Chen, Gang; Glen, Daniel R.; Saad, Ziad S.; Hamilton, J. Paul; Thomason, Moriah E.; Gotlib, Ian H.; Cox, Robert W.
2011-01-01
Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoids some prevalent pitfalls that can occur when VAR and SEM are utilized separately. PMID:21975109
Liu, Siwei; Molenaar, Peter C M
2014-12-01
This article introduces iVAR, an R program for imputing missing data in multivariate time series on the basis of vector autoregressive (VAR) models. We conducted a simulation study to compare iVAR with three methods for handling missing data: listwise deletion, imputation with sample means and variances, and multiple imputation ignoring time dependency. The results showed that iVAR produces better estimates for the cross-lagged coefficients than do the other three methods. We demonstrate the use of iVAR with an empirical example of time series electrodermal activity data and discuss the advantages and limitations of the program.
Vector autoregressive model approach for forecasting outflow cash in Central Java
NASA Astrophysics Data System (ADS)
hoyyi, Abdul; Tarno; Maruddani, Di Asih I.; Rahmawati, Rita
2018-05-01
Multivariate time series model is more applied in economic and business problems as well as in other fields. Applications in economic problems one of them is the forecasting of outflow cash. This problem can be viewed globally in the sense that there is no spatial effect between regions, so the model used is the Vector Autoregressive (VAR) model. The data used in this research is data on the money supply in Bank Indonesia Semarang, Solo, Purwokerto and Tegal. The model used in this research is VAR (1), VAR (2) and VAR (3) models. Ordinary Least Square (OLS) is used to estimate parameters. The best model selection criteria use the smallest Akaike Information Criterion (AIC). The result of data analysis shows that the AIC value of VAR (1) model is equal to 42.72292, VAR (2) equals 42.69119 and VAR (3) equals 42.87662. The difference in AIC values is not significant. Based on the smallest AIC value criteria, the best model is the VAR (2) model. This model has satisfied the white noise assumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Fengbin, E-mail: fblu@amss.ac.cn
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relationsmore » evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.« less
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kammerdiner, Alla; Xanthopoulos, Petros; Pardalos, Panos M.
2007-11-01
In this chapter a potential problem with application of the Granger-causality based on the simple vector autoregressive (VAR) modeling to EEG data is investigated. Although some initial studies tested whether the data support the stationarity assumption of VAR, the stability of the estimated model is rarely (if ever) been verified. In fact, in cases when the stability condition is violated the process may exhibit a random walk like behavior or even be explosive. The problem is illustrated by an example.
Two dynamic regimes in the human gut microbiome
Smillie, Chris S.; Alm, Eric J.
2017-01-01
The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)—a multivariate method developed for econometrics—to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes. PMID:28222117
Two dynamic regimes in the human gut microbiome.
Gibbons, Sean M; Kearney, Sean M; Smillie, Chris S; Alm, Eric J
2017-02-01
The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)-a multivariate method developed for econometrics-to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes.
Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.
Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis
2018-01-01
Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.
NASA Astrophysics Data System (ADS)
Yang, Liansheng; Zhu, Yingming; Wang, Yudong; Wang, Yiqi
2016-11-01
Based on the daily price data of spot prices of West Texas Intermediate (WTI) crude oil and ten CSI300 sector indices in China, we apply multifractal detrended cross-correlation analysis (MF-DCCA) method to investigate the cross-correlations between crude oil and Chinese sector stock markets. We find that the strength of multifractality between WTI crude oil and energy sector stock market is the highest, followed by the strength of multifractality between WTI crude oil and financial sector market, which reflects a close connection between energy and financial market. Then we do vector autoregression (VAR) analysis to capture the interdependencies among the multiple time series. By comparing the strength of multifractality for original data and residual errors of VAR model, we get a conclusion that vector auto-regression (VAR) model could not be used to describe the dynamics of the cross-correlations between WTI crude oil and the ten sector stock markets.
NASA Astrophysics Data System (ADS)
Miftahurrohmah, Brina; Iriawan, Nur; Fithriasari, Kartika
2017-06-01
Stocks are known as the financial instruments traded in the capital market which have a high level of risk. Their risks are indicated by their uncertainty of their return which have to be accepted by investors in the future. The higher the risk to be faced, the higher the return would be gained. Therefore, the measurements need to be made against the risk. Value at Risk (VaR) as the most popular risk measurement method, is frequently ignore when the pattern of return is not uni-modal Normal. The calculation of the risks using VaR method with the Normal Mixture Autoregressive (MNAR) approach has been considered. This paper proposes VaR method couple with the Mixture Laplace Autoregressive (MLAR) that would be implemented for analysing the first three biggest capitalization Islamic stock return in JII, namely PT. Astra International Tbk (ASII), PT. Telekomunikasi Indonesia Tbk (TLMK), and PT. Unilever Indonesia Tbk (UNVR). Parameter estimation is performed by employing Bayesian Markov Chain Monte Carlo (MCMC) approaches.
A graphical vector autoregressive modelling approach to the analysis of electronic diary data
2010-01-01
Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research. PMID:20359333
Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region
NASA Astrophysics Data System (ADS)
Khan, Muhammad Yousaf; Mittnik, Stefan
2018-01-01
In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.
A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs
Siegle, Greg
2009-01-01
Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927
Value-at-Risk forecasts by a spatiotemporal model in Chinese stock market
NASA Astrophysics Data System (ADS)
Gong, Pu; Weng, Yingliang
2016-01-01
This paper generalizes a recently proposed spatial autoregressive model and introduces a spatiotemporal model for forecasting stock returns. We support the view that stock returns are affected not only by the absolute values of factors such as firm size, book-to-market ratio and momentum but also by the relative values of factors like trading volume ranking and market capitalization ranking in each period. This article studies a new method for constructing stocks' reference groups; the method is called quartile method. Applying the method empirically to the Shanghai Stock Exchange 50 Index, we compare the daily volatility forecasting performance and the out-of-sample forecasting performance of Value-at-Risk (VaR) estimated by different models. The empirical results show that the spatiotemporal model performs surprisingly well in terms of capturing spatial dependences among individual stocks, and it produces more accurate VaR forecasts than the other three models introduced in the previous literature. Moreover, the findings indicate that both allowing for serial correlation in the disturbances and using time-varying spatial weight matrices can greatly improve the predictive accuracy of a spatial autoregressive model.
Forecasting the value-at-risk of Chinese stock market using the HARQ model and extreme value theory
NASA Astrophysics Data System (ADS)
Liu, Guangqiang; Wei, Yu; Chen, Yongfei; Yu, Jiang; Hu, Yang
2018-06-01
Using intraday data of the CSI300 index, this paper discusses value-at-risk (VaR) forecasting of the Chinese stock market from the perspective of high-frequency volatility models. First, we measure the realized volatility (RV) with 5-minute high-frequency returns of the CSI300 index and then model it with the newly introduced heterogeneous autoregressive quarticity (HARQ) model, which can handle the time-varying coefficients of the HAR model. Second, we forecast the out-of-sample VaR of the CSI300 index by combining the HARQ model and extreme value theory (EVT). Finally, using several popular backtesting methods, we compare the VaR forecasting accuracy of HARQ model with other traditional HAR-type models, such as HAR, HAR-J, CHAR, and SHAR. The empirical results show that the novel HARQ model can beat other HAR-type models in forecasting the VaR of the Chinese stock market at various risk levels.
Vector autoregressive models: A Gini approach
NASA Astrophysics Data System (ADS)
Mussard, Stéphane; Ndiaye, Oumar Hamady
2018-02-01
In this paper, it is proven that the usual VAR models may be performed in the Gini sense, that is, on a ℓ1 metric space. The Gini regression is robust to outliers. As a consequence, when data are contaminated by extreme values, we show that semi-parametric VAR-Gini regressions may be used to obtain robust estimators. The inference about the estimators is made with the ℓ1 norm. Also, impulse response functions and Gini decompositions for prevision errors are introduced. Finally, Granger's causality tests are properly derived based on U-statistics.
Aydin, Alev Dilek; Caliskan Cavdar, Seyma
2015-01-01
The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method. PMID:26550010
Aydin, Alev Dilek; Caliskan Cavdar, Seyma
2015-01-01
The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for the same period of time. In this study, different from other studies conducted up to the present, ENCOG machine learning framework has been used along with JAVA programming language in order to constitute the ANN. The training of network has been done by resilient propagation method. The ex post and ex ante estimates obtained by the ANN method have been compared with the results obtained by the econometric forecasting method of VAR. Strikingly, our findings based on the ANN method reveal that there is a possibility of financial distress or a financial crisis in Turkey starting from October 2017. The results which were obtained with the method of VAR also support the results of ANN method. Additionally, our results indicate that the ANN approach has more superior prediction performance than the VAR method.
[Exploration of influencing factors of price of herbal based on VAR model].
Wang, Nuo; Liu, Shu-Zhen; Yang, Guang
2014-10-01
Based on vector auto-regression (VAR) model, this paper takes advantage of Granger causality test, variance decomposition and impulse response analysis techniques to carry out a comprehensive study of the factors influencing the price of Chinese herbal, including herbal cultivation costs, acreage, natural disasters, the residents' needs and inflation. The study found that there is Granger causality relationship between inflation and herbal prices, cultivation costs and herbal prices. And in the total variance analysis of Chinese herbal and medicine price index, the largest contribution to it is from its own fluctuations, followed by the cultivation costs and inflation.
A Unified Estimation Framework for State-Related Changes in Effective Brain Connectivity.
Samdin, S Balqis; Ting, Chee-Ming; Ombao, Hernando; Salleh, Sh-Hussain
2017-04-01
This paper addresses the critical problem of estimating time-evolving effective brain connectivity. Current approaches based on sliding window analysis or time-varying coefficient models do not simultaneously capture both slow and abrupt changes in causal interactions between different brain regions. To overcome these limitations, we develop a unified framework based on a switching vector autoregressive (SVAR) model. Here, the dynamic connectivity regimes are uniquely characterized by distinct vector autoregressive (VAR) processes and allowed to switch between quasi-stationary brain states. The state evolution and the associated directed dependencies are defined by a Markov process and the SVAR parameters. We develop a three-stage estimation algorithm for the SVAR model: 1) feature extraction using time-varying VAR (TV-VAR) coefficients, 2) preliminary regime identification via clustering of the TV-VAR coefficients, 3) refined regime segmentation by Kalman smoothing and parameter estimation via expectation-maximization algorithm under a state-space formulation, using initial estimates from the previous two stages. The proposed framework is adaptive to state-related changes and gives reliable estimates of effective connectivity. Simulation results show that our method provides accurate regime change-point detection and connectivity estimates. In real applications to brain signals, the approach was able to capture directed connectivity state changes in functional magnetic resonance imaging data linked with changes in stimulus conditions, and in epileptic electroencephalograms, differentiating ictal from nonictal periods. The proposed framework accurately identifies state-dependent changes in brain network and provides estimates of connectivity strength and directionality. The proposed approach is useful in neuroscience studies that investigate the dynamics of underlying brain states.
NASA Astrophysics Data System (ADS)
Wei, Yu; Chen, Wang; Lin, Yu
2013-05-01
Recent studies in the econophysics literature reveal that price variability has fractal and multifractal characteristics not only in developed financial markets, but also in emerging markets. Taking high-frequency intraday quotes of the Shanghai Stock Exchange Component (SSEC) Index as example, this paper proposes a new method to measure daily Value-at-Risk (VaR) by combining the newly introduced multifractal volatility (MFV) model and the extreme value theory (EVT) method. Two VaR backtesting techniques are then employed to compare the performance of the model with that of a group of linear and nonlinear generalized autoregressive conditional heteroskedasticity (GARCH) models. The empirical results show the multifractal nature of price volatility in Chinese stock market. VaR measures based on the multifractal volatility model and EVT method outperform many GARCH-type models at high-risk levels.
NASA Astrophysics Data System (ADS)
Suharsono, Agus; Aziza, Auliya; Pramesti, Wara
2017-12-01
Capital markets can be an indicator of the development of a country's economy. The presence of capital markets also encourages investors to trade; therefore investors need information and knowledge of which shares are better. One way of making decisions for short-term investments is the need for modeling to forecast stock prices in the period to come. Issue of stock market-stock integration ASEAN is very important. The problem is that ASEAN does not have much time to implement one market in the economy, so it would be very interesting if there is evidence whether the capital market in the ASEAN region, especially the countries of Indonesia, Malaysia, Philippines, Singapore and Thailand deserve to be integrated or still segmented. Furthermore, it should also be known and proven What kind of integration is happening: what A capital market affects only the market Other capital, or a capital market only Influenced by other capital markets, or a Capital market as well as affecting as well Influenced by other capital markets in one ASEAN region. In this study, it will compare forecasting of Indonesian share price (IHSG) with neighboring countries (ASEAN) including developed and developing countries such as Malaysia (KLSE), Singapore (SGE), Thailand (SETI), Philippines (PSE) to find out which stock country the most superior and influential. These countries are the founders of ASEAN and share price index owners who have close relations with Indonesia in terms of trade, especially exports and imports. Stock price modeling in this research is using multivariate time series analysis that is VAR (Vector Autoregressive) and VECM (Vector Error Correction Modeling). VAR and VECM models not only predict more than one variable but also can see the interrelations between variables with each other. If the assumption of white noise is not met in the VAR modeling, then the cause can be assumed that there is an outlier. With this modeling will be able to know the pattern of relationship or linkage of share prices of each country in ASEAN. The best modeling comparison result of the ASEAN stock price index is VAR.
Zhang, Yong; Zhong, Miner; Geng, Nana; Jiang, Yunjian
2017-01-01
The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry.
Zhang, Yong; Zhong, Miner; Geng, Nana; Jiang, Yunjian
2017-01-01
The market demand for electric vehicles (EVs) has increased in recent years. Suitable models are necessary to understand and forecast EV sales. This study presents a singular spectrum analysis (SSA) as a univariate time-series model and vector autoregressive model (VAR) as a multivariate model. Empirical results suggest that SSA satisfactorily indicates the evolving trend and provides reasonable results. The VAR model, which comprised exogenous parameters related to the market on a monthly basis, can significantly improve the prediction accuracy. The EV sales in China, which are categorized into battery and plug-in EVs, are predicted in both short term (up to December 2017) and long term (up to 2020), as statistical proofs of the growth of the Chinese EV industry. PMID:28459872
Granger Causality Testing with Intensive Longitudinal Data.
Molenaar, Peter C M
2018-06-01
The availability of intensive longitudinal data obtained by means of ambulatory assessment opens up new prospects for prevention research in that it allows the derivation of subject-specific dynamic networks of interacting variables by means of vector autoregressive (VAR) modeling. The dynamic networks thus obtained can be subjected to Granger causality testing in order to identify causal relations among the observed time-dependent variables. VARs have two equivalent representations: standard and structural. Results obtained with Granger causality testing depend upon which representation is chosen, yet no criteria exist on which this important choice can be based. A new equivalent representation is introduced called hybrid VARs with which the best representation can be chosen in a data-driven way. Partial directed coherence, a frequency-domain statistic for Granger causality testing, is shown to perform optimally when based on hybrid VARs. An application to real data is provided.
Three essays on price dynamics and causations among energy markets and macroeconomic information
NASA Astrophysics Data System (ADS)
Hong, Sung Wook
This dissertation examines three important issues in energy markets: price dynamics, information flow, and structural change. We discuss each issue in detail, building empirical time series models, analyzing the results, and interpreting the findings. First, we examine the contemporaneous interdependencies and information flows among crude oil, natural gas, and electricity prices in the United States (US) through the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) model, Directed Acyclic Graph (DAG) for contemporaneous causal structures and Bernanke factorization for price dynamic processes. Test results show that the DAG from residuals of out-of-sample-forecast is consistent with the DAG from residuals of within-sample-fit. The result supports innovation accounting analysis based on DAGs using residuals of out-of-sample-forecast. Second, we look at the effects of the federal fund rate and/or WTI crude oil price shock on US macroeconomic and financial indicators by using a Factor Augmented Vector Autoregression (FAVAR) model and a graphical model without any deductive assumption. The results show that, in contemporaneous time, the federal fund rate shock is exogenous as the identifying assumption in the Vector Autoregression (VAR) framework of the monetary shock transmission mechanism, whereas the WTI crude oil price return is not exogenous. Third, we examine price dynamics and contemporaneous causality among the price returns of WTI crude oil, gasoline, corn, and the S&P 500. We look for structural break points and then build an econometric model to find the consistent sub-periods having stable parameters in a given VAR framework and to explain recent movements and interdependency among returns. We found strong evidence of two structural breaks and contemporaneous causal relationships among the residuals, but also significant differences between contemporaneous causal structures for each sub-period.
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.
Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny
2018-04-16
We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.
Dealing with Multiple Solutions in Structural Vector Autoregressive Models.
Beltz, Adriene M; Molenaar, Peter C M
2016-01-01
Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior.
Is First-Order Vector Autoregressive Model Optimal for fMRI Data?
Ting, Chee-Ming; Seghouane, Abd-Krim; Khalid, Muhammad Usman; Salleh, Sh-Hussain
2015-09-01
We consider the problem of selecting the optimal orders of vector autoregressive (VAR) models for fMRI data. Many previous studies used model order of one and ignored that it may vary considerably across data sets depending on different data dimensions, subjects, tasks, and experimental designs. In addition, the classical information criteria (IC) used (e.g., the Akaike IC (AIC)) are biased and inappropriate for the high-dimensional fMRI data typically with a small sample size. We examine the mixed results on the optimal VAR orders for fMRI, especially the validity of the order-one hypothesis, by a comprehensive evaluation using different model selection criteria over three typical data types--a resting state, an event-related design, and a block design data set--with varying time series dimensions obtained from distinct functional brain networks. We use a more balanced criterion, Kullback's IC (KIC) based on Kullback's symmetric divergence combining two directed divergences. We also consider the bias-corrected versions (AICc and KICc) to improve VAR model selection in small samples. Simulation results show better small-sample selection performance of the proposed criteria over the classical ones. Both bias-corrected ICs provide more accurate and consistent model order choices than their biased counterparts, which suffer from overfitting, with KICc performing the best. Results on real data show that orders greater than one were selected by all criteria across all data sets for the small to moderate dimensions, particularly from small, specific networks such as the resting-state default mode network and the task-related motor networks, whereas low orders close to one but not necessarily one were chosen for the large dimensions of full-brain networks.
Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M
Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display interrelated vital sign changes during situations of physiological stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. The purpose of this article is to illustrate the development of patient-specific VAR models using vital sign time series data in a sample of acutely ill, monitored, step-down unit patients and determine their Granger causal dynamics prior to onset of an incident CRI. CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40-140/minute, RR = 8-36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity, (b) appropriate lag was determined using a lag-length selection criteria, (c) the VAR model was constructed, (d) residual autocorrelation was assessed with the Lagrange Multiplier test, (e) stability of the VAR system was checked, and (f) Granger causality was evaluated in the final stable model. The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%; i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%). Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes tend to occur before changes in HR and SpO2. These findings suggest that contextual assessment of RR changes as the earliest sign of CRI is warranted. Use of VAR modeling may be helpful in other nursing research applications based on time series data.
Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M.
2016-01-01
Background Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display inter-related vital sign changes during situations of physiologic stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. Purpose The purpose of this article is to illustrate development of patient-specific VAR models using vital sign time series (VSTS) data in a sample of acutely ill, monitored, step-down unit (SDU) patients, and determine their Granger causal dynamics prior to onset of an incident CRI. Approach CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40–140/minute, RR = 8–36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity; (b) appropriate lag was determined using a lag-length selection criteria; (c) the VAR model was constructed; (d) residual autocorrelation was assessed with the Lagrange Multiplier test; (e) stability of the VAR system was checked; and (f) Granger causality was evaluated in the final stable model. Results The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%) (i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%). Discussion Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes tend to occur before changes in HR and SpO2. These findings suggest that contextual assessment of RR changes as the earliest sign of CRI is warranted. Use of VAR modeling may be helpful in other nursing research applications based on time series data. PMID:27977564
NASA Astrophysics Data System (ADS)
Hill, D.; Bell, K. R. W.; McMillan, D.; Infield, D.
2014-05-01
The growth of wind power production in the electricity portfolio is striving to meet ambitious targets set, for example by the EU, to reduce greenhouse gas emissions by 20% by 2020. Huge investments are now being made in new offshore wind farms around UK coastal waters that will have a major impact on the GB electrical supply. Representations of the UK wind field in syntheses which capture the inherent structure and correlations between different locations including offshore sites are required. Here, Vector Auto-Regressive (VAR) models are presented and extended in a novel way to incorporate offshore time series from a pan-European meteorological model called COSMO, with onshore wind speeds from the MIDAS dataset provided by the British Atmospheric Data Centre. Forecasting ability onshore is shown to be improved with the inclusion of the offshore sites with improvements of up to 25% in RMS error at 6 h ahead. In addition, the VAR model is used to synthesise time series of wind at each offshore site, which are then used to estimate wind farm capacity factors at the sites in question. These are then compared with estimates of capacity factors derived from the work of Hawkins et al. (2011). A good degree of agreement is established indicating that this synthesis tool should be useful in power system impact studies.
van der Krieke, Lian; Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith Gm; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter
2015-08-07
Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher's tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use.
Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith GM; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter
2015-01-01
Background Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However, application of this method in health care practice is hampered because analyses are conducted manually and advanced statistical expertise is required. Objective This study aims to show how this limitation can be overcome by introducing automated vector autoregressive modeling (VAR) of EMA data and to evaluate its feasibility through comparisons with results of previously published manual analyses. Methods We developed a Web-based open source application, called AutoVAR, which automates time series analyses of EMA data and provides output that is intended to be interpretable by nonexperts. The statistical technique we used was VAR. AutoVAR tests and evaluates all possible VAR models within a given combinatorial search space and summarizes their results, thereby replacing the researcher’s tasks of conducting the analysis, making an informed selection of models, and choosing the best model. We compared the output of AutoVAR to the output of a previously published manual analysis (n=4). Results An illustrative example consisting of 4 analyses was provided. Compared to the manual output, the AutoVAR output presents similar model characteristics and statistical results in terms of the Akaike information criterion, the Bayesian information criterion, and the test statistic of the Granger causality test. Conclusions Results suggest that automated analysis and interpretation of times series is feasible. Compared to a manual procedure, the automated procedure is more robust and can save days of time. These findings may pave the way for using time series analysis for health promotion on a larger scale. AutoVAR was evaluated using the results of a previously conducted manual analysis. Analysis of additional datasets is needed in order to validate and refine the application for general use. PMID:26254160
Dimension reduction of frequency-based direct Granger causality measures on short time series.
Siggiridou, Elsa; Kimiskidis, Vasilios K; Kugiumtzis, Dimitris
2017-09-01
The mainstream in the estimation of effective brain connectivity relies on Granger causality measures in the frequency domain. If the measure is meant to capture direct causal effects accounting for the presence of other observed variables, as in multi-channel electroencephalograms (EEG), typically the fit of a vector autoregressive (VAR) model on the multivariate time series is required. For short time series of many variables, the estimation of VAR may not be stable requiring dimension reduction resulting in restricted or sparse VAR models. The restricted VAR obtained by the modified backward-in-time selection method (mBTS) is adapted to the generalized partial directed coherence (GPDC), termed restricted GPDC (RGPDC). Dimension reduction on other frequency based measures, such the direct directed transfer function (dDTF), is straightforward. First, a simulation study using linear stochastic multivariate systems is conducted and RGPDC is favorably compared to GPDC on short time series in terms of sensitivity and specificity. Then the two measures are tested for their ability to detect changes in brain connectivity during an epileptiform discharge (ED) from multi-channel scalp EEG. It is shown that RGPDC identifies better than GPDC the connectivity structure of the simulated systems, as well as changes in the brain connectivity, and is less dependent on the free parameter of VAR order. The proposed dimension reduction in frequency measures based on VAR constitutes an appropriate strategy to estimate reliably brain networks within short-time windows. Copyright © 2017 Elsevier B.V. All rights reserved.
Modelling malaria incidence by an autoregressive distributed lag model with spatial component.
Laguna, Francisco; Grillet, María Eugenia; León, José R; Ludeña, Carenne
2017-08-01
The influence of climatic variables on the dynamics of human malaria has been widely highlighted. Also, it is known that this mosquito-borne infection varies in space and time. However, when the data is spatially incomplete most popular spatio-temporal methods of analysis cannot be applied directly. In this paper, we develop a two step methodology to model the spatio-temporal dependence of malaria incidence on local rainfall, temperature, and humidity as well as the regional sea surface temperatures (SST) in the northern coast of Venezuela. First, we fit an autoregressive distributed lag model (ARDL) to the weekly data, and then, we adjust a linear separable spacial vectorial autoregressive model (VAR) to the residuals of the ARDL. Finally, the model parameters are tuned using a Markov Chain Monte Carlo (MCMC) procedure derived from the Metropolis-Hastings algorithm. Our results show that the best model to account for the variations of malaria incidence from 2001 to 2008 in 10 endemic Municipalities in North-Eastern Venezuela is a logit model that included the accumulated local precipitation in combination with the local maximum temperature of the preceding month as positive regressors. Additionally, we show that although malaria dynamics is highly heterogeneous in space, a detailed analysis of the estimated spatial parameters in our model yield important insights regarding the joint behavior of the disease incidence across the different counties in our study. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zuo, Hui; Tian, Lu
2018-03-01
In order to investigate international trade influence in the regional environment. This paper constructs a vector auto-regression (VAR) model and estimates the equations with the environment and trade data of the Pearl River Delta Region. The major mechanisms to the lag are discussed and the fit simulation of the environmental change by the international impulse is given. The result shows that impulse of pollution-intensive export deteriorates the environment continuously and impulse of such import improves it. These effects on the environment are insignificantly correlated with contemporary regional income but significantly correlative to early-stage trade feature. To a typical trade-dependent economy, both export and import have hysteresis influence in the regional environment. The lagged impulse will change environmental development in the turning point, maximal pollution level and convergence.
Recursive regularization for inferring gene networks from time-course gene expression profiles
Shimamura, Teppei; Imoto, Seiya; Yamaguchi, Rui; Fujita, André; Nagasaki, Masao; Miyano, Satoru
2009-01-01
Background Inferring gene networks from time-course microarray experiments with vector autoregressive (VAR) model is the process of identifying functional associations between genes through multivariate time series. This problem can be cast as a variable selection problem in Statistics. One of the promising methods for variable selection is the elastic net proposed by Zou and Hastie (2005). However, VAR modeling with the elastic net succeeds in increasing the number of true positives while it also results in increasing the number of false positives. Results By incorporating relative importance of the VAR coefficients into the elastic net, we propose a new class of regularization, called recursive elastic net, to increase the capability of the elastic net and estimate gene networks based on the VAR model. The recursive elastic net can reduce the number of false positives gradually by updating the importance. Numerical simulations and comparisons demonstrate that the proposed method succeeds in reducing the number of false positives drastically while keeping the high number of true positives in the network inference and achieves two or more times higher true discovery rate (the proportion of true positives among the selected edges) than the competing methods even when the number of time points is small. We also compared our method with various reverse-engineering algorithms on experimental data of MCF-7 breast cancer cells stimulated with two ErbB ligands, EGF and HRG. Conclusion The recursive elastic net is a powerful tool for inferring gene networks from time-course gene expression profiles. PMID:19386091
Does health promote economic growth? Portuguese case study: from dictatorship to full democracy.
Morgado, Sónia Maria Aniceto
2014-07-01
This paper revisits the debate on health and economic growth (Deaton in J Econ Lit 51:113-158, 2003) focusing on the Portuguese case by testing the relationship between growth and health. We test Portuguese insights, using time series data from 1960 to 2005, taking into account different variables (life expectancy, labour, capital, infant mortality) and considering the years that included major events on the political scene, such as the dictatorship and a closed economy (1960-1974), a revolution (1974) and full democracy and an open economy (1975-2005), factors that influence major economic, cultural, social and politic indicators. Therefore the analysis is carried out adopting Lucas' (J Monet Econ 22(1):3-42, 1988) endogenous growth model that considers human capital as one factor of production, it adopts a VAR (vector autoregressive) model to test the causality between growth and health. Estimates based on the VAR seem to confirm that economic growth influences the health process, but health does not promote growth, during the period under study.
Coupling detrended fluctuation analysis of Asian stock markets
NASA Astrophysics Data System (ADS)
Wang, Qizhen; Zhu, Yingming; Yang, Liansheng; Mul, Remco A. H.
2017-04-01
This paper uses the coupling detrended fluctuation analysis (CDFA) method to investigate the multifractal characteristics of four Asian stock markets using three stock indices: stock price returns, trading volumes and the composite index. The results show that coupled correlations exist among the four stock markets and the coupled correlations have multifractal characteristics. We then use the chi square (χ2) test to identify the sources of multifractality. For the different stock indices, the contributions of a single series to multifractality are different. In other words, the contributions of each country to coupled correlations are different. The comparative analysis shows that the research on the combine effect of stock price returns and trading volumes may be more comprehensive than on an individual index. By comparing the strength of multifractality for original data with the residual errors of the vector autoregression (VAR) model, we find that the VAR model could not be used to describe the dynamics of the coupled correlations among four financial time series.
Xiao, Hang; Huang, Zhongwen; Zhang, Jingjing; Zhang, Huiling; Chen, Jinsheng; Zhang, Han; Tong, Lei
2017-09-01
Regional haze pollution has become an important environmental issue in the Yangtze River Delta (YRD) region. Regional transport and inter-influence of PM 2.5 among cities occurs frequently as a result of the subtropical monsoon climate. Backward trajectory statistics indicated that a north wind prevailed from October to March, while a southeast wind predominated from May to September. The temporal relationships of carbon and nitrogen isotopes among cities were dependent on the prevailing wind direction. Regional PM 2.5 pollution was confirmed in the YRD region by means of significant correlations and similar cyclical characteristics of PM 2.5 among Lin'an, Ningbo, Nanjing and Shanghai. Granger causality tests of the time series of PM 2.5 values indicate that the regional transport of haze pollutants is governed by prevailing wind direction, as the PM 2.5 concentrations from upwind area cities generally influence that of the downwind cities. Furthermore, stronger correlation coefficients were identified according to monsoon pathways. To clarify the impacts of the monsoon climate, a vector autoregressive (VAR) model was introduced. Variance decomposition in the VAR model also indicated that the upwind area cities contributed significantly to PM 2.5 in the downwind area cities. Finally, we attempted to predict daily PM 2.5 concentrations in each city based on the VAR model using data from all cities and obtained fairly reasonable predictions. These indicate that statistical methods of the Granger causality test and VAR model have the potential to evaluate inter-influence and the relative contribution of PM 2.5 among cities, and to predict PM 2.5 concentrations as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chi; Zhou, Kaile; Yang, Shanlin; Shao, Zhen
2017-05-01
Since the reforming and opening up in 1978, China has experienced a miraculous development. To investigate the transformation and upgrading of China's economy, this study focuses on the relationship between economic growth and electricity consumption of the secondary and tertiary industry in China. This paper captures the dynamic interdependencies among the related variables using a theoretical framework based on a Vector Autoregressive (VAR)-Vector Error Correction (VEC) model. Using the macroeconomic and electricity consumption data, the results show that, for secondary industry, there is only a unidirectional Granger causality from electricity consumption to Gross Domestic Product (GDP) from 1980 to 2000. However, for the tertiary industry, it only occurs that GDP Granger causes electricity consumption from 2001 to 2014. All these conclusions are verified by the impulse response function and variance decomposition. This study has a great significance to reveal the relationship between industrial electricity consumption and the pattern of economic development. Meanwhile, it further suggests that, since China joined the World Trade Organization (WTO) in 2001, the trend of the economic transformation and upgrading has gradually appeared.
Zhao, Junbo; Wang, Shaobu; Mili, Lamine; ...
2018-01-08
Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Junbo; Wang, Shaobu; Mili, Lamine
Here, this paper develops a robust power system state estimation framework with the consideration of measurement correlations and imperfect synchronization. In the framework, correlations of SCADA and Phasor Measurements (PMUs) are calculated separately through unscented transformation and a Vector Auto-Regression (VAR) model. In particular, PMU measurements during the waiting period of two SCADA measurement scans are buffered to develop the VAR model with robustly estimated parameters using projection statistics approach. The latter takes into account the temporal and spatial correlations of PMU measurements and provides redundant measurements to suppress bad data and mitigate imperfect synchronization. In case where the SCADAmore » and PMU measurements are not time synchronized, either the forecasted PMU measurements or the prior SCADA measurements from the last estimation run are leveraged to restore system observability. Then, a robust generalized maximum-likelihood (GM)-estimator is extended to integrate measurement error correlations and to handle the outliers in the SCADA and PMU measurements. Simulation results that stem from a comprehensive comparison with other alternatives under various conditions demonstrate the benefits of the proposed framework.« less
Multiscale analysis of information dynamics for linear multivariate processes.
Faes, Luca; Montalto, Alessandro; Stramaglia, Sebastiano; Nollo, Giandomenico; Marinazzo, Daniele
2016-08-01
In the study of complex physical and physiological systems represented by multivariate time series, an issue of great interest is the description of the system dynamics over a range of different temporal scales. While information-theoretic approaches to the multiscale analysis of complex dynamics are being increasingly used, the theoretical properties of the applied measures are poorly understood. This study introduces for the first time a framework for the analytical computation of information dynamics for linear multivariate stochastic processes explored at different time scales. After showing that the multiscale processing of a vector autoregressive (VAR) process introduces a moving average (MA) component, we describe how to represent the resulting VARMA process using statespace (SS) models and how to exploit the SS model parameters to compute analytical measures of information storage and information transfer for the original and rescaled processes. The framework is then used to quantify multiscale information dynamics for simulated unidirectionally and bidirectionally coupled VAR processes, showing that rescaling may lead to insightful patterns of information storage and transfer but also to potentially misleading behaviors.
The dynamic correlation between policy uncertainty and stock market returns in China
NASA Astrophysics Data System (ADS)
Yang, Miao; Jiang, Zhi-Qiang
2016-11-01
The dynamic correlation is examined between government's policy uncertainty and Chinese stock market returns in the period from January 1995 to December 2014. We find that the stock market is significantly correlated to policy uncertainty based on the results of the Vector Auto Regression (VAR) and Structural Vector Auto Regression (SVAR) models. In contrast, the results of the Dynamic Conditional Correlation Generalized Multivariate Autoregressive Conditional Heteroscedasticity (DCC-MGARCH) model surprisingly show a low dynamic correlation coefficient between policy uncertainty and market returns, suggesting that the fluctuations of each variable are greatly influenced by their values in the preceding period. Our analysis highlights the understanding of the dynamical relationship between stock market and fiscal and monetary policy.
The temporal dynamics of cortisol and affective states in depressed and non-depressed individuals.
Booij, Sanne H; Bos, Elisabeth H; de Jonge, Peter; Oldehinkel, Albertine J
2016-07-01
Cortisol levels have been related to mood disorders at the group level, but not much is known about how cortisol relates to affective states within individuals over time. We examined the temporal dynamics of cortisol and affective states in depressed and non-depressed individuals in daily life. Specifically, we addressed the direction and timing of the effects, as well as individual differences. Thirty depressed and non-depressed participants (aged 20-50 years) filled out questionnaires regarding their affect and sampled saliva three times a day for 30 days in their natural environment. They were pair-matched on age, gender, smoking behavior and body mass index. The multivariate time series (T=90) of every participant were analyzed using vector autoregressive (VAR) modeling to assess lagged effects of cortisol on affect, and vice versa. Contemporaneous effects were assessed using the residuals of the VAR models. Impulse response function analysis was used to examine the timing of effects. For 29 out of 30 participants, a VAR model could be constructed. A significant relationship between cortisol and positive or negative affect was found for the majority of the participants, but the direction, sign, and timing of the relationship varied among individuals. This approach proves to be a valuable addition to traditional group designs, because our results showed that daily life fluctuations in cortisol can influence affective states, and vice versa, but not in all individuals and in varying ways. Future studies may examine whether these individual differences relate to susceptibility for or progression of mood disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dedollarization in Turkey after decades of dollarization: A myth or reality?
NASA Astrophysics Data System (ADS)
Metin-Özcan, Kıvılcım; Us, Vuslat
2007-11-01
The paper analyzes dollarization in the Turkish economy given the evidence on dedollarization signals. On conducting a Vector Autoregression (VAR) model, the empirical evidence suggests that dollarization has mostly been shaped by macroeconomic imbalances as measured by exchange rate depreciation volatility, inflation volatility and expectations. Furthermore, the generalized impulse response function (IRF) analysis, in addition to the analysis of variance decomposition (VDC) gives support to the notion that dollarization seems to sustain its persistent nature, thus hysteresis still prevails. Hence, unfavorable macroeconomic conditions apparently contribute to dollarization while dollarization itself contains inertia. Furthermore, dedollarization that presumably started after 2001 has lost headway after May 2006. Thus, it seems too early to conclude that dollarization changed its route to dedollarization.
Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data.
de Haan-Rietdijk, Silvia; Voelkle, Manuel C; Keijsers, Loes; Hamaker, Ellen L
2017-01-01
The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT) modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector) autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT) models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1) and VAR(1) models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (V)AR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available.
Discrete- vs. Continuous-Time Modeling of Unequally Spaced Experience Sampling Method Data
de Haan-Rietdijk, Silvia; Voelkle, Manuel C.; Keijsers, Loes; Hamaker, Ellen L.
2017-01-01
The Experience Sampling Method is a common approach in psychological research for collecting intensive longitudinal data with high ecological validity. One characteristic of ESM data is that it is often unequally spaced, because the measurement intervals within a day are deliberately varied, and measurement continues over several days. This poses a problem for discrete-time (DT) modeling approaches, which are based on the assumption that all measurements are equally spaced. Nevertheless, DT approaches such as (vector) autoregressive modeling are often used to analyze ESM data, for instance in the context of affective dynamics research. There are equivalent continuous-time (CT) models, but they are more difficult to implement. In this paper we take a pragmatic approach and evaluate the practical relevance of the violated model assumption in DT AR(1) and VAR(1) models, for the N = 1 case. We use simulated data under an ESM measurement design to investigate the bias in the parameters of interest under four different model implementations, ranging from the true CT model that accounts for all the exact measurement times, to the crudest possible DT model implementation, where even the nighttime is treated as a regular interval. An analysis of empirical affect data illustrates how the differences between DT and CT modeling can play out in practice. We find that the size and the direction of the bias in DT (V)AR models for unequally spaced ESM data depend quite strongly on the true parameter in addition to data characteristics. Our recommendation is to use CT modeling whenever possible, especially now that new software implementations have become available. PMID:29104554
The Empirical Relationship between Mining Industry Development and Environmental Pollution in China.
Li, Gerui; Lei, Yalin; Ge, Jianping; Wu, Sanmang
2017-03-02
This study uses a vector autoregression (VAR) model to analyze changes in pollutants among different mining industries and related policy in China from 2001 to 2014. The results show that: (1) because the pertinence of standards for mining waste water and waste gas emissions are not strong and because the maximum permissible discharge pollutant concentrations in these standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these two mining industries.
Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang
2014-10-01
Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.
SCoT: a Python toolbox for EEG source connectivity.
Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R
2014-01-01
Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT-a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT.
SCoT: a Python toolbox for EEG source connectivity
Billinger, Martin; Brunner, Clemens; Müller-Putz, Gernot R.
2014-01-01
Analysis of brain connectivity has become an important research tool in neuroscience. Connectivity can be estimated between cortical sources reconstructed from the electroencephalogram (EEG). Such analysis often relies on trial averaging to obtain reliable results. However, some applications such as brain-computer interfaces (BCIs) require single-trial estimation methods. In this paper, we present SCoT—a source connectivity toolbox for Python. This toolbox implements routines for blind source decomposition and connectivity estimation with the MVARICA approach. Additionally, a novel extension called CSPVARICA is available for labeled data. SCoT estimates connectivity from various spectral measures relying on vector autoregressive (VAR) models. Optionally, these VAR models can be regularized to facilitate ill posed applications such as single-trial fitting. We demonstrate basic usage of SCoT on motor imagery (MI) data. Furthermore, we show simulation results of utilizing SCoT for feature extraction in a BCI application. These results indicate that CSPVARICA and correct regularization can significantly improve MI classification. While SCoT was mainly designed for application in BCIs, it contains useful tools for other areas of neuroscience. SCoT is a software package that (1) brings combined source decomposition and connectivtiy estimation to the open Python platform, and (2) offers tools for single-trial connectivity estimation. The source code is released under the MIT license and is available online at github.com/SCoT-dev/SCoT. PMID:24653694
The Impact of United States Monetary Policy in the Crude Oil futures market
NASA Astrophysics Data System (ADS)
Padilla-Padilla, Fernando M.
This research examines the empirical impact the United States monetary policy, through the federal fund interest rate, has on the volatility in the crude oil price in the futures market. Prior research has shown how macroeconomic events and variables have impacted different financial markets within short and long--term movements. After testing and decomposing the variables, the two stationary time series were analyzed using a Vector Autoregressive Model (VAR). The empirical evidence shows, with statistical significance, a direct relationship when explaining crude oil prices as function of fed fund rates (t-1) and an indirect relationship when explained as a function of fed fund rates (t-2). These results partially address the literature review lacunas within the topic of the existing implication monetary policy has within the crude oil futures market.
The Empirical Relationship between Mining Industry Development and Environmental Pollution in China
Li, Gerui; Lei, Yalin; Ge, Jianping; Wu, Sanmang
2017-01-01
This study uses a vector autoregression (VAR) model to analyze changes in pollutants among different mining industries and related policy in China from 2001 to 2014. The results show that: (1) because the pertinence of standards for mining waste water and waste gas emissions are not strong and because the maximum permissible discharge pollutant concentrations in these standards are too high, ammonia nitrogen and industrial sulfur dioxide discharges increased in most mining industries; (2) chemical oxygen demand was taken as an indicator of sewage treatment in environmental protection plans; hence, the chemical oxygen demand discharge decreased in all mining industries; (3) tax reduction policies, which are only implemented in coal mining and washing and extraction of petroleum and natural gas, decreased the industrial solid waste discharge in these two mining industries. PMID:28257126
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
ERIC Educational Resources Information Center
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
NASA Astrophysics Data System (ADS)
Konstantakis, Konstantinos N.; Michaelides, Panayotis G.; Vouldis, Angelos T.
2016-06-01
As a result of domestic and international factors, the Greek economy faced a severe crisis which is directly comparable only to the Great Recession. In this context, a prominent victim of this situation was the country's banking system. This paper attempts to shed light on the determining factors of non-performing loans in the Greek banking sector. The analysis presents empirical evidence from the Greek economy, using aggregate data on a quarterly basis, in the time period 2001-2015, fully capturing the recent recession. In this work, we use a relevant econometric framework based on a real time Vector Autoregressive (VAR)-Vector Error Correction (VEC) model, which captures the dynamic interdependencies among the variables used. Consistent with international evidence, the empirical findings show that both macroeconomic and financial factors have a significant impact on non-performing loans in the country. Meanwhile, the deteriorating credit quality feeds back into the economy leading to a self-reinforcing negative loop.
Short-term climate change impacts on Mara basin hydrology
NASA Astrophysics Data System (ADS)
Demaria, E. M.; Roy, T.; Valdés, J. B.; Lyon, B.; Valdés-Pineda, R.; Serrat-Capdevila, A.; Durcik, M.; Gupta, H.
2017-12-01
The predictability of climate diminishes significantly at shorter time scales (e.g. decadal). Both natural variability as well as sampling variability of climate can obscure or enhance climate change signals in these shorter scales. Therefore, in order to assess the impacts of climate change on basin hydrology, it is important to design climate projections with exhaustive climate scenarios. In this study, we first create seasonal climate scenarios by combining (1) synthetic precipitation projections generated from a Vector Auto-Regressive (VAR) model using the University of East Anglia Climate Research Unit (UEA-CRU) data with (2) seasonal trends calculated from 31 models in the Coupled Model Intercomparison Project Phase 5 (CMIP). The seasonal climate projections are then disaggregated to daily level using the Agricultural Modern-Era Retrospective Analysis for Research and Applications (AgMERRA) data. The daily climate data are then bias-corrected and used as forcings to the land-surface model, Variable Infiltration Capacity (VIC), to generate different hydrological projections for the Mara River basin in East Africa, which are then evaluated to study the hydrologic changes in the basin in the next three decades (2020-2050).
NASA Astrophysics Data System (ADS)
Dong, Yijun
The research about measuring the risk of a bond portfolio and the portfolio optimization was relatively rare previously, because the risk factors of bond portfolios are not very volatile. However, this condition has changed recently. The 2008 financial crisis brought high volatility to the risk factors and the related bond securities, even if the highly rated U.S. treasury bonds. Moreover, the risk factors of bond portfolios show properties of fat-tailness and asymmetry like risk factors of equity portfolios. Therefore, we need to use advanced techniques to measure and manage risk of bond portfolios. In our paper, we first apply autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model with multivariate normal tempered stable (MNTS) distribution innovations to predict risk factors of U.S. treasury bonds and statistically demonstrate that MNTS distribution has the ability to capture the properties of risk factors based on the goodness-of-fit tests. Then based on empirical evidence, we find that the VaR and AVaR estimated by assuming normal tempered stable distribution are more realistic and reliable than those estimated by assuming normal distribution, especially for the financial crisis period. Finally, we use the mean-risk portfolio optimization to minimize portfolios' potential risks. The empirical study indicates that the optimized bond portfolios have better risk-adjusted performances than the benchmark portfolios for some periods. Moreover, the optimized bond portfolios obtained by assuming normal tempered stable distribution have improved performances in comparison to the optimized bond portfolios obtained by assuming normal distribution.
Incorporating measurement error in n = 1 psychological autoregressive modeling.
Schuurman, Noémi K; Houtveen, Jan H; Hamaker, Ellen L
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30-50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters.
Get Over It! A Multilevel Threshold Autoregressive Model for State-Dependent Affect Regulation.
