and low expression group showed no change (the expression was lowest in the low expression group). Moreover, the mRNA level of Bcl-2 increased in both cell groups. The mRNA expression levels of caspase-3 and Bax in the overexpression group were increased, and the level of Bcl-2 was reduced significantly. At the same time, the relative expression level of LC3 and Beclin1 mRNA in the control and low expression groups remained the same, and that of the overexpression group increased. The mRNA levels of LC3 and Beclin1 in the overexpression group were the highest, and that of the low expression group the lowest. The differences were statistically significant (P<0.05). Based on these results, we showed that KISS-1 inhibited the proliferation of osteosarcoma in vitro, probably by accelerating the processes of apoptosis and autophagy in the cells. PMID:28075440

  10. Cloning and characterization of the autophagy-related gene 6 from the hard tick, Haemaphysalis longicornis.

    PubMed

    Kawano, Suguru; Umemiya-Shirafuji, Rika; Boldbaatar, Damdinsuren; Matsuoka, Kenji; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-11-01

    Autophagy is the intracellular protein degradation process which is induced by starvation. Ticks have a unique tolerance for starvation, and it is possible that this tolerance is associated with their longevity. Previously, we isolated the homologues of four autophagy-related (ATG) genes in the hard tick, Haemaphysalis longicornis, suggesting that autophagy appeared to play an important role in tolerance for starvation as well as the development of ticks. In this study, the homologue of ATG6 was isolated from H. longicornis (HlATG6). HlATG6 mRNA expression was higher in the egg and unfed larval stages than in other stages and upregulated in ovaries during the blood-feeding period. Moreover, HlATG6-knockdowned ticks laid a few and poorly developed eggs that were white brown in color and not well surface-coated with wax. However, the expression of vitellogenin (Vg)-2, HlVg-2, in the fat body of HlATG6-knockdowned ticks was significantly upregulated. In addition, hemolymph had a deep brown color in HlATG6-knockdowned ticks on day 21 after engorgement and drop-off, indicating that the Vgs synthesized by the fat body and midgut are retained and accumulated in the hemolymph of HlATG6-knockdowned ticks, probably due to the downregulation of the Vg uptake capability of oocytes. Interestingly, HlATG6 knockdown provided non-significant influences on the expression of the Vg receptor (HlVgR) at oocytes, suggesting a non-significant depression of VgR-mediated endocytosis in the oocytes of HlATG6-knockdowned ticks. Therefore, it was interpreted that the repression of Vg uptake in the oocytes of HlATG6-knockdowned ticks may be involved in endocytic processes other than the receptor recognition of Vgs in oocytes.

  11. Protective effects of crude garlic by reducing iron-mediated oxidative stress, proliferation and autophagy in rats.

    PubMed

    Nahdi, Afef; Hammami, Imen; Kouidhi, Wided; Chargui, Abderrahman; Ben Ammar, Awatef; Hamdaoui, Mohamed Hédi; El May, Ahmed; El May, Michèle

    2010-10-01

    The impact of garlic, known for its antioxidant activities, on iron metabolism has been poorly investigated. The aim of this work was to study the effect of crude garlic pre-treatment on iron-mediated lipid peroxidation, proliferation and autophagy for 5 weeks. Rats were fed distilled water or garlic solution (1 g/kg body weight) by gavage for the first 3 weeks as pre-treatment and received a basal diet supplemented or not with ferrous sulfate (650 mg Fe/kg diet) for the last 2 weeks of treatment. Immunohistochemistry labeling and ultrastuctural observations were used to evaluate the iron deleterious effects in the liver. Iron supplementation induced cell proliferation predominantly in non parenchymal cells comparing to hepatocytes, but not apoptosis. In addition, iron was accumulated within the hepatic lysosomes where it triggers autophagy as evidenced by the formation of autophagic vesicles detected by LC3-II staining. It also induced morphologic alterations of the mitochondrial membranes due to increased lipid peroxidation as shown by elevated iron and malondialdehyde concentrations in serum and tissues. Garlic pre-treatment reduced iron-catalyzed lipid peroxidation by decreasing the malondialdehyde level in the liver and colon and by enhancing the status of antioxidants. In addition, garlic reduced the iron-mediated cell proliferation and autophagy by lowering iron storage in the liver and protected mitochondrial membrane. Based on these results, garlic treatment significantly prevented iron-induced oxidative stress, proliferation and autophagy at both biochemical and histological levels due to its potent free radical scavenging and antioxidant properties.

  12. Thioredoxin-2 protects against oxygen-glucose deprivation/reperfusion injury by inhibiting autophagy and apoptosis in H9c2 cardiomyocytes

    PubMed Central

    Li, Yan-Yan; Xiang, Yin; Zhang, Song; Wang, Yan; Yang, Jie; Liu, Wei; Xue, Feng-Tai

    2017-01-01

    The aim of this study is to examine the role of thioredoxin-2 (Trx2) in autophagy and apoptosis during myocardial ischemia-reperfusion (I/R) injury in vitro. We employed the oxygen-glucose deprivation and reperfusion (OGD/R) model of H9c2 cells and used lentiviral infection to overexpress Trx2. H9c2 cell viability and injury assays were conducted using a Cell Counting Kit-8 (CCK-8) and alactate dehydrogenase (LDH) kit. The effects of Trx2 on autophagy and apoptosis were measured by transmission electron microscopy (TEM), western blot, and flow cytometry. Our results showed that the expression of Trx2 was significantly decreased at reperfusion 6 h after OGD 12 h treatment. Trx2 overexpression inhibited autophagy in H9c2 cells subjected to OGD/R. As the underlying mechanisms, both Akt kinase/the mammalian target of rapamycin (Akt/mTOR) and AMP-activated protein kinase (AMPK)/mTOR signaling pathways were involved in the regulation of Trx2 during autophagy, which was also mediated by reactive oxygen species (ROS). 3-methyladenine (3-MA), an inhibitor of autophagy, not only suppressed OGD/R-induced autophagy but also decreased apoptosis. As a classical autophagy sensitizer, rapamycin (Rapa) augmented autophagy as well as apoptosis. Additionally, we further demonstrated that Trx2 could alleviate OGD/R-induced apoptosis via mitochondrion-mediated intrinsic apoptotic pathway. In summary, our data indicated that Trx2 protects cardiomyocytes under OGD/R by inhibiting autophagy and apoptosis. Trx2 may be a crucial regulatory protein during I/R-induced cardiomyocyte injury and death. PMID:28386372

  13. Taurine protects against As2O3-induced autophagy in pancreas of rat offsprings through Nrf2/Trx pathway.

    PubMed

    Bai, Jie; Yao, Xiaofeng; Jiang, Liping; Qiu, Tianming; Liu, Shuang; Qi, Baoxu; Zheng, Yue; Kong, Yuan; Yang, Guang; Chen, Min; Liu, Xiaofang; Sun, Xiance

    2016-04-01

    Arsenic was increasingly to blame as a risk factor for type 2 diabetes mellitus. In our previous study, we had found iAs stimulated autophagic flux and caused autophagic cell death through ROS pathway in INS-1 cells. Since NF-E2-related factor 2 (Nrf2) and the thioredoxin (Trx) system was a crucial line of defense against ROS, we investigated whether Nrf2/Trx pathway contributed to As2O3-stimulated autophagy and the role of taurine in this study. After treatment with 2 mg/kg BW-8 mg/kg BW As2O3 for 57 d, the expression of Nrf2 protein was decreased significantly in offsprings' pancreas. The expression of Trx gene was decreased significantly in pancreas subsequently. Finally, the generation of reactive oxygen species stimulated autophagy in arsenic-treated pancreas. Taurine could reverse arsenic-inhibited Nrf2 and Trx and inhibit autophagy. In short, inhibition of Nrf2/Trx pathway might play an important role in the pathogenesis of arsenic-related diabetes. Taurine could serve as nutrition supplementation against arsenic-related diabetes in high arsenic exposure area.

  14. Investigating autophagy

    PubMed Central

    Swanlund, Jamie M.; Kregel, Kevin C.; Oberley, Terry D.

    2011-01-01

    Autophagy is a compensatory pathway involving isolation and subsequent degradation of cytosolic material and organelles in eukaryotic cells.1 The autophagic process can provide a “housekeeping” function by removing damaged proteins and organelles in a selective or nonselective fashion in order to exert a protective effect following stress.2 Remarkably, after being discovered to be much more of a targeted process than a random one, the role of autophagy became implicated in many normal cellular and disease processes.3 Several methodologies are routinely employed to monitor the entire autophagic process.4 Microtubule-associated protein light chain 3, a mammalian homolog of yeast Atg8, has been widely used as a specific marker to monitor autophagy in numerous cell types.5 While monitoring autophagic flux is extremely important, it is also beneficial to perform a detailed analysis by electron microscopy (EM) to evaluate changes in various autophagic structures, quantify the areas involved, and determine if any particular organelle(s) or area of the cell cytoplasm is being targeted for degradation.6 The following article describes methods to localize and quantify subcellular areas of autophagy using transmission EM. Also discussed are methods for subcellular localization of specific proteins by employing immunogold EM; this method becomes particularly useful in detecting early changes in cellular homeostasis that may occur before later signs of cellular insult can be observed morphologically. PMID:19923921

  15. Lin28a protects against postinfarction myocardial remodeling and dysfunction through Sirt1 activation and autophagy enhancement.

    PubMed

    Hao, Yuanyuan; Lu, Qun; Yang, Guodong; Ma, Aiqun

    2016-10-28

    Myocardial remodeling and cardiac dysfunction prevention may represent a therapeutic approach to reduce mortality in patients with myocardial infarction (MI). We investigated the effects of Lin28a in experimental MI models, as well as the mechanisms underlying these effects. Left anterior descending (LAD) coronary artery ligation was used to construct an MI-induced injury model. Neonatal cardiomyocytes were isolated and cultured to investigate the mechanisms underlying the protective effects of Lin28a against MI-induced injury. Lin28a significantly inhibited left ventricular remodeling and cardiac dysfunction after MI, as demonstrated via echocardiography and hemodynamic measurements. Lin28a reduced cardiac enzyme and inflammatory marker release in mice subjected to MI-induced injury. The mechanisms underlying the protective effects of Lin28a against MI-induced injury were associated with autophagy enhancements and apoptosis inhibition. Consistent with these findings, Lin28a knockdown aggravated cardiac remodeling and dysfunction after MI-induced injury. Lin28a knockdown also inhibited cardiomyocyte autophagy and increased cardiomyocyte apoptosis in mice subjected to MI-induced injury. Interestingly, Sirt1 knockdown abolished the protective effects of Lin28a against cardiac remodeling and dysfunction after MI, and Lin28a failed to increase the numbers of GFP-LC3-positive punctae and decrease aggresome and p62 accumulation in Sirt1-knockdown neonatal cardiomyocytes subjected to hypoxia-induced injury. Lin28a inhibits cardiac remodeling, improves cardiac function, and reduces cardiac enzyme and inflammatory marker release after MI. Lin28a also up-regulates cardiomyocyte autophagy and inhibits cardiomyocyte apoptosis through Sirt1 activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy.

    PubMed

    Deng, Yong-Ning; Shi, Jie; Liu, Jie; Qu, Qiu-Min

    2013-07-01

    Celastrol, an active component found in the Chinese herb tripterygium wilfordii has been identified as a neuroprotective agent for neurodegenerative diseases including Parkinson's disease (PD) through unknown mechanism. Celastrol can induce autophagy, which plays a neuroprotective role in PD. We tested the protective effect of celastrol on rotenone-induced injury and investigated the underlying mechanism using human neuroblastoma SH-SY5Y cells. The SH-SY5Y cells were treated with celastrol before rotenone exposure. The cells survival, apoptosis, accumulation of α-synuclein, oxidative stress and mitochondrial function, and autophagy production were analyzed. We found celastrol (500 nM) pre-treatment enhanced cell viability (by 28.99%, P<0.001), decreased cell apoptosis (by 54.38%, P<0.001), increased SOD and GSH (by 120.53% and 90.46%, P<0.01), reduced accumulation of α-synuclein (by 35.93%, P<0.001) and ROS generation (by 33.99%, P<0.001), preserved MMP (33.93±3.62%, vs. 15.10±0.71% of JC-1 monomer, P<0.001) and reduced the level of cytochrome C in cytosol (by 45.57%, P<0.001) in rotenone treated SH-SY5Y cells. Moreover, celastrol increased LC3-II/LC3 I ratio by 60.92% (P<0.001), indicating that celastrol activated autophagic pathways. Inhibiting autophagy by 3-methyladenine (3-MA) abolished the protective effects of celastrol. Our results suggested that celastrol protects SH-SY5Y cells from rotenone induced injuries and autophagic pathway is involved in celastrol neuroprotective effects.

  17. Apoptosis-related genes control autophagy and influence DENV-2 infection in the mosquito vector, Aedes aegypti.

    PubMed

    Eng, Matthew W; van Zuylen, Madeleine N; Severson, David W

    2016-09-01

    The mosquito Aedes aegypti is the primary urban vector for dengue virus (DENV) worldwide. Insight into interactions occurring between host and pathogen is important in understanding what factors contribute to vector competence. However, many of the molecular mechanisms for vector competence remain unknown. Our previous global transcriptional analysis suggested that differential expression of apoptotic proteins is involved in determining refractoriness vs susceptibility to DENV-2 infection in Ae. aegypti females following a DENV-infected blood meal. To determine whether DENV-refractory Ae. aegypti showed more robust apoptosis upon infection, we compared numbers of apoptotic cells from midguts of refractory and susceptible strains and observed increased numbers of apoptotic cells in only the refractory strain upon DENV-2 infection. Thereafter, we manipulated apoptosis through dsRNA interference of the initiator caspase, Aedronc. Unexpectedly, dsAedronc-treated females showed both decreased frequency of disseminated infection and decreased virus titer in infected individuals. Insect caspases have also previously been identified as regulators of the cellular recycling process known as autophagy. We observed activation of autophagy in midgut and fat body tissues following a blood meal, as well as programmed activation of several apoptosis-related genes, including the effector caspase, Casps7. To determine whether autophagy was affected by caspase knockdown, we silenced Aedronc and Casps7, and observed reduced activation of autophagy upon silencing. Our results provide evidence that apoptosis-related genes are also involved in regulating autophagy, and that Aedronc may play an important role in DENV-2 infection success in Ae. aegypti, possibly through its regulation of autophagy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Autophagy protects human brain microvascular endothelial cells against methylglyoxal-induced injuries, reproducible in a cerebral ischemic model in diabetic rats.

    PubMed

    Fang, Lili; Li, Xue; Zhong, Yinbo; Yu, Jing; Yu, Lina; Dai, Haibin; Yan, Min

    2015-10-01

    Cerebral microvascular endothelial cells (ECs) are crucial for brain vascular repair and maintenance, but their physiological function may be impaired during ischemic stroke and diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, could exacerbate ischemia-induced EC injury and dysfunction. We investigated the protective effect of autophagy on cultured human brain microvascular endothelial cells (HBMEC) that underwent MGO treatment. A further study was conducted to explore the underlying mechanisms of the protective effect. Autophagic activity was assessed by evaluating protein levels, using western blot. 3-methyladenine (3-MA), bafilomycin A1, ammonium chloride (AC), Beclin 1 siRNA, and chloroquine (CQ) were used to cause autophagy inhibition. Alarmar blue assay and lactate dehydrogenase release assay were used to evaluate cell viability. Streptozotocin was administered to induce type I diabetes in rats and post-permanent middle cerebral artery occlusion was performed to elicit cerebral ischemia. Blood-brain barrier permeability was also assessed. Our study found that MGO reduced HBMEC cell viability in a concentration- and time-dependent manner, and triggered the responsive autophagy activation. Autophagy inhibitors bafilomycin A1, AC, 3-MA, and BECN1 siRNA exacerbated MGO-induced HBMEC injury. FAK phosphorylation inhibitor PF573228 inhibited MGO-triggered autophagy and enhanced lactate dehydrogenase release. Meanwhile, similar autophagy activation in brain vascular ECs was observed during permanent middle cerebral artery occlusion-induced cerebral ischemia in diabetic rats, while chloroquine-induced autophagy inhibition enhanced blood-brain barrier permeability. Taken together, our study indicates that autophagy triggered by MGO defends HBMEC against injuries.

  19. Autophagy and Cancer

    PubMed Central

    Aredia, Francesca; Ortiz, Luis Miguel Guamán; Giansanti, Vincenzo; Scovassi, A. Ivana

    2012-01-01

    Autophagy is a housekeeping survival mechanism with a protective function against stress conditions. However, when stress severity or duration increases, it may promote cell death. Paradoxically, autophagy favors cancer development, since cancer cells could enhance their proliferation potential (thus becoming able to resist anticancer therapy) thanks to the energetic supply provided by organelle degradation typically driven by autophagy following a stepwise pathway. The main actors of the autophagic machinery as well as the features shared with apoptosis will be described. Special attention will be paid to the effects of autophagy manipulation. PMID:24710488

  20. Depletion of HPV16 early genes induces autophagy and senescence in a cervical carcinogenesis model, regardless of viral physical state.

    PubMed

    Hanning, Jennifer E; Saini, Harpreet K; Murray, Matthew J; Caffarel, Maria M; van Dongen, Stijn; Ward, Dawn; Barker, Emily M; Scarpini, Cinzia G; Groves, Ian J; Stanley, Margaret A; Enright, Anton J; Pett, Mark R; Coleman, Nicholas

    2013-11-01

    In cervical carcinomas, high-risk human papillomavirus (HR-HPV) may be integrated into host chromosomes or remain extra-chromosomal (episomal). We used the W12 cervical keratinocyte model to investigate the effects of HPV16 early gene depletion on in vitro cervical carcinogenesis pathways, particularly effects shared by cells with episomal versus integrated HPV16 DNA. Importantly, we were able to study the specific cellular consequences of viral gene depletion by using short interfering RNAs known not to cause phenotypic or transcriptional off-target effects in keratinocytes. We found that while cervical neoplastic progression in vitro was characterized by dynamic changes in HPV16 transcript levels, viral early gene expression was required for cell survival at all stages of carcinogenesis, regardless of viral physical state, levels of early gene expression or histology in organotypic tissue culture. Moreover, HPV16 early gene depletion induced changes in host gene expression that were common to both episome-containing and integrant-containing cells. In particular, we observed up-regulation of autophagy genes, associated with enrichment of senescence and innate immune-response pathways, including the senescence-associated secretory phenotype (SASP). In keeping with these observations, HPV16 early gene depletion induced autophagy in both episome-containing and integrant-containing W12 cells, as evidenced by the appearance of autophagosomes, punctate expression of the autophagy marker LC3, conversion of LC3B-I to LC3B-II, and reduced levels of the autophagy substrate p62. Consistent with the reported association between autophagy and senescence pathways, HPV16 early gene depletion induced expression of the senescence marker beta-galactosidase and increased secretion of the SASP-related protein IGFBP3. Together, these data indicate that depleting HR-HPV early genes would be of potential therapeutic benefit in all cervical carcinogenesis pathways, regardless of viral

  1. Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy.

    PubMed

    Kong, Deyan; Zhu, Juehua; Liu, Qian; Jiang, Yongjun; Xu, Lily; Luo, Ning; Zhao, Zhenqiang; Zhai, Qijin; Zhang, Hao; Zhu, Mingyue; Liu, Xinfeng

    2017-03-01

    Cellular therapy with mesenchymal stem cells (MSCs) protects cortical neurons against hypoxic-ischemic injury of stroke. Although sorts of efforts have been made to confirm the neuroprotective effect of MSCs on neurons against hypoxic-ischemic injury, the mechanism is until now far away from clear. Here in this study, oxygen-glucose deprivation (OGD)-injured neuron model was applied to mimic the neuronal hypoxic-ischemic injury in vitro. Co-culturing with MSCs in a transwell co-culture system, the OGD injured neurons were rescued by 75.0 %. Further data demonstrated that co-culturing with MSCs protected the cortical neurons from the OGD-induced parthanatos by alleviating apoptosis-inducing factor (AIF) nuclear translocation; attenuated the neuronal necroptosis by down-regulating the expression of the two essential kinases in necroptosis, receptor interacting protein kinase1 (RIP1) and 3 (RIP3); rescued the neurons from apoptosis by deactivating caspase-3; whilst performed no significant influence on OGD-induced neuronal autophagy, according to its failed regulation on Beclin1. In conclusion, MSCs potentially protect the cortical neurons from OGD-injury in vitro, through rescuing neurons from the cell death of parthanatos, necroptosis, and apoptosis, but not autophagy, which could provide some evidence to the mechanism explanation on stem cell treatment for ischemic stroke.

  2. Insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling.

    PubMed

    Paula-Gomes, S; Gonçalves, D A P; Baviera, A M; Zanon, N M; Navegantes, L C C; Kettelhut, I C

    2013-11-01

    Insulin is an important regulator of the ubiquitin-proteasome system (UPS) and of lysosomal proteolysis in cardiac muscle. However, the role of insulin in the regulation of the muscle atrophy-related Ub-ligases atrogin-1 and MuRF1 as well as in autophagy, a major adaptive response to nutritional stress, in the heart has not been characterized. We report here that acute insulin deficiency in the cardiac muscle of rats induced by streptozotocin increased the expression of atrogin-1 and MuRF1 as well as LC3 and Gabarapl1, 2 autophagy-related genes. These effects were associated with decreased phosphorylation levels of Akt and its downstream target Foxo3a; this phenomenon is a well-known effect that permits the maintenance of Foxo in the nucleus to activate protein degradation by proteasomal and autophagic processes. The administration of insulin increased Akt and Foxo3a phosphorylation and suppressed the diabetes-induced expression of Ub-ligases and autophagy-related genes. In cultured neonatal rat cardiomyocytes, nutritional stress induced by serum/glucose deprivation strongly increased the expression of Ub-ligases and autophagy-related genes; this effect was inhibited by insulin. Furthermore, the addition of insulin in vitro prevented the decrease in Akt/Foxo signaling induced by nutritional stress. These findings demonstrate that insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes, most likely through the phosphorylation of Akt and the inactivation of Foxo3a. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells.

    PubMed

    Jalewa, Jaishree; Sharma, Mohit Kumar; Hölscher, Christian

    2016-10-01

    Currently, there is no viable treatment available for Parkinson's disease (PD) that stops or reverses disease progression. Interestingly, studies testing the glucagon-like-peptide-1 (GLP-1) mimetic Exendin-4 have shown neuroprotective/neurorestorative properties in pre-clinical tests and in a pilot clinical study of PD. Incretin analogues were originally developed to treat type 2 diabetes and several are currently on the market. In this study, we tested novel incretin analogues on the dopaminergic SH-SY5Y neuroblastoma cells against a toxic mitochondrial complex I inhibitor, Rotenone. Here, we investigate for the first time the effects of six different incretin receptor agonists - Liraglutide, D-Ser2-Oxyntomodulin, a GLP-1/GIP Dual receptor agonist, dAla(2)-GIP-GluPal, Val(8)GLP-1-GluPal and exendin-4. Post-treatment with doses of 1, 10 or 100 nM of incretin analogues for 12 h increased the survival of SH-SY5Y cells treated with 1 μM Rotenone for 12 h. Furthermore, we studied the post-treatment effect of 100 nM incretin analogues against 1 μM Rotenone stress on apoptosis, mitochondrial stress and autophagy markers. We found significant protective effects of the analogues against Rotenone stress on cell survival and on mitochondrial and autophagy-associated markers. The novel GLP-1/GIP Dual receptor agonist was superior and effective at a tenfold lower concentration compared to the other analogues. Using the Phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, we further show that the neuroprotective effects are partially PI3K-independent. Our data suggest that the neuroprotective properties exhibited by incretin analogues against Rotenone stress involve enhanced autophagy, increased Akt-mediated cell survival and amelioration of mitochondrial dysfunction. These mechanisms can explain the neuroprotective effects of incretin analogues reported in clinical trials. GLP-1, GIP and dual incretin receptor agonists showed protective effects in SH-SY5Y cells

  4. Variants in autophagy-related genes and clinical characteristics in melanoma: a population-based study.

    PubMed

    White, Kirsten A M; Luo, Li; Thompson, Todd A; Torres, Salina; Hu, Chien-An Andy; Thomas, Nancy E; Lilyquist, Jenna; Anton-Culver, Hoda; Gruber, Stephen B; From, Lynn; Busam, Klaus J; Orlow, Irene; Kanetsky, Peter A; Marrett, Loraine D; Gallagher, Richard P; Sacchetto, Lidia; Rosso, Stefano; Dwyer, Terence; Cust, Anne E; Begg, Colin B; Berwick, Marianne

    2016-11-01

    Autophagy has been linked with melanoma risk and survival, but no polymorphisms in autophagy-related (ATG) genes have been investigated in relation to melanoma progression. We examined five single-nucleotide polymorphisms (SNPs) in three ATG genes (ATG5; ATG10; and ATG16L) with known or suspected impact on autophagic flux in an international population-based case-control study of melanoma. DNA from 911 melanoma patients was genotyped. An association was identified between (GG) (rs2241880) and earlier stage at diagnosis (OR 0.47; 95% Confidence Intervals (CI) = 0.27-0.81, P = 0.02) and a decrease in Breslow thickness (P = 0.03). The ATG16L heterozygous genotype (AG) (rs2241880) was associated with younger age at diagnosis (P = 0.02). Two SNPs in ATG5 were found to be associated with increased stage (rs2245214 CG, OR 1.47; 95% CI = 1.11-1.94, P = 0.03; rs510432 CC, OR 1.84; 95% CI = 1.12-3.02, P = 0.05). Finally, we identified inverse associations between ATG5 (GG rs2245214) and melanomas on the scalp or neck (OR 0.20, 95% CI = 0.05-0.86, P = 0.03); ATG10 (CC) (rs1864182) and brisk tumor infiltrating lymphocytes (TILs) (OR 0.42; 95% CI = 0.21-0.88, P = 0.02), and ATG5 (CC) (rs510432) with nonbrisk TILs (OR 0.55; 95% CI = 0.34-0.87, P = 0.01). Our data suggest that ATG SNPs might be differentially associated with specific host and tumor characteristics including age at diagnosis, TILs, and stage. These associations may be critical to understanding the role of autophagy in cancer, and further investigation will help characterize the contribution of these variants to melanoma progression.

  5. Cationic poly(amidoamine) dendrimers induced cyto-protective autophagy in hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Li, Yubin; Wang, Shaofei; Wang, Ziyu; Qian, Xiaolu; Fan, Jiajun; Zeng, Xian; Sun, Yun; Song, Ping; Feng, Meiqing; Ju, Dianwen

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers are proposed as one of the most promising nanomaterials for biomedical applications because of their unique tree-like structure, monodispersity and tunable properties. In this study, we found that PAMAM dendrimers could induce the formation of autophagosomes and the conversion of microtubule-associated protein 1 light chain 3 (LC3) in hepatocellular carcinoma HepG2 cells, while the inhibition of the Akt/mTOR and activation of the Erk 1/2 signaling pathways were involved in autophagy-induced by PAMAM dendrimers. We also investigated the suppression of autophagy with the obviously enhanced cytotoxicity of PAMAM dendrimers. Moreover, the blockage of a reactive oxygen species (ROS) could enhance the growth inhibition and apoptosis of hepatocellular carcinoma cells, induced by PAMAM dendrimers through reducing autophagic effects. Taken together, these findings explored the role and mechanism of autophagy induced by PAMAM dendrimers in HepG2 cells, provided new insight into the effect of autophagy on drug delivery nanomaterials and tumor cells and contributed to the use of a drug delivery vehicle for hepatocellular carcinoma treatment.

  6. Reduction of protein translation and activation of autophagy protect against PINK1 pathogenesis in Drosophila melanogaster.

    PubMed

    Liu, Song; Lu, Bingwei

    2010-12-09

    Mutations in PINK1 and Parkin cause familial, early onset Parkinson's disease. In Drosophila melanogaster, PINK1 and Parkin mutants show similar phenotypes, such as swollen and dysfunctional mitochondria, muscle degeneration, energy depletion, and dopaminergic (DA) neuron loss. We previously showed that PINK1 and Parkin genetically interact with the mitochondrial fusion/fission pathway, and PINK1 and Parkin were recently proposed to form a mitochondrial quality control system that involves mitophagy. However, the in vivo relationships among PINK1/Parkin function, mitochondrial fission/fusion, and autophagy remain unclear; and other cellular events critical for PINK1 pathogenesis remain to be identified. Here we show that PINK1 genetically interacted with the protein translation pathway. Enhanced translation through S6K activation significantly exacerbated PINK1 mutant phenotypes, whereas reduction of translation showed suppression. Induction of autophagy by Atg1 overexpression also rescued PINK1 mutant phenotypes, even in the presence of activated S6K. Downregulation of translation and activation of autophagy were already manifested in PINK1 mutant, suggesting that they represent compensatory cellular responses to mitochondrial dysfunction caused by PINK1 inactivation, presumably serving to conserve energy. Interestingly, the enhanced PINK1 mutant phenotype in the presence of activated S6K could be fully rescued by Parkin, apparently in an autophagy-independent manner. Our results reveal complex cellular responses to PINK1 inactivation and suggest novel therapeutic strategies through manipulation of the compensatory responses.

  7. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes

    PubMed Central

    Møller, Andreas Buch; Kampmann, Ulla; Hedegaard, Jakob; Thorsen, Kasper; Nordentoft, Iver; Vendelbo, Mikkel Holm; Møller, Niels; Jessen, Niels

    2017-01-01

    This case-control study was designed to investigate the gene expression profile in skeletal muscle from severely insulin resistant patients with long-standing type 2 diabetes (T2D), and to determine associated signaling pathways. Gene expression profiles were examined by whole transcriptome, strand-specific RNA-sequencing and associated signaling was determined by western blot. We identified 117 differentially expressed gene transcripts. Ingenuity Pathway Analysis related these differences to abnormal muscle morphology and mitochondrial dysfunction. Despite a ~5-fold difference in plasma insulin, we did not observe any difference in phosphorylation of AKT or AS160, although other insulin-sensitive cascades, as mTOR/4EBP1, had retained their sensitivity. Autophagy-related gene (ATG14, RB1CC1/FIP200, GABARAPL1, SQSTM1/p62, and WIPI1) and protein (LC3BII, SQSTM1/p62 and ATG5) expression were decreased in skeletal muscle from the patients, and this was associated with a trend to increased phosphorylation of the insulin-sensitive regulatory transcription factor FOXO3a. These data show that gene expression is highly altered and related to mitochondrial dysfunction and abnormal morphology in skeletal muscle from severely insulin resistant patients with T2D, and that this is associated with decreased expression of autophagy-related genes and proteins. We speculate that prolonged treatment with high doses of insulin may suppress autophagy thereby generating a vicious cycle maintaining insulin resistance. PMID:28252104

  8. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis.

    PubMed

    Zhang, Yong; Goldman, Scott; Baerga, Rebecca; Zhao, Yun; Komatsu, Masaaki; Jin, Shengkan

    2009-11-24

    White adipocytes have a unique structure in which nearly the entire cell volume is occupied by one large lipid droplet. However, the molecular and cellular processes involved in the cytoplasmic remodeling necessary to create this structure are poorly defined. Autophagy is a membrane trafficking process leading to lysosomal degradation. Here, we investigated the effect of the deletion of an essential autophagy gene, autophagy-related gene 7 (atg7), on adipogenesis. A mouse model with a targeted deletion of atg7 in adipose tissue was generated. The mutant mice were slim and contained only 20% of the mass of white adipose tissue (WAT) found in wild-type mice. Interestingly, approximately 50% of the mutant white adipocytes were multilocular. The mutant white adipocytes were smaller with a larger volume of cytosol and contained more mitochondria. These cells exhibited altered fatty acid metabolism with increased rates of beta-oxidation and reduced rates of hormone-induced lipolysis. Consistently, the mutant mice had lower fed plasma concentrations of fatty acids and the levels decreased at faster rates upon insulin stimuli. These mutant mice exhibited increased insulin sensitivity. The mutant mice also exhibited markedly decreased plasma concentrations of leptin but not adiponectin, lower plasma concentrations of triglyceride and cholesterol, and they had higher levels of basal physical activity. Strikingly, these mutant mice were resistant to high-fat-diet-induced obesity. Taken together, our results indicate that atg7, and by inference autophagy, plays an important role in normal adipogenesis and that inhibition of autophagy by disrupting the atg7 gene has a unique anti-obesity and insulin sensitization effect.

  9. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis

    PubMed Central

    Zhang, Yong; Goldman, Scott; Baerga, Rebecca; Zhao, Yun; Komatsu, Masaaki; Jin, Shengkan

    2009-01-01

    White adipocytes have a unique structure in which nearly the entire cell volume is occupied by one large lipid droplet. However, the molecular and cellular processes involved in the cytoplasmic remodeling necessary to create this structure are poorly defined. Autophagy is a membrane trafficking process leading to lysosomal degradation. Here, we investigated the effect of the deletion of an essential autophagy gene, autophagy-related gene 7 (atg7), on adipogenesis. A mouse model with a targeted deletion of atg7 in adipose tissue was generated. The mutant mice were slim and contained only 20% of the mass of white adipose tissue (WAT) found in wild-type mice. Interestingly, ≈50% of the mutant white adipocytes were multilocular. The mutant white adipocytes were smaller with a larger volume of cytosol and contained more mitochondria. These cells exhibited altered fatty acid metabolism with increased rates of β-oxidation and reduced rates of hormone-induced lipolysis. Consistently, the mutant mice had lower fed plasma concentrations of fatty acids and the levels decreased at faster rates upon insulin stimuli. These mutant mice exhibited increased insulin sensitivity. The mutant mice also exhibited markedly decreased plasma concentrations of leptin but not adiponectin, lower plasma concentrations of triglyceride and cholesterol, and they had higher levels of basal physical activity. Strikingly, these mutant mice were resistant to high-fat-diet-induced obesity. Taken together, our results indicate that atg7, and by inference autophagy, plays an important role in normal adipogenesis and that inhibition of autophagy by disrupting the atg7 gene has a unique anti-obesity and insulin sensitization effect. PMID:19910529

  10. Autophagy and protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha kinase (eIF2α) pathway protect ovarian cancer cells from metformin-induced apoptosis.

    PubMed

    Moon, Hee-Sun; Kim, Boyun; Gwak, HyeRan; Suh, Dong Hoon; Song, Yong Sang

    2016-04-01

    Metformin, an oral biguanide for the treatment of type II diabetes, has been shown to have anticancer effects in ovarian cancer. Energy starvation induced by metformin causes endoplasmic reticulum stress-mediated unfolded protein response (UPR) and autophagy. UPR and autophagy act as a survival or death mechanism in cells. In this study, we observed that metformin-induced apoptosis was relieved by autophagy and the PERK/eIF2α pathway in ovarian cancer cells, but not in peripheral blood mononuclear cells (PBMC) or 'normal' ovarian surface epithelial cells (OSE). Increased PARP cleavage and increased LC3B-II with ATG5-ATG12 complex suggested the induction of apoptosis and autophagy, respectively, in metformin-treated ovarian cancer cells. Accumulation of acidic vacuoles in the cytoplasm and downregulation of p62 further supported late-stage autophagy. Interestingly, metformin induced interdependent activation between autophagy and the UPR, especially the PERK/eIF2α pathway. Inhibition of autophagy-induced PERK inhibition, and vice versa, were demonstrated using small molecular inhibitors (PERK inhibitor I, GSK2606414; autophagy inhibitor, 3-MA, and BafA1). Moreover, autophagy and PERK activation protected ovarian cancer cells against metformin-induced apoptosis. Metformin treatment in the presence of inhibitors of PERK and autophagy, however, had no cytotoxic effects on OSE or PBMC. In conclusion, these results suggest that inhibition of autophagy and PERK can enhance the selective anticancer effects of metformin on ovarian cancer cells. © 2015 Wiley Periodicals, Inc.

  11. Autophagy Genes Enhance Murine Gammaherpesvirus 68 Reactivation From Latency by Preventing Virus-induced Systemic Inflammation

    PubMed Central

    Park, Sunmin; Buck, Michael D.; Desai, Chandni; Zhang, Xin; Loginicheva, Ekaterina; Martinez, Jennifer; Freeman, Michael L.; Saitoh, Tatsuya; Akira, Shizuo; Guan, Jun-Lin; He, You-Wen; Blackman, Marcia A.; Handley, Scott A.; Levine, Beth; Green, Douglas R.; Reese, Tiffany A.; Artyomov, Maxim N.; Virgin, Herbert W.

    2016-01-01

    SUMMARY Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine γ-herpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by Interferon-γ (IFN-γ). Using a Lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16L1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5-deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency. PMID:26764599

  12. Induction of autophagy by salidroside through the AMPK-mTOR pathway protects vascular endothelial cells from oxidative stress-induced apoptosis.

    PubMed

    Zheng, Xiang-Tao; Wu, Zi-Heng; Wei, Ye; Dai, Ju-Ji; Yu, Guan-Feng; Yuan, FengLai; Ye, Le-Chi

    2017-01-01

    Vascular endothelial cells are highly sensitive to oxidative stress, and this is one of the mechanisms by which widespread endothelial dysfunction is induced in most cardiovascular diseases and disorders. However, how these cells can survive in oxidative stress environments remains unclear. Salidroside, a traditional Chinese medicine, has been shown to confer vascular protective effects. We aimed to understand the role of autophagy and its regulatory mechanisms by treating human umbilical vein endothelial cells (HUVECs) with salidroside under oxidative stress. HUVECs were treated with salidroside and exposed to hydrogen peroxide (H2O2). The results indicated that salidroside exerted cytoprotective effects in an H2O2-induced HUVEC injury model and suppressed H2O2-induced apoptosis of HUVECs. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased oxidative stress-induced HUVEC apoptosis, while the autophagy activator rapamycin induced anti-apoptosis effects in HUVECs. Salidroside increased autophagy and decreased apoptosis of HUVECs in a dose-dependent manner under oxidative stress. Moreover, 3-MA attenuated salidroside-induced HUVEC autophagy and promoted apoptosis, whereas rapamycin had no additional effects compared with salidroside alone. Salidroside upregulated AMPK phosphorylation but downregulated mTOR phosphorylation under oxidative stress; however, administration of compound C, an AMPK inhibitor, abrogated AMPK phosphorylation and increased mTOR phosphorylation and apoptosis compared with salidroside alone. These results suggest that autophagy is a protective mechanism in HUVECs under oxidative stress and that salidroside might promote autophagy through activation of the AMPK pathway and downregulation of mTOR pathway.

  13. Enhanced autophagy ameliorates cardiac proteinopathy

    PubMed Central

    Bhuiyan, Md. Shenuarin; Pattison, J. Scott; Osinska, Hanna; James, Jeanne; Gulick, James; McLendon, Patrick M.; Hill, Joseph A.; Sadoshima, Junichi; Robbins, Jeffrey

    2013-01-01

    Basal autophagy is a crucial mechanism in cellular homeostasis, underlying both normal cellular recycling and the clearance of damaged or misfolded proteins, organelles and aggregates. We showed here that enhanced levels of autophagy induced by either autophagic gene overexpression or voluntary exercise ameliorated desmin-related cardiomyopathy (DRC). To increase levels of basal autophagy, we generated an inducible Tg mouse expressing autophagy-related 7 (Atg7), a critical and rate-limiting autophagy protein. Hearts from these mice had enhanced autophagy, but normal morphology and function. We crossed these mice with CryABR120G mice, a model of DRC in which autophagy is significantly attenuated in the heart, to test the functional significance of autophagy activation in a proteotoxic model of heart failure. Sustained Atg7-induced autophagy in the CryABR120G hearts decreased interstitial fibrosis, ameliorated ventricular dysfunction, decreased cardiac hypertrophy, reduced intracellular aggregates and prolonged survival. To determine whether different methods of autophagy upregulation have additive or even synergistic benefits, we subjected the autophagy-deficient CryABR120G mice and the Atg7-crossed CryABR120G mice to voluntary exercise, which also upregulates autophagy. The entire exercised Atg7-crossed CryABR120G cohort survived to 7 months. These findings suggest that activating autophagy may be a viable therapeutic strategy for improving cardiac performance under proteotoxic conditions. PMID:24177425

  14. Enhanced autophagy ameliorates cardiac proteinopathy.

    PubMed

    Bhuiyan, Md Shenuarin; Pattison, J Scott; Osinska, Hanna; James, Jeanne; Gulick, James; McLendon, Patrick M; Hill, Joseph A; Sadoshima, Junichi; Robbins, Jeffrey

    2013-12-01

    Basal autophagy is a crucial mechanism in cellular homeostasis, underlying both normal cellular recycling and the clearance of damaged or misfolded proteins, organelles and aggregates. We showed here that enhanced levels of autophagy induced by either autophagic gene overexpression or voluntary exercise ameliorated desmin-related cardiomyopathy (DRC). To increase levels of basal autophagy, we generated an inducible Tg mouse expressing autophagy-related 7 (Atg7), a critical and rate-limiting autophagy protein. Hearts from these mice had enhanced autophagy, but normal morphology and function. We crossed these mice with CryABR120G mice, a model of DRC in which autophagy is significantly attenuated in the heart, to test the functional significance of autophagy activation in a proteotoxic model of heart failure. Sustained Atg7-induced autophagy in the CryABR120G hearts decreased interstitial fibrosis, ameliorated ventricular dysfunction, decreased cardiac hypertrophy, reduced intracellular aggregates and prolonged survival. To determine whether different methods of autophagy upregulation have additive or even synergistic benefits, we subjected the autophagy-deficient CryABR120G mice and the Atg7-crossed CryABR120G mice to voluntary exercise, which also upregulates autophagy. The entire exercised Atg7-crossed CryABR120G cohort survived to 7 months. These findings suggest that activating autophagy may be a viable therapeutic strategy for improving cardiac performance under proteotoxic conditions.

  15. Nobiletin Induces Protective Autophagy Accompanied by ER-Stress Mediated Apoptosis in Human Gastric Cancer SNU-16 Cells.

