Sample records for autosid mber naftaeikidele

  1. Numerical modeling of an electrically enhanced membrane bioreactor (MBER) treating medium-strength wastewater.


    Giwa, Adewale; Hasan, Shadi Wajih


    In this paper, a numerical model of an electrically enhanced membrane bioreactor (MBER) was developed. MBER is a reactor that combines biological decomposition, membrane filtration and electrocoagulation of wastewater pollutants in a hybrid unit. To assess its design, the final contents and removal efficiencies of organics, nutrients, and metals were carried out using varying influent compositions. In a 60-day test of a laboratory-scale MBER, experimental results were used to calibrate and validate the model. The modeling results were in agreement with the experimental data and showed that the MBER can remove 99% of total phosphorus (TP), 99.9% of chemical oxygen demand (COD), 91% of total nitrogen (TN), 79% of nickel (Ni), 89% of iron (Fe), and 80% of chromium (Cr), using a current density of 15 A/m(2) intermittently supplied in a cycle of 5 min ON and 15 min OFF. PMID:26340520

  2. Development of a dynamic mathematical model for membrane bioelectrochemical reactors with different configurations.


    Li, Jian; He, Zhen


    Membrane bioelectrochemical reactors (MBERs) integrate membrane filtration into bioelectrochemical systems for sustainable wastewater treatment and recovery of bioenergy and other resource. Mathematical models for MBERs will advance the understanding of this technology towards further development. In the present study, a mathematical model was implemented for predicting current generation, membrane fouling, and organic removal within MBERs. The relative root-mean-square error was used to examine the model fit to the experimental data. It was found that a constant to determine how fast the internal resistance responds to the change of the anodophillic microorganism concentration could have a dominant impact on current generation. Hydraulic cross-flow exhibited a minor effect on membrane fouling unless it was reduced below 0.5 m s(-1). This MBER model encourages further optimization and eventually can be used to guide MBER development. PMID:26499198

  3. Cardinality Balanced Multi-Target Multi-Bernoulli Filter with Error Compensation.


    He, Xiangyu; Liu, Guixi


    The cardinality balanced multi-target multi-Bernoulli (CBMeMBer) filter developed recently has been proved an effective multi-target tracking (MTT) algorithm based on the random finite set (RFS) theory, and it can jointly estimate the number of targets and their states from a sequence of sensor measurement sets. However, because of the existence of systematic errors in sensor measurements, the CBMeMBer filter can easily produce different levels of performance degradation. In this paper, an extended CBMeMBer filter, in which the joint probability density function of target state and systematic error is recursively estimated, is proposed to address the MTT problem based on the sensor measurements with systematic errors. In addition, an analytic implementation of the extended CBMeMBer filter is also presented for linear Gaussian models. Simulation results confirm that the proposed algorithm can track multiple targets with better performance. PMID:27589764

  4. A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment.


    Li, Jian; Ge, Zheng; He, Zhen


    A fluidized bed membrane bioelectrochemical reactor (MBER) was investigated using fluidized granular activated carbon (GAC) as a mean of membrane fouling control. During the 150-day operation, the MBER generated electricity with contaminant removal from either synthetic solution or actual wastewater, as a standalone or a coupled system. It was found that fluidized GAC could significantly reduce transmembrane pressure (TMP), although its function as a part of the anode electrode was minor. When the MBER was linked to a regular microbial fuel cell (MFC) for treating a wastewater from a cheese factory, the MFC acted as a major process for energy recovery and contaminant removal, and the coupled system removed more than 90% of chemical oxygen demand and >80% of suspended solids. The analysis showed that the ratio of energy recovery and consumption was slightly larger than one, indicating that the coupled system could be theoretically energy neutral. PMID:24997373

  5. Applications of Subleading-Color Amplitudes in N = 4 SYM Theory


    Naculich, Stephen G.; Nastase, Horatiu; Schnitzer, Howard J.


    A numore » mber of features and applications of subleading-color amplitudes of N = 4 SYM theory are reviewed. Particular attention is given to the IR divergences of the subleading-color amplitudes, the relationships of N = 4 SYM theory to N = 8 supergravity, and to geometric interpretations of one-loop subleading-color and N k MHV amplitudes of N = 4 SYM theory.« less

  6. On the color-tuning mechanism of Human-Blue visual pigment: SAC-CI and QM/MM study

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro; Hasegawa, Jun-ya; Hayashi, Shigehiko; Nakatsuji, Hiroshi


    Color-tuning mechanism of Human-Blue pigment, visual color-receptor in the cone cells of the eye, has been investigated. Based on a previous Homology-modeling structure and experimental evidences, a working model was constructed, and the structure has been optimized by QM(B3LYP)/MM(A MBER) method. SAC-CI calculation was performed to obtain photo-absorption energy. The calculated absorption energy reasonably agrees with the experiment. A decomposition analysis was performed and compared with the case of Bovine rhodopsin. The electrostatic effect from the opsin is primarily important for the color-tuning. The electronic interaction (quantum effect) of the counter-residue is indispensable for quantitative calculation of the absorption energy.