De Haan-Rietdijk, Silvia; Gottman, John M; Bergeman, Cindy S; Hamaker, Ellen L
2016-03-01
Intensive longitudinal data provide rich information, which is best captured when specialized models are used in the analysis. One of these models is the multilevel autoregressive model, which psychologists have applied successfully to study affect regulation as well as alcohol use. A limitation of this model is that the autoregressive parameter is treated as a fixed, trait-like property of a person. We argue that the autoregressive parameter may be state-dependent, for example, if the strength of affect regulation depends on the intensity of affect experienced. To allow such intra-individual variation, we propose a multilevel threshold autoregressive model. Using simulations, we show that this model can be used to detect state-dependent regulation with adequate power and Type I error. The potential of the new modeling approach is illustrated with two empirical applications that extend the basic model to address additional substantive research questions.
Robust Semi-Active Ride Control under Stochastic Excitation
2014-01-01
broad classes of time-series models which are of practical importance; the Auto-Regressive (AR) models, the Integrated (I) models, and the Moving...Average (MA) models [12]. Combinations of these models result in autoregressive moving average (ARMA) and autoregressive integrated moving average...Down Up 4) Down Down These four cases can be written in compact form as: (20) Where is the Heaviside
Incorporating measurement error in n = 1 psychological autoregressive modeling
Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988
Oil price fluctuations and the Gulf Cooperation Council (GCC) countries, 1960--2004
NASA Astrophysics Data System (ADS)
Alotaibi, Bader
The dissertation examines the effect of oil price fluctuations on GCC economies for the period 1960-2004. The objective of chapter two is to investigate whether oil price fluctuations have asymmetric effects on GDP growth. Does a negative oil price shock have merely an opposite effect as does a positive price shock or are there differences in degrees? Many past studies have examined asymmetries between oil prices and output growth in oil importing countries. A fixed effect model is used. We find that negative oil price shocks dominate positive shocks. The objective of chapter three is to investigate the impact of oil price shocks on real exchange rates and price levels. A structural Vector Autoregression (VAR) model for each country is used containing three and four variables in the first and second specifications, respectively. Oil price shocks are found to be not only important but persistent. In most countries, supply shocks play larger roles than do demand shocks. Nominal shocks have only short-run effects on the real exchange rate and the price level. The objective of chapter four is to investigate fluctuations in budget and trade deficits. Do agents smooth over income shocks due to fluctuations in oil prices or do oil price shocks have large effects? Also, are the budget and trade deficits causally related? If so, what direction does this causal relation take? Many studies have considered links between budget and trade deficits but most have been conducted for countries where oil is not a major concern. A VAR model containing three variables for each country is used. Oil price shocks are found to be persistent. Also, the results support the twin deficits hypothesis. Budget deficit shocks cause deterioration in the trade deficits in GCC countries.
NASA Astrophysics Data System (ADS)
Ouyang, Huei-Tau
2017-07-01
Three types of model for forecasting inundation levels during typhoons were optimized: the linear autoregressive model with exogenous inputs (LARX), the nonlinear autoregressive model with exogenous inputs with wavelet function (NLARX-W) and the nonlinear autoregressive model with exogenous inputs with sigmoid function (NLARX-S). The forecast performance was evaluated by three indices: coefficient of efficiency, error in peak water level and relative time shift. Historical typhoon data were used to establish water-level forecasting models that satisfy all three objectives. A multi-objective genetic algorithm was employed to search for the Pareto-optimal model set that satisfies all three objectives and select the ideal models for the three indices. Findings showed that the optimized nonlinear models (NLARX-W and NLARX-S) outperformed the linear model (LARX). Among the nonlinear models, the optimized NLARX-W model achieved a more balanced performance on the three indices than the NLARX-S models and is recommended for inundation forecasting during typhoons.
Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
1988-01-01
A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.
Forecasting coconut production in the Philippines with ARIMA model
NASA Astrophysics Data System (ADS)
Lim, Cristina Teresa
2015-02-01
The study aimed to depict the situation of the coconut industry in the Philippines for the future years applying Autoregressive Integrated Moving Average (ARIMA) method. Data on coconut production, one of the major industrial crops of the country, for the period of 1990 to 2012 were analyzed using time-series methods. Autocorrelation (ACF) and partial autocorrelation functions (PACF) were calculated for the data. Appropriate Box-Jenkins autoregressive moving average model was fitted. Validity of the model was tested using standard statistical techniques. The forecasting power of autoregressive moving average (ARMA) model was used to forecast coconut production for the eight leading years.
Molenaar, Peter C M
2017-01-01
Equivalences of two classes of dynamic models for weakly stationary multivariate time series are discussed: dynamic factor models and autoregressive models. It is shown that exploratory dynamic factor models can be rotated, yielding an infinite set of equivalent solutions for any observed series. It also is shown that dynamic factor models with lagged factor loadings are not equivalent to the currently popular state-space models, and that restriction of attention to the latter type of models may yield invalid results. The known equivalent vector autoregressive model types, standard and structural, are given a new interpretation in which they are conceived of as the extremes of an innovating type of hybrid vector autoregressive models. It is shown that consideration of hybrid models solves many problems, in particular with Granger causality testing.
NASA Astrophysics Data System (ADS)
Khan, Habib Nawaz; Razali, Radzuan B.; Shafei, Afza Bt.
2016-11-01
The objectives of this paper is two-fold: First, to empirically investigate the effects of an enlarged number of healthy and well-educated people on economic growth in Malaysia within the Endogeneous Growth Model framework. Second, to examine the causal links between education, health and economic growth using annual time series data from 1981 to 2014 for Malaysia. Data series were checked for the time series properties by using ADF and KPSS tests. Long run co-integration relationship was investigated with the help of vector autoregressive (VAR) method. For short and long run dynamic relationship investigation vector error correction model (VECM) was applied. Causality analysis was performed through Engle-Granger technique. The study results showed long run co-integration relation and positively significant effects of education and health on economic growth in Malaysia. The reported results also confirmed a feedback hypothesis between the variables in the case of Malaysia. The study results have policy relevance of the importance of human capital (health and education) to the growth process of the Malaysia. Thus, it is suggested that policy makers focus on education and health sectors for sustainable economic growth in Malaysia.
How to compare cross-lagged associations in a multilevel autoregressive model.
Schuurman, Noémi K; Ferrer, Emilio; de Boer-Sonnenschein, Mieke; Hamaker, Ellen L
2016-06-01
By modeling variables over time it is possible to investigate the Granger-causal cross-lagged associations between variables. By comparing the standardized cross-lagged coefficients, the relative strength of these associations can be evaluated in order to determine important driving forces in the dynamic system. The aim of this study was twofold: first, to illustrate the added value of a multilevel multivariate autoregressive modeling approach for investigating these associations over more traditional techniques; and second, to discuss how the coefficients of the multilevel autoregressive model should be standardized for comparing the strength of the cross-lagged associations. The hierarchical structure of multilevel multivariate autoregressive models complicates standardization, because subject-based statistics or group-based statistics can be used to standardize the coefficients, and each method may result in different conclusions. We argue that in order to make a meaningful comparison of the strength of the cross-lagged associations, the coefficients should be standardized within persons. We further illustrate the bivariate multilevel autoregressive model and the standardization of the coefficients, and we show that disregarding individual differences in dynamics can prove misleading, by means of an empirical example on experienced competence and exhaustion in persons diagnosed with burnout. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
To center or not to center? Investigating inertia with a multilevel autoregressive model.
Hamaker, Ellen L; Grasman, Raoul P P P
2014-01-01
Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model.
To center or not to center? Investigating inertia with a multilevel autoregressive model
Hamaker, Ellen L.; Grasman, Raoul P. P. P.
2015-01-01
Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion), cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship). This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction), cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model. PMID:25688215
Characteristics of the transmission of autoregressive sub-patterns in financial time series
NASA Astrophysics Data System (ADS)
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong
2014-09-01
There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.
Characteristics of the transmission of autoregressive sub-patterns in financial time series
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong
2014-01-01
There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors. PMID:25189200
NASA Astrophysics Data System (ADS)
Di Piazza, A.; Cordano, E.; Eccel, E.
2012-04-01
The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices selected from the list recommended by the World Meteorological Organization Commission for Climatology (WMO-CCL) and the Research Programme on Climate Variability and Predictability (CLIVAR) project's Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI). Each index was applied to both observed (and processed) data and to synthetic time series produced by the Weather Generator, over the thirty year reference period 1981-2010, in order to validate the procedure. Climate projections were statistically downscaled for a selection of sites for the two 30-year periods 2021-2050 and 2071-2099 of the European project "Ensembles" multi-model output (scenario A1B). The use of several climatic indices strengthens the trend analysis of both the generated synthetic series and future climate projections.
Johansson, Michael A; Reich, Nicholas G; Hota, Aditi; Brownstein, John S; Santillana, Mauricio
2016-09-26
Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model.
Johansson, Michael A.; Reich, Nicholas G.; Hota, Aditi; Brownstein, John S.; Santillana, Mauricio
2016-01-01
Dengue viruses, which infect millions of people per year worldwide, cause large epidemics that strain healthcare systems. Despite diverse efforts to develop forecasting tools including autoregressive time series, climate-driven statistical, and mechanistic biological models, little work has been done to understand the contribution of different components to improved prediction. We developed a framework to assess and compare dengue forecasts produced from different types of models and evaluated the performance of seasonal autoregressive models with and without climate variables for forecasting dengue incidence in Mexico. Climate data did not significantly improve the predictive power of seasonal autoregressive models. Short-term and seasonal autocorrelation were key to improving short-term and long-term forecasts, respectively. Seasonal autoregressive models captured a substantial amount of dengue variability, but better models are needed to improve dengue forecasting. This framework contributes to the sparse literature of infectious disease prediction model evaluation, using state-of-the-art validation techniques such as out-of-sample testing and comparison to an appropriate reference model. PMID:27665707
NASA Astrophysics Data System (ADS)
Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria
2013-06-01
Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.
Kepler AutoRegressive Planet Search: Motivation & Methodology
NASA Astrophysics Data System (ADS)
Caceres, Gabriel; Feigelson, Eric; Jogesh Babu, G.; Bahamonde, Natalia; Bertin, Karine; Christen, Alejandra; Curé, Michel; Meza, Cristian
2015-08-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Auto-Regressive Moving-Average (ARMA) models, Generalized Auto-Regressive Conditional Heteroskedasticity (GARCH), and related models are flexible, phenomenological methods used with great success to model stochastic temporal behaviors in many fields of study, particularly econometrics. Powerful statistical methods are implemented in the public statistical software environment R and its many packages. Modeling involves maximum likelihood fitting, model selection, and residual analysis. These techniques provide a useful framework to model stellar variability and are used in KARPS with the objective of reducing stellar noise to enhance opportunities to find as-yet-undiscovered planets. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; ARMA-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. We apply the procedures to simulated Kepler-like time series with known stellar and planetary signals to evaluate the effectiveness of the KARPS procedures. The ARMA-type modeling is effective at reducing stellar noise, but also reduces and transforms the transit signal into ingress/egress spikes. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. We also illustrate the efficient coding in R.
Volatility in GARCH Models of Business Tendency Index
NASA Astrophysics Data System (ADS)
Wahyuni, Dwi A. S.; Wage, Sutarman; Hartono, Ateng
2018-01-01
This paper aims to obtain a model of business tendency index by considering volatility factor. Volatility factor detected by ARCH (Autoregressive Conditional Heteroscedasticity). The ARCH checking was performed using the Lagrange multiplier test. The modeling is Generalized Autoregressive Conditional Heteroscedasticity (GARCH) are able to overcome volatility problems by incorporating past residual elements and residual variants.
Time to burn: Modeling wildland arson as an autoregressive crime function
Jeffrey P. Prestemon; David T. Butry
2005-01-01
Six Poisson autoregressive models of order p [PAR(p)] of daily wildland arson ignition counts are estimated for five locations in Florida (1994-2001). In addition, a fixed effects time-series Poisson model of annual arson counts is estimated for all Florida counties (1995-2001). PAR(p) model estimates reveal highly significant arson ignition autocorrelation, lasting up...
Spatial Dynamics and Determinants of County-Level Education Expenditure in China
ERIC Educational Resources Information Center
Gu, Jiafeng
2012-01-01
In this paper, a multivariate spatial autoregressive model of local public education expenditure determination with autoregressive disturbance is developed and estimated. The existence of spatial interdependence is tested using Moran's I statistic and Lagrange multiplier test statistics for both the spatial error and spatial lag models. The full…
Spatial Autocorrelation And Autoregressive Models In Ecology
Jeremy W. Lichstein; Theodore R. Simons; Susan A. Shriner; Kathleen E. Franzreb
2003-01-01
Abstract. Recognition and analysis of spatial autocorrelation has defined a new paradigm in ecology. Attention to spatial pattern can lead to insights that would have been otherwise overlooked, while ignoring space may lead to false conclusions about ecological relationships. We used Gaussian spatial autoregressive models, fit with widely available...
NASA Astrophysics Data System (ADS)
Cao, Guangxi; Guo, Jianping; Xu, Lin
GARCH models are widely used to model the volatility of financial assets and measure VaR. Based on the characteristics of long-memory and lepkurtosis and fat tail of stock market return series, we compared the ability of double long-memory GARCH models with skewed student-t-distribution to compute VaR, through the empirical analysis of Shanghai Composite Index (SHCI) and Shenzhen Component Index (SZCI). The results show that the ARFIMA-HYGARCH model performance better than others, and at less than or equal to 2.5 percent of the level of VaR, double long-memory GARCH models have stronger ability to evaluate in-sample VaRs in long position than in short position while there is a diametrically opposite conclusion for ability of out-of-sample VaR forecast.
Medium- and Long-term Prediction of LOD Change with the Leap-step Autoregressive Model
NASA Astrophysics Data System (ADS)
Liu, Q. B.; Wang, Q. J.; Lei, M. F.
2015-09-01
It is known that the accuracies of medium- and long-term prediction of changes of length of day (LOD) based on the combined least-square and autoregressive (LS+AR) decrease gradually. The leap-step autoregressive (LSAR) model is more accurate and stable in medium- and long-term prediction, therefore it is used to forecast the LOD changes in this work. Then the LOD series from EOP 08 C04 provided by IERS (International Earth Rotation and Reference Systems Service) is used to compare the effectiveness of the LSAR and traditional AR methods. The predicted series resulted from the two models show that the prediction accuracy with the LSAR model is better than that from AR model in medium- and long-term prediction.
Mathematical model with autoregressive process for electrocardiogram signals
NASA Astrophysics Data System (ADS)
Evaristo, Ronaldo M.; Batista, Antonio M.; Viana, Ricardo L.; Iarosz, Kelly C.; Szezech, José D., Jr.; Godoy, Moacir F. de
2018-04-01
The cardiovascular system is composed of the heart, blood and blood vessels. Regarding the heart, cardiac conditions are determined by the electrocardiogram, that is a noninvasive medical procedure. In this work, we propose autoregressive process in a mathematical model based on coupled differential equations in order to obtain the tachograms and the electrocardiogram signals of young adults with normal heartbeats. Our results are compared with experimental tachogram by means of Poincaré plot and dentrended fluctuation analysis. We verify that the results from the model with autoregressive process show good agreement with experimental measures from tachogram generated by electrical activity of the heartbeat. With the tachogram we build the electrocardiogram by means of coupled differential equations.
Functional MRI and Multivariate Autoregressive Models
Rogers, Baxter P.; Katwal, Santosh B.; Morgan, Victoria L.; Asplund, Christopher L.; Gore, John C.
2010-01-01
Connectivity refers to the relationships that exist between different regions of the brain. In the context of functional magnetic resonance imaging (fMRI), it implies a quantifiable relationship between hemodynamic signals from different regions. One aspect of this relationship is the existence of small timing differences in the signals in different regions. Delays of 100 ms or less may be measured with fMRI, and these may reflect important aspects of the manner in which brain circuits respond as well as the overall functional organization of the brain. The multivariate autoregressive time series model has features to recommend it for measuring these delays, and is straightforward to apply to hemodynamic data. In this review, we describe the current usage of the multivariate autoregressive model for fMRI, discuss the issues that arise when it is applied to hemodynamic time series, and consider several extensions. Connectivity measures like Granger causality that are based on the autoregressive model do not always reflect true neuronal connectivity; however, we conclude that careful experimental design could make this methodology quite useful in extending the information obtainable using fMRI. PMID:20444566
Kumaraswamy autoregressive moving average models for double bounded environmental data
NASA Astrophysics Data System (ADS)
Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme
2017-12-01
In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, Danilo J.; Poyer, David A.
Vector error correction (VEC) was used to test the importance of a theoretical causal chain from transportation fuel cost to vehicle sales to macroeconomic activity. Real transportation fuel cost was broken into two cost components: real gasoline price (rpgas) and real personal consumption of gasoline and other goods (gas). Real personal consumption expenditure on vehicles (RMVE) represented vehicle sales. Real gross domestic product (rGDP) was used as the measure of macroeconomic activity. The VEC estimates used quarterly data from the third quarter of 1952 to the first quarter of 2014. Controlling for the financial causes of the recent Great Recession,more » real homeowners’ equity (equity) and real credit market instruments liability (real consumer debt, rcmdebt) were included. Results supported the primary hypothesis of the research, but also introduced evidence that another financial path through equity is important, and that use of the existing fleet of vehicles (not just sales of vehicles) is an important transport-related contributor to macroeconomic activity. Consumer debt reduction is estimated to be a powerful short-run force reducing vehicle sales. Findings are interpreted in the context of the recent Greene, Lee, and Hopson (2012) (hereafter GLH) estimation of the magnitude of three distinct macroeconomic damage effects that result from dependence on imported oil, the price of which is manipulated by the Organization of Petroleum Exporting Countries (OPEC). The three negative macroeconomic impacts are due to (1) dislocation (positive oil price shock), (2) high oil price levels, and (3) a high value of the quantity of oil imports times an oil price delta (cartel price less competitive price). The third of these is the wealth effect. The VEC model addresses the first two, but the software output from the model (impulse response plots) does not isolate them. Nearly all prior statistical tests in the literature have used vector autoregression (VAR) and autoregressive distributed lag models that considered effects of oil price changes, but did not account for effects of oil price levels. Gasoline prices were rarely examined. The tests conducted in this report evaluate gasoline instead of oil.« less
NASA Astrophysics Data System (ADS)
Suparman, Yusep; Folmer, Henk; Oud, Johan H. L.
2014-01-01
Omitted variables and measurement errors in explanatory variables frequently occur in hedonic price models. Ignoring these problems leads to biased estimators. In this paper, we develop a constrained autoregression-structural equation model (ASEM) to handle both types of problems. Standard panel data models to handle omitted variables bias are based on the assumption that the omitted variables are time-invariant. ASEM allows handling of both time-varying and time-invariant omitted variables by constrained autoregression. In the case of measurement error, standard approaches require additional external information which is usually difficult to obtain. ASEM exploits the fact that panel data are repeatedly measured which allows decomposing the variance of a variable into the true variance and the variance due to measurement error. We apply ASEM to estimate a hedonic housing model for urban Indonesia. To get insight into the consequences of measurement error and omitted variables, we compare the ASEM estimates with the outcomes of (1) a standard SEM, which does not account for omitted variables, (2) a constrained autoregression model, which does not account for measurement error, and (3) a fixed effects hedonic model, which ignores measurement error and time-varying omitted variables. The differences between the ASEM estimates and the outcomes of the three alternative approaches are substantial.
MacNab, Ying C
2016-08-01
This paper concerns with multivariate conditional autoregressive models defined by linear combination of independent or correlated underlying spatial processes. Known as linear models of coregionalization, the method offers a systematic and unified approach for formulating multivariate extensions to a broad range of univariate conditional autoregressive models. The resulting multivariate spatial models represent classes of coregionalized multivariate conditional autoregressive models that enable flexible modelling of multivariate spatial interactions, yielding coregionalization models with symmetric or asymmetric cross-covariances of different spatial variation and smoothness. In the context of multivariate disease mapping, for example, they facilitate borrowing strength both over space and cross variables, allowing for more flexible multivariate spatial smoothing. Specifically, we present a broadened coregionalization framework to include order-dependent, order-free, and order-robust multivariate models; a new class of order-free coregionalized multivariate conditional autoregressives is introduced. We tackle computational challenges and present solutions that are integral for Bayesian analysis of these models. We also discuss two ways of computing deviance information criterion for comparison among competing hierarchical models with or without unidentifiable prior parameters. The models and related methodology are developed in the broad context of modelling multivariate data on spatial lattice and illustrated in the context of multivariate disease mapping. The coregionalization framework and related methods also present a general approach for building spatially structured cross-covariance functions for multivariate geostatistics. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Lopes, Sílvia R. C.; Prass, Taiane S.
2014-05-01
Here we present a theoretical study on the main properties of Fractionally Integrated Exponential Generalized Autoregressive Conditional Heteroskedastic (FIEGARCH) processes. We analyze the conditions for the existence, the invertibility, the stationarity and the ergodicity of these processes. We prove that, if { is a FIEGARCH(p,d,q) process then, under mild conditions, { is an ARFIMA(q,d,0) with correlated innovations, that is, an autoregressive fractionally integrated moving average process. The convergence order for the polynomial coefficients that describes the volatility is presented and results related to the spectral representation and to the covariance structure of both processes { and { are discussed. Expressions for the kurtosis and the asymmetry measures for any stationary FIEGARCH(p,d,q) process are also derived. The h-step ahead forecast for the processes {, { and { are given with their respective mean square error of forecast. The work also presents a Monte Carlo simulation study showing how to generate, estimate and forecast based on six different FIEGARCH models. The forecasting performance of six models belonging to the class of autoregressive conditional heteroskedastic models (namely, ARCH-type models) and radial basis models is compared through an empirical application to Brazilian stock market exchange index.
Dechavanne, Sebastien; Sousa, Patrícia M.; Barateiro, André; Cunha, Sónia F.; Nunes-Silva, Sofia; Lima, Flávia A.; Murillo, Oscar; Marinho, Claudio R. F.; Gangnard, Stephane; Srivastava, Anand; Braks, Joanna A.; Janse, Chris J.; Gamain, Benoit; Penha-Gonçalves, Carlos
2016-01-01
Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane. Plasmodium berghei IE infection in pregnant BALB/c mice is a model for severe placental malaria (PM). Here, we describe a transgenic P. berghei parasite expressing the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) fused to a P. berghei exported protein (EMAP1) and characterize a var2CSA-based mouse model of PM. BALB/c mice were infected at midgestation with different doses of P. berghei-var2CSA (P. berghei-VAR) or P. berghei wild-type IEs. Infection with 104 P. berghei-VAR IEs induced a higher incidence of stillbirth and lower fetal weight than P. berghei. At doses of 105 and 106 IEs, P. berghei-VAR-infected mice showed increased maternal mortality during pregnancy and fetal loss, respectively. Parasite loads in infected placentas were similar between parasite lines despite differences in maternal outcomes. Fetal weight loss normalized for parasitemia was higher in P. berghei-VAR-infected mice than in P. berghei-infected mice. In vitro assays showed that higher numbers of P. berghei-VAR IEs than P. berghei IEs adhered to placental tissue. Immunization of mice with P. berghei-VAR elicited IgG antibodies reactive to DBL1-6 recombinant protein, indicating that the topology of immunogenic epitopes is maintained between DBL1-6–EMAP1 on P. berghei-VAR and recombinant DBL1-6 (recDBL1-6). Our data suggested that impairments in pregnancy caused by P. berghei-VAR infection were attributable to var2CSA expression. This model provides a tool for preclinical evaluation of protection against PM induced by approaches that target var2CSA. PMID:27045035
Forecasting Instability Indicators in the Horn of Africa
2008-03-01
further than 2 (Makridakis, et al, 1983, 359). 2-32 Autoregressive Integrated Moving Average ( ARIMA ) Model . Similar to the ARMA model except for...stationary process. ARIMA models are described as ARIMA (p,d,q), where p is the order of the autoregressive process, d is the degree of the...differential process, and q is the order of the moving average process. The ARMA (1,1) model shown above is equivalent to an ARIMA (1,0,1) model . An ARIMA
Modelling of volatility in monetary transmission mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobešová, Anna; Klepáč, Václav; Kolman, Pavel
2015-03-10
The aim of this paper is to compare different approaches to modeling of volatility in monetary transmission mechanism. For this purpose we built time-varying parameter VAR (TVP-VAR) model with stochastic volatility and VAR-DCC-GARCH model with conditional variance. The data from three European countries are included in the analysis: the Czech Republic, Germany and Slovakia. Results show that VAR-DCC-GARCH system captures higher volatility of observed variables but main trends and detected breaks are generally identical in both approaches.
Water balance models in one-month-ahead streamflow forecasting
Alley, William M.
1985-01-01
Techniques are tested that incorporate information from water balance models in making 1-month-ahead streamflow forecasts in New Jersey. The results are compared to those based on simple autoregressive time series models. The relative performance of the models is dependent on the month of the year in question. The water balance models are most useful for forecasts of April and May flows. For the stations in northern New Jersey, the April and May forecasts were made in order of decreasing reliability using the water-balance-based approaches, using the historical monthly means, and using simple autoregressive models. The water balance models were useful to a lesser extent for forecasts during the fall months. For the rest of the year the improvements in forecasts over those obtained using the simpler autoregressive models were either very small or the simpler models provided better forecasts. When using the water balance models, monthly corrections for bias are found to improve minimum mean-square-error forecasts as well as to improve estimates of the forecast conditional distributions.
Fractal and chaotic laws on seismic dissipated energy in an energy system of engineering structures
NASA Astrophysics Data System (ADS)
Cui, Yu-Hong; Nie, Yong-An; Yan, Zong-Da; Wu, Guo-You
1998-09-01
Fractal and chaotic laws of engineering structures are discussed in this paper, it means that the intrinsic essences and laws on dynamic systems which are made from seismic dissipated energy intensity E d and intensity of seismic dissipated energy moment I e are analyzed. Based on the intrinsic characters of chaotic and fractal dynamic system of E d and I e, three kinds of approximate dynamic models are rebuilt one by one: index autoregressive model, threshold autoregressive model and local-approximate autoregressive model. The innate laws, essences and systematic error of evolutional behavior I e are explained over all, the short-term behavior predictability and long-term behavior probability of which are analyzed in the end. That may be valuable for earthquake-resistant theory and analysis method in practical engineering structures.
The Performance of Multilevel Growth Curve Models under an Autoregressive Moving Average Process
ERIC Educational Resources Information Center
Murphy, Daniel L.; Pituch, Keenan A.
2009-01-01
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
ERIC Educational Resources Information Center
Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.
2016-01-01
The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…
Processing on weak electric signals by the autoregressive model
NASA Astrophysics Data System (ADS)
Ding, Jinli; Zhao, Jiayin; Wang, Lanzhou; Li, Qiao
2008-10-01
A model of the autoregressive model of weak electric signals in two plants was set up for the first time. The result of the AR model to forecast 10 values of the weak electric signals is well. It will construct a standard set of the AR model coefficient of the plant electric signal and the environmental factor, and can be used as the preferences for the intelligent autocontrol system based on the adaptive characteristic of plants to achieve the energy saving on agricultural productions.
Trans-dimensional joint inversion of seabed scattering and reflection data.
Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2013-03-01
This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.
NASA Astrophysics Data System (ADS)
Brinkerhoff, D. J.; Johnson, J. V.
2013-07-01
We introduce a novel, higher order, finite element ice sheet model called VarGlaS (Variational Glacier Simulator), which is built on the finite element framework FEniCS. Contrary to standard procedure in ice sheet modelling, VarGlaS formulates ice sheet motion as the minimization of an energy functional, conferring advantages such as a consistent platform for making numerical approximations, a coherent relationship between motion and heat generation, and implicit boundary treatment. VarGlaS also solves the equations of enthalpy rather than temperature, avoiding the solution of a contact problem. Rather than include a lengthy model spin-up procedure, VarGlaS possesses an automated framework for model inversion. These capabilities are brought to bear on several benchmark problems in ice sheet modelling, as well as a 500 yr simulation of the Greenland ice sheet at high resolution. VarGlaS performs well in benchmarking experiments and, given a constant climate and a 100 yr relaxation period, predicts a mass evolution of the Greenland ice sheet that matches present-day observations of mass loss. VarGlaS predicts a thinning in the interior and thickening of the margins of the ice sheet.
Time series models on analysing mortality rates and acute childhood lymphoid leukaemia.
Kis, Maria
2005-01-01
In this paper we demonstrate applying time series models on medical research. The Hungarian mortality rates were analysed by autoregressive integrated moving average models and seasonal time series models examined the data of acute childhood lymphoid leukaemia.The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality rates of ischemic heart diseases and analysis of the mortality rates of cancer of digestive system. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia. We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.
Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model
NASA Astrophysics Data System (ADS)
Wang, Qijie
2015-08-01
The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.
Bildirici, Melike; Ersin, Özgür Ömer
2018-01-01
The study aims to combine the autoregressive distributed lag (ARDL) cointegration framework with smooth transition autoregressive (STAR)-type nonlinear econometric models for causal inference. Further, the proposed STAR distributed lag (STARDL) models offer new insights in terms of modeling nonlinearity in the long- and short-run relations between analyzed variables. The STARDL method allows modeling and testing nonlinearity in the short-run and long-run parameters or both in the short- and long-run relations. To this aim, the relation between CO 2 emissions and economic growth rates in the USA is investigated for the 1800-2014 period, which is one of the largest data sets available. The proposed hybrid models are the logistic, exponential, and second-order logistic smooth transition autoregressive distributed lag (LSTARDL, ESTARDL, and LSTAR2DL) models combine the STAR framework with nonlinear ARDL-type cointegration to augment the linear ARDL approach with smooth transitional nonlinearity. The proposed models provide a new approach to the relevant econometrics and environmental economics literature. Our results indicated the presence of asymmetric long-run and short-run relations between the analyzed variables that are from the GDP towards CO 2 emissions. By the use of newly proposed STARDL models, the results are in favor of important differences in terms of the response of CO 2 emissions in regimes 1 and 2 for the estimated LSTAR2DL and LSTARDL models.
NASA Technical Reports Server (NTRS)
Pelc, Joanna S.; Todling, Ricardo; Akkraoui, Amal El
2014-01-01
The Global Modeling and Assimilation Offce (GMAO) is currently using an IAU-based 3D-Var data assimilation system. GMAO has been experimenting with a 3D-Var-hybrid version of its data assimilation system (DAS) for over a year now, which will soon become operational and it will rapidly progress toward a 4D-EnVar. Concurrently, the machinery to exercise traditional 4DVar is in place and it is desirable to have a comparison of the traditional 4D approach with the other available options, and evaluate their performance in the Goddard Earth Observing System (GEOS) DAS. This work will also explore the possibility for constructing a reduced order model (ROM) to make traditional 4D-Var computationally attractive for increasing model resolutions. Part of the research on ROM will be to search for a suitably acceptable space to carry on the corresponding reduction. This poster illustrates how the IAU-based 4D-Var assimilation compares with our currently used IAU-based 3D-Var.
Time-series analysis of delta13C from tree rings. I. Time trends and autocorrelation.
Monserud, R A; Marshall, J D
2001-09-01
Univariate time-series analyses were conducted on stable carbon isotope ratios obtained from tree-ring cellulose. We looked for the presence and structure of autocorrelation. Significant autocorrelation violates the statistical independence assumption and biases hypothesis tests. Its presence would indicate the existence of lagged physiological effects that persist for longer than the current year. We analyzed data from 28 trees (60-85 years old; mean = 73 years) of western white pine (Pinus monticola Dougl.), ponderosa pine (Pinus ponderosa Laws.), and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca) growing in northern Idaho. Material was obtained by the stem analysis method from rings laid down in the upper portion of the crown throughout each tree's life. The sampling protocol minimized variation caused by changing light regimes within each tree. Autoregressive moving average (ARMA) models were used to describe the autocorrelation structure over time. Three time series were analyzed for each tree: the stable carbon isotope ratio (delta(13)C); discrimination (delta); and the difference between ambient and internal CO(2) concentrations (c(a) - c(i)). The effect of converting from ring cellulose to whole-leaf tissue did not affect the analysis because it was almost completely removed by the detrending that precedes time-series analysis. A simple linear or quadratic model adequately described the time trend. The residuals from the trend had a constant mean and variance, thus ensuring stationarity, a requirement for autocorrelation analysis. The trend over time for c(a) - c(i) was particularly strong (R(2) = 0.29-0.84). Autoregressive moving average analyses of the residuals from these trends indicated that two-thirds of the individual tree series contained significant autocorrelation, whereas the remaining third were random (white noise) over time. We were unable to distinguish between individuals with and without significant autocorrelation beforehand. Significant ARMA models were all of low order, with either first- or second-order (i.e., lagged 1 or 2 years, respectively) models performing well. A simple autoregressive (AR(1)), model was the most common. The most useful generalization was that the same ARMA model holds for each of the three series (delta(13)C, delta, c(a) - c(i)) for an individual tree, if the time trend has been properly removed for each series. The mean series for the two pine species were described by first-order ARMA models (1-year lags), whereas the Douglas-fir mean series were described by second-order models (2-year lags) with negligible first-order effects. Apparently, the process of constructing a mean time series for a species preserves an underlying signal related to delta(13)C while canceling some of the random individual tree variation. Furthermore, the best model for the overall mean series (e.g., for a species) cannot be inferred from a consensus of the individual tree model forms, nor can its parameters be estimated reliably from the mean of the individual tree parameters. Because two-thirds of the individual tree time series contained significant autocorrelation, the normal assumption of a random structure over time is unwarranted, even after accounting for the time trend. The residuals of an appropriate ARMA model satisfy the independence assumption, and can be used to make hypothesis tests.
Equilibrium Policy Proposals with Abstentions.
1981-05-01
David M. Kreps. 262. ’Autoregressive Modelling and Money Income (ajusality Detection." by (heng lisiao. 263. "Measurement IError in a Dynamiic...34Autoregressive Modeling of"Canadian Money and Income Data," by Cheng Ilsjao. 277. "We Can’t Disagree IForever," by John 1). Geanakoplos and Heraklis...34*Optimal & Voluntary Income Distribution," by K. J. Arrow. 289. "’Asymptotic Values mif Mixed Gaime,.," by Abraham Neymnan. 290. "Tinie Series Modelling
The Disparate Labor Market Impacts of Monetary Policy
ERIC Educational Resources Information Center
Carpenter, Seth B.; Rodgers, William M., III
2004-01-01
Employing two widely used approaches to identify the effects of monetary policy, this paper explores the differential impact of policy on the labor market outcomes of teenagers, minorities, out-of-school youth, and less-skilled individuals. Evidence from recursive vector autoregressions and autoregressive distributed lag models that use…
NASA Astrophysics Data System (ADS)
Yaremchuk, Max; Martin, Paul; Beattie, Christopher
2017-09-01
Development and maintenance of the linearized and adjoint code for advanced circulation models is a challenging issue, requiring a significant proportion of total effort in operational data assimilation (DA). The ensemble-based DA techniques provide a derivative-free alternative, which appears to be competitive with variational methods in many practical applications. This article proposes a hybrid scheme for generating the search subspaces in the adjoint-free 4-dimensional DA method (a4dVar) that does not use a predefined ensemble. The method resembles 4dVar in that the optimal solution is strongly constrained by model dynamics and search directions are supplied iteratively using information from the current and previous model trajectories generated in the process of optimization. In contrast to 4dVar, which produces a single search direction from exact gradient information, a4dVar employs an ensemble of directions to form a subspace in order to proceed. In the earlier versions of a4dVar, search subspaces were built using the leading EOFs of either the model trajectory or the projections of the model-data misfits onto the range of the background error covariance (BEC) matrix at the current iteration. In the present study, we blend both approaches and explore a hybrid scheme of ensemble generation in order to improve the performance and flexibility of the algorithm. In addition, we introduce balance constraints into the BEC structure and periodically augment the search ensemble with BEC eigenvectors to avoid repeating minimization over already explored subspaces. Performance of the proposed hybrid a4dVar (ha4dVar) method is compared with that of standard 4dVar in a realistic regional configuration assimilating real data into the Navy Coastal Ocean Model (NCOM). It is shown that the ha4dVar converges faster than a4dVar and can be potentially competitive with 4dvar both in terms of the required computational time and the forecast skill.
Ou, Lu; Chow, Sy-Miin; Ji, Linying; Molenaar, Peter C M
2017-01-01
The autoregressive latent trajectory (ALT) model synthesizes the autoregressive model and the latent growth curve model. The ALT model is flexible enough to produce a variety of discrepant model-implied change trajectories. While some researchers consider this a virtue, others have cautioned that this may confound interpretations of the model's parameters. In this article, we show that some-but not all-of these interpretational difficulties may be clarified mathematically and tested explicitly via likelihood ratio tests (LRTs) imposed on the initial conditions of the model. We show analytically the nested relations among three variants of the ALT model and the constraints needed to establish equivalences. A Monte Carlo simulation study indicated that LRTs, particularly when used in combination with information criterion measures, can allow researchers to test targeted hypotheses about the functional forms of the change process under study. We further demonstrate when and how such tests may justifiably be used to facilitate our understanding of the underlying process of change using a subsample (N = 3,995) of longitudinal family income data from the National Longitudinal Survey of Youth.
Prediction of global ionospheric VTEC maps using an adaptive autoregressive model
NASA Astrophysics Data System (ADS)
Wang, Cheng; Xin, Shaoming; Liu, Xiaolu; Shi, Chuang; Fan, Lei
2018-02-01
In this contribution, an adaptive autoregressive model is proposed and developed to predict global ionospheric vertical total electron content maps (VTEC). Specifically, the spherical harmonic (SH) coefficients are predicted based on the autoregressive model, and the order of the autoregressive model is determined adaptively using the F-test method. To test our method, final CODE and IGS global ionospheric map (GIM) products, as well as altimeter TEC data during low and mid-to-high solar activity period collected by JASON, are used to evaluate the precision of our forecasting products. Results indicate that the predicted products derived from the model proposed in this paper have good consistency with the final GIMs in low solar activity, where the annual mean of the root-mean-square value is approximately 1.5 TECU. However, the performance of predicted vertical TEC in periods of mid-to-high solar activity has less accuracy than that during low solar activity periods, especially in the equatorial ionization anomaly region and the Southern Hemisphere. Additionally, in comparison with forecasting products, the final IGS GIMs have the best consistency with altimeter TEC data. Future work is needed to investigate the performance of forecasting products using the proposed method in an operational environment, rather than using the SH coefficients from the final CODE products, to understand the real-time applicability of the method.
Selected aspects of modelling monetary transmission mechanism by BVAR model
NASA Astrophysics Data System (ADS)
Vaněk, Tomáš; Dobešová, Anna; Hampel, David
2013-10-01
In this paper we use the BVAR model with the specifically defined prior to evaluate data including high-lag dependencies. The results are compared to both restricted and common VAR model. The data depicts the monetary transmission mechanism in the Czech Republic and Slovakia from January 2002 to February 2013. The results point to the inadequacy of the common VAR model. The restricted VAR model and the BVAR model appear to be similar in the sense of impulse responses.
Moran, John L; Solomon, Patricia J
2011-02-01
Time series analysis has seen limited application in the biomedical Literature. The utility of conventional and advanced time series estimators was explored for intensive care unit (ICU) outcome series. Monthly mean time series, 1993-2006, for hospital mortality, severity-of-illness score (APACHE III), ventilation fraction and patient type (medical and surgical), were generated from the Australia and New Zealand Intensive Care Society adult patient database. Analyses encompassed geographical seasonal mortality patterns, series structural time changes, mortality series volatility using autoregressive moving average and Generalized Autoregressive Conditional Heteroscedasticity models in which predicted variances are updated adaptively, and bivariate and multivariate (vector error correction models) cointegrating relationships between series. The mortality series exhibited marked seasonality, declining mortality trend and substantial autocorrelation beyond 24 lags. Mortality increased in winter months (July-August); the medical series featured annual cycling, whereas the surgical demonstrated long and short (3-4 months) cycling. Series structural breaks were apparent in January 1995 and December 2002. The covariance stationary first-differenced mortality series was consistent with a seasonal autoregressive moving average process; the observed conditional-variance volatility (1993-1995) and residual Autoregressive Conditional Heteroscedasticity effects entailed a Generalized Autoregressive Conditional Heteroscedasticity model, preferred by information criterion and mean model forecast performance. Bivariate cointegration, indicating long-term equilibrium relationships, was established between mortality and severity-of-illness scores at the database level and for categories of ICUs. Multivariate cointegration was demonstrated for {log APACHE III score, log ICU length of stay, ICU mortality and ventilation fraction}. A system approach to understanding series time-dependence may be established using conventional and advanced econometric time series estimators. © 2010 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman
2017-08-01
Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.
Predation and fragmentation portrayed in the statistical structure of prey time series
Hendrichsen, Ditte K; Topping, Chris J; Forchhammer, Mads C
2009-01-01
Background Statistical autoregressive analyses of direct and delayed density dependence are widespread in ecological research. The models suggest that changes in ecological factors affecting density dependence, like predation and landscape heterogeneity are directly portrayed in the first and second order autoregressive parameters, and the models are therefore used to decipher complex biological patterns. However, independent tests of model predictions are complicated by the inherent variability of natural populations, where differences in landscape structure, climate or species composition prevent controlled repeated analyses. To circumvent this problem, we applied second-order autoregressive time series analyses to data generated by a realistic agent-based computer model. The model simulated life history decisions of individual field voles under controlled variations in predator pressure and landscape fragmentation. Analyses were made on three levels: comparisons between predated and non-predated populations, between populations exposed to different types of predators and between populations experiencing different degrees of habitat fragmentation. Results The results are unambiguous: Changes in landscape fragmentation and the numerical response of predators are clearly portrayed in the statistical time series structure as predicted by the autoregressive model. Populations without predators displayed significantly stronger negative direct density dependence than did those exposed to predators, where direct density dependence was only moderately negative. The effects of predation versus no predation had an even stronger effect on the delayed density dependence of the simulated prey populations. In non-predated prey populations, the coefficients of delayed density dependence were distinctly positive, whereas they were negative in predated populations. Similarly, increasing the degree of fragmentation of optimal habitat available to the prey was accompanied with a shift in the delayed density dependence, from strongly negative to gradually becoming less negative. Conclusion We conclude that statistical second-order autoregressive time series analyses are capable of deciphering interactions within and across trophic levels and their effect on direct and delayed density dependence. PMID:19419539
Computational problems in autoregressive moving average (ARMA) models
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Goodarzi, S. M.; Oneill, W. D.; Gottlieb, G. L.
1981-01-01
The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models.
Modeling Polio Data Using the First Order Non-Negative Integer-Valued Autoregressive, INAR(1), Model
NASA Astrophysics Data System (ADS)
Vazifedan, Turaj; Shitan, Mahendran
Time series data may consists of counts, such as the number of road accidents, the number of patients in a certain hospital, the number of customers waiting for service at a certain time and etc. When the value of the observations are large it is usual to use Gaussian Autoregressive Moving Average (ARMA) process to model the time series. However if the observed counts are small, it is not appropriate to use ARMA process to model the observed phenomenon. In such cases we need to model the time series data by using Non-Negative Integer valued Autoregressive (INAR) process. The modeling of counts data is based on the binomial thinning operator. In this paper we illustrate the modeling of counts data using the monthly number of Poliomyelitis data in United States between January 1970 until December 1983. We applied the AR(1), Poisson regression model and INAR(1) model and the suitability of these models were assessed by using the Index of Agreement(I.A.). We found that INAR(1) model is more appropriate in the sense it had a better I.A. and it is natural since the data are counts.
Acceleration and Velocity Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truax, Roger
2015-01-01
A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.
Monthly streamflow forecasting with auto-regressive integrated moving average
NASA Astrophysics Data System (ADS)
Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani
2017-09-01
Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.
Anomalous Fluctuations in Autoregressive Models with Long-Term Memory
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Honjo, Haruo
2015-10-01
An autoregressive model with a power-law type memory kernel is studied as a stochastic process that exhibits a self-affine-fractal-like behavior for a small time scale. We find numerically that the root-mean-square displacement Δ(m) for the time interval m increases with a power law as mα with α < 1/2 for small m but saturates at sufficiently large m. The exponent α changes with the power exponent of the memory kernel.
EEG data reduction by means of autoregressive representation and discriminant analysis procedures.
Blinowska, K J; Czerwosz, L T; Drabik, W; Franaszczuk, P J; Ekiert, H
1981-06-01
A program for automatic evaluation of EEG spectra, providing considerable reduction of data, was devised. Artefacts were eliminated in two steps: first, the longer duration eye movement artefacts were removed by a fast and simple 'moving integral' methods, then occasional spikes were identified by means of a detection function defined in the formalism of the autoregressive (AR) model. The evaluation of power spectra was performed by means of an FFT and autoregressive representation, which made possible the comparison of both methods. The spectra obtained by means of the AR model had much smaller statistical fluctuations and better resolution, enabling us to follow the time changes of the EEG pattern. Another advantage of the autoregressive approach was the parametric description of the signal. This last property appeared to be essential in distinguishing the changes in the EEG pattern. In a drug study the application of the coefficients of the AR model as input parameters in the discriminant analysis, instead of arbitrary chosen frequency bands, brought a significant improvement in distinguishing the effects of the medication. The favourable properties of the AR model are connected with the fact that the above approach fulfils the maximum entropy principle. This means that the method describes in a maximally consistent way the available information and is free from additional assumptions, which is not the case for the FFT estimate.
AR(p) -based detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, J.; Rodriguez, E.
2018-07-01
Autoregressive models are commonly used for modeling time-series from nature, economics and finance. This work explored simple autoregressive AR(p) models to remove long-term trends in detrended fluctuation analysis (DFA). Crude oil prices and bitcoin exchange rate were considered, with the former corresponding to a mature market and the latter to an emergent market. Results showed that AR(p) -based DFA performs similar to traditional DFA. However, the former DFA provides information on stability of long-term trends, which is valuable for understanding and quantifying the dynamics of complex time series from financial systems.