    PubMed

    Moon, Jeong Yong; Cho, Somi Kim

    2016-07-14

    Nobiletin, a major component of citrus fruits, is a polymethoxyflavone derivative that exhibits anticancer activity against several forms of cancer, including SNU-16 human gastric cancer cells. To explore the nobiletin-induced cell death mechanism, we examined the changes in protein expression caused by nobiletin in human gastric cancer SNU-16 cells by means of two-dimensional gel electrophoresis (2-DGE), followed by peptide mass fingerprinting (PMF) analysis. Seventeen of 20 selected protein spots were successfully identified, including nine upregulated and eight downregulated proteins. In nobiletin-treated SNU-16 cells the glucose-regulated protein 78 kDa (GRP78) mRNA level was induced most significantly among six proteins related to cell survival and death. Western blot analysis was used to confirm the expression of GRP78 protein. We detected increases in the levels of the ER-stress related proteins inositol requiring enzyme 1 alpha (IRE1-α), activating transcription factor 4 (ATF-4), and C/EBP homology protein (CHOP), as well as GRP78, in response to nobiletin in SNU-16 cells. Furthermore, the ER stress-mediated apoptotic protein caspase-4 was proteolytically activated by nobiletin. Pretreatment with chloroquine, an autophagy inhibitor, strongly augmented apoptosis in SNU-16 cells, as evidenced by decreased cell viability, an increased number of sub-G1 phase cells and increased levels of cleaved PARP. Our results suggest that nobiletin-induced apoptosis in SNU-16 cells is mediated by pathways involving intracellular ER stress-mediated protective autophagy. Thus, the combination of nobiletin and an autophagy inhibitor could be a promising treatment for gastric cancer patients.

  16. Decorin protects human hepatoma HepG2 cells against oxygen-glucose deprivation via modulating autophagy.

    PubMed

    Ju, Wenbo; Li, Shubo; Wang, Zhaohui; Liu, Yanfeng; Wang, Dawei

    2015-01-01

    This study is to investigate the effects of decorin (DCN) on human hepatoma HepG2 cells under oxygen-glucose deprivation (OGD) condition. HepG2 cells were cultured under OGD condition. CCK-8 assay was used to assess the cell survival, and flow cytometry was performed to detect the apoptosis. Protein expression levels were detected with Western blot analysis. Transfection was performed with liposome, and cells were screened with G418. The cell survival rates were significantly decreased in the OGD groups. When treated with autophagy inhibitor 3-MA, the survival rates were further declined in these cells. Moreover, flow cytometry indicated that apoptosis occurred in the HepG2 cells under OGD condition, and the apoptosis rates were significantly increased by the 3-MA treatment. Western blot analysis showed that, the expression levels of DCN were significantly elevated in OGD-preconditioned HepG2 cells. Meanwhile, the expression level of Beclin1 and the LC3BI/LC3BII ratio were significantly increased, while the expression level of P62 was significantly decreased, in HepG2 cells under OGD condition. Over-expression of DCN significantly increased the expression level of Beclin1 and the LC3BI/LC3BII ratio, while no significant changes were observed in the P62 expression level, in HepG2 cells. Under the OGD condition, the apoptosis rate was also significantly decreased in DCN-transfected HepG2 cells. DCN protects HepG2 cells against OGD-induced injury, via regulating autophagy. These results might contribute to a better understanding of the roles of DCN and autophagy in hepatocellular carcinoma, and the potential treatment for the disease.

  17. Protective effect of autophagy on endoplasmic reticulum stress-induced apoptosis of alveolar epithelial cells in rat models of COPD.

    PubMed

    Tang, Yao; Cai, Qi-Hang; Wang, Yong-Jian; Fan, Shao-Hua; Zhang, Zi-Feng; Xiao, Meng-Qi; Zhu, Jin-Yu; Wu, Dong-Mei; Lu, Jun; Zheng, Yuan-Lin

    2017-09-29

    During this study, we explored the protective effects of autophagy on endoplasmic reticulum stress (ERS)-induced apoptosis belonging to alveolar epithelial cells (AECs) in rat models with chronic obstructive pulmonary disease (COPD). Fifty-six 12-week-old male Sprague-Dawley (SD) rats were randomly assigned into the COPD group (rats exposed to cigarette smoke), the 3-methyladenine (3-MA) intervention group (COPD rats were administrated with 10 mg/kg autophagy inhibitors), the chloroquine (CQ)-intervention group (COPD rats were administrated with 40 mg/kg CQ) and the control group (rats breathed in normal saline). The forced expiratory volume in 0.3 sec/forced vital capacity (FEV0.3/FVC%), inspiratory resistance (RI) and dynamic lung compliance (Cdyn) were measured and recorded. The expressions of PKR-like endoplasmic reticulum kinase (PERK) and CCAAT/enhancer-binding protein-homologous protein (CHOP) were detected by immunohistochemistry. The cell apoptotic rates of AECs were analyzed by TUNEL staining. The expression levels of LC3-II, p62, Beclin-1, ATG5, ATG7, Caspase-12 and Caspase-3 were detected by western blotting. Results showed that The COPD group exhibited a lower FEV0.3/FVC% and Cdyn, and a higher RI than the control group. Compared with the control group, the integrated optical density (IOD) values of PERK and CHOP, the apoptotic rate of AECs, and expressions of LC3-II, Beclin-1, ATG5, ATG7, Caspase-3 and Caspase-12 expressions were significantly higher, whereas p62 expression was  significantly lower in the COPD group. Based on the results obtained during this study, it became clear that the inhibition of autophagy could attenuate the ERS-induced apoptosis of AECs in rats with COPD. ©2017 The Author(s).

  18. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    PubMed Central

    He, Jin; Liu, Huan; Lin, Pei; Wan, Xinhai; Navone, Nora M.; Tong, Qiang; Kwak, Larry W.; Orlowski, Robert Z.; Yang, Jing

    2015-01-01

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma chemotherapy resistance. We reveal that mature human adipocytes activate autophagy and upregulate the expression of autophagic proteins, thereby suppressing chemotherapy-induced caspase cleavage and apoptosis in myeloma cells. We found that adipocytes secreted known and novel adipokines, such as leptin and adipsin. The addition of these adipokines enhanced the expression of autophagic proteins and reduced apoptosis in myeloma cells. In vivo studies further demonstrated the importance of bone marrow-derived adipocytes in the reduced response of myeloma cells to chemotherapy. Our findings suggest that adipocytes, adipocyte-secreted adipokines, and adipocyte-activated autophagy are novel targets for combatting chemotherapy resistance and enhancing treatment efficacy in myeloma patients. PMID:26455377

  19. Autophagy facilitates secretion and protects against degeneration of the Harderian gland

    PubMed Central

    Koenig, Ulrich; Fobker, Manfred; Lengauer, Barbara; Brandstetter, Marlene; Resch, Guenter P; Gröger, Marion; Plenz, Gabriele; Pammer, Johannes; Barresi, Caterina; Hartmann, Christine; Rossiter, Heidemarie

    2014-01-01

    The epithelial derived Harderian gland consists of 2 types of secretory cells. The more numerous type A cells are responsible for the secretion of lipid droplets, while type B cells produce dark granules of multilamellar bodies. The process of autophagy is constitutively active in the Harderian gland, as confirmed by our analysis of LC3 processing in GFP-LC3 transgenic mice. This process is compromised by epithelial deletion of Atg7. Morphologically, the Atg7 mutant glands are hypotrophic and degenerated, with highly vacuolated cells and pyknotic nuclei. The mutant glands accumulate lipid droplets coated with PLIN2 (perilipin 2) and contain deposits of cholesterol, ubiquitinated proteins, SQSTM1/p62 (sequestosome 1) positive aggregates and other metabolic products such as porphyrin. Immunofluorescence stainings show that distinct cells strongly aggregate both proteins and lipids. Electron microscopy of the Harderian glands reveals that its organized structure is compromised, and the presence of large intracellular lipid droplets and heterologous aggregates. We attribute the occurrence of large vacuoles to a malfunction in the formation of multilamellar bodies found in the less abundant type B Harderian gland cells. This defect causes the formation of large tertiary lysosomes of heterologous content and is accompanied by the generation of tight lamellar stacks of endoplasmic reticulum in a pseudo-crystalline form. To test the hypothesis that lipid and protein accumulation is the cause for the degeneration in autophagy-deficient Harderian glands, epithelial cells were treated with a combination of the proteasome inhibitor and free fatty acids, to induce aggregation of misfolded proteins and lipid accumulation, respectively. The results show that lipid accumulation indeed enhanced the toxicity of misfolded proteins and that this was even more pronounced in autophagy-deficient cells. Thus, we conclude autophagy controls protein and lipid catabolism and anabolism to

  20. Autophagy facilitates secretion and protects against degeneration of the Harderian gland.

    PubMed

    Koenig, Ulrich; Fobker, Manfred; Lengauer, Barbara; Brandstetter, Marlene; Resch, Guenter P; Gröger, Marion; Plenz, Gabriele; Pammer, Johannes; Barresi, Caterina; Hartmann, Christine; Rossiter, Heidemarie

    2015-01-01

    The epithelial derived Harderian gland consists of 2 types of secretory cells. The more numerous type A cells are responsible for the secretion of lipid droplets, while type B cells produce dark granules of multilamellar bodies. The process of autophagy is constitutively active in the Harderian gland, as confirmed by our analysis of LC3 processing in GFP-LC3 transgenic mice. This process is compromised by epithelial deletion of Atg7. Morphologically, the Atg7 mutant glands are hypotrophic and degenerated, with highly vacuolated cells and pyknotic nuclei. The mutant glands accumulate lipid droplets coated with PLIN2 (perilipin 2) and contain deposits of cholesterol, ubiquitinated proteins, SQSTM1/p62 (sequestosome 1) positive aggregates and other metabolic products such as porphyrin. Immunofluorescence stainings show that distinct cells strongly aggregate both proteins and lipids. Electron microscopy of the Harderian glands reveals that its organized structure is compromised, and the presence of large intracellular lipid droplets and heterologous aggregates. We attribute the occurrence of large vacuoles to a malfunction in the formation of multilamellar bodies found in the less abundant type B Harderian gland cells. This defect causes the formation of large tertiary lysosomes of heterologous content and is accompanied by the generation of tight lamellar stacks of endoplasmic reticulum in a pseudo-crystalline form. To test the hypothesis that lipid and protein accumulation is the cause for the degeneration in autophagy-deficient Harderian glands, epithelial cells were treated with a combination of the proteasome inhibitor and free fatty acids, to induce aggregation of misfolded proteins and lipid accumulation, respectively. The results show that lipid accumulation indeed enhanced the toxicity of misfolded proteins and that this was even more pronounced in autophagy-deficient cells. Thus, we conclude autophagy controls protein and lipid catabolism and anabolism to

  1. Enhancing Autophagy with Drugs or Lung-directed Gene Therapy Reverses the Pathological Effects of Respiratory Epithelial Cell Proteinopathy*

    PubMed Central

    Hidvegi, Tunda; Stolz, Donna B.; Alcorn, John F.; Yousem, Samuel A.; Wang, Jieru; Leme, Adriana S.; Houghton, A. McGarry; Hale, Pamela; Ewing, Michael; Cai, Houming; Garchar, Evelyn Akpadock; Pastore, Nunzia; Annunziata, Patrizia; Kaminski, Naftali; Pilewski, Joseph; Shapiro, Steven D.; Pak, Stephen C.; Silverman, Gary A.; Brunetti-Pierri, Nicola; Perlmutter, David H.

    2015-01-01

    Recent studies have shown that autophagy mitigates the pathological effects of proteinopathies in the liver, heart, and skeletal muscle but this has not been investigated for proteinopathies that affect the lung. This may be due at least in part to the lack of an animal model robust enough for spontaneous pathological effects from proteinopathies even though several rare proteinopathies, surfactant protein A and C deficiencies, cause severe pulmonary fibrosis. In this report we show that the PiZ mouse, transgenic for the common misfolded variant α1-antitrypsin Z, is a model of respiratory epithelial cell proteinopathy with spontaneous pulmonary fibrosis. Intracellular accumulation of misfolded α1-antitrypsin Z in respiratory epithelial cells of the PiZ model resulted in activation of autophagy, leukocyte infiltration, and spontaneous pulmonary fibrosis severe enough to elicit functional restrictive deficits. Treatment with autophagy enhancer drugs or lung-directed gene transfer of TFEB, a master transcriptional activator of the autophagolysosomal system, reversed these proteotoxic consequences. We conclude that this mouse is an excellent model of respiratory epithelial proteinopathy with spontaneous pulmonary fibrosis and that autophagy is an important endogenous proteostasis mechanism and an attractive target for therapy. PMID:26494620

  2. The AMPK Agonist PT1 and mTOR Inhibitor 3HOI-BA-01 Protect Cardiomyocytes After Ischemia Through Induction of Autophagy.

    PubMed

    Huang, Ling; Dai, Kai; Chen, Manhua; Zhou, Wenping; Wang, Xiaoling; Chen, Jing; Zhou, Wei

    2016-01-01

    Myocardial ischemia has become one of the main causes of sudden cardiac death worldwide. Autophagy has been demonstrated to protect cardiomyocytes from ischemia/reperfusion (I/R)-induced damage. A novel small molecule compound 2-Chloro-5-[[5-[[5-(4,5-Dimethyl-2-nitrophenyl)-2-furanyl]methylene]-4,5-dihydro-4-oxo-2-thiazolyl]amino]benzoic acid (PT1) has been previously shown to specifically activate 5'-adenosine monophosphate-activated protein kinase (AMPK). Because AMPK activation effectively induces autophagy, we tested the protective efficacy of PT1 on cardiomyocytes after oxygen glucose deprivation/reoxygenation (OGD/R) in vitro. Mouse neonatal cardiomyocytes were treated with PT1 after OGD/R. 3-[4-(1,3-benzodioxol-5-yl)-2-oxo-3-buten-1-yl]-3-hydroxy-1,3-dihydro-2H-indol-2-one (3HOI-BA-01), a novel small compound showing potent inhibitory effect on mammalian target of rapamycin (mTOR) activation, was also tested for its cardioprotective effect, based on the established relationship between mTOR signaling and autophagy. Cell survival and autophagy-related signal pathways were examined after treatment with these agents. Our data indicate that both PT1 and 3HOI-BA-01 enhance cell survival after OGD/R. As expected, both PT1 and 3HOI-BA-01 induced autophagy in cardiomyocytes through activating AMPK pathway and inhibiting mTOR signaling, respectively. Induction of autophagy by PT1 and 3HOI-BA-01 was responsible for their cardioprotective effect, since inhibition of autophagy abolished the protective efficacy. Furthermore, simultaneous administration of PT1 and 3HOI-BA-01 profoundly upregulated autophagy after OGD/R and significantly promoted survival of cardiomyocytes. In vivo administration of PT1 and 3HOI-BA-01 in a murine myocardial (I/R injury model remarkably reduced infarct size and induced autophagy. Taken together, our research suggests that PT1 and 3HOI-BA-01 could be promising therapeutic agents for myocardial ischemia. © The Author(s) 2015.

  3. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell.

    PubMed

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery.

  4. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae

    PubMed Central

    Gutierrez, Maximiliano Gabriel; Saka, Hector Alex; Chinen, Isabel; Zoppino, Felipe C. M.; Yoshimori, Tamotsu; Bocco, Jose Luis; Colombo, María Isabel

    2007-01-01

    Autophagy is the unique, regulated mechanism for the degradation of organelles. This intracellular process acts as a prosurvival pathway during cell starvation or stress and is also involved in cellular response against specific bacterial infections. Vibrio cholerae is a noninvasive intestinal pathogen that has been studied extensively as the causative agent of the human disease cholera. V. cholerae illness is produced primarily through the expression of a potent toxin (cholera toxin) within the human intestine. Besides cholera toxin, this bacterium secretes a hemolytic exotoxin termed V. cholerae cytolysin (VCC) that causes extensive vacuolation in epithelial cells. In this work, we explored the relationship between the vacuolation caused by VCC and the autophagic pathway. Treatment of cells with VCC increased the punctate distribution of LC3, a feature indicative of autophagosome formation. Moreover, VCC-induced vacuoles colocalized with LC3 in several cell lines, including human intestinal Caco-2 cells, indicating the interaction of the large vacuoles with autophagic vesicles. Electron microscopy analysis confirmed that the vacuoles caused by VCC presented hallmarks of autophagosomes. Additionally, biochemical evidence demonstrated the degradative nature of the VCC-generated vacuoles. Interestingly, autophagy inhibition resulted in decreased survival of Caco-2 cells upon VCC intoxication. Also, VCC failed to induce vacuolization in Atg5−/− cells, and the survival response of these cells against the toxin was dramatically impaired. These results demonstrate that autophagy acts as a cellular defense pathway against secreted bacterial toxins. PMID:17267617

  5. Bexarotene targets autophagy and is protective against thromboembolic stroke in aged mice with tauopathy

    PubMed Central

    Huuskonen, Mikko T.; Loppi, Sanna; Dhungana, Hiramani; Keksa-Goldsteine, Velta; Lemarchant, Sighild; Korhonen, Paula; Wojciechowski, Sara; Pollari, Eveliina; Valonen, Piia; Koponen, Juho; Takashima, Akihiko; Landreth, Gary; Goldsteins, Gundars; Malm, Tarja; Koistinaho, Jari; Kanninen, Katja M.

    2016-01-01

    Stroke is a highly debilitating, often fatal disorder for which current therapies are suitable for only a minor fraction of patients. Discovery of novel, effective therapies is hampered by the fact that advanced age, primary age-related tauopathy or comorbidities typical to several types of dementing diseases are usually not taken into account in preclinical studies, which predominantly use young, healthy rodents. Here we investigated for the first time the neuroprotective potential of bexarotene, an FDA-approved agent, in a co-morbidity model of stroke that combines high age and tauopathy with thromboembolic cerebral ischemia. Following thromboembolic stroke bexarotene enhanced autophagy in the ischemic brain concomitantly with a reduction in lesion volume and amelioration of behavioral deficits in aged transgenic mice expressing the human P301L-Tau mutation. In in vitro studies bexarotene increased the expression of autophagy markers and reduced autophagic flux in neuronal cells expressing P301L-Tau. Bexarotene also restored mitochondrial respiration deficits in P301L-Tau neurons. These newly described actions of bexarotene add to the growing amount of compelling data showing that bexarotene is a potent neuroprotective agent, and identify a novel autophagy-modulating effect of bexarotene. PMID:27624652

  6. Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger.

    PubMed

    Nitsche, Benjamin M; Burggraaf-van Welzen, Anne-Marie; Lamers, Gerda; Meyer, Vera; Ram, Arthur F J

    2013-09-01

    Autophagy is a well-conserved catabolic process constitutively active in eukaryotes that is involved in maintaining cellular homeostasis by the targeting of cytoplasmic content and organelles to vacuoles. Autophagy is strongly induced by the limitation of nutrients including carbon, nitrogen, and oxygen and is clearly associated with cell death. It has been demonstrated that the accumulation of empty hyphal compartments and cryptic growth in carbon-starved submerged cultures of the filamentous fungus Aspergillus niger is accompanied by a joint transcriptional induction of autophagy genes. This study examines the role of autophagy by deleting the atg1, atg8, and atg17 orthologs in A. niger and phenotypically analyzing the deletion mutants in surface and submerged cultures. The results indicate that atg1 and atg8 are essential for efficient autophagy, whereas deletion of atg17 has little to no effect on autophagy in A. niger. Depending on the kind of oxidative stress confronted with, autophagy deficiency renders A. niger either more resistant (menadione) or more sensitive (H2O2) to oxidative stress. Fluorescence microscopy showed that mitochondrial turnover upon carbon depletion in submerged cultures is severely blocked in autophagy-impaired A. niger mutants. Furthermore, automated image analysis demonstrated that autophagy promotes survival in maintained carbon-starved cultures of A. niger. Taken together, the results suggest that besides its function in nutrient recycling, autophagy plays important roles in physiological adaptation by organelle turnover and protection against cell death upon carbon depletion in submerged cultures.

  7. Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2, and autophagy pathways

    PubMed Central

    Zhou, Qian; Chen, Bin; Wang, Xindong; Wu, Lixin; Yang, Yang; Cheng, Xiaolan; Hu, Zhengli; Cai, Xueting; Yang, Jie; Sun, Xiaoyan; Lu, Wuguang; Yan, Huaijiang; Chen, Jiao; Ye, Juan; Shen, Jianping; Cao, Peng

    2016-01-01

    Sulforaphane, a naturally occurring compound found in cruciferous vegetables, has been shown to be neuroprotective in several neurological disorders. In this study, we sought to investigate the potential protective effects and associated molecular mechanisms of sulforaphane in an in vivo Parkinson’s disease (PD) model, based on rotenone-mediated neurotoxicity. Our results showed that sulforaphane inhibited rotenone-induced locomotor activity deficiency and dopaminergic neuronal loss. Additionally, sulforaphane treatment inhibited the rotenone-induced reactive oxygen species production, malondialdehyde (MDA) accumulation, and resulted in an increased level of total glutathione and reduced glutathione (GSH): oxidized glutathione (GSSG) in the brain. Western blot analysis illustrated that sulforaphane increased the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase-1 (HO-1), and NAD(P)H quinone oxidoreductase (NQO1), the latter two of which are anti-oxidative enzymes. Moreover, sulforaphane treatment significantly attenuated rotenone-inhibited mTOR-mediated p70S6K and 4E-BP1 signalling pathway, as well as neuronal apoptosis. In addition, sulforaphane rescued rotenone-inhibited autophagy, as detected by LC3-II. Collectively, these findings demonstrated that sulforaphane exert neuroprotective effect involving Nrf2-dependent reductions in oxidative stress, mTOR-dependent inhibition of neuronal apoptosis, and the restoration of normal autophagy. Sulforaphane appears to be a promising compound with neuroprotective properties that may play an important role in preventing PD. PMID:27553905

  8. SIRT1-mediated FoxOs pathways protect against apoptosis by promoting autophagy in osteoblast-like MC3T3-E1 cells exposed to sodium fluoride

    PubMed Central

    Gu, Xiaolong; Han, Dandan; Chen, Wei; Zhang, Limei; Lin, Qianyun; Gao, Jian; Fanning, Séamus; Han, Bo

    2016-01-01

    Fluorine may result in damage to teeth, bones and other body tissues, and is a serious public health problem. SIRT1 deacetylates FOXOs, which brings about apoptosis and autophagy promotion or suppression. Fluorine may induce cell apoptosis, however, the role of autophagy in apoptosis induced by fluorine is still poorly understood, and the interaction between SIRT1 and FOXOs should be further illustrated. Therefore, this study investigated the mechanisms underlying the NaF- induced apoptosis and autophagy in osteoblast-like MC3T3-E1 cells in vitro through activating or inhibiting SIRT1. Via RT-PCR, western blot, flow cytometry assays, fluorescence and laser confocal microscopy, it was found that NaF induced both cell apoptosis and autophagy. Results also showed that NaF up-regulated SIRT1 expression in a dose-dependent manner. The autophagy of MC3T3-E1 was also up- regulated indirectly whilst apoptosis was significantly attenuated when incubated with the SIRT1 activator SRT1720. When SIRT1 inhibitor Ex-527 was used, the latter effects were reversed. Furthermore, SIRT1 increased deacetylation of FoxO1 and promoted the up-regulation of its target substrate Rab7, as well as increase of Bnip3 which was substrate of FoxO3, and we hypothesize that these pathways may cause an increase in autophagic flux and a reduction in apoptosis. In conclusion, SIRT1-induced autophagy enhancement protects against fluoride-induced apoptosis through autophagy induction in MC3T3-E1 cells, which may be associated with a SIRT1-FoxO1-Rab7 axis and a SIRT1-FoxO3-Binp3 axis. The role of SIRT1 in selecting between cell survival and death provides a potential therapeutic strategy in fluorosis. PMID:27564107

  9. SIRT1-mediated FoxOs pathways protect against apoptosis by promoting autophagy in osteoblast-like MC3T3-E1 cells exposed to sodium fluoride.

    PubMed

    Gu, Xiaolong; Han, Dandan; Chen, Wei; Zhang, Limei; Lin, Qianyun; Gao, Jian; Fanning, Séamus; Han, Bo

    2016-10-04

    Fluorine may result in damage to teeth, bones and other body tissues, and is a serious public health problem. SIRT1 deacetylates FOXOs, which brings about apoptosis and autophagy promotion or suppression. Fluorine may induce cell apoptosis, however, the role of autophagy in apoptosis induced by fluorine is still poorly understood, and the interaction between SIRT1 and FOXOs should be further illustrated. Therefore, this study investigated the mechanisms underlying the NaF- induced apoptosis and autophagy in osteoblast-like MC3T3-E1 cells in vitro through activating or inhibiting SIRT1. Via RT-PCR, western blot, flow cytometry assays, fluorescence and laser confocal microscopy, it was found that NaF induced both cell apoptosis and autophagy. Results also showed that NaF up-regulated SIRT1 expression in a dose-dependent manner. The autophagy of MC3T3-E1 was also up- regulated indirectly whilst apoptosis was significantly attenuated when incubated with the SIRT1 activator SRT1720. When SIRT1 inhibitor Ex-527 was used, the latter effects were reversed. Furthermore, SIRT1 increased deacetylation of FoxO1 and promoted the up-regulation of its target substrate Rab7, as well as increase of Bnip3 which was substrate of FoxO3, and we hypothesize that these pathways may cause an increase in autophagic flux and a reduction in apoptosis. In conclusion, SIRT1-induced autophagy enhancement protects against fluoride-induced apoptosis through autophagy induction in MC3T3-E1 cells, which may be associated with a SIRT1-FoxO1-Rab7 axis and a SIRT1-FoxO3-Binp3 axis. The role of SIRT1 in selecting between cell survival and death provides a potential therapeutic strategy in fluorosis.

  10. Autophagy-related gene 12 (ATG12) is a novel determinant of primary resistance to HER2-targeted therapies: Utility of transcriptome analysis of the autophagy interactome to guide breast cancer treatment

    PubMed Central

    Corominas-Faja, Bruna; Urruticoechea, Ander; Martin-Castillo, Begoña; Menendez, Javier A.

    2012-01-01

    The autophagic process, which can facilitate breast cancer resistance to endocrine, cytotoxic, and molecularly targeted agents, is mainly regulated at the post-translational level. Although recent studies have suggested a possible transcriptome regulation of the autophagic genes, little is known about either the analysis tools that can be applied or the functional importance of putative candidate genes emerging from autophagy-dedicated transcriptome studies. In this context, we evaluated whether the constitutive activation of the autophagy machinery, as revealed by a transcriptome analysis using an autophagy-focused polymerase chain reaction (PCR) array, might allow for the identification of novel autophagy-specific biomarkers for intrinsic (primary) resistance to HER2-targeted therapies. Quantitative real-time PCR (qRT-PCR)-based profiling of 84 genes involved in autophagy revealed that, when compared to trastuzumab-sensitive SKBR3 cells, the positive regulator of autophagic vesicle formation ATG12 (autophagy-related gene 12) was the most differentially up-regulated gene in JIMT1 cells, a model of intrinsic cross-resistance to trastuzumab and other HER1/2-targeting drugs. An analysis of the transcriptional status of ATG12 in > 50 breast cancer cell lines suggested that the ATG12 transcript is commonly upregulated in trastuzumab-unresponsive HER2-overexpressing breast cancer cells. A lentiviral-delivered small hairpin RNA stable knockdown of the ATG12 gene fully suppressed the refractoriness of JIMT1 cells to trastuzumab, erlotinib, gefitinib, and lapatinib in vitro. ATG12 silencing significantly reduced JIMT1 tumor growth induced by subcutaneous injection in nude mice. Remarkably, the outgrowth of trastuzumab-unresponsive tumors was prevented completely when trastuzumab treatment was administered in an ATG12-silenced genetic background. We demonstrate for the first time the usefulness of low-density, autophagy-dedicated qRT-PCR-based platforms for monitoring

  11. Inactivation of the Cullin (CUL)-RING E3 ligase by the NEDD8-activating enzyme inhibitor MLN4924 triggers protective autophagy in cancer cells.

    PubMed

    Luo, Zhongguang; Pan, Yongfu; Jeong, Lak Shin; Liu, Jie; Jia, Lijun

    2012-11-01

    The multiunit Cullin (CUL)-RING E3 ligase (CRL) controls diverse biological processes by targeting a mass of substrates for ubiquitination and degradation, whereas its dysfunction causes carcinogenesis. Post-translational neddylation of CUL, a process triggered by the NEDD8-activating enzyme E1 subunit 1 (NAE1), is required for CRL activation. Recently, MLN4924 was discovered via a high-throughput screen as a specific NAE1 inhibitor and first-in-class anticancer drug. By blocking CUL neddylation, MLN4924 inactivates CRL and causes the accumulation of CRL substrates that trigger cell cycle arrest, senescence and/or apoptosis to suppress the growth of cancer cells in vitro and in vivo. Recently, we found that MLN4924 also triggers protective autophagy in response to CRL inactivation. MLN4924-induced autophagy is attributed partially to the inhibition of mechanistic target of rapamycin (also known as mammalian target of rapamycin, MTOR) activity by the accumulation of the MTOR inhibitory protein DEPTOR, as well as reactive oxygen species (ROS)-induced stress. Moreover, the blockage of autophagy response enhances apoptosis in MLN4924-treated cells. Together, our findings not only reveal autophagy as a novel cellular response to CRL inactivation by MLN4924, but also provide a piece of proof-of-concept evidence for the combination of MLN4924 with autophagy inhibitors to enhance therapeutic efficacy.

  12. Nicotinamide Adenine Dinucleotide Protects against Spinal Cord Ischemia Reperfusion Injury-Induced Apoptosis by Blocking Autophagy

    PubMed Central

    Yu, Sifei; Wang, Zhenfei; Yang, Kai; Liu, Zhuochao

    2017-01-01

    The role of autophagy, neuroprotective mechanisms of nicotinamide adenine dinucleotide (NAD+), and their relationship in spinal cord ischemic reperfusion injury (SCIR) was assessed. Forty-eight Sprague-Dawley rats were divided into four groups: sham, ischemia reperfusion (I/R), 10 mg/kg NAD+, and 75 mg/kg NAD+. Western blotting, immunofluorescence, and immunohistochemistry were used to assess autophagy and apoptosis. Basso, Beattie, and Bresnahan (BBB) scores were used to assess neurological function. Expression levels of Beclin-1, Atg12-Atg5, LC3B-II, cleaved caspase 3, and Bax were upregulated in the I/R group and downregulated in the 75 mg/kg NAD+ group; p-mTOR, p-AKT, p62, and Bcl-2 were downregulated in the I/R group and upregulated in the 75 mg/kg NAD+ group. Numbers of LC3B-positive, caspase 3-positive, Bax-positive, and TUNEL-positive cells were significantly increased in the I/R group and decreased in the 75 mg/kg NAD+ group. The mean integrated option density of Bax increased and that of Nissl decreased in the I/R group, and it decreased and increased, respectively, in the 75 mg/kg NAD+ group. BBB scores significantly increased in the 75 mg/kg NAD+ group relative to the I/R group. No difference was observed between I/R and 10 mg/kg NAD+ groups for these indicators. Therefore, excessive and sustained autophagy aggravates SCIR; administration of NAD+ alleviates injury. PMID:28367271

  13. Sirtuin 3 Protects against Urban Particulate Matter-Induced Autophagy in Human Bronchial Epithelial Cells.

    PubMed

    Chen, I-Chieh; Huang, Hsin-Hsiu; Chen, Pei-Fen; Chiang, Hung-Che

    2016-07-01

    Urban particulate matter (urban PM) is a heterogeneous mixture of various types of particles originating from different sources. Exposure to high concentrations of urban PM leading to adverse health effects is evaluated by using in vitro cultures of human lung epithelial cells. However, the mechanism underlying the correlation between high concentrations of urban PM exposure and adverse health effects has not been fully elucidated; urban PM-induced oxidative stress is considered as an important mechanism of urban PM-mediated cytotoxicity. Sirtuin 3 (SIRT3), a primary mitrochondrial deacetylase, controls cellular reactive oxygen species (ROS) production, and expression of antioxidant enzymes. In this study, we examined the role of SIRT3 in the regulation of urban PM-induced oxidative stress in normal primary human bronchial epithelial cells (HBEpiCs). Cell viability showed a time- and concentration-dependent decrease when exposed to urban PM, which could indicate that the amount of lactate dehydrogenase released from the cell in response to urban PM is related to cell viability in HBEpiC. The effects of urban PM on morphological and biochemical markers of autophagy in HBEpiC were analyzed by electron microscopy and Western blotting. Overexpression of SIRT3 inhibited urban PM-induced ROS generation, while concomitantly increasing the expression of antioxidant enzymes, and decreasing NF-κB activation and release of inflammation factors. Up-regulation of SIRT3 significantly inhibited the expression of autophagy markers and autophagic vacuole formation. Our findings provide a valuable insight into the potential role of the SIRT3 enzyme in regulating urban PM-induced autophagy by mediating urban PM-induced oxidative stress, which may contribute to urban PM-induced impairment of airway epithelial cell function.

  14. A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: role of AMPK-regulated autophagy.

    PubMed

    Guo, Yuli; Yu, Wenjun; Sun, Dongdong; Wang, Jiaxing; Li, Congye; Zhang, Rongqing; Babcock, Sara A; Li, Yan; Liu, Min; Ma, Meijuan; Shen, Mingzhi; Zeng, Chao; Li, Na; He, Wei; Zou, Qian; Zhang, Yingmei; Wang, Haichang

    2015-02-01

    Mitochondrial aldehyde dehydrogenase (ALDH2) is known to offer myocardial protection against stress conditions including ischemia-reperfusion injury, alcoholism and diabetes mellitus although the precise mechanism is unclear. This study was designed to evaluate the effect of ALDH2 on diabetes-induced myocardial injury with a focus on autophagy. Wild-type FVB and ALDH2 transgenic mice were challenged with streptozotozin (STZ, 200mg/kg, i.p.) for 3months to induce experimental diabetic cardiomyopathy. Diabetes triggered cardiac remodeling and contractile dysfunction as evidenced by cardiac hypertrophy, decreased cell shortening and prolonged relengthening duration, the effects of which were mitigated by ALDH2. Lectin staining displayed that diabetes promoted cardiac hypertrophy, the effect of which was alleviated by ALDH2. Western blot analysis revealed dampened autophagy protein markers including LC3B ratio and Atg7 along with upregulated p62 following experimental diabetes, the effect of which was reconciled by ALDH2. Phosphorylation level of AMPK was decreased and its downstream signaling molecule FOXO3a was upregulated in both diabetic cardiac tissue and in H9C2 cells with high glucose exposure. All these effect were partly abolished by ALDH2 overexpression and ALDH2 agonist Alda1. High glucose challenge dampened autophagy in H9C2 cells as evidenced by enhanced p62 levels and decreased levels of Atg7 and LC3B, the effect of which was alleviated by the ALDH2 activator Alda-1. High glucose-induced cell death and apoptosis were reversed by Alda-1. The autophagy inhibitor 3-MA and the AMPK inhibitor compound C mitigated Alda-1-offered beneficial effect whereas the autophagy inducer rapamycin mimicked or exacerbated high glucose-induced cell injury. Moreover, compound C nullified Alda-1-induced protection against STZ-induced changes in autophagy and function. Our results suggested that ALDH2 protects against diabetes-induced myocardial dysfunction possibly through an

  15. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation

    PubMed Central

    2012-01-01

    Background Periodontitis, the most prevalent chronic inflammatory disease, has been related to cardiovascular diseases. Autophagy provides a mechanism for the turnover of cellular organelles and proteins through a lysosome-dependent degradation pathway. The aim of this research was to study the role of autophagy in peripheral blood mononuclear cells from patients with periodontitis and gingival fibroblasts treated with a lipopolysaccharide of Porphyromonas gingivalis. Autophagy-dependent mechanisms have been proposed in the pathogenesis of inflammatory disorders and in other diseases related to periodontitis, such as cardiovascular disease and diabetes. Thus it is important to study the role of autophagy in the pathophysiology of periodontitis. Methods Peripheral blood mononuclear cells from patients with periodontitis (n = 38) and without periodontitis (n = 20) were used to study autophagy. To investigate the mechanism of autophagy, we evaluated the influence of a lipopolysaccharide from P. gingivalis in human gingival fibroblasts, and autophagy was monitored morphologically and biochemically. Autophagosomes were observed by immunofluorescence and electron microscopy. Results We found increased levels of autophagy gene expression and high levels of mitochondrial reactive oxygen species production in peripheral blood mononuclear cells from patients with periodontitis compared with controls. A significantly positive correlation between both was observed. In human gingival fibroblasts treated with lipopolysaccharide from P. gingivalis, there was an increase of protein and transcript of autophagy-related protein 12 (ATG12) and microtubule-associated protein 1 light chain 3 alpha LC3. A reduction of mitochondrial reactive oxygen species induced a decrease in autophagy whereas inhibition of autophagy in infected cells increased apoptosis, showing the protective role of autophagy. Conclusion Results from the present study suggest that autophagy is an important and shared

  16. The Protective Effect of Aucubin from Eucommia ulmoides Against Status Epilepticus by Inducing Autophagy and Inhibiting Necroptosis.

    PubMed

    Wang, Jin; Li, Ying; Huang, Wei-Hua; Zeng, Xiang-Chang; Li, Xiao-Hui; Li, Jian; Zhou, Jun; Xiao, Jian; Xiao, Bo; Ouyang, Dong-Sheng; Hu, Kai

    2017-04-07

    Eucommia ulmoides Oliv. is a famous traditional Chinese medicine which exhibits anti-oxidative stress ability and neuro-protective effects. Aucubin is the predominant component of Eucommia ulmoides Oliv. Our present study is intended to investigate aucubin's potential protective effects on neurons against epilepsy in the hippocampus by establishing the lithium-pilocarpine induced status epilepticus (SE) rat model in vivo. Aucubin (at a low dose and a high dose of 5[Formula: see text]mg/kg and 10[Formula: see text]mg/kg, respectively) was administered through gavage for two weeks before lithium-pilocarpine injection. Rats were sacrificed at 4, 24 and 72[Formula: see text]h after SE induction. Pretreatment with both low-dose and high-dose aucubin significantly reduced the number of death neurons ([Formula: see text]) and increased the number of surviving neurons ([Formula: see text]) in DG, Hilus, CA1 and CA3 hippocampal regions post SE. Meanwhile, it significantly inhibited necroptosis proteins (MLKL and RIP-1) ([Formula: see text] or [Formula: see text]) and enhanced autophagy protein (Beclin-1 and LC3BII/LC3BI) prevalence in the hippocampus ([Formula: see text] or [Formula: see text]). In conclusion, aucubin appeared to ameliorate damages in lithium-pilocarpine induced SE in hippocampus, reduce the number of apoptotic neurons, and increased the number of survival neurons by inducing autophagy and inhibiting necroptosis. These original findings might provide an important basis for the further investigation of the therapeutic role of aucubin in treatment or prevention of epilepsy-related neuronal damages.

  17. Cloning and characterization of an autophagy-related gene, ATG12, from the three-host tick Haemaphysalis longicornis.

    PubMed

    Umemiya, Rika; Matsuo, Tomohide; Hatta, Takeshi; Sakakibara, Shin-ichi; Boldbaatar, Damdinsuren; Fujisaki, Kozo

    2007-09-01

    Ticks are obligate hematophagous ectoparasites with a life cycle characterized by a period of starvation; many ticks spend more than 95% of their life off the host. Autophagy, which is the process of bulk cytoplasmic degradation in eukaryotic cells, is induced by starvation and is essential for extension of the lifespan. Therefore, we hypothesized that autophagy also occurs in ticks; however, there has been no report on autophagy-related (ATG) genes in ticks. Here, we show the homologue of an ATG gene, ATG12, and its expression pattern from the nymphal to adult stages in the three-host tick Haemaphysalis longicornis. The sequence analysis showed that H. longicornis ATG12 (HlATG12) cDNA is 649bp, has a 411bp ORF coding for a 136-amino acid polypeptide with the carboxy-terminal glycine residue, and has a predicted molecular mass of 15.2kDa. Moreover, RT-PCR revealed that HlATG12 was downregulated at the beginning of feeding, upregulated after engorgement, and downregulated again after molting. The expression level of HlATG12 was highest at 3 months after engorgement. By immuno-electron microscopy, it was demonstrated that HlAtg12 was localized to the region around granule-like structures within midgut cells of unfed adults. In conclusion, HlATG12 might function during unfed and molting stages.

  18. DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy.

    PubMed

    Nguyen, Truc B; Louie, Sharon M; Daniele, Joseph R; Tran, Quan; Dillin, Andrew; Zoncu, Roberto; Nomura, Daniel K; Olzmann, James A

    2017-07-10

    Lipid droplets (LDs) provide an "on-demand" source of fatty acids (FAs) that can be mobilized in response to fluctuations in nutrient abundance. Surprisingly, the amount of LDs increases during prolonged periods of nutrient deprivation. Why cells store FAs in LDs during an energy crisis is unknown. Our data demonstrate that mTORC1-regulated autophagy is necessary and sufficient for starvation-induced LD biogenesis. The ER-resident diacylglycerol acyltransferase 1 (DGAT1) selectively channels autophagy-liberated FAs into new, clustered LDs that are in close proximity to mitochondria and are lipolytically degraded. However, LDs are not required for FA delivery to mitochondria but instead function to prevent acylcarnitine accumulation and lipotoxic dysregulation of mitochondria. Our data support a model in which LDs provide a lipid buffering system that sequesters FAs released during the autophagic degradation of membranous organelles, reducing lipotoxicity. These findings reveal an unrecognized aspect of the cellular adaptive response to starvation, mediated by LDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Lutein Induces Autophagy via Beclin-1 Upregulation in IEC-6 Rat Intestinal Epithelial Cells.