  7. Measurement of the electric quadrupole moment of N2O

    NASA Astrophysics Data System (ADS)

    Chetty, Naven; Couling, Vincent W.


    Measurements of the temperature dependence of the Buckingham effect (electric-field-gradient-induced birefringence, EFGIB) for gaseous nitrous oxide are presented. Measurements span the temperature range 298.5-473.9 K, which allows for separation of the temperature-independent hyperpolarizability term from the temperature-dependent quadrupole term, yielding a quadrupole moment of Θ = (-11.03 ± 0.41) × 10-40 C m2, and a hyperpolarizability term of b = (-0.638 ± 0.063) × 10-60 C3 m4 J-2. For dipolar molecules, the quadrupole moment is origin dependent, and the value reported here is referred to an origin called the effective quadrupole center (EQC). Comparison of this value with the center of mass (CM) quadrupole moment obtained from MBER experiments yields information about the dynamic dipole-quadrupole and dipole-magnetic dipole polarizabilities. The temperature-independent term, previously assumed to contribute negligibly to the EFGIB, is found to contribute some (5.2 ± 0.6)% to the effect at room temperature and clearly needs to be accounted for if the quadrupole moment is to be definitively established.

  8. Evolutionary strategies for solving optimization problems

    NASA Astrophysics Data System (ADS)

    Ebeling, Werner; Reimann, Axel; Molgedey, Lutz

    We will give a survey of applications of thermodynamically and biologically oriented evolutionary strategies for optimization problems. Primarily, we investigate the solution of discrete optimization problems, most of combinatorial type, using a certain class of coupled differential equations. The problem is to find the minimum on a large set of real numbers (the potential) Ui, defined on the integer set i = 1 ...s, where s is an extremely large nu mber. The stationary states of the system correspond to relative optima on the discrete set. First, several elementary evolutionary strategies are described by simple deterministic equations, leading to a high-dimensional system of coupled differential equations. The known equations for thermodynamic search processes and for simple models of biological evolution are unified by defining a two-parameter family of equations which embed both cases. The unified equations model mixed Boltzmann/Darwin- strategies including basic elements of thermodynamical and biological evolution as well. In a next step a master equation model in the occupation number space is defined. We investigate the transition probabilities and the convergence properties using tools from the theory of stochastic processes. Several examples are analyzed. In particular we study the optimization of theoretical model sequences with simple valuation rules. In order to demonstrate that the strategies developed here may also be used to investigate realistic problems we present an example application to RNA folding (search for a minimum free energy configuration).

  9. Tables for the Rapid Estimation of Downwash and Sidewash Behind Wings Performing Various Motions at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.


    Equations for the downwash and sidewash due to supersonic yawed and unswept horseshoe vortices have been utilized in formulating tables and charts to permit a rapid estimation of the flow velocities behind wings performing various steady motions. Tabulations are presented of the downwash and sidewash in the wing vertical plane of symmetry due to a unit-strength yawed horseshoe vortex located at 20 equally spaced spanwise positions along lifting lines of various sweeps. (The bound portion of the yawed vortex is coincident with the lifting line.) Charts are presented for the purpose of estimating the spanwise variations of the flow-field velocities and give longitudinal variations of the downwash and sidewash at a nuMber of vertical and spanwise locations due to a unit-strength unswept horseshoe vortex. Use of the tables and charts to calculate wing downwash or sidewash requires a knowledge of the wing spanwise distribution of circulation. Sample computations for the rolling sidewash and angle-of-attack downwash behind a typical swept wing are presented to demonstrate the use of the tables and charts.

  10. Possible cometary bioorganic compounds as sources of planetary biospheres

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Takano, Y.; Kaneko, T.; Hashimoto, H.; Saito, T.

    Complex organi c compound s were discovered in the coma of Comet Halley [1], whi c h suggested that they w er e p ossibl e sources of the terr estria l biosp here. It has not been confirmed, however, that bioorganic compounds like amino acids were contained in comet ary nuclei. It has been hypothe sized that cometary organic compounds wer e formed in interstellar dust particles (ISDs) [2]. A great nu mber of experiments have been done s imulat i ng the condition o ISDf environments. Amino acids were reported to form in simulated ISD environments by proton irradiation [3] and by UV irradiation [4] of simulat ed ISD ice mantles. Here w e discuss nature of bioorganic compounds formed in simul a t e d ISD environments, and compare wit h those f ormed in simulated primitive planet ary atmospheres. A gas mixt ure of carbon monoxi d e, ammonia and water was irradiated wit h high - energy protons, gamma rays or UV light. All of hydrolysates o f the products gave a wide variety of a ino acids, t ogethe r with uracil a d cytosine. When amn mixture of methanol, ammonia and w at e r (1:1:2.8) was irradiated wit h gamma rays or UV light at 77K, 293K or 353K, am ino acids were also detect e d in each hydrolysates: The G-value ( energy yield) of glycine (the most abundant amino acids in the products) was ca. 0.01, which was independent from the temp eratur e or the phase (s olid, liquid or gas). These results s ugg est that amino acid precursors can be formed in ISD environments quite effe c t i vely even if the materials were frozen in low temperature. If comets can bring sufficient kinds and amount of bioorganic co mpou nds to planets, planetary biospheres can be generated, regardless of the comp osit ion of planet ary atmospheres. It will be quite interesting to find and analyze cometary organics left in planets and satellites such as the moon, as wel l as in cometary bodies. [1] J. Kissel and F. R. Kreuger, Natur e, 326, 755 (1987). [2] J. M. Greenberg and A. Li, Adv. Space

  11. Enhanced vector borne disease surveillance of California Culex mosquito populations reveals spatial and species-specific barriers of infection.