Investigating Soil Moisture Feedbacks on Precipitation With Tests of Granger Causality
NASA Astrophysics Data System (ADS)
Salvucci, G. D.; Saleem, J. A.; Kaufmann, R.
2002-05-01
Granger causality (GC) is used in the econometrics literature to identify the presence of one- and two-way coupling between terms in noisy multivariate dynamical systems. Here we test for the presence of GC to identify a soil moisture (S) feedback on precipitation (P) using data from Illinois. In this framework S is said to Granger cause P if F(Pt;At-dt)does not equal F(P;(A-S)t-dt) where F denotes the conditional distribution of P at time t, At-dt represents the set of all knowledge available at time t-dt, and (A-S)t-dt represents all knowledge available at t-dt except S. Critical for land-atmosphere interaction research is that At-dt includes all past information on P as well as S. Therefore that part of the relation between past soil moisture and current precipitation which results from precipitation autocorrelation and soil water balance will be accounted for and not attributed to causality. Tests for GC usually specify all relevant variables in a coupled vector autoregressive (VAR) model and then calculate the significance level of decreased predictability as various coupling coefficients are omitted. But because the data (daily precipitation and soil moisture) are distinctly non-Gaussian, we avoid using a VAR and instead express the daily precipitation events as a Markov model. We then test whether the probability of storm occurrence, conditioned on past information on precipitation, changes with information on soil moisture. Past information on precipitation is expressed both as the occurrence of previous day precipitation (to account for storm-scale persistence) and as a simple soil moisture-like precipitation-wetness index derived solely from precipitation (to account for seasonal-scale persistence). In this way only those fluctuations in moisture not attributable to past fluctuations in precipitation (e.g., those due to temperature) can influence the outcome of the test. The null hypothesis (no moisture influence) is evaluated by comparing observed changes in storm probability to Monte-Carlo simulated differences generated with unconditional occurrence probabilities. The null hypothesis is not rejected (p>0.5) suggesting that contrary to recently published results, insufficient evidence exists to support an influence of soil moisture on precipitation in Illinois.
Forecasting VaR and ES of stock index portfolio: A Vine copula method
NASA Astrophysics Data System (ADS)
Zhang, Bangzheng; Wei, Yu; Yu, Jiang; Lai, Xiaodong; Peng, Zhenfeng
2014-12-01
Risk measurement has both theoretical and practical significance in risk management. Using daily sample of 10 international stock indices, firstly this paper models the internal structures among different stock markets with C-Vine, D-Vine and R-Vine copula models. Secondly, the Value-at-Risk (VaR) and Expected Shortfall (ES) of the international stock markets portfolio are forecasted using Monte Carlo method based on the estimated dependence of different Vine copulas. Finally, the accuracy of VaR and ES measurements obtained from different statistical models are evaluated by UC, IND, CC and Posterior analysis. The empirical results show that the VaR forecasts at the quantile levels of 0.9, 0.95, 0.975 and 0.99 with three kinds of Vine copula models are sufficiently accurate. Several traditional methods, such as historical simulation, mean-variance and DCC-GARCH models, fail to pass the CC backtesting. The Vine copula methods can accurately forecast the ES of the portfolio on the base of VaR measurement, and D-Vine copula model is superior to other Vine copulas.
Time series modelling of increased soil temperature anomalies during long period
NASA Astrophysics Data System (ADS)
Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar
2015-10-01
Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.
VARS-TOOL: A Comprehensive, Efficient, and Robust Sensitivity Analysis Toolbox
NASA Astrophysics Data System (ADS)
Razavi, S.; Sheikholeslami, R.; Haghnegahdar, A.; Esfahbod, B.
2016-12-01
VARS-TOOL is an advanced sensitivity and uncertainty analysis toolbox, applicable to the full range of computer simulation models, including Earth and Environmental Systems Models (EESMs). The toolbox was developed originally around VARS (Variogram Analysis of Response Surfaces), which is a general framework for Global Sensitivity Analysis (GSA) that utilizes the variogram/covariogram concept to characterize the full spectrum of sensitivity-related information, thereby providing a comprehensive set of "global" sensitivity metrics with minimal computational cost. VARS-TOOL is unique in that, with a single sample set (set of simulation model runs), it generates simultaneously three philosophically different families of global sensitivity metrics, including (1) variogram-based metrics called IVARS (Integrated Variogram Across a Range of Scales - VARS approach), (2) variance-based total-order effects (Sobol approach), and (3) derivative-based elementary effects (Morris approach). VARS-TOOL is also enabled with two novel features; the first one being a sequential sampling algorithm, called Progressive Latin Hypercube Sampling (PLHS), which allows progressively increasing the sample size for GSA while maintaining the required sample distributional properties. The second feature is a "grouping strategy" that adaptively groups the model parameters based on their sensitivity or functioning to maximize the reliability of GSA results. These features in conjunction with bootstrapping enable the user to monitor the stability, robustness, and convergence of GSA with the increase in sample size for any given case study. VARS-TOOL has been shown to achieve robust and stable results within 1-2 orders of magnitude smaller sample sizes (fewer model runs) than alternative tools. VARS-TOOL, available in MATLAB and Python, is under continuous development and new capabilities and features are forthcoming.
A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin V.
2016-01-01
Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.
Maximum likelihood estimation for periodic autoregressive moving average models
Vecchia, A.V.
1985-01-01
A useful class of models for seasonal time series that cannot be filtered or standardized to achieve second-order stationarity is that of periodic autoregressive moving average (PARMA) models, which are extensions of ARMA models that allow periodic (seasonal) parameters. An approximation to the exact likelihood for Gaussian PARMA processes is developed, and a straightforward algorithm for its maximization is presented. The algorithm is tested on several periodic ARMA(1, 1) models through simulation studies and is compared to moment estimation via the seasonal Yule-Walker equations. Applicability of the technique is demonstrated through an analysis of a seasonal stream-flow series from the Rio Caroni River in Venezuela.
NASA Astrophysics Data System (ADS)
Rana, Sachin; Ertekin, Turgay; King, Gregory R.
2018-05-01
Reservoir history matching is frequently viewed as an optimization problem which involves minimizing misfit between simulated and observed data. Many gradient and evolutionary strategy based optimization algorithms have been proposed to solve this problem which typically require a large number of numerical simulations to find feasible solutions. Therefore, a new methodology referred to as GP-VARS is proposed in this study which uses forward and inverse Gaussian processes (GP) based proxy models combined with a novel application of variogram analysis of response surface (VARS) based sensitivity analysis to efficiently solve high dimensional history matching problems. Empirical Bayes approach is proposed to optimally train GP proxy models for any given data. The history matching solutions are found via Bayesian optimization (BO) on forward GP models and via predictions of inverse GP model in an iterative manner. An uncertainty quantification method using MCMC sampling in conjunction with GP model is also presented to obtain a probabilistic estimate of reservoir properties and estimated ultimate recovery (EUR). An application of the proposed GP-VARS methodology on PUNQ-S3 reservoir is presented in which it is shown that GP-VARS provides history match solutions in approximately four times less numerical simulations as compared to the differential evolution (DE) algorithm. Furthermore, a comparison of uncertainty quantification results obtained by GP-VARS, EnKF and other previously published methods shows that the P50 estimate of oil EUR obtained by GP-VARS is in close agreement to the true values for the PUNQ-S3 reservoir.
Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa
2014-01-01
Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.
Localization of a variational particle smoother
NASA Astrophysics Data System (ADS)
Morzfeld, M.; Hodyss, D.; Poterjoy, J.
2017-12-01
Given the success of 4D-variational methods (4D-Var) in numerical weather prediction,and recent efforts to merge ensemble Kalman filters with 4D-Var,we consider a method to merge particle methods and 4D-Var.This leads us to revisit variational particle smoothers (varPS).We study the collapse of varPS in high-dimensional problemsand show how it can be prevented by weight-localization.We test varPS on the Lorenz'96 model of dimensionsn=40, n=400, and n=2000.In our numerical experiments, weight localization prevents the collapse of the varPS,and we note that the varPS yields results comparable to ensemble formulations of 4D-variational methods,while it outperforms EnKF with tuned localization and inflation,and the localized standard particle filter.Additional numerical experiments suggest that using localized weights in varPS may not yield significant advantages over unweighted or linearizedsolutions in near-Gaussian problems.
Sleep analysis for wearable devices applying autoregressive parametric models.
Mendez, M O; Villantieri, O; Bianchi, A; Cerutti, S
2005-01-01
We applied time-variant and time-invariant parametric models in both healthy subjects and patients with sleep disorder recordings in order to assess the skills of those approaches to sleep disorders diagnosis in wearable devices. The recordings present the Obstructive Sleep Apnea (OSA) pathology which is characterized by fluctuations in the heart rate, bradycardia in apneonic phase and tachycardia at the recovery of ventilation. Data come from a web database in www.physionet.org. During OSA the spectral indexes obtained by time-variant lattice filters presented oscillations that correspond to the changes brady-tachycardia of the RR intervals and greater values than healthy ones. Multivariate autoregressive models showed an increment in very low frequency component (PVLF) at each apneic event. Also a rise in high frequency component (PHF) occurred over the breathing restore in the spectrum of both quadratic coherence and cross-spectrum in OSA. These autoregressive parametric approaches could help in the diagnosis of Sleep Disorder inside of the wearable devices.
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model.
Sampid, Marius Galabe; Hasim, Haslifah M; Dai, Hongsheng
2018-01-01
In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov-switching GJR-GARCH(1,1) model with skewed Student's-t innovation, copula functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-constant volatility over time and allows the GARCH parameters to vary over time following a Markov process, is combined with copula functions and EVT to formulate the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is then used to forecast the level of risk on financial asset returns. We further propose a new method for threshold selection in EVT analysis, which we term the hybrid method. Empirical and back-testing results show that the proposed VaR models capture VaR reasonably well in periods of calm and in periods of crisis.
Application of multivariate autoregressive spectrum estimation to ULF waves
NASA Technical Reports Server (NTRS)
Ioannidis, G. A.
1975-01-01
The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
Principal dynamic mode analysis of neural mass model for the identification of epileptic states
NASA Astrophysics Data System (ADS)
Cao, Yuzhen; Jin, Liu; Su, Fei; Wang, Jiang; Deng, Bin
2016-11-01
The detection of epileptic seizures in Electroencephalography (EEG) signals is significant for the diagnosis and treatment of epilepsy. In this paper, in order to obtain characteristics of various epileptiform EEGs that may differentiate different states of epilepsy, the concept of Principal Dynamic Modes (PDMs) was incorporated to an autoregressive model framework. First, the neural mass model was used to simulate the required intracerebral EEG signals of various epileptiform activities. Then, the PDMs estimated from the nonlinear autoregressive Volterra models, as well as the corresponding Associated Nonlinear Functions (ANFs), were used for the modeling of epileptic EEGs. The efficient PDM modeling approach provided physiological interpretation of the system. Results revealed that the ANFs of the 1st and 2nd PDMs for the auto-regressive input exhibited evident differences among different states of epilepsy, where the ANFs of the sustained spikes' activity encountered at seizure onset or during a seizure were the most differentiable from that of the normal state. Therefore, the ANFs may be characteristics for the classification of normal and seizure states in the clinical detection of seizures and thus provide assistance for the diagnosis of epilepsy.
Texture classification using autoregressive filtering
NASA Technical Reports Server (NTRS)
Lawton, W. M.; Lee, M.
1984-01-01
A general theory of image texture models is proposed and its applicability to the problem of scene segmentation using texture classification is discussed. An algorithm, based on half-plane autoregressive filtering, which optimally utilizes second order statistics to discriminate between texture classes represented by arbitrary wide sense stationary random fields is described. Empirical results of applying this algorithm to natural and sysnthesized scenes are presented and future research is outlined.
NASA Astrophysics Data System (ADS)
Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.
2012-02-01
This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the state space that spans multiple subspaces of different dimensionalities. The order of the autoregressive process required to fit the data is determined here by posterior residual-sample examination and statistical tests. Inference for earth model parameters is carried out on the trans-dimensional posterior probability distribution by considering ensembles of parameter vectors. In particular, vs uncertainty estimates are obtained by marginalizing the trans-dimensional posterior distribution in terms of vs-profile marginal distributions. The methodology is applied to microtremor array dispersion data collected at two sites with significantly different geology in British Columbia, Canada. At both sites, results show excellent agreement with estimates from invasive measurements.
NASA Astrophysics Data System (ADS)
Razavi, S.; Gupta, H. V.
2015-12-01
Earth and environmental systems models (EESMs) are continually growing in complexity and dimensionality with continuous advances in understanding and computing power. Complexity and dimensionality are manifested by introducing many different factors in EESMs (i.e., model parameters, forcings, boundary conditions, etc.) to be identified. Sensitivity Analysis (SA) provides an essential means for characterizing the role and importance of such factors in producing the model responses. However, conventional approaches to SA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we present a new and general sensitivity analysis framework (called VARS), based on an analogy to 'variogram analysis', that provides an intuitive and comprehensive characterization of sensitivity across the full spectrum of scales in the factor space. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are limiting cases of VARS, and that their SA indices can be computed as by-products of the VARS framework. We also present a practical strategy for the application of VARS to real-world problems, called STAR-VARS, including a new sampling strategy, called "star-based sampling". Our results across several case studies show the STAR-VARS approach to provide reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being at least 1-2 orders of magnitude more efficient than the benchmark Morris and Sobol approaches.
Wei, Yigang; Wang, Zhichao; Wang, Huiwen; Yao, Tang; Li, Yan
2018-09-01
Water is centrally important for agricultural security, environment, people's livelihoods, and socio-economic development, particularly in the face of extreme climate changes. Due to water shortages in many cities, the conflicts between various stakeholders and sectors over water use and allocation are becoming more common and intense. Effective inclusive governance of water use is critical for relieving water use conflicts. In addition, reliable forecasting of the structure of water usage among different sectors is a basic need for effective water governance planning. Although a large number of studies have attempted to forecast water use, little is known about the forecasted structure and trends of water use in the future. This paper aims to develop a forecasting model for the structure of water usage based on compositional data. Compositional data analysis is an effective approach for investigating the internal structure of a system. A host of data transformation methods and forecasting models were adopted and compared in order to derive the best-performing model. According to mean absolute percent error for compositional data (CoMAPE), a hyperspherical-transformation-based vector autoregression model for compositional data (VAR-DRHT) is the best-performing model. The proportions of the agricultural, industrial, domestic and environmental water will be 6.11%, 5.01%, 37.48% and 51.4% by 2020. Several recommendations for water inclusive development are provided to give a better account for the optimization of the water use structure, alleviation of water shortages, and improving stake holders' wellbeing. Overall, although we focus on groundwater, this study presents a powerful framework broadly applicable to resource management. Copyright © 2018 Elsevier B.V. All rights reserved.
VarMod: modelling the functional effects of non-synonymous variants
Pappalardo, Morena; Wass, Mark N.
2014-01-01
Unravelling the genotype–phenotype relationship in humans remains a challenging task in genomics studies. Recent advances in sequencing technologies mean there are now thousands of sequenced human genomes, revealing millions of single nucleotide variants (SNVs). For non-synonymous SNVs present in proteins the difficulties of the problem lie in first identifying those nsSNVs that result in a functional change in the protein among the many non-functional variants and in turn linking this functional change to phenotype. Here we present VarMod (Variant Modeller) a method that utilises both protein sequence and structural features to predict nsSNVs that alter protein function. VarMod develops recent observations that functional nsSNVs are enriched at protein–protein interfaces and protein–ligand binding sites and uses these characteristics to make predictions. In benchmarking on a set of nearly 3000 nsSNVs VarMod performance is comparable to an existing state of the art method. The VarMod web server provides extensive resources to investigate the sequence and structural features associated with the predictions including visualisation of protein models and complexes via an interactive JSmol molecular viewer. VarMod is available for use at http://www.wasslab.org/varmod. PMID:24906884
TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis
NASA Astrophysics Data System (ADS)
Tsai, L. C.; Macalalad, Ernest P.; Liu, C. H.
2014-10-01
As described in a previous paper, a three-dimensional ionospheric electron density (Ne) model has been constructed from vertical Ne profiles retrieved from the FormoSat3/Constellation Observing System for Meteorology, Ionosphere, and Climate GPS radio occultation measurements and worldwide ionosonde foF2 and foE data and named the TaiWan Ionospheric Model (TWIM). The TWIM exhibits vertically fitted α-Chapman-type layers with distinct F2, F1, E, and D layers, and surface spherical harmonic approaches for the fitted layer parameters including peak density, peak density height, and scale height. To improve the TWIM into a real-time model, we have developed a time series autoregressive model to forecast short-term TWIM coefficients. The time series of TWIM coefficients are considered as realizations of stationary stochastic processes within a processing window of 30 days. These autocorrelation coefficients are used to derive the autoregressive parameters and then forecast the TWIM coefficients, based on the least squares method and Lagrange multiplier technique. The forecast root-mean-square relative TWIM coefficient errors are generally <30% for 1 day predictions. The forecast TWIM values of foE and foF2 values are also compared and evaluated using worldwide ionosonde data.
NASA Astrophysics Data System (ADS)
Yu, Bing; Shu, Wenjun; Cao, Can
2018-05-01
A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.
NASA Astrophysics Data System (ADS)
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Norris, Jodi R.; Jackson, Stephen T.; Betancourt, Julio L.
2006-01-01
Aim? Ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) is an economically and ecologically important conifer that has a wide geographic range in the western USA, but is mostly absent from the geographic centre of its distribution - the Great Basin and adjoining mountain ranges. Much of its modern range was achieved by migration of geographically distinct Sierra Nevada (P. ponderosa var. ponderosa) and Rocky Mountain (P. ponderosa var. scopulorum) varieties in the last 10,000 years. Previous research has confirmed genetic differences between the two varieties, and measurable genetic exchange occurs where their ranges now overlap in western Montana. A variety of approaches in bioclimatic modelling is required to explore the ecological differences between these varieties and their implications for historical biogeography and impending changes in western landscapes. Location? Western USA. Methods? We used a classification tree analysis and a minimum-volume ellipsoid as models to explain the broad patterns of distribution of ponderosa pine in modern environments using climatic and edaphic variables. Most biogeographical modelling assumes that the target group represents a single, ecologically uniform taxonomic population. Classification tree analysis does not require this assumption because it allows the creation of pathways that predict multiple positive and negative outcomes. Thus, classification tree analysis can be used to test the ecological uniformity of the species. In addition, a multidimensional ellipsoid was constructed to describe the niche of each variety of ponderosa pine, and distances from the niche were calculated and mapped on a 4-km grid for each ecological variable. Results? The resulting classification tree identified three dominant pathways predicting ponderosa pine presence. Two of these three pathways correspond roughly to the distribution of var. ponderosa, and the third pathway generally corresponds to the distribution of var. scopulorum. The classification tree and minimum-volume ellipsoid model show that both varieties have very similar temperature limitations, although var. ponderosa is more limited by the temperature extremes of the continental interior. The precipitation limitations of the two varieties are seasonally different, with var. ponderosa requiring significant winter moisture and var. scopulorum requiring significant summer moisture. Great Basin mountain ranges are too cold at higher elevations to support either variety of ponderosa pine, and at lower elevations are too dry in summer for var. scopulorum and too dry in winter for var. ponderosa. Main conclusions? The classification tree analysis indicates that var. ponderosa is ecologically as well as genetically distinct from var. scopulorum. Ecological differences may maintain genetic separation in spite of a limited zone of introgression between the two varieties in western Montana. Two hypotheses about past and future movements of ponderosa pine emerge from our analyses. The first hypothesis is that, during the last glacial period, colder and/or drier summers truncated most of the range of var. scopulorum in the central Rockies, but had less dramatic effects on the more maritime and winter-wet distribution of var. ponderosa. The second hypothesis is that, all other factors held constant, increasing summer temperatures in the future should produce changes in the distribution of var. scopulorum that are likely to involve range expansions in the central Rockies with the warming of mountain ranges currently too cold but sufficiently wet in summer for var. scopulorum. Finally, our results underscore the growing need to focus on genotypes in biogeographical modelling and ecological forecasting.
Extremum Seeking Control of Smart Inverters for VAR Compensation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Daniel; Negrete-Pincetic, Matias; Stewart, Emma
2015-09-04
Reactive power compensation is used by utilities to ensure customer voltages are within pre-defined tolerances and reduce system resistive losses. While much attention has been paid to model-based control algorithms for reactive power support and Volt Var Optimization (VVO), these strategies typically require relatively large communications capabilities and accurate models. In this work, a non-model-based control strategy for smart inverters is considered for VAR compensation. An Extremum Seeking control algorithm is applied to modulate the reactive power output of inverters based on real power information from the feeder substation, without an explicit feeder model. Simulation results using utility demand informationmore » confirm the ability of the control algorithm to inject VARs to minimize feeder head real power consumption. In addition, we show that the algorithm is capable of improving feeder voltage profiles and reducing reactive power supplied by the distribution substation.« less
Recurrence risk model for esophageal cancer after radical surgery.
Lu, Jincheng; Tao, Hua; Song, Dan; Chen, Cheng
2013-10-01
The aim of the present study was to construct a risk assessment model which was tested by disease-free survival (DFS) of esophageal cancer after radical surgery. A total of 164 consecutive esophageal cancer patients who had undergone radical surgery between January 2005 and December 2006 were retrospectively analyzed. The cutpoint of value at risk (VaR) was inferred by stem-and-leaf plot, as well as by independent-samples t-test for recurrence-free time, further confirmed by crosstab chi-square test, univariate analysis and Cox regression analysis for DFS. The cutpoint of VaR was 0.3 on the basis of our model. The rate of recurrence was 30.3% (30/99) and 52.3% (34/65) in VaR <0.3 and VaR ≥0.3 (chi-square test, (χ) (2) =7.984, P=0.005), respectively. The 1-, 3-, and 5-year DFS of esophageal cancer after radical surgery was 70.4%, 48.7%, and 45.3%, respectively in VaR ≥0.3, whereas 91.5%, 75.8%, and 67.3%, respectively in VaR <0.3 (Log-rank test, (χ) (2) =9.59, P=0.0020), and further confirmed by Cox regression analysis [hazard ratio =2.10, 95% confidence interval (CI): 1.2649-3.4751; P=0.0041]. The model could be applied for integrated assessment of recurrence risk after radical surgery for esophageal cancer.
Recurrence risk model for esophageal cancer after radical surgery
Tao, Hua; Song, Dan; Chen, Cheng
2013-01-01
Objective The aim of the present study was to construct a risk assessment model which was tested by disease-free survival (DFS) of esophageal cancer after radical surgery. Methods A total of 164 consecutive esophageal cancer patients who had undergone radical surgery between January 2005 and December 2006 were retrospectively analyzed. The cutpoint of value at risk (VaR) was inferred by stem-and-leaf plot, as well as by independent-samples t-test for recurrence-free time, further confirmed by crosstab chi-square test, univariate analysis and Cox regression analysis for DFS. Results The cutpoint of VaR was 0.3 on the basis of our model. The rate of recurrence was 30.3% (30/99) and 52.3% (34/65) in VaR <0.3 and VaR ≥0.3 (chi-square test, χ2 =7.984, P=0.005), respectively. The 1-, 3-, and 5-year DFS of esophageal cancer after radical surgery was 70.4%, 48.7%, and 45.3%, respectively in VaR ≥0.3, whereas 91.5%, 75.8%, and 67.3%, respectively in VaR <0.3 (Log-rank test, χ2 =9.59, P=0.0020), and further confirmed by Cox regression analysis [hazard ratio =2.10, 95% confidence interval (CI): 1.2649-3.4751; P=0.0041]. Conclusions The model could be applied for integrated assessment of recurrence risk after radical surgery for esophageal cancer. PMID:24255579
Guimarães, Ana Paula; Ramalho, Teodorico Castro; França, Tanos Celmar Costa
2014-01-01
Smallpox was one of the most devastating diseases in the human history and still represents a serious menace today due to its potential use by bioterrorists. Considering this threat and the non-existence of effective chemotherapy, we propose the enzyme thymidylate kinase from Variola virus (VarTMPK) as a potential target to the drug design against smallpox. We first built a homology model for VarTMPK and performed molecular docking studies on it in order to investigate the interactions with inhibitors of Vaccinia virus TMPK (VacTMPK). Subsequently, molecular dynamics (MD) simulations of these compounds inside VarTMPK and human TMPK (HssTMPK) were carried out in order to select the most promising and selective compounds as leads for the design of potential VarTMPK inhibitors. Results of the docking and MD simulations corroborated to each other, suggesting selectivity towards VarTMPK and, also, a good correlation with the experimental data.
Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan M
2017-06-03
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Nikhar; Tom, Nathan
Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less
NASA Astrophysics Data System (ADS)
Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow
2017-04-01
This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.
On-line algorithms for forecasting hourly loads of an electric utility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vemuri, S.; Huang, W.L.; Nelson, D.J.
A method that lends itself to on-line forecasting of hourly electric loads is presented, and the results of its use are compared to models developed using the Box-Jenkins method. The method consits of processing the historical hourly loads with a sequential least-squares estimator to identify a finite-order autoregressive model which, in turn, is used to obtain a parsimonious autoregressive-moving average model. The method presented has several advantages in comparison with the Box-Jenkins method including much-less human intervention, improved model identification, and better results. The method is also more robust in that greater confidence can be placed in the accuracy ofmore » models based upon the various measures available at the identification stage.« less
Autoregressive modelling of species richness in the Brazilian Cerrado.
Vieira, C M; Blamires, D; Diniz-Filho, J A F; Bini, L M; Rangel, T F L V B
2008-05-01
Spatial autocorrelation is the lack of independence between pairs of observations at given distances within a geographical space, a phenomenon commonly found in ecological data. Taking into account spatial autocorrelation when evaluating problems in geographical ecology, including gradients in species richness, is important to describe both the spatial structure in data and to correct the bias in Type I errors of standard statistical analyses. However, to effectively solve these problems it is necessary to establish the best way to incorporate the spatial structure to be used in the models. In this paper, we applied autoregressive models based on different types of connections and distances between 181 cells covering the Cerrado region of Central Brazil to study the spatial variation in mammal and bird species richness across the biome. Spatial structure was stronger for birds than for mammals, with R(2) values ranging from 0.77 to 0.94 for mammals and from 0.77 to 0.97 for birds, for models based on different definitions of spatial structures. According to the Akaike Information Criterion (AIC), the best autoregressive model was obtained by using the rook connection. In general, these results furnish guidelines for future modelling of species richness patterns in relation to environmental predictors and other variables expressing human occupation in the biome.
[Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].
Ke-Wei, Wang; Yu, Wu; Jin-Ping, Li; Yu-Yu, Jiang
2016-07-12
To explore the effect of the autoregressive integrated moving average model-nonlinear auto-regressive neural network (ARIMA-NARNN) model on predicting schistosomiasis infection rates of population. The ARIMA model, NARNN model and ARIMA-NARNN model were established based on monthly schistosomiasis infection rates from January 2005 to February 2015 in Jiangsu Province, China. The fitting and prediction performances of the three models were compared. Compared to the ARIMA model and NARNN model, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the ARIMA-NARNN model were the least with the values of 0.011 1, 0.090 0 and 0.282 4, respectively. The ARIMA-NARNN model could effectively fit and predict schistosomiasis infection rates of population, which might have a great application value for the prevention and control of schistosomiasis.
Vibration based condition monitoring of a multistage epicyclic gearbox in lifting cranes
NASA Astrophysics Data System (ADS)
Assaad, Bassel; Eltabach, Mario; Antoni, Jérôme
2014-01-01
This paper proposes a model-based technique for detecting wear in a multistage planetary gearbox used by lifting cranes. The proposed method establishes a vibration signal model which deals with cyclostationary and autoregressive models. First-order cyclostationarity is addressed by the analysis of the time synchronous average (TSA) of the angular resampled vibration signal. Then an autoregressive model (AR) is applied to the TSA part in order to extract a residual signal containing pertinent fault signatures. The paper also explores a number of methods commonly used in vibration monitoring of planetary gearboxes, in order to make comparisons. In the experimental part of this study, these techniques are applied to accelerated lifetime test bench data for the lifting winch. After processing raw signals recorded with an accelerometer mounted on the outside of the gearbox, a number of condition indicators (CIs) are derived from the TSA signal, the residual autoregressive signal and other signals derived using standard signal processing methods. The goal is to check the evolution of the CIs during the accelerated lifetime test (ALT). Clarity and fluctuation level of the historical trends are finally considered as a criteria for comparing between the extracted CIs.
Xie, Hualin; Liu, Zhifei; Wang, Peng; Liu, Guiying; Lu, Fucai
2013-01-01
Ecological land is one of the key resources and conditions for the survival of humans because it can provide ecosystem services and is particularly important to public health and safety. It is extremely valuable for effective ecological management to explore the evolution mechanisms of ecological land. Based on spatial statistical analyses, we explored the spatial disparities and primary potential drivers of ecological land change in the Poyang Lake Eco-economic Zone of China. The results demonstrated that the global Moran’s I value is 0.1646 during the 1990 to 2005 time period and indicated significant positive spatial correlation (p < 0.05). The results also imply that the clustering trend of ecological land changes weakened in the study area. Some potential driving forces were identified by applying the spatial autoregressive model in this study. The results demonstrated that the higher economic development level and industrialization rate were the main drivers for the faster change of ecological land in the study area. This study also tested the superiority of the spatial autoregressive model to study the mechanisms of ecological land change by comparing it with the traditional linear regressive model. PMID:24384778
VarMod: modelling the functional effects of non-synonymous variants.
Pappalardo, Morena; Wass, Mark N
2014-07-01
Unravelling the genotype-phenotype relationship in humans remains a challenging task in genomics studies. Recent advances in sequencing technologies mean there are now thousands of sequenced human genomes, revealing millions of single nucleotide variants (SNVs). For non-synonymous SNVs present in proteins the difficulties of the problem lie in first identifying those nsSNVs that result in a functional change in the protein among the many non-functional variants and in turn linking this functional change to phenotype. Here we present VarMod (Variant Modeller) a method that utilises both protein sequence and structural features to predict nsSNVs that alter protein function. VarMod develops recent observations that functional nsSNVs are enriched at protein-protein interfaces and protein-ligand binding sites and uses these characteristics to make predictions. In benchmarking on a set of nearly 3000 nsSNVs VarMod performance is comparable to an existing state of the art method. The VarMod web server provides extensive resources to investigate the sequence and structural features associated with the predictions including visualisation of protein models and complexes via an interactive JSmol molecular viewer. VarMod is available for use at http://www.wasslab.org/varmod. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Development of the WRF-CO2 4D-Var assimilation system v1.0
NASA Astrophysics Data System (ADS)
Zheng, Tao; French, Nancy H. F.; Baxter, Martin
2018-05-01
Regional atmospheric CO2 inversions commonly use Lagrangian particle trajectory model simulations to calculate the required influence function, which quantifies the sensitivity of a receptor to flux sources. In this paper, an adjoint-based four-dimensional variational (4D-Var) assimilation system, WRF-CO2 4D-Var, is developed to provide an alternative approach. This system is developed based on the Weather Research and Forecasting (WRF) modeling system, including the system coupled to chemistry (WRF-Chem), with tangent linear and adjoint codes (WRFPLUS), and with data assimilation (WRFDA), all in version 3.6. In WRF-CO2 4D-Var, CO2 is modeled as a tracer and its feedback to meteorology is ignored. This configuration allows most WRF physical parameterizations to be used in the assimilation system without incurring a large amount of code development. WRF-CO2 4D-Var solves for the optimized CO2 flux scaling factors in a Bayesian framework. Two variational optimization schemes are implemented for the system: the first uses the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm (L-BFGS-B) and the second uses the Lanczos conjugate gradient (CG) in an incremental approach. WRFPLUS forward, tangent linear, and adjoint models are modified to include the physical and dynamical processes involved in the atmospheric transport of CO2. The system is tested by simulations over a domain covering the continental United States at 48 km × 48 km grid spacing. The accuracy of the tangent linear and adjoint models is assessed by comparing against finite difference sensitivity. The system's effectiveness for CO2 inverse modeling is tested using pseudo-observation data. The results of the sensitivity and inverse modeling tests demonstrate the potential usefulness of WRF-CO2 4D-Var for regional CO2 inversions.
NASA Astrophysics Data System (ADS)
Ağaç, Kübra; Koçak, Kasım; Deniz, Ali
2015-04-01
A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built in MATLAB an Eviews programmes. Because of the seasonality of PM10 data SARIMA model was also used. The order of autoregression model was determined according to AIC and BIC criteria. The model performances were evaluated from Fractional Bias, Normalized Mean Square Error (NMSE) and Mean Absolute Percentage Error (MAPE). As expected, the results were encouraging. Keywords: PM10, Autoregression, Forecast Acknowledgement The authors would like to acknowledge the financial support by the Scientific and Technological Research Council of Turkey (TUBITAK, project no:112Y319).
Self-esteem Is Mostly Stable Across Young Adulthood: Evidence from Latent STARTS Models.
Wagner, Jenny; Lüdtke, Oliver; Trautwein, Ulrich
2016-08-01
How stable is self-esteem? This long-standing debate has led to different conclusions across different areas of psychology. Longitudinal data and up-to-date statistical models have recently indicated that self-esteem has stable and autoregressive trait-like components and state-like components. We applied latent STARTS models with the goal of replicating previous findings in a longitudinal sample of young adults (N = 4,532; Mage = 19.60, SD = 0.85; 55% female). In addition, we applied multigroup models to extend previous findings on different patterns of stability for men versus women and for people with high versus low levels of depressive symptoms. We found evidence for the general pattern of a major proportion of stable and autoregressive trait variance and a smaller yet substantial amount of state variance in self-esteem across 10 years. Furthermore, multigroup models suggested substantial differences in the variance components: Females showed more state variability than males. Individuals with higher levels of depressive symptoms showed more state and less autoregressive trait variance in self-esteem. Results are discussed with respect to the ongoing trait-state debate and possible implications of the group differences that we found in the stability of self-esteem. © 2015 Wiley Periodicals, Inc.
A MISO-ARX-Based Method for Single-Trial Evoked Potential Extraction.
Yu, Nannan; Wu, Lingling; Zou, Dexuan; Chen, Ying; Lu, Hanbing
2017-01-01
In this paper, we propose a novel method for solving the single-trial evoked potential (EP) estimation problem. In this method, the single-trial EP is considered as a complex containing many components, which may originate from different functional brain sites; these components can be distinguished according to their respective latencies and amplitudes and are extracted simultaneously by multiple-input single-output autoregressive modeling with exogenous input (MISO-ARX). The extraction process is performed in three stages: first, we use a reference EP as a template and decompose it into a set of components, which serve as subtemplates for the remaining steps. Then, a dictionary is constructed with these subtemplates, and EPs are preliminarily extracted by sparse coding in order to roughly estimate the latency of each component. Finally, the single-trial measurement is parametrically modeled by MISO-ARX while characterizing spontaneous electroencephalographic activity as an autoregression model driven by white noise and with each component of the EP modeled by autoregressive-moving-average filtering of the subtemplates. Once optimized, all components of the EP can be extracted. Compared with ARX, our method has greater tracking capabilities of specific components of the EP complex as each component is modeled individually in MISO-ARX. We provide exhaustive experimental results to show the effectiveness and feasibility of our method.
Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.
Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat
2014-01-01
The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.
NASA Astrophysics Data System (ADS)
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
A nonlinear autoregressive Volterra model of the Hodgkin-Huxley equations.
Eikenberry, Steffen E; Marmarelis, Vasilis Z
2013-02-01
We propose a new variant of Volterra-type model with a nonlinear auto-regressive (NAR) component that is a suitable framework for describing the process of AP generation by the neuron membrane potential, and we apply it to input-output data generated by the Hodgkin-Huxley (H-H) equations. Volterra models use a functional series expansion to describe the input-output relation for most nonlinear dynamic systems, and are applicable to a wide range of physiologic systems. It is difficult, however, to apply the Volterra methodology to the H-H model because is characterized by distinct subthreshold and suprathreshold dynamics. When threshold is crossed, an autonomous action potential (AP) is generated, the output becomes temporarily decoupled from the input, and the standard Volterra model fails. Therefore, in our framework, whenever membrane potential exceeds some threshold, it is taken as a second input to a dual-input Volterra model. This model correctly predicts membrane voltage deflection both within the subthreshold region and during APs. Moreover, the model naturally generates a post-AP afterpotential and refractory period. It is known that the H-H model converges to a limit cycle in response to a constant current injection. This behavior is correctly predicted by the proposed model, while the standard Volterra model is incapable of generating such limit cycle behavior. The inclusion of cross-kernels, which describe the nonlinear interactions between the exogenous and autoregressive inputs, is found to be absolutely necessary. The proposed model is general, non-parametric, and data-derived.
On the Stationarity of Multiple Autoregressive Approximants: Theory and Algorithms
1976-08-01
a I (3.4) Hannan and Terrell (1972) consider problems of a similar nature. Efficient estimates A(1),... , A(p) , and i of A(1)... ,A(p) and...34Autoregressive model fitting for control, Ann . Inst. Statist. Math., 23, 163-180. Hannan, E. J. (1970), Multiple Time Series, New York, John Wiley...Hannan, E. J. and Terrell , R. D. (1972), "Time series regression with linear constraints, " International Economic Review, 13, 189-200. Masani, P
Hasegawa, Takanori; Yamaguchi, Rui; Nagasaki, Masao; Miyano, Satoru; Imoto, Seiya
2014-01-01
Comprehensive understanding of gene regulatory networks (GRNs) is a major challenge in the field of systems biology. Currently, there are two main approaches in GRN analysis using time-course observation data, namely an ordinary differential equation (ODE)-based approach and a statistical model-based approach. The ODE-based approach can generate complex dynamics of GRNs according to biologically validated nonlinear models. However, it cannot be applied to ten or more genes to simultaneously estimate system dynamics and regulatory relationships due to the computational difficulties. The statistical model-based approach uses highly abstract models to simply describe biological systems and to infer relationships among several hundreds of genes from the data. However, the high abstraction generates false regulations that are not permitted biologically. Thus, when dealing with several tens of genes of which the relationships are partially known, a method that can infer regulatory relationships based on a model with low abstraction and that can emulate the dynamics of ODE-based models while incorporating prior knowledge is urgently required. To accomplish this, we propose a method for inference of GRNs using a state space representation of a vector auto-regressive (VAR) model with L1 regularization. This method can estimate the dynamic behavior of genes based on linear time-series modeling constructed from an ODE-based model and can infer the regulatory structure among several tens of genes maximizing prediction ability for the observational data. Furthermore, the method is capable of incorporating various types of existing biological knowledge, e.g., drug kinetics and literature-recorded pathways. The effectiveness of the proposed method is shown through a comparison of simulation studies with several previous methods. For an application example, we evaluated mRNA expression profiles over time upon corticosteroid stimulation in rats, thus incorporating corticosteroid kinetics/dynamics, literature-recorded pathways and transcription factor (TF) information. PMID:25162401
Inverse Regional Modeling with Adjoint-Free Technique
NASA Astrophysics Data System (ADS)
Yaremchuk, M.; Martin, P.; Panteleev, G.; Beattie, C.
2016-02-01
The ongoing parallelization trend in computer technologies facilitates the use ensemble methods in geophysical data assimilation. Of particular interest are ensemble techniques which do not require the development of tangent linear numerical models and their adjoints for optimization. These ``adjoint-free'' methods minimize the cost function within the sequence of subspaces spanned by a carefully chosen sets perturbations of the control variables. In this presentation, an adjoint-free variational technique (a4dVar) is demonstrated in an application estimating initial conditions of two numerical models: the Navy Coastal Ocean Model (NCOM), and the surface wave model (WAM). With the NCOM, performance of both adjoint and adjoint-free 4dVar data assimilation techniques is compared in application to the hydrographic surveys and velocity observations collected in the Adriatic Sea in 2006. Numerical experiments have shown that a4dVar is capable of providing forecast skill similar to that of conventional 4dVar at comparable computational expense while being less susceptible to excitation of ageostrophic modes that are not supported by observations. Adjoint-free technique constrained by the WAM model is tested in a series of data assimilation experiments with synthetic observations in the southern Chukchi Sea. The types of considered observations are directional spectra estimated from point measurements by stationary buoys, significant wave height (SWH) observations by coastal high-frequency radars and along-track SWH observations by satellite altimeters. The a4dVar forecast skill is shown to be 30-40% better than the skill of the sequential assimilaiton method based on optimal interpolation which is currently used in operations. Prospects of further development of the a4dVar methods in regional applications are discussed.
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin; Haghnegahdar, Amin
2016-04-01
Global sensitivity analysis (GSA) is a systems theoretic approach to characterizing the overall (average) sensitivity of one or more model responses across the factor space, by attributing the variability of those responses to different controlling (but uncertain) factors (e.g., model parameters, forcings, and boundary and initial conditions). GSA can be very helpful to improve the credibility and utility of Earth and Environmental System Models (EESMs), as these models are continually growing in complexity and dimensionality with continuous advances in understanding and computing power. However, conventional approaches to GSA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we identify several important sensitivity-related characteristics of response surfaces that must be considered when investigating and interpreting the ''global sensitivity'' of a model response (e.g., a metric of model performance) to its parameters/factors. Accordingly, we present a new and general sensitivity and uncertainty analysis framework, Variogram Analysis of Response Surfaces (VARS), based on an analogy to 'variogram analysis', that characterizes a comprehensive spectrum of information on sensitivity. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices are contained within the VARS framework. We also present a practical strategy for the application of VARS to real-world problems, called STAR-VARS, including a new sampling strategy, called "star-based sampling". Our results across several case studies show the STAR-VARS approach to provide reliable and stable assessments of "global" sensitivity, while being at least 1-2 orders of magnitude more efficient than the benchmark Morris and Sobol approaches.
Hounkpatin, Hilda Osafo; Boyce, Christopher J; Dunn, Graham; Wood, Alex M
2017-09-18
A number of structural equation models have been developed to examine change in 1 variable or the longitudinal association between 2 variables. The most common of these are the latent growth model, the autoregressive cross-lagged model, the autoregressive latent trajectory model, and the latent change score model. The authors first overview each of these models through evaluating their different assumptions surrounding the nature of change and how these assumptions may result in different data interpretations. They then, to elucidate these issues in an empirical example, examine the longitudinal association between personality traits and life satisfaction. In a representative Dutch sample (N = 8,320), with participants providing data on both personality and life satisfaction measures every 2 years over an 8-year period, the authors reproduce findings from previous research. However, some of the structural equation models overviewed have not previously been applied to the personality-life satisfaction relation. The extended empirical examination suggests intraindividual changes in life satisfaction predict subsequent intraindividual changes in personality traits. The availability of data sets with 3 or more assessment waves allows the application of more advanced structural equation models such as the autoregressive latent trajectory or the extended latent change score model, which accounts for the complex dynamic nature of change processes and allows stronger inferences on the nature of the association between variables. However, the choice of model should be determined by theories of change processes in the variables being studied. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Methodology for the AutoRegressive Planet Search (ARPS) Project
NASA Astrophysics Data System (ADS)
Feigelson, Eric; Caceres, Gabriel; ARPS Collaboration
2018-01-01
The detection of periodic signals of transiting exoplanets is often impeded by the presence of aperiodic photometric variations. This variability is intrinsic to the host star in space-based observations (typically arising from magnetic activity) and from observational conditions in ground-based observations. The most common statistical procedures to remove stellar variations are nonparametric, such as wavelet decomposition or Gaussian Processes regression. However, many stars display variability with autoregressive properties, wherein later flux values are correlated with previous ones. Providing the time series is evenly spaced, parametric autoregressive models can prove very effective. Here we present the methodology of the Autoregessive Planet Search (ARPS) project which uses Autoregressive Integrated Moving Average (ARIMA) models to treat a wide variety of stochastic short-memory processes, as well as nonstationarity. Additionally, we introduce a planet-search algorithm to detect periodic transits in the time-series residuals after application of ARIMA models. Our matched-filter algorithm, the Transit Comb Filter (TCF), replaces the traditional box-fitting step. We construct a periodogram based on the TCF to concentrate the signal of these periodic spikes. Various features of the original light curves, the ARIMA fits, the TCF periodograms, and folded light curves at peaks of the TCF periodogram can then be collected to provide constraints for planet detection. These features provide input into a multivariate classifier when a training set is available. The ARPS procedure has been applied NASA's Kepler mission observations of ~200,000 stars (Caceres, Dissertation Talk, this meeting) and will be applied in the future to other datasets.
NASA Astrophysics Data System (ADS)
Gong, Maozhen
Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.
Code of Federal Regulations, 2010 CFR
2010-04-01
... charges. An OTC derivatives dealer shall provide a description of all statistical models used for pricing... controls over those models, and a statement regarding whether the firm has developed its own internal VAR models. If the OTC derivatives dealer's VAR model incorporates empirical correlations across risk...
Investigating soil moisture feedbacks on precipitation with tests of Granger causality
NASA Astrophysics Data System (ADS)
Salvucci, Guido D.; Saleem, Jennifer A.; Kaufmann, Robert
Granger causality (GC) is used in the econometrics literature to identify the presence of one- and two-way coupling between terms in noisy multivariate dynamical systems. Here we test for the presence of GC to identify a soil moisture ( S) feedback on precipitation ( P) using data from Illinois. In this framework S is said to Granger cause P if F(P t|Ω t- Δt )≠F(P t|Ω t- Δt -S t- Δt ) where F denotes the conditional distribution of P, Ω t- Δt represents the set of all knowledge available at time t-Δ t, and Ω t- Δt -S t- Δt represents all knowledge except S. Critical for land-atmosphere interaction research is that Ω t- Δt includes all past information on P as well as S. Therefore that part of the relation between past soil moisture and current precipitation which results from precipitation autocorrelation and soil water balance will be accounted for and not attributed to causality. Tests for GC usually specify all relevant variables in a coupled vector autoregressive (VAR) model and then calculate the significance level of decreased predictability as various coupling coefficients are omitted. But because the data (daily precipitation and soil moisture) are distinctly non-Gaussian, we avoid using a VAR and instead express the daily precipitation events as a Markov model. We then test whether the probability of storm occurrence, conditioned on past information on precipitation, changes with information on soil moisture. Past information on precipitation is expressed both as the occurrence of previous day precipitation (to account for storm-scale persistence) and as a simple soil moisture-like precipitation-wetness index derived solely from precipitation (to account for seasonal-scale persistence). In this way only those fluctuations in moisture not attributable to past fluctuations in precipitation (e.g., those due to temperature) can influence the outcome of the test. The null hypothesis (no moisture influence) is evaluated by comparing observed changes in storm probability to Monte-Carlo simulated differences generated with unconditional occurrence probabilities. The null hypothesis is not rejected ( p>0.5) suggesting that contrary to recently published results, insufficient evidence exists to support an influence of soil moisture on precipitation in Illinois.