    PubMed

    Chang, Chi-Jen; Lin, Ji-Fan; Hsiao, Chien-Yu; Chang, Hsun-Hao; Li, Hsin-Ju; Chang, Hsun-Hsien; Lee, Gon-Ann; Hung, Chi-Feng

    2017-01-01

    Lutein is a carotenoid with anti-oxidant properties. Autophagy, an evolutionarily conserved catabolic cellular pathway for coping with stress conditions, is responsive to reactive oxygen species (ROS) and degrades damaged organelles. We previously demonstrated that lutein can induce anti-oxidant enzymes to relieve methotrexate-induced ROS stress. We therefore hypothesized that lutein, which activates ROS-scavenging enzymes, can also induce autophagy for cell survival. In this study, we demonstrated that lutein treatment attenuated the reduction in cell viability caused by H2O2. Lutein dose-dependently induced the processing of microtubule-associated protein light chain 3 (LC3)-II, an autophagy marker protein, and accumulation of LC3-positive puncta in rat intestinal IEC-6 cells. Furthermore, (a) direct observation of autophagosome formation through transmission electron microscopy, (b) upregulation of autophagy-related genes including ATG4A, ATG5, ATG7, ATG12, and beclin-1 (BENC1), and (c) increased BECN1/Bcl-2 ratio confirmed the induction of autophagy by lutein. The results revealed that bafilomycin-A1-induced inhibition of autophagy reduced cell viability and increased apoptosis in lutein-treated cells, indicating a protective role of lutein-induced autophagy. Lutein treatment also activated adenosine monophosphate-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK), and p-38, but had no effects on the induction of extracellular signal-related kinase or inhibition of mTOR; however, the inhibition of activated AMPK, JNK, or p-38 did not attenuate lutein-induced autophagy. Finally, increased BECN1 expression levels were detected in lutein-treated cells, and BECN1 knockdown abolished autophagy induction. These results suggest that lutein-induced autophagy was mediated by the upregulation of BECN1 in IEC-6 cells. We are the first to demonstrate that lutein induces autophagy. Elevated autophagy in lutein-treated IEC-6 cells may have a protective role

  20. Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway.

    PubMed

    Zhang, Qian; Yang, Yue-Jin; Wang, Hong; Dong, Qiu-Ting; Wang, Tian-Jie; Qian, Hai-Yan; Xu, Hui

    2012-05-20

    Autophagy is a complex "self-eating" process and could be utilized for cell survival under stresses. Statins, which could reduce apoptosis in mesenchymal stem cells (MSCs) during both ischemia and hypoxia/serum deprivation (H/SD), have been proved to induce autophagy in some cell lines. We have previously shown that atorvastatin (ATV) could regulate AMP-activated protein kinase (AMPK), a positive modulator of autophagy, in MSCs. Thus, we hypothesized that autophagy activation through AMPK and its downstream molecule mammalian target of rapamycin (mTOR) may be a novel mechanism of ATV to protect MSCs from apoptosis during H/SD. Here, we demonstrated that H/SD induced autophagy in MSCs significantly as identified by increasing acidic vesicular organelle-positive cells, type II of light chain 3 (LC3-II) expression, and autophagosome formation. The levels of H/SD-induced apoptosis were increased by autophagy inhibitor 3-methyladenine (3-MA) while decreased by rapamycin, an autophagic inducer. ATV further enhanced the autophagic activity observed in MSCs exposed to H/SD. Treatment with 3-MA attenuated ATV-induced autophagy and abrogated the protective effects of ATV on MSC apoptosis, while rapamycin failed to cause additional effects on either autophagy or apoptosis compared with ATV alone. The phosphorylation of AMPK was upregulated whereas the phosphorylation of mTOR was downregulated in ATV-treated MSCs, which were both attenuated by AMPK inhibitor compound C. Further, treatment with compound C reduced the ATV-induced autophagy in MSCs under H/SD. These data suggest that autophagy plays a protective role in H/SD-induced apoptosis of MSCs, and ATV could effectively activate autophagy via AMPK/mTOR pathway to enhance MSC survival during H/SD.

  1. Identification of Autophagy in the Pine Wood Nematode Bursaphelenchus xylophilus and the Molecular Characterization and Functional Analysis of Two Novel Autophagy-Related Genes, BxATG1 and BxATG8

    PubMed Central

    Deng, Li-Na; Wu, Xiao-Qin; Ye, Jian-Ren; Xue, Qi

    2016-01-01

    The pine wood nematode, Bursaphelenchus xylophilus, causes huge economic losses in pine forests, has a complex life cycle, and shows the remarkable ability to survive under unfavorable and changing environmental conditions. This ability may be related to autophagy, which is still poorly understood in B. xylophilus and no autophagy-related genes have been previously characterized. In this study, transmission electron microscopy was used to confirm that autophagy exists in B. xylophilus. The full-length cDNAs of BxATG1 and BxATG8 were first cloned from B. xylophilus, and BxATG1 and BxATG8 were characterized using bioinformatics methods. The expression pattern of the autophagy marker BxATG8 was investigated using in situ hybridization (ISH). BxATG8 was expressed in esophageal gland and hypodermal seam cells. We tested the effects of RNA interference (RNAi) on BxATG1 and BxATG8. The results revealed that BxATG1 and BxATG8 were likely associated with propagation of nematodes on fungal mats. This study confirmed the molecular characterization and functions of BxATG1 and BxATG8 in B. xylophilus and provided fundamental information between autophagy and B. xylophilus. PMID:26950119

  2. Single-cell RNA sequencing highlights transcription activity of autophagy-related genes during hematopoietic stem cell formation in mouse embryos.

    PubMed

    Hu, Yongfei; Huang, Yan; Yi, Ying; Wang, Hongwei; Liu, Bing; Yu, Jia; Wang, Dong

    2017-04-03

    Accumulating evidence has demonstrated that macroautophagy/autophagy plays an essential role in self-renewal and differentiation in embryonic hematopoiesis. Here, according to the RNA sequencing data sets of 5 population cells related to hematopoietic stem cell (HSC) formation during mouse embryogenesis (endothelial cells, PTPRC/CD45(-) and PTPRC/CD45(+) pre-HSCs in the E11 aorta-gonad-mesonephros (AGM) region, mature HSCs in E12 and E14 fetal liver), we explored the dynamic expression of mouse autophagy-related genes in this course at the single-cell level. Our results revealed that the transcription activity of autophagy-related genes had a substantial increase when endothelial cells (ECs) specified into pre-HSCs, and the upregulation of autophagy-essential genes correlated with reduced NOTCH signaling in pre-HSCs, suggesting the autophagy activity may be greatly enhanced during pre-HSC specification from endothelial precursors. In summary, our results presented strong evidence that autophagy plays a critical role in HSC emergence during mouse midgestation.

  3. Rottlerin induces autophagy and apoptotic cell death through a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells: the protective role of autophagy in apoptosis.

    PubMed

    Song, Kyoung-Sub; Kim, Jong-Seok; Yun, Eun-Jin; Kim, Young-Rae; Seo, Kang-Sik; Park, Ji-Hoon; Jung, Yeon-Joo; Park, Jong-Il; Kweon, Gi-Ryang; Yoon, Wan-Hee; Lim, Kyu; Hwang, Byung-Doo

    2008-07-01

    Rottlerin is widely used as a protein kinase C-delta inhibitor. Recently, several reports have shown the possible apoptosis-inducing effect of rottlerin in some cancer cell lines. Here we report that rottlerin induces not only apoptosis but also autophagy via a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells. Rottlerin treatment induced a dose- and time-dependent inhibition of cell growth, and cytoplasmic vacuolations were markedly shown. These vacuoles were identified as acidic autolysosomes by electron microscopy, acidic vesicular organelle (AVO) staining and transfection of green fluorescent protein-LC3. The LC3-II protein level also increased after treatment with rottlerin. Prolonged exposure to rottlerin eventually caused apoptosis via loss of mitochondrial membrane potential and translocation of AIF from mitochondria to the nucleus. However, the activities of caspase-3, -8 and -9 were not changed, and PARP did not show signs of cleavage. Interestingly, the pretreatment of cells with a specific inhibitor of autophagy (3-methyladenine) accelerated rottlerin-induced apoptosis as revealed by an analysis of the subdiploid fraction and TUNEL assay. Nevertheless, the knockdown of PKC-delta by RNA interference neither affected cell growth nor acidic vacuole formation. Similarly, rottlerin-induced cell death was not prevented by PKC-delta overexpression. Taken together, these findings suggest that rottlerin induces early autophagy and late apoptosis in a PKC-delta-independent manner, and the rottlerin-induced early autophagy may act as a survival mechanism against late apoptosis in HT1080 human fibrosarcoma cells.

  4. Upregulation of autophagy genes and the unfolded protein response in human heart failure.

    PubMed

    Jensen, Brian C; Bultman, Scott J; Holley, Darcy; Tang, Wei; de Ridder, Gustaaf; Pizzo, Salvatore; Bowles, Dawn; Willis, Monte S

    2017-01-01

    The cellular environment of the mammalian heart constantly is challenged with environmental and intrinsic pathological insults, which affect the proper folding of proteins in heart failure. The effects of damaged or misfolded proteins on the cell can be profound and result in a process termed "proteotoxicity". While proteotoxicity is best known for its role in mediating the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, its role in human heart failure also has been recognized. The UPR involves three branches, including PERK, ATF6, and IRE1. In the presence of a misfolded protein, the GRP78 molecular chaperone that normally interacts with the receptors PERK, ATF6, and IRE-1 in the endoplasmic reticulum detaches to attempt to stabilize the protein. Mouse models of cardiac hypertrophy, ischemia, and heart failure demonstrate increases in activity of all three branches after removing GRP78 from these internal receptors. Recent studies have linked elevated PERK and CHOP in vitro with regulation of ion channels linked with human systolic heart failure. With this in mind, we specifically investigated ventricular myocardium from 10 patients with a history of conduction system defects or arrhythmias for expression of UPR and autophagy genes compared to myocardium from non-failing controls. We identified elevated Chop, Atf3, and Grp78 mRNA, along with XBP-1-regulated Cebpa mRNA, indicative of activation of the UPR in human heart failure with arrhythmias.

  5. Autophagy mediates the mitotic senescence transition.

    PubMed

    Young, Andrew R J; Narita, Masako; Ferreira, Manuela; Kirschner, Kristina; Sadaie, Mahito; Darot, Jeremy F J; Tavaré, Simon; Arakawa, Satoko; Shimizu, Shigeomi; Watt, Fiona M; Narita, Masashi

    2009-04-01

    As a stress response, senescence is a dynamic process involving multiple effector mechanisms whose combination determines the phenotypic quality. Here we identify autophagy as a new effector mechanism of senescence. Autophagy is activated during senescence and its activation is correlated with negative feedback in the PI3K-mammalian target of rapamycin (mTOR) pathway. A subset of autophagy-related genes are up-regulated during senescence: Overexpression of one of those genes, ULK3, induces autophagy and senescence. Furthermore, inhibition of autophagy delays the senescence phenotype, including senescence-associated secretion. Our data suggest that autophagy, and its consequent protein turnover, mediate the acquisition of the senescence phenotype.

  6. Assessing Metabolic Stress and Autophagy Status in Epithelial Tumors

    PubMed Central

    Mathew, Robin; Karantza-Wadsworth, Vassiliki; White, Eileen

    2010-01-01

    Autophagy is a survival mechanism activated in response to metabolic stress. In normal tissues autophagy plays a major role in energy homeostasis through catabolic self-digestion of damaged proteins and organelles. Contrary to its survival function, autophagy defects are implicated in tumorigenesis suggesting that autophagy is a tumor suppression mechanism. Although the exact mechanism of this tumor suppressor function is not known, it likely involves mitigation of cellular damage leading to chromosomal instability. The complex role of functional autophagy in tumors calls for model systems that allow the assessment of autophagy status, stress management and the impact on oncogenesis both in vitro as well as in vivo. We developed model systems that involve generation of genetically defined, isogenic and immortal epithelial cells from different tissue types that are applicable to both wild-type and mutant mice. This permits the study of tissue- as well as gene-specific tumor promoting functions. We successfully employed this strategy to generate isogenic, immortal epithelial cell lines from wild-type and mutant mice deficient in essential autophagy genes such as beclin 1 (beclin 1+/-) and atg5 (atg 5-/-). As these cell lines are amenable to further genetic manipulation, they allowed us to generate cell lines with apoptosis defects and stable expression of the autophagy marker EGFP-LC3 that facilitate in vitro and in vivo assessment of stress-mediated autophagy induction. We applied this model system to directly monitor autophagy in cells and 3D-morphogenesis in vitro as well as in tumor allografts in vivo. Using this model system we demonstrated that autophagy is a survival response in solid tumors that co-localizes with hypoxic regions, allowing tolerance to metabolic stress. Furthermore, our studies have established that autophagy also protects tumor cells from genome damage and limits cell death and inflammation as possible means to tumor suppression. Additionally

  7. 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade.

    PubMed

    Zhao, Mingyi; Zhu, Ping; Fujino, Masayuki; Nishio, Yoshiaki; Chen, Jimei; Ito, Hidenori; Takahashi, Kiwamu; Nakajima, Motowo; Tanaka, Tohru; Zhao, Lingling; Zhuang, Jian; Li, Xiao-Kang

    2016-10-28

    Hypoxia causes cardiac disease via oxidative stress and mitochondrial dysfunction. 5-Aminolevulinic acid in combination with sodium ferrous citrate (ALA/SFC) has been shown to up-regulate heme oxygenase-1 (HO-1) and decrease macrophage infiltration and renal cell apoptosis in renal ischemia injury mice. However, its underlying mechanism remains largely unknown. The aim of this study was to investigate whether ALA/SFC could protect cardiomyocytes from hypoxia-induced apoptosis by autophagy via HO-1 signaling. Murine atrial cardiomyocyte HL-1 cells were pretreated with ALA/SFC and then exposed to hypoxia. ALA/SFC pretreatment significantly attenuated hypoxia-induced cardiomyocyte apoptosis, reactive oxygen species production, and mitochondrial injury, while it increased cell viability and autophagy levels. HO-1 expression by ALA/SFC was associated with up-regulation and nuclear translocation of Nrf-2, whereas Nrf-2 siRNA dramatically reduced HO-1 expression. ERK1/2, p38, and SAPK/JNK pathways were activated by ALA/SFC and their specific inhibitors significantly reduced ALA/SFC-mediated HO-1 upregulation. Silencing of either Nrf-2 or HO-1and LY294002, inhibitor of autophagy, abolished the protective ability of ALA/AFC against hypoxia-induced injury and reduced ALA/SFC-induced autophagy. Taken together, our data suggest that ALA/SFC induces autophagy via activation of MAPK/Nrf-2/HO-1 signaling pathway to protect cardiomyocytes from hypoxia-induced apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Cathepsin D protects colorectal cancer cells from acetate-induced apoptosis through autophagy-independent degradation of damaged mitochondria.

    PubMed

    Oliveira, C S F; Pereira, H; Alves, S; Castro, L; Baltazar, F; Chaves, S R; Preto, A; Côrte-Real, M

    2015-06-18

    Acetate is a short-chain fatty acid secreted by Propionibacteria from the human intestine, known to induce mitochondrial apoptotic death in colorectal cancer (CRC) cells. We previously established that acetate also induces lysosome membrane permeabilization in CRC cells, associated with release of the lysosomal protease cathepsin D (CatD), which has a well-established role in the mitochondrial apoptotic cascade. Unexpectedly, we showed that CatD has an antiapoptotic role in this process, as pepstatin A (a CatD inhibitor) increased acetate-induced apoptosis. These results mimicked our previous data in the yeast system showing that acetic acid activates a mitochondria-dependent apoptosis process associated with vacuolar membrane permeabilization and release of the vacuolar protease Pep4p, ortholog of mammalian CatD. Indeed, this protease was required for cell survival in a manner dependent on its catalytic activity and for efficient mitochondrial degradation independently of autophagy. In this study, we therefore assessed the role of CatD in acetate-induced mitochondrial alterations. We found that, similar to acetic acid in yeast, acetate-induced apoptosis is not associated with autophagy induction in CRC cells. Moreover, inhibition of CatD with small interfering RNA or pepstatin A enhanced apoptosis associated with higher mitochondrial dysfunction and increased mitochondrial mass. This effect seems to be specific, as inhibition of CatB and CatL with E-64d had no effect, nor were these proteases significantly released to the cytosol during acetate-induced apoptosis. Using yeast cells, we further show that the role of Pep4p in mitochondrial degradation depends on its protease activity and is complemented by CatD, indicating that this mechanism is conserved. In summary, the clues provided by the yeast model unveiled a novel CatD function in the degradation of damaged mitochondria when autophagy is impaired, which protects CRC cells from acetate-induced apoptosis. Cat

  9. Delayed treatment with fenofibrate protects against high-fat diet-induced kidney injury in mice: the possible role of AMPK autophagy.

    PubMed

    Sohn, Minji; Kim, Keumji; Uddin, Md Jamal; Lee, Gayoung; Hwang, Inah; Kang, Hyeji; Kim, Hyunji; Lee, Jung Hwa; Ha, Hunjoo

    2017-02-01

    Fenofibrate activates not only peroxisome proliferator-activated receptor-α (PPARα) but also adenosine monophosphate-activated protein kinase (AMPK). AMPK-mediated cellular responses protect kidney from high-fat diet (HFD)-induced injury, and autophagy resulting from AMPK activation has been regarded as a stress-response mechanism. Thus the present study examined the role of AMPK and autophagy in the renotherapeutic effects of fenofibrate. C57BL/6J mice were divided into three groups: normal diet (ND), HFD, and HFD + fenofibrate (HFD + FF). Fenofibrate was administered 4 wk after the initiation of the HFD when renal injury was initiated. Mouse proximal tubule cells (mProx24) were used to clarify the role of AMPK. Feeding mice with HFD for 12 wk induced insulin resistance and kidney injury such as albuminuria, glomerulosclerosis, tubular injury, and inflammation, which were effectively inhibited by fenofibrate. In addition, fenofibrate treatment resulted in the activation of renal AMPK, upregulation of fatty acid oxidation (FAO) enzymes and antioxidants, and induction of autophagy in the HFD mice. In mProx24 cells, fenofibrate activated AMPK in a concentration-dependent manner, upregulated FAO enzymes and antioxidants, and induced autophagy, all of which were inhibited by treatment of compound C, an AMPK inhibitor. Fenofibrate-induced autophagy was also significantly blocked by AMPKα1 siRNA but not by PPARα siRNA. Collectively, these results demonstrate that delayed treatment with fenofibrate has a therapeutic effect on HFD-induced kidney injury, at least in part, through the activation of AMPK and induction of subsequent downstream effectors: autophagy, FAO enzymes, and antioxidants. Copyright © 2017 the American Physiological Society.

  10. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure-Overload-Induced Mitochondrial Dysfunction and Heart Failure

    PubMed Central

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-01-01

    Background Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Methods and Results Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure (HF) was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Mito-Keima, was transiently activated around 3–7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and HF after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on Day 7 after TAC partially rescued mitochondrial autophagy, and attenuated mitochondrial dysfunction and HF induced by pressure overload (PO). Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Conclusions Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to PO. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and HF, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during PO. PMID:26915633

  11. Anti-oxidative cellular protection effect of fasting-induced autophagy as a mechanism for hormesis.

    PubMed

    Moore, Michael N; Shaw, Jennifer P; Ferrar Adams, Dawn R; Viarengo, Aldo

    2015-06-01

    The aim of this investigation was to test the hypothesis that fasting-induced augmented lysosomal autophagic turnover of cellular proteins and organelles will reduce potentially harmful lipofuscin (age-pigment) formation in cells by more effectively removing oxidatively damaged proteins. An animal model (marine snail--common periwinkle, Littorina littorea) was used to experimentally test this hypothesis. Snails were deprived of algal food for 7 days to induce an augmented autophagic response in their hepatopancreatic digestive cells (hepatocyte analogues). This treatment resulted in a 25% reduction in the cellular content of lipofuscin in the digestive cells of the fasting animals in comparison with snails fed ad libitum on green alga (Ulva lactuca). Similar findings have previously been observed in the digestive cells of marine mussels subjected to copper-induced oxidative stress. Additional measurements showed that fasting significantly increased cellular health based on lysosomal membrane stability, and reduced lipid peroxidation and lysosomal/cellular triglyceride. These findings support the hypothesis that fasting-induced augmented autophagic turnover of cellular proteins has an anti-oxidative cytoprotective effect by more effectively removing damaged proteins, resulting in a reduction in the formation of potentially harmful proteinaceous aggregates such as lipofuscin. The inference from this study is that autophagy is important in mediating hormesis. An increase was demonstrated in physiological complexity with fasting, using graph theory in a directed cell physiology network (digraph) model to integrate the various biomarkers. This was commensurate with increased health status, and supportive of the hormesis hypothesis. The potential role of enhanced autophagic lysosomal removal of damaged proteins in the evolutionary acquisition of stress tolerance in intertidal molluscs is discussed and parallels are drawn with the growing evidence for the involvement of

  12. E3 Ubiquitin Ligase CHIP and NBR1-Mediated Selective Autophagy Protect Additively against Proteotoxicity in Plant Stress Responses

    PubMed Central

    Qi, Jingxia; Chi, Yingjin; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2014-01-01

    Plant stress responses require both protective measures that reduce or restore stress-inflicted damage to cellular structures and mechanisms that efficiently remove damaged and toxic macromolecules, such as misfolded and damaged proteins. We have recently reported that NBR1, the first identified plant autophagy adaptor with a ubiquitin-association domain, plays a critical role in plant stress tolerance by targeting stress-induced, ubiquitinated protein aggregates for degradation by autophagy. Here we report a comprehensive genetic analysis of CHIP, a chaperone-associated E3 ubiquitin ligase from Arabidopsis thaliana implicated in mediating degradation of nonnative proteins by 26S proteasomes. We isolated two chip knockout mutants and discovered that they had the same phenotypes as the nbr1 mutants with compromised tolerance to heat, oxidative and salt stresses and increased accumulation of insoluble proteins under heat stress. To determine their functional interactions, we generated chip nbr1 double mutants and found them to be further compromised in stress tolerance and in clearance of stress-induced protein aggregates, indicating additive roles of CHIP and NBR1. Furthermore, stress-induced protein aggregates were still ubiquitinated in the chip mutants. Through proteomic profiling, we systemically identified heat-induced protein aggregates in the chip and nbr1 single and double mutants. These experiments revealed that highly aggregate-prone proteins such as Rubisco activase and catalases preferentially accumulated in the nbr1 mutant while a number of light-harvesting complex proteins accumulated at high levels in the chip mutant after a relatively short period of heat stress. With extended heat stress, aggregates for a large number of intracellular proteins accumulated in both chip and nbr1 mutants and, to a greater extent, in the chip nbr1 double mutant. Based on these results, we propose that CHIP and NBR1 mediate two distinct but complementary anti

  13. Knockdown of MicroRNA-122 Protects H9c2 Cardiomyocytes from Hypoxia-Induced Apoptosis and Promotes Autophagy

    PubMed Central

    Zhang, Zaiwei; Li, Hu; Chen, Shasha; Li, Ying; Cui, Zhiyuan; Ma, Jie

    2017-01-01

    Background Acute myocardial infarction (AMI) is a severe disease causing heart failure and sudden death. Studies indicate that microRNAs (miRNAs) are involved in the pathophysiology of AMI. In the present study, we carefully explored the effects of miR-122 on myocardial hypoxia injury and its possible underlying mechanism. Material/Methods miR-122 expression was analyzed in H9c2 cardiomyocytes after being transfected with miR-122 mimic, ASO-miR-122, or negative control. Cell viability and apoptosis were investigated by CCK-8 assays and flow cytometry analysis, respectively. Cell migration was analyzed using wound-healing assays. Western blotting was performed to analyze the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphatidylinositol 3-hydroxy kinase (PI3K)/AKT and LC3-II/LC3-I. Result Hypoxia exposure significantly inhibited H9c2 cell viability (P<0.01). miR-122 overexpression promoted the hypoxia-induced H9c2 cell proliferation and migration loss (P<0.05), and cell apoptosis was increased (P<0.05). miR-122 knockdown enhanced cell viability and decreased cell apoptosis (P<0.05). Knockdown of miR-122 enhanced PTEN/PI3K/AKT activation and cell autophagy. Overexpression of miR-122 inhibited the PTEN/PI3K/AKT pathway and cell autophagy pathway. Conclusions The expression of miR-122 is involved in hypoxia-induced H9c2 cardiomyocyte injury. Knockdown of miR-122 protects H9c2 cells from hypoxia-induced apoptosis and enhances cell viability. PMID:28871076

  14. Resveratrol Attenuates Doxorubicin-Induced Cardiomyocyte Death via Inhibition of p70 S6 Kinase 1-Mediated Autophagy

    PubMed Central

    Xu, Xianmin; Chen, Kai; Kobayashi, Satoru; Timm, Derek

    2012-01-01

    Resveratrol is a plant-derived polyphenol that can attenuate the cardiotoxic effects of doxorubicin (DOX), a powerful antibiotic widely used in cancer chemotherapy. However, the underlying protective mechanisms of resveratrol remain elusive. Here, we show that resveratrol inhibited DOX-induced autophagy and cardiomyocyte death, and autophagy suppression is an important mechanism that mediates the ability of resveratrol to protect against DOX cardiotoxicity. Indeed, resveratrol, 3-methyladenine (3-MA), and a short hairpin RNA directed against autophagy gene beclin 1 (shBCN1) each was able to attenuate DOX-induced autophagy and cardiomyocyte death, but resveratrol did not provide additional protection in the presence of 3-MA or shBCN1. In contrast, up-regulation of autophagy by beclin 1 overexpression not only exacerbated DOX cardiotoxicity but also abolished the protective effects of resveratrol. Intriguingly, p70 S6 kinase 1 (S6K1) was activated by DOX, which was prevented by resveratrol. Knocking down S6K1 with small interfering RNA diminished DOX-induced autophagy and cardiotoxicity, but resveratrol failed to exert an additive effect. In addition, S6K1 overexpression impaired the ability of resveratrol to antagonize DOX-induced autophagy and cardiomyocyte death. Taken together, our data indicate that the protective effect of resveratrol against DOX cardiotoxicity largely depends on its ability to suppress DOX-induced autophagy via the inhibition of S6K1. PMID:22209892

  15. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy.

    PubMed

    Xu, Xianmin; Chen, Kai; Kobayashi, Satoru; Timm, Derek; Liang, Qiangrong

    2012-04-01

    Resveratrol is a plant-derived polyphenol that can attenuate the cardiotoxic effects of doxorubicin (DOX), a powerful antibiotic widely used in cancer chemotherapy. However, the underlying protective mechanisms of resveratrol remain elusive. Here, we show that resveratrol inhibited DOX-induced autophagy and cardiomyocyte death, and autophagy suppression is an important mechanism that mediates the ability of resveratrol to protect against DOX cardiotoxicity. Indeed, resveratrol, 3-methyladenine (3-MA), and a short hairpin RNA directed against autophagy gene beclin 1 (shBCN1) each was able to attenuate DOX-induced autophagy and cardiomyocyte death, but resveratrol did not provide additional protection in the presence of 3-MA or shBCN1. In contrast, up-regulation of autophagy by beclin 1 overexpression not only exacerbated DOX cardiotoxicity but also abolished the protective effects of resveratrol. Intriguingly, p70 S6 kinase 1 (S6K1) was activated by DOX, which was prevented by resveratrol. Knocking down S6K1 with small interfering RNA diminished DOX-induced autophagy and cardiotoxicity, but resveratrol failed to exert an additive effect. In addition, S6K1 overexpression impaired the ability of resveratrol to antagonize DOX-induced autophagy and cardiomyocyte death. Taken together, our data indicate that the protective effect of resveratrol against DOX cardiotoxicity largely depends on its ability to suppress DOX-induced autophagy via the inhibition of S6K1.

  16. The role of autophagy in the pathogenesis of glycogen storage disease type II (GSDII).

    PubMed

    Nascimbeni, A C; Fanin, M; Masiero, E; Angelini, C; Sandri, M

    2012-10-01

    Regulated removal of proteins and organelles by autophagy-lysosome system is critical for muscle homeostasis. Excessive activation of autophagy-dependent degradation contributes to muscle atrophy and cachexia. Conversely, inhibition of autophagy causes accumulation of protein aggregates and abnormal organelles, leading to myofiber degeneration and myopathy. Defects in lysosomal function result in severe muscle disorders such as Pompe (glycogen storage disease type II (GSDII)) disease, characterized by an accumulation of autophagosomes. However, whether autophagy is detrimental or not in muscle function of Pompe patients is unclear. We studied infantile and late-onset GSDII patients and correlated impairment of autophagy with muscle wasting. We also monitored autophagy in patients who received recombinant α-glucosidase. Our data show that infantile and late-onset patients have different levels of autophagic flux, accumulation of p62-positive protein aggregates and expression of atrophy-related genes. Although the infantile patients show impaired autophagic function, the late-onset patients display an interesting correlation among autophagy impairment, atrophy and disease progression. Moreover, reactivation of autophagy in vitro contributes to acid α-glucosidase maturation in both healthy and diseased myotubes. Together, our data suggest that autophagy protects myofibers from disease progression and atrophy in late-onset patients.

  17. Inhibition of autophagy enhances Hydroquinone-induced TK6 cell death.

    PubMed

    Xu, Longmei; Liu, Jiaxian; Chen, Yuting; Yun, Lin; Chen, Shaoyun; Zhou, Kairu; Lai, Bei; Song, Li; Yang, Hui; Liang, Hairong; Tang, Huanwen

    2017-03-02

    Hydroquinone (HQ), one of the metabolic products of benzene, is a carcinogen. It can induce apoptosis in lymphoma cells. However, whether HQ can induce autophagy and what roles autophagy plays in TK6 cells exposured to HQ remains unclear. In this study, we found that HQ could induce autophagy through techniques of qRT-PCR, Western blot, immunofluorescent assay of LC3 and transmission electron microscope. Furthermore, inhibiting autophagy using 3-methyladenine (3-MA) or chloroquine (CQ) significantly enhanced HQ-induced cell apoptosis, suggesting that autophagy may be a survival mechanism. Our study also showed that HQ activated PARP-1. Moreover, knockdown of PARP-1 strongly exhibited decreased autophagy related genes expression. In contrast, the absence of SIRT1 increased that. Altogether, our data provided evidence that HQ induced autophagy in TK6 cells and autophagy protected TK6 from HQ attack-induced injury in vitro, and the autophagy was partially mediated via activation of the PARP-1-SIRT1 signaling pathway.

  18. Salmonella plasmid virulence gene spvB enhances bacterial virulence by inhibiting autophagy in a zebrafish infection model.

    PubMed

    Li, Yuan-Yuan; Wang, Ting; Gao, Song; Xu, Guang-Mei; Niu, Hua; Huang, Rui; Wu, Shu-Yan

    2016-02-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is a facultative intracellular pathogen that can cause gastroenteritis and systemic infection in a wide range of hosts. Salmonella plasmid virulence gene spvB is closely related to bacterial virulence in different cells and animal models, and the encoded protein acts as an intracellular toxin required for ADP-ribosyl transferase activity. However, until now there is no report about the pathogenecity of spvB gene on zebrafish. Due to the outstanding advantages of zebrafish in analyzing bacteria-host interactions, a S. typhimurium infected zebrafish model was set up here to study the effect of spvB on autophagy and intestinal pathogenesis in vivo. We found that spvB gene could decrease the LD50 of S. typhimurium, and the strain carrying spvB promoted bacterial proliferation and aggravated the intestinal damage manifested by the narrowed intestines, fallen microvilli, blurred epithelium cell structure and infiltration of inflammatory cells. Results demonstrated the enhanced virulence induced by spvB in zebrafish. In spvB-mutant strain infected zebrafish, the levels of Lc3 turnover and Beclin1 expression increased, and the double-membraned autophagosome structures were observed, suggesting that spvB can inhibit autophagy activity. In summary, our results indicate that S. typhimurium strain containing spvB displays more virulence, triggering an increase in bacterial survival and intestine injuries by suppressing autophagy for the first time. This model provides novel insights into the role of Salmonella plasmid virulence gene in bacterial pathogenesis, and can help to further elucidate the relationship between bacteria and host immune response.

  19. Autophagy Paradox and Ceramide

    PubMed Central

    Jiang, Wenhui; Ogretmen, Besim

    2013-01-01

    Sphingolipid molecules act as bioactive lipid messengers and exert their actions on the regulation of various cellular signaling pathways. Sphingolipids play essential roles in numerous cellular functions, including controlling cell inflammation, proliferation, death, migration, senescence, tumor metastasis and/or autophagy. Dysregulated sphingolipid metabolism has been also implicated in many human cancers. Macroatuophagy (referred to here as autophagy) “self-eating”, is characterized by nonselective sequestering of cytosolic materials by an isolation membrane, which can be either protective or lethal for cells. Ceramide (Cer), a central molecule of sphingolipid metabolism, has been extensively implicated in the control of autophagy. The increasing evidence suggests Cer is highly involved in mediating two opposing autophagic pathways, which regulate either cell survival or death, autophagy paradox. However, the underlying mechanism that regulates the autophagy paradox remains unclear. Therefore, this review focuses on recent studies with regard to the regulation of autophagy by Cer and elucidate the roles and mechanisms of action of Cer in controlling autophagy paradox. PMID:24055889

  20. Protective Effect of Astaxanthin on Liver Fibrosis through Modulation of TGF-β1 Expression and Autophagy

    PubMed Central

    Shen, Miao; Chen, Kan; Lu, Jie; Cheng, Ping; Xu, Ling; Dai, Weiqi; Wang, Fan; He, Lei; Zhang, Yan; Chengfen, Wang; Li, Jingjing; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Zhou, Yingqun; Guo, Chuanyong

    2014-01-01

    Liver fibrosis is a common pathway leading to cirrhosis and a worldwide clinical issue. Astaxanthin is a red carotenoid pigment with antioxidant, anticancer, and anti-inflammatory properties. The aim of this study was to investigate the effect of astaxanthin on liver fibrosis and its potential protective mechanisms. Liver fibrosis was induced in a mouse model using CCL4 (intraperitoneal injection, three times a week for 8 weeks), and astaxanthin was administered everyday at three doses (20, 40, and 80 mg/kg). Pathological results indicated that astaxanthin significantly improved the pathological lesions of liver fibrosis. The levels of alanine aminotransferase aspartate aminotransferase and hydroxyproline were also significantly decreased by astaxanthin. The same results were confirmed in bile duct liagtion, (BDL) model. In addition, astaxanthin inhibited hepatic stellate cells (HSCs) activation and formation of extracellular matrix (ECM) by decreasing the expression of NF-κB and TGF-β1 and maintaining the balance between MMP2 and TIMP1. In addition, astaxanthin reduced energy production in HSCs by downregulating the level of autophagy. These results were simultaneously confirmed in vivo and in vitro. In conclusion, our study showed that 80 mg/kg astaxanthin had a significant protective effect on liver fibrosis by suppressing multiple profibrogenic factors. PMID:24860243

  1. Protective effect of astaxanthin on liver fibrosis through modulation of TGF-β1 expression and autophagy.

    PubMed

    Shen, Miao; Chen, Kan; Lu, Jie; Cheng, Ping; Xu, Ling; Dai, Weiqi; Wang, Fan; He, Lei; Zhang, Yan; Chengfen, Wang; Li, Jingjing; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Zhou, Yingqun; Guo, Chuanyong

    2014-01-01

    Liver fibrosis is a common pathway leading to cirrhosis and a worldwide clinical issue. Astaxanthin is a red carotenoid pigment with antioxidant, anticancer, and anti-inflammatory properties. The aim of this study was to investigate the effect of astaxanthin on liver fibrosis and its potential protective mechanisms. Liver fibrosis was induced in a mouse model using CCL4 (intraperitoneal injection, three times a week for 8 weeks), and astaxanthin was administered everyday at three doses (20, 40, and 80 mg/kg). Pathological results indicated that astaxanthin significantly improved the pathological lesions of liver fibrosis. The levels of alanine aminotransferase aspartate aminotransferase and hydroxyproline were also significantly decreased by astaxanthin. The same results were confirmed in bile duct liagtion, (BDL) model. In addition, astaxanthin inhibited hepatic stellate cells (HSCs) activation and formation of extracellular matrix (ECM) by decreasing the expression of NF-κB and TGF-β1 and maintaining the balance between MMP2 and TIMP1. In addition, astaxanthin reduced energy production in HSCs by downregulating the level of autophagy. These results were simultaneously confirmed in vivo and in vitro. In conclusion, our study showed that 80 mg/kg astaxanthin had a significant protective effect on liver fibrosis by suppressing multiple profibrogenic factors.

  2. Role of FOXO1 in aldosterone-induced autophagy: A compensatory protective mechanism related to podocyte injury

    PubMed Central

    Wang, Bin; Ding, Wei; Zhang, Minmin; Li, Hongmei; Guo, Honglei; Lin, Lilu; Chen, Jing; Gu, Yong

    2016-01-01

    This study was undertaken to elucidate whether and how autophagy was regulated in aldosterone (Aldo)-induced podocyte injury and to examine its role in this model both in vitro and in vivo. In cultured podocytes, Aldo increased autophagy flux as indicated by the enhanced expression of LC3-II/LC3-I and the reduction of p62. Autophagy induction with rapamycin (RP) provided a cytoprotective effect, and inhibition of autophagy with Atg7-specific siRNA, chloroquine (CQ) or 3-methyladenine (3-MA) worsened Aldo-induced podocyte injury by attenuating endoplasmic reticulum (ER) stress. Aldo inhibited Akt phosphorylation but increased the mammalian target of rapamycin (mTOR) signaling pathway; however, Aldo up-regulated the expression of FOXO1 and its downstream effector Rab7. Either knockdown of FOXO1 or Rab7 inhibited Aldo-induced autophagy. Additionally, an elevated level of P300-regulated acetylation of FOXO1 and the interaction of acetylated FOXO1 and Atg7 were also confirmed to be involved in regulating autophagy in Aldo-induced podocytes. Similar results were further confirmed in vivo. We propose that autophagy enhancement through enhancing of the FOXO1/Rab7 axis and post-translational modification of FOXO1 may represent a potential therapeutic strategy against podocyte injury by promoting autophagy. PMID:27244896

  3. Protective effects of ethyl pyruvate on lipopolysaccharide-induced acute lung injury through inhibition of autophagy in neutrophils

    PubMed Central

    Zhu, Qingteng; Wang, Hui; Wang, Hairong; Luo, Yong; Yu, Yang; Du, Qirong; Fei, Aihua; Pan, Shuming

    2017-01-01

    Among a number of clinical factors, bacterial infection is one of the most common causes of acute lung injury (ALI), a serious complication that carries a high risk of mortality (~40%). During the process of ALI, intense local and systemic inflammation is elicited, which exacerbates the injury. Neutrophil infiltration into airspace is observed in early stage of ALI, and is required for the full development of ALI through an array of mechanisms, including the release of granule contents and the production of pro-inflammatory cytokines, due to the overactivation of complement and cytokines. The present study noted that ethyl pyruvate alleviated ALI in lipopolysaccharide (LPS)-induced ALI mice. Increased autophagy in neutrophils from ALI mice was observed, while ethyl pyruvate diminished autophagy in neutrophils and constrained granule release, and therefore myeloperoxidase (MPO) in bronchoalveolar lavage fluid and the production of proinflammatory cytokines. Using neutrophil cells, it was identified that autophagy was required for neutrophil activation and granule release, and that ethyl pyruvate caused neutrophil autophagy, leading to the restriction of granule release, and thus contributing to the mitigation of ALI. If autophagy was obviated through knockdown of key regulator of autophagy Atg5, the effects of ethyl pyruvate on granule release by neutrophils disappeared. Taken together, the results demonstrated that ethyl pyruvate alleviates ALI through inhibition of autophagy-induced granule release by neutrophils, and this mechanism suggested a novel potential therapeutic target in autophagy regulation for ALI. PMID:28098908

  4. Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells.

    PubMed

    Yang, Jianhong; Wu, Wenshuang; Wen, Jiaolin; Ye, Haoyu; Luo, Hong; Bai, Peng; Tang, Minghai; Wang, Fang; Zheng, Li; Yang, Shengyong; Li, Weimin; Peng, Aihua; Yang, Li; Wan, Li; Chen, Lijuan

    2017-10-01

    Honokiol (HK), a natural chemical isolated from Mangnolia officinalis, has shown antitumorigenic activities when used to treat a variety of tumor cell lines. The mechanism of honokiol activity when used to treat gefitinib-sensitive and gefitinib-resistant non-small cell lung cancer (NSCLC) requires elucidation. Here, the presence of liposomal honokiol (LHK) induced apoptotic and antitumor activities in four xenograft models generated using NSCLC cell lines such as HCC827 (gefitinib-sensitive) and H1975 (gefitinib-resistant). Mechanistic studies revealed that LHK inhibited the Akt and Erk1/2, both EGFR signaling cascades effectors, by promoting degradation of HSP90 client proteins (HCP), including wild-type or mutant EGFR, Akt and C-Raf. Molecular biology assays showed that LHK induced HCP degradation through a lysosomal pathway, rather than the canonical proteasome protein degradation pathway. As a result of misfolded protein accumulation, LHK induced endoplasmic reticulum (ER) stress and autophagy. Inhibition of ER stress (with 4-phenylbutyrate) or autophagy (with small interfering RNA) reduced LHK-induced HCP degradations. Additionally, LHK induced autophagy showed a protective role for cancer cell as inhibition of autophagy in vitro and in vivo by autophagosome degradation inhibitors could promote the anticancer activity of LHK. LHK has been approved by the China Food and Drug Administration for first-in-human clinical trials in NSCLC. The current study will guide the design of future LHK clinical trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 8-p-Hdroxybenzoyl Tovarol Induces Paraptosis Like Cell Death and Protective Autophagy in Human Cervical Cancer HeLa Cells.

    PubMed

    Zhang, Cui; Jiang, Yingnan; Zhang, Jin; Huang, Jian; Wang, Jinhui

    2015-07-02

    8-p-Hdroxybenzoyl tovarol (TAW) is a germacrane-type sesquiterpenoid that can be isolated from the roots of Ferula dissecta (Ledeb.) Ledeb. In this study, the growth inhibitory effects induced by TAW were screened on some types of tumor cells, and the mechanism was investigated on TAW-induced growth inhibition, including paraptosis and autophagy in human cervical cancer HeLa cells. TAW-induced paraptosis involved extensive cytoplasmic vacuolization in the absence of caspase activation. Additionally, TAW evoked cell paraptotic death mediated by endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Autophagy induced by TAW was found to antagonize paraptosis in HeLa cells. This effect was enhanced by rapamycin and suppressed by the autophagy inhibitor, 3-methyladenine (3MA). Loss of beclin 1 (an autophagic regulator) function led to promote ER stress. Taken together, these results suggest that TAW induces paraptosis like cell death and protective autophagy in HeLa cells, which would provide a new clue for exploiting TAW as a promising agent for the treatment of cervical cancer.