    SciTech Connect

    VanderNoot, Victoria A.; Curtis, Deanna Joy; Koh, Chung-Yan; Brodsky, Benjamin H; Lane, Todd


    Monitor i ng in f ectio n s in v ect o rs su c h as m osquit o es, s a nd fl i es, tsetse fl i es, a nd ticks to i denti f y hu m a n path o gens m a y s e r v e as a n ear l y w arn i ng det e ction system t o dir e ct loc a l g o v er n ment dise a se pr e v en t i v e m easu r e s . One major hurdle i n de t ection is the abi l i t y to scre e n l arge n u mbers of v e c t ors for h uman patho g ens w i thout t h e u s e of ge n o t y pe - s p ecific m o lecu l ar tec h nique s . N e x t genera t ion s equ e nc i ng (NG S ) pr o v i des a n unbi a sed p latfo r m capab l e of identi f y i ng k n o w n a n d unk n o w n p ath o ge n s circula t ing w i thin a v e ctor p opul a tion, but utili z ing t h is te c h nolo g y i s tim e - con s u ming a n d cos t l y for v ecto r -b o rne disease su r v e illan c e pr o gra m s. T o addr e s s this w e d e v e lop e d cos t -eff e ct i v e Ilumina(r) R NA- S eq l i bra r y p r epara t ion m e thodol o gies i n con j u n ction w i t h an automa t ed c ompu t at i onal a n a l y sis pipel i n e to ch a racter i ze t h e microbial popula t ions c ircula t i n g in Cu l e x m o squit o e s (Cul e x qui n quef a s c iatu s , C ul e x quinq u efasc i atus / pip i ens co m pl e x h y bri d s, and C u l e x ta r salis ) t hroug h out Californ i a. W e assembled 2 0 n o vel a n d w e l l -do c ume n ted a r b o v i ruses repres e nting mem b e rs of B u n y a v ir i da e , F l a v i virid a e, If a virida e , Meson i v i rida e , Nid o v iri d ae, O rtho m y x o virid a e, Pa r v o v iri d ae, Re o virid a e, R h a b d o v i rid a e, T y m o v iri d ae, a s w ell as s e v e r al u n assi g n e d v irus e s . In addit i o n, w e m app e d mRNA s pecies to d i vergent s peci e s of t r y panos o ma a nd pl a s modium eu k a r yotic parasit e s and cha r a c terized t he p r oka r yot i c microb i al c o mposit i on to i d enti f y bacteri a l tran s c r ipts der i v ed from wolba c hia, clo s tridi u m, m y c oplas m a, fusoba c

  12. A spatially referenced regression model (SPARROW) for suspended sediment in streams of the Conterminous U.S.

    USGS Publications Warehouse

    Schwarz, Gregory E.; Smith, Richard A.; Alexander, Richard B.; Gray, John R.


    Suspended sediment has long been recognized as an important contaminant affecting water resources. Besides its direct role in determining water clarity, bridge scour and reservoir storage, sediment serves as a vehicle for the transport of many binding contaminants, including nutrients, trace metals, semi-volatile organic compounds, a nd numerous pesticides (U.S. Environmental Protection Agency, 2000a). Recent efforts to addr ess water-quality concerns through the Total Maximum Daily Load (TMDL) process have iden tified sediment as the single most prevalent cause of impairment in the Nation’s streams a nd rivers (U.S. Environmental Protection Agency, 2000b). Moreover, sediment has been identified as a medium for the tran sport and sequestration of organic carbon, playing a potentia lly important role in understa nding sources and sinks in the global carbon budget (Stallard, 1998). A comprehensive understanding of sediment fate a nd transport is considered essential to the design and implementation of effective plans for sediment management (Osterkamp and others, 1998, U.S. General Accounting Office, 1990). An exte nsive literature addr essing the problem of quantifying sediment transport has produced a nu mber of methods for estimating its flux (see Cohn, 1995, and Robertson and Roerish, 1999, for us eful surveys). The accuracy of these methods is compromised by uncertainty in the concentration measurements and by the highly episodic nature of sediment movement, particul arly when the methods are applied to smaller basins. However, for annual or decadal flux es timates, the methods are generally reliable if calibrated with extended periods of data (Robertson and Roerish, 1999). A substantial literature also supports the Universal Soil Loss Equation (U SLE) (Soil Conservation Service, 1983), an engineering method for estimating sheet and rill erosion, although the empirical credentials of the USLE have recently been questioned (Tri mble and Crosson, 2000