Business cycles and fertility dynamics in the United States: a vector autoregressive model.
Mocan, N H
1990-01-01
"Using vector-autoregressions...this paper shows that fertility moves countercyclically over the business cycle....[It] shows that the United States fertility is not governed by a deterministic trend as was assumed by previous studies. Rather, fertility evolves around a stochastic trend. It is shown that a bivariate analysis between fertility and unemployment yields a procyclical picture of fertility. However, when one considers the effects on fertility of early marriages and the divorce behavior as well as economic activity, fertility moves countercyclically." excerpt
Comparison of six methods for the detection of causality in a bivariate time series
NASA Astrophysics Data System (ADS)
Krakovská, Anna; Jakubík, Jozef; Chvosteková, Martina; Coufal, David; Jajcay, Nikola; Paluš, Milan
2018-04-01
In this comparative study, six causality detection methods were compared, namely, the Granger vector autoregressive test, the extended Granger test, the kernel version of the Granger test, the conditional mutual information (transfer entropy), the evaluation of cross mappings between state spaces, and an assessment of predictability improvement due to the use of mixed predictions. Seven test data sets were analyzed: linear coupling of autoregressive models, a unidirectional connection of two Hénon systems, a unidirectional connection of chaotic systems of Rössler and Lorenz type and of two different Rössler systems, an example of bidirectionally connected two-species systems, a fishery model as an example of two correlated observables without a causal relationship, and an example of mediated causality. We tested not only 20 000 points long clean time series but also noisy and short variants of the data. The standard and the extended Granger tests worked only for the autoregressive models. The remaining methods were more successful with the more complex test examples, although they differed considerably in their capability to reveal the presence and the direction of coupling and to distinguish causality from mere correlation.
NASA Astrophysics Data System (ADS)
Shen, Feifei; Xu, Dongmei; Xue, Ming; Min, Jinzhong
2017-07-01
This study examines the impacts of assimilating radar radial velocity (Vr) data for the simulation of hurricane Ike (2008) with two different ensemble generation techniques in the framework of the hybrid ensemble-variational (EnVar) data assimilation system of Weather Research and Forecasting model. For the generation of ensemble perturbations we apply two techniques, the ensemble transform Kalman filter (ETKF) and the ensemble of data assimilation (EDA). For the ETKF-EnVar, the forecast ensemble perturbations are updated by the ETKF, while for the EDA-EnVar, the hybrid is employed to update each ensemble member with perturbed observations. The ensemble mean is analyzed by the hybrid method with flow-dependent ensemble covariance for both EnVar. The sensitivity of analyses and forecasts to the two applied ensemble generation techniques is investigated in our current study. It is found that the EnVar system is rather stable with different ensemble update techniques in terms of its skill on improving the analyses and forecasts. The EDA-EnVar-based ensemble perturbations are likely to include slightly less organized spatial structures than those in ETKF-EnVar, and the perturbations of the latter are constructed more dynamically. Detailed diagnostics reveal that both of the EnVar schemes not only produce positive temperature increments around the hurricane center but also systematically adjust the hurricane location with the hurricane-specific error covariance. On average, the analysis and forecast from the ETKF-EnVar have slightly smaller errors than that from the EDA-EnVar in terms of track, intensity, and precipitation forecast. Moreover, ETKF-EnVar yields better forecasts when verified against conventional observations.
A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theory
NASA Astrophysics Data System (ADS)
Razavi, Saman; Gupta, Hoshin V.
2016-01-01
Computer simulation models are continually growing in complexity with increasingly more factors to be identified. Sensitivity Analysis (SA) provides an essential means for understanding the role and importance of these factors in producing model responses. However, conventional approaches to SA suffer from (1) an ambiguous characterization of sensitivity, and (2) poor computational efficiency, particularly as the problem dimension grows. Here, we present a new and general sensitivity analysis framework (called VARS), based on an analogy to "variogram analysis," that provides an intuitive and comprehensive characterization of sensitivity across the full spectrum of scales in the factor space. We prove, theoretically, that Morris (derivative-based) and Sobol (variance-based) methods and their extensions are special cases of VARS, and that their SA indices can be computed as by-products of the VARS framework. Synthetic functions that resemble actual model response surfaces are used to illustrate the concepts, and show VARS to be as much as two orders of magnitude more computationally efficient than the state-of-the-art Sobol approach. In a companion paper, we propose a practical implementation strategy, and demonstrate the effectiveness, efficiency, and reliability (robustness) of the VARS framework on real-data case studies.
Large signal-to-noise ratio quantification in MLE for ARARMAX models
NASA Astrophysics Data System (ADS)
Zou, Yiqun; Tang, Xiafei
2014-06-01
It has been shown that closed-loop linear system identification by indirect method can be generally transferred to open-loop ARARMAX (AutoRegressive AutoRegressive Moving Average with eXogenous input) estimation. For such models, the gradient-related optimisation with large enough signal-to-noise ratio (SNR) can avoid the potential local convergence in maximum likelihood estimation. To ease the application of this condition, the threshold SNR needs to be quantified. In this paper, we build the amplitude coefficient which is an equivalence to the SNR and prove the finiteness of the threshold amplitude coefficient within the stability region. The quantification of threshold is achieved by the minimisation of an elaborately designed multi-variable cost function which unifies all the restrictions on the amplitude coefficient. The corresponding algorithm based on two sets of physically realisable system input-output data details the minimisation and also points out how to use the gradient-related method to estimate ARARMAX parameters when local minimum is present as the SNR is small. Then, the algorithm is tested on a theoretical AutoRegressive Moving Average with eXogenous input model for the derivation of the threshold and a gas turbine engine real system for model identification, respectively. Finally, the graphical validation of threshold on a two-dimensional plot is discussed.
NASA Astrophysics Data System (ADS)
Świerczyńska-Chlaściak, Małgorzata; Niedzielski, Tomasz; Miziński, Bartłomiej
2017-04-01
The aim of this paper is to present the performance of the Prognocean Plus system, which produces long-term predictions of sea level anomalies, during the El Niño 2015/2016. The main objective of work is to identify such ocean areas in which long-term forecasts of sea level anomalies during El Niño 2015/2016 reveal a considerable accuracy. At present, the system produces prognoses using four data-based models and their combinations: polynomial-harmonic model, autoregressive model, threshold autoregressive model and multivariate autoregressive model. The system offers weekly forecasts, with lead time up to 12 weeks. Several statistics that describe the efficiency of the available prediction models in four seasons used for estimating Oceanic Niño index (ONI) are calculated. The accuracies/skills of the predicting models were computed in the specific locations in the equatorial Pacific, namely the geometrically-determined central points of all Niño regions. For the said locations, we focused on the forecasts which targeted at the local maximum of sea level, driven by the El Niño 2015/2016. As a result, a series of the "spaghetti" graphs (for each point, season and model) as well as plots presenting the prognostic performance of every model - for all lead times, seasons and locations - were created. It is found that the Prognocean Plus system has a potential to become a new solution which may enhance the diagnostic discussions on the El Niño development. The forecasts produced by the threshold autoregressive model, for lead times of 5-6 weeks and 9 weeks, within the Niño1+2 region for the November-to-January (NDJ) season anticipated the culmination of the El Niño 2015/2016. The longest forecasts (8-12 weeks) were found to be the most accurate in the phase of transition from El Niño to normal conditions (the multivariate autoregressive model, central point of Niño1+2 region, the December-to-February season). The study was conducted to verify the ability and usefulness of sea level anomaly forecasts in predicting phenomena that are controlled by the ocean-atmosphere processes, such as El Niño Southern Oscillation or North Atlantic Oscillation. The results may support further investigations into long-term forecasting of the quantitative indices of these oscillations, solely based on prognoses of sea level change. In particular, comparing the accuracies of prognoses of the North Atlantic Oscillation index remains one of the tasks of the research project no. 2016/21/N/ST10/03231, financed by the National Science Center of Poland.
Hamaker, E L; Asparouhov, T; Brose, A; Schmiedek, F; Muthén, B
2018-04-06
With the growing popularity of intensive longitudinal research, the modeling techniques and software options for such data are also expanding rapidly. Here we use dynamic multilevel modeling, as it is incorporated in the new dynamic structural equation modeling (DSEM) toolbox in Mplus, to analyze the affective data from the COGITO study. These data consist of two samples of over 100 individuals each who were measured for about 100 days. We use composite scores of positive and negative affect and apply a multilevel vector autoregressive model to allow for individual differences in means, autoregressions, and cross-lagged effects. Then we extend the model to include random residual variances and covariance, and finally we investigate whether prior depression affects later depression scores through the random effects of the daily diary measures. We end with discussing several urgent-but mostly unresolved-issues in the area of dynamic multilevel modeling.
Cornillon, P A; Pontier, D; Rochet, M J
2000-02-21
Comparative methods are used to investigate the attributes of present species or higher taxa. Difficulties arise from the phylogenetic heritage: taxa are not independent and neglecting phylogenetic inertia can lead to inaccurate results. Within-species variations in life-history traits are also not negligible, but most comparative methods are not designed to take them into account. Taxa are generally described by a single value for each trait. We have developed a new model which permits the incorporation of both the phylogenetic relationships among populations and within-species variations. This is an extension of classical autoregressive models. This family of models was used to study the effect of fishing on six demographic traits measured on 77 populations of teleost fishes. Copyright 2000 Academic Press.
Guimarães, Ana P; de Souza, Felipe R; Oliveira, Aline A; Gonçalves, Arlan S; de Alencastro, Ricardo B; Ramalho, Teodorico C; França, Tanos C C
2015-02-16
Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Estimating time-varying conditional correlations between stock and foreign exchange markets
NASA Astrophysics Data System (ADS)
Tastan, Hüseyin
2006-02-01
This study explores the dynamic interaction between stock market returns and changes in nominal exchange rates. Many financial variables are known to exhibit fat tails and autoregressive variance structure. It is well-known that unconditional covariance and correlation coefficients also vary significantly over time and multivariate generalized autoregressive model (MGARCH) is able to capture the time-varying variance-covariance matrix for stock market returns and changes in exchange rates. The model is applied to daily Euro-Dollar exchange rates and two stock market indexes from the US economy: Dow-Jones Industrial Average Index and S&P500 Index. The news impact surfaces are also drawn based on the model estimates to see the effects of idiosyncratic shocks in respective markets.
Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope
2013-01-01
With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.
Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope
2013-01-01
Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Potential for wind extraction from 4D-Var assimilation of aerosols and moisture
NASA Astrophysics Data System (ADS)
Zaplotnik, Žiga; Žagar, Nedjeljka
2017-04-01
We discuss the potential of the four-dimensional variational data assimilation (4D-Var) to retrieve the unobserved wind field from observations of atmospheric tracers and the mass field through internal model dynamics and the multivariate relationships in the background-error term for 4D-Var. The presence of non-linear moist dynamics makes the wind retrieval from tracers very difficult. On the other hand, it has been shown that moisture observations strongly influence both tropical and mid-latitude wind field in 4D-Var. We present an intermediate complexity model that describes nonlinear interactions between the wind, temperature, aerosols and moisture including their sinks and sources in the framework of the so-called first baroclinic mode atmosphere envisaged by A. Gill. Aerosol physical processes, which are included in the model, are the non-linear advection, diffusion and sources and sinks that exist as dry and wet deposition and diffusion. Precipitation is parametrized according to the Betts-Miller scheme. The control vector for 4D-Var includes aerosols, moisture and the three dynamical variables. The former is analysed univariately whereas wind field and mass field are analysed in a multivariate fashion taking into account quasi-geostrophic and unbalanced dynamics. The OSSE type of studies are performed for the tropical region to assess the ability of 4D-Var to extract wind-field information from the time series of observations of tracers as a function of the flow nonlinearity, the observations density and the length of the assimilation window (12 hours and 24 hours), in dry and moist environment. Results show that the 4D-Var assimilation of aerosols and temperature data is beneficial for the wind analysis with analysis errors strongly dependent on the moist processes and reliable background-error covariances.
76 FR 53162 - Acceptance of Public Submissions Regarding the Study of Stable Value Contracts
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-25
... the risk of a run on a SVF? To the extent that SVC providers use value-at-risk (``VaR'') models, do such VaR models adequately assess the risk of loss resulting from such events or other possible but extremely unlikely events? Do other loss models more adequately assess the risk of loss, such as the...
Principal Dynamic Mode Analysis of the Hodgkin–Huxley Equations
Eikenberry, Steffen E.; Marmarelis, Vasilis Z.
2015-01-01
We develop an autoregressive model framework based on the concept of Principal Dynamic Modes (PDMs) for the process of action potential (AP) generation in the excitable neuronal membrane described by the Hodgkin–Huxley (H–H) equations. The model's exogenous input is injected current, and whenever the membrane potential output exceeds a specified threshold, it is fed back as a second input. The PDMs are estimated from the previously developed Nonlinear Autoregressive Volterra (NARV) model, and represent an efficient functional basis for Volterra kernel expansion. The PDM-based model admits a modular representation, consisting of the forward and feedback PDM bases as linear filterbanks for the exogenous and autoregressive inputs, respectively, whose outputs are then fed to a static nonlinearity composed of polynomials operating on the PDM outputs and cross-terms of pair-products of PDM outputs. A two-step procedure for model reduction is performed: first, influential subsets of the forward and feedback PDM bases are identified and selected as the reduced PDM bases. Second, the terms of the static nonlinearity are pruned. The first step reduces model complexity from a total of 65 coefficients to 27, while the second further reduces the model coefficients to only eight. It is demonstrated that the performance cost of model reduction in terms of out-of-sample prediction accuracy is minimal. Unlike the full model, the eight coefficient pruned model can be easily visualized to reveal the essential system components, and thus the data-derived PDM model can yield insight into the underlying system structure and function. PMID:25630480
NASA Astrophysics Data System (ADS)
Ilyushin, G. D.; Blatov, V. A.
2017-03-01
The supramolecular chemistry of alumophosphates, which form framework 3D MT structures from polyhedral AlO4(H2O)2 clusters with octahedral O coordination (of M polyhedra) and PO4 and AlO4 with tetrahedral O coordination (of T polyhedra), is considered. A combinatorial-topological modeling of the formation of possible types of linear (six types) and ring (two types) tetrapolyhedral cluster precursors M2T2 from MT monomers is carried out. Different versions of chain formation from linked (MT)2 rings (six types) are considered. The model, which has a universal character, has been used to simulate the cluster selfassembly of the crystal structure of AlPO4(H2O)2 minerals (metavariscite, m-VAR, and variscite, VAR) and zeolite [Al2(PO4)2(H2O)2] · H2O (APC). A tetrapolyhedral linear precursor is established for m-VAR and a ring precursor (MT)2 is established for VAR and APC. The symmetry and topology code of the processes of crystal structure self-assembly from cluster precursors is completely reconstructed. The functional role of the O-H···O hydrogen bonds is considered for the first time. The cluster self-assembly model explains the specific features of the morphogenesis of single crystals: m-VAR prisms, flattened VAR octahedra, and needleshaped APC square-base prisms.
Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea.
Cengiz, Sevilay; Cavas, Levent
2008-05-01
Caulerpa racemosa var. cylindracea is one of the well-known invasive species in the Mediterranean Sea. In the present study, dried biomass of C. racemosa var. cylindracea was shown to have adsorption capacity for methylene blue. The adsorption reached equilibrium at 90 min for all studied concentrations (5-100mg/L). The pseudo-second-order model is well in line with our experimental results. There was a sharp increase in the adsorbed dye amount per adsorbent amount from 3.3 to 16.7 g/L, then a slight increase up to 66.7 g/L was observed. Langmuir and Freundlich's models were applied to the data related to adsorption isotherm. According to Langmuir's model data, the observed maximum adsorption capacity (qm) was 5.23 mg/g at 18 degrees C. The enthalpy of adsorption was found to be 33 kJ/mol, which indicated a chemical adsorption between dye molecules and C. racemosa var. cylindracea functional groups.
Is a matrix exponential specification suitable for the modeling of spatial correlation structures?
Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha
2018-01-01
This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375
Lawhern, Vernon; Hairston, W David; McDowell, Kaleb; Westerfield, Marissa; Robbins, Kay
2012-07-15
We examine the problem of accurate detection and classification of artifacts in continuous EEG recordings. Manual identification of artifacts, by means of an expert or panel of experts, can be tedious, time-consuming and infeasible for large datasets. We use autoregressive (AR) models for feature extraction and characterization of EEG signals containing several kinds of subject-generated artifacts. AR model parameters are scale-invariant features that can be used to develop models of artifacts across a population. We use a support vector machine (SVM) classifier to discriminate among artifact conditions using the AR model parameters as features. Results indicate reliable classification among several different artifact conditions across subjects (approximately 94%). These results suggest that AR modeling can be a useful tool for discriminating among artifact signals both within and across individuals. Copyright © 2012 Elsevier B.V. All rights reserved.
Clustering of financial time series
NASA Astrophysics Data System (ADS)
D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo
2013-05-01
This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.
Dhussa, Anil K; Sambi, Surinder S; Kumar, Shashi; Kumar, Sandeep; Kumar, Surendra
2014-10-01
In waste-to-energy plants, there is every likelihood of variations in the quantity and characteristics of the feed. Although intermediate storage tanks are used, but many times these are of inadequate capacity to dampen the variations. In such situations an anaerobic digester treating waste slurry operates under dynamic conditions. In this work a special type of dynamic Artificial Neural Network model, called Nonlinear Autoregressive Exogenous model, is used to model the dynamics of anaerobic digesters by using about one year data collected on the operating digesters. The developed model consists of two hidden layers each having 10 neurons, and uses 18days delay. There are five neurons in input layer and one neuron in output layer for a day. Model predictions of biogas production rate are close to plant performance within ±8% deviation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Estimation of value at risk in currency exchange rate portfolio using asymmetric GJR-GARCH Copula
NASA Astrophysics Data System (ADS)
Nurrahmat, Mohamad Husein; Noviyanti, Lienda; Bachrudin, Achmad
2017-03-01
In this study, we discuss the problem in measuring the risk in a portfolio based on value at risk (VaR) using asymmetric GJR-GARCH Copula. The approach based on the consideration that the assumption of normality over time for the return can not be fulfilled, and there is non-linear correlation for dependent model structure among the variables that lead to the estimated VaR be inaccurate. Moreover, the leverage effect also causes the asymmetric effect of dynamic variance and shows the weakness of the GARCH models due to its symmetrical effect on conditional variance. Asymmetric GJR-GARCH models are used to filter the margins while the Copulas are used to link them together into a multivariate distribution. Then, we use copulas to construct flexible multivariate distributions with different marginal and dependence structure, which is led to portfolio joint distribution does not depend on the assumptions of normality and linear correlation. VaR obtained by the analysis with confidence level 95% is 0.005586. This VaR derived from the best Copula model, t-student Copula with marginal distribution of t distribution.
Semi-nonparametric VaR forecasts for hedge funds during the recent crisis
NASA Astrophysics Data System (ADS)
Del Brio, Esther B.; Mora-Valencia, Andrés; Perote, Javier
2014-05-01
The need to provide accurate value-at-risk (VaR) forecasting measures has triggered an important literature in econophysics. Although these accurate VaR models and methodologies are particularly demanded for hedge fund managers, there exist few articles specifically devoted to implement new techniques in hedge fund returns VaR forecasting. This article advances in these issues by comparing the performance of risk measures based on parametric distributions (the normal, Student’s t and skewed-t), semi-nonparametric (SNP) methodologies based on Gram-Charlier (GC) series and the extreme value theory (EVT) approach. Our results show that normal-, Student’s t- and Skewed t- based methodologies fail to forecast hedge fund VaR, whilst SNP and EVT approaches accurately success on it. We extend these results to the multivariate framework by providing an explicit formula for the GC copula and its density that encompasses the Gaussian copula and accounts for non-linear dependences. We show that the VaR obtained by the meta GC accurately captures portfolio risk and outperforms regulatory VaR estimates obtained through the meta Gaussian and Student’s t distributions.
Analysis Monthly Import of Palm Oil Products Using Box-Jenkins Model
NASA Astrophysics Data System (ADS)
Ahmad, Nurul F. Y.; Khalid, Kamil; Saifullah Rusiman, Mohd; Ghazali Kamardan, M.; Roslan, Rozaini; Che-Him, Norziha
2018-04-01
The palm oil industry has been an important component of the national economy especially the agriculture sector. The aim of this study is to identify the pattern of import of palm oil products, to model the time series using Box-Jenkins model and to forecast the monthly import of palm oil products. The method approach is included in the statistical test for verifying the equivalence model and statistical measurement of three models, namely Autoregressive (AR) model, Moving Average (MA) model and Autoregressive Moving Average (ARMA) model. The model identification of all product import palm oil is different in which the AR(1) was found to be the best model for product import palm oil while MA(3) was found to be the best model for products import palm kernel oil. For the palm kernel, MA(4) was found to be the best model. The results forecast for the next four months for products import palm oil, palm kernel oil and palm kernel showed the most significant decrease compared to the actual data.
Corrected goodness-of-fit test in covariance structure analysis.
Hayakawa, Kazuhiko
2018-05-17
Many previous studies report simulation evidence that the goodness-of-fit test in covariance structure analysis or structural equation modeling suffers from the overrejection problem when the number of manifest variables is large compared with the sample size. In this study, we demonstrate that one of the tests considered in Browne (1974) can address this long-standing problem. We also propose a simple modification of Satorra and Bentler's mean and variance adjusted test for non-normal data. A Monte Carlo simulation is carried out to investigate the performance of the corrected tests in the context of a confirmatory factor model, a panel autoregressive model, and a cross-lagged panel (panel vector autoregressive) model. The simulation results reveal that the corrected tests overcome the overrejection problem and outperform existing tests in most cases. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
What's in a Day? A Guide to Decomposing the Variance in Intensive Longitudinal Data
de Haan-Rietdijk, Silvia; Kuppens, Peter; Hamaker, Ellen L.
2016-01-01
In recent years there has been a growing interest in the use of intensive longitudinal research designs to study within-person processes. Examples are studies that use experience sampling data and autoregressive modeling to investigate emotion dynamics and between-person differences therein. Such designs often involve multiple measurements per day and multiple days per person, and it is not clear how this nesting of the data should be accounted for: That is, should such data be considered as two-level data (which is common practice at this point), with occasions nested in persons, or as three-level data with beeps nested in days which are nested in persons. We show that a significance test of the day-level variance in an empty three-level model is not reliable when there is autocorrelation. Furthermore, we show that misspecifying the number of levels can lead to spurious or misleading findings, such as inflated variance or autoregression estimates. Throughout the paper we present instructions and R code for the implementation of the proposed models, which includes a novel three-level AR(1) model that estimates moment-to-moment inertia and day-to-day inertia. Based on our simulations we recommend model selection using autoregressive multilevel models in combination with the AIC. We illustrate this method using empirical emotion data from two independent samples, and discuss the implications and the relevance of the existence of a day level for the field. PMID:27378986
What's in a Day? A Guide to Decomposing the Variance in Intensive Longitudinal Data.
de Haan-Rietdijk, Silvia; Kuppens, Peter; Hamaker, Ellen L
2016-01-01
In recent years there has been a growing interest in the use of intensive longitudinal research designs to study within-person processes. Examples are studies that use experience sampling data and autoregressive modeling to investigate emotion dynamics and between-person differences therein. Such designs often involve multiple measurements per day and multiple days per person, and it is not clear how this nesting of the data should be accounted for: That is, should such data be considered as two-level data (which is common practice at this point), with occasions nested in persons, or as three-level data with beeps nested in days which are nested in persons. We show that a significance test of the day-level variance in an empty three-level model is not reliable when there is autocorrelation. Furthermore, we show that misspecifying the number of levels can lead to spurious or misleading findings, such as inflated variance or autoregression estimates. Throughout the paper we present instructions and R code for the implementation of the proposed models, which includes a novel three-level AR(1) model that estimates moment-to-moment inertia and day-to-day inertia. Based on our simulations we recommend model selection using autoregressive multilevel models in combination with the AIC. We illustrate this method using empirical emotion data from two independent samples, and discuss the implications and the relevance of the existence of a day level for the field.
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network
Yu, Ying; Wang, Yirui; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient. PMID:28246527
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network.
Yu, Ying; Wang, Yirui; Gao, Shangce; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.
Directionality volatility in electroencephalogram time series
NASA Astrophysics Data System (ADS)
Mansor, Mahayaudin M.; Green, David A.; Metcalfe, Andrew V.
2016-06-01
We compare time series of electroencephalograms (EEGs) from healthy volunteers with EEGs from subjects diagnosed with epilepsy. The EEG time series from the healthy group are recorded during awake state with their eyes open and eyes closed, and the records from subjects with epilepsy are taken from three different recording regions of pre-surgical diagnosis: hippocampal, epileptogenic and seizure zone. The comparisons for these 5 categories are in terms of deviations from linear time series models with constant variance Gaussian white noise error inputs. One feature investigated is directionality, and how this can be modelled by either non-linear threshold autoregressive models or non-Gaussian errors. A second feature is volatility, which is modelled by Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) processes. Other features include the proportion of variability accounted for by time series models, and the skewness and the kurtosis of the residuals. The results suggest these comparisons may have diagnostic potential for epilepsy and provide early warning of seizures.
Temporal dynamics of physical activity and affect in depressed and nondepressed individuals.
Stavrakakis, Nikolaos; Booij, Sanne H; Roest, Annelieke M; de Jonge, Peter; Oldehinkel, Albertine J; Bos, Elisabeth H
2015-12-01
The association between physical activity and affect found in longitudinal observational studies is generally small to moderate. It is unknown how this association generalizes to individuals. The aim of the present study was to investigate interindividual differences in the bidirectional dynamic relationship between physical activity and affect, in depressed and nondepressed individuals, using time-series analysis. A pair-matched sample of 10 depressed and 10 nondepressed participants (mean age = 36.6, SD = 8.9, 30% males) wore accelerometers and completed electronic questionnaires 3 times a day for 30 days. Physical activity was operationalized as the total energy expenditure (EE) per day segment (i.e., 6 hr). The multivariate time series (T = 90) of every individual were analyzed using vector autoregressive modeling (VAR), with the aim to assess direct as well as lagged (i.e., over 1 day) effects of EE on positive and negative affect, and vice versa. Large interindividual differences in the strength, direction and temporal aspects of the relationship between physical activity and positive and negative affect were observed. An exception was the direct (but not the lagged) effect of physical activity on positive affect, which was positive in nearly all individuals. This study showed that the association between physical activity and affect varied considerably across individuals. Thus, while at the group level the effect of physical activity on affect may be small, in some individuals the effect may be clinically relevant. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Stroe-Kunold, Esther; Wesche, Daniela; Friederich, Hans-Christoph; Herzog, Wolfgang; Zastrow, Arne; Wild, Beate
2012-01-01
Anorexia nervosa (AN) is a serious eating disorder marked by self-induced underweight. In patients with AN, the avoidance of emotions appears to be a central feature that is reinforced during the acute state of the disorder. This single case study investigated the role of emotional avoidance of a 25-year-old patient with AN during her inpatient treatment. Throughout the course of 96 days, the patient answered questions daily about her emotional avoidance, pro-anorectic beliefs, perfectionism, and further variables on an electronic diary. The patient's daily self-assessment of emotional avoidance was described in terms of mean value, range, and variability for the various treatment phases. Temporal relationships between emotional avoidance and further variables were determined using a time series approach (vector autoregressive (VAR) modelling). Diary data reflect that the patient's ability to tolerate unpleasant emotions appeared to undergo a process of change during inpatient treatment. Results of the time series analysis indicate that the more the patient was able to deal with negative emotions on any one day (t-1), the less she would be socially avoidant, cognitively confined to food and eating, as well as feeling less secure with her AN, and less depressive on the following day (t). The findings show that for this patient emotional avoidance plays a central role in the interacting system of various psychosocial variables. Replication of these results in other patients with AN would support the recommendation to focus more on emotional regulation in the treatment of AN.
Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi
2018-04-01
Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.
Exchangeability, extreme returns and Value-at-Risk forecasts
NASA Astrophysics Data System (ADS)
Huang, Chun-Kai; North, Delia; Zewotir, Temesgen
2017-07-01
In this paper, we propose a new approach to extreme value modelling for the forecasting of Value-at-Risk (VaR). In particular, the block maxima and the peaks-over-threshold methods are generalised to exchangeable random sequences. This caters for the dependencies, such as serial autocorrelation, of financial returns observed empirically. In addition, this approach allows for parameter variations within each VaR estimation window. Empirical prior distributions of the extreme value parameters are attained by using resampling procedures. We compare the results of our VaR forecasts to that of the unconditional extreme value theory (EVT) approach and the conditional GARCH-EVT model for robust conclusions.
NASA Astrophysics Data System (ADS)
Navon, M. I.; Stefanescu, R.; Fuelberg, H. E.; Marchand, M.
2012-12-01
NASA's launch of the GOES-R Lightning Mapper (GLM) in 2015 will provide continuous, full disc, high resolution total lightning (IC + CG) data. The data will be available at a horizontal resolution of approximately 9 km. Compared to other types of data, the assimilation of lightning data into operational numerical models has received relatively little attention. Previous efforts of lightning assimilation mostly have employed nudging. This paper will describe the implementation of 1D+3D/4D Var assimilation schemes of existing ground-based WTLN (Worldwide Total Lightning Network) lightning observations using non-linear observation operators in the incremental WRFDA system. To mimic the expected output of GLM, the WTLN data were used to generate lightning super-observations characterized by flash rates/81 km2/20 min. A major difficulty associated with variational approaches is the complexity of the observation operator that defines the model equivalent of lightning. We use Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. This operator is highly nonlinear. Marecal and Mahfouf (2003) have shown that nonlinearities can prevent direct assimilation of rainfall rates in the ECMWF 4D-VAR (using the incremental formulation proposed by Courtier et al. (1994)) from being successful. Using data from the 2011 Tuscaloosa, AL tornado outbreak, we have proved that the direct assimilation of lightning data into the WRF 3D/4D - Var systems is limited due to this incremental approach. Severe threshold limits must be imposed on the innovation vectors to obtain an improved analysis. We have implemented 1D+3D/4D Var schemes to assimilate lightning observations into the WRF model. Their use avoids innovation vector constrains from preventing the inclusion of a greater number of lightning observations Their use also minimizes the problem that nonlinearities in the moist convective scheme can introduce discontinuities in the cost function between inner and outer loops of the incremental 3-D/4-D VAR minimization. The first part of this paper will describe the methodology and performance analysis of the 1D-Var retrieval scheme that adjusts the WRF temperature profiles closer to an observed value as in Mahfouf et al. (2005). The second part will show the positive impact of these 1D-Var pseudo - temperature observations on both model 3D/4D-Var WRF analyses and short-range forecasts for three cases - the Tuscaloosa tornado outbreak (April 27, 2011) with intense but localized lightning, a second severe storm outbreak with more widespread but less intense lightning (June 27, 2011), and a northeaster containing much less lightning.
Forecast of Frost Days Based on Monthly Temperatures
NASA Astrophysics Data System (ADS)
Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.
2009-04-01
Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Kleist, D. T.; Ide, K.; Mahajan, R.; Thomas, C.
2014-12-01
The use of hybrid error covariance models has become quite popular for numerical weather prediction (NWP). One such method for incorporating localized covariances from an ensemble within the variational framework utilizes an augmented control variable (EnVar), and has been implemented in the operational NCEP data assimilation system (GSI). By taking the existing 3D EnVar algorithm in GSI and allowing for four-dimensional ensemble perturbations, coupled with the 4DVAR infrastructure already in place, a 4D EnVar capability has been developed. The 4D EnVar algorithm has a few attractive qualities relative to 4DVAR, including the lack of need for tangent-linear and adjoint model as well as reduced computational cost. Preliminary results using real observations have been encouraging, showing forecast improvements nearly as large as were found in moving from 3DVAR to hybrid 3D EnVar. 4D EnVar is the method of choice for the next generation assimilation system for use with the operational NCEP global model, the global forecast system (GFS). The use of an outer-loop has long been the method of choice for 4DVar data assimilation to help address nonlinearity. An outer loop involves the re-running of the (deterministic) background forecast from the updated initial condition at the beginning of the assimilation window, and proceeding with another inner loop minimization. Within 4D EnVar, a similar procedure can be adopted since the solver evaluates a 4D analysis increment throughout the window, consistent with the valid times of the 4D ensemble perturbations. In this procedure, the ensemble perturbations are kept fixed and centered about the updated background state. This is analogous to the quasi-outer loop idea developed for the EnKF. Here, we present results for both toy model and real NWP systems demonstrating the impact from incorporating outer loops to address nonlinearity within the 4D EnVar context. The appropriate amplitudes for observation and background error covariances in subsequent outer loops will be explored. Lastly, variable transformations on the ensemble perturbations will be utilized to help address issues of non-Gaussianity. This may be particularly important for variables that clearly have non-Gaussian error characteristics such as water vapor and cloud condensate.
Kepler AutoRegressive Planet Search
NASA Astrophysics Data System (ADS)
Caceres, Gabriel Antonio; Feigelson, Eric
2016-01-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real-data tests of the KARPS methodology will be discussed including confirmation of some Kepler Team `candidate' planets. We also present cases of new possible planetary signals.
FBST for Cointegration Problems
NASA Astrophysics Data System (ADS)
Diniz, M.; Pereira, C. A. B.; Stern, J. M.
2008-11-01
In order to estimate causal relations, the time series econometrics has to be aware of spurious correlation, a problem first mentioned by Yule [21]. To solve the problem, one can work with differenced series or use multivariate models like VAR or VEC models. In this case, the analysed series are going to present a long run relation i.e. a cointegration relation. Even though the Bayesian literature about inference on VAR/VEC models is quite advanced, Bauwens et al. [2] highlight that "the topic of selecting the cointegrating rank has not yet given very useful and convincing results." This paper presents the Full Bayesian Significance Test applied to cointegration rank selection tests in multivariate (VAR/VEC) time series models and shows how to implement it using available in the literature and simulated data sets. A standard non-informative prior is assumed.
NASA Astrophysics Data System (ADS)
Gao, Chuan; Zhang, Rong-Hua; Wu, Xinrong; Sun, Jichang
2018-04-01
Large biases exist in real-time ENSO prediction, which can be attributed to uncertainties in initial conditions and model parameters. Previously, a 4D variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer ( T e), which is empirically and explicitly related to sea level (SL) variation. The strength of the thermocline effect on SST (referred to simply as "the thermocline effect") is represented by an introduced parameter, α Te. A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having their initial condition optimized only, and having their initial condition plus this additional model parameter optimized, are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameters and initial conditions together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.
Using a 4D-Variational Method to Optimize Model Parameters in an Intermediate Coupled Model of ENSO
NASA Astrophysics Data System (ADS)
Gao, C.; Zhang, R. H.
2017-12-01
Large biases exist in real-time ENSO prediction, which is attributed to uncertainties in initial conditions and model parameters. Previously, a four dimentional variational (4D-Var) data assimilation system was developed for an intermediate coupled model (ICM) and used to improve ENSO modeling through optimized initial conditions. In this paper, this system is further applied to optimize model parameters. In the ICM used, one important process for ENSO is related to the anomalous temperature of subsurface water entrained into the mixed layer (Te), which is empirically and explicitly related to sea level (SL) variation, written as Te=αTe×FTe (SL). The introduced parameter, αTe, represents the strength of the thermocline effect on sea surface temperature (SST; referred as the thermocline effect). A numerical procedure is developed to optimize this model parameter through the 4D-Var assimilation of SST data in a twin experiment context with an idealized setting. Experiments having initial condition optimized only and having initial condition plus this additional model parameter optimized both are compared. It is shown that ENSO evolution can be more effectively recovered by including the additional optimization of this parameter in ENSO modeling. The demonstrated feasibility of optimizing model parameter and initial condition together through the 4D-Var method provides a modeling platform for ENSO studies. Further applications of the 4D-Var data assimilation system implemented in the ICM are also discussed.
Dynamic Relationship between Gross Domestic Product and Domestic Investment in Rwanda
ERIC Educational Resources Information Center
Ocaya, Bruno; Ruranga, Charles; Kaberuka, William
2012-01-01
This study uses a VAR model to analyse the dynamic relationship between gross domestic product (GDP) and domestic investment (DI) in Rwanda for the period 1970 to 2011. Several selection lag criteria chose a maximum lag of one, and a bivariate VAR(1) model specification in levels was adopted. Unit root tests show that both GDP and DI series are…
NASA Astrophysics Data System (ADS)
Pal, Debdatta; Mitra, Subrata Kumar
2018-01-01
This study used a quantile autoregressive distributed lag (QARDL) model to capture asymmetric impact of rainfall on food production in India. It was found that the coefficient corresponding to the rainfall in the QARDL increased till the 75th quantile and started decreasing thereafter, though it remained in the positive territory. Another interesting finding is that at the 90th quantile and above the coefficients of rainfall though remained positive was not statistically significant and therefore, the benefit of high rainfall on crop production was not conclusive. However, the impact of other determinants, such as fertilizer and pesticide consumption, is quite uniform over the whole range of the distribution of food grain production.
Multivariate Autoregressive Modeling and Granger Causality Analysis of Multiple Spike Trains
Krumin, Michael; Shoham, Shy
2010-01-01
Recent years have seen the emergence of microelectrode arrays and optical methods allowing simultaneous recording of spiking activity from populations of neurons in various parts of the nervous system. The analysis of multiple neural spike train data could benefit significantly from existing methods for multivariate time-series analysis which have proven to be very powerful in the modeling and analysis of continuous neural signals like EEG signals. However, those methods have not generally been well adapted to point processes. Here, we use our recent results on correlation distortions in multivariate Linear-Nonlinear-Poisson spiking neuron models to derive generalized Yule-Walker-type equations for fitting ‘‘hidden” Multivariate Autoregressive models. We use this new framework to perform Granger causality analysis in order to extract the directed information flow pattern in networks of simulated spiking neurons. We discuss the relative merits and limitations of the new method. PMID:20454705
The Multigroup Multilevel Categorical Latent Growth Curve Models
ERIC Educational Resources Information Center
Hung, Lai-Fa
2010-01-01
Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…
Wang, Kewei; Song, Wentao; Li, Jinping; Lu, Wu; Yu, Jiangang; Han, Xiaofeng
2016-05-01
The aim of this study is to forecast the incidence of bacillary dysentery with a prediction model. We collected the annual and monthly laboratory data of confirmed cases from January 2004 to December 2014. In this study, we applied an autoregressive integrated moving average (ARIMA) model to forecast bacillary dysentery incidence in Jiangsu, China. The ARIMA (1, 1, 1) × (1, 1, 2)12 model fitted exactly with the number of cases during January 2004 to December 2014. The fitted model was then used to predict bacillary dysentery incidence during the period January to August 2015, and the number of cases fell within the model's CI for the predicted number of cases during January-August 2015. This study shows that the ARIMA model fits the fluctuations in bacillary dysentery frequency, and it can be used for future forecasting when applied to bacillary dysentery prevention and control. © 2016 APJPH.
Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach
NASA Astrophysics Data System (ADS)
Hamid, Mohd Fahmi Abdul; Shabri, Ani
2017-05-01
Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.
Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data
Tran, Truyen; Luo, Wei; Phung, Dinh; Venkatesh, Svetha
2016-01-01
Background: Modeling patient flow is crucial in understanding resource demand and prioritization. We study patient outflow from an open ward in an Australian hospital, where currently bed allocation is carried out by a manager relying on past experiences and looking at demand. Automatic methods that provide a reasonable estimate of total next-day discharges can aid in efficient bed management. The challenges in building such methods lie in dealing with large amounts of discharge noise introduced by the nonlinear nature of hospital procedures, and the nonavailability of real-time clinical information in wards. Objective Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. Methods We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. Results Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. Conclusions In the absence of clinical information, our study recommends using patient-level and ward-level data in predicting next-day discharges. Random forest and support vector regression models are able to use all available features from such data, resulting in superior performance over traditional autoregressive methods. An intelligent estimate of available beds in wards plays a crucial role in relieving access block in emergency departments. PMID:27444059
Chin, Wen Cheong; Lee, Min Cherng; Yap, Grace Lee Ching
2016-01-01
High frequency financial data modelling has become one of the important research areas in the field of financial econometrics. However, the possible structural break in volatile financial time series often trigger inconsistency issue in volatility estimation. In this study, we propose a structural break heavy-tailed heterogeneous autoregressive (HAR) volatility econometric model with the enhancement of jump-robust estimators. The breakpoints in the volatility are captured by dummy variables after the detection by Bai-Perron sequential multi breakpoints procedure. In order to further deal with possible abrupt jump in the volatility, the jump-robust volatility estimators are composed by using the nearest neighbor truncation approach, namely the minimum and median realized volatility. Under the structural break improvements in both the models and volatility estimators, the empirical findings show that the modified HAR model provides the best performing in-sample and out-of-sample forecast evaluations as compared with the standard HAR models. Accurate volatility forecasts have direct influential to the application of risk management and investment portfolio analysis.
Modeling feeding behavior of swine to detect illness
USDA-ARS?s Scientific Manuscript database
Animal well-being may be improved by detecting disruptions in feeding behavior indicative of challenged animals. The objectives of this study were to 1) develop and optimize an autoregressive model by adjusting sensitivity of the model to detect disruptions in feeding time; 2) test the model on dail...
USDA-ARS?s Scientific Manuscript database
Watershed models are calibrated to simulate stream discharge as accurately as possible. Modelers will often calculate model validation statistics on aggregate (often monthly) time periods, rather than the daily step at which models typically operate. This is because daily hydrologic data exhibit lar...
Swalve, Natashia; Smethells, John R; Carroll, Marilyn E
2016-07-15
Tobacco use is the largest cause of preventable mortality in the western world. Even after treatment, relapse rates for tobacco are high, and more effective pharmacological treatments are needed. Progesterone (PRO), a female hormone used in contraceptives, reduces stimulant use but its effects on tobacco addiction are unknown. Varenicline (VAR) is a commonly used medication that reduces tobacco use. The present study examined sex differences in the individual vs. combined effects of PRO and VAR on reinstatement of nicotine-seeking behavior in a rat model of relapse. Adult female and male Wistar rats self-administered nicotine (NIC, 0.03mg/kg/infusion) for 14days followed by 21days of extinction when no cues or drug were present. Rats were then divided into 4 treatment groups: control (VEH+SAL), PRO alone (PRO+SAL), VAR alone (VEH+VAR) and the combination (PRO+VAR). Reinstatement of nicotine-seeking behavior induced by priming injections of NIC or caffeine (CAF), presentation of cues (CUES), and the combination of drugs and cues (e.g. NIC+CUES, CAF+CUES) were tested after extinction. Male and female rats did not differ in self-administration of nicotine or extinction responding, and both showed elevated levels of responding to the CAF+CUES condition. However, males, but not females, reinstated active lever-pressing to the NIC+CUES condition, and that was attenuated by both VAR and VAR+PRO treatment. Thus, males were more sensitive to NIC+CUE-induced reinstatement than females, and VAR alone and VAR combined with PRO effectively reduced nicotine relapse. Copyright © 2016 Elsevier B.V. All rights reserved.
Deng, Huai; Cai, Weili; Wang, Chao; Lerach, Stephanie; Delattre, Marion; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.
2010-01-01
The essential JIL-1 histone H3S10 kinase is a key regulator of chromatin structure that functions to maintain euchromatic domains while counteracting heterochromatization and gene silencing. In the absence of the JIL-1 kinase, two of the major heterochromatin markers H3K9me2 and HP1a spread in tandem to ectopic locations on the chromosome arms. Here we address the role of the third major heterochromatin component, the zinc-finger protein Su(var)3-7. We show that the lethality but not the chromosome morphology defects associated with the null JIL-1 phenotype to a large degree can be rescued by reducing the dose of the Su(var)3-7 gene and that Su(var)3-7 and JIL-1 loss-of-function mutations have an antagonistic and counterbalancing effect on position-effect variegation (PEV). Furthermore, we show that in the absence of JIL-1 kinase activity, Su(var)3-7 gets redistributed and upregulated on the chromosome arms. Reducing the dose of the Su(var)3-7 gene dramatically decreases this redistribution; however, the spreading of H3K9me2 to the chromosome arms was unaffected, strongly indicating that ectopic Su(var)3-9 activity is not a direct cause of lethality. These observations suggest a model where Su(var)3-7 functions as an effector downstream of Su(var)3-9 and H3K9 dimethylation in heterochromatic spreading and gene silencing that is normally counteracted by JIL-1 kinase activity. PMID:20457875
Reduced-Rank Array Modes of the California Current Observing System
NASA Astrophysics Data System (ADS)
Moore, Andrew M.; Arango, Hernan G.; Edwards, Christopher A.
2018-01-01
The information content of the ocean observing array spanning the U.S. west coast is explored using the reduced-rank array modes (RAMs) derived from a four-dimensional variational (4D-Var) data assimilation system covering a period of three decades. RAMs are an extension of the original formulation of array modes introduced by Bennett (1985) but in the reduced model state-space explored by the 4D-Var system, and reveal the extent to which this space is activated by the observations. The projection of the RAMs onto the empirical orthogonal functions (EOFs) of the 4D-Var background error correlation matrix provides a quantitative measure of the effectiveness of the measurements in observing the circulation. It is found that much of the space spanned by the background error covariance is unconstrained by the present ocean observing system. The RAM spectrum is also used to introduce a new criterion to prevent 4D-Var from overfitting the model to the observations.