  6. Autophagy activation attenuates renal ischemia-reperfusion injury in rats

    PubMed Central

    Zhang, Ya-Li; Cui, Li-Yan; Yang, Shuo

    2015-01-01

    Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future. PMID:25898836

  7. Expression of autophagy and UPR genes in the developing brain during ethanol-sensitive and resistant periods.

    PubMed

    Alimov, Alexander; Wang, Haiping; Liu, Mei; Frank, Jacqueline A; Xu, Mei; Ou, Xiaoming; Luo, Jia

    2013-12-01

    Fetal alcohol spectrum disorders (FASD) results from ethanol exposure to the developing fetus and is the leading cause of mental retardation. FASD is associated with a broad range of neurobehavioral deficits which may be mediated by ethanol-induced neurodegeneration in the developing brain. An immature brain is more susceptible to ethanol neurotoxicity. We hypothesize that the enhanced sensitivity of the immature brain to ethanol is due to a limited capacity to alleviate cellular stress. Using a third trimester equivalent mouse model of ethanol exposure, we demonstrated that subcutaneous injection of ethanol induced a wide-spread neuroapoptosis in postnatal day 4 (PD4) C57BL/6 mice, but had little effect on the brain of PD12 mice. We analyzed the expression profile of genes regulating apoptosis, and the pathways of ER stress response (also known as unfolded protein response, UPR) and autophagy during these ethanol-sensitive and resistant periods (PD4 versus PD12) using PCR microarray. The expression of pro-apoptotic genes, such as caspase-3, was much higher on PD4 than PD12; in contrast, the expression of genes that regulate UPR and autophagy, such as atf6, atg4, atg9, atg10, beclin1, bnip3, cebpb, ctsb, ctsd, ctss, grp78, ire1α, lamp, lc3 perk, pik3c3, and sqstm1 was significantly higher on PD12 than PD4. These results suggest that the vulnerability of the immature brain to ethanol could result from high expression of pro-apoptotic proteins and a deficiency in the stress responsive system, such as UPR and autophagy.

  8. Physiological roles of autophagy in plants: does plant autophagy have a pro-death function?

    PubMed

    Yoshimoto, Kohki

    2010-05-01

    Autophagy is an evolutionarily conserved intracellular process for vacuolar degradation of cytoplasmic components. Early morphological studies suggested that autophagy occurs in plant cells and predicted that autophagy has a variety of functions in plant growth and development. However, it is only since the identification of autophagy genes that the physiological roles of autophagy in plants have become apparent. Recent reverse genetic studies indicate that autophagy defects in higher plants result in early senescence and excessive immunity-related programmed cell death (PCD), irrespective of nutrient conditions, suggesting that plant autophagy has an important pro-survival function during these types of cell death. Further biochemical and pharmacological studies in combination with double mutant analyses revealed that excessive salicylic acid (SA) signaling is a major factor in autophagy-defective plant-dependent cell death and that the SA signal can induce autophagy. These results demonstrate a novel physiological function for plant autophagy that operates a negative feedback loop to modulate SA signaling.

  9. Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells.

    PubMed

    Hubbard-Lucey, Vanessa M; Shono, Yusuke; Maurer, Katie; West, Mallory L; Singer, Natalie V; Ziegler, Carly G K; Lezcano, Cecilia; Motta, Ana Carolina Fragoso; Schmid, Karin; Levi, Samuel M; Murphy, George F; Liu, Chen; Winkler, Jeffrey D; Amaravadi, Ravi K; Rogler, Gerhard; Dickinson, Anne M; Holler, Ernst; van den Brink, Marcel R M; Cadwell, Ken

    2014-10-16

    Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and costimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD.

  10. Autophagy gene Atg16l1 prevents lethal T cell alloreactivity mediated by dendritic cells

    PubMed Central

    Hubbard-Lucey, Vanessa M.; Shono, Yusuke; Maurer, Katie; West, Mallory L.; Singer, Natalie V.; Ziegler, Carly G. K.; Lezcano, Cecilia; Motta, Ana Carolina Fragoso; Schmid, Karin; Levi, Samuel M.; Murphy, George F.; Liu, Chen; Winkler, Jeffrey D.; Amaravadi, Ravi K.; Rogler, Gerhard; Dickinson, Anne M.; Holler, Ernst; van den Brink, Marcel RM; Cadwell, Ken

    2014-01-01

    SUMMARY Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and co-stimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD. PMID:25308334

  11. Autophagy regulation in macrophages and neutrophils.

    PubMed

    Mihalache, Cristina C; Simon, Hans-Uwe

    2012-07-01

    Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Accumulating evidence exists that autophagy also plays a major role in immunity and inflammation. Specifically, it appears that autophagy protects against infections and inflammation. Here, we review recent work performed in macrophages and neutrophils, which both represent critical phagocytes in mammalians. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin.

    PubMed

    Yuk, Jae-Min; Shin, Dong-Min; Lee, Hye-Mi; Yang, Chul-Su; Jin, Hyo Sun; Kim, Kwang-Kyu; Lee, Zee-Won; Lee, Sang-Hee; Kim, Jin-Man; Jo, Eun-Kyeong

    2009-09-17

    Autophagy and vitamin D3-mediated innate immunity have been shown to confer protection against infection with intracellular Mycobacterium tuberculosis. Here, we show that these two antimycobacterial defenses are physiologically linked via a regulatory function of human cathelicidin (hCAP-18/LL-37), a member of the cathelicidin family of antimicrobial proteins. We show that 1,25-dihydroxyvitamin D3 (1,25D3), the active form of vitamin D, induced autophagy in human monocytes via cathelicidin, which activated transcription of the autophagy-related genes Beclin-1 and Atg5. 1,25D3 also induced the colocalization of mycobacterial phagosomes with autophagosomes in human macrophages in a cathelicidin-dependent manner. Furthermore, the antimycobacterial activity in human macrophages mediated by physiological levels of 1,25D3 required autophagy and cathelicidin. These results indicate that human cathelicidin, a protein that has direct antimicrobial activity, also serves as a mediator of vitamin D3-induced autophagy.

  13. How and why to study autophagy in Drosophila: it's more than just a garbage chute.

    PubMed

    Nagy, Péter; Varga, Ágnes; Kovács, Attila L; Takáts, Szabolcs; Juhász, Gábor

    2015-03-01

    During the catabolic process of autophagy, cytoplasmic material is transported to the lysosome for degradation and recycling. This way, autophagy contributes to the homeodynamic turnover of proteins, lipids, nucleic acids, glycogen, and even whole organelles. Autophagic activity is increased by adverse conditions such as nutrient limitation, growth factor withdrawal and oxidative stress, and it generally protects cells and organisms to promote their survival. Misregulation of autophagy is likely involved in numerous human pathologies including aging, cancer, infections and neurodegeneration, so its biomedical relevance explains the still growing interest in this field. Here we discuss the different microscopy-based, biochemical and genetic methods currently available to study autophagy in various tissues of the popular model Drosophila. We show examples for results obtained in different assays, explain how to interpret these with regard to autophagic activity, and how to find out which step of autophagy a given gene product is involved in.

  14. Insulin Protects Hepatic Lipotoxicity by Regulating ER Stress through the PI3K/Akt/p53 Involved Pathway Independently of Autophagy Inhibition

    PubMed Central

    Ning, Hua; Sun, Zongxiang; Liu, Yunyun; Liu, Lei; Hao, Liuyi; Ye, Yaxin; Feng, Rennan; Li, Jie; Li, Ying; Chu, Xia; Li, Songtao; Sun, Changhao

    2016-01-01

    The detrimental role of hepatic lipotoxicity has been well-implicated in the pathogenesis of NAFLD. Previously, we reported that inhibiting autophagy aggravated saturated fatty acid (SFA)-induced hepatotoxicity. Insulin, a physiological inhibitor of autophagy, is commonly increased within NAFLD mainly caused by insulin resistance. We therefore hypothesized that insulin augments the sensitivity of hepatocyte to SFA-induced lipotoxicity. The present study was conducted via employing human and mouse hepatocytes, which were exposed to SFAs, insulin, or their combination. Unexpectedly, our results indicated that insulin protected hepatocytes against SFA-induced lipotoxicity, based on the LDH, MTT, and nuclear morphological measurements, and the detection from cleaved-Parp-1 and -caspase-3 expressions. We subsequently clarified that insulin led to a rapid and short-period inhibition of autophagy, which was gradually recovered after 1 h incubation in hepatocytes, and such extent of inhibition was insufficient to aggravate SFA-induced lipotoxicity. The mechanistic study revealed that insulin-induced alleviation of ER stress contributed to its hepatoprotective role. Pre-treating hepatocytes with insulin significantly stimulated phosphorylated-Akt and reversed SFA-induced up-regulation of p53. Chemical inhibition of p53 by pifithrin-α robustly prevented palmitate-induced cell death. The PI3K/Akt pathway blockade by its special antagonist abolished the protective role of insulin against SFA-induced lipotoxicity and p53 up-regulation. Furthermore, we observed that insulin promoted intracellular TG deposits in hepatocytes in the present of palmitate. However, blocking TG accumulation via genetically silencing DGAT-2 did not prevent insulin-protected lipotoxicity. Our study demonstrated that insulin strongly protected against SFA-induced lipotoxicity in hepatocytes mechanistically through alleviating ER stress via a PI3K/Akt/p53 involved pathway but independently from autophagy

  15. Ghrelin and autophagy.

    PubMed

    Ezquerro, Silvia; Frühbeck, Gema; Rodríguez, Amaia

    2017-09-01

    A compromised autophagy is associated with the onset of obesity, type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases. Our aim is to review the potential role of ghrelin, a gut hormone involved in energy homeostasis, in the regulation of autophagy. In the recent years, it has been demonstrated that autophagy constitutes an important mechanism by which ghrelin exerts a plethora of central and peripheral actions. Ghrelin enhances autophagy through the activation of AMP-activated protein kinase in different target organs to regulate lipid and glucose metabolism, the remodeling and protection of small intestine mucosa, protection against cardiac ischemia as well as higher brain functions such as learning and memory consolidation. Nonetheless, in inflammatory states, such as acute hepatitis, liver fibrosis or adipose tissue inflammation, ghrelin acts as an anti-inflammatory factor reducing the autophagic flux to prevent further cell injury. Interestingly, several cardiometabolic disorders, including obesity, type 2 diabetes, nonalcoholic fatty liver disease or chronic heart failure are accompanied by low ghrelin levels in addition to altered autophagy. Ghrelin represents an attractive target for development of therapeutics for prevention or treatment of metabolic, cardiac or neuronal disorders, in which autophagy is impaired.

  16. Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment.

    PubMed

    Liu, Fang-Lan; Mo, En-Pan; Yang, Liu; Du, Jun; Wang, Hong-Sheng; Zhang, Huan; Kurihara, Hiroshi; Xu, Jun; Cai, Shao-Hui

    2016-01-26

    Transforming growth factor-β1 (TGF-β1) present in tumor microenvironment acts in a coordinated fashion to either suppress or promote tumor development. However, the molecular mechanisms underlying the effects of TGF-β1 on tumor microenvironment are not well understood. Our clinical data showed a positive association between TGF-β1 expression and cancer-associated fibroblasts (CAFs) in tumor microenvironment of breast cancer patients. Thus we employed starved NIH3T3 fibroblasts in vitro and 4T1 cells mixed with NIH3T3 fibroblasts xenograft model in vivo to simulate nutritional deprivation of tumor microenvironment to explore the effects of TGF-β1. We demonstrated that TGF-β1 protected NIH3T3 fibroblasts from Star-induced growth inhibition, mitochondrial damage and cell apoptosis. Interestingly, TGF-β1 induced the formation of CAFs phenotype in starvation (Star)-treated NIH3T3 fibroblasts and xenografted Balb/c mice, which promoted breast cancer tumor growth. In both models, autophagy agonist rapamycin increased TGF-β1-induced protective effects and formation of CAFs phenotypes, while autophagy inhibitor 3-methyladenine, Atg5 knockdown or TGF-β type I receptor kinase inhibitor LY-2157299 blocked TGF-β1 induced these effects. Taken together, our results indicated that TGF-β/Smad autophagy was involved in TGF-β1-induced protective effects and formation of CAFs phenotype in tumor microenvironment, which may be used as therapy targets in breast cancer.

  17. Autophagy: Friend or Foe in Lung Disease?

    PubMed Central

    Mizumura, Kenji; Cloonan, Suzanne; Hashimoto, Shu; Nakahira, Kiichi; Ryter, Stefan W.; Choi, Augustine M. K.

    2016-01-01

    Autophagy is a highly conserved process by which cells can recycle organelles and proteins by degrading them in the lysosomes. Although autophagy is considered a dynamic system responsible for cellular renovation and homeostasis under physiological conditions, it is increasingly clear that autophagy is directly relevant to clinical disease. During disease progression, autophagy not only serves as a cellular protective mechanism but also can represent a harmful event under certain conditions. In addition, although autophagy can act as a nonselective bulk degradation process, recent research shows that autophagy can selectively degrade specific proteins, organelles, and invading bacteria, in processes termed “selective autophagy.” Selective autophagy has drawn the attention of researchers because of its potential importance in clinical diseases. In this article, we outline the most recent studies implicating autophagy and selective autophagy in human lung diseases, including chronic obstructive pulmonary disease, pulmonary hypertension, idiopathic pulmonary fibrosis, and sepsis. We also discuss the relationship between autophagy and other molecular mechanisms related to disease progression, including programmed necrosis (necroptosis) and the inflammasome, an inflammatory signaling platform that regulates the secretion of IL-1β and IL-18. Finally, we examine the dual nature of autophagy and selective autophagy in the lung, which have both protective and injurious effects for human lung disease. PMID:27027951

  18. Endothelial deletion of mTORC1 protects against hindlimb ischemia in diabetic mice via activation of autophagy, attenuation of oxidative stress and alleviation of inflammation.

    PubMed

    Fan, Wensi; Han, Dong; Sun, Zhongchan; Ma, Sai; Gao, Lei; Chen, Jiangwei; Li, Xiang; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Hu, Dahai; Wang, Yabin; Cao, Feng

    2017-07-01

    Peripheral arterial disease (PAD) complicated with diabetes mellitus (DM) still remains a thorny issue due to lack of effective strategies. Our previous study has demonstrated that inhibition of mTORC1 protected adipose-derived stromal cells from hindlimb ischemic injury in PAD mice. However, whether inhibition of mTORC1 could protect against PAD in diabetes mellitus and the underlying mechanisms remained elusive. In this study, we employed endothelial-specific raptor (an essential component of the mTORC1 signaling complex) knockout (KO) mice (Tie2-mTORC1(ko)) to investigate whether and how mTORC1 downregulation could alleviate hindlimb ischemic injury in diabetic mice. Tie2-mTORC1(ko) mice and their wild-type littermates were intraperitoneally injected with streptozocin to induce type 1 diabetic model, after which the hyperglycemic mice were randomly allocated to sham operation or PAD operation (femoral artery ligation). The restoration of hindlimb blood perfusion and recovery of limb functions were improved in diabetic Tie2-mTORC1(ko) PAD mice with significant improvements of autophagy, angiogenesis and vascular integrity as well as attenuation of apoptosis, inflammation and oxidative stress. In vitro, high glucose combining with hypoxia/serum deprivation treatment (HG+H/SD) significantly triggered apoptosis, reactive oxygen species generation and inflammation while inhibited autophagy and tube formation in HUVECs. The effect could be accentuated and attenuated by mTORC1 over-expression (TSC2 siRNA) and mTORC1 silencing (raptor siRNA), respectively. Moreover, autophagy inhibitor 3-MA could simulate the effects of TSC2 siRNA while autophagy inducer rapamycin could mimic the effects of raptor siRNA, suggesting that the beneficial effects of mTORC1 deletion were associated with autophagy induction. In conclusion, our present study demonstrates that endothelial mTORC1 deletion protects against hindlimb ischemic injury in diabetic mice possibly via activation of

  19. In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver.

    PubMed

    Donati, Alessio; Ventruti, Annamaria; Cavallini, Gabriella; Masini, Matilde; Vittorini, Simona; Chantret, Isabelle; Codogno, Patrice; Bergamini, Ettore

    2008-02-15

    Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis.

  20. In vivo effect of an antilipolytic drug (3,5'-dimethylpyrazole) on autophagic proteolysis and autophagy-related gene expression in rat liver

    SciTech Connect

    Donati, Alessio; Ventruti, Annamaria; Cavallini, Gabriella; Masini, Matilde; Vittorini, Simona; Chantret, Isabelle; Codogno, Patrice; Bergamini, Ettore

    2008-02-15

    Autophagy is an intracellular pathway induced by starvation, inhibited by nutrients, that is responsible for degradation of long-lived proteins and altered cell organelles. This process is involved in cell maintenance could be induced by antilipolytic drugs and may have anti-aging effects [A. Donati, The involvement of macroautophagy in aging and anti-aging interventions, Mol. Aspects Med. 27 (2006) 455-470]. We analyzed the effect of an intraperitoneal injection of an antilipolytic agent (3,5'-dimethylpyrazole, DMP, 12 mg/kg b.w.), that mimics nutrient shortage on autophagy and expression of autophagic genes in the liver of male 3-month-old Sprague-Dawley albino rats. Autophagy was evaluated by observing electron micrographs of the liver autophagosomal compartment and by monitoring protein degradation assessed by the release of valine into the bloodstream. LC3 gene expression, whose product is one of the best known markers of autophagy, was also monitored. As expected, DMP decreased the plasma levels of free fatty acids, glucose, and insulin and increased autophagic vacuoles and proteolysis. DMP treatment caused an increase in the expression of the LC3 gene although this occurred later than the induction of authophagic proteolysis caused by DMP. Glucose treatment rescued the effects caused by DMP on glucose and insulin plasma levels and negatively affected the rate of autophagic proteolysis, but did not suppress the positive regulatory effect on LC3 mRNA levels. In conclusion, antilipolytic drugs may induce both autophagic proteolysis and higher expression of an autophagy-related gene and the effect on autophagy gene expression might not be secondary to the stimulation of autophagic proteolysis.

  1. p53-regulated autophagy is controlled by glycolysis and determines cell fate.

    PubMed

    Duan, Lei; Perez, Ricardo E; Davaadelger, Batzaya; Dedkova, Elena N; Blatter, Lothar A; Maki, Carl G

    2015-09-15

    The tumor suppressor p53 regulates downstream targets that determine cell fate. Canonical p53 functions include inducing apoptosis, growth arrest, and senescence. Non-canonical p53 functions include its ability to promote or inhibit autophagy and its ability to regulate metabolism. The extent to which autophagy and/or metabolic regulation determines cell fate by p53 is unclear. To address this, we compared cells resistant or sensitive to apoptosis by the p53 activator Nutlin-3a. In resistant cells, glycolysis was maintained upon Nutlin-3a treatment, and activated p53 promoted prosurvival autophagy. In contrast, in apoptosis sensitive cells activated p53 increased superoxide levels and inhibited glycolysis through repression of glycolytic pathway genes. Glycolysis inhibition and increased superoxide inhibited autophagy by repressing ATG genes essential for autophagic vesicle maturation. Inhibiting glycolysis increased superoxide and blocked autophagy in apoptosis-resistant cells, causing p62-dependent caspase-8 activation. Finally, treatment with 2-DG or the autophagy inhibitors chloroquine or bafilomycin A1 sensitized resistant cells to Nutlin-3a-induced apoptosis. Together, these findings reveal novel links between glycolysis and autophagy that determine apoptosis-sensitivity in response to p53. Specifically, the findings indicate 1) that glycolysis plays an essential role in autophagy by limiting superoxide levels and maintaining expression of ATG genes required for autophagic vesicle maturation, 2) that p53 can promote or inhibit autophagy depending on the status of glycolysis, and 3) that inhibiting protective autophagy can expand the breadth of cells susceptible to Nutlin-3a induced apoptosis.

  2. p53-regulated autophagy is controlled by glycolysis and determines cell fate

    PubMed Central

    Duan, Lei; Perez, Ricardo E.; Davaadelger, Batzaya; Dedkova, Elena N.; Blatter, Lothar A.; Maki, Carl G.

    2015-01-01

    The tumor suppressor p53 regulates downstream targets that determine cell fate. Canonical p53 functions include inducing apoptosis, growth arrest, and senescence. Non-canonical p53 functions include its ability to promote or inhibit autophagy and its ability to regulate metabolism. The extent to which autophagy and/or metabolic regulation determines cell fate by p53 is unclear. To address this, we compared cells resistant or sensitive to apoptosis by the p53 activator Nutlin-3a. In resistant cells, glycolysis was maintained upon Nutlin-3a treatment, and activated p53 promoted prosurvival autophagy. In contrast, in apoptosis sensitive cells activated p53 increased superoxide levels and inhibited glycolysis through repression of glycolytic pathway genes. Glycolysis inhibition and increased superoxide inhibited autophagy by repressing ATG genes essential for autophagic vesicle maturation. Inhibiting glycolysis increased superoxide and blocked autophagy in apoptosis-resistant cells, causing p62-dependent caspase-8 activation. Finally, treatment with 2-DG or the autophagy inhibitors chloroquine or bafilomycin A1 sensitized resistant cells to Nutlin-3a-induced apoptosis. Together, these findings reveal novel links between glycolysis and autophagy that determine apoptosis-sensitivity in response to p53. Specifically, the findings indicate 1) that glycolysis plays an essential role in autophagy by limiting superoxide levels and maintaining expression of ATG genes required for autophagic vesicle maturation, 2) that p53 can promote or inhibit autophagy depending on the status of glycolysis, and 3) that inhibiting protective autophagy can expand the breadth of cells susceptible to Nutlin-3a induced apoptosis. PMID:26337205

  3. Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer.

    PubMed

    Liu, Y; Gong, W; Yang, Z Y; Zhou, X S; Gong, C; Zhang, T R; Wei, X; Ma, D; Ye, F; Gao, Q L

    2017-04-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone, Qu) is a promising cancer chemo-preventive agent for various cancers because it inhibits disease progression and promotes apoptotic cell death. In our previous study, we demonstrated that Qu could evoke ER stress to enhance drug cytotoxicity in ovarian cancer (OC). However, Qu-induced ER stress in OC is still poorly understood. Here, we demonstrated that Qu evoked ER stress to involve in mitochondria apoptosis pathway via the p-STAT3/Bcl-2 axis in OC cell lines and in primary OC cells. Unexpectedly, inhibition of ER stress did not reverse Qu-induced cell death. Further functional studies revealed that Qu-induced ER stress could activate protective autophagy concomitantly by activating the p-STAT3/Bcl-2 axis in this process. Moreover, the autophagy scavenger 3-MA was shown to enhance Qu's anticancer effects in an ovarian cancer mice xenograft model. These findings revealed a novel role of ER stress as a "double edge sword" participating in Qu-induced apoptosis of OC and might provide a new angle to consider in clinical studies of biological modifiers that may circumvent drug resistance in patients by targeting protective autophagy pathways.

  4. Secretory autophagy.

    PubMed

    Ponpuak, Marisa; Mandell, Michael A; Kimura, Tomonori; Chauhan, Santosh; Cleyrat, Cédric; Deretic, Vojo

    2015-08-01

    Autophagy, once viewed exclusively as a cytoplasmic auto-digestive process, has its less intuitive but biologically distinct non-degradative roles. One manifestation of these functions of the autophagic machinery is the process termed secretory autophagy. Secretory autophagy facilitates unconventional secretion of the cytosolic cargo such as leaderless cytosolic proteins, which unlike proteins endowed with the leader (N-terminal signal) peptides cannot enter the conventional secretory pathway normally operating via the endoplasmic reticulum and the Golgi apparatus. Secretory autophagy may also export more complex cytoplasmic cargo and help excrete particulate substrates. Autophagic machinery and autophagy as a process also affect conventional secretory pathways, including the constitutive and regulated secretion, as well as promote alternative routes for trafficking of integral membrane proteins to the plasma membrane. Thus, autophagy and autophagic factors are intimately intertwined at many levels with secretion and polarized sorting in eukaryotic cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Autophagy blockade sensitizes the anticancer activity of CA-4 via JNK-Bcl-2 pathway

    SciTech Connect

    Li, Yangling; Luo, Peihua; Wang, Jincheng; Dai, Jiabin; Yang, Xiaochun; Wu, Honghai; Yang, Bo He, Qiaojun

    2014-01-15

    Combretastatin A-4 (CA-4) has already entered clinical trials of solid tumors over ten years. However, the limited anticancer activity and dose-dependent toxicity restrict its clinical application. Here, we offered convincing evidence that CA-4 induced autophagy in various cancer cells, which was demonstrated by acridine orange staining of intracellular acidic vesicles, the degradation of p62, the conversion of LC3-I to LC3-II and GFP-LC3 punctate fluorescence. Interestingly, CA-4-mediated apoptotic cell death was further potentiated by pretreatment with autophagy inhibitors (3-methyladenine and bafilomycin A1) or small interfering RNAs against the autophagic genes (Atg5 and Beclin 1). The enhanced anticancer activity of CA-4 and 3-MA was further confirmed in the SGC-7901 xenograft tumor model. These findings suggested that CA-4-elicited autophagic response played a protective role that impeded the eventual cell death while autophagy inhibition was expected to improve chemotherapeutic efficacy of CA-4. Meanwhile, CA-4 treatment led to phosphorylation/activation of JNK and JNK-dependent phosphorylation of Bcl-2. Importantly, JNK inhibitor or JNK siRNA inhibited autophagy but promoted CA-4-induced apoptosis, indicating a key requirement of JNK-Bcl-2 pathway in the activation of autophagy by CA-4. We also identified that pretreatment of Bcl-2 inhibitor (ABT-737) could significantly enhance anticancer activity of CA-4 due to inhibition of autophagy. Taken together, our data suggested that the JNK-Bcl-2 pathway was considered as the critical regulator of CA-4-induced protective autophagy and a potential drug target for chemotherapeutic combination. - Highlights: • Autophagy inhibition could be a potential for combretastatin A-4 antitumor efficacy. • The JNK-Bcl-2 pathway plays a critical role in CA-4-induced autophagy. • ABT-737 enhances CA-4 anticancer activity due to inhibition of autophagy.

  6. Detection of Autophagy in Caenorhabditis elegans.

    PubMed

    Palmisano, Nicholas J; Meléndez, Alicia

    2016-02-01

    Autophagy is a dynamic and catabolic process that results in the breakdown and recycling of cellular components through the autophagosomal-lysosomal pathway. Many autophagy genes identified in yeasts and mammals have orthologs in the nematode Caenorhabditis elegans. In recent years, gene inactivation by RNA interference (RNAi) and chromosomal mutations has been useful to probe the functions of autophagy in C. elegans, and a role for autophagy has been shown to contribute to multiple processes, such as the adaptation to stress, longevity, cell death, cell growth control, clearance of aggregation-prone proteins, degradation of P granules during embryogenesis, and apoptotic cell clearance. Here, we discuss some of these roles and describe methods that can be used to study autophagy in C. elegans. Specifically, we summarize how to visualize autophagy in embryos, larva, or adults, how to detect the lipidation of the ubiquitin-like modifier LGG-1 by western blot, and how to inactivate autophagy genes by RNAi.

  7. Detection of Autophagy in Caenorhabditis elegans

    PubMed Central

    Palmisano, Nicholas J.; Meléndez, Alicia

    2017-01-01

    Autophagy is a dynamic and catabolic process that results in the breakdown and recycling of cellular components through the autophagosomal-lysosomal pathway. Many autophagy genes identified in yeast and mammals have orthologs in C. elegans. In recent years, gene inactivation, by RNAi and/or chromosomal mutations, has been useful to probe the functions of autophagy in C. elegans, and a role for autophagy has been shown in multiple processes such as, the adaptation to stress, longevity, cell death, cell growth control, clearance of aggregate prone proteins, degradation of P granules during embryogenesis, and apoptotic cell clearance. Here we discuss some of these roles and describe methods that can be used to study autophagy in C. elegans. Specifically, we summarize how to visualize autophagy in embryos, larva, or adults, how to detect the lipidation of LGG-1 by western blot, and how to inactivate autophagy genes by RNAi. PMID:26729905

  8. Autophagy Regulates Colistin-Induced Apoptosis in PC-12 Cells

    PubMed Central

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli

    2015-01-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons. PMID:25645826

  9. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway.

    PubMed

    Bento, Carla F; Ashkenazi, Avraham; Jimenez-Sanchez, Maria; Rubinsztein, David C

    2016-06-09

    Forms of Parkinson's disease (PD) are associated with lysosomal and autophagic dysfunction. ATP13A2, which is mutated in some types of early-onset Parkinsonism, has been suggested as a regulator of the autophagy-lysosome pathway. However, little is known about the ATP13A2 effectors and how they regulate this pathway. Here we show that ATP13A2 depletion negatively regulates another PD-associated gene (SYT11) at both transcriptional and post-translational levels. Decreased SYT11 transcription is controlled by a mechanism dependent on MYCBP2-induced ubiquitination of TSC2, which leads to mTORC1 activation and decreased TFEB-mediated transcription of SYT11, while increased protein turnover is regulated by SYT11 ubiquitination and degradation. Both mechanisms account for a decrease in the levels of SYT11, which, in turn, induces lysosomal dysfunction and impaired degradation of autophagosomes. Thus, we propose that ATP13A2 and SYT11 form a new functional network in the regulation of the autophagy-lysosome pathway, which is likely to contribute to forms of PD-associated neurodegeneration.

  10. α-lipoic acid protects against hypoxia/reoxygenation-induced injury in human umbilical vein endothelial cells through suppression of apoptosis and autophagy

    PubMed Central

    ZHANG, JINGJING; DENG, HOULIANG; LIU, LI; LIU, XIAOXIA; ZUO, XIALIN; XU, QIAN; WU, ZHUOMIN; PENG, XIAOBIN; JI, AIMIN

    2015-01-01

    α-lipoic acid (ALA) is known as a powerful antioxidant, which has been reported to have protective effects against various cardiovascular diseases. The present study aimed to determine whether ALA pre- or post-treatment induced protective effects against hypoxia/reoxygenation-induced injury via inhibition of apoptosis and autophagy in human umbilical vein endothelial cells (HUVECs). In order to simulate the conditions of hypoxia/reoxygenation, HUVECs were subjected to 4 h of oxygen-glucose deprivation (OGD) followed by 12 h of reoxygenation. For the pre-treatment, ALA was added to the buffer 12 h prior to OGD, whereas for the post-treatment, ALA was added at the initiation of reoxygenation. The results demonstrated that ALA pre- or post-treatment significantly reduced lactate dehydrogenase (LDH) release induced through hypoxia/reoxygenation in HUVECs in a dose-dependent manner; of note, 1 mM ALA pre- or post-treatment exhibited the most potent protective effects. In addition, ALA significantly reduced hypoxia/reoxygenation-induced loss of mitochondrial membrane potential, apoptosis and the expression of cleaved caspase-3 in HUVECs. In the presence of the specific autophagy inhibitor 3-methyladenine, hypoxia/reoxygenation-induced apoptosis was significantly reduced. Furthermore, the formation of autophagosomes, cytosolic microtubule-associated protein 1A/1B-light chain 3 ratio and beclin1 levels significantly increased following hypoxia/reoxygenation injury; however, all of these effects were ameliorated following pre- or post-treatment with ALA. The results of the present study suggested that ALA may provide beneficial protection against hypoxia/reoxygenation-induced injury via attenuation of apoptosis and autophagy in HUVECs. PMID:25684163

  11. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases

    SciTech Connect

    Wu, Chun-Yan; Yan, Jun; Yang, Yue-Feng; Xiao, Feng-Jun; Li, Qing-Fang; Zhang, Qun-Wei; Wang, Li-Sheng; Guo, Xiao-Zhong; Wang, Hua

    2011-01-21

    Research highlights: {yields} We first investigate the effects of KAI1 on autophagy in MiaPaCa-2 cells. {yields} Our findings demonstrate that KAI1 induces autophagy, which in turn inhibits KAI1-induced apoptosis. {yields} This study also supplies a possible novel therapeutic method for the treatment of pancreatic cancer using autophagy inhibitors. -- Abstract: KAI1, a metastasis-suppressor gene belonging to the tetraspanin family, is known to inhibit cancer metastasis without affecting the primary tumorigenicity by inhibiting the epidermal growth factor (EGF) signaling pathway. Recent studies have shown that hypoxic conditions of solid tumors induce high-level autophagy and KAI1 expression. However, the relationship between autophagy and KAI1 remains unclear. By using transmission electron microscopy, confocal microscopy, and Western blotting, we found that KAI1 can induce autophagy in a dose- and time-dependent manner in the human pancreatic cell line MiaPaCa-2. KAI1-induced autophagy was confirmed by the expression of autophagy-related proteins LC3 and Beclin 1. KAI1 induces autophagy through phosphorylation of extracellular signal-related kinases rather than that of AKT. KAI1-induced autophagy protects MiaPaCa-2 cells from apoptosis and proliferation inhibition partially through the downregulation of poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP) cleavage and caspase-3 activation.

  12. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer.

    PubMed

    Maiese, Kenneth

    2017-01-01

    The mammalian circadian clock and its associated clock genes are increasingly been recognized as critical components for a number of physiological and disease processes that extend beyond hormone release, thermal regulation, and sleep-wake cycles. New evidence suggests that clinical behavior disruptions that involve prolonged shift work and even space travel may negatively impact circadian rhythm and lead to multi-system disease. In light of the significant role circadian rhythm can hold over the body's normal physiology as well as disease processes, we examined and discussed the impact circadian rhythm and clock genes hold over lifespan, neurodegenerative disorders, and tumorigenesis. In experimental models, lifespan is significantly reduced with the introduction of arrhythmic mutants and leads to an increase in oxidative stress exposure. Interestingly, patients with Alzheimer's disease and Parkinson's disease may suffer disease onset or progression as a result of alterations in the DNA methylation of clock genes as well as prolonged pharmacological treatment for these disorders that may lead to impairment of circadian rhythm function. Tumorigenesis also can occur with the loss of a maintained circadian rhythm and lead to an increased risk for nasopharyngeal carcinoma, breast cancer, and metastatic colorectal cancer. Interestingly, the circadian clock system relies upon the regulation of the critical pathways of autophagy, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), and silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) as well as proliferative mechanisms that involve the wingless pathway of Wnt/β-catenin pathway to foster cell survival during injury and block tumor cell growth. Future targeting of the pathways of autophagy, mTOR, SIRT1, and Wnt that control mammalian circadian rhythm may hold the key for the development of novel and effective therapies against aging- related disorders

  13. Cerebral ischemic post-conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model

    PubMed Central

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-01-01

    Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co-immunoprecipitation were used to examine the expression of autophagy-associated proteins and HMGB1. Enzyme-linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC. PMID:27666823

  14. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    SciTech Connect

    Zou, Hui; Zhuo, Liling; Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong; Liu, Zongping

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  15. Autophagy basics.

    PubMed

    Tanida, Isei

    2011-01-01

    Autophagy (macroautophagy) is a dynamic process for degradation of cytosolic components. Autophagy has intracellular anti-viral and anti-bacterial functions, and plays a role in the initiation of innate and adaptive immune system responses to viral and bacterial infections. Some viruses encode virulence factors for blocking autophagy, whereas others utilize some autophagy components for their intracellular growth or cellular budding. The "core" autophagy-related (Atg) complexes in mammals are ULK1 protein kinase, Atg9-WIPI-1 and Vps34-beclin1 class III PI3-kinase complexes, and the Atg12 and LC3 conjugation systems. In addition, PI(3)-binding proteins, PI3-phosphatases, and Rab proteins contribute to autophagy. The autophagy process consists of continuous dynamic membrane formation and fusion. In this review, the relationships between these Atg complexes and each process are described. Finally, the critical points for monitoring autophagy, including the use of GFP-LC3 and GFP-Atg5, are discussed. © 2010 The Societies and Blackwell Publishing Asia Pty Ltd.

  16. Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment

    PubMed Central

    Liu, Fang-Lan; Mo, En-Pan; Yang, Liu; Du, Jun; Wang, Hong-Sheng; Zhang, Huan; Kurihara, Hiroshi; Xu, Jun; Cai, Shao-Hui

    2016-01-01

    Transforming growth factor-β1 (TGF-β1) present in tumor microenvironment acts in a coordinated fashion to either suppress or promote tumor development. However, the molecular mechanisms underlying the effects of TGF-β1 on tumor microenvironment are not well understood. Our clinical data showed a positive association between TGF-β1 expression and cancer-associated fibroblasts (CAFs) in tumor microenvironment of breast cancer patients. Thus we employed starved NIH3T3 fibroblasts in vitro and 4T1 cells mixed with NIH3T3 fibroblasts xenograft model in vivo to simulate nutritional deprivation of tumor microenvironment to explore the effects of TGF-β1. We demonstrated that TGF-β1 protected NIH3T3 fibroblasts from Star-induced growth inhibition, mitochondrial damage and cell apoptosis. Interestingly, TGF-β1 induced the formation of CAFs phenotype in starvation (Star)-treated NIH3T3 fibroblasts and xenografted Balb/c mice, which promoted breast cancer tumor growth. In both models, autophagy agonist rapamycin increased TGF-β1-induced protective effects and formation of CAFs phenotypes, while autophagy inhibitor 3-methyladenine, Atg5 knockdown or TGF-β type I receptor kinase inhibitor LY-2157299 blocked TGF-β1 induced these effects. Taken together, our results indicated that TGF-β/Smad autophagy was involved in TGF-β1-induced protective effects and formation of CAFs phenotype in tumor microenvironment, which may be used as therapy targets in breast cancer. PMID:26716641

  17. Comparative gene identification-58 (CGI-58) promotes autophagy as a putative lysophosphatidylglycerol acyltransferase.

    PubMed

    Zhang, Jun; Xu, Dan; Nie, Jia; Han, Ruili; Zhai, Yonggong; Shi, Yuguang

    2014-11-21

    CGI-58 is a lipid droplet-associated protein that, when mutated, causes Chanarin-Dorfman syndrome in humans, which is characterized by excessive storage of triglyceride in various tissues. However, the molecular mechanisms underlying the defect remain elusive. CGI-58 was previously reported to catalyze the resynthesis of phosphatidic acid as a lysophosphatidic acid acyltransferase. In addition to triglyceride, phosphatidic acid is also used a substrate for the synthesis of various mitochondrial phospholipids. In this report, we investigated the propensity of CGI-58 in the remodeling of various phospholipids. We found that the recombinant CGI-58 overexpressed in mammalian cells or purified from Sf9 insect cells catalyzed efficiently the reacylation of lysophosphatidylglycerol to phosphatidylglycerol (PG), which requires acyl-CoA as the acyl donor. In contrast, the recombinant CGI-58 was devoid of acyltransferase activity toward other lysophospholipids. Accordingly, overexpression and knockdown of CGI-58 adversely affected the endogenous PG level in C2C12 cells. PG is a substrate for the synthesis of cardiolipin, which is required for mitochondrial oxidative phosphorylation and mitophagy. Consequently, overexpression and knockdown of CGI-58 adversely affected autophagy and mitophagy in C2C12 cells. In support for a key role of CGI-58 in mitophagy, overexpression of CGI-58 significantly stimulated mitochondrial fission and translocation of PINK1 to mitochondria, key steps involved in mitophagy. Furthermore, overexpression of CGI-58 promoted mitophagic initiation through activation of 5'-AMP-activated protein kinase and inhibition of mTORC1 mammalian target of rapamycin complex 1 signaling, the positive and negative regulators of autophagy, respectively. Together, these findings identified novel molecular mechanisms by which CGI-58 regulates lipid homeostasis, because defective autophagy is implicated in dyslipidemia and fatty liver diseases. © 2014 by The American

  18. Autophagy in cancer: good, bad, or both?

    PubMed

    Hippert, Melanie M; O'Toole, Patrick S; Thorburn, Andrew

    2006-10-01

    Autophagy has been recognized as an important cellular process for at least 50 years; however, it is only with the recent identification of key regulators of autophagy (Atg genes) that we have begun a mechanistic exploration of its importance in cancer. Recent studies suggest that autophagy may be important in the regulation of cancer development and progression and in determining the response of tumor cells to anticancer therapy. However, the role of autophagy in these processes is complicated and may, depending on the circumstances, have diametrically opposite consequences for the tumor. In this article, we discuss recent discoveries regarding autophagy in cancer.