Miragall, Marta; Baños, Rosa M.; Cebolla, Ausiàs; Botella, Cristina
2015-01-01
This study examines the psychometric properties of the Working Alliance Inventory-Short (WAI-S) adaptation to Virtual Reality (VR) and Augmented Reality (AR) therapies (WAI-VAR). The relationship between the therapeutic alliance (TA) with VR and AR and clinically significant change (CSC) is also explored. Seventy-five patients took part in this study (74.7% women, Mage = 34.41). Fear of flying and adjustment disorder patients received VR therapy, and cockroach phobia patients received AR therapy. Psychometric properties, CSC, one-way ANOVA, Spearman’s Correlations and Multiple Regression were calculated. The WAI-VAR showed a unidimensional structure, high internal consistency and adequate convergent validity. “Not changed” patients scored lower on the WAI-VAR than “improved” and “recovered” patients. Correlation between the WAI-VAR and CSC was moderate. The best fitting model for predicting CSC was a linear combination of the TA with therapist (WAI-S) and the TA with VR and AR (WAI-VAR), due to the latter variable slightly increased the percentage of variability accounted for in CSC. The WAI-VAR is the first validated instrument to measure the TA with VR and AR in research and clinical practice. This study reveals the importance of the quality of the TA with technologies in achieving positive outcomes in the therapy. PMID:26500589
Miragall, Marta; Baños, Rosa M; Cebolla, Ausiàs; Botella, Cristina
2015-01-01
This study examines the psychometric properties of the Working Alliance Inventory-Short (WAI-S) adaptation to Virtual Reality (VR) and Augmented Reality (AR) therapies (WAI-VAR). The relationship between the therapeutic alliance (TA) with VR and AR and clinically significant change (CSC) is also explored. Seventy-five patients took part in this study (74.7% women, M age = 34.41). Fear of flying and adjustment disorder patients received VR therapy, and cockroach phobia patients received AR therapy. Psychometric properties, CSC, one-way ANOVA, Spearman's Correlations and Multiple Regression were calculated. The WAI-VAR showed a unidimensional structure, high internal consistency and adequate convergent validity. "Not changed" patients scored lower on the WAI-VAR than "improved" and "recovered" patients. Correlation between the WAI-VAR and CSC was moderate. The best fitting model for predicting CSC was a linear combination of the TA with therapist (WAI-S) and the TA with VR and AR (WAI-VAR), due to the latter variable slightly increased the percentage of variability accounted for in CSC. The WAI-VAR is the first validated instrument to measure the TA with VR and AR in research and clinical practice. This study reveals the importance of the quality of the TA with technologies in achieving positive outcomes in the therapy.
Comparisons of Four Methods for Estimating a Dynamic Factor Model
ERIC Educational Resources Information Center
Zhang, Zhiyong; Hamaker, Ellen L.; Nesselroade, John R.
2008-01-01
Four methods for estimating a dynamic factor model, the direct autoregressive factor score (DAFS) model, are evaluated and compared. The first method estimates the DAFS model using a Kalman filter algorithm based on its state space model representation. The second one employs the maximum likelihood estimation method based on the construction of a…
Kepler AutoRegressive Planet Search
NASA Astrophysics Data System (ADS)
Feigelson, Eric
NASA's Kepler mission is the source of more exoplanets than any other instrument, but the discovery depends on complex statistical analysis procedures embedded in the Kepler pipeline. A particular challenge is mitigating irregular stellar variability without loss of sensitivity to faint periodic planetary transits. This proposal presents a two-stage alternative analysis procedure. First, parametric autoregressive ARFIMA models, commonly used in econometrics, remove most of the stellar variations. Second, a novel matched filter is used to create a periodogram from which transit-like periodicities are identified. This analysis procedure, the Kepler AutoRegressive Planet Search (KARPS), is confirming most of the Kepler Objects of Interest and is expected to identify additional planetary candidates. The proposed research will complete application of the KARPS methodology to the prime Kepler mission light curves of 200,000: stars, and compare the results with Kepler Objects of Interest obtained with the Kepler pipeline. We will then conduct a variety of astronomical studies based on the KARPS results. Important subsamples will be extracted including Habitable Zone planets, hot super-Earths, grazing-transit hot Jupiters, and multi-planet systems. Groundbased spectroscopy of poorly studied candidates will be performed to better characterize the host stars. Studies of stellar variability will then be pursued based on KARPS analysis. The autocorrelation function and nonstationarity measures will be used to identify spotted stars at different stages of autoregressive modeling. Periodic variables with folded light curves inconsistent with planetary transits will be identified; they may be eclipsing or mutually-illuminating binary star systems. Classification of stellar variables with KARPS-derived statistical properties will be attempted. KARPS procedures will then be applied to archived K2 data to identify planetary transits and characterize stellar variability.
Nonrandom variability in respiratory cycle parameters of humans during stage 2 sleep.
Modarreszadeh, M; Bruce, E N; Gothe, B
1990-08-01
We analyzed breath-to-breath inspiratory time (TI), expiratory time (TE), inspiratory volume (VI), and minute ventilation (Vm) from 11 normal subjects during stage 2 sleep. The analysis consisted of 1) fitting first- and second-order autoregressive models (AR1 and AR2) and 2) obtaining the power spectra of the data by fast-Fourier transform. For the AR2 model, the only coefficients that were statistically different from zero were the average alpha 1 (a1) for TI, VI, and Vm (a1 = 0.19, 0.29, and 0.15, respectively). However, the power spectra of all parameters often exhibited peaks at low frequency (less than 0.2 cycles/breath) and/or at high frequency (greater than 0.2 cycles/breath), indicative of periodic oscillations. After accounting for the corrupting effects of added oscillations on the a1 estimates, we conclude that 1) breath-to-breath fluctuations of VI, and to a lesser extent TI and Vm, exhibit a first-order autoregressive structure such that fluctuations of each breath are positively correlated with those of immediately preceding breaths and 2) the correlated components of variability in TE are mostly due to discrete high- and/or low-frequency oscillations with no underlying autoregressive structure. We propose that the autoregressive structure of VI, TI, and Vm during spontaneous breathing in stage 2 sleep may reflect either a central neural mechanism or the effects of noise in respiratory chemical feedback loops; the presence of low-frequency oscillations, seen more often in Vm, suggests possible instability in the chemical feedback loops. Mechanisms of high-frequency periodicities, seen more often in TE, are unknown.
Self-organising mixture autoregressive model for non-stationary time series modelling.
Ni, He; Yin, Hujun
2008-12-01
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.
Stock price forecasting based on time series analysis
NASA Astrophysics Data System (ADS)
Chi, Wan Le
2018-05-01
Using the historical stock price data to set up a sequence model to explain the intrinsic relationship of data, the future stock price can forecasted. The used models are auto-regressive model, moving-average model and autoregressive-movingaverage model. The original data sequence of unit root test was used to judge whether the original data sequence was stationary. The non-stationary original sequence as a first order difference needed further processing. Then the stability of the sequence difference was re-inspected. If it is still non-stationary, the second order differential processing of the sequence is carried out. Autocorrelation diagram and partial correlation diagram were used to evaluate the parameters of the identified ARMA model, including coefficients of the model and model order. Finally, the model was used to forecast the fitting of the shanghai composite index daily closing price with precision. Results showed that the non-stationary original data series was stationary after the second order difference. The forecast value of shanghai composite index daily closing price was closer to actual value, indicating that the ARMA model in the paper was a certain accuracy.
2013-01-01
29 3.5. ARIMA Models , Temporal Clustering of Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.6...39 3.9. ARIMA Models ...variance across a distribution. Autoregressive integrated moving average ( ARIMA ) models are used with time-series data sets and are designed to capture
A High Precision Prediction Model Using Hybrid Grey Dynamic Model
ERIC Educational Resources Information Center
Li, Guo-Dong; Yamaguchi, Daisuke; Nagai, Masatake; Masuda, Shiro
2008-01-01
In this paper, we propose a new prediction analysis model which combines the first order one variable Grey differential equation Model (abbreviated as GM(1,1) model) from grey system theory and time series Autoregressive Integrated Moving Average (ARIMA) model from statistics theory. We abbreviate the combined GM(1,1) ARIMA model as ARGM(1,1)…
Relating Factor Models for Longitudinal Data to Quasi-Simplex and NARMA Models
ERIC Educational Resources Information Center
Rovine, Michael J.; Molenaar, Peter C. M.
2005-01-01
In this article we show the one-factor model can be rewritten as a quasi-simplex model. Using this result along with addition theorems from time series analysis, we describe a common general model, the nonstationary autoregressive moving average (NARMA) model, that includes as a special case, any latent variable model with continuous indicators…
Muhle, Rebecca A.; Adjalley, Sophie; Falkard, Brie; Nkrumah, Louis J.; Muhle, Michael E.; Fidock, David A.
2009-01-01
Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitized erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilizing the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var sub-telomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronized parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may well result from the integrated UpsA promoter being largely silenced by the neighboring cg6 promoter. Our analyses also revealed that the DownsA 3’ untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyze promoter activity of Group A var genes which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of var gene regulation in addition to intrinsic promoter-dependent silencing. PMID:19463825
Firm performance and the role of environmental management.
Lundgren, Tommy; Zhou, Wenchao
2017-12-01
This paper analyzes the interactions between three dimensions of firm performance - productivity, energy efficiency, and environmental performance - and especially sheds light on the role of environmental management. In this context, environmental management is investments to reduce environmental impact, which may also affect firm competitiveness, in terms of change in productivity, and spur more (or less) efficient use of energy. We apply data envelopment analysis (DEA) technique to calculate the Malmquist firm performance indexes, and a panel vector auto-regression (VAR) methodology is utilized to investigate the dynamic and causal relationship between the three dimensions of firm performance and environmental investment. Main results show that energy efficiency and environmental performance are integrated, and energy efficiency and productivity positively reinforce each other, signifying the cost saving property of more efficient use of energy. Hence, increasing energy efficiency, as advocated in many of today's energy policies, could capture multiple benefits. The results also show that improved environmental performance and environmental investments constrain next period productivity, a result that would be in contrast with the Porter hypothesis and strategic corporate social responsibility; both concepts conveying the notion that pro-environmental management can boost productivity and competitiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Getting It Right Matters: Climate Spectra and Their Estimation
NASA Astrophysics Data System (ADS)
Privalsky, Victor; Yushkov, Vladislav
2018-06-01
In many recent publications, climate spectra estimated with different methods from observed, GCM-simulated, and reconstructed time series contain many peaks at time scales from a few years to many decades and even centuries. However, respective spectral estimates obtained with the autoregressive (AR) and multitapering (MTM) methods showed that spectra of climate time series are smooth and contain no evidence of periodic or quasi-periodic behavior. Four order selection criteria for the autoregressive models were studied and proven sufficiently reliable for 25 time series of climate observations at individual locations or spatially averaged at local-to-global scales. As time series of climate observations are short, an alternative reliable nonparametric approach is Thomson's MTM. These results agree with both the earlier climate spectral analyses and the Markovian stochastic model of climate.
On the maximum-entropy/autoregressive modeling of time series
NASA Technical Reports Server (NTRS)
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
NASA Astrophysics Data System (ADS)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-09-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
Automatic load forecasting. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, D.J.; Vemuri, S.
A method which lends itself to on-line forecasting of hourly electric loads is presented and the results of its use are compared to models developed using the Box-Jenkins method. The method consists of processing the historical hourly loads with a sequential least-squares estimator to identify a finite order autoregressive model which in turn is used to obtain a parsimonious autoregressive-moving average model. A procedure is also defined for incorporating temperature as a variable to improve forecasts where loads are temperature dependent. The method presented has several advantages in comparison to the Box-Jenkins method including much less human intervention and improvedmore » model identification. The method has been tested using three-hourly data from the Lincoln Electric System, Lincoln, Nebraska. In the exhaustive analyses performed on this data base this method produced significantly better results than the Box-Jenkins method. The method also proved to be more robust in that greater confidence could be placed in the accuracy of models based upon the various measures available at the identification stage.« less
Dettmer, Jan; Dosso, Stan E
2012-10-01
This paper develops a trans-dimensional approach to matched-field geoacoustic inversion, including interacting Markov chains to improve efficiency and an autoregressive model to account for correlated errors. The trans-dimensional approach and hierarchical seabed model allows inversion without assuming any particular parametrization by relaxing model specification to a range of plausible seabed models (e.g., in this case, the number of sediment layers is an unknown parameter). Data errors are addressed by sampling statistical error-distribution parameters, including correlated errors (covariance), by applying a hierarchical autoregressive error model. The well-known difficulty of low acceptance rates for trans-dimensional jumps is addressed with interacting Markov chains, resulting in a substantial increase in efficiency. The trans-dimensional seabed model and the hierarchical error model relax the degree of prior assumptions required in the inversion, resulting in substantially improved (more realistic) uncertainty estimates and a more automated algorithm. In particular, the approach gives seabed parameter uncertainty estimates that account for uncertainty due to prior model choice (layering and data error statistics). The approach is applied to data measured on a vertical array in the Mediterranean Sea.
Estimation of value at risk and conditional value at risk using normal mixture distributions model
NASA Astrophysics Data System (ADS)
Kamaruzzaman, Zetty Ain; Isa, Zaidi
2013-04-01
Normal mixture distributions model has been successfully applied in financial time series analysis. In this paper, we estimate the return distribution, value at risk (VaR) and conditional value at risk (CVaR) for monthly and weekly rates of returns for FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI) from July 1990 until July 2010 using the two component univariate normal mixture distributions model. First, we present the application of normal mixture distributions model in empirical finance where we fit our real data. Second, we present the application of normal mixture distributions model in risk analysis where we apply the normal mixture distributions model to evaluate the value at risk (VaR) and conditional value at risk (CVaR) with model validation for both risk measures. The empirical results provide evidence that using the two components normal mixture distributions model can fit the data well and can perform better in estimating value at risk (VaR) and conditional value at risk (CVaR) where it can capture the stylized facts of non-normality and leptokurtosis in returns distribution.
Azeez, Adeboye; Obaromi, Davies; Odeyemi, Akinwumi; Ndege, James; Muntabayi, Ruffin
2016-07-26
Tuberculosis (TB) is a deadly infectious disease caused by Mycobacteria tuberculosis. Tuberculosis as a chronic and highly infectious disease is prevalent in almost every part of the globe. More than 95% of TB mortality occurs in low/middle income countries. In 2014, approximately 10 million people were diagnosed with active TB and two million died from the disease. In this study, our aim is to compare the predictive powers of the seasonal autoregressive integrated moving average (SARIMA) and neural network auto-regression (SARIMA-NNAR) models of TB incidence and analyse its seasonality in South Africa. TB incidence cases data from January 2010 to December 2015 were extracted from the Eastern Cape Health facility report of the electronic Tuberculosis Register (ERT.Net). A SARIMA model and a combined model of SARIMA model and a neural network auto-regression (SARIMA-NNAR) model were used in analysing and predicting the TB data from 2010 to 2015. Simulation performance parameters of mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean percent error (MPE), mean absolute scaled error (MASE) and mean absolute percentage error (MAPE) were applied to assess the better performance of prediction between the models. Though practically, both models could predict TB incidence, the combined model displayed better performance. For the combined model, the Akaike information criterion (AIC), second-order AIC (AICc) and Bayesian information criterion (BIC) are 288.56, 308.31 and 299.09 respectively, which were lower than the SARIMA model with corresponding values of 329.02, 327.20 and 341.99, respectively. The seasonality trend of TB incidence was forecast to have a slightly increased seasonal TB incidence trend from the SARIMA-NNAR model compared to the single model. The combined model indicated a better TB incidence forecasting with a lower AICc. The model also indicates the need for resolute intervention to reduce infectious disease transmission with co-infection with HIV and other concomitant diseases, and also at festival peak periods.
Autoregressive statistical pattern recognition algorithms for damage detection in civil structures
NASA Astrophysics Data System (ADS)
Yao, Ruigen; Pakzad, Shamim N.
2012-08-01
Statistical pattern recognition has recently emerged as a promising set of complementary methods to system identification for automatic structural damage assessment. Its essence is to use well-known concepts in statistics for boundary definition of different pattern classes, such as those for damaged and undamaged structures. In this paper, several statistical pattern recognition algorithms using autoregressive models, including statistical control charts and hypothesis testing, are reviewed as potentially competitive damage detection techniques. To enhance the performance of statistical methods, new feature extraction techniques using model spectra and residual autocorrelation, together with resampling-based threshold construction methods, are proposed. Subsequently, simulated acceleration data from a multi degree-of-freedom system is generated to test and compare the efficiency of the existing and proposed algorithms. Data from laboratory experiments conducted on a truss and a large-scale bridge slab model are then used to further validate the damage detection methods and demonstrate the superior performance of proposed algorithms.
NASA Astrophysics Data System (ADS)
Uilhoorn, F. E.
2016-10-01
In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.
Nonlinear and Quasi-Simplex Patterns in Latent Growth Models
ERIC Educational Resources Information Center
Bianconcini, Silvia
2012-01-01
In the SEM literature, simplex and latent growth models have always been considered competing approaches for the analysis of longitudinal data, even if they are strongly connected and both of specific importance. General dynamic models, which simultaneously estimate autoregressive structures and latent curves, have been recently proposed in the…
An Integrated Enrollment Forecast Model. IR Applications, Volume 15, January 18, 2008
ERIC Educational Resources Information Center
Chen, Chau-Kuang
2008-01-01
Enrollment forecasting is the central component of effective budget and program planning. The integrated enrollment forecast model is developed to achieve a better understanding of the variables affecting student enrollment and, ultimately, to perform accurate forecasts. The transfer function model of the autoregressive integrated moving average…
Time Series ARIMA Models of Undergraduate Grade Point Average.
ERIC Educational Resources Information Center
Rogers, Bruce G.
The Auto-Regressive Integrated Moving Average (ARIMA) Models, often referred to as Box-Jenkins models, are regression methods for analyzing sequential dependent observations with large amounts of data. The Box-Jenkins approach, a three-stage procedure consisting of identification, estimation and diagnosis, was used to select the most appropriate…
Intercept Centering and Time Coding in Latent Difference Score Models
ERIC Educational Resources Information Center
Grimm, Kevin J.
2012-01-01
Latent difference score (LDS) models combine benefits derived from autoregressive and latent growth curve models allowing for time-dependent influences and systematic change. The specification and descriptions of LDS models include an initial level of ability or trait plus an accumulation of changes. A limitation of this specification is that the…
NASA Astrophysics Data System (ADS)
Schliep, E. M.; Gelfand, A. E.; Holland, D. M.
2015-12-01
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.
An Intelligent Decision Support System for Workforce Forecast
2011-01-01
ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models
The Advantages of Hybrid 4DEnVar in the Context of the Forecast Sensitivity to Initial Conditions
NASA Astrophysics Data System (ADS)
Song, Hyo-Jong; Shin, Seoleun; Ha, Ji-Hyun; Lim, Sujeong
2017-11-01
Hybrid four-dimensional ensemble variational data assimilation (hybrid 4DEnVar) is a prospective successor to three-dimensional variational data assimilation (3DVar) in operational weather prediction centers currently developing a new weather prediction model and those that do not operate adjoint models. In experiments using real observations, hybrid 4DEnVar improved Northern Hemisphere (NH; 20°N-90°N) 500 hPa geopotential height forecasts up to 5 days in a NH summer month compared to 3DVar, with statistical significance. This result is verified against ERA-Interim through a Monte Carlo test. By a regression analysis, the sensitivity of 5 day forecast is associated with the quality of the initial condition. The increased analysis skill for midtropospheric midlatitude temperature and subtropical moisture has the most apparent effect on forecast skill in the NH including a typhoon prediction case. Through attributing the analysis improvements by hybrid 4DEnVar separately to the ensemble background error covariance (BEC), its four-dimensional (4-D) extension, and climatological BEC, it is revealed that the ensemble BEC contributes to the subtropical moisture analysis, whereas the 4-D extension does to the midtropospheric midlatitude temperature. This result implies that hourly wind-mass correlation in 6 h analysis window is required to extract the potential of hybrid 4DEnVar for the midlatitude temperature analysis to the maximum. However, the temporal ensemble correlation, in hourly time scale, between moisture and another variable is invalid so that it could not work for improving the hybrid 4DEnVar analysis.
Jongerling, Joran; Laurenceau, Jean-Philippe; Hamaker, Ellen L
2015-01-01
In this article we consider a multilevel first-order autoregressive [AR(1)] model with random intercepts, random autoregression, and random innovation variance (i.e., the level 1 residual variance). Including random innovation variance is an important extension of the multilevel AR(1) model for two reasons. First, between-person differences in innovation variance are important from a substantive point of view, in that they capture differences in sensitivity and/or exposure to unmeasured internal and external factors that influence the process. Second, using simulation methods we show that modeling the innovation variance as fixed across individuals, when it should be modeled as a random effect, leads to biased parameter estimates. Additionally, we use simulation methods to compare maximum likelihood estimation to Bayesian estimation of the multilevel AR(1) model and investigate the trade-off between the number of individuals and the number of time points. We provide an empirical illustration by applying the extended multilevel AR(1) model to daily positive affect ratings from 89 married women over the course of 42 consecutive days.
Model Identification of Integrated ARMA Processes
ERIC Educational Resources Information Center
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation.
Zhang, Xiangjun; Wu, Xiaolin
2008-06-01
The challenge of image interpolation is to preserve spatial details. We propose a soft-decision interpolation technique that estimates missing pixels in groups rather than one at a time. The new technique learns and adapts to varying scene structures using a 2-D piecewise autoregressive model. The model parameters are estimated in a moving window in the input low-resolution image. The pixel structure dictated by the learnt model is enforced by the soft-decision estimation process onto a block of pixels, including both observed and estimated. The result is equivalent to that of a high-order adaptive nonseparable 2-D interpolation filter. This new image interpolation approach preserves spatial coherence of interpolated images better than the existing methods, and it produces the best results so far over a wide range of scenes in both PSNR measure and subjective visual quality. Edges and textures are well preserved, and common interpolation artifacts (blurring, ringing, jaggies, zippering, etc.) are greatly reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanemoto, S.; Andoh, Y.; Sandoz, S.A.
1984-10-01
A method for evaluating reactor stability in boiling water reactors has been developed. The method is based on multivariate autoregressive (M-AR) modeling of steady-state neutron and process noise signals. In this method, two kinds of power spectral densities (PSDs) for the measured neutron signal and the corresponding noise source signal are separately identified by the M-AR modeling. The closed- and open-loop stability parameters are evaluated from these PSDs. The method is applied to actual plant noise data that were measured together with artificial perturbation test data. Stability parameters identified from noise data are compared to those from perturbation test data,more » and it is shown that both results are in good agreement. In addition to these stability estimations, driving noise sources for the neutron signal are evaluated by the M-AR modeling. Contributions from void, core flow, and pressure noise sources are quantitatively evaluated, and the void noise source is shown to be the most dominant.« less
Gas Chromatography Data Classification Based on Complex Coefficients of an Autoregressive Model
Zhao, Weixiang; Morgan, Joshua T.; Davis, Cristina E.
2008-01-01
This paper introduces autoregressive (AR) modeling as a novel method to classify outputs from gas chromatography (GC). The inverse Fourier transformation was applied to the original sensor data, and then an AR model was applied to transform data to generate AR model complex coefficients. This series of coefficients effectively contains a compressed version of all of the information in the original GC signal output. We applied this method to chromatograms resulting from proliferating bacteria species grown in culture. Three types of neural networks were used to classify the AR coefficients: backward propagating neural network (BPNN), radial basis function-principal component analysismore » (RBF-PCA) approach, and radial basis function-partial least squares regression (RBF-PLSR) approach. This exploratory study demonstrates the feasibility of using complex root coefficient patterns to distinguish various classes of experimental data, such as those from the different bacteria species. This cognition approach also proved to be robust and potentially useful for freeing us from time alignment of GC signals.« less
Levine, Matthew E; Albers, David J; Hripcsak, George
2016-01-01
Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.
NASA Astrophysics Data System (ADS)
Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.
2012-12-01
In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by non-stationarity either of the system input (climatic variability) and/or the complexity of catchment storage characteristics. The statistical model is also capable of reproducing short (event) and longer-term (inter-event) and wet and dry dynamical "hydrological states". These reflect the non-linear transport mechanisms of flow pathways induced by transient climatic and hydrological variables and modified by catchment characteristics. We conclude that MSARMs are a powerful tool to analyze the temporal dynamics of hydrological data, allowing for explicit integration of non-stationary, non-linear and non-Normal characteristics.
NASA Astrophysics Data System (ADS)
Scharnagl, Benedikt; Durner, Wolfgang
2013-04-01
Models are inherently imperfect because they simplify processes that are themselves imperfectly known and understood. Moreover, the input variables and parameters needed to run a model are typically subject to various sources of error. As a consequence of these imperfections, model predictions will always deviate from corresponding observations. In most applications in soil hydrology, these deviations are clearly not random but rather show a systematic structure. From a statistical point of view, this systematic mismatch may be a reason for concern because it violates one of the basic assumptions made in inverse parameter estimation: the assumption of independence of the residuals. But what are the consequences of simply ignoring the autocorrelation in the residuals, as it is current practice in soil hydrology? Are the parameter estimates still valid even though the statistical foundation they are based on is partially collapsed? Theory and practical experience from other fields of science have shown that violation of the independence assumption will result in overconfident uncertainty bounds and that in some cases it may lead to significantly different optimal parameter values. In our contribution, we present three soil hydrological case studies, in which the effect of autocorrelated residuals on the estimated parameters was investigated in detail. We explicitly accounted for autocorrelated residuals using a formal likelihood function that incorporates an autoregressive model. The inverse problem was posed in a Bayesian framework, and the posterior probability density function of the parameters was estimated using Markov chain Monte Carlo simulation. In contrast to many other studies in related fields of science, and quite surprisingly, we found that the first-order autoregressive model, often abbreviated as AR(1), did not work well in the soil hydrological setting. We showed that a second-order autoregressive, or AR(2), model performs much better in these applications, leading to parameter and uncertainty estimates that satisfy all the underlying statistical assumptions. For theoretical reasons, these estimates are deemed more reliable than those estimates based on the neglect of autocorrelation in the residuals. In compliance with theory and results reported in the literature, our results showed that parameter uncertainty bounds were substantially wider if autocorrelation in the residuals was explicitly accounted for, and also the optimal parameter vales were slightly different in this case. We argue that the autoregressive model presented here should be used as a matter of routine in inverse modeling of soil hydrological processes.
Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans.
Zhou, Lingling; Xia, Jing; Yu, Lijing; Wang, Ying; Shi, Yun; Cai, Shunxiang; Nie, Shaofa
2016-03-23
We previously proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual prevalence of human schistosomiasis in Yangxin County, using our ARIMA-NARNN model, thereby further certifying the reliability of our hybrid model. We used the ARIMA, NARNN and ARIMA-NARNN models to fit and forecast the annual prevalence of schistosomiasis. The modeling time range included was the annual prevalence from 1956 to 2008 while the testing time range included was from 2009 to 2012. The mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to measure the model performance. We reconstructed the hybrid model to forecast the annual prevalence from 2013 to 2016. The modeling and testing errors generated by the ARIMA-NARNN model were lower than those obtained from either the single ARIMA or NARNN models. The predicted annual prevalence from 2013 to 2016 demonstrated an initial decreasing trend, followed by an increase. The ARIMA-NARNN model can be well applied to analyze surveillance data for early warning systems for the control and elimination of schistosomiasis.
Drought Patterns Forecasting using an Auto-Regressive Logistic Model
NASA Astrophysics Data System (ADS)
del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.
2014-12-01
Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.
NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro
2004-04-01
Autoregressive conditional duration (ACD) processes, which have the potential to be applied to power law distributions of complex systems found in natural science, life science, and social science, are analyzed both numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests that its probability density function (PDF) has a power law tail. It is verified that the PDF of the ACD(1) has a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the random multiplicative process a relation between the model parameter and the power law exponent is theoretically derived. It is confirmed that the relation is valid from numerical simulations. An application of the ACD(1) to intervals between two successive transactions in a foreign currency market is shown.
Autoregressive-model-based missing value estimation for DNA microarray time series data.
Choong, Miew Keen; Charbit, Maurice; Yan, Hong
2009-01-01
Missing value estimation is important in DNA microarray data analysis. A number of algorithms have been developed to solve this problem, but they have several limitations. Most existing algorithms are not able to deal with the situation where a particular time point (column) of the data is missing entirely. In this paper, we present an autoregressive-model-based missing value estimation method (ARLSimpute) that takes into account the dynamic property of microarray temporal data and the local similarity structures in the data. ARLSimpute is especially effective for the situation where a particular time point contains many missing values or where the entire time point is missing. Experiment results suggest that our proposed algorithm is an accurate missing value estimator in comparison with other imputation methods on simulated as well as real microarray time series datasets.
Sato, Aki-Hiro
2004-04-01
Autoregressive conditional duration (ACD) processes, which have the potential to be applied to power law distributions of complex systems found in natural science, life science, and social science, are analyzed both numerically and theoretically. An ACD(1) process exhibits the singular second order moment, which suggests that its probability density function (PDF) has a power law tail. It is verified that the PDF of the ACD(1) has a power law tail with an arbitrary exponent depending on a model parameter. On the basis of theory of the random multiplicative process a relation between the model parameter and the power law exponent is theoretically derived. It is confirmed that the relation is valid from numerical simulations. An application of the ACD(1) to intervals between two successive transactions in a foreign currency market is shown.
Neonatal heart rate prediction.
Abdel-Rahman, Yumna; Jeremic, Aleksander; Tan, Kenneth
2009-01-01
Technological advances have caused a decrease in the number of infant deaths. Pre-term infants now have a substantially increased chance of survival. One of the mechanisms that is vital to saving the lives of these infants is continuous monitoring and early diagnosis. With continuous monitoring huge amounts of data are collected with so much information embedded in them. By using statistical analysis this information can be extracted and used to aid diagnosis and to understand development. In this study we have a large dataset containing over 180 pre-term infants whose heart rates were recorded over the length of their stay in the Neonatal Intensive Care Unit (NICU). We test two types of models, empirical bayesian and autoregressive moving average. We then attempt to predict future values. The autoregressive moving average model showed better results but required more computation.
Development of a Robust Identifier for NPPs Transients Combining ARIMA Model and EBP Algorithm
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-08-01
This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error backpropagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time series of the selected plant variables. In the third step, for identification the type of transients, the forecasted time series are fed to the modular identifier which has been developed using the latest advances of EBP learning algorithm. Bushehr nuclear power plant (BNPP) transients are probed to analyze the ability of the proposed identifier. Recognition of transient is based on similarity of its statistical properties to the reference one, rather than the values of input patterns. More robustness against noisy data and improvement balance between memorization and generalization are salient advantages of the proposed identifier. Reduction of false identification, sole dependency of identification on the sign of each output signal, selection of the plant variables for transients training independent of each other, and extendibility for identification of more transients without unfavorable effects are other merits of the proposed identifier.
Klingensmith, Jon D; Haggard, Asher; Fedewa, Russell J; Qiang, Beidi; Cummings, Kenneth; DeGrande, Sean; Vince, D Geoffrey; Elsharkawy, Hesham
2018-04-19
Spectral analysis of ultrasound radiofrequency backscatter has the potential to identify intercostal blood vessels during ultrasound-guided placement of paravertebral nerve blocks and intercostal nerve blocks. Autoregressive models were used for spectral estimation, and bandwidth, autoregressive order and region-of-interest size were evaluated. Eight spectral parameters were calculated and used to create random forests. An autoregressive order of 10, bandwidth of 6 dB and region-of-interest size of 1.0 mm resulted in the minimum out-of-bag error. An additional random forest, using these chosen values, was created from 70% of the data and evaluated independently from the remaining 30% of data. The random forest achieved a predictive accuracy of 92% and Youden's index of 0.85. These results suggest that spectral analysis of ultrasound radiofrequency backscatter has the potential to identify intercostal blood vessels. (jokling@siue.edu) © 2018 World Federation for Ultrasound in Medicine and Biology. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.
Kepler AutoRegressive Planet Search (KARPS)
NASA Astrophysics Data System (ADS)
Caceres, Gabriel
2018-01-01
One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Mizinski, Bartlomiej
2016-04-01
The HydroProg system has been elaborated in frame of the research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland and is steadily producing multimodel ensemble predictions of hydrograph in real time. Although there are six ensemble members available at present, the longest record of predictions and their statistics is available for two data-based models (uni- and multivariate autoregressive models). Thus, we consider 3-hour predictions of water levels, with lead times ranging from 15 to 180 minutes, computed every 15 minutes since August 2013 for the Nysa Klodzka basin (SW Poland) using the two approaches and their two-model ensemble. Since the launch of the HydroProg system there have been 12 high flow episodes, and the objective of this work is to present the performance of the two-model ensemble in the process of forecasting these events. For a sake of brevity, we limit our investigation to a single gauge located at the Nysa Klodzka river in the town of Klodzko, which is centrally located in the studied basin. We identified certain regular scenarios of how the models perform in predicting the high flows in Klodzko. At the initial phase of the high flow, well before the rising limb of hydrograph, the two-model ensemble is found to provide the most skilful prognoses of water levels. However, while forecasting the rising limb of hydrograph, either the two-model solution or the vector autoregressive model offers the best predictive performance. In addition, it is hypothesized that along with the development of the rising limb phase, the vector autoregression becomes the most skilful approach amongst the scrutinized ones. Our simple two-model exercise confirms that multimodel hydrologic ensemble predictions cannot be treated as universal solutions suitable for forecasting the entire high flow event, but their superior performance may hold only for certain phases of a high flow.
The Effects of Autocorrelation on the Curve-of-Factors Growth Model
ERIC Educational Resources Information Center
Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A.
2011-01-01
This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…
Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM
ERIC Educational Resources Information Center
Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman
2012-01-01
This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.
Circular Conditional Autoregressive Modeling of Vector Fields*
Modlin, Danny; Fuentes, Montse; Reich, Brian
2013-01-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components. PMID:24353452
Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less
Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process.
Komasi, Mehdi; Sharghi, Soroush
2016-01-01
Because of the importance of water resources management, the need for accurate modeling of the rainfall-runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall-runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall-runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.
Structural Equation Modeling of Multivariate Time Series
ERIC Educational Resources Information Center
du Toit, Stephen H. C.; Browne, Michael W.
2007-01-01
The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2003-01-01
Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)
Asumadu-Sarkodie, Samuel; Owusu, Phebe Asantewaa
2016-06-01
In this paper, the relationship between carbon dioxide and agriculture in Ghana was investigated by comparing a Vector Error Correction Model (VECM) and Autoregressive Distributed Lag (ARDL) Model. Ten study variables spanning from 1961 to 2012 were employed from the Food Agricultural Organization. Results from the study show that carbon dioxide emissions affect the percentage annual change of agricultural area, coarse grain production, cocoa bean production, fruit production, vegetable production, and the total livestock per hectare of the agricultural area. The vector error correction model and the autoregressive distributed lag model show evidence of a causal relationship between carbon dioxide emissions and agriculture; however, the relationship decreases periodically which may die over-time. All the endogenous variables except total primary vegetable production lead to carbon dioxide emissions, which may be due to poor agricultural practices to meet the growing food demand in Ghana. The autoregressive distributed lag bounds test shows evidence of a long-run equilibrium relationship between the percentage annual change of agricultural area, cocoa bean production, total livestock per hectare of agricultural area, total pulses production, total primary vegetable production, and carbon dioxide emissions. It is important to end hunger and ensure people have access to safe and nutritious food, especially the poor, orphans, pregnant women, and children under-5 years in order to reduce maternal and infant mortalities. Nevertheless, it is also important that the Government of Ghana institutes agricultural policies that focus on promoting a sustainable agriculture using environmental friendly agricultural practices. The study recommends an integration of climate change measures into Ghana's national strategies, policies and planning in order to strengthen the country's effort to achieving a sustainable environment.
Dahlin, Kyla M; Asner, Gregory P; Field, Christopher B
2012-01-01
Aboveground biomass (AGB) reflects multiple and often undetermined ecological and land-use processes, yet detailed landscape-level studies of AGB are uncommon due to the difficulty in making consistent measurements at ecologically relevant scales. Working in a protected mediterranean-type landscape (Jasper Ridge Biological Preserve, California, USA), we combined field measurements with remotely sensed data from the Carnegie Airborne Observatory's light detection and ranging (lidar) system to create a detailed AGB map. We then developed a predictive model using a maximum of 56 explanatory variables derived from geologic and historic-ownership maps, a digital elevation model, and geographic coordinates to evaluate possible controls over currently observed AGB patterns. We tested both ordinary least-squares regression (OLS) and autoregressive approaches. OLS explained 44% of the variation in AGB, and simultaneous autoregression with a 100-m neighborhood improved the fit to an r2 = 0.72, while reducing the number of significant predictor variables from 27 variables in the OLS model to 11 variables in the autoregressive model. We also compared the results from these approaches to a more typical field-derived data set; we randomly sampled 5% of the data 1000 times and used the same OLS approach each time. Environmental filters including incident solar radiation, substrate type, and topographic position were significant predictors of AGB in all models. Past ownership was a minor but significant predictor, despite the long history of conservation at the site. The weak predictive power of these environmental variables, and the significant improvement when spatial autocorrelation was incorporated, highlight the importance of land-use history, disturbance regime, and population dynamics as controllers of AGB.
Lavender, Jason M.; Utzinger, Linsey M.; Cao, Li; Wonderlich, Stephen A.; Engel, Scott G.; Mitchell, James E.; Crosby, Ross D.
2016-01-01
Although negative affect (NA) has been identified as a common trigger for bulimic behaviors, findings regarding NA following such behaviors have been mixed. This study examined reciprocal associations between NA and bulimic behaviors using real-time, naturalistic data. Participants were 133 women with DSM-IV bulimia nervosa (BN) who completed a two-week ecological momentary assessment (EMA) protocol in which they recorded bulimic behaviors and provided multiple daily ratings of NA. A multilevel autoregressive cross-lagged analysis was conducted to examine concurrent, first-order autoregressive, and prospective associations between NA, binge eating, and purging across the day. Results revealed positive concurrent associations between all variables across all time points, as well as numerous autoregressive associations. For prospective associations, higher NA predicted subsequent bulimic symptoms at multiple time points; conversely, binge eating predicted lower NA at multiple time points, and purging predicted higher NA at one time point. Several autoregressive and prospective associations were also found between binge eating and purging. This study used a novel approach to examine NA in relation to bulimic symptoms, contributing to the existing literature by directly examining the magnitude of the associations, examining differences in the associations across the day, and controlling for other associations in testing each effect in the model. These findings may have relevance for understanding the etiology and/or maintenance of bulimic symptoms, as well as potentially informing psychological interventions for BN. PMID:26692122
Reactive power planning under high penetration of wind energy using Benders decomposition
Xu, Yan; Wei, Yanli; Fang, Xin; ...
2015-11-05
This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less
Chromosome numbers of populations of three varieties of Bidens pilosa in Taiwan.
Huang, Ya-Lun; Kao, Wen-Yuan
2015-12-01
Hairy beggar-ticks (Bidens pilosa L.) is a common invasive plant in tropical and subtropical regions. The Flora of Taiwan listed three varieties of B. pilosa in Taiwan, var. minor, var. pilosa and var. radiata. Among the three varieties, var. radiata was the most recently, in 1970s, introduced into Taiwan. However, after its introduction into Taiwan, var. radiata has become dominant over the other two varieties and is considered a serious invasive plant in lowland of Taiwan. Our previous study showed that var. radiata is self-incompatible and the other two varieties are self-fertile. Could it be possible that different chromosome numbers contribute to the different breeding systems of these three varieties? In addition, the heterogeneities of traits of var. radiata were found higher than those of var. minor and var. pilosa. Is the phenomenon resulting from the hybridization between var. radiata with other varieties? We counted chromosome numbers of populations of these three varieties distributed in Taiwan and conducted hand pollination treatment between var. radiata (as pollen receiver) and var. minor or var. pilosa (as pollen donor) to provide answer for the aforementioned questions. No difference was found in chromosome numbers among populations of the same variety. Forty-eight chromosomes (2n = 48) were counted for var. radiata while 72 (2n = 72) chromosomes for var. minor and var. pilosa. Therefore, var. radiata is tetraploid and var. minor and var. pilosa are hexaploid. No successful hybridization was found between var. radiata and var. minor or between var. radiata and var. pilosa. This study provided the evidence that the invasive plant (B. pilosa var. radiata) has different chromosome numbers from the other two varieties and is unlikely to hybridize with the other two varieties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Mohammad; Salloum, Maher; Lee, Jina
2017-07-10
KARMA4 is a C++ library for autoregressive moving average (ARMA) modeling and forecasting of time-series data while incorporating both process and observation error. KARMA4 is designed for fitting and forecasting of time-series data for predictive purposes.
Mofiz, Ehtesham; Holt, Deborah C; Seemann, Torsten; Currie, Bart J; Fischer, Katja; Papenfuss, Anthony T
2016-06-02
The scabies mite, Sarcoptes scabiei, is a parasitic arachnid and cause of the infectious skin disease scabies in humans and mange in other animal species. Scabies infections are a major health problem, particularly in remote Indigenous communities in Australia, where secondary group A streptococcal and Staphylococcus aureus infections of scabies sores are thought to drive the high rate of rheumatic heart disease and chronic kidney disease. We sequenced the genome of two samples of Sarcoptes scabiei var. hominis obtained from unrelated patients with crusted scabies located in different parts of northern Australia using the Illumina HiSeq. We also sequenced samples of Sarcoptes scabiei var. suis from a pig model. Because of the small size of the scabies mite, these data are derived from pools of thousands of mites and are metagenomic, including host and microbiome DNA. We performed cleaning and de novo assembly and present Sarcoptes scabiei var. hominis and var. suis draft reference genomes. We have constructed a preliminary annotation of this reference comprising 13,226 putative coding sequences based on sequence similarity to known proteins. We have developed extensive genomic resources for the scabies mite, including reference genomes and a preliminary annotation.
Chemopreventive and Anticancer Activities of Allium victorialis var. platyphyllum Extracts
Kim, Hyun-Jeong; Park, Min Jeong; Park, Hee-Juhn; Chung, Won-Yoon; Kim, Ki-Rim; Park, Kwang-Kyun
2014-01-01
Background: Allium victorialis var. platyphyllum is an edible perennial herb and has been used as a vegetable or as a Korean traditional medicine. Allium species have received much attention owing to their diverse pharmacological properties, including antioxidative, anti-inflammatory, and anticancer activities. However, A. victorialis var. platyphyllum needs more study. Methods: The chemopreventive potential of A. victorialis var. platyphyllum methanol extracts was examined by measuring 12-O-tetra-decanoylphorbol 13-acetate (TPA)-induced superoxide anion production in the differentiated HL-60 cells, TPA-induced mouse ear edema, and Ames/Salmonella mutagenicity. The apoptosis-inducing capabilities of the extracts were evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, 4’,6-diamidino-2-phenylindole staining, and the DNA fragmentation assay in human colon cancer HT-29 cells. Antimetastatic activities of the extracts were also investigated in an experimental mouse lung metastasis model. Results: The methanol extracts of A. victorialis var. platyphyllum rhizome (AVP-R) and A. victorialis var. platyphyllum stem (AVP-S) dose-dependently inhibited the TPA-induced generation of superoxide anion in HL-60 cells and TPA-induced ear edema in mice, as well as 7,12-dimethylbenz[a]anthracene (DMBA) and tert-butyl hydroperoxide (t-BOOH) -induced bacterial mutagenesis. AVP-R and AVP-S reduced cell viability in a dose-related manner and induced apoptotic morphological changes and internucleosomal DNA fragmentation in HT-29 cells. In the experimental mouse lung metastasis model, the formation of tumor nodules in lung tissue was significantly inhibited by the treatment of the extracts. Conclusions: AVP-R and AVP-S possess antioxidative, anti-inflammatory, antimutagenic, proapoptotic, and antimetastatic activities. Therefore, these extracts can serve as a beneficial supplement for the prevention and treatment of cancer. PMID:25337587
Estimating linear temporal trends from aggregated environmental monitoring data
Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.
2017-01-01
Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.
NASA Astrophysics Data System (ADS)
Zhang, Ying; Bi, Peng; Hiller, Janet
2008-01-01
This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.
Wang, K W; Deng, C; Li, J P; Zhang, Y Y; Li, X Y; Wu, M C
2017-04-01
Tuberculosis (TB) affects people globally and is being reconsidered as a serious public health problem in China. Reliable forecasting is useful for the prevention and control of TB. This study proposes a hybrid model combining autoregressive integrated moving average (ARIMA) with a nonlinear autoregressive (NAR) neural network for forecasting the incidence of TB from January 2007 to March 2016. Prediction performance was compared between the hybrid model and the ARIMA model. The best-fit hybrid model was combined with an ARIMA (3,1,0) × (0,1,1)12 and NAR neural network with four delays and 12 neurons in the hidden layer. The ARIMA-NAR hybrid model, which exhibited lower mean square error, mean absolute error, and mean absolute percentage error of 0·2209, 0·1373, and 0·0406, respectively, in the modelling performance, could produce more accurate forecasting of TB incidence compared to the ARIMA model. This study shows that developing and applying the ARIMA-NAR hybrid model is an effective method to fit the linear and nonlinear patterns of time-series data, and this model could be helpful in the prevention and control of TB.