  19. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway

    PubMed Central

    Yang, Xiao-Jun; Si, Ruo-Huang; Liang, Yu-He; Ma, Bing-Qiang; Jiang, Ze-Bin; Wang, Bin; Gao, Peng

    2016-01-01

    AIM: To determine if mir-30d inhibits the autophagy response to Helicobacter pylori (H. pylori) invasion and increases H. pylori intracellular survival. METHODS: The expression of mir-30d was detected by quantitative polymerase chain reaction (PCR), and autophagy level was examined by transmission electron microscopy, western blot, and GFP-LC3 puncta assay in human AGS cells and GES-1 cells. Luciferase reporter assay was applied to confirm the specificity of mir-30d regulation on the expression of several core molecules involved in autophagy pathway. The expression of multiple core proteins were analyzed at both the mRNA and protein level, and the intracellular survival of H. pylori after different treatments was detected by gentamicin protection assay. RESULTS: Autophagy level was increased in AGS and GES-1 cells in response to H. pylori infection, which was accompanied by upregulation of mir-30d expression (P < 0.05, vs no H. pylori infection). In the two gastric epithelial cell lines, mimic mir-30d was found to repress the autophagy process, whereas mir-30d inhibitor increased autophagy response to H. pylori invasion. mir-30d mimic decreased the luciferase activity of wild type reporter plasmids carrying the 3′ untranslated region (UTR) of all five tested genes (ATG2B, ATG5, ATG12, BECN1, and BNIP3L), whereas it had no effect on the mutant reporter plasmids. These five genes are core genes of autophagy pathway, and their expression was reduced significantly after mir-30d mimic transfection (P < 0.05, vs control cells without mir-30d mimic treatment). Mir-30d mimic transfection and direct inhibition of autophagy increased the intracellular survival of H. pylori in AGS cells. CONCLUSION: Mir-30d increases intracellular survival of H. pylori in gastric epithelial cells through inhibition of multiple core proteins in the autophagy pathway. PMID:27099441

  20. Identification of Autophagy-Related Genes and Their Regulatory miRNAs Associated with Celiac Disease in Children.

    PubMed

    Comincini, Sergio; Manai, Federico; Meazza, Cristina; Pagani, Sara; Martinelli, Carolina; Pasqua, Noemi; Pelizzo, Gloria; Biggiogera, Marco; Bozzola, Mauro

    2017-02-12

    Celiac disease (CD) is a severe genetic autoimmune disorder, affecting about one in 100 people, where the ingestion of gluten leads to damage in the small intestine. Diagnosing CD is quite complex and requires blood tests and intestinal biopsy examinations. Controversy exists regarding making the diagnosis without biopsy, due to the large spectrum of manifesting symptoms; furthermore, small-intestinal gastroscopy examinations have a relatively complex management in the pediatric population. To identify novel molecular markers useful to increase the sensitivity and specificity in the diagnosis of pediatric CD patients, the expression levels of two key autophagy executor genes (ATG7 and BECN1) and their regulatory validated miRNAs (miR-17 and miR-30a, respectively) were analyzed by relative quantitative real-time-PCR on a cohort of confirmed CD patients compared to age-related controls. Among the investigated targets, the non-parametric Mann-Whitney U test and ROC analysis indicated the highest significant association of BECN1 with CD status in the blood, while in intestinal biopsies, all of the investigated sequences were positively associated with CD diagnosis. Nomogram-based analysis showed nearly opposite expression trends in blood compared to intestine tissue, while hierarchical clustering dendrograms enabled identifying CD and control subgroups based on specific genes and miRNA expression signatures. Next, using an established in vitro approach, through digested gliadin administration in Caco-2 cells, we also highlighted that the modulation of miR-17 endogenous levels using enriched exosomes increased the intracellular autophagosome content, thereby altering the autophagic status. Altogether, these results highlighted novel molecular markers that might be useful to increase the accuracy in CD diagnosis and in molecular-based stratification of the patients, further reinforcing the functional involvement of the regulation of the autophagy process within a

  1. Identification of Autophagy-Related Genes and Their Regulatory miRNAs Associated with Celiac Disease in Children

    PubMed Central

    Comincini, Sergio; Manai, Federico; Meazza, Cristina; Pagani, Sara; Martinelli, Carolina; Pasqua, Noemi; Pelizzo, Gloria; Biggiogera, Marco; Bozzola, Mauro

    2017-01-01

    Celiac disease (CD) is a severe genetic autoimmune disorder, affecting about one in 100 people, where the ingestion of gluten leads to damage in the small intestine. Diagnosing CD is quite complex and requires blood tests and intestinal biopsy examinations. Controversy exists regarding making the diagnosis without biopsy, due to the large spectrum of manifesting symptoms; furthermore, small-intestinal gastroscopy examinations have a relatively complex management in the pediatric population. To identify novel molecular markers useful to increase the sensitivity and specificity in the diagnosis of pediatric CD patients, the expression levels of two key autophagy executor genes (ATG7 and BECN1) and their regulatory validated miRNAs (miR-17 and miR-30a, respectively) were analyzed by relative quantitative real-time-PCR on a cohort of confirmed CD patients compared to age-related controls. Among the investigated targets, the non-parametric Mann–Whitney U test and ROC analysis indicated the highest significant association of BECN1 with CD status in the blood, while in intestinal biopsies, all of the investigated sequences were positively associated with CD diagnosis. Nomogram-based analysis showed nearly opposite expression trends in blood compared to intestine tissue, while hierarchical clustering dendrograms enabled identifying CD and control subgroups based on specific genes and miRNA expression signatures. Next, using an established in vitro approach, through digested gliadin administration in Caco-2 cells, we also highlighted that the modulation of miR-17 endogenous levels using enriched exosomes increased the intracellular autophagosome content, thereby altering the autophagic status. Altogether, these results highlighted novel molecular markers that might be useful to increase the accuracy in CD diagnosis and in molecular-based stratification of the patients, further reinforcing the functional involvement of the regulation of the autophagy process within a

  2. Mitochondrial autophagy as a compensatory response to PINK1 deficiency.

    PubMed

    Cherra, Salvatore J; Dagda, Ruben K; Tandon, Anurag; Chu, Charleen T

    2009-11-01

    Macroautophagy (hereafter, autophagy) plays a critical role in maintaining cellular homeostasis by degrading protein aggregates and dysfunctional/damaged organelles. We recently reported that silencing the recessive familial Parkinson disease gene encoding PTEN-induced kinase 1 (PINK1) leads to neuronal cell death accompanied by mitochondrial dysfunction and Drp1-dependent fragmentation. In this model, mitochondrial fission and Beclin 1-dependent autophagy play protective roles, cooperating to sequester and eliminate damaged mitochondria. We discuss the role of superoxide and other reactive oxygen species upstream of mitochondrial depolarization, fission and autophagy in PINK1 knockdown lines. PINK1 deficiency appears to trigger several compensatory responses that together facilitate clearance of depolarized mitochondria, through a mechanism that is further enhanced by increased expression of parkin. These data offer additional insights that broaden the spectrum of potential interactions between PINK1 and parkin with respect to the regulation of mitochondrial homeostasis and mitophagy.

  3. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells

    SciTech Connect

    Yuan, Xiaopeng; Du, Jie; Hua, Song; Zhang, Haowen; Gu, Cheng; Wang, Jie; Yang, Lei; Huang, Jianfeng; Yu, Jiahua Liu, Fenju

    2015-01-15

    Radiotherapy is an essential component of the standard therapy for newly diagnosed glioblastoma. To increase the radiosensitivity of glioma cells is a feasible solution to improve the therapeutic effects. It has been suggested that inhibition of signal transducer and activator of transcription 3 (STAT3) can radiosensitize glioma cells, probably via the activation of mitochondrial apoptotic pathway. In this study, human malignant glioma cells, U251 and A172, were treated with an STAT3 inhibitor, WP1066, or a short hairpin RNA plasmid targeting STAT3 to suppress the activation of STAT3 signaling. The radiosensitizing effects of STAT3 inhibition were confirmed in glioma cells. Intriguingly, combination of ionizing radiation exposure and STAT3 inhibition triggered a pronounced increase of autophagy flux. To explore the role of autophagy, glioma cells were treated with 3-methyladenine or siRNA for autophagy-related gene 5, and it was demonstrated that inhibition of autophagy further strengthened the radiosensitizing effects of STAT3 inhibition. Accordingly, more apoptotic cells were induced by the dual inhibition of autophagy and STAT3 signaling. In conclusion, our data revealed a protective role of autophagy in the radiosensitizing effects of STAT3 inhibition, and inhibition of both autophagy and STAT3 might be a potential therapeutic strategy to increase the radiosensitivity of glioma cells. - Highlights: • Inactivation of STAT3 signaling radiosensitizes malignant glioma cells. • STAT3 inhibition triggers a significant increase of autophagy flux induced by ionizing radiation in glioma cells. • Suppression of autophagy further strengthens the radiosensitizing effects of STAT3 inhibition in glioma cells. • Dual inhibition of autophagy and STAT3 induce massive apoptotic cells upon exposure to ionizing radiation.

  4. Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction

    PubMed Central

    Huenchuguala, Sandro; Muñoz, Patricia; Zavala, Patricio; Villa, Mónica; Cuevas, Carlos; Ahumada, Ulises; Graumann, Rebecca; Nore, Beston F; Couve, Eduardo; Mannervik, Bengt; Paris, Irmgard; Segura-Aguilar, Juan

    2014-01-01

    U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction. PMID:24434817

  5. Glutathione transferase mu 2 protects glioblastoma cells against aminochrome toxicity by preventing autophagy and lysosome dysfunction.

    PubMed

    Huenchuguala, Sandro; Muñoz, Patricia; Zavala, Patricio; Villa, Mónica; Cuevas, Carlos; Ahumada, Ulises; Graumann, Rebecca; Nore, Beston F; Couve, Eduardo; Mannervik, Bengt; Paris, Irmgard; Segura-Aguilar, Juan

    2014-04-01

    U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit (3)H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A 1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A 1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction.

  6. MAP1LC3B overexpression protects against Hermansky-Pudlak syndrome type-1-induced defective autophagy in vitro

    PubMed Central

    Ahuja, Saket; Knudsen, Lars; Chillappagari, Shashi; Henneke, Ingrid; Ruppert, Clemens; Korfei, Martina; Gochuico, Bernadette R.; Bellusci, Saverio; Seeger, Werner; Ochs, Matthias; Mahavadi, Poornima

    2015-01-01

    Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder, and some patients with HPS develop pulmonary fibrosis, known as HPS-associated interstitial pneumonia (HPSIP). We have previously reported that HPSIP is associated with severe surfactant accumulation, lysosomal stress, and alveolar epithelial cell type II (AECII) apoptosis. Here, we hypothesized that defective autophagy might result in excessive lysosomal stress in HPSIP. Key autophagy proteins, including LC3B lipidation and p62, were increased in HPS1/2 mice lungs. Electron microscopy demonstrated a preferable binding of LC3B to the interior of lamellar bodies in the AECII of HPS1/2 mice, whereas in wild-type mice it was present on the limiting membrane in addition to the interior of the lamellar bodies. Similar observations were noted in human HPS1 lung sections. In vitro knockdown of HPS1 revealed increased LC3B lipidation and p62 accumulation, associated with an increase in proapoptotic caspases. Overexpression of LC3B decreased the HPS1 knockdown-induced p62 accumulation, whereas rapamycin treatment did not show the same effect. We conclude that loss of HPS1 protein results in impaired autophagy that is restored by exogenous LC3B and that defective autophagy might therefore play a critical role in the development and progression of HPSIP. PMID:26719147

  7. MAP1LC3B overexpression protects against Hermansky-Pudlak syndrome type-1-induced defective autophagy in vitro.

    PubMed

    Ahuja, Saket; Knudsen, Lars; Chillappagari, Shashi; Henneke, Ingrid; Ruppert, Clemens; Korfei, Martina; Gochuico, Bernadette R; Bellusci, Saverio; Seeger, Werner; Ochs, Matthias; Guenther, Andreas; Mahavadi, Poornima

    2016-03-15

    Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder, and some patients with HPS develop pulmonary fibrosis, known as HPS-associated interstitial pneumonia (HPSIP). We have previously reported that HPSIP is associated with severe surfactant accumulation, lysosomal stress, and alveolar epithelial cell type II (AECII) apoptosis. Here, we hypothesized that defective autophagy might result in excessive lysosomal stress in HPSIP. Key autophagy proteins, including LC3B lipidation and p62, were increased in HPS1/2 mice lungs. Electron microscopy demonstrated a preferable binding of LC3B to the interior of lamellar bodies in the AECII of HPS1/2 mice, whereas in wild-type mice it was present on the limiting membrane in addition to the interior of the lamellar bodies. Similar observations were noted in human HPS1 lung sections. In vitro knockdown of HPS1 revealed increased LC3B lipidation and p62 accumulation, associated with an increase in proapoptotic caspases. Overexpression of LC3B decreased the HPS1 knockdown-induced p62 accumulation, whereas rapamycin treatment did not show the same effect. We conclude that loss of HPS1 protein results in impaired autophagy that is restored by exogenous LC3B and that defective autophagy might therefore play a critical role in the development and progression of HPSIP.

  8. Compound C induces protective autophagy in cancer cells through AMPK inhibition-independent blockade of Akt/mTOR pathway.

    PubMed

    Vucicevic, Ljubica; Misirkic, Maja; Janjetovic, Kristina; Vilimanovich, Urosh; Sudar, Emina; Isenovic, Esma; Prica, Marko; Harhaji-Trajkovic, Ljubica; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir

    2011-01-01

    In the present study, we report that compound C, an inhibitor of a key intracellular energy sensor AMP-activated protein kinase (AMPK), can induce autophagy in cancer cells. The induction of autophagy in U251 human glioma cell line was demonstrated by acridine orange staining of intracellular acidic vesicles, Beclin 1 induction, p62 decrease and conversion of LC3-I to autophagosome-associated LC3-II in the presence of proteolysis inhibitors. The presence of autophagosome-like vesicles was confirmed by transmission electron microscopy. Compound C-mediated inhibition of AMPK and raptor in U251 cells was associated with paradoxical decrease in phosphorylation of AMPK/raptor-repressed mTOR, a major negative regulator of autophagy, and its downstream target p70S6K. The phosphorylation of an mTOR activator Akt and the PI3K-activating kinase Src was also impaired in compound C-treated cells. The siRNA-mediated AMPK silencing did not reduce the activity of the Akt/mTOR/p70S6K pathway and AMPK activators metformin and AIC AR failed to block compound C-induced autophagy. Autophagy inhibitors bafilomycin and chloroquine significantly increased the cytotoxicity of compound C towards U251 cells, as confirmed by increase in lactate dehydrogenase release, DNA fragmentation and caspase-3 activation. Similar effects of compound C were also observed in C6 rat glioma, L929 mouse fibrosarcoma and B16 mouse melanoma cell lines. Since compound C has previously been reported to suppress AMPK-dependent autophagy in different cell types, our findings suggest that the effects of compound C on autophagy might be dose-, cell type- and/or context-dependent. By demonstrating the ability of compound C to induce autophagic response in cancer cells via AMPK inhibition-independent downregulation of Akt/mTOR pathway, our results warrant caution when using compound C to inhibit AMPK-dependent cellular responses, but also support further exploration of compound C and related molecules as potential

  9. Folate deprivation modulates the expression of autophagy- and circadian-related genes in HT-22 hippocampal neuron cells through GR-mediated pathway.

    PubMed

    Sun, Qinwei; Yang, Yang; Li, Xi; He, Bin; Jia, Yimin; Zhang, Nana; Zhao, Ruqian

    2016-08-01

    Folic acid (FA) is an extremely important nutrient for brain formation and development. FA deficiency is highly linked to brain degeneration and age-related diseases, which are also associated with autophagic activities and circadian rhythm in hippocampal neurons. However, little is known how autophagy- and circadian-related genes in hippocampal neurons are regulated under FA deficiency. Here, hippocampal neuroncells (HT-22) were employed to determine the effect of FA deprivation (FD) on the expression of relevant genes and to reveal the potential role of glucocorticoid receptor (GR). FD increased autophagic activities in HT-22 cells, associated with significantly (P<0.05) enhanced GR activation indicated by higher ratio of GR phosphorylation. Out of 17 autophagy-related genes determined, 8 was significantly (P<0.05) up-regulated in FD group, which includes ATG2b, ATG3, ATG4c, ATG5, ATG10, ATG12, ATG13 and ATG14. Meanwhile, 4 out of 7 circadian-related genes detected, Clock, Cry1, Cry2 and Per2, were significantly (P<0.05) up-regulated. The protein content of autophagy markers, LC3A and LC3B, was also increased significantly (P<0.05). ChIP assay showed that FD promoted (P<0.05) GR binding to the promoter sequence of ATG3 and Per2. Moreover, MeDIP analysis demonstrated significant (P<0.05) hypomethylation in the promoter sequence of ATG12, ATG13 and Per2 genes. Together, we speculate that FD increases the transcription of autophagy- and circadian-related genes through, at least partly, GR-mediated pathway. Our results provide a basis for future investigations into the intracellular regulatory network in response to folate deficiency.

  10. 2-Methoxyestradiol protects against ischemia/reperfusion injury in alcoholic fatty liver by enhancing sirtuin 1-mediated autophagy.

    PubMed

    Cho, Hong-Ik; Seo, Min-Jong; Lee, Sun-Mee

    2017-02-16

    Alcoholic fatty liver (AFL) is susceptible to ischemia/reperfusion (I/R) injury, responding with inflammation and extensive hepatocellular damage. Autophagy maintains cellular homeostasis and regulates inflammation and lipid metabolism. 2-Methoxyestradiol (2-ME2), an endogenous metabolite of estradiol, exhibits antioxidant and anti-inflammatory properties. This study examined the cytoprotective mechanisms of 2-ME2 on hepatic I/R in AFL, focusing on autophagy signaling. C57BL/6 mice were fed an ethanol diet (ED) to induce AFL, or a control diet (CD) for 6weeks, and then subjected to 60min of ischemia and 5h of reperfusion. 2-ME2 (15mg/kg, i.p.) was administered 12h before ischemia and 10min before reperfusion, and sirtinol (sirtuin 1 (SIRT1) inhibitor, 10mg/kg, i.p.) was administered 30min before reperfusion. After reperfusion, ED animals showed higher serum aminotransferase activities and proinflammatory cytokine levels, and more severe histological changes compared with CD animals. These alterations were attenuated by 2-ME2. In the ED I/R group, autophagy and mitophagy were significantly impaired, as indicated by decreased hepatic levels of microtubule-associated protein 1 light chain 3 II and parkin protein expression, and increased p62 protein expression, which were attenuated by 2-ME2. The hepatic levels of Atg12-5 complex, Atg3, Atg7, lysosomal-associated membrane protein 2 and Rab7 protein expression significantly decreased in ED I/R animals, which were attenuated by 2-ME2. In the ED I/R group, the level of SIRT1 protein expression and its catalytic activity significantly decreased, which were attenuated by 2-ME2. Sirtinol reversed the stimulatory effect of 2-ME2 on autophagy. Our findings suggest that 2-ME2 ameliorates I/R-induced hepatocellular damage in AFL through activating SIRT1-mediated autophagy signaling.

  11. Cerebral ischemic post‑conditioning induces autophagy inhibition and a HMGB1 secretion attenuation feedback loop to protect against ischemia reperfusion injury in an oxygen glucose deprivation cellular model.

    PubMed

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-11-01

    Cerebral ischemic postconditioning (IPOC) has been demonstrated to be neuroprotective against cerebral ischemia reperfusion injury. The present study aimed to determine whether IPOC could inhibit autophagy and high mobility group box 1 (HMGB1) release in a PC12 cell oxygen glucose deprivation/reperfusion (OGD/R) model. An 8 h OGD and 24 h reperfusion cellular model was developed to mimic cerebral ischemia reperfusion injury, with 3 cycles of 10 min OGD/5 min reperfusion treatment to imitate IPOC. Cell viability was determined to demonstrate the efficiency of OGD/R, IPOC and autophagy activator, rapamycin (RAP), treatment. Transmission electron microscopy was performed to observe the formation of autophagosomes, and immunofluorescence, western blot and co‑immunoprecipitation were used to examine the expression of autophagy‑associated proteins and HMGB1. Enzyme‑linked immunosorbent assay analysis was conducted to examine the level of HMGB1 in cell supernatants. Additionally, PC12 cells were treated with RAP to examine the effect of autophagy on HMGB1 release, and the effect of recombinant human HMGB1 and Beclin1 small interfering RNA on autophagy was investigated. The present study confirmed that IPOC inhibited autophagy and HMGB1 secretion, autophagy inhibition induced a decrease in HMGB1 secretion, and HMGB1 secretion attenuation caused autophagy inhibition in return, as demonstrated by immunofluorescence and western blot analyses. Autophagy inhibition and HMGB1 secretion attenuation were, therefore, demonstrated to form a feedback loop under IPOC. These mechanisms illustrated the protective effects of IPOC and may accelerate the clinical use of IPOC.

  12. Nrf2-mediated cardiac maladaptive remodeling and dysfunction in a setting of autophagy insufficiency

    PubMed Central

    Qin, Qingyun; Qu, Chen; Niu, Ting; Zang, Huimei; Qi, Lei; Lyu, Linmao; Wang, Xuejun; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2016-01-01

    Nuclear factor erythroid-2 related factor 2 (Nrf2) appears to exert either a protective or detrimental effect on the heart; however, the underlying mechanism remains poorly understood. Herein, we uncovered a novel mechanism for turning off the Nrf2-mediated cardioprotection while switching on Nrf2-mediated cardiac dysfunction. In a murine model of pressure overload-induced cardiac remodeling and dysfunction via transverse aortic arch constriction (TAC), knockout of Nrf2 enhanced myocardial necrosis and death rate during an initial stage of cardiac adaptation when myocardial autophagy function is intact. However, knockout of Nrf2 turned out to be cardioprotective throughout the later stage of cardiac maladaptive remodeling when myocardial autophagy function became insufficient. TAC-induced activation of Nrf2 was dramatically enhanced in the heart with impaired autophagy which is induced by cardiomyocyte-specific knockout of autophagy related gene (Atg)5. Notably, Nrf2 activation coincided with upregulation of angiotensinogen (Agt) only in the autophagy impaired heart after TAC. Agt5 and Nrf2 gene loss of function approaches in combination with Jak2 and Fyn kinase inhibitors revealed that suppression of autophagy inactivated Jak2 and Fyn as well as nuclear translocation of Fyn while enhancing nuclear translocation of Nrf2 and Nrf2-driven Agt expression in cardiomyocytes. Taken together; these results indicate that the pathophysiological consequences of Nrf2 activation are closely linked with the functional integrity of myocardial autophagy during cardiac remodeling. When autophagy is intact, Nrf2 is required for cardiac adaptive responses; however, autophagy impairment most likely turns off Fyn-operated Nrf2 nuclear export thus activating Nrf2-driven Agt transcription, which exacerbates cardiac maladaptation leading to dysfunction. PMID:26573705

  13. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine

    PubMed Central

    Vucicevic, Ljubica; Misirkic-Marjanovic, Maja; Paunovic, Verica; Kravic-Stevovic, Tamara; Martinovic, Tamara; Ciric, Darko; Maric, Nadja; Petricevic, Sasa; Harhaji-Trajkovic, Ljubica; Bumbasirevic, Vladimir; Trajkovic, Vladimir

    2015-01-01

    We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug. PMID:25551567

  14. Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine.

    PubMed

    Vucicevic, Ljubica; Misirkic-Marjanovic, Maja; Paunovic, Verica; Kravic-Stevovic, Tamara; Martinovic, Tamara; Ciric, Darko; Maric, Nadja; Petricevic, Sasa; Harhaji-Trajkovic, Ljubica; Bumbasirevic, Vladimir; Trajkovic, Vladimir

    2014-01-01

    We investigated the role of autophagy, a controlled cellular self-digestion process, in regulating survival of neurons exposed to atypical antipsychotic olanzapine. Olanzapine induced autophagy in human SH-SY5Y neuronal cell line, as confirmed by the increase in autophagic flux and presence of autophagic vesicles, fusion of autophagosomes with lysosomes, and increase in the expression of autophagy-related (ATG) genes ATG4B, ATG5, and ATG7. The production of reactive oxygen species, but not modulation of the main autophagy repressor MTOR or its upstream regulators AMP-activated protein kinase and AKT1, was responsible for olanzapine-triggered autophagy. Olanzapine-mediated oxidative stress also induced mitochondrial depolarization and damage, and the autophagic clearance of dysfunctional mitochondria was confirmed by electron microscopy, colocalization of autophagosome-associated MAP1LC3B (LC3B henceforth) and mitochondria, and mitochondrial association with the autophagic cargo receptor SQSTM1/p62. While olanzapine-triggered mitochondrial damage was not overtly toxic to SH-SY5Y cells, their death was readily initiated upon the inhibition of autophagy with pharmacological inhibitors, RNA interference knockdown of BECN1 and LC3B, or biological free radical nitric oxide. The treatment of mice with olanzapine for 14 d increased the brain levels of autophagosome-associated LC3B-II and mRNA encoding Atg4b, Atg5, Atg7, Atg12, Gabarap, and Becn1. The administration of the autophagy inhibitor chloroquine significantly increased the expression of proapoptotic genes (Trp53, Bax, Bak1, Pmaip1, Bcl2l11, Cdkn1a, and Cdkn1b) and DNA fragmentation in the frontal brain region of olanzapine-exposed animals. These data indicate that olanzapine-triggered autophagy protects neurons from otherwise fatal mitochondrial damage, and that inhibition of autophagy might unmask the neurotoxic action of the drug.

  15. Cloning, expression analysis, and RNA interference study of a HORMA domain containing autophagy-related gene 13 (ATG13) from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Lee, Jung Hee; Jo, Yong Hun; Patnaik, Bharat Bhusan; Park, Ki Beom; Tindwa, Hamisi; Seo, Gi Won; Chandrasekar, Raman; Lee, Yong Seok; Han, Yeon Soo

    2015-01-01

    Autophagy is a process that is necessary during starvation, as it replenishes metabolic precursors by eliminating damaged organelles. Autophagy is mediated by more than 35 autophagy-related (Atg) proteins that participate in the nucleation, elongation, and curving of the autophagosome membrane. In a pursuit to address the role of autophagy during development and immune resistance of the mealworm beetle, Tenebrio molitor, we screened ATG gene sequences from the whole-larva transcriptome database. We identified a homolog of ATG13 gene in T. molitor (designated as TmATG13) that comprises a cDNA of 1176 bp open reading frame (ORF) encoding a protein of 391 amino acids. Analyses of the structure-specific features of TmAtg13 showed an intrinsically disordered middle and C-terminal region that was rich in regulatory phosphorylation sites. The N-terminal Atg13 domain had a HORMA (Hop1, Rev7, and Mad2) fold containing amino acid residues conserved across the Atg13 insect orthologs. A quantitative reverse-transcription-polymerase chain reaction analysis revealed that TmATG13 was expressed ubiquitously during all developmental stages of the insect. TmATG13 mRNA expression was high in the fat body and gut of the larval and adult stages of the insect. The TmATG13 transcripts were expressed at a high level until 6 days of ovarian development, followed by a significant decline. Silencing of ATG13 transcripts in T. molitor larvae showed a reduced survivability of 39 and 38% in response to Escherichia coli and Staphylococcus aureus infection. Furthermore, the role of TmAtg13 in initiating autophagy as a part of the host cell autophagic complex of the host cells against the intracellular pathogen Listeria monocytogenes is currently under study and will be critical to unfold the structure-function relationships.

  16. Cloning, expression analysis, and RNA interference study of a HORMA domain containing autophagy-related gene 13 (ATG13) from the coleopteran beetle, Tenebrio molitor

    PubMed Central

    Lee, Jung Hee; Jo, Yong Hun; Patnaik, Bharat Bhusan; Park, Ki Beom; Tindwa, Hamisi; Seo, Gi Won; Chandrasekar, Raman; Lee, Yong Seok; Han, Yeon Soo

    2015-01-01

    Autophagy is a process that is necessary during starvation, as it replenishes metabolic precursors by eliminating damaged organelles. Autophagy is mediated by more than 35 autophagy-related (Atg) proteins that participate in the nucleation, elongation, and curving of the autophagosome membrane. In a pursuit to address the role of autophagy during development and immune resistance of the mealworm beetle, Tenebrio molitor, we screened ATG gene sequences from the whole-larva transcriptome database. We identified a homolog of ATG13 gene in T. molitor (designated as TmATG13) that comprises a cDNA of 1176 bp open reading frame (ORF) encoding a protein of 391 amino acids. Analyses of the structure-specific features of TmAtg13 showed an intrinsically disordered middle and C-terminal region that was rich in regulatory phosphorylation sites. The N-terminal Atg13 domain had a HORMA (Hop1, Rev7, and Mad2) fold containing amino acid residues conserved across the Atg13 insect orthologs. A quantitative reverse-transcription-polymerase chain reaction analysis revealed that TmATG13 was expressed ubiquitously during all developmental stages of the insect. TmATG13 mRNA expression was high in the fat body and gut of the larval and adult stages of the insect. The TmATG13 transcripts were expressed at a high level until 6 days of ovarian development, followed by a significant decline. Silencing of ATG13 transcripts in T. molitor larvae showed a reduced survivability of 39 and 38% in response to Escherichia coli and Staphylococcus aureus infection. Furthermore, the role of TmAtg13 in initiating autophagy as a part of the host cell autophagic complex of the host cells against the intracellular pathogen Listeria monocytogenes is currently under study and will be critical to unfold the structure-function relationships. PMID:26136688

  17. Current questions and possible controversies in autophagy

    PubMed Central

    Lindqvist, L M; Simon, A K; Baehrecke, E H

    2015-01-01

    Interest in autophagy has exploded over the last decade, with publications highlighting crosstalk with several other cellular processes including secretion, endocytosis, and cell suicide pathways including apoptosis. Autophagy proteins have also been implicated in other cellular processes independently of their roles in autophagy, creating complexities in the interpretation of autophagy (Atg) mutant gene data. Interestingly, this self-eating process is a survival mechanism that can also promote cell death, but when and how autophagy may ‘switch’ its function is still under debate. Indeed, there are currently many models of how autophagy actually influences cell death. In this review, we highlight some outstanding questions and possible controversies in the autophagy field. PMID:26682061

  18. The putative role of autophagy in the pathogenesis of abdominal aortic aneurysms.

    PubMed

    Ramadan, Azza; Al-Omran, Mohammed; Verma, Subodh

    2017-02-01

    Abdominal aortic aneurysms (AAA) are a significant cause of worldwide mortality and morbidity. While the histopathological characteristics of AAA are well documented, the cellular and molecular mechanisms involved in the pathogenesis of AAA are not entirely understood. Autophagy is a highly conserved basal cellular process in eukaryotic cells that involves the turnover of organelles and proteins. It is also activated as an adaptive response to stressful conditions to promote cell survival. While autophagy typically promotes pro-survival processes, it can sometimes lead to cellular demise. Preclinical studies have revealed autophagy to be a protective mechanism in certain vascular diseases with several autophagy-related genes reported to be markedly upregulated in human aneurysmal tissue. The role autophagy plays in the pathogenesis of AAA, however, remains poorly defined. In this review, we discuss the putative role of autophagy in AAA by reviewing several in vitro and in vivo studies that address the functional significance of autophagy in cells that are involved in the pathophysiology of AAA, amongst which are macrophages, smooth muscle and endothelial cells.

  19. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice

    PubMed Central

    Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chou, Tz-Chong; Chen, Jia-Rung; Wei, Meng-Jun; Lee, San-Liang; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Ching-Min; Hsu, Yung-Ho

    2017-01-01

    The accumulation of advanced glycation end products (AGEs) in diabetic patients induces vascular endothelial injury. Promyelocytic leukemia zinc finger protein (PLZF) is a transcription factor that can be activated by low-temperature far-infrared (FIR) irradiation to exert beneficial effects on the vascular endothelium. In the present study, we investigated the influence of FIR-induced PLZF activation on AGE-induced endothelial injury both in vitro and in vivo. FIR irradiation inhibited AGE-induced apoptosis in human umbilical vein endothelial cells (HUVECs). PLZF activation increased the expression of phosphatidylinositol-3 kinases (PI3K), which are important kinases in the autophagic signaling pathway. FIR-induced PLZF activation led to autophagy in HUVEC, which was mediated through the upregulation of PI3K. Immunofluorescence staining showed that AGEs were engulfed by HUVECs and localized to lysosomes. FIR-induced autophagy promoted AGEs degradation in HUVECs. In nicotinamide/streptozotocin-induced diabetic mice, FIR therapy reduced serum AGEs and AGEs deposition at the vascular endothelium. FIR therapy also reduced diabetes-induced inflammatory markers in the vascular endothelium and improved vascular endothelial function. These protective effects of FIR therapy were not found in PLZF-knockout mice. Our data suggest that FIR-induced PLZF activation in vascular endothelial cells protects the vascular endothelium in diabetic mice from AGE-induced injury. PMID:28071754

  20. Lipopolysaccharide induction of autophagy is associated with enhanced bactericidal activity in Dictyostelium discoideum

    PubMed Central

    Pflaum, Katherine; Gerdes, Kimberly; Yovo, Kossi; Callahan, Jennifer; Snyder, Michelle L.D.

    2012-01-01

    Innate immune cells respond to microbial invaders using pattern recognition receptors that detect conserved microbial patterns. Among the cellular processes stimulated downstream of pattern recognition machinery is the initiation of autophagy, which plays protective roles against intracellular microbes. We have shown recently that Dictyostelium discoideum, which takes up bacteria for nutritive purposes, may employ pattern recognition machinery to respond to bacterial prey, as D. discoideum cells upregulate bactericidal activity upon stimulation by lipopolysaccharide (LPS). Here we extend these findings, showing that LPS treatment leads to induction of autophagosomal maturation in cells responding to the bacteria Staphylococcus aureus. Cells treated with the autophagy-inducing drug rapamycin clear internalized bacteria at an accelerated rate, while LPS-enhanced clearance of bacteria is reduced in cells deficient for the autophagy-related genes atg1 and atg9. These findings link microbial pattern recognition with autophagy in the social amoeba D. discoideum. PMID:22575510

  1. Role and regulation of autophagy in cancer

    PubMed Central

    Chen, Ning; Karantza-Wadsworth, Vassiliki

    2011-01-01

    Autophagy is an evolutionarily conserved process whereby cytoplasm and cellular organelles are degraded in lysosomes for amino acid and energy recycling. Autophagy is a survival pathway activated in response to nutrient deprivation and other stressful stimuli, such as metabolic stress and exposure to anticancer drugs. However, autophagy may also result in cell death, if it proceeds to completion. Defective autophagy is implicated in tumorigenesis, as the essential autophagy regulator beclin 1 is monoallelically deleted in human breast, ovarian and prostate cancers, and beclin 1+/− mice are tumor-prone. How autophagy suppresses tumorigenesis is under intense investigation. Cell-autonomous mechanisms, involving protection of genome integrity and stability, and a non-cell-autonomous mechanism, involving suppression of necrosis and inflammation, have been discovered so far. The role of autophagy in treatment responsiveness is also complex. Autophagy inhibition concurrently with chemotherapy or radiotherapy has emerged as a novel approach in cancer treatment, as autophagy-competent tumor cells depend on autophagy for survival under drug- and radiation-induced stress. Alternatively, autophagy stimulation and preservation of cellular fitness bymaintenance of protein and organelle quality control, suppression of DNA damage and genomic instability, and limitation of necrosis-associated inflammation may play a critical role in cancer prevention. PMID:19167434

  2. Molecular cloning and characterization of autophagy-related gene TmATG8 in Listeria-invaded hemocytes of Tenebrio molitor.

    PubMed

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Lee, Yong Seok; Kang, Sang Sun; Han, Yeon Soo

    2015-07-01

    Macroautophagy (hereinafter called autophagy) is a highly regulated process used by eukaryotic cells to digest portions of the cytoplasm that remodels and recycles nutrients and disposes of unwanted cytoplasmic constituents. Currently 36 autophagy-related genes (ATG) and their homologs have been characterized in yeast and higher eukaryotes, including insects. In the present study, we identified and functionally characterized the immune function of an ATG8 homolog in a coleopteran insect, Tenebrio molitor (TmATG8). The cDNA of TmATG8 comprises of an ORF of 363 bp that encodes a protein of 120 amino acid residues. TmATG8 transcripts are detected in all the developmental stages analyzed. TmAtg8 protein contains a highly conserved C-terminal glycine residue (Gly116) and shows high amino acid sequence identity (98%) to its Tribolium castaneum homolog, TcAtg8. Loss of function of TmATG8 by RNAi led to a significant increase in the mortality rates of T. molitor larvae against Listeria monocytogenes. Unlike dsEGFP-treated control larvae, TmATG8-silenced larvae failed to turn-on autophagy in hemocytes after injection with L. monocytogenes. These data suggest that TmATG8 play a role in mediating autophagy-based clearance of Listeria in T. molitor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Autophagy inhibitors.

    PubMed

    Pasquier, Benoit

    2016-03-01

    Autophagy is a lysosome-dependent mechanism of intracellular degradation. The cellular and molecular mechanisms underlying this process are highly complex and involve multiple proteins, including the kinases ULK1 and Vps34. The main function of autophagy is the maintenance of cell survival when modifications occur in the cellular environment. During the past decade, extensive studies have greatly improved our knowledge and autophagy has exploded as a research field. This process is now widely implicated in pathophysiological processes such as cancer, metabolic, and neurodegenerative disorders, making it an attractive target for drug discovery. In this review, we will summarize the different types of inhibitors that affect the autophagy machinery and provide some potential therapeutic perspectives.

  4. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury.

    PubMed

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury.

  5. Repetitive stimulation of autophagy-lysosome machinery by intermittent fasting preconditions the myocardium to ischemia-reperfusion injury

    PubMed Central

    Godar, Rebecca J; Ma, Xiucui; Liu, Haiyan; Murphy, John T; Weinheimer, Carla J; Kovacs, Attila; Crosby, Seth D; Saftig, Paul; Diwan, Abhinav

    2015-01-01

    Autophagy, a lysosomal degradative pathway, is potently stimulated in the myocardium by fasting and is essential for maintaining cardiac function during prolonged starvation. We tested the hypothesis that intermittent fasting protects against myocardial ischemia-reperfusion injury via transcriptional stimulation of the autophagy-lysosome machinery. Adult C57BL/6 mice subjected to 24-h periods of fasting, every other day, for 6 wk were protected from in-vivo ischemia-reperfusion injury on a fed day, with marked reduction in infarct size in both sexes as compared with nonfasted controls. This protection was lost in mice heterozygous null for Lamp2 (coding for lysosomal-associated membrane protein 2), which demonstrate impaired autophagy in response to fasting with accumulation of autophagosomes and SQSTM1, an autophagy substrate, in the heart. In lamp2 null mice, intermittent fasting provoked progressive left ventricular dilation, systolic dysfunction and hypertrophy; worsening cardiomyocyte autophagosome accumulation and lack of protection to ischemia-reperfusion injury, suggesting that intact autophagy-lysosome machinery is essential for myocardial homeostasis during intermittent fasting and consequent ischemic cardioprotection. Fasting and refeeding cycles resulted in transcriptional induction followed by downregulation of autophagy-lysosome genes in the myocardium. This was coupled with fasting-induced nuclear translocation of TFEB (transcription factor EB), a master regulator of autophagy-lysosome machinery; followed by rapid decline in nuclear TFEB levels with refeeding. Endogenous TFEB was essential for attenuation of hypoxia-reoxygenation-induced cell death by repetitive starvation, in neonatal rat cardiomyocytes, in-vitro. Taken together, these data suggest that TFEB-mediated transcriptional priming of the autophagy-lysosome machinery mediates the beneficial effects of fasting-induced autophagy in myocardial ischemia-reperfusion injury. PMID:26103523

  6. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation.

    PubMed

    Liu, Kaijun; Zhang, Guowei; Wang, Zhi; Liu, Yong; Dong, Jianyun; Dong, Xiaomei; Liu, Jinyi; Cao, Jia; Ao, Lin; Zhang, Shaoxiang

    2014-08-04

    The increasing exposure to radiofrequency (RF) radiation emitted from mobile phone use has raised public concern regarding the biological effects of RF exposure on the male reproductive system. Autophagy contributes to maintaining intracellular homeostasis under environmental stress. To clarify whether RF exposure could induce autophagy in the spermatocyte, mouse spermatocyte-derived cells (GC-2) were exposed to 1800MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rate (SAR) values of 1w/kg, 2w/kg or 4w/kg for 24h, respectively. The results indicated that the expression of LC3-II increased in a dose- and time-dependent manner with RF exposure, and showed a significant change at the SAR value of 4w/kg. The autophagosome formation and the occurrence of autophagy were further confirmed by GFP-LC3 transient transfection assay and transmission electron microscopy (TEM) analysis. Furthermore, the conversion of LC3-I to LC3-II was enhanced by co-treatment with Chloroquine (CQ), indicating autophagic flux could be enhanced by RF exposure. Intracellular ROS levels significantly increased in a dose- and time-dependent manner after cells were exposed to RF. Pretreatment with anti-oxidative NAC obviously decreased the conversion of LC3-I to LC3-II and attenuated the degradation of p62 induced by RF exposure. Meanwhile, phosphorylated extracellular-signal-regulated kinase (ERK) significantly increased after RF exposure at the SAR value of 2w/kg and 4w/kg. Moreover, we observed that RF exposure did not increase the percentage of apoptotic cells, but inhibition of autophagy could increase the percentage of apoptotic cells. These findings suggested that autophagy flux could be enhanced by 1800MHz GSM exposure (4w/kg), which is mediated by ROS generation. Autophagy may play an important role in preventing cells from apoptotic cell death under RF exposure stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Autophagy Negatively Regulates Transmissible Gastroenteritis Virus Replication.

    PubMed

    Guo, Longjun; Yu, Haidong; Gu, Weihong; Luo, Xiaolei; Li, Ren; Zhang, Jian; Xu, Yunfei; Yang, Lijun; Shen, Nan; Feng, Li; Wang, Yue

    2016-03-31

    Autophagy is an evolutionarily ancient pathway that has been shown to be important in the innate immune defense against several viruses. However, little is known about the regulatory role of autophagy in transmissible gastroenteritis virus (TGEV) replication. In this study, we found that TGEV infection increased the number of autophagosome-like double- and single-membrane vesicles in the cytoplasm of host cells, a phenomenon that is known to be related to autophagy. In addition, virus replication was required for the increased amount of the autophagosome marker protein LC3-II. Autophagic flux occurred in TGEV-infected cells, suggesting that TGEV infection triggered a complete autophagic response. When autophagy was pharmacologically inhibited by wortmannin or LY294002, TGEV replication increased. The increase in virus yield via autophagy inhibition was further confirmed by the use of siRNA duplexes, through which three proteins required for autophagy were depleted. Furthermore, TGEV replication was inhibited when autophagy was activated by rapamycin. The antiviral response of autophagy was confirmed by using siRNA to reduce the expression of gene p300, which otherwise inhibits autophagy. Together, the results indicate that TGEV infection activates autophagy and that autophagy then inhibits further TGEV replication.

  8. Activation of AMPK protects against hydrogen peroxide-induced osteoblast apoptosis through autophagy induction and NADPH maintenance: new implications for osteonecrosis treatment?

    PubMed

    She, Chang; Zhu, Lun-qing; Zhen, Yun-fang; Wang, Xiao-dong; Dong, Qi-rong

    2014-01-01

    Elevated hydrogen peroxide (H2O2) causes osteoblast dysfunction and apoptosis, serving as an important contributor to the development of osteonecrosis. Here we aimed to understand the role of AMP-activated protein kinase (AMPK) in the process. We observed a high level of AMPK activation in surgery isolated patients' osteonecrosis tissues. In cultured osteoblastoma MG63 cells, H2O2 stimulation induced significant AMPK activation, oxidative stress, cell death and apoptosis. Inhibition of AMPK by its inhibitor (compound C) or by shRNA-mediated knockdown dramatically enhanced H2O2-induced MG63 cell apoptosis, while over-expression of AMPK in HEK-293 cells alleviated H2O2-induced cell damage. These results confirmed that H2O2-activated AMPK is pro-cell survival. We observed that H2O2 induced protective autophagy in MG63 cells, and AMPK-dependent Ulk1 activation and mTORC1 (mTOR complex 1) inactivation might involve autophagy activation. Further, AMPK activation inhibited H2O2-induced oxidative stress, probably through inhibiting NADPH (nicotinamide adenine dinucleotide phosphate) depletion, since more NADPH depletion and oxidative stress were induced by H2O2 in AMPK deficient MG63 cells. Finally, we observed a significant AMPK activation in H2O2-treated primary cultured and transformed (MC3T3-E1) osteoblasts, and AMPK inhibitor compound C enhanced death by H2O2 in these cells. Based on these results, we concluded that H2O2-induced AMPK activation is pro-survival and anti-apoptosis in osteoblasts. Autophagy induction and NADPH maintenance are involved in AMPK-mediated pro-survival effects. AMPK might represent a novel molecular target for osteonecrosis treatment.

  9. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy.

    PubMed

    Vidal, Rene L; Figueroa, Alicia; Court, Felipe A; Thielen, Peter; Molina, Claudia; Wirth, Craig; Caballero, Benjamin; Kiffin, Roberta; Segura-Aguilar, Juan; Cuervo, Ana Maria; Glimcher, Laurie H; Hetz, Claudio

    2012-05-15

    Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels.

  10. Targeting the UPR transcription factor XBP1 protects against Huntington's disease through the regulation of FoxO1 and autophagy

    PubMed Central

    Vidal, Rene L.; Figueroa, Alicia; Court, Felipe A.; Thielen, Peter; Molina, Claudia; Wirth, Craig; Caballero, Benjamin; Kiffin, Roberta; Segura-Aguilar, Juan; Cuervo, Ana Maria; Glimcher, Laurie H.; Hetz, Claudio

    2012-01-01

    Mutations leading to expansion of a poly-glutamine track in Huntingtin (Htt) cause Huntington's disease (HD). Signs of endoplasmic reticulum (ER) stress have been recently reported in animal models of HD, associated with the activation of the unfolded protein response (UPR). Here we have investigated the functional contribution of ER stress to HD by targeting the expression of two main UPR transcription factors, XBP1 and ATF4 (activating transcription factor 4), in full-length mutant Huntingtin (mHtt) transgenic mice. XBP1-deficient mice were more resistant to developing disease features, associated with improved neuronal survival and motor performance, and a drastic decrease in mHtt levels. The protective effects of XBP1 deficiency were associated with enhanced macroautophagy in both cellular and animal models of HD. In contrast, ATF4 deficiency did not alter mHtt levels. Although, XBP1 mRNA splicing was observed in the striatum of HD transgenic brains, no changes in the levels of classical ER stress markers were detected in symptomatic animals. At the mechanistic level, we observed that XBP1 deficiency led to augmented expression of Forkhead box O1 (FoxO1), a key transcription factor regulating autophagy in neurons. In agreement with this finding, ectopic expression of FoxO1 enhanced autophagy and mHtt clearance in vitro. Our results provide strong evidence supporting an involvement of XBP1 in HD pathogenesis probably due to an ER stress-independent mechanism involving the control of FoxO1 and autophagy levels. PMID:22337954

  11. Delphinidin-3-glucoside protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury by autophagy upregulation via the AMPK/SIRT1 signaling pathway.

    PubMed

    Jin, Xin; Chen, Mingliang; Yi, Long; Chang, Hui; Zhang, Ting; Wang, Li; Ma, Wanqiang; Peng, Xiaoli; Zhou, Yong; Mi, Mantian

    2014-10-01

    Oxidized LDL (oxLDL) induced vascular endothelial cell injury is a key event in the pathogenesis of atherosclerosis (AS). In our previous studies, we showed that delphinidin-3-glucoside (Dp), a natural anthocyanin, attenuated oxLDL-induced injury in human umbilical vein endothelial cells (HUVECs), indicating its potential role in preventing AS. However, the involved mechanism is not fully understood. Via methyl thiazolyl tetrazolium and flow cytometry assay, we found that Dp-attenuated oxLDL-induced cell viability decrease and apoptosis in HUVECs. Depending on confocal microscopy, transmission electron microscopy, and Western blot assay, we found that Dp-induced autophagy in HUVECs, whereas suppression of autophagy significantly abolished the protective role of Dp against oxLDL-induced endothelial cell injury. Furthermore, Dp upregulated sirtuin 1 (SIRT1) expression and SIRT1 knockdown notably suppressed Dp-induced autophagy in HUVECs. Dp also increased the expression of phosphorylated adenosine monophosphate-activated protein kinase, while adenosine monophosphate-activated protein kinase (AMPK) knockdown remarkably abolished Dp-induced SIRT1 expression and subsequent autophagy. Our data suggested that Dp protected HUVECs against oxLDL-induced injury by inducing autophagy via the adenosine monophosphate-activated protein kinase/SIRT1 signaling pathway. This new finding might shed light to the prevention and therapy of AS. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Allicin induces anti-human liver cancer cells through the p53 gene modulating apoptosis and autophagy.

    PubMed

    Chu, Yung-Lin; Ho, Chi-Tang; Chung, Jing-Gung; Raghu, Rajasekaran; Lo, Yi-Chen; Sheen, Lee-Yan

    2013-10-16

    Hepatocellular carcinoma (HCC) is the most prevalent type of liver cancer globally and ranks first among the cancer-related mortalities in Taiwan. This study aims to understand the modes of cell death mechanism induced by allicin, a major phytochemical of crushed garlic, in human hepatoma cells. Our earlier study indicated that allicin induced autophagic cell death in human HCC Hep G2 (p53(wild type)) cells, whereas in the present study, allicin induced apoptotic cell death through caspase-dependent and caspase-independent pathways by reactive oxygen species (ROS) overproduction in human HCC Hep 3B (p53(mutation)) cells. To gain insight into the cell death mechanism in p53 knocked down Hep G2, we silenced the p53 gene using siRNA-mediated silencing. Allicin treatment induced apoptotic cell death in p53 knocked down Hep G2 cells similar to that of Hep 3B cells. These results suggest that allicin induced cell death in human hepatoma cells through either autophagy or apoptosis and might be a potential novel complementary gene therapeutic agent for the treatment of apoptosis-resistant cancer cells.

  13. The RB-E2F1 Pathway Regulates Autophagy

    PubMed Central

    Jiang, Hong; Martin, Vanesa; Gomez-Manzano, Candelaria; Johnson, David G.; Alonso, Marta; White, Erin; Xu, Jing; McDonnell, Timothy J.; Shinojima, Naoki; Fueyo, Juan

    2011-01-01

    Autophagy is a protective mechanism that renders cells viable in stressful conditions. Emerging evidence suggests that this cellular process is also a tumor suppressor pathway. Previous studies showed that cyclin-dependent kinase inhibitors (CDKI) induce autophagy. Whether retinoblastoma protein (RB), a key tumor suppressor and downstream target of CDKIs, induces autophagy is not clear. Here, we show that RB triggers autophagy and that the RB activators p16INK4a and p27/kip1 induce autophagy in an RB-dependent manner. RB binding to E2 transcription factor (E2F) is required for autophagy induction and E2F1 antagonizes RB-induced autophagy, leading to apoptosis. Downregulation of E2F1 in cells results in high levels of autophagy. Our findings indicate that RB induces autophagy by repressing E2F1 activity. We speculate that this newly discovered aspect of RB function is relevant to cancer development and therapy. PMID:20807803

  14. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    SciTech Connect

    Malaviya, Rama; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  15. Autophagy Promotes the Repair of Radiation-Induced DNA Damage in Bone Marrow Hematopoietic Cells via Enhanced STAT3 Signaling.

    PubMed

    Xu, Fei; Li, Xin; Yan, Lili; Yuan, Na; Fang, Yixuan; Cao, Yan; Xu, Li; Zhang, Xiaoying; Xu, Lan; Ge, Chaorong; An, Ni; Jiang, Gaoyue; Xie, Jialing; Zhang, Han; Jiang, Jiayi; Li, Xiaotian; Yao, Lei; Zhang, Suping; Zhou, Daohong; Wang, Jianrong

    2017-03-01

    Autophagy protects hematopoietic cells from radiation damage in part by promoting DNA damage repair. However, the molecular mechanisms by which autophagy regulates DNA damage repair remain largely elusive. Here, we report that this radioprotective effect of autophagy depends on STAT3 signaling in murine bone marrow mononuclear cells (BM-MNCs). Specifically, we found that STAT3 activation and nuclear translocation in BM-MNCs were increased by activation of autophagy with an mTOR inhibitor and decreased by knockout of the autophagy gene Atg7. The autophagic regulation of STAT3 activation is likely mediated by induction of KAP1 degradation, because we showed that KAP1 directly interacted with STAT3 in the cytoplasm and knockdown of KAP1 increased the phosphorylation and nuclear translocation of STAT3. Subsequently, activated STAT3 transcriptionally upregulated the expression of BRCA1, which increased the ability of BM-MNCs to repair radiation-induced DNA damage. This novel finding that activation of autophagy can promote DNA damage repair in BM-MNCs via the ATG-KAP1-STAT3-BRCA1 pathway suggests that autophagy plays an important role in maintaining genomic integrity of BM-MNCs and its activation may confer protection of BM-MNCs against radiation-induced genotoxic stress.

  16. Feedback regulation between autophagy and PKA

    PubMed Central

    Torres-Quiroz, Francisco; Filteau, Marie; Landry, Christian R

    2015-01-01

    Protein kinase A (PKA) controls diverse cellular processes and homeostasis in eukaryotic cells. Many processes and substrates of PKA have been described and among them are direct regulators of autophagy. The mechanisms of PKA regulation and how they relate to autophagy remain to be fully understood. We constructed a reporter of PKA activity in yeast to identify genes affecting PKA regulation. The assay systematically measures relative protein-protein interactions between the regulatory and catalytic subunits of the PKA complex in a systematic set of genetic backgrounds. The candidate PKA regulators we identified span multiple processes and molecular functions (autophagy, methionine biosynthesis, TORC signaling, protein acetylation, and DNA repair), which themselves include processes regulated by PKA. These observations suggest the presence of many feedback loops acting through this key regulator. Many of the candidate regulators include genes involved in autophagy, suggesting that not only does PKA regulate autophagy but that autophagy also sends signals back to PKA. PMID:26046386

  17. Inducing autophagy

    PubMed Central

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S

    2014-01-01

    Autophagy is a lysosomal-mediated catabolic process, which through degradation of different cytoplasmic components aids in maintaining cellular homeostasis and survival during exposure to extra- or intracellular stresses. Ammonia is a potential toxic and stress-inducing byproduct of glutamine catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR activity was not affected, but indicated increased MAPK3 activity, regulation of proteins involved in Rho signal transduction, and a novel phosphorylation motif, serine-proline-threonine (SPT), which could be linked to cytoskeleton-associated proteins. MAPK3 could not be identified as the primary driver of ammonia-induced autophagy but instead the data suggested an upregulation of AMPK and the unfolded protein response (UPR), which might link ammonia to autophagy induction. Support of UPR induction was further obtained from the finding of increased protein levels of the ER stress markers DDIT3/CHOP and HSPA5 during ammonia treatment. The large-scale data set presented here comprises extensive high-quality quantitative information on phosphoprotein regulation in response to 2 very different autophagy inducers and should therefore be considered a general resource for the community. PMID:24300666

  18. Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy

    PubMed Central

    Wang, Yu; Cai, Shuyu; Yin, Lingling; Shi, Kai; Xia, Xiaojian; Zhou, Yanhong; Yu, Jingquan; Zhou, Jie

    2015-01-01

    Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomato tolerance to drought stress, in part through its positive role in induction of autophagy under drought stress. HsfA1a expression was induced by drought stress. Virus-induced HsfA1a gene silencing reduced while its overexpression increased plant drought tolerance based on both symptoms and membrane integrity. HsfA1a-silenced plants were more sensitive to endogenous ABA-mediated stomatal closure, while its overexpression lines were resistant under drought stress, indicating that phytohormone ABA did not play a major role in HsfA1a-induced drought tolerance. On the other hand, HsfA1a-silenced plants increased while its overexpression decreased the levels of insoluble proteins which were highly ubiquitinated under drought stress. Furthermore, drought stress induced numerous ATGs expression and autophagosome formation in wild-type plants. The expression of ATG10 and ATG18f, and the formation of autophagosomes were compromised in HsfA1a-silenced plants but were enhanced in HsfA1a-overexpressing plants. Both electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a bound to ATG10 and ATG18f gene promoters. Silencing of ATG10 and ATG18f reduced HsfA1a-induced drought tolerance and autophagosome formation in plants overexpressing HsfA1a. These results demonstrate that HsfA1a induces drought tolerance by activating ATG genes and inducing autophagy, which may promote plant survival by degrading ubiquitinated protein aggregates under drought stress. PMID:26649940

  19. Enhanced autophagy in cytarabine arabinoside-resistant U937 leukemia cells and its potential as a target for overcoming resistance

    PubMed Central

    CHEONG, JUNE-WON; KIM, YUNDEOK; EOM, JU IN; JEUNG, HOI-KYUNG; MIN, YOO HONG

    2016-01-01

    Autophagy is a lysosomal degradation mechanism that is essential for cell survival, differentiation, development, and homeostasis. Autophagy protects cells from various stresses, including protecting normal cells from harmful metabolic conditions, and cancer cells from chemotherapeutics. In the current study, a cytarabine arabinoside (Ara-C)-sensitive U937 leukemia cell line and an Ara-C-resistant U937 (U937/AR) cell line were assessed for baseline autophagy activity by investigating the LC3-I conversion to LC3-II, performing EGFP-LC3 puncta, an acidic autophagolysosome assay, and measuring the expression of various autophagy-related genes. The results demonstrated significantly higher autophagic activity in the U937/AR cells compared with the U937 cells, when the cells were cultured with or without serum. Furthermore, an increase in the autophagic activity in starved U937/AR cells was demonstrated, compared with that in the starved U937 cells. Administration of an autophagy inhibitor demonstrated no change in cell death in the two cell lines when cultured with serum, however, it induced cell death regardless of the Ara-C sensitivity when the cell lines were cultured without serum. In addition, the U937 cells demonstrated an Ara-C resistance when cultured without serum. Co-treatment with Ara-C and the autophagy inhibitor significantly induced cell death in the U937/AR and Ara-C-sensitive U937 cells. In conclusion, autophagy serves an important role in protecting U937 cells from Ara-C and in the development of Ara-C resistance. Inhibition of autophagy combined with the Ara-C treatment in the U937 cells augmented the anti-leukemic effect of Ara-C and overcame Ara-C resistance, suggesting that autophagy may be an important therapeutic target to further improve the treatment outcome in patients with acute myeloid leukemia. PMID:26935591

  20. Basal Autophagy Is Required for Herpes simplex Virus-2 Infection

    PubMed Central

    Yakoub, Abraam M.; Shukla, Deepak

    2015-01-01

    Autophagy is a conserved catabolic process of the cell, which plays an important role in regulating plethora of infections. The role of autophagy in Herpes simplex virus-2 (HSV-2) infection is unknown. Here, we found that HSV-2 does not allow induction of an autophagic response to infection, but maintains basal autophagy levels mostly unchanged during productive infection. Thus, we investigated the importance of basal autophagy for HSV-2 infection, using pharmacological autophagy suppression or cells genetically deficient in an autophagy-essential gene (ATG5). Interference with basal autophagy flux in cells significantly reduced viral replication and diminished the infection. These results indicate that basal autophagy plays an indispensable role required for a productive infection. Importantly, this study draws a sharp distinction between induced and basal autophagy, where the former acts as a viral clearance mechanism abrogating infection, while the latter supports infection. PMID:26248741

  1. Dysregulation of Autophagy, Mitophagy, and Apoptotic Genes in the Medial Temporal Lobe Cortex in an Ischemic Model of Alzheimer’s Disease

    PubMed Central

    Ułamek-Kozioł, Marzena; Kocki, Janusz; Bogucka-Kocka, Anna; Petniak, Alicja; Gil-Kulik, Paulina; Januszewski, Sławomir; Bogucki, Jacek; Jabłoński, Mirosław; Furmaga-Jabłońska, Wanda; Brzozowska, Judyta; Czuczwar, Stanisław J.; Pluta, Ryszard

    2016-01-01

    Ischemic brain damage is a pathological incident that is often linked with medial temporal lobe cortex injury and finally its atrophy. Post-ischemic brain injury associates with poor prognosis since neurons of selectively vulnerable ischemic brain areas are disappearing by apoptotic program of neuronal death. Autophagy has been considered, after brain ischemia, as a guardian against neurodegeneration. Consequently, we have examined changes in autophagy (BECN 1), mitophagy (BNIP 3), and apoptotic (caspase 3) genes in the medial temporal lobe cortex with the use of quantitative reverse-transcriptase PCR following transient 10-min global brain ischemia in rats with survival 2, 7, and 30 days. The intense significant overexpression of BECN 1 gene was noted on the 2nd day, while on days 7–30 the expression of this gene was still upregulated. BNIP 3 gene was downregulated on the 2nd day, but on days 7–30 post-ischemia, there was a significant reverse tendency. Caspase 3 gene, associated with apoptotic neuronal death, was induced in the same way as BNIP 3 gene after brain ischemia. Thus, the demonstrated changes indicate that the considerable dysregulation of expression of BECN 1, BNIP 3, and caspase 3 genes may be connected with a response of neuronal cells in medial temporal lobe cortex to transient complete brain ischemia. PMID:27472881

  2. Molecular cloning and characterization of two novel autophagy-related genes belonging to the ATG8 family from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Flores Fernández, José Miguel; Gutiérrez Ortega, Abel; Rosario Cruz, Rodrigo; Padilla Camberos, Eduardo; Alvarez, Angel H; Martínez Velázquez, Moisés

    2014-12-01

    Rhipicephalus (Boophilus) microplus is an obligate haematophagous arthropod and the major problem for cattle industry due to economic losses it causes. The parasite shows a remarkable adaptability to changing environmental conditions as well as an exceptional ability to survive long-term starvation. This ability has been related to a process of intracellular protein degradation called autophagy. This process in ticks is still poorly understood and only few autophagy-related (ATG) genes have been characterized. The aim of the present study was to examine the ESTs database, BmiGI, of R. microplus searching for ATG homologues. We predicted five putative ATG genes, ATG3, ATG4, ATG6 and two ATG8s. Further characterization led to the identification of RmATG8a and RmATG8b, homologues of GABARAP and MAP1LC3, respectively, and both of them belonging to the ATG8 family. PCR analyses showed that the expression level of RmATG8a and RmATG8b was higher in egg and larval stages when compared to ovary and midgut from adult ticks. This up-regulation coincides with the period in which ticks are in a starvation state, suggesting that autophagy is active in R. microplus.

  3. Molecular characterization and expression analysis of three novel autophagy-related genes from the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae).

    PubMed

    Flores Fernández, José Miguel; Barragán Álvarez, Carla Patricia; Sánchez Hernández, Carla Vanessa; Padilla Camberos, Eduardo; González Castillo, Celia; Ortuño Sahagún, Daniel; Martínez Velázquez, Moisés

    2016-11-01

    The cattle tick Rhipicephalus (Boophilus) microplus is a hematophagous ectoparasite of major importance for the livestock industry. It shows a remarkable ability to survive over long periods without feeding. However, the mechanisms used to endure long-term starvation are poorly understood. It is believed that autophagy, a process of intracellular protein degradation, may play a significant role to confront adverse environmental conditions. To advance our understanding of autophagy in R. microplus, in the present study we report the molecular characterization of three autophagy-related (ATG) genes, namely, RmATG3, RmATG4 and RmATG6, as well as their expression profiles in different developmental stages and organs of the parasite. The deduced amino acid sequences derived from the characterized gene sequences were subjected to Basic Local Alignment Search Tool analysis. The testing produced significant alignments with respective ATG proteins from Haemaphysalis longicornis and Ixodes scapularis ticks. Real-time polymerase chain reaction assays revealed that RmATG4 and RmATG6 transcripts were elevated in egg and ovary tissue, when compared with larva and midgut samples, while RmATG3 expression in midgut was 2-fold higher than in egg, larva and ovary samples.

  4. Autophagy in inflammation, infection, neurodegeneration and cancer.

    PubMed

    Arroyo, Daniela S; Gaviglio, Emilia A; Peralta Ramos, Javier M; Bussi, Claudio; Rodriguez-Galan, Maria C; Iribarren, Pablo

    2014-01-01

    In its classical form, autophagy is an essential, homeostatic process by which cytoplasmic components are degraded in a double-membrane-bound autophagosome in response to starvation. Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. The roles of autophagy bridge both the innate and adaptive immune systems and autophagic dysfunction is associated with inflammation, infection, neurodegeneration and cancer. In this review, we discuss the contribution of autophagy to inflammatory, infectious and neurodegenerative diseases, as well as cancer.

  5. Autophagy: A necessary event during erythropoiesis.

    PubMed

    Grosso, Rubén; Fader, Claudio M; Colombo, María I

    2017-09-01

    Autophagy is a well-known cellular process involved in many physiological and pathological processes. During erythropoiesis, autophagy plays an important role participating in the clearance of unnecessary organelles such as ribosomes and mitochondria (mitophagy) allowing the correct formation of mature red blood cells. The dysfunction of autophagy proteins hamper the correct erythroid maturation, leading to anemia, the release of immature cells from the bone marrow and other hematological abnormalities. Autophagy plays different roles depending on the type of pathology. In leukemia cells, it has been demonstrated that autophagy could be either detrimental, leading to an increase of the apoptosis rate, or protective, acting as a key process that augments proliferation and survival of cancer cells. Thus, understanding the relationship between autophagy and erythropoiesis opens new avenues for the discovery of biochemical and pharmacological targets and for the development of novel therapeutic approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes

    PubMed Central

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E.; Thomas, Paul D.

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This ‘GO Phylogenetic Annotation’ approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations. Database URL: http://amigo.geneontology.org/amigo PMID:28025345

  7. Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway.

    PubMed

    Zhao, Haosen; Chen, Shurui; Gao, Kai; Zhou, Zipeng; Wang, Chen; Shen, Zhaoliang; Guo, Yue; Li, Zhuo; Wan, Zhanghui; Liu, Chang; Mei, Xifan

    2017-04-21

    Spinal cord injury (SCI) is a devastating condition with few effective treatments. Resveratrol, a polyphenolic compound, has exhibited neuroprotective effects in many neurodegenerative diseases. However, the explicit effect and mechanism of resveratrol on SCI is still unclear. Adenosine 5' monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1), the downstream protein, play key roles in metabolizing of energy, resisting of resistance, and cellular protein homeostasis. In this study, we determined the effects of resveratrol on SCI and their potential relationship with SIRT1/AMPK signaling pathway, autophagy and apoptosis. To determine the effect of resveratrol on SCI recovery, a spinal cord contusion model was employed. Rats received treatment with resveratrol or DMSO immediately following contusion. We determined that Basso, Beattie, and Bresnahan (BBB) scores were significantly higher for injured rats treated with resveratrol. Nissl and HE staining revealed that resveratrol treatment significantly reduced the loss of motor neurons and lesion size in the spinal cord of injured rats when compared to vehicle-treated animals. Spinal cord tissue was assessed by Western blot, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemical analyses 7days after injury for changes in expression of SIRT1/AMPK signaling pathway, autophagy and apoptosis proteins. Expression of SIRT1, p-AMPK, Beclin-1, LC3-B, and Bcl-2 was elevated in resveratrol-treated animals, whereas expression of p62, Cleaved Caspase-3, Caspase-9, and Bcl-2 associated X protein (Bax) was inhibited. Immunofluorescence analysis of primary neurons treated with resveratrol alone or in combination with Compound C (AMPK inhibitor) or EX527 (SIRT1 inhibitor) revealed that treatment with the inhibitors blocks the increased LC3-B expression in cells and increases the portion of TUNEL-positive cells. Taken together, these results suggest that resveratrol exerts neuroprotective effects

  8. Canine Hereditary Ataxia in Old English Sheepdogs and Gordon Setters Is Associated with a Defect in the Autophagy Gene Encoding RAB24

    PubMed Central

    Agler, Caryline; Nielsen, Dahlia M.; Urkasemsin, Ganokon; Singleton, Andrew; Tonomura, Noriko; Sigurdsson, Snaevar; Tang, Ruqi; Linder, Keith; Arepalli, Sampath; Hernandez, Dena; Lindblad-Toh, Kerstin; van de Leemput, Joyce; Motsinger-Reif, Alison; O'Brien, Dennis P.; Bell, Jerold; Harris, Tonya; Steinberg, Steven; Olby, Natasha J.

    2014-01-01

    Old English Sheepdogs and Gordon Setters suffer from a juvenile onset, autosomal recessive form of canine hereditary ataxia primarily affecting the Purkinje neuron of the cerebellar cortex. The clinical and histological characteristics are analogous to hereditary ataxias in humans. Linkage and genome-wide association studies on a cohort of related Old English Sheepdogs identified a region on CFA4 strongly associated with the disease phenotype. Targeted sequence capture and next generation sequencing of the region identified an A to C single nucleotide polymorphism (SNP) located at position 113 in exon 1 of an autophagy gene, RAB24, that segregated with the phenotype. Genotyping of six additional breeds of dogs affected with hereditary ataxia identified the same polymorphism in affected Gordon Setters that segregated perfectly with phenotype. The other breeds tested did not have the polymorphism. Genome-wide SNP genotyping of Gordon Setters identified a 1.9 MB region with an identical haplotype to affected Old English Sheepdogs. Histopathology, immunohistochemistry and ultrastructural evaluation of the brains of affected dogs from both breeds identified dramatic Purkinje neuron loss with axonal spheroids, accumulation of autophagosomes, ubiquitin positive inclusions and a diffuse increase in cytoplasmic neuronal ubiquitin staining. These findings recapitulate the changes reported in mice with induced neuron-specific autophagy defects. Taken together, our results suggest that a defect in RAB24, a gene associated with autophagy, is highly associated with and may contribute to canine hereditary ataxia in Old English Sheepdogs and Gordon Setters. This finding suggests that detailed investigation of autophagy pathways should be undertaken in human hereditary ataxia. PMID:24516392

  9. The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling

    PubMed Central

    Saez-Atienzar, S; Bonet-Ponce, L; Blesa, J R; Romero, F J; Murphy, M P; Jordan, J; Galindo, M F

    2014-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been associated with Parkinson's disease, and its inhibition opens potential new therapeutic options. Among the drug inhibitors of both wild-type and mutant LRRK2 forms is the 2-arylmethyloxy-5-subtitutent-N-arylbenzamide GSK257815A. Using the well-established dopaminergic cell culture model SH-SY5Y, we have investigated the effects of GSK2578215A on crucial neurodegenerative features such as mitochondrial dynamics and autophagy. GSK2578215A induces mitochondrial fragmentation of an early step preceding autophagy. This increase in autophagosome results from inhibition of fusion rather than increases in synthesis. The observed effects were shared with LRRK2-IN-1, a well-described, structurally distinct kinase inhibitor compound or when knocking down LRRK2 expression using siRNA. Studies using the drug mitochondrial division inhibitor 1 indicated that translocation of the dynamin-related protein-1 has a relevant role in this process. In addition, autophagic inhibitors revealed the participation of autophagy as a cytoprotective response by removing damaged mitochondria. GSK2578215A induced oxidative stress as evidenced by the accumulation of 4-hydroxy-2-nonenal in SH-SY5Y cells. The mitochondrial-targeted reactive oxygen species scavenger MitoQ positioned these species as second messengers between mitochondrial morphologic alterations and autophagy. Altogether, our results demonstrated the relevance of LRRK2 in mitochondrial-activated pathways mediating in autophagy and cell fate, crucial features in neurodegenerative diseases. PMID:25118928

  10. Identification of autophagy-related genes ATG4 and ATG8 from wheat (Triticum aestivum L.) and profiling of their expression patterns responding to biotic and abiotic stresses.

    PubMed

    Pei, Dan; Zhang, Wei; Sun, Hong; Wei, Xiaojing; Yue, Jieyu; Wang, Huazhong

    2014-10-01

    The genes coding for wheat ATG4 and ATG8 were cloned and their roles in autophagy were verified. Implications of ATG4/ATG8 in wheat responses to stresses were suggested by expression profiling. Autophagy-related proteins ATG4 and ATG8 are crucial for autophagy biogenesis. ATG4 processes ATG8 precursor to expose its C-terminal glycine for phosphatidyl ethanolamine (PE) lipidation. ATG8, in the form of ATG8-PE adduct, functions in the organization dynamics of autophagic membranes. Here, we report the identification of two/nine members of the ATG4/ATG8 family from common wheat (Triticum aestivum L.). Expression of each wheat ATG4/ATG8 could complement the autophagy activity of yeast atg4/atg8 mutant cells. GFP fusion proteins of ATG8s, especially of ATG8s with innate C-terminal-exposed glycines, localized to punctate autophagic membranes. Both of purified ATG4s could cleave ATG8s in vitro, but they had different activities and different preferences for ATG8 substrates. Two times of transcript accumulation, an early one and a late one, of ATG4s/ATG8s were detected in the early phases of the Pm21- and Pm3f-triggered wheat incompatible reactions to the powdery mildew causal fungus Blumeria graminis f. sp. tritici (Bgt), and fluorescence microscopy also revealed a Bgt-induced enhanced wheat autophagy level in the Pm21-triggered incompatible reaction. Only one time of Bgt-induced transcript accumulation of ATG4s/ATG8s, corresponding to but much higher than the late one in incompatible reactions, was detected in a susceptible line isogenic to the Pm21 resistance line. These results suggested positive roles of ATG4/ATG8-associated autophagy process in the early stage and possible negative roles in the late stage of wheat immunity response to Bgt. In addition, expression of wheat ATG4s/ATG8s was also found to be upregulated by abiotic stress factors and distinctively regulated by different phytohormones.

  11. Involvement of autophagy in T cell biology.

    PubMed

    Oral, Ozlem; Yedier, Ozlem; Kilic, Seval; Gozuacik, Devrim

    2017-01-01

    Autophagy is an essential cellular pathway that sequesters various cytoplasmic components, including accumulated proteins, damaged organelles or invading microorganisms and delivers them to lysosomes for degradation. The function of autophagy has been reported in various tissues and systems, including its role in the regulation of cellular immunity. Autophagy plays a fundamental role at various stages of T cell maturation. It regulates the thymocyte selection and the generation of T cell repertoire by presenting intracellular antigens to MHC class molecules. Autophagy is crucial for metabolic regulation of T cells, and therefore supports cell survival and homeostasis, particularly in activated mature T cells. Furthermore, deletion of specific autophagy-related genes induces several immunological alterations including differentiation of activated T cells into regulatory, memory or natural killer T cells. In this review, we emphasize the impact of autophagy on T cell development, activation and differentiation, which is pivotal for the adaptive immune system.

  12. Autophagy-related genes Raptor, Rictor, and Beclin1 expression and relationship with multidrug resistance in colorectal carcinoma.

    PubMed

    Shuhua, Wu; Chenbo, Sun; Yangyang, Li; Xiangqian, Gao; Shuang, He; Tangyue, Li; Dong, Tian

    2015-11-01

    This study aims to evaluate the relationship between the expressions of autophagy-related genes Raptor, Rictor, and Beclin1 and the expression of multidrug resistance (MDR) gene in colorectal cancer (CRC) patients. Immunohistochemistry and real-time polymerase chain reaction were used to detect the protein and messenger RNA expressions of mammalian target of rapamycin (mTOR), Raptor, Rictor, Beclin1, light chain 3 (LC3), and MDR-1 in 279 CRC specimens. Patients were followed up annually by telephone or at an outpatient clinic. Results revealed that the protein and messenger RNA expressions of Beclin1, LC3, mTOR, Raptor, Rictor, and MDR-1 in CRC are significantly higher than in adjacent tissues. LC3 expression in poorly differentiated CRC is higher than that in well-differentiated CRC, and the expression of mTOR, Raptor, Rictor, and LC3 in lymph node metastasis is higher than that obtained in the absence of lymph node metastasis. The expression of LC3 is positively correlated with those of Beclin1 and Rictor and negatively correlated with Raptor and mTOR in CRC. The expression of Raptor is negatively correlated with Rictor. The expression of MDR-1 is positively correlated with those of Beclin1, LC3, and Rictor and negatively correlated with Raptor and mTOR. Kaplan-Meier analysis revealed that the 5-year survival rate of patients without lymph node metastasis; positive expression of Rictor, Beclin1, and LC3; and negative expression of Raptor and mTOR were higher than those with these characteristics. To conclude, the expressions of Beclin1, Raptor, and Rictor are related to the development and progression of colorectal carcinoma and MDR. ( 2014-009-01.). Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora

    PubMed Central

    Voigt, Oliver; Pöggeler, Stefanie

    2013-01-01

    Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions. PMID:23064313

  14. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora.

    PubMed

    Voigt, Oliver; Pöggeler, Stefanie

    2013-01-01

    Autophagy is a tightly controlled degradation process involved in various developmental aspects of eukaryotes. However, its involvement in developmental processes of multicellular filamentous ascomycetes is largely unknown. Here, we analyzed the impact of the autophagic proteins SmATG8 and SmATG4 on the sexual and vegetative development of the filamentous ascomycete Sordaria macrospora. A Saccharomyces cerevisiae complementation assay demonstrated that the S. macrospora Smatg8 and Smatg4 genes can functionally replace the yeast homologs. By generating homokaryotic deletion mutants, we showed that the S. macrospora SmATG8 and SmATG4 orthologs were associated with autophagy-dependent processes. Smatg8 and Smatg4 deletions abolished fruiting-body formation and impaired vegetative growth and ascospore germination, but not hyphal fusion. We demonstrated that SmATG4 was capable of processing the SmATG8 precursor. SmATG8 was localized to autophagosomes, whereas SmATG4 was distributed throughout the cytoplasm of S. macrospora. Furthermore, we could show that Smatg8 and Smatg4 are not only required for nonselective macroautophagy, but for selective macropexophagy as well. Taken together, our results suggest that in S. macrospora, autophagy seems to be an essential and constitutively active process to sustain high energy levels for filamentous growth and multicellular development even under nonstarvation conditions.

  15. Autophagy-related gene16L2, a potential serum biomarker of multiple sclerosis evaluated by bead-based proteomic technology.

    PubMed

    Yin, Linlin; Liu, Jianghong; Dong, Huiqing; Xu, Erhe; Qiao, Yuchen; Wang, Lin; Zhang, Lan; Jia, Jianping; Li, Lin; Geng, Xingchao

    2014-03-06

    Multiple sclerosis (MS) is an autoimmune disease characterized by neuroinflammation and demyelination that are mediated by T cells. The prolonged survival of autoreactive T cells acts as a primary event to trigger an inflammatory cascade that mediates myelin loss and clinical relapse in MS. Recently, T cell survival has been shown to be modulated by the autophagy-related gene (Atg). In the present study, we performed bead fractionation/matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analyses using serum from 54 MS patients and 55 healthy controls. Eleven peptides were significantly different between the two groups with one being identified as a fragment of Atg16L2. Then the decreased levels of Atg16L2 peptides in MS patients were validated by immunoblotting and real-time PCR. As the Atg12-Atg5·Atg16 multimeric complex plays an essential role in autophagy, our results suggest that Atg16L2 may play an important role in autophagy of T cells and serve as a potential biomarker to predict clinical relapse of MS.

  16. Targeted cytoplasmic irradiation and autophagy.

    PubMed

    Wu, Jinhua; Zhang, Bo; Wuu, Yen-Ruh; Davidson, Mercy M; Hei, Tom K

    2017-03-01

    The effect of ionizing irradiation on cytoplasmic organelles is often underestimated because the general dogma considers direct DNA damage in the nuclei to be the primary cause of radiation induced toxicity. Using a precision microbeam irradiator, we examined the changes in mitochondrial dynamics and functions triggered by targeted cytoplasmic irradiation with α-particles. Mitochondrial dysfunction induced by targeted cytoplasmic irradiation led to activation of autophagy, which degraded dysfunctional mitochondria in order to maintain cellular energy homeostasis. The activation of autophagy was cytoplasmic irradiation-specific and was not detected in nuclear irradiated cells. This autophagic process was oxyradical-dependent and required the activity of the mitochondrial fission protein dynamin related protein 1 (DRP1). The resultant mitochondrial fission induced phosphorylation of AMP activated protein kinase (AMPK) which leads to further activation of the extracellular signal-related kinase (ERK) 1/2 with concomitant inhibition of the mammalian target of rapamycin (mTOR) to initiate autophagy. Inhibition of autophagy resulted in delayed DNA damage repair and decreased cell viability, which supports the cytoprotective function of autophagy. Our results reveal a novel mechanism in which dysfunctional mitochondria are degraded by autophagy in an attempt to protect cells from toxic effects of targeted cytoplasmic radiation.

  17. Mechanism of action of the tuberculosis and Crohn disease risk factor IRGM in autophagy.

    PubMed

    Chauhan, Santosh; Mandell, Michael A; Deretic, Vojo

    2016-01-01

    Polymorphisms in the IRGM gene, associated with Crohn disease (CD) and tuberculosis, are among the earliest identified examples documenting the role of autophagy in human disease. Functional studies have shown that IRGM protects against these diseases by modulating autophagy, yet the exact molecular mechanism of IRGM's activity has remained unknown. We have recently elucidated IRGM's mechanism of action. IRGM functions as a platform for assembling, stabilizing, and activating the core autophagic machinery, while at the same time physically coupling it to conventional innate immunity receptors. Exposure to microbial products or bacterial invasion increases IRGM expression, which leads to stabilization of AMPK. Specific protein-protein interactions and post-translational modifications such as ubiquitination of IRGM, lead to a co-assembly with IRGM of the key autophagy regulators ULK1 and BECN1 in their activated forms. IRGM physically interacts with 2 other CD risk factors, ATG16L1 and NOD2, placing these 3 principal players in CD within the same molecular complex. This explains how polymorphisms altering expression or function of any of the 3 factors individually can affect the same process-autophagy. Furthermore, IRGM's interaction with NOD2, and additional pattern recognition receptors such as NOD1, RIG-I, and select TLRs, transduces microbial signals to the core autophagy apparatus. This work solves the long-standing enigma of how IRGM controls autophagy.

  18. Suppression of T Cell Autophagy Results in Decreased Viability and Function of T Cells Through Accelerated Apoptosis in a Murine Sepsis Model*

    PubMed Central

    Oami, Takehiko; Hatano, Masahiko; Sunahara, Satoshi; Fujimura, Lisa; Sakamoto, Akemi; Ito, Chizuru; Toshimori, Kiyotaka; Oda, Shigeto

    2017-01-01

    Objective: While type 1 programmed cell death (apoptosis) of T cells leads to immunosuppression in sepsis, a crosstalk between apoptosis and autophagy (type 2 programmed cell death) has not been shown. The aim of this study is to elucidate the details of the interaction between autophagy and immunosuppression. Design: Laboratory investigation in the murine sepsis model. Setting: University laboratory. Subjects: Six- to 8-week-old male mice. Interventions: We investigated the kinetics of autophagy in T cells from spleen in a cecal ligation and puncture model with green fluorescent protein-microtubule-associated protein light chain 3 transgenic mice. We analyzed apoptosis, mitochondrial homeostasis and cytokine production in T cells, and survival rate after cecal ligation and puncture using T cell–specific autophagy-deficient mice. Measurements and Main Results: We observed an increase of autophagosomes, which was assessed by flow cytometry. However, an autophagy process in CD4+ T cells during sepsis was insufficient including the accumulation of p62. On the other hand, a blockade of autophagy accelerated T cell apoptosis compared with the control mice, augmenting the gene expression of Bcl-2-like 11 and programmed cell death 1. Furthermore, mitochondrial accumulation in T cells occurred via a blockade of autophagy during sepsis. In addition, interleukin-10 production in CD4+ T cells from the cecal ligation and puncture–operated knockout mice was markedly increased. Consequently, deficiency of autophagy in T cells significantly decreased the survival rate in the murine sepsis model. Conclusions: We demonstrated that blocking autophagy accelerated apoptosis and increased mortality in concordance with the insufficient autophagy process in CD4+ T cells in the murine sepsis model, suggesting that T cell autophagy plays a protective role against apoptosis and immunosuppression in sepsis. PMID:27618275

  19. Disruption of autophagy by the histone deacetylase inhibitor MGCD0103 and its therapeutic implication in B-cell chronic lymphocytic leukemia.

    PubMed

    El-Khoury, V; Pierson, S; Szwarcbart, E; Brons, N H C; Roland, O; Cherrier-De Wilde, S; Plawny, L; Van Dyck, E; Berchem, G

    2014-08-01

    Evading apoptosis is a hallmark of B-cell chronic lymphocytic leukemia (CLL) cells and an obstacle to current chemotherapeutic approaches. Inhibiting histone deacetylase (HDAC) has emerged as a promising strategy to induce cell death in malignant cells. We have previously reported that the HDAC inhibitor MGCD0103 induces CLL cell death by activating the intrinsic pathway of apoptosis. Here, we show that MGCD0103 decreases the autophagic flux in primary CLL cells. Activation of the PI3K/AKT/mTOR pathway, together with the activation of caspases, and to a minor extent CAPN1, resulting in cleavage of autophagy components, were involved in MGCD0103-mediated inhibition of autophagy. In addition, MGCD0103 directly modulated the expression of critical autophagy genes at the transcriptional level that may contribute to autophagy impairment. Besides, we demonstrate that autophagy is a pro-survival mechanism in CLL whose disruption potentiates cell death induced by anticancer molecules including HDAC and cyclin-dependent kinase inhibitors. In particular, our data highlight the therapeutic potential of MGCD0103 as not only an inducer of apoptosis but also an autophagy suppressor in both combination regimens with molecules like flavopiridol, known to induce protective autophagy in CLL cells, or as an alternative to circumvent undesired immunomodulatory effects seen in the clinic with conventional autophagy inhibitors.