Phylogeography of Pinus subsection Australes in the Caribbean Basin
Jardón-Barbolla, Lev; Delgado-Valerio, Patricia; Geada-López, Gretel; Vázquez-Lobo, Alejandra; Piñero, Daniel
2011-01-01
Background and Aims Four species of Pinus subsection Australes occur in the Caribbean Basin: P. caribaea, P. cubensis, P. maestrensis and P. occidentalis. This study analyses the phylogeography of these species to assess possible colonization events from Central America to the islands and subsequent population expansions during glacial periods driven by both drier climate and larger emerged land areas. Methods Allele size data were obtained for plastid microsatellites for 314 individuals from 24 populations, covering the distribution range of subsection Australes in the Caribbean Basin. Key Results In total, 113 plastid haplotypes were identified. The highest genetic diversity was found in populations of P. caribaea. Overall, Caribbean Basin populations fit the isolation by distance model. Significant phylogeographical structure was found (RST = 0·671 > permuted RST = 0·101; P < 0·0001). The haplotype network and a Bayesian analysis of population structure (BAPS) indicated different Central American origins for P. caribaea var. bahamensis and P. caribaea var. caribaea plastids, with Central America populations in northern and south-eastern groups. Sudden expansion times for BAPS clusters were close to three glacial maxima. Conclusions Central America contains ancestral plastid haplotypes. Population expansion has played a major role in the distribution of genetic diversity in P. caribaea var. hondurensis. Two colonization events gave rise to the P. caribaea var. bahamensis and P. caribaea var. caribaea lineages. Plastid variation in the eastern species (P. cubensis, P. maestrensis and P. occidentalis) evolved independently from that in P. caribaea var. caribaea. Incomplete lineage sorting between P. cubensis and P. maestrensis is apparent. Inferred expansion times for P. caribaea var. bahamensis and for the eastern lineages correspond to glacial maxima, whereas those for P. caribaea var. hondurensis correspond to the beginning of the temperature decrease that led to Marine Isotope Stage 8. PMID:21118838
Spatio-temporal wildland arson crime functions
David T. Butry; Jeffrey P. Prestemon
2005-01-01
Wildland arson creates damages to structures and timber and affects the health and safety of people living in rural and wildland urban interface areas. We develop a model that incorporates temporal autocorrelations and spatial correlations in wildland arson ignitions in Florida. A Poisson autoregressive model of order p, or PAR(p)...
On the Nature of SEM Estimates of ARMA Parameters.
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.
2002-01-01
Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…
The Mathematical Analysis of Style: A Correlation-Based Approach.
ERIC Educational Resources Information Center
Oppenheim, Rosa
1988-01-01
Examines mathematical models of style analysis, focusing on the pattern in which literary characteristics occur. Describes an autoregressive integrated moving average model (ARIMA) for predicting sentence length in different works by the same author and comparable works by different authors. This technique is valuable in characterizing stylistic…
Modelling of cayenne production in Central Java using ARIMA-GARCH
NASA Astrophysics Data System (ADS)
Tarno; Sudarno; Ispriyanti, Dwi; Suparti
2018-05-01
Some regencies/cities in Central Java Province are known as producers of horticultural crops in Indonesia, for example, Brebes which is the largest area of shallot producer in Central Java, while the others, such as Cilacap and Wonosobo are the areas of cayenne commodities production. Currently, cayenne is a strategic commodity and it has broad impact to Indonesian economic development. Modelling the cayenne production is necessary to predict about the commodity to meet the need for society. The needs fulfillment of society will affect stability of the concerned commodity price. Based on the reality, the decreasing of cayenne production will cause the increasing of society’s basic needs price, and finally it will affect the inflation level at that area. This research focused on autoregressive integrated moving average (ARIMA) modelling by considering the effect of autoregressive conditional heteroscedasticity (ARCH) to study about cayenne production in Central Java. The result of empirical study of ARIMA-GARCH modelling for cayenne production in Central Java from January 2003 to November 2015 is ARIMA([1,3],0,0)-GARCH(1,0) as the best model.
A time series model: First-order integer-valued autoregressive (INAR(1))
NASA Astrophysics Data System (ADS)
Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.
2017-07-01
Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.
Landsheer, Johannes A; Oud, Johan H L; van Dijkum, Cor
2008-01-01
Although it is well known that during adolescence the delinquent involvement of females is consistently less when compared to male involvement, it remains an important question whether the development of delinquency has a similar trajectory for both sexes. The main hypothesis tested is whether sex differences in delinquency, specifically growth, peak age, and decline, are constant. An autoregression model in continuous time, implemented as a structural equation model, is used for the description of the development of delinquency in males and females. The data are collected in an overlapping cohort design, and both within-person and between-persons data are integrated into a single model. The result shows that the involvement with delinquency over time is different for males and females. The main difference increases up to the age of 16, and decreases thereafter. The model indicates that both sexes reach the maximum in delinquency at the same age. It is concluded that males and females differ both in their start level at age 12 and in the amount of change with age.
Taghvaei, Sajjad; Jahanandish, Mohammad Hasan; Kosuge, Kazuhiro
2017-01-01
Population aging of the societies requires providing the elderly with safe and dependable assistive technologies in daily life activities. Improving the fall detection algorithms can play a major role in achieving this goal. This article proposes a real-time fall prediction algorithm based on the acquired visual data of a user with walking assistive system from a depth sensor. In the lack of a coupled dynamic model of the human and the assistive walker a hybrid "system identification-machine learning" approach is used. An autoregressive-moving-average (ARMA) model is fitted on the time-series walking data to forecast the upcoming states, and a hidden Markov model (HMM) based classifier is built on the top of the ARMA model to predict falling in the upcoming time frames. The performance of the algorithm is evaluated through experiments with four subjects including an experienced physiotherapist while using a walker robot in five different falling scenarios; namely, fall forward, fall down, fall back, fall left, and fall right. The algorithm successfully predicts the fall with a rate of 84.72%.
Multifractal Value at Risk model
NASA Astrophysics Data System (ADS)
Lee, Hojin; Song, Jae Wook; Chang, Woojin
2016-06-01
In this paper new Value at Risk (VaR) model is proposed and investigated. We consider the multifractal property of financial time series and develop a multifractal Value at Risk (MFVaR). MFVaR introduced in this paper is analytically tractable and not based on simulation. Empirical study showed that MFVaR can provide the more stable and accurate forecasting performance in volatile financial markets where large loss can be incurred. This implies that our multifractal VaR works well for the risk measurement of extreme credit events.
ERIC Educational Resources Information Center
Moore, Corey L.; Wang, Ningning; Washington, Janique Tynez
2017-01-01
Purpose: This study assessed and demonstrated the efficacy of two select empirical forecast models (i.e., autoregressive integrated moving average [ARIMA] model vs. grey model [GM]) in accurately predicting state vocational rehabilitation agency (SVRA) rehabilitation success rate trends across six different racial and ethnic population cohorts…
On the Trajectories of the Predetermined ALT Model: What Are We Really Modeling?
ERIC Educational Resources Information Center
Jongerling, Joran; Hamaker, Ellen L.
2011-01-01
This article shows that the mean and covariance structure of the predetermined autoregressive latent trajectory (ALT) model are very flexible. As a result, the shape of the modeled growth curve can be quite different from what one might expect at first glance. This is illustrated with several numerical examples that show that, for example, a…
Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling.
Perdikaris, P; Raissi, M; Damianou, A; Lawrence, N D; Karniadakis, G E
2017-02-01
Multi-fidelity modelling enables accurate inference of quantities of interest by synergistically combining realizations of low-cost/low-fidelity models with a small set of high-fidelity observations. This is particularly effective when the low- and high-fidelity models exhibit strong correlations, and can lead to significant computational gains over approaches that solely rely on high-fidelity models. However, in many cases of practical interest, low-fidelity models can only be well correlated to their high-fidelity counterparts for a specific range of input parameters, and potentially return wrong trends and erroneous predictions if probed outside of their validity regime. Here we put forth a probabilistic framework based on Gaussian process regression and nonlinear autoregressive schemes that is capable of learning complex nonlinear and space-dependent cross-correlations between models of variable fidelity, and can effectively safeguard against low-fidelity models that provide wrong trends. This introduces a new class of multi-fidelity information fusion algorithms that provide a fundamental extension to the existing linear autoregressive methodologies, while still maintaining the same algorithmic complexity and overall computational cost. The performance of the proposed methods is tested in several benchmark problems involving both synthetic and real multi-fidelity datasets from computational fluid dynamics simulations.
Modeling time-series count data: the unique challenges facing political communication studies.
Fogarty, Brian J; Monogan, James E
2014-05-01
This paper demonstrates the importance of proper model specification when analyzing time-series count data in political communication studies. It is common for scholars of media and politics to investigate counts of coverage of an issue as it evolves over time. Many scholars rightly consider the issues of time dependence and dynamic causality to be the most important when crafting a model. However, to ignore the count features of the outcome variable overlooks an important feature of the data. This is particularly the case when modeling data with a low number of counts. In this paper, we argue that the Poisson autoregressive model (Brandt and Williams, 2001) accurately meets the needs of many media studies. We replicate the analyses of Flemming et al. (1997), Peake and Eshbaugh-Soha (2008), and Ura (2009) and demonstrate that models missing some of the assumptions of the Poisson autoregressive model often yield invalid inferences. We also demonstrate that the effect of any of these models can be illustrated dynamically with estimates of uncertainty through a simulation procedure. The paper concludes with implications of these findings for the practical researcher. Copyright © 2013 Elsevier Inc. All rights reserved.
A univariate model of river water nitrate time series
NASA Astrophysics Data System (ADS)
Worrall, F.; Burt, T. P.
1999-01-01
Four time series were taken from three catchments in the North and South of England. The sites chosen included two in predominantly agricultural catchments, one at the tidal limit and one downstream of a sewage treatment works. A time series model was constructed for each of these series as a means of decomposing the elements controlling river water nitrate concentrations and to assess whether this approach could provide a simple management tool for protecting water abstractions. Autoregressive (AR) modelling of the detrended and deseasoned time series showed a "memory effect". This memory effect expressed itself as an increase in the winter-summer difference in nitrate levels that was dependent upon the nitrate concentration 12 or 6 months previously. Autoregressive moving average (ARMA) modelling showed that one of the series contained seasonal, non-stationary elements that appeared as an increasing trend in the winter-summer difference. The ARMA model was used to predict nitrate levels and predictions were tested against data held back from the model construction process - predictions gave average percentage errors of less than 10%. Empirical modelling can therefore provide a simple, efficient method for constructing management models for downstream water abstraction.
Forecasting Daily Volume and Acuity of Patients in the Emergency Department.
Calegari, Rafael; Fogliatto, Flavio S; Lucini, Filipe R; Neyeloff, Jeruza; Kuchenbecker, Ricardo S; Schaan, Beatriz D
2016-01-01
This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification.
Forecasting Daily Volume and Acuity of Patients in the Emergency Department
Fogliatto, Flavio S.; Neyeloff, Jeruza; Kuchenbecker, Ricardo S.; Schaan, Beatriz D.
2016-01-01
This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification. PMID:27725842
Stochastic Price Models and Optimal Tree Cutting: Results for Loblolly Pine
Robert G. Haight; Thomas P. Holmes
1991-01-01
An empirical investigation of stumpage price models and optimal harvest policies is conducted for loblolly pine plantations in the southeastern United States. The stationarity of monthly and quarterly series of sawtimber prices is analyzed using a unit root test. The statistical evidence supports stationary autoregressive models for the monthly series and for the...
Latent Transition Analysis of Pre-Service Teachers' Efficacy in Mathematics and Science
ERIC Educational Resources Information Center
Ward, Elizabeth Kennedy
2009-01-01
This study modeled changes in pre-service teacher efficacy in mathematics and science over the course of the final year of teacher preparation using latent transition analysis (LTA), a longitudinal form of analysis that builds on two modeling traditions (latent class analysis (LCA) and auto-regressive modeling). Data were collected using the…
Eastin, Matthew D.; Delmelle, Eric; Casas, Irene; Wexler, Joshua; Self, Cameron
2014-01-01
Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors—all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C—the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts. PMID:24957546
Suzuki, Kengo; Mitra, Sharbanee; Iwata, Osamu; Ishikawa, Takahiro; Kato, Sueo; Yamada, Koji
2015-01-01
Euglena gracilis is a microalgae used as a model organism. Recently, mass cultivation of this species has been achieved for industrial applications. The genus Euglena includes more than 200 species that share common useful features, but the potential industrial applications of other Euglena species have not been evaluated. Thus, we conducted a pilot screening study to identify other species that proliferate at a sufficiently rapid rate to be used for mass cultivation; we found that Euglena anabaena var. minor had a rapid growth rate. In addition, its cells accumulated more than 40% weight of carbohydrate, most of which is considered to be a euglenoid specific type of beta-1-3-glucan, paramylon. Carbohydrate is stored in E. anabaena var. minor cells during normal culture, whereas E. gracilis requires nitrogen limitation to facilitate paramylon accumulation. These results suggest the potential industrial application of E. anabaena var. minor.
NASA Astrophysics Data System (ADS)
Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy
2014-10-01
The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.
NASA Astrophysics Data System (ADS)
Soeryana, E.; Fadhlina, N.; Sukono; Rusyaman, E.; Supian, S.
2017-01-01
Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on logarithmic utility function. Non constant mean analysed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analysed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyse some Islamic stocks in Indonesia. The expected result is to get the proportion of investment in each Islamic stock analysed.
NASA Astrophysics Data System (ADS)
Soeryana, Endang; Halim, Nurfadhlina Bt Abdul; Sukono, Rusyaman, Endang; Supian, Sudradjat
2017-03-01
Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on the Negative Exponential Utility Function. Non constant mean analyzed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analyzed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyze some stocks in Indonesia. The expected result is to get the proportion of investment in each stock analyzed
Choi, Eunsil
2016-06-01
Although many empirical findings support associations between marital satisfaction and depressive symptoms, gaps remain in our understanding of the magnitude and direction of the associations between marital satisfaction and depressive symptoms as well as the associations in a collectivistic culture. The present study examined autoregressive cross-lagged associations between marital satisfaction and maternal depressive symptoms across a 3-year investigation in a sample of Korean mothers transitioning to parenthood. The sample consisted of 2,078 mothers in the Panel Study of Korean Children. The mothers reported marital satisfaction and maternal depressive symptoms annually for 3 years. The results of an autoregressive cross-lagged model revealed bidirectional associations between marital satisfaction and maternal depressive symptoms. The findings provide evidence of an interactional model of depression in a sample of Korean mothers. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Multifractality and value-at-risk forecasting of exchange rates
NASA Astrophysics Data System (ADS)
Batten, Jonathan A.; Kinateder, Harald; Wagner, Niklas
2014-05-01
This paper addresses market risk prediction for high frequency foreign exchange rates under nonlinear risk scaling behaviour. We use a modified version of the multifractal model of asset returns (MMAR) where trading time is represented by the series of volume ticks. Our dataset consists of 138,418 5-min round-the-clock observations of EUR/USD spot quotes and trading ticks during the period January 5, 2006 to December 31, 2007. Considering fat-tails, long-range dependence as well as scale inconsistency with the MMAR, we derive out-of-sample value-at-risk (VaR) forecasts and compare our approach to historical simulation as well as a benchmark GARCH(1,1) location-scale VaR model. Our findings underline that the multifractal properties in EUR/USD returns in fact have notable risk management implications. The MMAR approach is a parsimonious model which produces admissible VaR forecasts at the 12-h forecast horizon. For the daily horizon, the MMAR outperforms both alternatives based on conditional as well as unconditional coverage statistics.
Küpeli Akkol, Esra; Bahadır Acıkara, Ozlem; Süntar, Ipek; Ergene, Burçin; Saltan Çitoğlu, Gülçin
2012-03-27
Scorzonera species are mainly used against inflammation and to relieve pain in Turkish traditional medicine. Therefore, we aimed to assess in vivo anti-inflammatory and antinociceptive activities of the aerial part and root extracts of Scorzonera acuminata, Scorzonera cana var. alpina, Scorzonera cana var. jacquiniana, Scorzonera cana var. radicosa, Scorzonera cinerea, Scorzonera eriophora, Scorzonera incisa, Scorzonera laciniata ssp. laciniata, Scorzonera parviflora and Scorzonera sublanata. For the anti-inflammatory activity evaluation carrageenan, PGE(2) and serotonin-induced hind paw edema and 12-O-tetradecanoyl-13-acetate (TPA)-induced mouse ear edema models were used. p-Benzoquinone-induced abdominal constriction test was employed in mice for the assessment of antinociceptive activity. Furthermore chemical composition of the tested extracts was investigated qualitatively and quantitatively by using RP-HPLC method. Some phenolic acids and flavonoids were used as standards. Extracts prepared from the aerial parts of Scorzonera cana var. jacquiniana, Scorzonera cinerea, Scorzonera eriophora, Scorzonera incisa and Scorzonera parviflora showed significant inhibitory effect on carrageenan and PGE(2)-induced hind paw edema model as well as on p-benzoquinone-induced abdominal constriction test. The extracts did not show any remarkable activity on serotonin-induced hind paw edema and TPA-induced mouse ear edema models. Chlorogenic acid was detected as major compounds in all the species investigated. Additionally, among the tested flavonoids, luteolin-7-glucoside, hyperoside and rutin were found to be in different amounts in Scorzonera species. The experimental data revealed that Scorzonera cana var. jacquiniana, Scorzonera cinerea, Scorzonera eriophora, Scorzonera incisa and Scorzonera parviflora possess significant anti-inflammatory and antinociceptive activity. It has been suggested that flavonoids and chlorogenic acid are partly responsible for mentioned activities of Scorzonera species. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies
NASA Astrophysics Data System (ADS)
Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai
2010-05-01
Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part II: seasonal predictability. J. Climate, 2503-2518, 2008. Ionita, M., G. Lohmann, and N. Rimbu, Prediction of spring Elbe river discharge based on stable teleconnections with global temperature and precipitation. J. Climate. 6215-6226, 2008.
Dry Heat Inactivation of Bacillus subtilis var. niger Spores as a Function of Relative Humidity
Brannen, J. P.; Garst, D. M.
1972-01-01
Dry heat sterilization of Bacillus subtilis var. niger spores at 105 C is enhanced in the relative humidity range 0.03 to 0.2%. D-values of 115 and 125 C are predicted by a kinetic model with parameters set from 105 C data. These predictions are compared to observations. Images PMID:4625341
NASA Astrophysics Data System (ADS)
Liu, Xiangli; Cheng, Siwei; Wang, Shouyang; Hong, Yongmiao; Li, Yi
2008-02-01
This study employs a parametric approach based on TGARCH and GARCH models to estimate the VaR of the copper futures market and spot market in China. Considering the short selling mechanism in the futures market, the paper introduces two new notions: upside VaR and extreme upside risk spillover. And downside VaR and upside VaR are examined by using the above approach. Also, we use Kupiec’s [P.H. Kupiec, Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives 3 (1995) 73-84] backtest to test the power of our approaches. In addition, we investigate information spillover effects between the futures market and the spot market by employing a linear Granger causality test, and Granger causality tests in mean, volatility and risk respectively. Moreover, we also investigate the relationship between the futures market and the spot market by using a test based on a kernel function. Empirical results indicate that there exist significant two-way spillovers between the futures market and the spot market, and the spillovers from the futures market to the spot market are much more striking.
Xiloyannis, Michele; Gavriel, Constantinos; Thomik, Andreas A C; Faisal, A Aldo
2017-10-01
Matching the dexterity, versatility, and robustness of the human hand is still an unachieved goal in bionics, robotics, and neural engineering. A major limitation for hand prosthetics lies in the challenges of reliably decoding user intention from muscle signals when controlling complex robotic hands. Most of the commercially available prosthetic hands use muscle-related signals to decode a finite number of predefined motions and some offer proportional control of open/close movements of the whole hand. Here, in contrast, we aim to offer users flexible control of individual joints of their artificial hand. We propose a novel framework for decoding neural information that enables a user to independently control 11 joints of the hand in a continuous manner-much like we control our natural hands. Toward this end, we instructed six able-bodied subjects to perform everyday object manipulation tasks combining both dynamic, free movements (e.g., grasping) and isometric force tasks (e.g., squeezing). We recorded the electromyographic and mechanomyographic activities of five extrinsic muscles of the hand in the forearm, while simultaneously monitoring 11 joints of hand and fingers using a sensorized data glove that tracked the joints of the hand. Instead of learning just a direct mapping from current muscle activity to intended hand movement, we formulated a novel autoregressive approach that combines the context of previous hand movements with instantaneous muscle activity to predict future hand movements. Specifically, we evaluated a linear vector autoregressive moving average model with exogenous inputs and a novel Gaussian process ( ) autoregressive framework to learn the continuous mapping from hand joint dynamics and muscle activity to decode intended hand movement. Our approach achieves high levels of performance (RMSE of 8°/s and ). Crucially, we use a small set of sensors that allows us to control a larger set of independently actuated degrees of freedom of a hand. This novel undersensored control is enabled through the combination of nonlinear autoregressive continuous mapping between muscle activity and joint angles. The system evaluates the muscle signals in the context of previous natural hand movements. This enables us to resolve ambiguities in situations, where muscle signals alone cannot determine the correct action as we evaluate the muscle signals in their context of natural hand movements. autoregression is a particularly powerful approach which makes not only a prediction based on the context but also represents the associated uncertainty of its predictions, thus enabling the novel notion of risk-based control in neuroprosthetics. Our results suggest that autoregressive approaches with exogenous inputs lend themselves for natural, intuitive, and continuous control in neurotechnology, with the particular focus on prosthetic restoration of natural limb function, where high dexterity is required for complex movements.
Real-time processing of radar return on a parallel computer
NASA Technical Reports Server (NTRS)
Aalfs, David D.
1992-01-01
NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.
Fuzzy neural network technique for system state forecasting.
Li, Dezhi; Wang, Wilson; Ismail, Fathy
2013-10-01
In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.
Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans
Zhou, Lingling; Xia, Jing; Yu, Lijing; Wang, Ying; Shi, Yun; Cai, Shunxiang; Nie, Shaofa
2016-01-01
Background: We previously proposed a hybrid model combining both the autoregressive integrated moving average (ARIMA) and the nonlinear autoregressive neural network (NARNN) models in forecasting schistosomiasis. Our purpose in the current study was to forecast the annual prevalence of human schistosomiasis in Yangxin County, using our ARIMA-NARNN model, thereby further certifying the reliability of our hybrid model. Methods: We used the ARIMA, NARNN and ARIMA-NARNN models to fit and forecast the annual prevalence of schistosomiasis. The modeling time range included was the annual prevalence from 1956 to 2008 while the testing time range included was from 2009 to 2012. The mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were used to measure the model performance. We reconstructed the hybrid model to forecast the annual prevalence from 2013 to 2016. Results: The modeling and testing errors generated by the ARIMA-NARNN model were lower than those obtained from either the single ARIMA or NARNN models. The predicted annual prevalence from 2013 to 2016 demonstrated an initial decreasing trend, followed by an increase. Conclusions: The ARIMA-NARNN model can be well applied to analyze surveillance data for early warning systems for the control and elimination of schistosomiasis. PMID:27023573
Lavender, Jason M; Utzinger, Linsey M; Cao, Li; Wonderlich, Stephen A; Engel, Scott G; Mitchell, James E; Crosby, Ross D
2016-04-01
Although negative affect (NA) has been identified as a common trigger for bulimic behaviors, findings regarding NA following such behaviors have been mixed. This study examined reciprocal associations between NA and bulimic behaviors using real-time, naturalistic data. Participants were 133 women with bulimia nervosa (BN) according to the 4th edition of the Diagnostic and Statistical Manual of Mental Disorders who completed a 2-week ecological momentary assessment protocol in which they recorded bulimic behaviors and provided multiple daily ratings of NA. A multilevel autoregressive cross-lagged analysis was conducted to examine concurrent, first-order autoregressive, and prospective associations between NA, binge eating, and purging across the day. Results revealed positive concurrent associations between all variables across all time points, as well as numerous autoregressive associations. For prospective associations, higher NA predicted subsequent bulimic symptoms at multiple time points; conversely, binge eating predicted lower NA at multiple time points, and purging predicted higher NA at 1 time point. Several autoregressive and prospective associations were also found between binge eating and purging. This study used a novel approach to examine NA in relation to bulimic symptoms, contributing to the existing literature by directly examining the magnitude of the associations, examining differences in the associations across the day, and controlling for other associations in testing each effect in the model. These findings may have relevance for understanding the etiology and/or maintenance of bulimic symptoms, as well as potentially informing psychological interventions for BN. (c) 2016 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Sudipta; Nelson, Austin; Hoke, Anderson
2016-12-12
Traditional testing methods fall short in evaluating interactions between multiple smart inverters providing advanced grid support functions due to the fact that such interactions largely depend on their placements on the electric distribution systems with impedances between them. Even though significant concerns have been raised by the utilities on the effects of such interactions, little effort has been made to evaluate them. In this paper, power hardware-in-the-loop (PHIL) based testing was utilized to evaluate autonomous volt-var operations of multiple smart photovoltaic (PV) inverters connected to a simple distribution feeder model. The results provided in this paper show that depending onmore » volt-var control (VVC) parameters and grid parameters, interaction between inverters and between the inverter and the grid is possible in some extreme cases with very high VVC slopes, fast response times and large VVC response delays.« less
Population structuring of multi-copy, antigen-encoding genes in Plasmodium falciparum
Artzy-Randrup, Yael; Rorick, Mary M; Day, Karen; Chen, Donald; Dobson, Andrew P; Pascual, Mercedes
2012-01-01
The coexistence of multiple independently circulating strains in pathogen populations that undergo sexual recombination is a central question of epidemiology with profound implications for control. An agent-based model is developed that extends earlier ‘strain theory’ by addressing the var gene family of Plasmodium falciparum. The model explicitly considers the extensive diversity of multi-copy genes that undergo antigenic variation via sequential, mutually exclusive expression. It tracks the dynamics of all unique var repertoires in a population of hosts, and shows that even under high levels of sexual recombination, strain competition mediated through cross-immunity structures the parasite population into a subset of coexisting dominant repertoires of var genes whose degree of antigenic overlap depends on transmission intensity. Empirical comparison of patterns of genetic variation at antigenic and neutral sites supports this role for immune selection in structuring parasite diversity. DOI: http://dx.doi.org/10.7554/eLife.00093.001 PMID:23251784
An INAR(1) Negative Multinomial Regression Model for Longitudinal Count Data.
ERIC Educational Resources Information Center
Bockenholt, Ulf
1999-01-01
Discusses a regression model for the analysis of longitudinal count data in a panel study by adapting an integer-valued first-order autoregressive (INAR(1)) Poisson process to represent time-dependent correlation between counts. Derives a new negative multinomial distribution by combining INAR(1) representation with a random effects approach.…
Robust Spatial Autoregressive Modeling for Hardwood Log Inspection
Dongping Zhu; A.A. Beex
1994-01-01
We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...
On the Feed-back Mechanism of Chinese Stock Markets
NASA Astrophysics Data System (ADS)
Lu, Shu Quan; Ito, Takao; Zhang, Jianbo
Feed-back models in the stock markets research imply an adjustment process toward investors' expectation for current information and past experiences. Error-correction and cointegration are often used to evaluate the long-run relation. The Efficient Capital Market Hypothesis, which had ignored the effect of the accumulation of information, cannot explain some anomalies such as bubbles and partial predictability in the stock markets. In order to investigate the feed-back mechanism and to determine an effective model, we use daily data of the stock index of two Chinese stock markets with the expectational model, which is one kind of geometric lag models. Tests and estimations of error-correction show that long-run equilibrium seems to be seldom achieved in Chinese stock markets. Our result clearly shows the common coefficient of expectations and fourth-order autoregressive disturbance exist in the two Chinese stock markets. Furthermore, we find the same coefficient of expectations has an autoregressive effect on disturbances in the two Chinese stock markets. Therefore the presence of such feed-back is also supported in Chinese stock markets.
Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models
Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel
2016-01-01
Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.
Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam
2014-07-01
This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain.
Barba, Lida; Rodríguez, Nibaldo
2017-01-01
Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT.
A Novel Multilevel-SVD Method to Improve Multistep Ahead Forecasting in Traffic Accidents Domain
Rodríguez, Nibaldo
2017-01-01
Here is proposed a novel method for decomposing a nonstationary time series in components of low and high frequency. The method is based on Multilevel Singular Value Decomposition (MSVD) of a Hankel matrix. The decomposition is used to improve the forecasting accuracy of Multiple Input Multiple Output (MIMO) linear and nonlinear models. Three time series coming from traffic accidents domain are used. They represent the number of persons with injuries in traffic accidents of Santiago, Chile. The data were continuously collected by the Chilean Police and were weekly sampled from 2000:1 to 2014:12. The performance of MSVD is compared with the decomposition in components of low and high frequency of a commonly accepted method based on Stationary Wavelet Transform (SWT). SWT in conjunction with the Autoregressive model (SWT + MIMO-AR) and SWT in conjunction with an Autoregressive Neural Network (SWT + MIMO-ANN) were evaluated. The empirical results have shown that the best accuracy was achieved by the forecasting model based on the proposed decomposition method MSVD, in comparison with the forecasting models based on SWT. PMID:28261267
Estimation of Value-at-Risk for Energy Commodities via CAViaR Model
NASA Astrophysics Data System (ADS)
Xiliang, Zhao; Xi, Zhu
This paper uses the Conditional Autoregressive Value at Risk model (CAViaR) proposed by Engle and Manganelli (2004) to evaluate the value-at-risk for daily spot prices of Brent crude oil and West Texas Intermediate crude oil covering the period May 21th, 1987 to Novermber 18th, 2008. Then the accuracy of the estimates of CAViaR model, Normal-GARCH, and GED-GARCH was compared. The results show that all the methods do good job for the low confidence level (95%), and GED-GARCH is the best for spot WTI price, Normal-GARCH and Adaptive-CAViaR are the best for spot Brent price. However, for the high confidence level (99%), Normal-GARCH do a good job for spot WTI, GED-GARCH and four kind of CAViaR specifications do well for spot Brent price. Normal-GARCH does badly for spot Brent price. The result seems suggest that CAViaR do well as well as GED-GARCH since CAViaR directly model the quantile autoregression, but it does not outperform GED-GARCH although it does outperform Normal-GARCH.
NASA Astrophysics Data System (ADS)
Wang, Yani; Wang, Jun; Tao, Guiping
2017-12-01
Haze pollution has become a hot issue concerned with the process of modernization and one serious problem requiring urgent solution, especially in Beijing. PM2.5 is the main reason causing haze and its harm. Although there has been research centering on factors affecting PM2.5, little attention has been devoted to the microcosmic and dynamic effects on it. Vector auto-regression (VAR) mode is applied in this study to explore the interaction between PM2.5, PM10, SO2, CO and NO2. Results of Granger causality tests tell that there exists causal relationship between PM10, SO2, CO, NO2 and PM2.5. Impulse response functions (IRFs) show that the response of PM2.5 to a shock in CO is positive and large in the short period, while the reaction of PM2.5 to a shock in SO2 increases over time. Meanwhile, variance decomposition indicate that PM2.5 is more closely related to CO in the short term while SO2’ influence accounts for a higher proportion in the long run. The findings provide a novel perspective to analyze the factors influencing PM2.5 dynamically and contribute to a better understanding of haze and its relationship with sustainable development.
Asymmetric conditional volatility in international stock markets
NASA Astrophysics Data System (ADS)
Ferreira, Nuno B.; Menezes, Rui; Mendes, Diana A.
2007-08-01
Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of stock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the SP 500, FTSE 100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.
Alwee, Razana; Hj Shamsuddin, Siti Mariyam; Sallehuddin, Roselina
2013-01-01
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models. PMID:23766729
A Deep and Autoregressive Approach for Topic Modeling of Multimodal Data.
Zheng, Yin; Zhang, Yu-Jin; Larochelle, Hugo
2016-06-01
Topic modeling based on latent Dirichlet allocation (LDA) has been a framework of choice to deal with multimodal data, such as in image annotation tasks. Another popular approach to model the multimodal data is through deep neural networks, such as the deep Boltzmann machine (DBM). Recently, a new type of topic model called the Document Neural Autoregressive Distribution Estimator (DocNADE) was proposed and demonstrated state-of-the-art performance for text document modeling. In this work, we show how to successfully apply and extend this model to multimodal data, such as simultaneous image classification and annotation. First, we propose SupDocNADE, a supervised extension of DocNADE, that increases the discriminative power of the learned hidden topic features and show how to employ it to learn a joint representation from image visual words, annotation words and class label information. We test our model on the LabelMe and UIUC-Sports data sets and show that it compares favorably to other topic models. Second, we propose a deep extension of our model and provide an efficient way of training the deep model. Experimental results show that our deep model outperforms its shallow version and reaches state-of-the-art performance on the Multimedia Information Retrieval (MIR) Flickr data set.
Ouyang, Huei-Tau
2017-08-01
Accurate inundation level forecasting during typhoon invasion is crucial for organizing response actions such as the evacuation of people from areas that could potentially flood. This paper explores the ability of nonlinear autoregressive neural networks with exogenous inputs (NARX) to predict inundation levels induced by typhoons. Two types of NARX architecture were employed: series-parallel (NARX-S) and parallel (NARX-P). Based on cross-correlation analysis of rainfall and water-level data from historical typhoon records, 10 NARX models (five of each architecture type) were constructed. The forecasting ability of each model was assessed by considering coefficient of efficiency (CE), relative time shift error (RTS), and peak water-level error (PE). The results revealed that high CE performance could be achieved by employing more model input variables. Comparisons of the two types of model demonstrated that the NARX-S models outperformed the NARX-P models in terms of CE and RTS, whereas both performed exceptionally in terms of PE and without significant difference. The NARX-S and NARX-P models with the highest overall performance were identified and their predictions were compared with those of traditional ARX-based models. The NARX-S model outperformed the ARX-based models in all three indexes, whereas the NARX-P model exhibited comparable CE performance and superior RTS and PE performance.
Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina
2013-01-01
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.
Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine
2016-09-01
are suitable. To model the behavior of the engine, an autoregressive distributed lag (ARDL) time series model of engine speed and exhaust gas... time series model of engine speed and exhaust gas temperature is derived. The lag length for ARDL is determined by whitening of residuals using the...15 B. REGRESSION ANALYSIS ....................................................................15 1. Time Series Analysis
Non-linear models for the detection of impaired cerebral blood flow autoregulation.
Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B
2018-01-01
The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.
NASA Astrophysics Data System (ADS)
Pan, Xiaoduo; Li, Xin; Cheng, Guodong
2017-04-01
Traditionally, ground-based, in situ observations, remote sensing, and regional climate modeling, individually, cannot provide the high-quality precipitation data required for hydrological prediction, especially over complex terrain. Data assimilation techniques are often used to assimilate ground observations and remote sensing products into models for dynamic downscaling. In this study, the Weather Research and Forecasting (WRF) model was used to assimilate two satellite precipitation products (TRMM 3B42 and FY-2D) using the 4D-Var data assimilation method. The results show that the assimilation of remote sensing precipitation products can improve the initial WRF fields of humidity and temperature, thereby improving precipitation forecasting and decreasing the spin-up time. Hence, assimilating TRMM and FY-2D remote sensing precipitation products using WRF 4D-Var can be viewed as a positive step toward improving the accuracy and lead time of numerical weather prediction models, particularly for short-term weather forecasting. Future work is proposed to assimilate a suite of remote sensing data, e.g., the combination of precipitation and soil moisture data, into a WRF model to improve 7-8 day forecasts of precipitation and other atmospheric variables.
Challenges of Electronic Medical Surveillance Systems
2004-06-01
More sophisticated approaches, such as regression models and classical autoregressive moving average ( ARIMA ) models that make estimates based on...with those predicted by a mathematical model . The primary benefit of ARIMA models is their ability to correct for local trends in the data so that...works well, for example, during a particularly severe flu season, where prolonged periods of high visit rates are adjusted to by the ARIMA model , thus
Time Series Modelling of Syphilis Incidence in China from 2005 to 2012
Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau
2016-01-01
Background The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. Methods In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). Results The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Conclusion Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis. PMID:26901682
Time Series Modelling of Syphilis Incidence in China from 2005 to 2012.
Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau
2016-01-01
The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis.
Li, Jian; Wu, Huan-Yu; Li, Yan-Ting; Jin, Hui-Ming; Gu, Bao-Ke; Yuan, Zheng-An
2010-01-01
To explore the feasibility of establishing and applying of autoregressive integrated moving average (ARIMA) model to predict the incidence rate of dysentery in Shanghai, so as to provide the theoretical basis for prevention and control of dysentery. ARIMA model was established based on the monthly incidence rate of dysentery of Shanghai from 1990 to 2007. The parameters of model were estimated through unconditional least squares method, the structure was determined according to criteria of residual un-correlation and conclusion, and the model goodness-of-fit was determined through Akaike information criterion (AIC) and Schwarz Bayesian criterion (SBC). The constructed optimal model was applied to predict the incidence rate of dysentery of Shanghai in 2008 and evaluate the validity of model through comparing the difference of predicted incidence rate and actual one. The incidence rate of dysentery in 2010 was predicted by ARIMA model based on the incidence rate from January 1990 to June 2009. The model ARIMA (1, 1, 1) (0, 1, 2)(12) had a good fitness to the incidence rate with both autoregressive coefficient (AR1 = 0.443) during the past time series, moving average coefficient (MA1 = 0.806) and seasonal moving average coefficient (SMA1 = 0.543, SMA2 = 0.321) being statistically significant (P < 0.01). AIC and SBC were 2.878 and 16.131 respectively and predicting error was white noise. The mathematic function was (1-0.443B) (1-B) (1-B(12))Z(t) = (1-0.806B) (1-0.543B(12)) (1-0.321B(2) x 12) micro(t). The predicted incidence rate in 2008 was consistent with the actual one, with the relative error of 6.78%. The predicted incidence rate of dysentery in 2010 based on the incidence rate from January 1990 to June 2009 would be 9.390 per 100 thousand. ARIMA model can be used to fit the changes of incidence rate of dysentery and to forecast the future incidence rate in Shanghai. It is a predicted model of high precision for short-time forecast.
A time-parallel approach to strong-constraint four-dimensional variational data assimilation
NASA Astrophysics Data System (ADS)
Rao, Vishwas; Sandu, Adrian
2016-05-01
A parallel-in-time algorithm based on an augmented Lagrangian approach is proposed to solve four-dimensional variational (4D-Var) data assimilation problems. The assimilation window is divided into multiple sub-intervals that allows parallelization of cost function and gradient computations. The solutions to the continuity equations across interval boundaries are added as constraints. The augmented Lagrangian approach leads to a different formulation of the variational data assimilation problem than the weakly constrained 4D-Var. A combination of serial and parallel 4D-Vars to increase performance is also explored. The methodology is illustrated on data assimilation problems involving the Lorenz-96 and the shallow water models.
Non-linear auto-regressive models for cross-frequency coupling in neural time series
Tallot, Lucille; Grabot, Laetitia; Doyère, Valérie; Grenier, Yves; Gramfort, Alexandre
2017-01-01
We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling. PMID:29227989
Modelling space of spread Dengue Hemorrhagic Fever (DHF) in Central Java use spatial durbin model
NASA Astrophysics Data System (ADS)
Ispriyanti, Dwi; Prahutama, Alan; Taryono, Arkadina PN
2018-05-01
Dengue Hemorrhagic Fever is one of the major public health problems in Indonesia. From year to year, DHF causes Extraordinary Event in most parts of Indonesia, especially Central Java. Central Java consists of 35 districts or cities where each region is close to each other. Spatial regression is an analysis that suspects the influence of independent variables on the dependent variables with the influences of the region inside. In spatial regression modeling, there are spatial autoregressive model (SAR), spatial error model (SEM) and spatial autoregressive moving average (SARMA). Spatial Durbin model is the development of SAR where the dependent and independent variable have spatial influence. In this research dependent variable used is number of DHF sufferers. The independent variables observed are population density, number of hospitals, residents and health centers, and mean years of schooling. From the multiple regression model test, the variables that significantly affect the spread of DHF disease are the population and mean years of schooling. By using queen contiguity and rook contiguity, the best model produced is the SDM model with queen contiguity because it has the smallest AIC value of 494,12. Factors that generally affect the spread of DHF in Central Java Province are the number of population and the average length of school.
Fossen, Erlend I.; Ekrem, Torbjørn; Nilsson, Anders N.; Bergsten, Johannes
2016-01-01
Abstract The chiefly Holarctic Hydrobius species complex (Coleoptera, Hydrophilidae) currently consists of Hydrobius arcticus Kuwert, 1890, and three morphological variants of Hydrobius fuscipes (Linnaeus, 1758): var. fuscipes, var. rottenbergii and var. subrotundus in northern Europe. Here molecular and morphological data are used to test the species boundaries in this species complex. Three gene segments (COI, H3 and ITS2) were sequenced and analyzed with Bayesian methods to infer phylogenetic relationships. The Generalized Mixed Yule Coalescent (GMYC) model and two versions of the Bayesian species delimitation method BPP, with or without an a priori defined guide tree (v2.2 & v3.0), were used to evaluate species limits. External and male genital characters of primarily Fennoscandian specimens were measured and statistically analyzed to test for significant differences in quantitative morphological characters. The four morphotypes formed separate genetic clusters on gene trees and were delimited as separate species by GMYC and by both versions of BPP, despite specimens of Hydrobius fuscipes var. fuscipes and Hydrobius fuscipes var. subrotundus being sympatric. Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii could only be separated genetically with ITS2, and were delimited statistically with GMYC on ITS2 and with BPP on the combined data. In addition, six or seven potentially cryptic species of the Hydrobius fuscipes complex from regions outside northern Europe were delimited genetically. Although some overlap was found, the mean values of six male genital characters were significantly different between the morphotypes (p < 0.001). Morphological characters previously presumed to be diagnostic were less reliable to separate Hydrobius fuscipes var. fuscipes from Hydrobius fuscipes var. subrotundus, but characters in the literature for Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii were diagnostic. Overall, morphological and molecular evidence strongly suggest that Hydrobius arcticus and the three morphological variants of Hydrobius fuscipes are separate species and Hydrobius rottenbergii Gerhardt, 1872, stat. n. and Hydrobius subrotundus Stephens, 1829, stat. n. are elevated to valid species. An identification key to northern European species of Hydrobius is provided. PMID:27081333
Hu, Yu; Li, Qian; Chen, Yaping
2018-01-16
We evaluated the effect of two Elaboration Likelihood Model (ELM)-based health educational interventions on varicella vaccine (VarV) vaccination among pregnant women in a province in the east China. A prospective randomized controlled trial was conducted among 200 pregnant women with ≥12 gestation weeks to test two interventions, including a messaging video and a messaging booklet. The participants were randomly assigned into the control group, the video group or the booklet group. The VarV coverage at 12 and 24 months old was compared among the children of the three groups and relative risks (RRs) were calculated, by using the coverage of the control group as reference. The timeliness of VarV was also assessed. Furthermore, differences in the effects on the knowledge and attitude of VarV vaccination between the two interventions was evaluated. The VarV coverage of their children by 24 months of age was 86.4%, 76.1% and 56.7% for the video group, the booklet group and the control group, respectively. The relative risks (RRs) for the coverage of VarV at 24 months of age were 4.8 (95% CI: 2.06-11.3) for the video group and 2.4 (95% CI: 1.2-5.1) for the booklet group. The means of delays were 57.3 days in the video group, 76.9 days in the booklet group, and 100.6 days in the control group. The proportion of women who intended to vaccinate their children with VarV was higher in the video group than the booklet group (93.9% vs. 82.1%, p < 0.05). Our findings indicated that perinatal health education through booklet or video could improve the coverage and schedule adherence for children's VarV vaccination.
Macnamara, Claire L; Holmes, Nathan M; Westbrook, R Fred; Clemens, Kelly J
2016-06-01
Varenicline is a partial nicotine receptor agonist widely prescribed as a smoking cessation medication. Repeated (or long-term) use of varenicline has been proposed as a treatment option for tobacco addiction. However the effect of repeated varenicline use on motivation for nicotine is unknown. Here the intravenous nicotine self-administration paradigm in rats was used to model the consequences of varenicline treatment across repeated cycles of administration, extinction and reinstatement. Rats acquired nicotine self-administration across 20 days before undergoing 6 days of extinction, where each extinction session was preceded by a single injection of varenicline or saline. This was followed by a single varenicline-free nicotine-primed reinstatement test. All rats then reacquired nicotine self-administration for 10 days followed by a second cycle of extinction. Across this period, rats either received a second cycle of varenicline (VAR-VAR) or saline (SAL-SAL), or the alternative treatment (SAL-VAR, VAR-SAL), followed by a final reinstatement test. Treatment with varenicline increased responding across the first cycle of extinction, but did not affect responding in the reinstatement test. Across the second cycle, varenicline again increased responding across extinction, and critically, rats treated with varenicline across cycle 1 and saline across cycle 2 (Group VAR-SAL) exhibited more reinstatement than rats in any other group. The effect of VAR on nicotine seeking was not due to its effects on locomotor activity. Instead, the results suggest that a history of VAR can increase vulnerability to reinstatement/relapse when its treatment is discontinued. The possible mechanisms of this increased vulnerability are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Morrow, Carl A.; Lee, I. Russel; Chow, Eve W. L.; Ormerod, Kate L.; Goldinger, Anita; Byrnes, Edmond J.; Nielsen, Kirsten; Heitman, Joseph; Schirra, Horst Joachim; Fraser, James A.
2012-01-01
ABSTRACT The accumulation of genomic structural variation between closely related populations over time can lead to reproductive isolation and speciation. The fungal pathogen Cryptococcus is thought to have recently diversified, forming a species complex containing members with distinct morphologies, distributions, and pathologies of infection. We have investigated structural changes in genomic architecture such as inversions and translocations that distinguish the most pathogenic variety, Cryptococcus neoformans var. grubii, from the less clinically prevalent Cryptococcus neoformans var. neoformans and Cryptococcus gattii. Synteny analysis between the genomes of the three Cryptococcus species/varieties (strains H99, JEC21, and R265) reveals that C. neoformans var. grubii possesses surprisingly few unique genomic rearrangements. All but one are relatively small and are shared by all molecular subtypes of C. neoformans var. grubii. In contrast, the large translocation peculiar to the C. neoformans var. grubii type strain is found in all tested subcultures from multiple laboratories, suggesting that it has possessed this rearrangement since its isolation from a human clinical sample. Furthermore, we find that the translocation directly disrupts two genes. The first of these encodes a novel protein involved in metabolism of glucose at human body temperature and affects intracellular levels of trehalose. The second encodes a homeodomain-containing transcription factor that modulates melanin production. Both mutations would be predicted to increase pathogenicity; however, when recreated in an alternate genetic background, these mutations do not affect virulence in animal models. The type strain of C. neoformans var. grubii in which the majority of molecular studies have been performed is therefore atypical for carbon metabolism and key virulence attributes. PMID:22375073
A comparative study on the antinociceptive and anti-inflammatory activities of five Juniperus taxa.