  20. Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis

    PubMed Central

    Iannaccone, Alessandro; Giorgianni, Francesco; New, David D.; Hollingsworth, T. J.; Umfress, Allison; Alhatem, Albert H.; Neeli, Indira; Lenchik, Nataliya I.; Jennings, Barbara J.; Calzada, Jorge I.; Satterfield, Suzanne; Mathews, Dennis; Diaz, Rocio I.; Harris, Tamara; Johnson, Karen C.; Charles, Steve; Kritchevsky, Stephen B.; Gerling, Ivan C.; Beranova-Giorgianni, Sarka; Radic, Marko Z.

    2015-01-01

    role of inflammation and the immune system in AMD pathogenesis, AAbs were identified in AMD sera, including early-stage disease. Identified targets may be mechanistically linked to AMD pathogenesis because the identified proteins are implicated in autophagy, immunomodulation, and protection from oxidative stress and apoptosis. In particular, a role in autophagy activation is shared by all five autoantigens, raising the possibility that the detected AAbs may play a role in AMD via autophagy compromise and downstream activation of the inflammasome. Thus, we propose that the detected AAbs provide further insight into AMD pathogenesis and have the potential to contribute to disease biogenesis and progression. PMID:26717306

  1. Reduction of autophagy markers mediated protective effects of JNK inhibitor and bucladesine on memory deficit induced by Aβ in rats.

    PubMed

    Mohammadi, M; Guan, J; Khodagholi, F; Yans, A; Khalaj, S; Gholami, M; Taghizadeh, G H; Aliaghaei, A; Abdollahi, M; Ghahremani, M H; Sharifzadeh, M

    2016-05-01

    Autophagy, the process of self-degradation of cellular components, has an important role in neurodegenerative diseases, such as Alzheimer's disease. In this study, we investigated the effects of SP600125 as c-Jun N-terminal kinase (JNK) inhibitor and bucladesine as a cyclic adenosine 3',5'-monophosphate (cAMP) analog on spatial memory and expression of autophagic factors in Aβ-injected rats. Male Wistar rats were used. Rats were randomly allocated into five groups as following: amyloid beta (Aβ)-only group, Aβ + SP600125 (30 μg/1 μ/side, n = 7) and/or bucladesine (100 μM/1 μl/side, n = 7), and the normal control (vehicle only) group. The treatments were administered bilaterally to the CA1 sub-region of the hippocampus stereotaxically. Spatial reference memory was performed using Morris Water Maze 21 days later. The expression of authophagy markers (beclin1, Atg7, Atg12, and LC3 II/LC3 I) in the hippocampus was evaluated using western blotting. Compared to the vehicle group, Aβ administration reduced spatial reference learning (P < 0.001) and memory (P < 0.01) and upregulated the expression of beclin1, Atg7, Atg12, and LC3 II/I (P < 0.0001). Compare to Aβ-only group, the administration of SP600125 and/or bucladesine improved spatial reference learning (P < 0.001) and memory (P < 0.01). Compared to the Aβ-only group, the treatment with SP600125 and/or bucladesine also reduced beclin1, Atg7, Atg12, and LC3 II/I (P < 0.0001) which was similar to amount of normal rats. In summary, it seems that the improvement of spatial memory by SP600125 and/or bucladesine in Aβ-injected rats is in relation with normalizing of autophagy to the physiologic level, possibly through neuroprotection and/or neuroplasticity.

  2. Recent insights into the function of autophagy in cancer

    PubMed Central

    Amaravadi, Ravi; Kimmelman, Alec C.; White, Eileen

    2016-01-01

    Macroautophagy (referred to here as autophagy) is induced by starvation to capture and degrade intracellular proteins and organelles in lysosomes, which recycles intracellular components to sustain metabolism and survival. Autophagy also plays a major homeostatic role in controlling protein and organelle quality and quantity. Dysfunctional autophagy contributes to many diseases. In cancer, autophagy can be neutral, tumor-suppressive, or tumor-promoting in different contexts. Large-scale genomic analysis of human cancers indicates that the loss or mutation of core autophagy genes is uncommon, whereas oncogenic events that activate autophagy and lysosomal biogenesis have been identified. Autophagic flux, however, is difficult to measure in human tumor samples, making functional assessment of autophagy problematic in a clinical setting. Autophagy impacts cellular metabolism, the proteome, and organelle numbers and quality, which alter cell functions in diverse ways. Moreover, autophagy influences the interaction between the tumor and the host by promoting stress adaptation and suppressing activation of innate and adaptive immune responses. Additionally, autophagy can promote a cross-talk between the tumor and the stroma, which can support tumor growth, particularly in a nutrient-limited microenvironment. Thus, the role of autophagy in cancer is determined by nutrient availability, microenvironment stress, and the presence of an immune system. Here we discuss recent developments in the role of autophagy in cancer, in particular how autophagy can promote cancer through suppressing p53 and preventing energy crisis, cell death, senescence, and an anti-tumor immune response. PMID:27664235

  3. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury

    PubMed Central

    Chen-Scarabelli, Carol; Agrawal, Pratik R.; Saravolatz, Louis; Abuniat, Cadigia; Scarabelli, Gabriele; Stephanou, Anastasis; Loomba, Leena; Narula, Jagat; Scarabelli, Tiziano M.; Knight, Richard

    2014-01-01

    A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cytoplasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated catabolic cellular ‘housekeeping’ process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protective mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the variability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic manipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling. PMID:25593583

  4. Enhanced autophagy in cytarabine arabinoside-resistant U937 leukemia cells and its potential as a target for overcoming resistance.

    PubMed

    Cheong, June-Won; Kim, Yundeok; Eom, Ju In; Jeung, Hoi-Kyung; Min, Yoo Hong

    2016-04-01

    Autophagy is a lysosomal degradation mechanism that is essential for cell survival, differentiation, development, and homeostasis. Autophagy protects cells from various stresses, including protecting normal cells from harmful metabolic conditions, and cancer cells from chemotherapeutics. In the current study, a cytarabine arabinoside (Ara‑C)‑sensitive U937 leukemia cell line and an Ara‑C‑resistant U937 (U937/AR) cell line were assessed for baseline autophagy activity by investigating the LC3‑I conversion to LC3‑II, performing EGFP‑LC3 puncta, an acidic autophagolysosome assay, and measuring the expression of various autophagy‑related genes. The results demonstrated significantly higher autophagic activity in the U937/AR cells compared with the U937 cells, when the cells were cultured with or without serum. Furthermore, an increase in the autophagic activity in starved U937/AR cells was demonstrated, compared with that in the starved U937 cells. Administration of an autophagy inhibitor demonstrated no change in cell death in the two cell lines when cultured with serum, however, it induced cell death regardless of the Ara‑C sensitivity when the cell lines were cultured without serum. In addition, the U937 cells demonstrated an Ara‑C resistance when cultured without serum. Co‑treatment with Ara‑C and the autophagy inhibitor significantly induced cell death in the U937/AR and Ara‑C‑sensitive U937 cells. In conclusion, autophagy serves an important role in protecting U937 cells from Ara‑C and in the development of Ara‑C resistance. Inhibition of autophagy combined with the Ara‑C treatment in the U937 cells augmented the anti‑leukemic effect of Ara‑C and overcame Ara‑C resistance, suggesting that autophagy may be an important therapeutic target to further improve the treatment outcome in patients with acute myeloid leukemia.

  5. FGF signalling regulates bone growth through autophagy.

    PubMed

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

  6. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways.

    PubMed

    Zhang, Jianbin; Ng, Shukie; Wang, Jigang; Zhou, Jing; Tan, Shi-Hao; Yang, Naidi; Lin, Qingsong; Xia, Dajing; Shen, Han-Ming

    2015-04-03

    Autophagy is a catabolic process in response to starvation or other stress conditions to sustain cellular homeostasis. At present, histone deacetylase inhibitors (HDACIs) are known to induce autophagy in cells through inhibition of mechanistic target of rapamycin (MTOR) pathway. FOXO1, an important transcription factor regulated by AKT, is also known to play a role in autophagy induction. At present, the role of FOXO1 in the HDACIs-induced autophagy has not been reported. In this study, we first observed that HDACIs increased the expression of FOXO1 at the mRNA and protein level. Second, we found that FOXO1 transcriptional activity was enhanced by HDACIs, as evidenced by increased FOXO1 nuclear accumulation and transcriptional activity. Third, suppression of FOXO1 function by siRNA knockdown or by a chemical inhibitor markedly blocked HDACIs-induced autophagy. Moreover, we found that FOXO1-mediated autophagy is achieved via its transcriptional activation, leading to a dual effect on autophagy induction: (i) enhanced expression of autophagy-related (ATG) genes, and (ii) suppression of MTOR via transcription of the SESN3 (sestrin 3) gene. Finally, we found that inhibition of autophagy markedly enhanced HDACIs-mediated cell death, indicating that autophagy serves as an important cell survival mechanism. Taken together, our studies reveal a novel function of FOXO1 in HDACIs-mediated autophagy in human cancer cells and thus support the development of a novel therapeutic strategy by combining HDACIs and autophagy inhibitors in cancer therapy.

  7. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition.

    PubMed

    He, Jiangping; Zhang, Guangya; Pang, Qi; Yu, Cong; Xiong, Jie; Zhu, Jing; Chen, Fengling

    2017-03-09

    SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway. This article is protected by copyright. All rights reserved.

  8. Beyond autophagy

    PubMed Central

    Liang, Chengyu; Sir, Donna; Lee, Steven; Ou, Jing-hsiung James; Jung, Jae U.

    2009-01-01

    Autophagy is a lysosome-directed membrane trafficking event for the degradation of cytoplasmic components, including organelles. The past few years have seen a great advance in our understanding of the cellular machinery of autophagosome biogenesis, the hallmark of autophagy. However, our global understanding of autophagosome maturity remains relatively poor and fragmented. The topological similarity of autophagosome and endosome delivery to lysosomes suggests that autophagic and endosomal maturation may have evolved to share associated machinery to promote the lysosomal delivery of their cargoes. We have recently discovered that UVRAG, originally identified as a Beclin 1-binding autophagy protein, appears to be an important factor in autophagic and endosomal trafficking through its interaction with the class C Vps tethering complex. Given the ability of UVRAG to bind Beclin 1 and the class C Vps complex in a genetically and functionally separable manner, it may serve as an important regulator for the spatial and/or temporal control of diverse cellular trafficking events. As more non-autophagic functions of UVRAG are unveiled, our understanding of seemingly different cellular processes may move a step further. PMID:18612260

  9. Autophagy in the regulation of pathogen replication and adaptive immunity

    PubMed Central

    Randow, Felix; Münz, Christian

    2012-01-01

    Autophagy is an evolutionary conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes. Autophagy may have evolved as a nutrient-providing homeostatic pathway induced upon starvation, but with the acquisition of cargo-receptors autophagy has become an important cellular defence mechanism as well as a generator of antigenic peptides for MHC presentation. We propose that autophagy efficiently protects against microbes encountering the cytosolic environment accidentally, for example upon phagosomal damage, while pathogens routinely accessing the host cytosol have evolved to avoid or even benefit from autophagy. PMID:22796170

  10. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    SciTech Connect

    Sobhakumari, Arya; Schickling, Brandon M.; Love-Homan, Laurie; Raeburn, Ayanna; Fletcher, Elise V.M.; Case, Adam J.; Domann, Frederick E.; Miller, Francis J.; and others

    2013-11-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy.

  11. Depletion of autophagy-related genes ATG3 and ATG5 in Tenebrio molitor leads to decreased survivability against an intracellular pathogen, Listeria monocytogenes.

    PubMed

    Tindwa, Hamisi; Jo, Yong Hun; Patnaik, Bharat Bhusan; Noh, Mi Young; Kim, Dong Hyun; Kim, Iksoo; Han, Yeon Soo; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung

    2015-01-01

    Macroautophagy (autophagy) is an evolutionarily conserved catabolic process involved in physiological and developmental processes including cell survival, death, and innate immunity. Homologues of most of 36 originally discovered autophagy-related (ATG) genes in yeast have been characterized in higher eukaryotes including insects. In this study, the homologues of ATG3 (TmATG3) and ATG5 (TmATG5) were isolated from the coleopteran beetle, Tenebrio molitor by expressed sequence tag and RNAseq approaches. The cDNA of TmATG3 and TmATG5 comprise open-reading frame sizes of 963 and 792 bp encoding polypeptides of 320 and 263 amino acid residues, respectively. TmATG3 and TmATG5 mRNA are expressed in all developmental stages, and mainly in fat body and hemocytes of larvae. TmATG3 and TmATG5 showed an overall sequence identity of 58-95% to other insect Atg proteins. There exist clear one-to-one orthologs of TmATG3 and TmATG5 in Tribolium and that they clustered together in the gene tree. Depletion of TmATG3 and TmATG5 by RNA interference led to a significant reduction in survival ability of T. molitor larvae against an intracellular pathogen, Listeria monocytogenes. Six days post-Listeria challenge, the survival rate in the dsEGFP-injected (where EGFP is enhanced green fluorescent protein) control larvae was significantly higher (55%) compared to 4 and 3% for TmATG3 and TmATG5 double-stranded RNA injected larvae, respectively. These data suggested that TmATG3 and TmATG5 may play putative role in mediating autophagy-based clearance of Listeria in T. molitor model. © 2014 Wiley Periodicals, Inc.

  12. Mosaic tetracycline resistance genes encoding ribosomal protection proteins

    PubMed Central

    Warburton, Philip J.; Amodeo, Nina; Roberts, Adam P.

    2016-01-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria. PMID:27494928

  13. Mosaic tetracycline resistance genes encoding ribosomal protection proteins.

    PubMed

    Warburton, Philip J; Amodeo, Nina; Roberts, Adam P

    2016-12-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.

  14. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation

    PubMed Central

    Wang, Lin; Shen, Mingzhi; Guo, Xiaowang; Wang, Bo; Xia, Yuesheng; Wang, Ning; Zhang, Qian; Jia, Lintao; Wang, Xiaoming

    2017-01-01

    Hyperglycemia is a well-characterized contributing factor for cardiac dysfunction and heart failure among diabetic patients. Apoptosis of cardiomyocytes plays a major role during the onset and pathogenesis of diabetic cardiomyopathy (DCM). Nonetheless, the molecular machinery underlying hyperglycemia-induced cardiac damage and cell death remains elusive. In the present study, we found that chloride channel blockers, 4,4′-diisothiocya-natostilbene-2,2′- disulfonic acid (DIDS) and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), inhibited high glucose-activated volume-sensitive outwardly rectifying (VSOR) Cl− channel and improved the viability of cardiomyocytes. High glucose induced cardiomyocyte apoptosis by suppressing the autophagic stress, which can be reversed via blockade of VSOR Cl− channel. VSOR activation in high glucose-treated cardiomyocytes was attributed to increased intracellular levels of reactive oxygen species (ROS). Taken together, our study unraveled a role of VSOR chloride currents in impaired autophagy and increased apoptosis of high glucose-exposed cardiomyocyte, and has implications for a therapeutic potential of VSOR chloride channel blockers in DCM. PMID:28300155

  15. Testing the "garbage" accumulation theory of ageing: mitotic activity protects cells from death induced by inhibition of autophagy.

    PubMed

    Stroikin, Yuri; Dalen, Helge; Brunk, Ulf T; Terman, Alexei

    2005-01-01

    Imperfect autophagic degradation of oxidatively damaged macromolecules and organelles (so-called biological "garbage") is considered an important contributor to ageing and consequent death of postmitotic (non-dividing) cells, such as neurons and cardiac myocytes. In contrast, proliferating cells apparently escape senescence by a continuous dilution and repair of damaged structures during division. Postmitotic ageing can be mimicked and studied in cultures of potentially dividing cells if their mitotic activity is inhibited. To test the "garbage accumulation" theory of ageing, we compared survival of density-dependent growth-arrested (confluent) and proliferating human fibroblasts and astrocytes following inhibition of autophagic sequestration with 3-methyladenine (3MA). Exposure of confluent fibroblast cultures to 3MA for two weeks resulted in a significantly increased proportion of dying cells compared to both untreated confluent cultures and dividing cells with 3MA-inhibited autophagy. Similar results were obtained when autophagic degradation was suppressed by the protease inhibitor leupeptin. In 3MA- or leupeptin-exposed cultures, dying cells were overloaded with undegraded autofluorescent material. The results support a key role of biological lysosomal "garbage" accumulation in the triggering of ageing and death of postmitotic cells, as well as the anti-ageing role of cell division.

  16. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy.

    PubMed

    Ossareh-Nazari, Batool; Niño, Carlos A; Bengtson, Mario H; Lee, Joong-Won; Joazeiro, Claudio A P; Dargemont, Catherine

    2014-03-17

    Autophagy, the process by which proteins or organelles are engulfed by autophagosomes and delivered for vacuolar/lysosomal degradation, is induced to ensure survival under starvation and other stresses. A selective autophagic pathway for 60S ribosomal subunits elicited by nitrogen starvation in yeast-ribophagy-was recently described and requires the Ubp3-Bre5 deubiquitylating enzyme. This discovery implied that an E3 ligases act upstream, whether inhibiting the process or providing an initial required signal. In this paper, we show that Ltn1/Rkr1, a 60S ribosome-associated E3 implicated in translational surveillance, acts as an inhibitor of 60S ribosomal subunit ribophagy and is antagonized by Ubp3. The ribosomal protein Rpl25 is a relevant target. Its ubiquitylation is Ltn1 dependent and Ubp3 reversed, and mutation of its ubiquitylation site rendered ribophagy less dependent on Ubp3. Consistently, the expression of Ltn1-but not Ubp3-rapidly decreased after starvation, presumably to allow ribophagy to proceed. Thus, Ltn1 and Ubp3-Bre5 likely contribute to adapt ribophagy activity to both nutrient supply and protein translation.

  17. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation.

    PubMed

    Wang, Lin; Shen, Mingzhi; Guo, Xiaowang; Wang, Bo; Xia, Yuesheng; Wang, Ning; Zhang, Qian; Jia, Lintao; Wang, Xiaoming

    2017-03-16

    Hyperglycemia is a well-characterized contributing factor for cardiac dysfunction and heart failure among diabetic patients. Apoptosis of cardiomyocytes plays a major role during the onset and pathogenesis of diabetic cardiomyopathy (DCM). Nonetheless, the molecular machinery underlying hyperglycemia-induced cardiac damage and cell death remains elusive. In the present study, we found that chloride channel blockers, 4,4'-diisothiocya-natostilbene-2,2'- disulfonic acid (DIDS) and 4-(2-butyl-6,7-dichlor-2-cyclopentyl-indan-1-on-5-yl) oxybutyric acid (DCPIB), inhibited high glucose-activated volume-sensitive outwardly rectifying (VSOR) Cl(-) channel and improved the viability of cardiomyocytes. High glucose induced cardiomyocyte apoptosis by suppressing the autophagic stress, which can be reversed via blockade of VSOR Cl(-) channel. VSOR activation in high glucose-treated cardiomyocytes was attributed to increased intracellular levels of reactive oxygen species (ROS). Taken together, our study unraveled a role of VSOR chloride currents in impaired autophagy and increased apoptosis of high glucose-exposed cardiomyocyte, and has implications for a therapeutic potential of VSOR chloride channel blockers in DCM.

  18. Functions of Autophagy in Pathological Cardiac Hypertrophy

    PubMed Central

    Li, Zhenhua; Wang, Jian; Yang, Xiao

    2015-01-01

    Pathological cardiac hypertrophy is the response of heart to various biomechanical and physiopathological stimuli, such as aging, myocardial ischemia and hypertension. However, a long-term exposure to the stress makes heart progress to heart failure. Autophagy is a dynamic self-degradative process necessary for the maintenance of cellular homeostasis. Accumulating evidence has revealed a tight link between cardiomyocyte autophagy and cardiac hypertrophy. Sophisticatedly regulated autophagy protects heart from various physiological and pathological stimuli by degradating and recycling of protein aggregates, lipid drops, or organelles. Here we review the recent progresses concerning the functions of autophagy in cardiac hypertrophy induced by various hypertrophic stimuli. Moreover, the therapeutic strategies targeting autophagy for cardiac hypertrophy will also be discussed. PMID:25999790

  19. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  20. Estradiol inhibits osteoblast apoptosis via promotion of autophagy through the ER-ERK-mTOR pathway.

    PubMed

    Yang, Yue-Hua; Chen, Ke; Li, Bo; Chen, Jiang-Wei; Zheng, Xin-Feng; Wang, Yu-Ren; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2013-11-01

    Estradiol could protect osteoblast against apoptosis, and apoptosis and autophagy were extensively and intimately connected. The aim of the present study was to test the hypothesis that autophagy was present in osteoblasts under serum deprivation and estrogen protected against osteoblast apoptosis via promotion of autophagy. MC3T3-E1 osteoblastic cells were cultured in a serum-free and phenol red-free minimal essential medium (α-MEM). Ultrastructural analysis, lysosomal activity assessment and monodansycadaverine (MDC) staining were employed to determine the presence of autophagy, and real time PCR was used to evaluate the expression of autophagic markers. Meanwhile, the osteoblasts were transferred in a serum-free and phenol red-free α-MEM containing either vehicle or estradiol. Apoptosis and autophagy was assessed by using the techniques of real-time PCR, Western blot, immunofluorescence assay, and flow cytometry. The possible pathway through which estrogen promoted autophagy in the serum-deprived osteoblasts was also investigated. Real-time PCR demonstrated the expression of LC3, beclin1 and ULK1 genes in osteoblasts under serum deprivation, and immunofluorescence assay verified high expression of proteins of these three autophagic bio-markers. Lysosomes and autolysosomes accumulated in the cytoplasm of osteoblasts were also detected under transmission electron microscopy, MDC staining and lysosomal activity assessment. Meanwhile, estradiol significantly decreased the expression of proteins of the bio-markers of apoptosis, and at the same time increased the expression of proteins of the bio-markers of autophagy in the serum-deprived osteoblasts. Furthermore, the estradiol-promoted autophagy in serum-deprived osteoblasts could be blocked by estrogen receptor (ER) antagonist (ICI 182780), and estradiol failed to rescue the cells pretreated with an inhibitor of vacuolar ATPase (bafilomycin A) from apoptosis. Serum deprivation resulted in apoptosis through

  1. bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora.

    PubMed

    Voigt, Oliver; Herzog, Britta; Jakobshagen, Antonia; Pöggeler, Stefanie

    2013-12-01

    Autophagy is a precisely controlled degradation process in eukaryotic cells, during which the bulk of the cytoplasm is engulfed by a double membrane vesicle, the autophagosome. Fusion of the autophagosome with the vacuole leads to breakdown of its contents, such as proteins and organelles, and the recycling of nutrients. Earlier studies of autophagic genes of the core autophagic machinery in the filamentous ascomycete Sordaria macrospora elucidated the impact of autophagy on fungal viability, vegetative growth and fruiting-body development. To gain further knowledge about the regulation of autophagy in S. macrospora, we analyzed the function of the bZIP transcription factor SmJLB1, a homolog of the Podospora anserina basic zipper-type transcription factor induced during incompatibility 4 (IDI-4) and the Aspergillus nidulans transcription factor jun-like bZIP A (JlbA). Generation of the homokaryotic deletion mutant demonstrated S. macrospora Smjlb1 is associated with autophagy-dependent processes. Deletion of Smjlb1 abolished fruiting-body formation and impaired vegetative growth. SmJLB1 is localized to the cytoplasm and to nuclei. Quantitative real-time PCR experiments revealed an upregulated expression of autophagy-related genes Smatg8 and Smatg4 in the Smjlb1 deletion mutant, suggesting a transcriptional repression function of SmJLB1. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster.

    PubMed

    M'Angale, P G; Staveley, B E

    2016-10-24

    Autophagy is a cellular mechanism implicated in the pathology of Parkinson's disease. The proteins Atg6 (Beclin 1) and Pi3K59F are involved in autophagosome formation, a key step in the initiation of autophagy. We first used the GMR-Gal4 driver to determine the effect of reducing the expression of the genes encoding these proteins on the developing Drosophila melanogaster eye. Subsequently, we inhibited their expression in D. melanogaster neurons under the direction of a Dopa decarboxylase (Ddc) transgene, and examined the effects on longevity and motor function. Decreased longevity coupled with an age-dependent loss of climbing ability was observed. In addition, we investigated the roles of these genes in the well-studied α-synuclein-induced Drosophila model of Parkinson's disease. In this context, lowered expression of Atg6 or Pi3K59F in Ddc-Gal4-expressing neurons results in decreased longevity and associated age-dependent loss of locomotor ability. Inhibition of Atg6 or Pi3K59F together with overexpression of the sole pro-survival Bcl-2 Drosophila homolog Buffy in Ddc-Gal4-expressing neurons resulted in further decrease in the survival and climbing ability of Atg6-RNAi flies, whereas these measures were ameliorated in Pi3K59F-RNAi flies.

  3. Autophagy: molecular machinery for self-eating

    PubMed Central

    Yorimitsu, T; Klionsky, DJ

    2006-01-01

    Autophagy is a highly conserved process in eukaryotes in which the cytoplasm, including excess or aberrant organelles, is sequestered into double-membrane vesicles and delivered to the degradative organelle, the lysosome/vacuole, for breakdown and eventual recycling of the resulting macromolecules. This process has an important role in various biological events such as adaptation to changing environmental conditions, cellular remodeling during development and differentiation, and determination of lifespan. Auto-phagy is also involved in preventing certain types of disease, although it may contribute to some pathologies. Recent studies have identified many components that are required to drive this complicated cellular process. Autophagy-related genes were first identified in yeast, but homologs are found in all eukaryotes. Analyses in a range of model systems have provided huge advances toward understanding the molecular basis of autophagy. Here we review our current knowledge on the machinery and molecular mechanism of autophagy. PMID:16247502

  4. Endocytosis and Autophagy: Exploitation or Cooperation?

    PubMed Central

    Tooze, Sharon A.; Abada, Adi; Elazar, Zvulun

    2014-01-01

    Autophagy is a lysosome-mediated degradative system that is a highly conserved pathway present in all eukaryotes. In all cells, double-membrane autophagosomes form and engulf cytoplasmic components, delivering them to the lysosome for degradation. Autophagy is essential for cell health and can be activated to function as a recycling pathway in the absence of nutrients or as a quality-control pathway to eliminate damaged organelles or even to eliminate invading pathogens. Autophagy was first identified as a pathway in mammalian cells using morphological techniques, but the Atg (autophagy-related) genes required for autophagy were identified in yeast genetic screens. Despite tremendous advances in elucidating the function of individual Atg proteins, our knowledge of how autophagosomes form and subsequently interact with the endosomal pathway has lagged behind. Recent progress toward understanding where and how both the endocytotic and autophagic pathways overlap is reviewed here. PMID:24789822

  5. Endocytosis and autophagy: exploitation or cooperation?

    PubMed

    Tooze, Sharon A; Abada, Adi; Elazar, Zvulun

    2014-05-01

    Autophagy is a lysosome-mediated degradative system that is a highly conserved pathway present in all eukaryotes. In all cells, double-membrane autophagosomes form and engulf cytoplasmic components, delivering them to the lysosome for degradation. Autophagy is essential for cell health and can be activated to function as a recycling pathway in the absence of nutrients or as a quality-control pathway to eliminate damaged organelles or even to eliminate invading pathogens. Autophagy was first identified as a pathway in mammalian cells using morphological techniques, but the Atg (autophagy-related) genes required for autophagy were identified in yeast genetic screens. Despite tremendous advances in elucidating the function of individual Atg proteins, our knowledge of how autophagosomes form and subsequently interact with the endosomal pathway has lagged behind. Recent progress toward understanding where and how both the endocytotic and autophagic pathways overlap is reviewed here.

  6. Ketogenic diet change cPLA2/clusterin and autophagy related gene expression and correlate with cognitive deficits and hippocampal MFs sprouting following neonatal seizures.

    PubMed

    Ni, Hong; Zhao, Dong-Jing; Tian, Tian

    2016-02-01

    Because the ketogenic diet (KD) was affecting expression of energy metabolism- related genes in hippocampus and because lipid membrane peroxidation and its associated autophagy stress were also found to be involved in energy depletion, we hypothesized that KD might exert its neuroprotective action via lipid membrane peroxidation and autophagic signaling. Here, we tested this hypothesis by examining the long-term expression of lipid membrane peroxidation-related cPLA2 and clusterin, its downstream autophagy marker Beclin-1, LC3 and p62, as well as its execution molecule Cathepsin-E following neonatal seizures and chronic KD treatment. On postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizures group and control group. On P28, they were further randomly divided into the seizure group without ketogenic diet (RS+ND), seizure plus ketogenic diet (RS+KD), the control group without ketogenic diet (NS+ND), and the control plus ketogenic diet (NS+KD). Morris water maze test was performed during P37-P43. Then mossy fiber sprouting and the protein levels were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced RS+ND rats show a long-term lower amount of cPLA2 and LC3II/I, and higher amount of clusterin, Beclin-1, p62 and Cathepsin-E which are in parallel with hippocampal mossy fiber sprouting and cognitive deficits. Furthermore, chronic KD treatment (RS+KD) is effective in restoring these molecular, neuropathological and cognitive changes. The results imply that a lipid membrane peroxidation and autophagy-associated pathway is involved in the aberrant hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures, which might be a potential target of KD for the treatment of neonatal seizure-induced brain damage.

  7. Therapeutic targeting of autophagy in neurodegenerative and infectious diseases

    PubMed Central

    Bento, Carla F.

    2015-01-01

    Autophagy is a conserved process that uses double-membrane vesicles to deliver cytoplasmic contents to lysosomes for degradation. Although autophagy may impact many facets of human biology and disease, in this review we focus on the ability of autophagy to protect against certain neurodegenerative and infectious diseases. Autophagy enhances the clearance of toxic, cytoplasmic, aggregate-prone proteins and infectious agents. The beneficial roles of autophagy can now be extended to supporting cell survival and regulating inflammation. Autophagic control of inflammation is one area where autophagy may have similar benefits for both infectious and neurodegenerative diseases beyond direct removal of the pathogenic agents. Preclinical data supporting the potential therapeutic utility of autophagy modulation in such conditions is accumulating. PMID:26101267

  8. Treatment-Induced Autophagy Associated with Tumor Dormancy and Relapse

    DTIC Science & Technology

    2015-07-01

    called ICON (402– 404)) can treat pathological angiogenesis- dependent diseases, including cancer and many non -cancerous diseases. Under physiological...we determine the relationship(s) between immunogenic versus non -immunogenic tumor dormancy and autophagy. Major accomplishments: ADR...experiments demonstrate distinct differences in the nature of autophagy induced by ADR ( non -protective or cytotoxic) and radiation (protective) in

  9. Zinc starvation induces autophagy in yeast.

    PubMed

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-05-19

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Tumor Suppression and Promotion by Autophagy

    PubMed Central

    Ávalos, Yenniffer; Canales, Jimena; Criollo, Alfredo; Quest, Andrew F. G.

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer. PMID:25328887

  11. Tumor suppression and promotion by autophagy.

    PubMed

    Ávalos, Yenniffer; Canales, Jimena; Bravo-Sagua, Roberto; Criollo, Alfredo; Lavandero, Sergio; Quest, Andrew F G

    2014-01-01

    Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  12. Zinc starvation induces autophagy in yeast

    PubMed Central

    Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori

    2017-01-01

    Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932

  13. Protective Effects of Astaxanthin on ConA-Induced Autoimmune Hepatitis by the JNK/p-JNK Pathway-Mediated Inhibition of Autophagy and Apoptosis

    PubMed Central

    Liu, Tong; Wang, Junshan; Dai, Weiqi; Wang, Fan; Zheng, Yuanyuan; Chen, Kan; Li, Sainan; Abudumijiti, Huerxidan; Zhou, Zheng; Wang, Jianrong; Lu, Wenxia; Zhu, Rong; Yang, Jing; Zhang, Huawei; Yin, Qin; Wang, Chengfen; Zhou, Yuqing; Lu, Jie; Zhou, Yingqun; Guo, Chuanyong

    2015-01-01

    Objective Astaxanthin, a potent antioxidant, exhibits a wide range of biological activities, including antioxidant, atherosclerosis and antitumor activities. However, its effect on concanavalin A (ConA)-induced autoimmune hepatitis remains unclear. The aim of this study was to investigate the protective effects of astaxanthin on ConA-induced hepatitis in mice, and to elucidate the mechanisms of regulation. Materials and Methods Autoimmune hepatitis was induced in in Balb/C mice using ConA (25 mg/kg), and astaxanthin was orally administered daily at two doses (20 mg/kg and 40 mg/kg) for 14 days before ConA injection. Levels of serum liver enzymes and the histopathology of inflammatory cytokines and other maker proteins were determined at three time points (2, 8 and 24 h). Primary hepatocytes were pretreated with astaxanthin (80 μM) in vitro 24 h before stimulation with TNF-α (10 ng/ml). The apoptosis rate and related protein expression were determined 24 h after the administration of TNF-α. Results Astaxanthin attenuated serum liver enzymes and pathological damage by reducing the release of inflammatory factors. It performed anti-apoptotic effects via the descending phosphorylation of Bcl-2 through the down-regulation of the JNK/p-JNK pathway. Conclusion This research firstly expounded that astaxanthin reduced immune liver injury in ConA-induced autoimmune hepatitis. The mode of action appears to be downregulation of JNK/p-JNK-mediated apoptosis and autophagy. PMID:25761053

  14. Inhibition of autophagy via activation of PI3K/Akt pathway contributes to the protection of ginsenoside Rb1 against neuronal death caused by ischemic insults.

    PubMed

    Luo, Tianfei; Liu, Guiying; Ma, Hongxi; Lu, Bin; Xu, Haiyang; Wang, Yujing; Wu, Jiang; Ge, Pengfei; Liang, Jianmin

    2014-09-01

    Lethal autophagy is a pathway leading to neuronal death caused by transient global ischemia. In this study, we examined the effect of Ginsenoside Rb1 (GRb1) on ischemia/reperfusion-induced autophagic neuronal death and investigated the role of PI3K/Akt. Ischemic neuronal death in vitro was induced by using oxygen glucose deprivation (OGD) in SH-SY5Y cells, and transient global ischemia was produced by using two vessels occlusion in rats. Cellular viability of SH-SY5Y cells was assessed by MTT assay, and CA1 neuronal death was evaluated by Hematoxylin-eosin staining. Autophagic vacuoles were detected by using both fluorescent microscopy in combination with acridine orange (AO) and Monodansylcadaverine (MDC) staining and transmission electronic microscopy. Protein levels of LC3II, Beclin1, total Akt and phosphor-Akt at Ser473 were examined by western blotting analysis. GRb1 inhibited both OGD and transient ischemia-induced neuronal death and mitigated OGD-induced autophagic vacuoles in SH-SY5Y cells. By contrast, PI3K inhibitor LY294002 counteracted the protection of GRb1 against neuronal death caused by either OGD or transient ischemia. LY294002 not only mitigated the up-regulated protein level of phosphor Akt at Ser473 caused by GRb1, but also reversed the inhibitory effect of GRb1 on OGD and transient ischemia-induced elevation in protein levels of LC3II and Beclin1.

  15. Autophagy, viruses, and intestinal immunity

    PubMed Central

    Kernbauer, Elisabeth; Cadwell, Ken

    2014-01-01

    Purpose of review To highlight recent findings that identify an essential role for the cellular degradative pathway of autophagy in governing a balanced response to intestinal pathogens and commensals. Recent findings Following the genetic association of autophagy with inflammatory bowel disease (IBD) susceptibility, increasing evidence indicate that this pathway functions in various epithelial lineages to support the intestinal barrier. New studies are also revealing that autophagy proteins dictate the quality and magnitude of immune responses. Mouse models in particular suggest that autophagy and IBD susceptibility genes regulate inflammatory responses to viruses, a finding that coincides with an increasing appreciation that viruses have intricate interactions with the host and the microbiota beyond the obvious host-pathogen relationship. Summary Autophagy and other immunological or stress response pathways intersect in mucosal immunity to dictate the response to pathogenic and commensal agents. The development of novel treatment strategies as well as prognostic and diagnostic tools for gastrointestinal disorders will be greatly facilitated by a deeper understanding of these interactions at the cell type and microbe-specific manner, which includes less appreciated components of the microbiota such as eukaryotic and prokaryotic viruses. PMID:25291356

  16. Autophagy, viruses, and intestinal immunity.

    PubMed

    Kernbauer, Elisabeth; Cadwell, Ken

    2014-11-01

    To highlight recent findings that identify an essential role for the cellular degradative pathway of autophagy in governing a balanced response to intestinal pathogens and commensals. Following the genetic association of autophagy with inflammatory bowel disease susceptibility, increasing evidence indicates that this pathway functions in various epithelial lineages to support the intestinal barrier. New studies are also revealing that autophagy proteins dictate the quality and magnitude of immune responses. Mouse models, in particular, suggest that autophagy and inflammatory bowel disease susceptibility genes regulate inflammatory responses to viruses, a finding that coincides with an increasing appreciation that viruses have intricate interactions with the host and the microbiota beyond the obvious host-pathogen relationship. Autophagy and other immunological or stress response pathways intersect in mucosal immunity to dictate the response to pathogenic and commensal agents. The development of novel treatment strategies, as well as prognostic and diagnostic tools for gastrointestinal disorders, will be greatly facilitated by a deeper understanding of these interactions at the cell type and microbe-specific manner, which includes less appreciated components of the microbiota, such as eukaryotic and prokaryotic viruses.

  17. p62 links autophagy and Nrf2 signaling

    PubMed Central

    Jiang, Tao; Harder, Bryan; Rojo de la Vega, Montserrat; Wong, Pak K.; Chapman, Eli; Zhang, Donna D.

    2015-01-01

    The Nrf2-Keap1-ARE pathway is a redox and xenobiotic sensitive signaling axis that functions to protect cells against oxidative stress, environmental toxicants, and harmful chemicals through the induction of cytoprotective genes. To enforce strict regulation, cells invest a great deal of energy into the maintenance of the Nrf2 pathway to ensure rapid induction upon cellular insult and rapid return to basal levels once the insult is mitigated. Because of the protective role of Nrf2 transcriptional programs, controlled activation of the pathway has been recognized as a means for chemoprevention. On the other hand, constitutive activation of Nrf2, due to somatic mutations of genes that control Nrf2 degradation, promotes carcinogenesis and imparts chemoresistance to cancer cells. Autophagy, a bulk protein degradation process, is another tightly regulated complex cellular process that functions as a cellular quality control system to remove damaged proteins or organelles. Low cellular nutrient levels can also activate autophagy, which acts to restore metabolic homeostasis through the degradation of macromolecules to provide nutrients. Recently, these two cellular pathways were shown to intersect through the direct interaction between p62 (an autophagy adaptor protein) and Keap1 (the Nrf2 substrate adaptor for the Cul3 E3 ubiquitin ligase). Dysregulation of autophagy was shown to result in prolonged Nrf2 activation in a p62-dependent manner. In this review, we will discuss the progress that has been made in dissecting the intersection of these two pathways and the potential tumor-promoting role of prolonged Nrf2 activation. PMID:26117325

  18. Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo

    PubMed Central

    Chen, Deheng; Xia, Dongdong; Pan, Zongyou; Xu, Daoliang; Zhou, Yifei; Wu, Yaosen; Cai, Ningyu; Tang, Qian; Wang, Chenggui; Yan, Meijun; Zhang, Jing Jie; Zhou, Kailiang; Wang, Quan; Feng, Yongzeng; Wang, Xiangyang; Xu, Huazi; Zhang, Xiaolei; Tian, Naifeng

    2016-01-01

    Intervertebral disc degeneration (IDD) is a complicated process that involves both cellular apoptosis and senescence. Metformin has been reported to stimulate autophagy, whereas autophagy is shown to protect against apoptosis and senescence. Therefore, we hypothesize that metformin may have therapeutic effect on IDD through autophagy stimulation. The effect of metformin on IDD was investigated both in vitro and in vivo. Our study showed that metformin attenuated cellular apoptosis and senescence induced by tert-butyl hydroperoxide in nucleus pulposus cells. Autophagy, as well as its upstream regulator AMPK, was activated by metformin in nucleus pulposus cells in a dose- and time-dependent manner. Inhibition of autophagy by 3-MA partially abolished the protective effect of metformin against nucleus pulposus cells' apoptosis and senescence, indicating that autophagy was involved in the protective effect of metformin on IDD. In addition, metformin was shown to promote the expression of anabolic genes such as Col2a1 and Acan expression while inhibiting the expression of catabolic genes such as Mmp3 and Adamts5 in nucleus pulposus cells. In vivo study illustrated that metformin treatment could ameliorate IDD in a puncture-induced rat model. Thus, our study showed that metformin could protect nucleus pulposus cells against apoptosis and senescence via autophagy stimulation and ameliorate disc degeneration in vivo, revealing its potential to be a therapeutic agent for IDD. PMID:27787519

  19. Autophagy in lung disease pathogenesis and therapeutics.

    PubMed

    Ryter, Stefan W; Choi, Augustine M K

    2015-01-01

    Autophagy, a cellular pathway for the degradation of damaged organelles and proteins, has gained increasing importance in human pulmonary diseases, both as a modulator of pathogenesis and as a potential therapeutic target. In this pathway, cytosolic cargos are sequestered into autophagosomes, which are delivered to the lysosomes where they are enzymatically degraded and then recycled as metabolic precursors. Autophagy exerts an important effector function in the regulation of inflammation, and immune system functions. Selective pathways for autophagic degradation of cargoes may have variable significance in disease pathogenesis. Among these, the autophagic clearance of bacteria (xenophagy) may represent a crucial host defense mechanism in the pathogenesis of sepsis and inflammatory diseases. Our recent studies indicate that the autophagic clearance of mitochondria, a potentially protective program, may aggravate the pathogenesis of chronic obstructive pulmonary disease by activating cell death programs. We report similar findings with respect to the autophagic clearance of cilia components, which can contribute to airways dysfunction in chronic lung disease. In certain diseases such as pulmonary hypertension, autophagy may confer protection by modulating proliferation and cell death. In other disorders, such as idiopathic pulmonary fibrosis and cystic fibrosis, impaired autophagy may contribute to pathogenesis. In lung cancer, autophagy has multiple consequences by limiting carcinogenesis, modulating therapeutic effectiveness, and promoting tumor cell survival. In this review we highlight the multiple functions of autophagy and its selective autophagy subtypes that may be of significance to the pathogenesis of human disease, with an emphasis on lung disease and therapeutics.

  20. Dihydroptychantol A, a macrocyclic bisbibenzyl derivative, induces autophagy and following apoptosis associated with p53 pathway in human osteosarcoma U2OS cells

    SciTech Connect

    Li Xia; Wu, William K.K.; Sun Bin; Cui Min; Liu Shanshan; Gao Jian; Lou Hongxiang

    2011-03-01

    Dihydroptychantol A (DHA), a novel macrocyclic bisbibenzyl compound extracted from liverwort Asterella angusta, has antifungal and multi-drug resistance reversal properties. Here, the chemically synthesized DHA was employed to test its anti-cancer activities in human osteosarcoma U2OS cells. Our results demonstrated that DHA induced autophagy followed by apoptotic cell death accompanied with G{sub 2}/M-phase cell cycle arrest in U2OS cells. DHA-induced autophagy was morphologically characterized by the formation of double membrane-bound autophagic vacuoles recognizable at the ultrastructural level. DHA also increased the levels of LC3-II, a marker of autophagy. Surprisingly, DHA-mediated apoptotic cell death was potentiated by the autophagy inhibitor 3-methyladenine, suggesting that autophagy may play a protective role that impedes the eventual cell death. Furthermore, p53 was shown to be involved in DHA-meditated autophagy and apoptosis. In this connection, DHA increased nuclear expression of p53, induced p53 phosphorylation, and upregulated p53 target gene p21{sup Waf1/Cip1}. In contrast, cytoplasmic p53 was reduced by DHA, which contributed to the stimulation of autophagy. In relation to the cell cycle, DHA decreased the expression of cyclin B{sub 1}, a cyclin required for progression through the G{sub 2}/M phase. Taken together, DHA induces G{sub 2}/M-phase cell cycle arrest and apoptosis in U2OS cells. DHA-induced apoptosis was preceded by the induction of protective autophagy. DHA-mediated autophagy and apoptosis are associated with the cytoplasmic and nuclear functions of p53.

  1. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells.

    PubMed

    Sahni, Sumit; Bae, Dong-Hun; Lane, Darius J R; Kovacevic, Zaklina; Kalinowski, Danuta S; Jansson, Patric J; Richardson, Des R

    2014-04-04

    N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.

  2. Effect of 1,25-dihydroxyvitamin D3 on the expression of mannose receptor, DC-SIGN and autophagy genes in pulmonary tuberculosis.

    PubMed

    Afsal, K; Selvaraj, P

    2016-07-01

    1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is a powerful immuno-modulator, which enhances expression of antimicrobial peptides and induces autophagy in monocytes/macrophages. Since 1,25(OH)2D3 increases the phagocytic potential of monocytes/macrophages, we have explored the effect of 1,25(OH)2D3 on the expression of receptors such as mannose receptor (CD206) and DC-SIGN (CD209) as well as autophagy genes such as ATG5 and Beclin-1 (BECN1) in monocytes/macrophages of healthy controls (HCs) and pulmonary tuberculosis (PTB) patients with and without cavitary disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 40 HCs and 40 PTB patients and were cultured for 72 h with Mtb in the presence or absence of 1,25(OH)2D3 at 10(-7) M concentration. 1,25(OH)2D3 significantly upregulated the expression of mannose receptor, ATG5 and BECN1; whereas DC-SIGN expression was suppressed in Mtb infected cells of both study groups (p < 0.05). The 1,25(OH)2D3-induced expression of CD206, ATG5 and BECN1 genes was lower in PTB patients compared to HCs, whereas expression of these genes was impaired in PTB patients with cavitary disease. Moreover, the relative expression of ATG5 and BECN1 was positively correlated with monocyte/macrophage phagocytosis and cathelicidin antimicrobial peptide gene expression in HCs and PTB patients (p < 0.05). Our study results suggest that vitamin D supplementation in PTB patients without cavitary disease could enhance innate immune functions and may help to control intracellular growth of mycobacteria in macrophages.

  3. Transcriptional regulation of autophagy by an FXR/CREB axis

    PubMed Central

    Seok, Sunmi; Fu, Ting; Choi, Sung-E; Li, Yang; Zhu, Rong; Kumar, Subodh; Sun, Xiaoxiao; Yoon, Gyesoon; Kang, Yup; Zhong, Wenxuan; Ma, Jian; Kemper, Byron; Kemper, Jongsook Kim

    2014-01-01

    Lysosomal degradation of cytoplasmic components by autophagy is essential for cellular survival and homeostasis under nutrient-deprived conditions1–4. Acute regulation of autophagy by nutrient-sensing kinases is well defined3, 5–7, but longer-term transcriptional regulation is relatively unknown. Here we show that the fed-state sensing nuclear receptor FXR8, 9 and the fasting transcriptional activator CREB10, 11 coordinately regulate the hepatic autophagy gene network. Pharmacological activation of FXR repressed many autophagy genes and inhibited autophagy even in fasted mice and feeding-mediated inhibition of macroautophagy was attenuated in FXR-knockout mice. From mouse liver ChIP-seq data12–15, FXR and CREB binding peaks were detected at 178 and 112, respectively, of 230 autophagy-related genes, and 78 genes showed shared binding, mostly in their promoter regions. CREB promoted lipophagy, autophagic degradation of lipids16, under nutrient-deprived conditions, and FXR inhibited this response. Mechanistically, CREB upregulated autophagy genes, including Atg7, Ulk1, and Tfeb, by recruiting the coactivator CRTC2. After feeding or pharmacological activation, FXR trans-repressed these genes by disrupting the functional CREB/CRTC2 complex. This study identifies the novel FXR/CREB axis as a key physiological switch regulating autophagy, resulting in sustained nutrient regulation of autophagy during feeding/fasting cycles. PMID:25383523

  4. Reduced autophagy in livers of fasted, fat-depleted, ghrelin-deficient mice: Reversal by growth hormone

    PubMed Central

    Zhang, Yuanyuan; Fang, Fei; Goldstein, Joseph L.; Brown, Michael S.; Zhao, Tong-Jin

    2015-01-01

    Plasma growth hormone (GH) and hepatic autophagy each have been reported to protect against hypoglycemia in the fasted state, but previous data have not linked the two. Here we demonstrate a connection using a mouse model of fasting in a fat-depleted state. Mice were subjected to 1 wk of 60% calorie restriction, causing them to lose nearly all body fat. They were then fasted for 23 h. During fasting, WT mice developed massive increases in plasma GH and a concomitant increase in hepatic autophagy, allowing them to maintain viable levels of blood glucose. In contrast, lethal hypoglycemia occurred in mice deficient in the GH secretagogue ghrelin as a result of knockout of the gene encoding ghrelin O-acyltransferase (GOAT), which catalyzes a required acylation of the peptide. Fasting fat-depleted Goat−/− mice showed a blunted increase in GH and a marked decrease in hepatic autophagy. Restoration of GH by infusion during the week of calorie restriction maintained autophagy in the Goat−/− mice and prevented lethal hypoglycemia. Acute injections of GH after 7 d of calorie restriction also restored hepatic autophagy, but failed to increase blood glucose, perhaps owing to ATP deficiency in the liver. These data indicate that GH stimulation of autophagy is necessary over the long term, but not sufficient over the short term to maintain blood glucose levels in fasted, fat-depleted mice. PMID:25583513

  5. Reduced autophagy in livers of fasted, fat-depleted, ghrelin-deficient mice: reversal by growth hormone.

    PubMed

    Zhang, Yuanyuan; Fang, Fei; Goldstein, Joseph L; Brown, Michael S; Zhao, Tong-Jin

    2015-01-27

    Plasma growth hormone (GH) and hepatic autophagy each have been reported to protect against hypoglycemia in the fasted state, but previous data have not linked the two. Here we demonstrate a connection using a mouse model of fasting in a fat-depleted state. Mice were subjected to 1 wk of 60% calorie restriction, causing them to lose nearly all body fat. They were then fasted for 23 h. During fasting, WT mice developed massive increases in plasma GH and a concomitant increase in hepatic autophagy, allowing them to maintain viable levels of blood glucose. In contrast, lethal hypoglycemia occurred in mice deficient in the GH secretagogue ghrelin as a result of knockout of the gene encoding ghrelin O-acyltransferase (GOAT), which catalyzes a required acylation of the peptide. Fasting fat-depleted Goat(-/-) mice showed a blunted increase in GH and a marked decrease in hepatic autophagy. Restoration of GH by infusion during the week of calorie restriction maintained autophagy in the Goat(-/-) mice and prevented lethal hypoglycemia. Acute injections of GH after 7 d of calorie restriction also restored hepatic autophagy, but failed to increase blood glucose, perhaps owing to ATP deficiency in the liver. These data indicate that GH stimulation of autophagy is necessary over the long term, but not sufficient over the short term to maintain blood glucose levels in fasted, fat-depleted mice.

  6. Role of Nrf2 and Autophagy in Acute Lung Injury

    PubMed Central

    de la Vega, Montserrat Rojo; Dodson, Matthew; Gross, Christine; Manzour, Heidi; Lantz, R. Clark; Chapman, Eli; Wang, Ting; Black, Stephen M.; Garcia, Joe G.N.; Zhang, Donna D.

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are the clinical manifestations of severe lung damage and respiratory failure. Characterized by severe inflammation and compromised lung function, ALI/ARDS result in very high mortality of affected individuals. Currently, there are no effective treatments for ALI/ARDS, and ironically, therapies intended to aid patients (specifically mechanical ventilation, MV) may aggravate the symptoms. Key events contributing to the development of ALI/ARDS are: increased oxidative and proteotoxic stresses, unresolved inflammation, and compromised alveolar-capillary barrier function. Since the airways and lung tissues are constantly exposed to gaseous oxygen and airborne toxicants, the bronchial and alveolar epithelial cells are under higher oxidative stress than other tissues. Cellular protection against oxidative stress and xenobiotics is mainly conferred by Nrf2, a transcription factor that promotes the expression of genes that regulate oxidative stress, xenobiotic metabolism and excretion, inflammation, apoptosis, autophagy, and cellular bioenergetics. Numerous studies have demonstrated the importance of Nrf2 activation in the protection against ALI/ARDS, as pharmacological activation of Nrf2 prevents the occurrence or mitigates the severity of ALI/ARDS. Another promising new therapeutic strategy in the prevention and treatment of ALI/ARDS is the activation of autophagy, a bulk protein and organelle degradation pathway. In this review, we will discuss the strategy of concerted activation of Nrf2 and autophagy as a preventive and therapeutic intervention to ameliorate ALI/ARDS. PMID:27313980

  7. Long Non-coding RNA H19 Induces Cerebral Ischemia Reperfusion Injury via Activation of Autophagy.

    PubMed

    Wang, Jue; Cao, Bin; Han, Dong; Sun, Miao; Feng, Juan

    2017-02-01

    Long non-coding RNA H19 (lncRNA H19) was found to be upregulated by hypoxia, its expression and function have never been tested in cerebral ischemia and reperfusion (I/R) injury. This study intended to investigate the role of lncRNA H19 and H19 gene variation in cerebral I/R injury with focusing on its relationship with autophagy activation. Cerebral I/R was induced in rats by middle cerebral artery occlusion followed by reperfusion. SH-SY5Y cells were subjected to oxygen and glucose deprivation and reperfusion (OGD/R) to simulate I/R injury. Real-time PCR, flow cytometry, immunofluorescence and Western blot were used to evaluate the level of lncRNA H19, apoptosis, autophagy and some related proteins. The modified multiple ligase reaction was used to analyze the gene polymorphism of six SNPs in H19, rs217727, rs2067051, rs2251375, rs492994, rs2839698 and rs10732516 in ischemic stroke patients. We found that the expression of lncRNA H19 was upregulated by cerebral I/R in rats, as well as by OGD/R in vitro in the cells. Inhibition of lncRNA H19 and autophagy protected cells from OGD/R-induced death, respectively. Autophagy activation induced by OGD/R was prevented by H19 siRNA. Autophagy inducer, rapamycin, abolished lncRNA H19 effect. Furthermore, we found that lncRNA H19 inhibited autophagy through DUSP5-ERK1/2 axis. The result from blood samples of ischemic patients revealed that the variation of H19 gene increased the risk of ischemic stroke. Taken together, the results of present study suggest that LncRNA H19 could be a new therapeutic target of ischemic stroke.

  8. Long Non-coding RNA H19 Induces Cerebral Ischemia Reperfusion Injury via Activation of Autophagy

    PubMed Central

    Wang, Jue; Cao, Bin; Han, Dong; Sun, Miao; Feng, Juan

    2017-01-01

    Long non-coding RNA H19 (lncRNA H19) was found to be upregulated by hypoxia, its expression and function have never been tested in cerebral ischemia and reperfusion (I/R) injury. This study intended to investigate the role of lncRNA H19 and H19 gene variation in cerebral I/R injury with focusing on its relationship with autophagy activation. Cerebral I/R was induced in rats by middle cerebral artery occlusion followed by reperfusion. SH-SY5Y cells were subjected to oxygen and glucose deprivation and reperfusion (OGD/R) to simulate I/R injury. Real-time PCR, flow cytometry, immunofluorescence and Western blot were used to evaluate the level of lncRNA H19, apoptosis, autophagy and some related proteins. The modified multiple ligase reaction was used to analyze the gene polymorphism of six SNPs in H19, rs217727, rs2067051, rs2251375, rs492994, rs2839698 and rs10732516 in ischemic stroke patients. We found that the expression of lncRNA H19 was upregulated by cerebral I/R in rats, as well as by OGD/R in vitro in the cells. Inhibition of lncRNA H19 and autophagy protected cells from OGD/R-induced death, respectively. Autophagy activation induced by OGD/R was prevented by H19 siRNA. Autophagy inducer, rapamycin, abolished lncRNA H19 effect. Furthermore, we found that lncRNA H19 inhibited autophagy through DUSP5-ERK1/2 axis. The result from blood samples of ischemic patients revealed that the variation of H19 gene increased the risk of ischemic stroke. Taken together, the results of present study suggest that LncRNA H19 could be a new therapeutic target of ischemic stroke. PMID:28203482

  9. Autophagy-related prognostic signature for breast cancer.

    PubMed

    Gu, Yunyan; Li, Pengfei; Peng, Fuduan; Zhang, Mengmeng; Zhang, Yuanyuan; Liang, Haihai; Zhao, Wenyuan; Qi, Lishuang; Wang, Hongwei; Wang, Chenguang; Guo, Zheng

    2016-03-01

    Autophagy is a process that degrades intracellular constituents, such as long-lived or damaged proteins and organelles, to buffer metabolic stress under starvation conditions. Deregulation of autophagy is involved in the progression of cancer. However, the predictive value of autophagy for breast cancer prognosis remains unclear. First, based on gene expression profiling, we found that autophagy genes were implicated in breast cancer. Then, using the Cox proportional hazard regression model, we detected autophagy prognostic signature for breast cancer in a training dataset. We identified a set of eight autophagy genes (BCL2, BIRC5, EIF4EBP1, ERO1L, FOS, GAPDH, ITPR1 and VEGFA) that were significantly associated with overall survival in breast cancer. The eight autophagy genes were assigned as a autophagy-related prognostic signature for breast cancer. Based on the autophagy-related signature, the training dataset GSE21653 could be classified into high-risk and low-risk subgroups with significantly different survival times (HR = 2.72, 95% CI = (1.91, 3.87); P = 1.37 × 10(-5)). Inactivation of autophagy was associated with shortened survival of breast cancer patients. The prognostic value of the autophagy-related signature was confirmed in the testing dataset GSE3494 (HR = 2.12, 95% CI = (1.48, 3.03); P = 1.65 × 10(-3)) and GSE7390 (HR = 1.76, 95% CI = (1.22, 2.54); P = 9.95 × 10(-4)). Further analysis revealed that the prognostic value of the autophagy signature was independent of known clinical prognostic factors, including age, tumor size, grade, estrogen receptor status, progesterone receptor status, ERBB2 status, lymph node status and TP53 mutation status. Finally, we demonstrated that the autophagy signature could also predict distant metastasis-free survival for breast cancer.

  10. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis

    PubMed Central

    Cabrera, Sandra; Maciel, Mariana; Herrera, Iliana; Nava, Teresa; Vergara, Fabián; Gaxiola, Miguel; López-Otín, Carlos; Selman, Moisés; Pardo, Annie

    2015-01-01

    Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses. PMID:25906080

  11. Autophagy Is a Protective Response to the Oxidative Damage to Endplate Chondrocytes in Intervertebral Disc: Implications for the Treatment of Degenerative Lumbar Disc

    PubMed Central

    Yu, Fei; Ma, Junxuan

    2017-01-01

    Low back pain (LBP) is the leading cause of disability in the elderly. Intervertebral disc degeneration (IDD) was considered as the main cause for LBP. Degeneration of cartilaginous endplate was a crucial harmful factor during the initiation and development of IDD. Oxidative stress was implicated in IDD. However, the underlying molecular mechanism for the degeneration of cartilaginous endplate remains elusive. Herein, we found that oxidative stress could induce apoptosis and autophagy in endplate chondrocytes evidenced by western blot analysis, flow cytometry, immunofluorescence staining, GFP-LC3B transfection, and MDC staining. In addition, we also found that the apoptosis of endplate chondrocytes was significantly increased after the inhibition of autophagy by bafilomycin A1 shown by flow cytometry. Furthermore, mTOR pathway upstream autophagy was greatly suppressed suggested by western blot assay. In conclusion, our study strongly revealed that oxidative stress could increase autophagy and apoptosis of endplate chondrocytes in intervertebral disc. The increase of autophagy activity could prevent endplate chondrocytes from apoptosis. The autophagy in endplate chondrocytes induced by oxidative stress was mTOR dependent. These findings might shed some new lights on the mechanism for IDD and provide new strategies for the treatments of IDD. PMID:28321270

  12. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells

    SciTech Connect

    Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo; Koya, Daisuke

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, which is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and

  13. Protein structure protection commits gene expression patterns.

    PubMed

    Chen, Jianping; Liang, Han; Fernández, Ariel

    2008-01-01

    Gene co-expressions often determine module-defining spatial and temporal concurrences of proteins. Yet, little effort has been devoted to tracing coordinating signals for expression correlations to the three-dimensional structures of gene products. We performed a global structure-based analysis of the yeast and human proteomes and contrasted this information against their respective transcriptome organizations obtained from comprehensive microarray data. We show that protein vulnerability quantifies dosage sensitivity for metabolic adaptation phases and tissue-specific patterns of mRNA expression, determining the extent of co-expression similarity of binding partners. The role of protein intrinsic disorder in transcriptome organization is also delineated by interrelating vulnerability, disorder propensity and co-expression patterns. Extremely vulnerable human proteins are shown to be subject to severe post-transcriptional regulation of their expression through significant micro-RNA targeting, making mRNA levels poor surrogates for protein-expression levels. By contrast, in yeast the expression of extremely under-wrapped proteins is likely regulated through protein aggregation. Thus, the 85 most vulnerable proteins in yeast include the five confirmed prions, while in human, the genes encoding extremely vulnerable proteins are predicted to be targeted by microRNAs. Hence, in both vastly different organisms protein vulnerability emerges as a structure-encoded signal for post-transcriptional regulation. Vulnerability of protein structure and the concurrent need to maintain structural integrity are shown to quantify dosage sensitivity, compelling gene expression patterns across tissue types and temporal adaptation phases in a quantifiable manner. Extremely vulnerable proteins impose additional constraints on gene expression: They are subject to high levels of regulation at the post-transcriptional level.

  14. Regulation of autophagy by the inositol trisphosphate receptor.

    PubMed

    Criollo, A; Maiuri, M C; Tasdemir, E; Vitale, I; Fiebig, A A; Andrews, D; Molgó, J; Díaz, J; Lavandero, S; Harper, F; Pierron, G; di Stefano, D; Rizzuto, R; Szabadkai, G; Kroemer, G

    2007-05-01

    The reduction of intracellular 1,4,5-inositol trisphosphate (IP(3)) levels stimulates autophagy, whereas the enhancement of IP(3) levels inhibits autophagy induced by nutrient depletion. Here, we show that knockdown of the IP(3) receptor (IP(3)R) with small interfering RNAs and pharmacological IP(3)R blockade is a strong stimulus for the induction of autophagy. The IP(3)R is known to reside in the membranes of the endoplasmic reticulum (ER) as well as within ER-mitochondrial contact sites, and IP(3)R blockade triggered the autophagy of both ER and mitochondria, as exactly observed in starvation-induced autophagy. ER stressors such as tunicamycin and thapsigargin also induced autophagy of ER and, to less extent, of mitochondria. Autophagy triggered by starvation or IP(3)R blockade was inhibited by Bcl-2 and Bcl-X(L) specifically targeted to ER but not Bcl-2 or Bcl-X(L) proteins targeted to mitochondria. In contrast, ER stress-induced autophagy was not inhibited by Bcl-2 and Bcl-X(L). Autophagy promoted by IP(3)R inhibition could not be attributed to a modulation of steady-state Ca(2+) levels in the ER or in the cytosol, yet involved the obligate contribution of Beclin-1, autophagy-related gene (Atg)5, Atg10, Atg12 and hVps34. Altogether, these results strongly suggest that IP(3)R exerts a major role in the physiological control of autophagy.

  15. Autophagy, Metabolism, and Cancer.

    PubMed

    White, Eileen; Mehnert, Janice M; Chan, Chang S

    2015-11-15

    Macroautophagy (autophagy hereafter) captures intracellular proteins and organelles and degrades them in lysosomes. The degradation breakdown products are released from lysosomes and recycled into metabolic and biosynthetic pathways. Basal autophagy provides protein and organelle quality control by eliminating damaged cellular components. Starvation-induced autophagy recycles intracellular components into metabolic pathways to sustain mitochondrial metabolic function and energy homeostasis. Recycling by autophagy is essential for yeast and mammals to survive starvation through intracellular nutrient scavenging. Autophagy suppresses degenerative diseases and has a context-dependent role in cancer. In some models, cancer initiation is suppressed by autophagy. By preventing the toxic accumulation of damaged protein and organelles, particularly mitochondria, autophagy limits oxidative stress, chronic tissue damage, and oncogenic signaling, which suppresses cancer initiation. This suggests a role for autophagy stimulation in cancer prevention, although the role of autophagy in the suppression of human cancer is unclear. In contrast, some cancers induce autophagy and are dependent on autophagy for survival. Much in the way that autophagy promotes survival in starvation, cancers can use autophagy-mediated recycling to maintain mitochondrial function and energy homeostasis to meet the elevated metabolic demand of growth and proliferation. Thus, autophagy inhibition may be beneficial for cancer therapy. Moreover, tumors are more autophagy-dependent than normal tissues, suggesting that there is a therapeutic window. Despite these insights, many important unanswered questions remain about the exact mechanisms of autophagy-mediated cancer suppression and promotion, how relevant these observations are to humans, and whether the autophagy pathway can be modulated therapeutically in cancer. See all articles in this CCR Focus section, "Cell Death and Cancer Therapy." ©2015

  16. Chelation of Lysosomal Iron Protects Dopaminergic SH-SY5Y Neuroblastoma Cells from Hydrogen Peroxide Toxicity by Precluding Autophagy and Akt Dephosphorylation

    PubMed Central

    Castino, Roberta; Fiorentino, Ilaria; Cagnin, Monica; Giovia, Antonino; Isidoro, Ciro

    2011-01-01

    In human neuroblastoma SH-SY5Y cells, hydrogen peroxide (H2O2, 200μM) rapidly (< 5 min) induced autophagy, as shown by processing and vacuolar relocation of light chain 3(LC3). Accumulation of autophagosome peaked at 30 min of H2O2 exposure. The continuous presence of H2O2 eventually (at > 60 min) caused autophagy-dependent annexin V–positive cell death. However, the cells exposed to H2O2 for 30 min and then cultivated in fresh medium could recover and grow, despite ongoing autophagy. H2O2 rapidly (5 min) triggered the formation of dichlorofluorescein-sensitive HO·-free radicals within mitochondria, whereas the mitochondria-associated oxidoradicals revealed by MitoSox (O2·−) became apparent after 30 min of exposure to H2O2. 3-Methyladenine inhibited autophagy and cell death, but not the generation of HO·. Genetic silencing of beclin-1 prevented bax- and annexin V–positive cell death induced by H2O2, confirming the involvement of canonical autophagy in peroxide toxicity. The lysosomotropic iron chelator deferoxamine (DFO) prevented the mitochondrial generation of both HO. and O2·− and suppressed the induction of autophagy and of cell death by H2O2. Upon exposure to H2O2, Akt was intensely phosphorylated in the first 30 min, concurrently with mammalian target of rapamycin inactivation and autophagy, and it was dephosphorylated at 2 h, when > 50% of the cells were dead. DFO did not impede Akt phosphorylation, which therefore was independent of reactive oxygen species (ROS) generation but inhibited Akt dephosphorylation. In conclusion, exogenous H2O2 triggers two parallel independent pathways, one leading to autophagy and autophagy-dependent apoptosis, the other to transient Akt phosphorylation, and both are inhibited by DFO. The present work establishes HO· as the autophagy-inducing ROS and highlights the need for free lysosomal iron for its production within mitochondria in response to hydrogen peroxide. PMID:21742779

  17. Ribozyme genes protecting transgenic melon plants against potyviruses.

    PubMed

    Huttner, E; Tucker, W; Vermeulen, A; Ignart, F; Sawyer, B; Birch, R

    2001-04-01

    Potyviruses are the most important viral pathogens of crops worldwide. Under a contract with Gene Shears Pty Limited, we are using ribozyme genes to protect melon plants against two potyviruses: WMV2 and ZYMV. Different polyribozyme genes were designed, built and introduced into melons plants. Transgenic melon plants containing a resistance gene were obtained and their progeny was challenged by the appropriate virus. Most of the genes tested conferred some degree of resistance to the viruses in glasshouse trials. Melon plants from one family containing one gene directed against WMV2 were also field-trialed on small plots under natural infection pressure and were found immune to WMV2. Field trial is in progress for plants containing genes against ZYMV. Some of the ribozyme genes used in the plants were also assayed in a transient expression system in tobacco cells. This enabled us to study the sequence discrimination capacity of the ribozyme in the case of one ribozyme target site. We found that a mutated target GUG (non cleavable) was less susceptible to inhibition by the ribozyme gene than the corresponding wild type target GUA (cleavable). Work is now in progress to incorporate multiple resistance genes in melon plants, in constructs designed in compliance with the evolving European regulations concerning transgenic plants. The use of ribozyme genes to protect plants against viruses provides an alternative to the technologies currently used for protecting crops against viruses, based on the concept of Pathogen Derived Resistance (see for example 14). In the light of concerns expressed by some plant virologists (13) about the use of viral genes in transgenic plants, it may be that ribozyme genes will find many uses in this area of agricultural biotechnology.

  18. Tyrosinase-Cre-Mediated Deletion of the Autophagy Gene Atg7 Leads to Accumulation of the RPE65 Variant M450 in the Retinal Pigment Epithelium of C57BL/6 Mice

    PubMed Central

    Sukseree, Supawadee; Chen, Ying-Ting; Laggner, Maria; Gruber, Florian; Petit, Valérie; Nagelreiter, Ionela-Mariana; Mlitz, Veronika; Rossiter, Heidemarie; Pollreisz, Andreas; Schmidt-Erfurth, Ursula; Larue, Lionel; Tschachler, Erwin

    2016-01-01

    Targeted gene knockout mouse models have helped to identify roles of autophagy in many tissues. Here, we investigated the retinal pigment epithelium (RPE) of Atg7f/f Tyr-Cre mice (on a C57BL/6 background), in which Cre recombinase is expressed under the control of the tyrosinase promoter to delete the autophagy gene Atg7. In line with pigment cell-directed blockade of autophagy, the RPE and the melanocytes of the choroid showed strong accumulation of the autophagy adaptor and substrate, sequestosome 1 (Sqstm1)/p62, relative to the levels in control mice. Immunofluorescence and Western blot analysis demonstrated that the RPE, but not the choroid melanocytes, of Atg7f/f Tyr-Cre mice also had strongly increased levels of retinoid isomerohydrolase RPE65, a pivotal enzyme for the maintenance of visual perception. In contrast to Sqstm1, genes involved in retinal regeneration, i.e. Lrat, Rdh5, Rgr, and Rpe65, were expressed at higher mRNA levels. Sequencing of the Rpe65 gene showed that Atg7f/f and Atg7f/f Tyr-Cre mice carry a point mutation (L450M) that is characteristic for the C57BL/6 mouse strain and reportedly causes enhanced degradation of the RPE65 protein by an as-yet unknown mechanism. These results suggest that the increased abundance of RPE65 M450 in the RPE of Atg7f/f Tyr-Cre mice is, at least partly, mediated by upregulation of Rpe65 transcription; however, our data are also compatible with the hypothesis that the RPE65 M450 protein is degraded by Atg7-dependent autophagy in Atg7f/f mice. Further studies in mice of different genetic backgrounds are necessary to determine the relative contributions of these mechanisms. PMID:27537685

  19. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome.

    PubMed

    Morselli, Eugenia; Mariño, Guillermo; Bennetzen, Martin V; Eisenberg, Tobias; Megalou, Evgenia; Schroeder, Sabrina; Cabrera, Sandra; Bénit, Paule; Rustin, Pierre; Criollo, Alfredo; Kepp, Oliver; Galluzzi, Lorenzo; Shen, Shensi; Malik, Shoaib Ahmad; Maiuri, Maria Chiara; Horio, Yoshiyuki; López-Otín, Carlos; Andersen, Jens S; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2011-02-21

    Autophagy protects organelles, cells, and organisms against several stress conditions. Induction of autophagy by resveratrol requires the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1). In this paper, we show that the acetylase inhibitor spermidine stimulates autophagy independent of SIRT1 in human and yeast cells as well as in nematodes. Although resveratrol and spermidine ignite autophagy through distinct mechanisms, these compounds stimulate convergent pathways that culminate in concordant modifications of the acetylproteome. Both agents favor convergent deacetylation and acetylation reactions in the cytosol and in the nucleus, respectively. Both resveratrol and spermidine were able to induce autophagy in cytoplasts (enucleated cells). Moreover, a cytoplasm-restricted mutant of SIRT1 could stimulate autophagy, suggesting that cytoplasmic deacetylation reactions dictate the autophagic cascade. At doses at which neither resveratrol nor spermidine stimulated autophagy alone, these agents synergistically induced autophagy. Altogether, these data underscore the importance of an autophagy regulatory network of antagonistic deacetylases and acetylases that can be pharmacologically manipulated.

  20. Autophagy mediates degradation of nuclear lamina

    PubMed Central

    Dou, Zhixun; Xu, Caiyue; Donahue, Greg; Shimi, Takeshi; Pan, Ji-An; Zhu, Jiajun; Ivanov, Andrejs; Capell, Brian C.; Drake, Adam M.; Shah, Parisha P.; Catanzaro, Joseph M.; Ricketts, M. Daniel; Lamark, Trond; Adam, Stephen A.; Marmorstein, Ronen; Zong, Wei-Xing; Johansen, Terje; Goldman, Robert D.; Adams, Peter D.; Berger, Shelley L.

    2015-01-01

    Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents, and is associated with human diseases1–3. While extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known regarding the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery4–6, is present in the nucleus and directly interacts with the nuclear lamina protein Lamin B1, and binds to lamin-associated domains (LADs) on chromatin. This LC3-Lamin B1 interaction does not downregulate Lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated Ras. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers Lamin B1 to the lysosome. Inhibiting autophagy or the LC3-Lamin B1 interaction prevents activated Ras-induced Lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests this new function of autophagy as a guarding mechanism protecting cells from tumorigenesis. PMID:26524528

  1. Autophagy mediates degradation of nuclear lamina.

    PubMed

    Dou, Zhixun; Xu, Caiyue; Donahue, Greg; Shimi, Takeshi; Pan, Ji-An; Zhu, Jiajun; Ivanov, Andrejs; Capell, Brian C; Drake, Adam M; Shah, Parisha P; Catanzaro, Joseph M; Ricketts, M Daniel; Lamark, Trond; Adam, Stephen A; Marmorstein, Ronen; Zong, Wei-Xing; Johansen, Terje; Goldman, Robert D; Adams, Peter D; Berger, Shelley L

    2015-11-05

    Macroautophagy (hereafter referred to as autophagy) is a catabolic membrane trafficking process that degrades a variety of cellular constituents and is associated with human diseases. Although extensive studies have focused on autophagic turnover of cytoplasmic materials, little is known about the role of autophagy in degrading nuclear components. Here we report that the autophagy machinery mediates degradation of nuclear lamina components in mammals. The autophagy protein LC3/Atg8, which is involved in autophagy membrane trafficking and substrate delivery, is present in the nucleus and directly interacts with the nuclear lamina protein lamin B1, and binds to lamin-associated domains on chromatin. This LC3-lamin B1 interaction does not downregulate lamin B1 during starvation, but mediates its degradation upon oncogenic insults, such as by activated RAS. Lamin B1 degradation is achieved by nucleus-to-cytoplasm transport that delivers lamin B1 to the lysosome. Inhibiting autophagy or the LC3-lamin B1 interaction prevents activated RAS-induced lamin B1 loss and attenuates oncogene-induced senescence in primary human cells. Our study suggests that this new function of autophagy acts as a guarding mechanism protecting cells from tumorigenesis.

  2. Autophagy: from basic research to its application in food biotechnology.

    PubMed

    Cebollero, Eduardo; Gonzalez, Ramon

    2007-01-01

    Autophagy is a catabolic process by which the cytoplasm is sequestered into double-membrane vesicles and delivered to the lysosome/vacuole for breaking down and recycling of the low molecular weight degradation products. The isolation in the yeast Saccharomyces cerevisiae of many of the genes involved in autophagy constituted a milestone in understanding the molecular bases of this pathway. The identification of ortholog genes in other eukaryotic models revealed that the mechanism of autophagy is conserved among all eukaryotes. This pathway has been shown to be involved in a growing number of physiological processes and conversely, its deregulation may contribute to the development of several diseases. Recent reports have also shown that autophagy may play an important role in biotechnological processes related with the food industry. In this review we discuss current knowledge of the molecular mechanism of autophagy, including some applied aspects of autophagy in the field of food biotechnology.

  3. On the role of autophagy in human diseases: a gender perspective

    PubMed Central

    Lista, Pasquale; Straface, Elisabetta; Brunelleschi, Sandra; Franconi, Flavia; Malorni, Walter

    2011-01-01

    Abstract Cytopathological features of cells from males and females, i.e. XX and XY isolated cells, have been demonstrated to represent a key variable in the mechanism underlying gender disparity in human diseases. Major insights came from the studies of gender differences in cell fate, e.g. in apoptotic susceptibility. We report here some novel insights recently emerged from literature that are referred as to a cytoprotection mechanism by which cells recycle cytoplasm and dispose of excess or defective organelles, i.e. autophagy. Autophagy and related genes have first been identified in yeast. Orthologue genes have subsequently been found in other organisms, including human beings. This stimulated the research in the field and, thanks to the use of molecular genetics and cell biology in different model systems, autophagy gained the attention of several research groups operating to analyse the pathogenetic mechanisms of human diseases. It remains unclear, however, whether autophagy can exert a protective effect or instead contribute to the pathogenesis of important human diseases. On the basis of the growing importance of sex/gender as key determinant of human pathology and of the known differences between males and females in the onset, progression, drug susceptibility and outcome of a plethora of diseases, the idea that autophagy could represent key and critical factor should be taken into account. In the review, we summarize our current knowledge about the role of autophagy in some paradigmatic human diseases (cancer, neurodegenerative, autoimmune, cardiovascular) and the role of ‘cell sex’ differences in this context. PMID:21362130

  4. Neferine attenuates the protein level and toxicity of mutant huntingtin in PC-12 cells via induction of autophagy.

    PubMed

    Wong, Vincent Kam Wai; Wu, An Guo; Wang, Jing Rong; Liu, Liang; Law, Betty Yuen-Kwan

    2015-02-18

    Mutant huntingtin aggregation is highly associated with the pathogenesis of Huntington's disease, an adult-onset autosomal dominant disorder, which leads to a loss of motor control and decline in cognitive function. Recent literature has revealed the protective role of autophagy in neurodegenerative diseases through degradation of mutant toxic proteins, including huntingtin or a-synuclein. Through the GFP-LC3 autophagy detection platform, we have  identified  neferine,  isolated  from  the  lotus  seed  embryo  of Nelumbo nucifera, which is able to induce autophagy through an AMPK-mTOR-dependent pathway. Furthermore, by overexpressing huntingtin with 74 CAG repeats (EGFP-HTT 74) in PC-12 cells, neferine reduces both the protein level and toxicity of mutant huntingtin through an autophagy-related gene 7 (Atg7)-dependent mechanism. With the variety of novel active compounds present in medicinal herbs, our current study suggests the possible protective mechanism of an autophagy inducer isolated from Chinese herbal medicine, which is crucial for its further development into a potential therapeutic agent for neurodegenerative disorders in the future.

  5. A systems biology approach to learning autophagy.

    PubMed

    Klionsky, Daniel J; Kumar, Anuj

    2006-01-01

    With its relevance to our understanding of eukaryotic cell function in the normal and disease state, autophagy is an important topic in modern cell biology; yet, few textbooks discuss autophagy beyond a two- or three-sentence summary. Here, we report an undergraduate/graduate class lesson for the in-depth presentation of autophagy using an active learning approach. By our method, students will work in small groups to solve problems and interpret an actual data set describing genes involved in autophagy. The problem-solving exercises and data set analysis will instill within the students a much greater understanding of the autophagy pathway than can be achieved by simple rote memorization of lecture materials; furthermore, the students will gain a general appreciation of the process by which data are interpreted and eventually formed into an understanding of a given pathway. As the data sets used in these class lessons are largely genomic and complementary in content, students will also understand first-hand the advantage of an integrative or systems biology study: No single data set can be used to define the pathway in full-the information from multiple complementary studies must be integrated in order to recapitulate our present understanding of the pathways mediating autophagy. In total, our teaching methodology offers an effective presentation of autophagy as well as a general template for the discussion of nearly any signaling pathway within the eukaryotic kingdom.

  6. Guidelines for monitoring autophagy in Caenorhabditis elegans

    PubMed Central

    Zhang, Hong; Chang, Jessica T; Guo, Bin; Hansen, Malene; Jia, Kailiang; Kovács, Attila L; Kumsta, Caroline; Lapierre, Louis R; Legouis, Renaud; Lin, Long; Lu, Qun; Meléndez, Alicia; O'Rourke, Eyleen J; Sato, Ken; Sato, Miyuki; Wang, Xiaochen; Wu, Fan

    2015-01-01

    The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize currently available assays for monitoring the autophagic process in the nematode C. elegans. A combination of measuring levels of the lipidated Atg8 ortholog LGG-1, degradation of well-characterized autophagic substrates such as germline P granule components and the SQSTM1/p62 ortholog SQST-1, expression of autophagic genes and electron microscopy analysis of autophagic structures are presently the most informative, yet steady-state, approaches available to assess autophagy levels in C. elegans. We also review how altered autophagy activity affects a variety of biological processes in C. elegans such as L1 survival under starvation conditions, dauer formation, aging, and cell death, as well as neuronal cell specification. Taken together, C. elegans is emerging as a powerful model organism to monitor autophagy while evaluating important physiological roles for autophagy in key developmental events as well as during adulthood. PMID:25569839

  7. Role of Autophagy in the Maintenance of Intestinal Homeostasis

    PubMed Central

    Baxt, Leigh A.; Xavier, Ramnik J.

    2015-01-01

    Genome-wide association studies of inflammatory bowel disease have identified several risk loci in genes that regulate autophagy, and studies have provided insight into the functional effects of these polymorphisms. We review the mechanisms by which autophagy contributes to intestinal homeostasis, focusing on its cell type-specific roles in regulating gut ecology, restricting pathogenic bacteria, and controlling inflammation. Based on this information, we are beginning to understand how alterations in autophagy can contribute to intestinal inflammation. PMID:26170139

  8. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    PubMed

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Robust autophagy/mitophagy persists during mitosis.

    PubMed

    Liu, Leyuan; Xie, Rui; Nguyen, Susan; Ye, Min; McKeehan, Wallace L

    2009-05-15

    From microscopic observations of autophagosome content it has been argued that autophagy is shut down during mitosis to protect the relative short-lived organelles spindle and chromosomes from the process while they are contiguous with cytosol. However, without autophagy, buildup of dysfunctional mitochondria arising from the intense energy demands of mitosis potentially poses a hazard to accurate partition of chromosomes. Here we show using biochemical markers of autophagosomes and mitophagosomes and a blockade at the lysosomal clearance step that autophagy/mitophagy persists during mitosis at robust levels equal to interphase. This suggests a mechanism that insulates normal spindle and chromosomes from autophagy and potentially recognition of defects in spindle and chromosomes by the autophagic process.

  10. [Aging and autophagy].

    PubMed

    Quy, Pham Nguyen; Mizushima, Noboru

    2013-01-01

    Autophagy, a major intracellular degradation system which is conserved from yeast to mammals, is essential for the cellular clearance and the maintenance of homeostasis inside the cell. The autophagic activity is reported to decrease in almost all cells and tissues following aging, and genetic inhibition of autophagy in mice leads to degenerative changes and diseases that are highly associated with aging. On the other hand, various intervention strategies that delay senescence or increase life span in model organisms often stimulate autophagy, and autophagy inhibition compromises these anti-aging effects. Here, we review recent evidences in support of tight connections between autophagy and aging.

  11. Measurement of autophagy flux in the nervous system in vivo

    PubMed Central

    Castillo, K; Valenzuela, V; Matus, S; Nassif, M; Oñate, M; Fuentealba, Y; Encina, G; Irrazaba