Akkol, Esra Küpeli; Güvenç, Ayşegül; Yesilada, Erdem
2009-09-07
Juniperus L. (Cupressaceae) species have been used to various inflammatory and infectious diseases such as bronchitis, colds, cough, fungal infections, hemorrhoids, gynecological diseases, and wounds in Turkish folk medicine. To evaluate this traditional information, anti-inflammatory and antinociceptive activities of the methanolic and aqueous extracts prepared from different parts (stem, fruit and leaves) of the five Turkish taxa under Juniperus section of the gender; J. drupacea, J. communis var. communis, J. communis var. saxatilis, J. oxycedrus subsp. oxycedrus, and J. oxycedrus subsp. macrocarpa growing were investigated. For the anti-inflammatory activity, carrageenan-induced and PGE(2)-induced hind paw edema models, and for the antinociceptive activity p-benzoquinone-induced writhing and hot plate tests in mice were employed. The methanolic extracts of fruit and leaves from J. oxycedrus subsp. oxycedrus and J. communis var. saxatilis exhibited notable inhibition in carrageenan-induced edema model at a dose of 100mg/kg. The same extracts also displayed significant activity against PGE(2)-induced edema model. While, the remaining extracts were found inactive against these edema models. A similar activity pattern was observed against p-benzoquinone-induced abdominal constriction test without inducing any gastric damage or apparent acute toxicity, whereas all extracts were inactive in hot plate test. The experimental data demonstrated that J. oxycedrus subsp. oxycedrus and J. communis var. saxatilis displayed remarkable anti-inflammatory and antinociceptive activities; however, further studies are warranted to define and isolate the active anti-inflammatory and antinociceptive components from these active species which may yield safe and effective agents to be used in the treatment of inflammatory disorders.
Advances in nowcasting influenza-like illness rates using search query logs
NASA Astrophysics Data System (ADS)
Lampos, Vasileios; Miller, Andrew C.; Crossan, Steve; Stefansen, Christian
2015-08-01
User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.
Friston, Karl J.; Bastos, André M.; Oswal, Ashwini; van Wijk, Bernadette; Richter, Craig; Litvak, Vladimir
2014-01-01
This technical paper offers a critical re-evaluation of (spectral) Granger causality measures in the analysis of biological timeseries. Using realistic (neural mass) models of coupled neuronal dynamics, we evaluate the robustness of parametric and nonparametric Granger causality. Starting from a broad class of generative (state-space) models of neuronal dynamics, we show how their Volterra kernels prescribe the second-order statistics of their response to random fluctuations; characterised in terms of cross-spectral density, cross-covariance, autoregressive coefficients and directed transfer functions. These quantities in turn specify Granger causality — providing a direct (analytic) link between the parameters of a generative model and the expected Granger causality. We use this link to show that Granger causality measures based upon autoregressive models can become unreliable when the underlying dynamics is dominated by slow (unstable) modes — as quantified by the principal Lyapunov exponent. However, nonparametric measures based on causal spectral factors are robust to dynamical instability. We then demonstrate how both parametric and nonparametric spectral causality measures can become unreliable in the presence of measurement noise. Finally, we show that this problem can be finessed by deriving spectral causality measures from Volterra kernels, estimated using dynamic causal modelling. PMID:25003817
Advances in nowcasting influenza-like illness rates using search query logs.
Lampos, Vasileios; Miller, Andrew C; Crossan, Steve; Stefansen, Christian
2015-08-03
User-generated content can assist epidemiological surveillance in the early detection and prevalence estimation of infectious diseases, such as influenza. Google Flu Trends embodies the first public platform for transforming search queries to indications about the current state of flu in various places all over the world. However, the original model significantly mispredicted influenza-like illness rates in the US during the 2012-13 flu season. In this work, we build on the previous modeling attempt, proposing substantial improvements. Firstly, we investigate the performance of a widely used linear regularized regression solver, known as the Elastic Net. Then, we expand on this model by incorporating the queries selected by the Elastic Net into a nonlinear regression framework, based on a composite Gaussian Process. Finally, we augment the query-only predictions with an autoregressive model, injecting prior knowledge about the disease. We assess predictive performance using five consecutive flu seasons spanning from 2008 to 2013 and qualitatively explain certain shortcomings of the previous approach. Our results indicate that a nonlinear query modeling approach delivers the lowest cumulative nowcasting error, and also suggest that query information significantly improves autoregressive inferences, obtaining state-of-the-art performance.
Non-linear models for the detection of impaired cerebral blood flow autoregulation
Miranda, Rodrigo; Katsogridakis, Emmanuel
2018-01-01
The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model’s derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired. PMID:29381724
NASA Astrophysics Data System (ADS)
Nabelek, Daniel P.; Ho, K. C.
2013-06-01
The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.
Combined proportional and additive residual error models in population pharmacokinetic modelling.
Proost, Johannes H
2017-11-15
In pharmacokinetic modelling, a combined proportional and additive residual error model is often preferred over a proportional or additive residual error model. Different approaches have been proposed, but a comparison between approaches is still lacking. The theoretical background of the methods is described. Method VAR assumes that the variance of the residual error is the sum of the statistically independent proportional and additive components; this method can be coded in three ways. Method SD assumes that the standard deviation of the residual error is the sum of the proportional and additive components. Using datasets from literature and simulations based on these datasets, the methods are compared using NONMEM. The different coding of methods VAR yield identical results. Using method SD, the values of the parameters describing residual error are lower than for method VAR, but the values of the structural parameters and their inter-individual variability are hardly affected by the choice of the method. Both methods are valid approaches in combined proportional and additive residual error modelling, and selection may be based on OFV. When the result of an analysis is used for simulation purposes, it is essential that the simulation tool uses the same method as used during analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Navon, M. I.; Stefanescu, R.
2013-12-01
Previous assimilation of lightning used nudging approaches. We develop three approaches namely, 3D-VAR WRFDA and1D+nD-VAR (n=3,4) WRFDA . The present research uses Convective Available Potential Energy (CAPE) as a proxy between lightning data and model variables. To test performance of aforementioned schemes, we assess quality of resulting analysis and forecasts of precipitation compared to those from a control experiment and verify them against NCEP stage IV precipitation. Results demonstrate that assimilating lightning observations improves precipitation statistics during the assimilation window and for 3-7 h thereafter. The 1D+4D-VAR approach yielded the best performance significantly improving precipitation rmse errors by 25% and 27.5%,compared to control during the assimilation window for two tornadic test cases. Finally we propose a new approach to assimilate 2-D images of lightning flashes based on pixel intensity, mitigating dimensionality by a reduced order method.
Assessment and prediction of air quality using fuzzy logic and autoregressive models
NASA Astrophysics Data System (ADS)
Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.
2012-12-01
In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.
GSTARI model of BPR assets in West Java, Central Java, and East Java
NASA Astrophysics Data System (ADS)
Susanti, Susi; Sulistijowati Handajani, Sri; Indriati, Diari
2018-05-01
Bank Perkreditan Rakyat (BPR) is a financial institution in Indonesia dealing with Micro, Small, and Medium Enterprises (MSMEs). Though limited to MSMEs, the development of the BPR industry continues to increase. West Java, Central Java, and East Java have high BPR asset development are suspected to be interconnected because of their economic activities as a neighboring provincies. BPR assets are nonstationary time series data that follow the uptrend pattern. Therefore, the suitable model with the data is generalized space time autoregressive integrated (GSTARI) which considers the spatial and time interrelationships. GSTARI model used spatial order 1 and the autoregressive order is obtained of optimal lag which has the smallest value of Akaike information criterion corrected. The correlation test results showed that the location used in this study had a close relationship. Based on the results of model identification, the best model obtained is GSTAR(31)-I(1). The parameter estimation used the ordinary least squares with the selection of significant variables used the stepwise method and the normalization cross correlation weighting. The residual model fulfilled the assumption of white noise and normal multivariate, so the model was appropriate. The average RMSE and MAPE values of the model were 498.75 and 2.48%.
An Evaluation of Voluntary Varicella Vaccination Coverage in Zhejiang Province, East China.
Hu, Yu; Chen, Yaping; Zhang, Bing; Li, Qian
2016-06-03
In 2014 a 2-doses varicella vaccine (VarV) schedule was recommended by the Zhejiang Provincial Center for Disease Control and Prevention. We aimed to assess the coverage of the 1st dose of VarV (VarV₁) and the 2nd dose of VarV (VarV₂) among children aged 2-6 years through the Zhejiang Provincial Immunization Information System (ZJIIS) and to explore the determinants associated with the VarV coverage. Children aged 2-6 years (born from 1 January 2009 to 31 December 2013) registered in ZJIIS were enrolled. Anonymized individual records of target children were extracted from the ZJIIS database on 1 January 2016, including their VarV and (measles-containing vaccine) MCV vaccination information. The VarV₁ and VarV₂ coverage rates were evaluated for each birth cohorts. The coverage of VarV also was estimated among strata defined by cities, gender and immigration status. We also evaluated the difference in coverage between VarV and MCV. A total of 3,028,222 children aged 2-6 years were enrolled. The coverage of VarV₁ ranged from 84.8% to 87.9% in the 2009-2013 birth cohorts, while the coverage of VarV₂ increased from 31.8% for the 2009 birth cohort to 48.7% for the 2011 birth cohort. Higher coverage rates for both VarV₁ and VarV₂ were observed among resident children in relevant birth cohorts. The coverage rates of VarV₁ and VarV₂ were lower than those for the 1st and 2nd dose of MCV, which were above 95%. The proportion of children who were vaccinated with VarV₁ at the recommended age increased from 34.6% for the 2009 birth cohort to 75.2% for the 2013 birth cohort, while the proportion of children who were vaccinated with VarV₂ at the recommended age increased from 19.7% for the 2009 birth cohort to 48.7% for the 2011 birth cohort. Our study showed a rapid increasing VarV₂ coverage of children, indicating a growing acceptance of the 2-doses VarV schedule among children's caregivers and physicians after the new recommendation released. We highlighted the necessity for a 2-doses VarV vaccination school-entry requirement to achieve the high coverage of >90% and to eliminate disparities in coverage among sub-populations. We also recommended continuous monitoring of the VarV coverage via ZJIIS over time.
Forecasting intentional wildfires using temporal and spatiotemporal autocorrelations
Jeffrey P. Prestemon; María L. Chas-Amil; Julia M. Touza; Scott L. Goodrick
2012-01-01
We report daily time series models containing both temporal and spatiotemporal lags, which are applied to forecasting intentional wildfires in Galicia, Spain. Models are estimated independently for each of the 19 forest districts in Galicia using a 1999â2003 training dataset and evaluated out-of-sample with a 2004â06 dataset. Poisson autoregressive models of order P â...
Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali
2016-01-01
During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547
NASA Astrophysics Data System (ADS)
Jones, A. L.; Smart, P. L.
2005-08-01
Autoregressive modelling is used to investigate the internal structure of long-term (1935-1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1-2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1-2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14-22 months for individual springs, with positive autocorrelation at 19-20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.
Application of a Model for Simulating the Vacuum Arc Remelting Process in Titanium Alloys
NASA Astrophysics Data System (ADS)
Patel, Ashish; Tripp, David W.; Fiore, Daniel
Mathematical modeling is routinely used in the process development and production of advanced aerospace alloys to gain greater insight into system dynamics and to predict the effect of process modifications or upsets on final properties. This article describes the application of a 2-D mathematical VAR model presented in previous LMPC meetings. The impact of process parameters on melt pool geometry, solidification behavior, fluid-flow and chemistry in Ti-6Al-4V ingots will be discussed. Model predictions were first validated against the measured characteristics of industrially produced ingots, and process inputs and model formulation were adjusted to match macro-etched pool shapes. The results are compared to published data in the literature. Finally, the model is used to examine ingot chemistry during successive VAR melts.
Autoregressive Processes in Homogenization of GNSS Tropospheric Data
NASA Astrophysics Data System (ADS)
Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.
2016-12-01
Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.
Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia
2014-01-01
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.
Linear and nonlinear trending and prediction for AVHRR time series data
NASA Technical Reports Server (NTRS)
Smid, J.; Volf, P.; Slama, M.; Palus, M.
1995-01-01
The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Nagarajan, Adarsh; Baggu, Murali
This paper evaluated the impact of smart inverter Volt-VAR function on voltage reduction energy saving and power quality in electric power distribution systems. A methodology to implement the voltage reduction optimization was developed by controlling the substation LTC and capacitor banks, and having smart inverters participate through their autonomous Volt-VAR control. In addition, a power quality scoring methodology was proposed and utilized to quantify the effect on power distribution system power quality. All of these methodologies were applied to a utility distribution system model to evaluate the voltage reduction energy saving and power quality under various PV penetrations and smartmore » inverter densities.« less
The comparison study among several data transformations in autoregressive modeling
NASA Astrophysics Data System (ADS)
Setiyowati, Susi; Waluyo, Ramdhani Try
2015-12-01
In finance, the adjusted close of stocks are used to observe the performance of a company. The extreme prices, which may increase or decrease drastically, are often become particular concerned since it can impact to bankruptcy. As preventing action, the investors have to observe the future (forecasting) stock prices comprehensively. For that purpose, time series analysis could be one of statistical methods that can be implemented, for both stationary and non-stationary processes. Since the variability process of stocks prices tend to large and also most of time the extreme values are always exist, then it is necessary to do data transformation so that the time series models, i.e. autoregressive model, could be applied appropriately. One of popular data transformation in finance is return model, in addition to ratio of logarithm and some others Tukey ladder transformation. In this paper these transformations are applied to AR stationary models and non-stationary ARCH and GARCH models through some simulations with varying parameters. As results, this work present the suggestion table that shows transformations behavior for some condition of parameters and models. It is confirmed that the better transformation is obtained, depends on type of data distributions. In other hands, the parameter conditions term give significant influence either.
Wu, Wei; Guo, Junqiao; An, Shuyi; Guan, Peng; Ren, Yangwu; Xia, Linzi; Zhou, Baosen
2015-01-01
Cases of hemorrhagic fever with renal syndrome (HFRS) are widely distributed in eastern Asia, especially in China, Russia, and Korea. It is proved to be a difficult task to eliminate HFRS completely because of the diverse animal reservoirs and effects of global warming. Reliable forecasting is useful for the prevention and control of HFRS. Two hybrid models, one composed of nonlinear autoregressive neural network (NARNN) and autoregressive integrated moving average (ARIMA) the other composed of generalized regression neural network (GRNN) and ARIMA were constructed to predict the incidence of HFRS in the future one year. Performances of the two hybrid models were compared with ARIMA model. The ARIMA, ARIMA-NARNN ARIMA-GRNN model fitted and predicted the seasonal fluctuation well. Among the three models, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of ARIMA-NARNN hybrid model was the lowest both in modeling stage and forecasting stage. As for the ARIMA-GRNN hybrid model, the MSE, MAE and MAPE of modeling performance and the MSE and MAE of forecasting performance were less than the ARIMA model, but the MAPE of forecasting performance did not improve. Developing and applying the ARIMA-NARNN hybrid model is an effective method to make us better understand the epidemic characteristics of HFRS and could be helpful to the prevention and control of HFRS.
Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks
2015-01-01
Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency. PMID:26539722
Prediction of municipal solid waste generation using nonlinear autoregressive network.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A
2015-12-01
Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.
Increase in suicides the months after the death of Robin Williams in the US
Santaella-Tenorio, Julian; Keyes, Katherine M.
2018-01-01
Investigating suicides following the death of Robin Williams, a beloved actor and comedian, on August 11th, 2014, we used time-series analysis to estimate the expected number of suicides during the months following Williams’ death. Monthly suicide count data in the US (1999–2015) were from the Centers for Disease Control and Prevention Wide-ranging ONline Data for Epidemiologic Research (CDC WONDER). Expected suicides were calculated using a seasonal autoregressive integrated moving averages model to account for both the seasonal patterns and autoregression. Time-series models indicated that we would expect 16,849 suicides from August to December 2014; however, we observed 18,690 suicides in that period, suggesting an excess of 1,841 cases (9.85% increase). Although excess suicides were observed across gender and age groups, males and persons aged 30–44 had the greatest increase in excess suicide events. This study documents associations between Robin Williams’ death and suicide deaths in the population thereafter. PMID:29415016
Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.
Jin, Junghwan; Kim, Jinsoo
2015-01-01
Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.
Cytotaxonomic study of the Chilean endemic complex Alstroemeria magnifica Herb. (Alstroemeriaceae).
Baeza, Carlos M; Finot, Víctor; Ruiz, Eduardo; Carrasco, Pedro; Novoa, Patricio; Rosas, Marcelo; Toro-Núñez, Oscar
2018-05-14
Alstroemeria L. (Alstroemeriaceae) represents one of the most diverse genera of vascular plants in Chile. It contains approximately 54 taxa, 40 of which are endemic. The "complex" Alstroemeria magnifica is endemic to Chile, and it comprises four varieties: A. magnifica var. magenta, A. magnifica var. magnifica, A. magnifica var. sierrae, and A. magnifica var. tofoensis. It is distributed from Coquimbo to the Valparaíso Region. We analyzed karyotypes of 10 populations along its natural distribution. All the populations presented an asymmetric karyotype, with 2n = 16 chromosomes but with three different karyotypic formulae. Alstroemeria magnifica var. magnifica and A. magnifica var. sierrae presented the same karyotypic fomula, and A. magnifica var. magenta, and A. magnifica var. tofoensis each had a different formula. The scatter plot among CVCL vs. MCA shows different groupings between populations of the four varieties. Based on the results, it is possible to consider raising Alstroemeria magnifica var. magenta to species level (A. magenta) and A. magnifica var. tofoensis to subspecies level (A. magnifica subsp. tofoensis); A. magnifica var. magnifica and A. magnifica var. sierrae should each remain as varieties. Nevertheless, these taxonomic changes should be considered tentative, as additional sources of evidence become available.
Dynamic simulation of Static Var Compensators in distribution systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koessler, R.J.
1992-08-01
This paper is a system study guide for the correction of voltage dips due to large motor startups with Static Var Compensators (SVCs). The method utilizes time simulations, which are an important aid in the equipment design and specification. The paper illustrates the process of setting-up a computer model and performing time simulations. The study process is demonstrated through an example, the Shawnee feeder in the Niagara Mohawk Power Corporation service area.
Stochastic Parametrization for the Impact of Neglected Variability Patterns
NASA Astrophysics Data System (ADS)
Kaiser, Olga; Hien, Steffen; Achatz, Ulrich; Horenko, Illia
2017-04-01
An efficient description of the gravity wave variability and the related spontaneous emission processes requires an empirical stochastic closure for the impact of neglected variability patterns (subgridscales or SGS). In particular, we focus on the analysis of the IGW emission within a tangent linear model which requires a stochastic SGS parameterization for taking the self interaction of the ageostrophic flow components into account. For this purpose, we identify the best SGS model in terms of exactness and simplicity by deploying a wide range of different data-driven model classes, including standard stationary regression models, autoregression and artificial neuronal networks models - as well as the family of nonstationary models like FEM-BV-VARX model class (Finite Element based vector autoregressive time series analysis with bounded variation of the model parameters). The models are used to investigate the main characteristics of the underlying dynamics and to explore the significant spatial and temporal neighbourhood dependencies. The best SGS model in terms of exactness and simplicity is obtained for the nonstationary FEM-BV-VARX setting, determining only direct spatial and temporal neighbourhood as significant - and allowing to drastically reduce the number of informations that are required for the optimal SGS. Additionally, the models are characterized by sets of vector- and matrix-valued parameters that must be inferred from big data sets provided by simulations - making it a task that can not be solved without deploying high-performance computing facilities (HPC).
NASA Astrophysics Data System (ADS)
Susanti, D.; Hartini, E.; Permana, A.
2017-01-01
Sale and purchase of the growing competition between companies in Indonesian, make every company should have a proper planning in order to win the competition with other companies. One of the things that can be done to design the plan is to make car sales forecast for the next few periods, it’s required that the amount of inventory of cars that will be sold in proportion to the number of cars needed. While to get the correct forecasting, on of the methods that can be used is the method of Adaptive Spline Threshold Autoregression (ASTAR). Therefore, this time the discussion will focus on the use of Adaptive Spline Threshold Autoregression (ASTAR) method in forecasting the volume of car sales in PT.Srikandi Diamond Motors using time series data.In the discussion of this research, forecasting using the method of forecasting value Adaptive Spline Threshold Autoregression (ASTAR) produce approximately correct.
ERIC Educational Resources Information Center
Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.
2012-01-01
We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…
NASA Technical Reports Server (NTRS)
Scholtz, P.; Smyth, P.
1992-01-01
This article describes an investigation of a statistical hypothesis testing method for detecting changes in the characteristics of an observed time series. The work is motivated by the need for practical automated methods for on-line monitoring of Deep Space Network (DSN) equipment to detect failures and changes in behavior. In particular, on-line monitoring of the motor current in a DSN 34-m beam waveguide (BWG) antenna is used as an example. The algorithm is based on a measure of the information theoretic distance between two autoregressive models: one estimated with data from a dynamic reference window and one estimated with data from a sliding reference window. The Hinkley cumulative sum stopping rule is utilized to detect a change in the mean of this distance measure, corresponding to the detection of a change in the underlying process. The basic theory behind this two-model test is presented, and the problem of practical implementation is addressed, examining windowing methods, model estimation, and detection parameter assignment. Results from the five fault-transition simulations are presented to show the possible limitations of the detection method, and suggestions for future implementation are given.
Autoregressive model in the Lp norm space for EEG analysis.
Li, Peiyang; Wang, Xurui; Li, Fali; Zhang, Rui; Ma, Teng; Peng, Yueheng; Lei, Xu; Tian, Yin; Guo, Daqing; Liu, Tiejun; Yao, Dezhong; Xu, Peng
2015-01-30
The autoregressive (AR) model is widely used in electroencephalogram (EEG) analyses such as waveform fitting, spectrum estimation, and system identification. In real applications, EEGs are inevitably contaminated with unexpected outlier artifacts, and this must be overcome. However, most of the current AR models are based on the L2 norm structure, which exaggerates the outlier effect due to the square property of the L2 norm. In this paper, a novel AR object function is constructed in the Lp (p≤1) norm space with the aim to compress the outlier effects on EEG analysis, and a fast iteration procedure is developed to solve this new AR model. The quantitative evaluation using simulated EEGs with outliers proves that the proposed Lp (p≤1) AR can estimate the AR parameters more robustly than the Yule-Walker, Burg and LS methods, under various simulated outlier conditions. The actual application to the resting EEG recording with ocular artifacts also demonstrates that Lp (p≤1) AR can effectively address the outliers and recover a resting EEG power spectrum that is more consistent with its physiological basis. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Klos, Anna; Pottiaux, Eric; Van Malderen, Roeland; Bock, Olivier; Bogusz, Janusz
2017-04-01
A synthetic benchmark dataset of Integrated Water Vapour (IWV) was created within the activity of "Data homogenisation" of sub-working group WG3 of COST ES1206 Action. The benchmark dataset was created basing on the analysis of IWV differences retrieved by Global Positioning System (GPS) International GNSS Service (IGS) stations using European Centre for Medium-Range Weather Forecats (ECMWF) reanalysis data (ERA-Interim). Having analysed a set of 120 series of IWV differences (ERAI-GPS) derived for IGS stations, we delivered parameters of a number of gaps and breaks for every certain station. Moreover, we estimated values of trends, significant seasonalities and character of residuals when deterministic model was removed. We tested five different noise models and found that a combination of white and autoregressive processes of first order describes the stochastic part with a good accuracy. Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different types of noise: white as well as combination of white and autoregressive processes. We also added few strictly defined offsets, creating three variants of synthetic dataset: easy, less-complicated and fully-complicated. The 'Easy' dataset included seasonal signals (annual, semi-annual, 3 and 4 months if present for a particular station), offsets and white noise. The 'Less-complicated' dataset included above-mentioned, as well as the combination of white and first order autoregressive processes (AR(1)+WH). The 'Fully-complicated' dataset included, beyond above, a trend and gaps. In this research, we show the impact of manual homogenisation on the estimates of trend and its error. We also cross-compare the results for three above-mentioned datasets, as the synthetized noise type might have a significant influence on manual homogenisation. Therefore, it might mostly affect the values of trend and their uncertainties when inappropriately handled. In a future, the synthetic dataset we present is going to be used as a benchmark to test various statistical tools in terms of homogenisation task.
NASA Astrophysics Data System (ADS)
Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad
2017-03-01
Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.
Neural net forecasting for geomagnetic activity
NASA Technical Reports Server (NTRS)
Hernandez, J. V.; Tajima, T.; Horton, W.
1993-01-01
We use neural nets to construct nonlinear models to forecast the AL index given solar wind and interplanetary magnetic field (IMF) data. We follow two approaches: (1) the state space reconstruction approach, which is a nonlinear generalization of autoregressive-moving average models (ARMA) and (2) the nonlinear filter approach, which reduces to a moving average model (MA) in the linear limit. The database used here is that of Bargatze et al. (1985).
Fast Algorithms for Mining Co-evolving Time Series
2011-09-01
Keogh et al., 2001, 2004] and (b) forecasting, like an autoregressive integrated moving average model ( ARIMA ) and related meth- ods [Box et al., 1994...computing hardware? We develop models to mine time series with missing values, to extract compact representation from time sequences, to segment the...sequences, and to do forecasting. For large scale data, we propose algorithms for learning time series models , in particular, including Linear Dynamical
Three Dimensional Object Recognition Using a Complex Autoregressive Model
1993-12-01
3.4.2 Template Matching Algorithm ...................... 3-16 3.4.3 K-Nearest-Neighbor ( KNN ) Techniques ................. 3-25 3.4.4 Hidden Markov Model...Neighbor ( KNN ) Test Results ...................... 4-13 4.2.1 Single-Look 1-NN Testing .......................... 4-14 4.2.2 Multiple-Look 1-NN Testing...4-15 4.2.3 Discussion of KNN Test Results ...................... 4-15 4.3 Hidden Markov Model (HMM) Test Results
Road traffic accidents prediction modelling: An analysis of Anambra State, Nigeria.
Ihueze, Chukwutoo C; Onwurah, Uchendu O
2018-03-01
One of the major problems in the world today is the rate of road traffic crashes and deaths on our roads. Majority of these deaths occur in low-and-middle income countries including Nigeria. This study analyzed road traffic crashes in Anambra State, Nigeria with the intention of developing accurate predictive models for forecasting crash frequency in the State using autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average with explanatory variables (ARIMAX) modelling techniques. The result showed that ARIMAX model outperformed the ARIMA (1,1,1) model generated when their performances were compared using the lower Bayesian information criterion, mean absolute percentage error, root mean square error; and higher coefficient of determination (R-Squared) as accuracy measures. The findings of this study reveal that incorporating human, vehicle and environmental related factors in time series analysis of crash dataset produces a more robust predictive model than solely using aggregated crash count. This study contributes to the body of knowledge on road traffic safety and provides an approach to forecasting using many human, vehicle and environmental factors. The recommendations made in this study if applied will help in reducing the number of road traffic crashes in Nigeria. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the measurement of stability in over-time data.
Kenny, D A; Campbell, D T
1989-06-01
In this article, autoregressive models and growth curve models are compared. Autoregressive models are useful because they allow for random change, permit scores to increase or decrease, and do not require strong assumptions about the level of measurement. Three previously presented designs for estimating stability are described: (a) time-series, (b) simplex, and (c) two-wave, one-factor methods. A two-wave, multiple-factor model also is presented, in which the variables are assumed to be caused by a set of latent variables. The factor structure does not change over time and so the synchronous relationships are temporally invariant. The factors do not cause each other and have the same stability. The parameters of the model are the factor loading structure, each variable's reliability, and the stability of the factors. We apply the model to two data sets. For eight cognitive skill variables measured at four times, the 2-year stability is estimated to be .92 and the 6-year stability is .83. For nine personality variables, the 3-year stability is .68. We speculate that for many variables there are two components: one component that changes very slowly (the trait component) and another that changes very rapidly (the state component); thus each variable is a mixture of trait and state. Circumstantial evidence supporting this view is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyanto, Totok R.
Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model aremore » flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.« less
Ultra-Short-Term Wind Power Prediction Using a Hybrid Model
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume. PMID:22203886
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
NASA Astrophysics Data System (ADS)
Kargoll, Boris; Omidalizarandi, Mohammad; Loth, Ina; Paffenholz, Jens-André; Alkhatib, Hamza
2018-03-01
In this paper, we investigate a linear regression time series model of possibly outlier-afflicted observations and autocorrelated random deviations. This colored noise is represented by a covariance-stationary autoregressive (AR) process, in which the independent error components follow a scaled (Student's) t-distribution. This error model allows for the stochastic modeling of multiple outliers and for an adaptive robust maximum likelihood (ML) estimation of the unknown regression and AR coefficients, the scale parameter, and the degree of freedom of the t-distribution. This approach is meant to be an extension of known estimators, which tend to focus only on the regression model, or on the AR error model, or on normally distributed errors. For the purpose of ML estimation, we derive an expectation conditional maximization either algorithm, which leads to an easy-to-implement version of iteratively reweighted least squares. The estimation performance of the algorithm is evaluated via Monte Carlo simulations for a Fourier as well as a spline model in connection with AR colored noise models of different orders and with three different sampling distributions generating the white noise components. We apply the algorithm to a vibration dataset recorded by a high-accuracy, single-axis accelerometer, focusing on the evaluation of the estimated AR colored noise model.
An algebraic method for constructing stable and consistent autoregressive filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, University Park, PA 16802; Hong, Hoon, E-mail: hong@ncsu.edu
2015-02-15
In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides amore » discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern.« less
Modeling volatility using state space models.
Timmer, J; Weigend, A S
1997-08-01
In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
Managing Potato Biodiversity to Cope with Frost Risk in the High Andes: A Modeling Perspective
Condori, Bruno; Hijmans, Robert J.; Ledent, Jean Francois; Quiroz, Roberto
2014-01-01
Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes –representing genetic variability- were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri) and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme). The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance –e.g. clean seed, strategic watering- to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the impact of frosts and thus the vulnerability of the system to abiotic stressors. PMID:24497912
Managing potato biodiversity to cope with frost risk in the high Andes: a modeling perspective.
Condori, Bruno; Hijmans, Robert J; Ledent, Jean Francois; Quiroz, Roberto
2014-01-01
Austral summer frosts in the Andean highlands are ubiquitous throughout the crop cycle, causing yield losses. In spite of the existing warming trend, climate change models forecast high variability, including freezing temperatures. As the potato center of origin, the region has a rich biodiversity which includes a set of frost resistant genotypes. Four contrasting potato genotypes--representing genetic variability--were considered in the present study: two species of frost resistant native potatoes (the bitter Solanum juzepczukii, var. Luki, and the non-bitter Solanum ajanhuiri, var. Ajanhuiri) and two commercial frost susceptible genotypes (Solanum tuberosum ssp. tuberosum var. Alpha and Solanum tuberosum ssp. andigenum var. Gendarme). The objective of the study was to conduct a comparative growth analysis of four genotypes and modeling their agronomic response under frost events. It included assessing their performance under Andean contrasting agroecological conditions. Independent subsets of data from four field experiments were used to parameterize, calibrate and validate a potato growth model. The validated model was used to ascertain the importance of biodiversity, represented by the four genotypes tested, as constituents of germplasm mixtures in single plots used by local farmers, a coping strategy in the face of climate variability. Also scenarios with a frost routine incorporated in the model were constructed. Luki and Ajanhuiri were the most frost resistant varieties whereas Alpha was the most susceptible. Luki and Ajanhuiri, as monoculture, outperformed the yield obtained with the mixtures under severe frosts. These results highlight the role played by local frost tolerant varieties, and featured the management importance--e.g. clean seed, strategic watering--to attain the yields reported in our experiments. The mixtures of local and introduced potatoes can thus not only provide the products demanded by the markets but also reduce the impact of frosts and thus the vulnerability of the system to abiotic stressors.
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
In vitro study of antioxidant activity and phenolic content of Chrysanthemum balsamita varieties.
Benedec, Daniela; Filip, Lorena; Vlase, Laurian; Bele, Constantin; Sevastre, Bogdan; Raita, Oana; Olah, Neli-Kinga; Hanganu, Daniela
2016-07-01
The purpose of our study was to identify the phenolic substances of two varieties of Chrysanthemum balsamita (balsamita and tanacetoides) and to measure the overall antioxidant activity. The phenolic compounds were determined by HPLC. The evaluation of the polyphenolic content was performed by colorimetric analysis. The antioxidant activity was measured by three in vitro assay models: the DPPH, the silver nanoparticles antioxidant capacity (SNPAC) and EPR radical detection. Using HPLC-MS analysis, phenolic acids, flavonoids and flavonoid aglycone were detected. The highest antioxidant activity was showed by Chrysanthemum balsamita var. balsamita, while the lowest for the Chrysanthemum balsamita var. tanacetoides extract, in accord with the polyphenolic content. The results show that Chrysanthemum balsamita var. balsamita might be a source of antioxidant flavonoids, especially rutin and isoquercitrin.
Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Tian, Jie; Chen, Lijun
Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less
Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Tian, Jie; Chen, Lijun
Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less
Surface fatigue life of M50NiL and AISI 9310 spur gears and R C bars
NASA Technical Reports Server (NTRS)
Townsend, Dennis P.; Bamberger, Eric N.
1991-01-01
Spur gear endurance tests and rolling element surface fatigue tests were conducted to study vacuum induction melted, vacuum arc remelted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm. Gear test conditions were an inlet oil temperature of 320 K, and outlet oil temperature of 350 K, a maximum Hertz stress of 1.71 GPa, and a speed of 10000 rpm. Bench rolling element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPa. The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and superior fatigue life to both other gears.
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
Managing Your COPD Medications
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
Zhou, Fei; Zhao, Yajing; Peng, Jiyu; Jiang, Yirong; Li, Maiquan; Jiang, Yuan; Lu, Baiyi
2017-07-01
Osmanthus fragrans flowers are used as folk medicine and additives for teas, beverages and foods. The metabolites of O. fragrans flowers from different geographical origins were inconsistent in some extent. Chromatography and mass spectrometry combined with multivariable analysis methods provides an approach for discriminating the origin of O. fragrans flowers. To discriminate the Osmanthus fragrans var. thunbergii flowers from different origins with the identified metabolites. GC-MS and UPLC-PDA were conducted to analyse the metabolites in O. fragrans var. thunbergii flowers (in total 150 samples). Principal component analysis (PCA), soft independent modelling of class analogy analysis (SIMCA) and random forest (RF) analysis were applied to group the GC-MS and UPLC-PDA data. GC-MS identified 32 compounds common to all samples while UPLC-PDA/QTOF-MS identified 16 common compounds. PCA of the UPLC-PDA data generated a better clustering than PCA of the GC-MS data. Ten metabolites (six from GC-MS and four from UPLC-PDA) were selected as effective compounds for discrimination by PCA loadings. SIMCA and RF analysis were used to build classification models, and the RF model, based on the four effective compounds (caffeic acid derivative, acteoside, ligustroside and compound 15), yielded better results with the classification rate of 100% in the calibration set and 97.8% in the prediction set. GC-MS and UPLC-PDA combined with multivariable analysis methods can discriminate the origin of Osmanthus fragrans var. thunbergii flowers. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavanaugh, J.E.; McQuarrie, A.D.; Shumway, R.H.
Conventional methods for discriminating between earthquakes and explosions at regional distances have concentrated on extracting specific features such as amplitude and spectral ratios from the waveforms of the P and S phases. We consider here an optimum nonparametric classification procedure derived from the classical approach to discriminating between two Gaussian processes with unequal spectra. Two robust variations based on the minimum discrimination information statistic and Renyi's entropy are also considered. We compare the optimum classification procedure with various amplitude and spectral ratio discriminants and show that its performance is superior when applied to a small population of 8 land-based earthquakesmore » and 8 mining explosions recorded in Scandinavia. Several parametric characterizations of the notion of complexity based on modeling earthquakes and explosions as autoregressive or modulated autoregressive processes are also proposed and their performance compared with the nonparametric and feature extraction approaches.« less
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
Diagnosing and Treating Acute Bronchitis
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
ERIC Educational Resources Information Center
Cui, Ming; Donnellan, M. Brent; Conger, Rand D.
2007-01-01
The present study examines reciprocal associations between marital functioning and adolescent maladjustment using cross-lagged autoregressive models. The research involved 451 early adolescents and their families and used a prospective, longitudinal research design with multi-informant methods. Results indicate that parental conflicts over child…
A Computer Program for the Generation of ARIMA Data
ERIC Educational Resources Information Center
Green, Samuel B.; Noles, Keith O.
1977-01-01
The autoregressive integrated moving averages model (ARIMA) has been applied to time series data in psychological and educational research. A program is described that generates ARIMA data of a known order. The program enables researchers to explore statistical properties of ARIMA data and simulate systems producing time dependent observations.…
ERIC Educational Resources Information Center
Adams, Gerald J.; Dial, Micah
1998-01-01
The cyclical nature of mathematics grades was studied for a cohort of elementary school students from a large metropolitan school district in Texas over six years (average cohort size of 8495). The study used an autoregressive integrated moving average (ARIMA) model. Results indicate that grades do exhibit a significant cyclical pattern. (SLD)
Tan, Ting; Chen, Lizhang; Liu, Fuqiang
2014-11-01
To establish multiple seasonal autoregressive integrated moving average model (ARIMA) according to the hand-foot-mouth disease incidence in Changsha, and to explore the feasibility of the multiple seasonal ARIMA in predicting the hand-foot-mouth disease incidence. EVIEWS 6.0 was used to establish multiple seasonal ARIMA according to the hand-foot- mouth disease incidence from May 2008 to August 2013 in Changsha, and the data of the hand- foot-mouth disease incidence from September 2013 to February 2014 were served as the examined samples of the multiple seasonal ARIMA, then the errors were compared between the forecasted incidence and the real value. Finally, the incidence of hand-foot-mouth disease from March 2014 to August 2014 was predicted by the model. After the data sequence was handled by smooth sequence, model identification and model diagnosis, the multiple seasonal ARIMA (1, 0, 1)×(0, 1, 1)12 was established. The R2 value of the model fitting degree was 0.81, the root mean square prediction error was 8.29 and the mean absolute error was 5.83. The multiple seasonal ARIMA is a good prediction model, and the fitting degree is good. It can provide reference for the prevention and control work in hand-foot-mouth disease.
Learn about Respiratory Syncytial Virus (RSV)
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
Symptoms, Diagnosis and Treatment of Pneumonia
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
75 FR 78932 - Federal Seed Act Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
....'', ``Broccoli-- Brassica oleracea L. var. botrytis L.'', ``Brussels sprouts--Brassica oleracea L. var. gemmifera...--Vicia faba L. var. faba'', ``Broccoli-- Brassica oleracea L. var. italica Plenck'', ``Brussels sprouts...
A three-level advanced static VAr compensator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekanayake, J.B.; Jenkins, N.
1996-01-01
An Advanced Static VAr Compensator (ASVC) employing a three level inverter has been investigated for three phase applications. The paper describes the operating principles of the ASVC using an elementary single phase ASVC circuit. The construction of a hardware model of the three phase, three level ASVC is then presented. The performance of the ASVC is obtained from an experimental study carried out on this laboratory model. The use of the selective harmonic elimination modulation (SHEM) technique to minimize harmonics is explored. Experimental studies have been carried out to determine the speed of response of the scheme by controlling itmore » in a closed loop.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., the preceding twelve months of VAR formula records plus the preceding two months of VAR supporting... request, the preceding two months of VAR formula records and VAR supporting documentation. (3) Facilities... accurately and separately measured, either through the use of a separate storage tank, a separate meter, or...
Detecting past changes of effective population size
Nikolic, Natacha; Chevalet, Claude
2014-01-01
Understanding and predicting population abundance is a major challenge confronting scientists. Several genetic models have been developed using microsatellite markers to estimate the present and ancestral effective population sizes. However, to get an overview on the evolution of population requires that past fluctuation of population size be traceable. To address the question, we developed a new model estimating the past changes of effective population size from microsatellite by resolving coalescence theory and using approximate likelihoods in a Monte Carlo Markov Chain approach. The efficiency of the model and its sensitivity to gene flow and to assumptions on the mutational process were checked using simulated data and analysis. The model was found especially useful to provide evidence of transient changes of population size in the past. The times at which some past demographic events cannot be detected because they are too ancient and the risk that gene flow may suggest the false detection of a bottleneck are discussed considering the distribution of coalescence times. The method was applied on real data sets from several Atlantic salmon populations. The method called VarEff (Variation of Effective size) was implemented in the R package VarEff and is made available at https://qgsp.jouy.inra.fr and at http://cran.r-project.org/web/packages/VarEff. PMID:25067949
Zhao, Xin; Han, Meng; Ding, Lili; Calin, Adrian Cantemir
2018-01-01
The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.
Jahng, Seungmin; Wood, Phillip K.
2017-01-01
Intensive longitudinal studies, such as ecological momentary assessment studies using electronic diaries, are gaining popularity across many areas of psychology. Multilevel models (MLMs) are most widely used analytical tools for intensive longitudinal data (ILD). Although ILD often have individually distinct patterns of serial correlation of measures over time, inferences of the fixed effects, and random components in MLMs are made under the assumption that all variance and autocovariance components are homogenous across individuals. In the present study, we introduced a multilevel model with Cholesky transformation to model ILD with individually heterogeneous covariance structure. In addition, the performance of the transformation method and the effects of misspecification of heterogeneous covariance structure were investigated through a Monte Carlo simulation. We found that, if individually heterogeneous covariances are incorrectly assumed as homogenous independent or homogenous autoregressive, MLMs produce highly biased estimates of the variance of random intercepts and the standard errors of the fixed intercept and the fixed effect of a level 2 covariate when the average autocorrelation is high. For intensive longitudinal data with individual specific residual covariance, the suggested transformation method showed lower bias in those estimates than the misspecified models when the number of repeated observations within individuals is 50 or more. PMID:28286490
NASA Astrophysics Data System (ADS)
Sardinha-Lourenço, A.; Andrade-Campos, A.; Antunes, A.; Oliveira, M. S.
2018-03-01
Recent research on water demand short-term forecasting has shown that models using univariate time series based on historical data are useful and can be combined with other prediction methods to reduce errors. The behavior of water demands in drinking water distribution networks focuses on their repetitive nature and, under meteorological conditions and similar consumers, allows the development of a heuristic forecast model that, in turn, combined with other autoregressive models, can provide reliable forecasts. In this study, a parallel adaptive weighting strategy of water consumption forecast for the next 24-48 h, using univariate time series of potable water consumption, is proposed. Two Portuguese potable water distribution networks are used as case studies where the only input data are the consumption of water and the national calendar. For the development of the strategy, the Autoregressive Integrated Moving Average (ARIMA) method and a short-term forecast heuristic algorithm are used. Simulations with the model showed that, when using a parallel adaptive weighting strategy, the prediction error can be reduced by 15.96% and the average error by 9.20%. This reduction is important in the control and management of water supply systems. The proposed methodology can be extended to other forecast methods, especially when it comes to the availability of multiple forecast models.
Nontuberculous Mycobacterium Infections: Symptoms, Causes & Risk Factors
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
An analysis of electricity price behavior when the market in California was dysfunctional
NASA Astrophysics Data System (ADS)
Lee, Yoo-Soo
The electricity market in California worked well for the first two years after restructuring, but in the summer of 2000 there were frequent high price spikes and then persistently high prices during the winter and the spring of 2001. This research develops econometric models to explain the behavior of the spot and forward prices for electricity and the relationship between them when the market in California was dysfunctional. The first results demonstrate that the high spot prices in the day-ahead market during the summer of 2000 were caused by changes in the bid behavior of buyers as well as by the offer behavior of sellers. After the Federal Energy Regulatory Commission (FERC) declared that these high spot prices were "unjust and unreasonable", the FERC approved the payment of refunds to customers in California but not in other areas within the Western Inter-Connection (WECC). However, the results of a Vector Auto-Regressive model (VAR) show that the high spot prices in California were transferred immediately to other states in the WECC and the spot prices at different trading hubs belong to a single market. After the intervention by FERC in December 2000, spot prices and forward prices of electricity were unusually high. Estimated distributed lag models, using both monthly and daily data, show that there were strong positive relationships between the price shocks for electricity and natural gas in the spot markets and the forward prices for electricity. Risk premiums in the forward prices for electricity were estimated and the results show that the price shocks for electricity after FERC's intervention were the primary cause of the high forward prices. The main conclusions for regulatory policy are (1) it is virtually impossible to contain the effects of a dysfunctional electricity market to a single region because other regions are linked through the electrical grid, and (2) it is essential to intervene immediately and effectively when the spot prices have been ruled by regulators to be unjust and unreasonable. The intervention by the FERC did not prevent persistently high spot and forward prices for customers throughout the WECC.
Analysis of potential impacts of climate change on forests of the United States Pacific Northwest
Gregory Latta; Hailemariam Temesgen; Darius Adams; Tara Barrett
2010-01-01
As global climate changes over the next century, forest productivity is expected to change as well. Using PRISM climate and productivity data measured on a grid of 3356 plots, we developed a simultaneous autoregressive model to estimate the impacts of climate change on potential productivity of Pacific Northwest forests of the United States. The model, coupled with...
NASA Astrophysics Data System (ADS)
Shaw, Jeremy A.; Daescu, Dacian N.
2017-08-01
This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.
Near Real-Time Event Detection & Prediction Using Intelligent Software Agents
2006-03-01
value was 0.06743. Multiple autoregressive integrated moving average ( ARIMA ) models were then build to see if the raw data, differenced data, or...slight improvement. The best adjusted r^2 value was found to be 0.1814. Successful results were not expected from linear or ARIMA -based modelling ...appear, 2005. [63] Mora-Lopez, L., Mora, J., Morales-Bueno, R., et al. Modelling time series of climatic parameters with probabilistic finite
Predicting long-term catchment nutrient export: the use of nonlinear time series models
NASA Astrophysics Data System (ADS)
Valent, Peter; Howden, Nicholas J. K.; Szolgay, Jan; Komornikova, Magda
2010-05-01
After the Second World War the nitrate concentrations in European water bodies changed significantly as the result of increased nitrogen fertilizer use and changes in land use. However, in the last decades, as a consequence of the implementation of nitrate-reducing measures in Europe, the nitrate concentrations in water bodies slowly decrease. This causes that the mean and variance of the observed time series also changes with time (nonstationarity and heteroscedascity). In order to detect changes and properly describe the behaviour of such time series by time series analysis, linear models (such as autoregressive (AR), moving average (MA) and autoregressive moving average models (ARMA)), are no more suitable. Time series with sudden changes in statistical characteristics can cause various problems in the calibration of traditional water quality models and thus give biased predictions. Proper statistical analysis of these non-stationary and heteroscedastic time series with the aim of detecting and subsequently explaining the variations in their statistical characteristics requires the use of nonlinear time series models. This information can be then used to improve the model building and calibration of conceptual water quality model or to select right calibration periods in order to produce reliable predictions. The objective of this contribution is to analyze two long time series of nitrate concentrations of the rivers Ouse and Stour with advanced nonlinear statistical modelling techniques and compare their performance with traditional linear models of the ARMA class in order to identify changes in the time series characteristics. The time series were analysed with nonlinear models with multiple regimes represented by self-exciting threshold autoregressive (SETAR) and Markov-switching models (MSW). The analysis showed that, based on the value of residual sum of squares (RSS) in both datasets, SETAR and MSW models described the time-series better than models of the ARMA class. In most cases the relative improvement of SETAR models against AR models of first order was low ranging between 1% and 4% with the exception of the three-regime model for the River Stour time-series where the improvement was 48.9%. In comparison, the relative improvement of MSW models was between 44.6% and 52.5 for two-regime and from 60.4% to 75% for three-regime models. However, the visual assessment of models plotted against original datasets showed that despite a high value of RSS, some ARMA models could describe the analyzed time-series better than AR, MA and SETAR models with lower values of RSS. In both datasets MSW models provided a very good visual fit describing most of the extreme values.
Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu
2015-01-01
A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.
What is Multidrug and Extensively Drug Resistant TB?
... each(function(i){ var city = $(this).find('city').text(); var state = $(this).find('state').text(); var date = $(this).find('date').text(); if ((city != "") && (state != "")){ var citystate = ' | ' + city + ', ' + state; } else ...
Friebe, A.; Vilich, V.; Hennig, L.; Kluge, M.; Sicker, D.
1998-01-01
The ability of phytopathogenic fungi to overcome the chemical defense barriers of their host plants is of great importance for fungal pathogenicity. We studied the role of cyclic hydroxamic acids and their related benzoxazolinones in plant interactions with pathogenic fungi. We identified species-dependent differences in the abilities of Gaeumannomyces graminis var. tritici, Gaeumannomyces graminis var. graminis, Gaeumannomyces graminis var. avenae, and Fusarium culmorum to detoxify these allelochemicals of gramineous plants. The G. graminis var. graminis isolate degraded benzoxazolin-2(3H)-one (BOA) and 6-methoxy-benzoxazolin-2(3H)-one (MBOA) more efficiently than did G. graminis var. tritici and G. graminis var. avenae. F. culmorum degraded BOA but not MBOA. N-(2-Hydroxyphenyl)-malonamic acid and N-(2-hydroxy-4-methoxyphenyl)-malonamic acid were the primary G. graminis var. graminis and G. graminis var. tritici metabolites of BOA and MBOA, respectively, as well as of the related cyclic hydroxamic acids. 2-Amino-3H-phenoxazin-3-one was identified as an additional G. graminis var. tritici metabolite of BOA. No metabolite accumulation was detected for G. graminis var. avenae and F. culmorum by high-pressure liquid chromatography. The mycelial growth of the pathogenic fungi was inhibited more by BOA and MBOA than by their related fungal metabolites. The tolerance of Gaeumannomyces spp. for benzoxazolinone compounds is correlated with their detoxification ability. The ability of Gaeumannomyces isolates to cause root rot symptoms in wheat (cultivars Rektor and Astron) parallels their potential to degrade wheat allelochemicals to nontoxic compounds. PMID:9647804
Froehlich, Janice C; Fischer, Stephen M; Dilley, Julian E; Nicholson, Emily R; Smith, Teal N; Filosa, Nick J; Rademacher, Logan C
2016-09-01
This study examined whether varenicline (VAR), or naltrexone (NTX), alone or in combination, reduces alcohol drinking in alcohol-preferring (P) rats with a genetic predisposition toward high voluntary alcohol intake. Alcohol-experienced P rats that had been drinking alcohol (15% v/v) for 2 h/d for 4 weeks were fed either vehicle (VEH), VAR alone (0.5, 1.0, or 2.0 mg/kg body weight [BW]), NTX alone (10.0, 15.0, or 20.0 mg/kg BW), or VAR + NTX in 1 of 4 dose combinations (0.5 VAR + 10.0 NTX, 0.5 VAR + 15.0 NTX, 1.0 VAR + 10.0 NTX, or 1.0 VAR + 15.0 NTX) at 1 hour prior to alcohol access for 10 consecutive days, and the effects on alcohol intake were assessed. When administered alone, VAR in doses of 0.5 or 1.0 mg/kg BW did not alter alcohol intake but a dose of 2.0 mg/kg BW decreased alcohol intake. This effect disappeared when drug treatment was terminated. NTX in doses of 10.0 and 15.0 mg/kg BW did not alter alcohol intake but a dose of 20.0 mg/kg BW decreased alcohol intake. Combining low doses of VAR and NTX into a single medication reduced alcohol intake as well as did high doses of each drug alone. Reduced alcohol intake occurred immediately after onset of treatment with the combined medication and continued throughout prolonged treatment. Low doses of VAR and NTX, when combined in a single medication, reduce alcohol intake in a rodent model of alcoholism. This approach has the advantage of reducing potential side effects associated with each drug. Lowering the dose of NTX and VAR in a combined treatment approach that maintains efficacy while reducing the incidence of negative side effects may increase patient compliance and improve clinical outcomes for alcoholics and heavy drinkers who want to reduce their alcohol intake. Copyright © 2016 by the Research Society on Alcoholism.
Assimilation of Atmospheric InfraRed Sounder (AIRS) Profiles using WRF-Var
NASA Technical Reports Server (NTRS)
Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William
2008-01-01
The Weather Research and Forecasting (WRF) model contains a three-dimensional variational (3DVAR) assimilation system (WRF-Var), which allows a user to join data from multiple sources into one coherent analysis. WRF-Var combines observations with a background field traditionally generated using a previous model forecast through minimization of a cost function. In data sparse regions, remotely-sensed observations may be able to improve analyses and produce improved forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced space-based atmospheric sounding systems. The combined AIRS/AMSU system provides radiance measurements used as input to a sophisticated retrieval scheme which has been shown to produce temperature profiles with an accuracy of 1 K over 1 km layers and humidity profiles with accuracy of 15% in 2 km layers in both clear and partly cloudy conditions. The retrieval algorithm also provides estimates of the accuracy of the retrieved values at each pressure level, allowing the user to select profiles based on the required error tolerances of the application. The purpose of this paper is to describe a procedure to optimally assimilate high-resolution AIRS profile data into a regional configuration of the Advanced Research WRF (ARW) version 2.2 using WRF-Var. The paper focuses on development of background error covariances for the regional domain and background field type using gen_be and an optimal methodology for ingesting AIRS temperature and moisture profiles as separate overland and overwater retrievals with different error characteristics in the WRF-Var. The AIRS thermodynamic profiles are obtained from the version 5.0 Earth Observing System (EOS) science team retrieval algorithm and contain information about the quality of each temperature layer. The quality indicators are used to select the highest quality temperature and moisture data for each profile location and pressure level. Analyses are run to produce quasi-real-time regional weather forecasts over the continental U.S. The preliminary assessment of the impact of the AIRS profiles will focus on intelligent use of the quality indicators, optimized tuning of the WRF-Var, and comparison of analysis soundings to radiosondes.
Contributions of natural climate changes and human activities to the trend of extreme precipitation
NASA Astrophysics Data System (ADS)
Gao, Lu; Huang, Jie; Chen, Xingwei; Chen, Ying; Liu, Meibing
2018-06-01
This study focuses on the analysis of the nonstationarity characteristics of extreme precipitation and their attributions in the southeastern coastal region of China. The maximum daily precipitation (MDP) series is extracted from observations at 79 meteorological stations in the study area during the first flood season (April-June) from 1960 to 2012. The trends of the mean (Mn) and variance (Var) of MDP are detected using the Generalized Additive Models for Location, Scale, and Shape parameters (GAMLSS) and Mann-Kendall test. The contributions of natural climate change and human activities to the Mn and Var changes of MDP are investigated using six large-scale circulation variables and emissions of four greenhouse gases based on GAMLSS and a contribution analysis method. The results demonstrate that the nonstationarity of extreme precipitation on local scales is significant. The Mn and Var of extreme precipitation increase in the north of Zhejiang, the middle of Fujian, and the south of Guangdong. In general, natural climate change contributes more to Mn from 1960 to 2012 than to Var. However, human activities cause a greater Var in the rapid socioeconomic development period (1986-2012) than in the slow socioeconomic development period (1960-1985), especially in Zhejiang and Guangdong. The community should pay more attention to the possibility of extreme precipitation events and associated disasters triggered by human activities.
NASA Astrophysics Data System (ADS)
Ahmad, Sajid Rashid
With the understanding that far more research remains to be done on the development and use of innovative and functional geospatial techniques and procedures to investigate coastline changes this thesis focussed on the integration of remote sensing, geographical information systems (GIS) and modelling techniques to provide meaningful insights on the spatial and temporal dynamics of coastline changes. One of the unique strengths of this research was the parameterization of the GIS with long-term empirical and remote sensing data. Annual empirical data from 1941--2007 were analyzed by the GIS, and then modelled with statistical techniques. Data were also extracted from Landsat TM and ETM+ images. The band ratio method was used to extract the coastlines. Topographic maps were also used to extract digital map data. All data incorporated into ArcGIS 9.2 were analyzed with various modules, including Spatial Analyst, 3D Analyst, and Triangulated Irregular Networks. The Digital Shoreline Analysis System was used to analyze and predict rates of coastline change. GIS results showed the spatial locations along the coast that will either advance or retreat over time. The linear regression results highlighted temporal changes which are likely to occur along the coastline. Box-Jenkins modelling procedures were utilized to determine statistical models which best described the time series (1941--2007) of coastline change data. After several iterations and goodness-of-fit tests, second-order spatial cyclic autoregressive models, first-order autoregressive models and autoregressive moving average models were identified as being appropriate for describing the deterministic and random processes operating in Guyana's coastal system. The models highlighted not only cyclical patterns in advance and retreat of the coastline, but also the existence of short and long-term memory processes. Long-term memory processes could be associated with mudshoal propagation and stabilization while short-term memory processes were indicative of transitory hydrodynamic and other processes. An innovative framework for a spatio-temporal information-based system (STIBS) was developed. STIBS incorporated diverse datasets within a GIS, dynamic computer-based simulation models, and a spatial information query and graphical subsystem. Tests of the STIBS proved that it could be used to simulate and visualize temporal variability in shifting morphological states of the coastline.
2015-11-10
of the ensemble method o the estimation of sensitivities was demonstrated in meteorological Ancell and Hakim, 2007 ; Torn and Hakim, 2008) and...to predetermined low- dimensional subspaces spanned either by the reduced-order approx- imations of the model Green’s functions ( Stammer and Wunsch...2005; Qui et al., 2007 ; Hoteit, 2008). In fact, the 4dEnVar technique pursues a similar, but more general approach, pa- rameterizing the search
Wu, Wei; Guo, Junqiao; An, Shuyi; Guan, Peng; Ren, Yangwu; Xia, Linzi; Zhou, Baosen
2015-01-01
Background Cases of hemorrhagic fever with renal syndrome (HFRS) are widely distributed in eastern Asia, especially in China, Russia, and Korea. It is proved to be a difficult task to eliminate HFRS completely because of the diverse animal reservoirs and effects of global warming. Reliable forecasting is useful for the prevention and control of HFRS. Methods Two hybrid models, one composed of nonlinear autoregressive neural network (NARNN) and autoregressive integrated moving average (ARIMA) the other composed of generalized regression neural network (GRNN) and ARIMA were constructed to predict the incidence of HFRS in the future one year. Performances of the two hybrid models were compared with ARIMA model. Results The ARIMA, ARIMA-NARNN ARIMA-GRNN model fitted and predicted the seasonal fluctuation well. Among the three models, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of ARIMA-NARNN hybrid model was the lowest both in modeling stage and forecasting stage. As for the ARIMA-GRNN hybrid model, the MSE, MAE and MAPE of modeling performance and the MSE and MAE of forecasting performance were less than the ARIMA model, but the MAPE of forecasting performance did not improve. Conclusion Developing and applying the ARIMA-NARNN hybrid model is an effective method to make us better understand the epidemic characteristics of HFRS and could be helpful to the prevention and control of HFRS. PMID:26270814
Scherf, A; Hernandez-Rivas, R; Buffet, P; Bottius, E; Benatar, C; Pouvelle, B; Gysin, J; Lanzer, M
1998-01-01
Members of the Plasmodium falciparum var gene family encode clonally variant adhesins, which play an important role in the pathogenicity of tropical malaria. Here we employ a selective panning protocol to generate isogenic P.falciparum populations with defined adhesive phenotypes for CD36, ICAM-1 and CSA, expressing single and distinct var gene variants. This technique has established the framework for examining var gene expression, its regulation and switching. It was found that var gene switching occurs in situ. Ubiquitous transcription of all var gene variants appears to occur in early ring stages. However, var gene expression is tightly regulated in trophozoites and is exerted through a silencing mechanism. Transcriptional control is mutually exclusive in parasites that express defined adhesive phenotypes. In situ var gene switching is apparently mediated at the level of transcriptional initiation, as demonstrated by nuclear run-on analyses. Our results suggest that an epigenetic mechanism(s) is involved in var gene regulation. PMID:9736619
Kandhasamy, Chandrasekaran; Ghosh, Kaushik
2017-02-01
Indian states are currently classified into HIV-risk categories based on the observed prevalence counts, percentage of infected attendees in antenatal clinics, and percentage of infected high-risk individuals. This method, however, does not account for the spatial dependence among the states nor does it provide any measure of statistical uncertainty. We provide an alternative model-based approach to address these issues. Our method uses Poisson log-normal models having various conditional autoregressive structures with neighborhood-based and distance-based weight matrices and incorporates all available covariate information. We use R and WinBugs software to fit these models to the 2011 HIV data. Based on the Deviance Information Criterion, the convolution model using distance-based weight matrix and covariate information on female sex workers, literacy rate and intravenous drug users is found to have the best fit. The relative risk of HIV for the various states is estimated using the best model and the states are then classified into the risk categories based on these estimated values. An HIV risk map of India is constructed based on these results. The choice of the final model suggests that an HIV control strategy which focuses on the female sex workers, intravenous drug users and literacy rate would be most effective. Copyright © 2017 Elsevier Ltd. All rights reserved.
An adaptive ARX model to estimate the RUL of aluminum plates based on its crack growth
NASA Astrophysics Data System (ADS)
Barraza-Barraza, Diana; Tercero-Gómez, Víctor G.; Beruvides, Mario G.; Limón-Robles, Jorge
2017-01-01
A wide variety of Condition-Based Maintenance (CBM) techniques deal with the problem of predicting the time for an asset fault. Most statistical approaches rely on historical failure data that might not be available in several practical situations. To address this issue, practitioners might require the use of self-starting approaches that consider only the available knowledge about the current degradation process and the asset operating context to update the prognostic model. Some authors use Autoregressive (AR) models for this purpose that are adequate when the asset operating context is constant, however, if it is variable, the accuracy of the models can be affected. In this paper, three autoregressive models with exogenous variables (ARX) were constructed, and their capability to estimate the remaining useful life (RUL) of a process was evaluated following the case of the aluminum crack growth problem. An existing stochastic model of aluminum crack growth was implemented and used to assess RUL estimation performance of the proposed ARX models through extensive Monte Carlo simulations. Point and interval estimations were made based only on individual history, behavior, operating conditions and failure thresholds. Both analytic and bootstrapping techniques were used in the estimation process. Finally, by including recursive parameter estimation and a forgetting factor, the ARX methodology adapts to changing operating conditions and maintain the focus on the current degradation level of an asset.
Forecasting Tehran stock exchange volatility; Markov switching GARCH approach
NASA Astrophysics Data System (ADS)
Abounoori, Esmaiel; Elmi, Zahra (Mila); Nademi, Younes
2016-03-01
This paper evaluates several GARCH models regarding their ability to forecast volatility in Tehran Stock Exchange (TSE). These include GARCH models with both Gaussian and fat-tailed residual conditional distribution, concerning their ability to describe and forecast volatility from 1-day to 22-day horizon. Results indicate that AR(2)-MRSGARCH-GED model outperforms other models at one-day horizon. Also, the AR(2)-MRSGARCH-GED as well as AR(2)-MRSGARCH-t models outperform other models at 5-day horizon. In 10 day horizon, three models of AR(2)-MRSGARCH outperform other models. Concerning 22 day forecast horizon, results indicate no differences between MRSGARCH models with that of standard GARCH models. Regarding Risk management out-of-sample evaluation (95% VaR), a few models seem to provide reasonable and accurate VaR estimates at 1-day horizon, with a coverage rate close to the nominal level. According to the risk management loss functions, there is not a uniformly most accurate model.
Dormontt, Eleanor E; Prentis, Peter J; Gardner, Michael G; Lowe, Andrew J
2017-01-01
Hybridization between native and invasive species can facilitate introgression of native genes that increase invasive potential by providing exotic species with pre-adapted genes suitable for new environments. In this study we assessed the outcome of hybridization between native Senecio pinnatifolius var. pinnatifolius A.Rich. (dune ecotype) and invasive Senecio madagascariensis Poir. to investigate the potential for introgression of adaptive genes to have facilitated S. madagascariensis spread in Australia. We used amplified fragment length polymorphisms (141 loci) and nuclear microsatellites (2 loci) to genotype a total of 118 adults and 223 seeds from S. pinnatifolius var. pinnatifolius and S. madagascariensis at one allopatric and two shared sites. We used model based clustering and assignment methods to establish whether hybrid seed set and mature hybrids occur in the field. We detected no adult hybrids in any population. Low incidence of hybrid seed set was found at Lennox Head where the contact zone overlapped for 20 m (6% and 22% of total seeds sampled for S. pinnatifolius var. pinnatifolius and S. madagascariensis respectively). One hybrid seed was detected at Ballina where a gap of approximately 150 m was present between species (2% of total seeds sampled for S. madagascariensis ). We found no evidence of adult hybrid plants at two shared sites. Hybrid seed set from both species was identified at low levels. Based on these findings we conclude that introgression of adaptive genes from S. pinnatifolius var. pinnatifolius is unlikely to have facilitated S. madagascariensis invasions in Australia. Revisitation of one site after two years could find no remaining S. pinnatifolius var. pinnatifolius , suggesting that contact zones between these species are dynamic and that S. pinnatifolius var. pinnatifolius may be at risk of displacement by S. madagascariensis in coastal areas.
Stephen, Joshi; Nampoothiri, Sheela; Banerjee, Aditi; Tolman, Nathanial J; Penninger, Josef Martin; Elling, Ullrich; Agu, Chukwuma A; Burke, John D; Devadathan, Kalpana; Kannan, Rajesh; Huang, Yan; Steinbach, Peter J; Martinis, Susan A; Gahl, William A; Malicdan, May Christine V
2018-04-01
Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.
Rozman, Vita; Kunej, Tanja
2018-05-10
Harnessing the genomics big data requires innovation in how we extract and interpret biologically relevant variants. Currently, there is no established catalog of prioritized missense variants associated with deleterious protein function phenotypes. We report in this study, to the best of our knowledge, the first genome-wide prioritization of sequence variants with the most deleterious effect on protein function (potentially deleterious variants [pDelVars]) in nine vertebrate species: human, cattle, horse, sheep, pig, dog, rat, mouse, and zebrafish. The analysis was conducted using the Ensembl/BioMart tool. Genes comprising pDelVars in the highest number of examined species were identified using a Python script. Multiple genomic alignments of the selected genes were built to identify interspecies orthologous potentially deleterious variants, which we defined as the "ortho-pDelVars." Genome-wide prioritization revealed that in humans, 0.12% of the known variants are predicted to be deleterious. In seven out of nine examined vertebrate species, the genes encoding the multiple PDZ domain crumbs cell polarity complex component (MPDZ) and the transforming acidic coiled-coil containing protein 2 (TACC2) comprise pDelVars. Five interspecies ortho-pDelVars were identified in three genes. These findings offer new ways to harness genomics big data by facilitating the identification of functional polymorphisms in humans and animal models and thus provide a future basis for optimization of protocols for whole genome prioritization of pDelVars and screening of orthologous sequence variants. The approach presented here can inform various postgenomic applications such as personalized medicine and multiomics study of health interventions (iatromics).
Fisher, Aaron J; Reeves, Jonathan W; Chi, Cyrus
2016-07-01
Expanding on recently published methods, the current study presents an approach to estimating the dynamic, regulatory effect of the parasympathetic nervous system on heart period on a moment-to-moment basis. We estimated second-to-second variation in respiratory sinus arrhythmia (RSA) in order to estimate the contemporaneous and time-lagged relationships among RSA, interbeat interval (IBI), and respiration rate via vector autoregression. Moreover, we modeled these relationships at lags of 1 s to 10 s, in order to evaluate the optimal latency for estimating dynamic RSA effects. The IBI (t) on RSA (t-n) regression parameter was extracted from individual models as an operationalization of the regulatory effect of RSA on IBI-referred to as dynamic RSA (dRSA). Dynamic RSA positively correlated with standard averages of heart rate and negatively correlated with standard averages of RSA. We propose that dRSA reflects the active downregulation of heart period by the parasympathetic nervous system and thus represents a novel metric that provides incremental validity in the measurement of autonomic cardiac control-specifically, a method by which parasympathetic regulatory effects can be measured in process. © 2016 Society for Psychophysiological Research.
Sensor network based solar forecasting using a local vector autoregressive ridge framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Yoo, S.; Heiser, J.
2016-04-04
The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations duemore » to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.« less
Using Google Trends and ambient temperature to predict seasonal influenza outbreaks.
Zhang, Yuzhou; Bambrick, Hilary; Mengersen, Kerrie; Tong, Shilu; Hu, Wenbiao
2018-05-16
The discovery of the dynamics of seasonal and non-seasonal influenza outbreaks remains a great challenge. Previous internet-based surveillance studies built purely on internet or climate data do have potential error. We collected influenza notifications, temperature and Google Trends (GT) data between January 1st, 2011 and December 31st, 2016. We performed time-series cross correlation analysis and temporal risk analysis to discover the characteristics of influenza epidemics in the period. Then, the seasonal autoregressive integrated moving average (SARIMA) model and regression tree model were developed to track influenza epidemics using GT and climate data. Influenza infection was significantly corrected with GT at lag of 1-7 weeks in Brisbane and Gold Coast, and temperature at lag of 1-10 weeks for the two study settings. SARIMA models with GT and temperature data had better predictive performance. We identified autoregression (AR) for influenza was the most important determinant for influenza occurrence in both Brisbane and Gold Coast. Our results suggested internet search metrics in conjunction with temperature can be used to predict influenza outbreaks, which can be considered as a pre-requisite for constructing early warning systems using search and temperature data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Damage localization of marine risers using time series of vibration signals
NASA Astrophysics Data System (ADS)
Liu, Hao; Yang, Hezhen; Liu, Fushun
2014-10-01
Based on dynamic response signals a damage detection algorithm is developed for marine risers. Damage detection methods based on numerous modal properties have encountered issues in the researches in offshore oil community. For example, significant increase in structure mass due to marine plant/animal growth and changes in modal properties by equipment noise are not the result of damage for riser structures. In an attempt to eliminate the need to determine modal parameters, a data-based method is developed. The implementation of the method requires that vibration data are first standardized to remove the influence of different loading conditions and the autoregressive moving average (ARMA) model is used to fit vibration response signals. In addition, a damage feature factor is introduced based on the autoregressive (AR) parameters. After that, the Euclidean distance between ARMA models is subtracted as a damage indicator for damage detection and localization and a top tensioned riser simulation model with different damage scenarios is analyzed using the proposed method with dynamic acceleration responses of a marine riser as sensor data. Finally, the influence of measured noise is analyzed. According to the damage localization results, the proposed method provides accurate damage locations of risers and is robust to overcome noise effect.
Rodríguez, Nibaldo
2014-01-01
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%. PMID:25243200
Porta, Alberto; Bassani, Tito; Bari, Vlasta; Pinna, Gian D; Maestri, Roberto; Guzzetti, Stefano
2012-03-01
This study was designed to demonstrate the need of accounting for respiration (R) when causality between heart period (HP) and systolic arterial pressure (SAP) is under scrutiny. Simulations generated according to a bivariate autoregressive closed-loop model were utilized to assess how causality changes as a function of the model parameters. An exogenous (X) signal was added to the bivariate autoregressive closed-loop model to evaluate the bias on causality induced when the X source was disregarded. Causality was assessed in the time domain according to a predictability improvement approach (i.e., Granger causality). HP and SAP variability series were recorded with R in 19 healthy subjects during spontaneous and controlled breathing at 10, 15, and 20 breaths/min. Simulations proved the importance of accounting for X signals. During spontaneous breathing, assessing causality without taking into consideration R leads to a significantly larger percentage of closed-loop interactions and a smaller fraction of unidirectional causality from HP to SAP. This finding was confirmed during paced breathing and it was independent of the breathing rate. These results suggest that the role of baroreflex cannot be correctly assessed without accounting for R.
Zardad, Asma; Mohsin, Asma; Zaman, Khalid
2013-12-01
The purpose of this study is to investigate the factors that affect real exchange rate volatility for Pakistan through the co-integration and error correction model over a 30-year time period, i.e. between 1980 and 2010. The study employed the autoregressive conditional heteroskedasticity (ARCH), generalized autoregressive conditional heteroskedasticity (GARCH) and Vector Error Correction model (VECM) to estimate the changes in the volatility of real exchange rate series, while an error correction model was used to determine the short-run dynamics of the system. The study is limited to a few variables i.e., productivity differential (i.e., real GDP per capita relative to main trading partner); terms of trade; trade openness and government expenditures in order to manage robust data. The result indicates that real effective exchange rate (REER) has been volatile around its equilibrium level; while, the speed of adjustment is relatively slow. VECM results confirm long run convergence of real exchange rate towards its equilibrium level. Results from ARCH and GARCH estimation shows that real shocks volatility persists, so that shocks die out rather slowly, and lasting misalignment seems to have occurred.
Comparison of estimators of standard deviation for hydrologic time series
Tasker, Gary D.; Gilroy, Edward J.
1982-01-01
Unbiasing factors as a function of serial correlation, ρ, and sample size, n for the sample standard deviation of a lag one autoregressive model were generated by random number simulation. Monte Carlo experiments were used to compare the performance of several alternative methods for estimating the standard deviation σ of a lag one autoregressive model in terms of bias, root mean square error, probability of underestimation, and expected opportunity design loss. Three methods provided estimates of σ which were much less biased but had greater mean square errors than the usual estimate of σ: s = (1/(n - 1) ∑ (xi −x¯)2)½. The three methods may be briefly characterized as (1) a method using a maximum likelihood estimate of the unbiasing factor, (2) a method using an empirical Bayes estimate of the unbiasing factor, and (3) a robust nonparametric estimate of σ suggested by Quenouille. Because s tends to underestimate σ, its use as an estimate of a model parameter results in a tendency to underdesign. If underdesign losses are considered more serious than overdesign losses, then the choice of one of the less biased methods may be wise.
IkeNet: Social Network Analysis of E-mail Traffic in the Eisenhower Leadership Development Program
2007-11-01
8217Create the recipients TO TempArray = Sphit(strTo,") For Each varArrayltem In TemnpArray hextGuy = Chr(34) & CStr (Trim(varArrayltem)) & Chr(34) MsgBox...34next guy = " & nextGuy ’Set oRecipient = Recipients.Add(nextGuy) Set oRecipient = Recipients.Add( CStr (Trim(varArrayItem))) oRecipient.Type = olTo...TempArray = Split(strAttachments, "" For Each varArrayltern In TempArray .Attachments.Add CStr (Trim(varArrayItem)) Next varArrayltern .Send No return value
Takano, Atsuko
2017-01-01
Both Salvia akiensis and S. lutescens (Lamiaceae) are endemic to Japan. Salvia akiensis was recently described in 2014 in the Chugoku (= SW Honshu) region, and each four varieties of S. lutescens distributed allopatrically. Among varieties in S. lutescens , var. intermedia show a disjunctive distribution in the Kanto (=E Honshu) and Kinki (= W Honshu) regions. Recent field studies of S. lutescens var. intermedia revealed several morphological differences between the Kanto and Kinki populations. Here, I evaluated these differences among Salvia lutescens var. intermedia and its allies with morphological analysis and molecular phylogenetic analyses of nuclear ribosomal DNA (internal and external transcribed spacer regions) and plastid DNA ( ycf1-rps15 spacer, rbcL , and trnL-F ) sequences. Both morphological analysis and molecular phylogenetic analyses showed that S. lutescens var. intermedia from the Kinki region and var. lutescens were closely related to each other. However, var. intermedia from the Kanto region exhibited an association with S. lutescens var. crenata and var. stolonifera, which also grew in eastern Japan, rather than var. intermedia in the Kinki region. These results indicated that S. lutescens var. intermedia is not a taxon with a disjunctive distribution, but a combination of two or more allopatric taxa. Present study also suggested that S. akiensis was most closely related to S. omerocalyx .
Naested, Henrik; Holm, Agnethe; Jenkins, Tom; Nielsen, H Bjørn; Harris, Cassandra A; Beale, Michael H; Andersen, Mathias; Mant, Alexandra; Scheller, Henrik; Camara, Bilal; Mattsson, Ole; Mundy, John
2004-09-15
The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3 protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development.
A short-term ensemble wind speed forecasting system for wind power applications
NASA Astrophysics Data System (ADS)
Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.
2011-12-01
This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.
Thies, Judy A.; Ariss, Jennifer J.; Kousik, Chandrasekar S.; Hassell, Richard L.; Levi, Amnon
2016-01-01
Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN. PMID:27168648
Thies, Judy A; Ariss, Jennifer J; Kousik, Chandrasekar S; Hassell, Richard L; Levi, Amnon
2016-03-01
Southern root-knot nematode (RKN, Meloidogyne incognita) is a serious pest of cultivated watermelon (Citrullus lanatus var. lanatus) in southern regions of the United States and no resistance is known to exist in commercial watermelon cultivars. Wild watermelon relatives (Citrullus lanatus var. citroides) have been shown in greenhouse studies to possess varying degrees of resistance to RKN species. Experiments were conducted over 2 yr to assess resistance of southern RKN in C. lanatus var. citroides accessions from the U.S. Watermelon Plant Introduction Collection in an artificially infested field site at the U.S. Vegetable Laboratory in Charleston, SC. In the first study (2006), 19 accessions of C. lanatus var. citroides were compared with reference entries of Citrullus colocynthis and C. lanatus var. lanatus. Of the wild watermelon accessions, two entries exhibited significantly less galling than all other entries. Five of the best performing C. lanatus var. citroides accessions were evaluated with and without nematicide at the same field site in 2007. Citrullus lanatus var. citroides accessions performed better than C. lanatus var. lanatus and C. colocynthis. Overall, most entries of C. lanatus var. citroides performed similarly with and without nematicide treatment in regard to root galling, visible egg masses, vine vigor, and root mass. In both years of field evaluations, most C. lanatus var. citroides accessions showed lesser degrees of nematode reproduction and higher vigor and root mass than C. colocynthis and C. lanatus var. lanatus. The results of these two field evaluations suggest that wild watermelon populations may be useful sources of resistance to southern RKN.
Using ClinVar as a Resource to Support Variant Interpretations
Harrison, Steven M.; Riggs, Erin R.; Maglott, Donna R.; Lee, Jennifer M.; Azzariti, Danielle R.; Niehaus, Annie; Ramos, Erin M.; Martin, Christa L.; Landrum, Melissa J.; Rehm, Heidi L.
2016-01-01
ClinVar is a freely accessible, public archive of reports of the relationships among genomic variants and phenotypes. To facilitate evaluation of the clinical significance of each variant, ClinVar aggregates submissions of the same variant, displays supporting data from each submission, and determines if the submitted clinical interpretations are conflicting or concordant. The unit describes how to (1) identify sequence and structural variants of interest in ClinVar with by multiple searching approaches, including Variation Viewer and (2) understand the display of submissions to ClinVar and the evidence supporting each interpretation. By following this protocol, ClinVar users will be able to learn how to incorporate the wealth of resources and knowledge in ClinVar into variant curation and interpretation. PMID:27037489
Same- and Other-Sex Popularity and Preference during Early Adolescence
ERIC Educational Resources Information Center
Bowker, Julie C.; Adams, Ryan E.; Bowker, Matthew H.; Fisher, Carrie; Spencer, Sarah V.
2016-01-01
This study examined the longitudinal and bidirectional relations between same-sex (SS) and other-sex (OS) popularity and preference across one school year. Participants were 271 sixth-grade students who completed peer nomination measures at three time points in their schools. Tests of cross-lagged autoregressive models indicated that SS popularity…
Automated Analysis of CT Images for the Inspection of Hardwood Logs
Harbin Li; A. Lynn Abbott; Daniel L. Schmoldt
1996-01-01
This paper investigates several classifiers for labeling internal features of hardwood logs using computed tomography (CT) images. A primary motivation is to locate and classify internal defects so that an optimal cutting strategy can be chosen. Previous work has relied on combinations of low-level processing, image segmentation, autoregressive texture modeling, and...
Happiness Is the Way: Paths to Civic Engagement between Young Adulthood and Midlife
ERIC Educational Resources Information Center
Fang, Shichen; Galambos, Nancy L.; Johnson, Matthew D.; Krahn, Harvey J.
2018-01-01
Directional associations between civic engagement and happiness were explored with longitudinal data from a community sample surveyed four times from age 22 to 43 (n = 690). Autoregressive cross-lagged models, controlling for cross-time stabilities in happiness and civic engagement, examined whether happiness predicted future civic engagement,…
Using Fit Indexes to Select a Covariance Model for Longitudinal Data
ERIC Educational Resources Information Center
Liu, Siwei; Rovine, Michael J.; Molenaar, Peter C. M.
2012-01-01
This study investigated the performance of fit indexes in selecting a covariance structure for longitudinal data. Data were simulated to follow a compound symmetry, first-order autoregressive, first-order moving average, or random-coefficients covariance structure. We examined the ability of the likelihood ratio test (LRT), root mean square error…
ERIC Educational Resources Information Center
Bobbitt, Larry; Otto, Mark
Three Autoregressive Integrated Moving Averages (ARIMA) forecast procedures for Census Bureau X-11 concurrent seasonal adjustment were empirically tested. Forty time series from three Census Bureau economic divisions (business, construction, and industry) were analyzed. Forecasts were obtained from fitted seasonal ARIMA models augmented with…
Using Threshold Autoregressive Models to Study Dyadic Interactions
ERIC Educational Resources Information Center
Hamaker, Ellen L.; Zhang, Zhiyong; van der Maas, Han L. J.
2009-01-01
Considering a dyad as a dynamic system whose current state depends on its past state has allowed researchers to investigate whether and how partners influence each other. Some researchers have also focused on how differences between dyads in their interaction patterns are related to other differences between them. A promising approach in this area…
Education and Economic Growth in Pakistan: A Cointegration and Causality Analysis
ERIC Educational Resources Information Center
Afzal, Muhammad; Rehman, Hafeez Ur; Farooq, Muhammad Shahid; Sarwar, Kafeel
2011-01-01
This study explored the cointegration and causality between education and economic growth in Pakistan by using time series data on real gross domestic product (RGDP), labour force, physical capital and education from 1970-1971 to 2008-2009 were used. Autoregressive Distributed Lag (ARDL) Model of Cointegration and the Augmented Granger Causality…
QAARM: quasi-anharmonic autoregressive model reveals molecular recognition pathways in ubiquitin
Savol, Andrej J.; Burger, Virginia M.; Agarwal, Pratul K.; Ramanathan, Arvind; Chennubhotla, Chakra S.
2011-01-01
Motivation: Molecular dynamics (MD) simulations have dramatically improved the atomistic understanding of protein motions, energetics and function. These growing datasets have necessitated a corresponding emphasis on trajectory analysis methods for characterizing simulation data, particularly since functional protein motions and transitions are often rare and/or intricate events. Observing that such events give rise to long-tailed spatial distributions, we recently developed a higher-order statistics based dimensionality reduction method, called quasi-anharmonic analysis (QAA), for identifying biophysically-relevant reaction coordinates and substates within MD simulations. Further characterization of conformation space should consider the temporal dynamics specific to each identified substate. Results: Our model uses hierarchical clustering to learn energetically coherent substates and dynamic modes of motion from a 0.5 μs ubiqutin simulation. Autoregressive (AR) modeling within and between states enables a compact and generative description of the conformational landscape as it relates to functional transitions between binding poses. Lacking a predictive component, QAA is extended here within a general AR model appreciative of the trajectory's temporal dependencies and the specific, local dynamics accessible to a protein within identified energy wells. These metastable states and their transition rates are extracted within a QAA-derived subspace using hierarchical Markov clustering to provide parameter sets for the second-order AR model. We show the learned model can be extrapolated to synthesize trajectories of arbitrary length. Contact: ramanathana@ornl.gov; chakracs@pitt.edu PMID:21685101
Granger causality for state-space models
NASA Astrophysics Data System (ADS)
Barnett, Lionel; Seth, Anil K.
2015-04-01
Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.
Mac Nally, Ralph; Thomson, James R.; Kimmerer, Wim J.; Feyrer, Frederick; Newman, Ken B.; Sih, Andy; Bennett, William A.; Brown, Larry; Fleishman, Erica; Culberson, Steven D.; Castillo, Gonzalo
2010-01-01
Four species of pelagic fish of particular management concern in the upper San Francisco Estuary, California, USA, have declined precipitously since ca. 2002: delta smelt (Hypomesus transpacificus), longfin smelt (Spirinchus thaleichthys), striped bass (Morone saxatilis), and threadfin shad (Dorosoma petenense). The estuary has been monitored since the late 1960s with extensive collection of data on the fishes, their pelagic prey, phytoplankton biomass, invasive species, and physical factors. We used multivariate autoregressive (MAR) modeling to discern the main factors responsible for the declines. An expert-elicited model was built to describe the system. Fifty-four relationships were built into the model, only one of which was of uncertain direction a priori. Twenty-eight of the proposed relationships were strongly supported by or consistent with the data, while 26 were close to zero (not supported by the data but not contrary to expectations). The position of the 2 isohaline (a measure of the physical response of the estuary to freshwater flow) and increased water clarity over the period of analyses were two factors affecting multiple declining taxa (including fishes and the fishes' main zooplankton prey). Our results were relatively robust with respect to the form of stock–recruitment model used and to inclusion of subsidiary covariates but may be enhanced by using detailed state–space models that describe more fully the life-history dynamics of the declining species.
Assessing the effects of pharmacological agents on respiratory dynamics using time-series modeling.
Wong, Kin Foon Kevin; Gong, Jen J; Cotten, Joseph F; Solt, Ken; Brown, Emery N
2013-04-01
Developing quantitative descriptions of how stimulant and depressant drugs affect the respiratory system is an important focus in medical research. Respiratory variables-respiratory rate, tidal volume, and end tidal carbon dioxide-have prominent temporal dynamics that make it inappropriate to use standard hypothesis-testing methods that assume independent observations to assess the effects of these pharmacological agents. We present a polynomial signal plus autoregressive noise model for analysis of continuously recorded respiratory variables. We use a cyclic descent algorithm to maximize the conditional log likelihood of the parameters and the corrected Akaike's information criterion to choose simultaneously the orders of the polynomial and the autoregressive models. In an analysis of respiratory rates recorded from anesthetized rats before and after administration of the respiratory stimulant methylphenidate, we use the model to construct within-animal z-tests of the drug effect that take account of the time-varying nature of the mean respiratory rate and the serial dependence in rate measurements. We correct for the effect of model lack-of-fit on our inferences by also computing bootstrap confidence intervals for the average difference in respiratory rate pre- and postmethylphenidate treatment. Our time-series modeling quantifies within each animal the substantial increase in mean respiratory rate and respiratory dynamics following methylphenidate administration. This paradigm can be readily adapted to analyze the dynamics of other respiratory variables before and after pharmacologic treatments.
NASA Astrophysics Data System (ADS)
Jia, Song; Xu, Tian-he; Sun, Zhang-zhen; Li, Jia-jing
2017-02-01
UT1-UTC is an important part of the Earth Orientation Parameters (EOP). The high-precision predictions of UT1-UTC play a key role in practical applications of deep space exploration, spacecraft tracking and satellite navigation and positioning. In this paper, a new prediction method with combination of Gray Model (GM(1, 1)) and Autoregressive Integrated Moving Average (ARIMA) is developed. The main idea is as following. Firstly, the UT1-UTC data are preprocessed by removing the leap second and Earth's zonal harmonic tidal to get UT1R-TAI data. Periodic terms are estimated and removed by the least square to get UT2R-TAI. Then the linear terms of UT2R-TAI data are modeled by the GM(1, 1), and the residual terms are modeled by the ARIMA. Finally, the UT2R-TAI prediction can be performed based on the combined model of GM(1, 1) and ARIMA, and the UT1-UTC predictions are obtained by adding the corresponding periodic terms, leap second correction and the Earth's zonal harmonic tidal correction. The results show that the proposed model can be used to predict UT1-UTC effectively with higher middle and long-term (from 32 to 360 days) accuracy than those of LS + AR, LS + MAR and WLS + MAR.
NASA Astrophysics Data System (ADS)
Riedl, M.; Suhrbier, A.; Malberg, H.; Penzel, T.; Bretthauer, G.; Kurths, J.; Wessel, N.
2008-07-01
The parameters of heart rate variability and blood pressure variability have proved to be useful analytical tools in cardiovascular physics and medicine. Model-based analysis of these variabilities additionally leads to new prognostic information about mechanisms behind regulations in the cardiovascular system. In this paper, we analyze the complex interaction between heart rate, systolic blood pressure, and respiration by nonparametric fitted nonlinear additive autoregressive models with external inputs. Therefore, we consider measurements of healthy persons and patients suffering from obstructive sleep apnea syndrome (OSAS), with and without hypertension. It is shown that the proposed nonlinear models are capable of describing short-term fluctuations in heart rate as well as systolic blood pressure significantly better than similar linear ones, which confirms the assumption of nonlinear controlled heart rate and blood pressure. Furthermore, the comparison of the nonlinear and linear approaches reveals that the heart rate and blood pressure variability in healthy subjects is caused by a higher level of noise as well as nonlinearity than in patients suffering from OSAS. The residue analysis points at a further source of heart rate and blood pressure variability in healthy subjects, in addition to heart rate, systolic blood pressure, and respiration. Comparison of the nonlinear models within and among the different groups of subjects suggests the ability to discriminate the cohorts that could lead to a stratification of hypertension risk in OSAS patients.
Dynamic Forecasting of Zika Epidemics Using Google Trends
Jin, Yuan; Huang, Yong; Lin, Baihan; An, Xiaoping; Feng, Dan; Tong, Yigang
2017-01-01
We developed a dynamic forecasting model for Zika virus (ZIKV), based on real-time online search data from Google Trends (GTs). It was designed to provide Zika virus disease (ZVD) surveillance and detection for Health Departments, and predictive numbers of infection cases, which would allow them sufficient time to implement interventions. In this study, we found a strong correlation between Zika-related GTs and the cumulative numbers of reported cases (confirmed, suspected and total cases; p<0.001). Then, we used the correlation data from Zika-related online search in GTs and ZIKV epidemics between 12 February and 20 October 2016 to construct an autoregressive integrated moving average (ARIMA) model (0, 1, 3) for the dynamic estimation of ZIKV outbreaks. The forecasting results indicated that the predicted data by ARIMA model, which used the online search data as the external regressor to enhance the forecasting model and assist the historical epidemic data in improving the quality of the predictions, are quite similar to the actual data during ZIKV epidemic early November 2016. Integer-valued autoregression provides a useful base predictive model for ZVD cases. This is enhanced by the incorporation of GTs data, confirming the prognostic utility of search query based surveillance. This accessible and flexible dynamic forecast model could be used in the monitoring of ZVD to provide advanced warning of future ZIKV outbreaks. PMID:28060809
Work-related accidents among the Iranian population: a time series analysis, 2000–2011
Karimlou, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood
2015-01-01
Background Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. Objectives To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. Methods In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box–Jenkins modeling to develop a time series model of the total number of accidents. Results There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). Conclusions The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection. PMID:26119774
Work-related accidents among the Iranian population: a time series analysis, 2000-2011.
Karimlou, Masoud; Salehi, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood
2015-01-01
Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box-Jenkins modeling to develop a time series model of the total number of accidents. There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection.