Science.gov

Sample records for autosomal recessive mental

  1. Late infantile autosomal recessive myotonia, mental retardation, and skeletal abnormalities: a new autosomal recessive syndrome.

    PubMed Central

    Richieri-Costa, A; Garcia da Silva, S M; Frota-Pessoa, O

    1984-01-01

    Four sibs of non-consanguineous parents who had myotonia from late infancy are described. Mild to moderate mental retardation, severe bone abnormalities of the vertebral column (mainly in the thoracolumbar region), and short stature were also observed. Autosomal recessive inheritance is demonstrated. These cases are compared with reported cases of the Schwartz-Jampel syndrome. Images PMID:6716408

  2. Autosomal recessive

    MedlinePlus

    ... and the other gene comes from the father. Recessive inheritance means both genes in a pair must be abnormal to cause ... born to parents who carry the same autosomal recessive change ... abnormal gene from both parents and developing the disease. You ...

  3. Autosomal recessive mental retardation syndrome with anterior maxillary protrusion and strabismus: MRAMS syndrome.

    PubMed

    Basel-Vanagaite, Lina; Rainshtein, Limor; Inbar, Dov; Gothelf, Doron; Hennekam, Raoul; Straussberg, Rachel

    2007-08-01

    We report on a family in whom the combination of mental retardation (MR), anterior maxillary protrusion, and strabismus segregates. The healthy, consanguineous parents (first cousins) of Israeli-Arab descent had 11 children, 7 of whom (5 girls) were affected. They all had severe MR. Six of the seven had anterior maxillary protrusion with vertical maxillary excess, open bite, and prominent crowded teeth. None of the sibs with normal intelligence had jaw or dental anomalies. The child with MR but without a jaw anomaly was somewhat less severely retarded, had seizures and severe psychosis, which may point to his having a separate disorder. Biochemical and neurological studies, including brain MRI and standard cytogenetic studies, yielded normal results; fragile X was excluded, no subtelomeric rearrangements were detectable, and X-inactivation studies in the mother showed random inactivation. We have been unable to find a similar disorder in the literature, and suggest that this is a hitherto unreported autosomal recessive disorder, which we propose to name MRAMS (mental retardation, anterior maxillary protrusion, and strabismus).

  4. Autosomal recessive epidermolytic palmoplantar keratoderma.

    PubMed

    Alsaleh, Q A; Teebi, A S

    1990-08-01

    Palmoplantar keratoderma (PPK) is a heterogeneous group of disorders. Epidermolytic PPK is a well delineated autosomal dominant entity, but no recessive form is known. Here we report two sons of phenotypically normal, consanguineous, Arab parents with features suggestive of PPK. They presented with patchy eczematous skin lesions followed by PPK and raised serum levels of IgE. Skin biopsy from the keratotic lesions showed the features of epidermolytic hyperkeratosis. Autosomal recessive inheritance is suggested and the differential diagnosis is discussed.

  5. Dentinogenesis imperfecta associated with short stature, hearing loss and mental retardation: a new syndrome with autosomal recessive inheritance?

    PubMed

    Cauwels, R G E C; De Coster, P J; Mortier, G R; Marks, L A M; Martens, L C

    2005-08-01

    The follow-up history and oral findings in two brothers from consanguineous parents suggest that the association of dentinogenesis imperfecta (DI), delayed tooth eruption, mild mental retardation, proportionate short stature, sensorineural hearing loss and dysmorphic facies may represent a new syndrome with autosomal recessive inheritance. Histological examination of the dentin matrix of a permanent molar from one of the siblings reveals morphological similarities with defective dentinogenesis as presenting in patients affected with Osteogenesis Imperfecta (OI), a condition caused by deficiency of type I collagen. A number of radiographic and histological characteristics, however, are inconsistent with classical features of DI. These findings suggest that DI may imply greater genetical heterogeneity than currently assumed.

  6. MORM syndrome (mental retardation, truncal obesity, retinal dystrophy and micropenis), a new autosomal recessive disorder, links to 9q34.

    PubMed

    Hampshire, Daniel J; Ayub, Mohammed; Springell, Kelly; Roberts, Emma; Jafri, Hussain; Rashid, Yasmin; Bond, Jacquelyn; Riley, John H; Woods, C Geoffrey

    2006-05-01

    A consanguineous pedigree is described where 14 individuals are affected with a novel autosomal recessive disorder, which causes static moderate mental retardation, truncal obesity, a congenital nonprogressive retinal dystrophy and micropenis in males. We have tentatively named this condition MORM syndrome. It shows similarities to Bardet-Biedl syndrome and Cohen syndrome, but can be distinguished by clinical features; the age of onset and nonprogressive nature of the visual impairment, the lack of characteristic facies, skin or gingival infection, microcephaly, 'mottled retina', polydactyly and small penis without testicular anomalies. Furthermore, linkage to the known Bardet-Biedl (BBS1-8) and Cohen syndrome loci was excluded. Autozygosity mapping identified a single homozygous subtelomeric region shared by all affecteds on chromosome 9q34.3, with a maximum LOD score of 5.64. We believe this to be the first example of the identification of a subtelomeric recessive locus by autozygosity mapping.

  7. Autosomal recessive epidermolytic palmoplantar keratoderma.

    PubMed Central

    Alsaleh, Q A; Teebi, A S

    1990-01-01

    Palmoplantar keratoderma (PPK) is a heterogeneous group of disorders. Epidermolytic PPK is a well delineated autosomal dominant entity, but no recessive form is known. Here we report two sons of phenotypically normal, consanguineous, Arab parents with features suggestive of PPK. They presented with patchy eczematous skin lesions followed by PPK and raised serum levels of IgE. Skin biopsy from the keratotic lesions showed the features of epidermolytic hyperkeratosis. Autosomal recessive inheritance is suggested and the differential diagnosis is discussed. Images PMID:2145438

  8. Autosomal recessive primary microcephalies (MCPH).

    PubMed

    Kaindl, Angela M

    2014-07-01

    Autosomal recessive primary microcephaly (MCPH) is a genetically heterogeneous disease characterized by a pronounced reduction in volume of otherwise architectonical normal brains and intellectual deficit. Here, we summarize the genetic causes of MCPH types 1-12 known to date. PMID:24780602

  9. Autosomal recessive spastic paraplegia (SPG45) with mental retardation maps to 10q24.3-q25.1.

    PubMed

    Dursun, Umut; Koroglu, Cigdem; Kocasoy Orhan, Elif; Ugur, Sibel Aylin; Tolun, Aslihan

    2009-10-01

    Hereditary spastic paraplegias (HSPs) are characterized by progressive spasticity in the lower limbs. They are clinically heterogeneous, and pure forms as well as complicated forms with other accompanying clinical findings are known. HSPs are also genetically heterogeneous. We performed clinical and genetic studies in a consanguineous family with five affected members. A genome scan using 405 microsatellite markers for eight members of the family identified candidate gene loci, and subsequent fine mapping in 16 members identified the gene locus responsible for the HSP. The clinical manifestations were very early onset spastic paraplegia (SPG) accompanied by mental retardation and ocular signs. The gene locus was identified as the interval 102.05-106.64 Mbp on chromosome 10. Gene MRPL43 was analyzed in the patients. No mutation but high levels of mRNA were detected. We have mapped a novel autosomal recessive complicated form of HSP (SPG45) to a 4.6-Mbp region at 10q24.3-q25.1 with multipoint logarithm of odds scores >4.5.

  10. A new locus for autosomal recessive non-syndromic mental retardation maps to 1p21.1-p13.3.

    PubMed

    Uyguner, O; Kayserili, H; Li, Y; Karaman, B; Nürnberg, G; Hennies, Hc; Becker, C; Nürnberg, P; Başaran, S; Apak, M Y; Wollnik, B

    2007-03-01

    Autosomal recessive inheritance of non-syndromic mental retardation (ARNSMR) may account for approximately 25% of all patients with non-specific mental retardation (NSMR). Although many X-linked genes have been identified as a cause of NSMR, only three autosomal genes are known to cause ARNSMR. We present here a large consanguineous Turkish family with four mentally retarded individuals from different branches of the family. Clinical tests showed cognitive impairment but no neurological, skeletal, and biochemical involvements. Genome-wide mapping using Human Mapping 10K Array showed a single positive locus with a parametric LOD score of 4.92 in a region on chromosome 1p21.1-p13.3. Further analyses using polymorphic microsatellite markers defined a 6.6-Mb critical region containing approximately 130 known genes. This locus is the fourth one linked to ARNSMR.

  11. Genetics Home Reference: autosomal recessive cerebellar ataxia type 1

    MedlinePlus

    ... Health Conditions ARCA1 autosomal recessive cerebellar ataxia type 1 Enable Javascript to view the expand/collapse boxes. ... Close All Description Autosomal recessive cerebellar ataxia type 1 ( ARCA1 ) is a condition characterized by progressive problems ...

  12. Autosomal recessive brachyolmia: early radiological findings.

    PubMed

    Handa, Atsuhiko; Tham, Emma; Wang, Zheng; Horemuzova, Eva; Grigelioniene, Giedre

    2016-11-01

    Brachyolmia (BO) is a heterogeneous group of skeletal dysplasias with skeletal changes limited to the spine or with minimal extraspinal features. BO is currently classified into types 1, 2, 3, and 4. BO types 1 and 4 are autosomal recessive conditions caused by PAPSS2 mutations, which may be merged together as an autosomal recessive BO (AR-BO). The clinical and radiological signs of AR-BO in late childhood have already been reported; however, the early manifestations and their age-dependent evolution have not been well documented. We report an affected boy with AR-BO, whose skeletal abnormalities were detected in utero and who was followed until 10 years of age. Prenatal ultrasound showed bowing of the legs. In infancy, radiographs showed moderate platyspondyly and dumbbell deformity of the tubular bones. Gradually, the platyspondyly became more pronounced, while the bowing of the legs and dumbbell deformities of the tubular bones diminished with age. In late childhood, the overall findings were consistent with known features of AR-BO. Genetic testing confirmed the diagnosis. Being aware of the initial skeletal changes may facilitate early diagnosis of PAPSS2-related skeletal dysplasias. PMID:27544198

  13. An autosomal recessive syndrome of severe mental retardation, cataract, coloboma and kyphosis maps to the pericentromeric region of chromosome 4.

    PubMed

    Kahrizi, Kimia; Najmabadi, Hossein; Kariminejad, Roxana; Jamali, Payman; Malekpour, Mahdi; Garshasbi, Masoud; Ropers, Hans Hilger; Kuss, Andreas Walter; Tzschach, Andreas

    2009-01-01

    We report on three siblings with a novel mental retardation (MR) syndrome who were born to distantly related Iranian parents. The clinical problems comprised severe MR, cataracts with onset in late adolescence, kyphosis, contractures of large joints, bulbous nose with broad nasal bridge, and thick lips. Two patients also had uni- or bilateral iris coloboma. Linkage analysis revealed a single 10.4 Mb interval of homozygosity with significant LOD score in the pericentromeric region of chromosome 4 flanked by SNPs rs728293 (4p12) and rs1105434 (4q12). This interval contains more than 40 genes, none of which has been implicated in MR so far. The identification of the causative gene defect for this syndrome will provide new insights into the development of the brain and the eye.

  14. [Autosomal recessive ethnic diseases of Czech Gypsies].

    PubMed

    Seeman, P; Sisková, D

    2006-01-01

    Roma (Gypsy ethnic) form a genetically isolated ethnical group of the identical origin with the world population of 10 to 14 millions derived from a limited number of so-called founders. Majority (about 8 millions) of Roma ethnic live in Europe, namely at Balkan and in the southwest of Europe. Roma have specific hereditary diseases, namely those caused by recessive genetic mutations. The molecular-genetic mechanism has been recently elucidated and confirmed in several diseases of the Roma population. Owing to the significant proportion of Roma in the population, patients with those diseases are possible to meet also in the Czech Republic. However, the diagnostics of those diseases is frequently difficult and they are often under diagnosed or misdiagnosed. The article gives examples of autosomal recessive diseases, which can be confirmed at the DNA level which occur in Roma population of the Czech Republic: syndrome of congenital cataract, facial dysmorphism and demyelinating neuropathy, non-syndromic prelingual deafness with GJB2 gene impairment and the congenital myastenic syndrome. PMID:16921785

  15. A new autosomal recessive non-progressive congenital cerebellar ataxia associated with mental retardation, optic atrophy, and skin abnormalities (CAMOS) maps to chromosome 15q24-q26 in a large consanguineous Lebanese Druze Family.

    PubMed

    Delague, Valérie; Bareil, Corinne; Bouvagnet, Patrice; Salem, Nabiha; Chouery, Eliane; Loiselet, Jacques; Mégarbané, André; Claustres, Mireille

    2002-03-01

    Congenital cerebellar ataxias are a heterogeneous group of non-progressive disorders characterized by hypotonia and developmental delay followed by the appearance of ataxia, and often associated with dysarthria, mental retardation, and atrophy of the cerebellum. We report the mapping of a disease gene in a large inbred Lebanese Druze family, with five cases of a new form of non-progressive autosomal recessive congenital ataxia associated with optic atrophy, severe mental retardation, and structural skin abnormalities, to a 3.6-cM interval on chromosome 15q24-15q26.

  16. Molecular mechanisms of autosomal recessive hypercholesterolemia.

    PubMed

    Wilund, Kenneth R; Yi, Ming; Campagna, Filomena; Arca, Marcello; Zuliani, Giovanni; Fellin, Renato; Ho, Yiu-Kee; Garcia, J Victor; Hobbs, Helen H; Cohen, Jonathan C

    2002-11-15

    Mutations in the phosphotyrosine-binding domain protein ARH cause autosomal recessive hypercholesterolemia (ARH), an inherited form of hypercholesterolemia due to a tissue-specific defect in the removal of low density lipoproteins (LDL) from the circulation. LDL uptake by the LDL receptor (LDLR) is markedly reduced in the liver but is normal or only moderately impaired in cultured fibroblasts of ARH patients. To define the molecular mechanism underlying ARH we examined ARH mRNA and protein in fibroblasts and lymphocytes from six probands with different ARH mutations. None of the probands had detectable full-length ARH protein in fibroblasts or lymphoblasts. Five probands were homozygous for mutations that introduced premature termination codons. No relationship was apparent between the site of the mutation in ARH and the amount of mRNA. The only mutation identified in the remaining proband was a SINE VNTR Alu (SVA) retroposon insertion in intron 1, which was associated with no detectable ARH mRNA. (125)I-LDL degradation was normal in ARH fibroblasts, as previously reported. In contrast, LDLR function was markedly reduced in ARH lymphoblasts, despite a 2-fold increase in LDL cell surface binding in these cells. These data indicate that all ARH mutations characterized to date preclude the synthesis of full-length ARH and that ARH is required for normal LDLR function in lymphocytes and hepatocytes, but not in fibroblasts. Residual LDLR function in cells that do not require ARH may explain why ARH patients have lower plasma LDL levels than do patients with homozygous familial hypercholesterolemia who have no functional LDLRs. PMID:12417523

  17. Autosomal Recessive Anhidrotic Ectodermal Dysplasia: A Rare Entity

    PubMed Central

    Ghosh, Sangita; Ghosh, Epsita; Dayal, Surabhi

    2014-01-01

    We describe a case of anhidrotic ectodermal dysplasia (AED) with an autosomal recessive mode of inheritance, a very rare entity, in a 2-year-old female child of two asymptomatic, consanguineous parents. Their previous child also had a similar condition. Autosomal recessive AED (AR-AED) can have its full expression both in males and females and it is clinically indistinguishable from the x-linked recessive AED (XL-AED), which is the most common type of ectodermal dysplasia. Unlike the partially symptomatic carriers of XL-AED, the heterozygotes of AR-AED are phenotypically asymptomatic. PMID:25071285

  18. Genetics Home Reference: autosomal recessive hypotrichosis

    MedlinePlus

    ... erythema), itchiness (pruritus), or missing patches of skin (erosions) on the scalp. In areas of poor hair ... recessive hypotrichosis with monilethrix hairs and congenital scalp erosions. J Invest Dermatol. 2006 Jun;126(6):1286- ...

  19. Autosomal recessive postaxial polydactyly type A in a Sicilian family.

    PubMed Central

    Mollica, F; Volti, S L; Sorge, G

    1978-01-01

    Postaxial polydactyly type A was present in several members of a Sicilian family. The anomaly was probably transmitted as an autosomal recessive character. Two polydactylous subjects were also beta-thalassaemia carriers, but a linkage between the two mutant genes could be excluded. Two patients with hexadactyly had a fifth digital triradius. Images PMID:27639

  20. Many roads lead to primary autosomal recessive microcephaly.

    PubMed

    Kaindl, Angela M; Passemard, Sandrine; Kumar, Pavan; Kraemer, Nadine; Issa, Lina; Zwirner, Angelika; Gerard, Benedicte; Verloes, Alain; Mani, Shyamala; Gressens, Pierre

    2010-03-01

    Autosomal recessive primary microcephaly (MCPH), historically referred to as Microcephalia vera, is a genetically and clinically heterogeneous disease. Patients with MCPH typically exhibit congenital microcephaly as well as mental retardation, but usually no further neurological findings or malformations. Their microcephaly with grossly preserved macroscopic organization of the brain is a consequence of a reduced brain volume, which is evident particularly within the cerebral cortex and thus results to a large part from a reduction of grey matter. Some patients with MCPH further provide evidence of neuronal heterotopias, polymicrogyria or cortical dysplasia suggesting an associated neuronal migration defect. Genetic causes of MCPH subtypes 1-7 include mutations in genes encoding microcephalin, cyclin-dependent kinase 5 regulatory associated protein 2 (CDK5RAP2), abnormal spindle-like, microcephaly associated protein (ASPM), centromeric protein J (CENPJ), and SCL/TAL1-interrupting locus (STIL) as well as linkage to the two loci 19q13.1-13.2 and 15q15-q21. Here, we provide a timely overview of current knowledge on mechanisms leading to microcephaly in humans with MCPH and abnormalities in cell division/cell survival in corresponding animal models. Understanding the pathomechanisms leading to MCPH is of high importance not only for our understanding of physiologic brain development (particularly of cortex formation), but also for that of trends in mammalian evolution with a massive increase in size of the cerebral cortex in primates, of microcephalies of other etiologies including environmentally induced microcephalies, and of cancer formation. PMID:19931588

  1. Mutations in phospholipase DDHD2 cause autosomal recessive hereditary spastic paraplegia (SPG54).

    PubMed

    Gonzalez, Michael; Nampoothiri, Sheela; Kornblum, Cornelia; Oteyza, Andrés Caballero; Walter, Jochen; Konidari, Ioanna; Hulme, William; Speziani, Fiorella; Schöls, Ludger; Züchner, Stephan; Schüle, Rebecca

    2013-11-01

    Hereditary spastic paraplegias (HSP) are a genetically heterogeneous group of disorders characterized by a distal axonopathy of the corticospinal tract motor neurons leading to progressive lower limb spasticity and weakness. Intracellular membrane trafficking, mitochondrial dysfunction and myelin formation are key functions involved in HSP pathogenesis. Only recently defects in metabolism of complex lipids have been implicated in a number of HSP subtypes. Mutations in the 23 known autosomal recessive HSP genes explain less than half of autosomal recessive HSP cases. To identify novel autosomal recessive HSP disease genes, exome sequencing was performed in 79 index cases with autosomal recessive forms of HSP. Resulting variants were filtered and intersected between families to allow identification of new disease genes. We identified two deleterious mutations in the phospholipase DDHD2 gene in two families with complicated HSP. The phenotype is characterized by early onset of spastic paraplegia, mental retardation, short stature and dysgenesis of the corpus callosum. Phospholipase DDHD2 is involved in intracellular membrane trafficking at the golgi/ endoplasmic reticulum interface and has been shown to possess phospholipase A1 activity in vitro. Discovery of DDHD2 mutations in HSP might therefore provide a link between two key pathogenic themes in HSP: membrane trafficking and lipid metabolism.

  2. Parkin gene causing benign autosomal recessive juvenile parkinsonism.

    PubMed

    Nisipeanu, P; Inzelberg, R; Abo Mouch, S; Carasso, R L; Blumen, S C; Zhang, J; Matsumine, H; Hattori, N; Mizuno, Y

    2001-06-12

    Autosomal recessive juvenile parkinsonism (AR-JP) is an early-onset parkinsonism caused by exonic deletions or point mutations in the parkingene. The relationship between the type of the genetic defect and the clinical presentation, the response to therapy, and the evolution have not been yet determined. The authors describe a single-basepair deletion at nucleotide 202 in exon 2 of the parkin gene in a kindred with a benign clinical course. PMID:11402119

  3. A probably distinct autosomal recessive thoraco-limb dysplasia.

    PubMed Central

    Rivera, H; Perez-Salas, J M; Nazara, Z; Ramirez, M L

    1988-01-01

    A Mexican mestizo family is reported in which two opposite sexed sibs, born to consanguineous parents, had a skeletal dysplasia. The salient features were a bell shaped thorax owing to short ribs, short limbed dwarfism, pelvic hypoplasia, dislocatable radial heads, elongated distal fibulae, and improvement with age. It is concluded that the present observation probably represents a distinct autosomal recessive thoraco-limb dysplasia identifiable at birth. Images PMID:3184141

  4. NEW BEST1 MUTATIONS IN AUTOSOMAL RECESSIVE BESTROPHINOPATHY

    PubMed Central

    FUNG, ADRIAN T.; YZER, SUZANNE; GOLDBERG, NAOMI; WANG, HAO; NISSEN, MICHAEL; GIOVANNINI, ALFONSO; MERRIAM, JOANNA E.; BUKANOVA, ELENA N.; CAI, CAROLYN; YANNUZZI, LAWRENCE A.; TSANG, STEPHEN H.; ALLIKMETS, RANDO

    2015-01-01

    Purpose To report the ocular phenotype in patients with autosomal recessive bestrophinopathy and carriers, and to describe novel BEST1 mutations. Methods Patients with clinically suspected and subsequently genetically proven autosomal recessive bestrophinopathy underwent full ophthalmic examination and investigation with fundus autofluorescence imaging, spectral domain optical coherence tomography, electroretinography, and electrooculography. Mutation analysis of the BEST1 gene was performed through direct Sanger sequencing. Results Five affected patients from four families were identified. Mean age was 16 years (range, 6–42 years). All affected patients presented with reduced visual acuity and bilateral, hyperautofluorescent subretinal yellowish deposits within the posterior pole. Spectral domain optical coherence tomography demonstrated submacular fluid and subretinal vitelliform material in all patients. A cystoid maculopathy was seen in all but one patient. In 1 patient, the location of the vitelliform material was seen to change over a follow-up period of 3 years despite relatively stable vision. Visual acuity and fundus changes were unresponsive to topical and systemic carbonic anhydrase inhibitors and systemic steroids. Carriers had normal ocular examinations including normal fundus autofluorescence. Three novel mutations were detected. Conclusion Three novel BEST1 mutations are described, suggesting that many deleterious variants in BEST1 resulting in haploinsufficiency are still unknown. Mutations causing autosomal recessive bestrophinopathy are mostly located outside of the exons that usually harbor vitelliform macular dystrophy–associated dominant mutations. PMID:25545482

  5. Autosomal recessive disorders among Arabs: an overview from Kuwait.

    PubMed

    Teebi, A S

    1994-03-01

    Kuwait has a cosmopolitan population of 1.7 million, mostly Arabs. This population is a mosaic of large and small minorities representing most Arab communities. In general, Kuwait's population is characterized by a rapid rate of growth, large family size, high rates of consanguineous marriages within the Arab communities with low frequency of intermarriage between them, and the presence of genetic isolates and semi-isolates in some extended families and Bedouin tribes. Genetic services have been available in Kuwait for over a decade. During this time it has become clear that Arabs have a high frequency of genetic disorders, and in particular autosomal recessive traits. Their pattern is unique and some disorders are relatively common. Examples are Bardet-Biedl and Meckel syndromes, phenylketonuria, and familial Mediterranean fever. A relatively large number of new syndromes and variants have been delineated in Kuwait's population, many being the result of homozygosity for autosomal recessive genes that occurred because of inbreeding. Some of these syndromes have subsequently been found in other parts of the world, negating the concept of the private syndrome. This paper provides an overview of autosomal recessive disorders among the Arabs in Kuwait from a personal perspective and published studies, and highlights the need for genetic services in Arab countries with the goal of prevention and treatment of genetic disorders.

  6. FOXE3 plays a significant role in autosomal recessive microphthalmia.

    PubMed

    Reis, Linda M; Tyler, Rebecca C; Schneider, Adele; Bardakjian, Tanya; Stoler, Joan M; Melancon, Serge B; Semina, Elena V

    2010-03-01

    FOXE3 forkhead transcription factor is essential to lens development in vertebrates. The eyes of Foxe3/foxe3-deficient mice and zebrafish fail to develop normally. In humans, autosomal dominant and recessive mutations in FOXE3 have been associated with variable phenotypes including anterior segment anomalies, cataract, and microphthalmia. We undertook sequencing of FOXE3 in 116 probands with a spectrum of ocular defects ranging from anterior segment dysgenesis and cataract to anophthalmia/microphthalmia. Recessive mutations in FOXE3 were found in four of 26 probands affected with bilateral microphthalmia (15% of all bilateral microphthalmia and 100% of consanguineous families with this phenotype). FOXE3-positive microphthalmia was accompanied by aphakia and/or corneal defects; no other associated systemic anomalies were observed in FOXE3-positive families. The previously reported c.720C > A (p.C240X) nonsense mutation was identified in two additional families in our sample and therefore appears to be recurrent, now reported in three independent microphthalmia families of varied ethnic backgrounds. Several missense variants were identified at varying frequencies in patient and control groups with some apparently being race-specific, which underscores the importance of utilizing race/ethnicity-matched control populations in evaluating the relevance of genetic screening results. In conclusion, FOXE3 mutations represent an important cause of nonsyndromic autosomal recessive bilateral microphthalmia.

  7. Mutations of the tyrosinase gene produce autosomal recessive ocular albinism

    SciTech Connect

    King, R.A.; Summers, C.G.; Oetting, W.S.

    1994-09-01

    Albinism has historically been divided into ocular (OA) and oculocutaneous (OCA) types based on the presence or absence of clinically apparent skin and hair involvement in an individual with the ocular features of albinism. The major genes for OCA include the tyrosinase gene in OCA1 and the P gene in OCA2. X-linked and autosomal recessive OA have been described and the responsible genes have not been identified. We now present six Caucasian individuals who have the phenotype of autosomal recessive OA but who have OCA1 as shown by the presence of mutations of the tyrosinase. They had white or very light hair and white skin at birth, and cutaneous pigment developed in the first decade of life. At ages ranging from 1.5-23 years, hair color was dark blond to light brown. The skin had generalized pigment and well developed tan was present on the exposed arm and face skin of four. Iris pigment was present and iris translucency varied. Molecular analysis of the tyrosinase gene, using PCR amplification and direct di-deoxy sequencing showed the following mutations: E398Z/E398Q, P406S/g346a, R402E/T373K, ?/D383N, and H211N/T373K. The homozygous individual was not from a known consanguineous mating. T373K is the most common tyrosinase gene mutation in our laboratory. Three of these mutations are associated with a total loss of tyrosinase activity (g346a splice-site, T373K, and D383N), while four are associated with residual enzyme activity (H211N, R402E, E398Q, and P406S). These studies show that mutations of the tyrosinase gene can produce the phenotype of autosomal recessive OA in an individual who has normal amounts of cutaneous pigment and the ability to tan after birth. This extends the phenotypic range of OCA1 to normal cutaneous pigment after early childhood, and suggest that mutations of the tyrosinase gene account for a significant number of individuals with autosomal recessive OA.

  8. A new locus (SPG46) maps to 9p21.2-q21.12 in a Tunisian family with a complicated autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum.

    PubMed

    Boukhris, Amir; Feki, Imed; Elleuch, Nizar; Miladi, Mohamed Imed; Boland-Augé, Anne; Truchetto, Jérémy; Mundwiller, Emeline; Jezequel, Nadia; Zelenika, Diana; Mhiri, Chokri; Brice, Alexis; Stevanin, Giovanni

    2010-10-01

    Hereditary spastic paraplegia (HSP) with thin corpus callosum (TCC) and mental impairment is a frequent subtype of complicated HSP, often inherited as an autosomal recessive (AR) trait. It is clear from molecular genetic analyses that there are several underlying causes of this syndrome, with at least six genetic loci identified to date. However, SPG11 and SPG15 are the two major genes for this entity. To map the responsible gene in a large AR-HSP-TCC family of Tunisian origin, we investigated a consanguineous family with a diagnosis of AR-HSP-TCC excluded for linkage to the SPG7, SPG11, SPG15, SPG18, SPG21, and SPG32 loci. A genome-wide scan was undertaken using 6,090 SNP markers covering all chromosomes. The phenotypic presentation in five patients was suggestive of a complex HSP that associated an early-onset spastic paraplegia with mild handicap, mental deterioration, congenital cataract, cerebellar signs, and TCC. The genome-wide search identified a single candidate region on chromosome 9, exceeding the LOD score threshold of +3. Fine mapping using additional markers narrowed the candidate region to a 45.1-Mb interval (15.4 cM). Mutations in three candidate genes were excluded. The mapping of a novel AR-HSP-TCC locus further demonstrates the extensive genetic heterogeneity of this condition. We propose that testing for this locus should be performed, after exclusion of mutations in SPG11 and SPG15 genes, in AR-HSP-TCC families, especially when cerebellar ataxia and cataract are present.

  9. Molecular and cellular basis of autosomal recessive primary microcephaly.

    PubMed

    Barbelanne, Marine; Tsang, William Y

    2014-01-01

    Autosomal recessive primary microcephaly (MCPH) is a rare hereditary neurodevelopmental disorder characterized by a marked reduction in brain size and intellectual disability. MCPH is genetically heterogeneous and can exhibit additional clinical features that overlap with related disorders including Seckel syndrome, Meier-Gorlin syndrome, and microcephalic osteodysplastic dwarfism. In this review, we discuss the key proteins mutated in MCPH. To date, MCPH-causing mutations have been identified in twelve different genes, many of which encode proteins that are involved in cell cycle regulation or are present at the centrosome, an organelle crucial for mitotic spindle assembly and cell division. We highlight recent findings on MCPH proteins with regard to their role in cell cycle progression, centrosome function, and early brain development. PMID:25548773

  10. The Autosomal Recessive Inheritance of Hereditary Gingival Fibromatosis

    PubMed Central

    Nair, Vineet; Mukherjee, Malancha; Ghosh, Sujoy; Dey, Subrata Kumar

    2013-01-01

    Hereditary gingival fibromatosis (HGF) is a rare condition which is marked by enlargement of gingival tissue that covers teeth to various extents leading to aesthetic disfigurement. This study presents a case of a 28-year-old female patient and 18-year-old male who belong to the same family suffering from HGF with chief complaint of overgrowing swelling gingiva. The presence of enlarged gingiva with the same eruption was found in their other family members with no concomitant drug or medical history, and the occurrence of HGF has been found in one generation of this family which may indicate the autosomal recessive inheritance pattern of HGF. Hereditary gingival fibromatosis is an idiopathic condition as its etiology is unknown and it was found to recur in some cases even after surgical treatment. Both patients underwent thorough oral prophylaxis and later surgical therapy to correct the deformity. PMID:24416600

  11. Genetic linkage studies in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Mansfield, D.C.; Teague, P.W.; Barber, A.

    1994-09-01

    Autosomal recessive retinitis pigmentosa (arRP) is a severe retinal dystrophy characterized by night blindness, progressive constriction of the visual fields and loss of central vision in the fourth or fifth decades. The frequency of this form of retinitis pigmentosa (RP) varies in different populations. Mutations within the rhodopsin, cyclic GMP phosphodiesterase-{beta} subunit and cGMP-gated channel genes have been reported in some arRP families. The genetic loci responsible for the majority of cases have yet to be identified. Genetic heterogeneity is likely to be extensive. In order to minimize the amount of genetic heterogenity, a set of arRP families was ascertained within the South-Central Sardinian population, in which 81% of families with a known mode of inheritance show an autosomal recessive form of RP. The Sardinian population is an ethnic {open_quotes}outlier{close_quotes}, having remained relatively isolated from mainland and other cultures. Genetic linkage data has been obtained in a set of 11 Sardinian arRP kindreds containing 26 affected members. Under the assumption of genetic homogeneity, no evidence of linkage was found in the arRP kindreds using 195 markers, which excluded 62% of the genome (Z<-2). Positive lod scores were obtained with D14S80 which showed no recombination in a subset of 5 families. Heterogeneity testing using D14S80 and arRP showed no significant evidence of heterogeneity (p=0.18) but evidence of linkage ({chi}{sup 2}=3.64, p=0.028). We are currently screening the neural retina-specific leucine zipper gene (NRL) in 14q11 for mutations as a candidate locus.

  12. Congenital vocal cord paralysis with possible autosomal recessive inheritance: Case report and review of the literature

    SciTech Connect

    Koppel, R.; Friedman, S.; Fallet, S.

    1996-08-23

    We describe an infant with congenital vocal cord paralysis born to consanguineous parents. While autosomal dominant and X-linked inheritance have been previously reported in this condition, we conclude that the degree of parental consanguinity in this case strongly suggests autosomal recessive inheritance. Although we cannot exclude X-linked inheritance, evidence from animal studies demonstrates autosomal recessive inheritance and provides a possible molecular basis for congenital vocal cord paralysis. 14 refs., 1 fig.

  13. An exome sequencing strategy to diagnose lethal autosomal recessive disorders.

    PubMed

    Ellard, Sian; Kivuva, Emma; Turnpenny, Peter; Stals, Karen; Johnson, Matthew; Xie, Weijia; Caswell, Richard; Lango Allen, Hana

    2015-03-01

    Rare disorders resulting in prenatal or neonatal death are genetically heterogeneous. For some conditions, affected fetuses can be diagnosed by ultrasound scan, but this is not usually possible until mid-gestation. There is often limited fetal DNA available for investigation. We investigated a strategy for diagnosing autosomal recessive lethal disorders in non-consanguineous pedigrees with multiple affected fetuses. Exome sequencing was performed to identify genes where each parent is heterozygous for a rare non-synonymous-coding or splicing variant. Putative pathogenic variants were tested for cosegregation in affected fetuses and unaffected siblings. In eight couples of European ancestry, we found on average 1.75 genes (range 0-4) where both parents were heterozygous for rare potentially deleterious variants. A proof-of-principle study detected heterozygous DYNC2H1 variants in a couple whose five fetuses had short-rib polydactyly. Prospective analysis of two couples with multiple pregnancy terminations for fetal akinesia syndrome was performed and a diagnosis was obtained in both the families. The first couple were each heterozygous for a previously reported GLE1 variant, p.Arg569His or p.Val617Met; both were inherited by their two affected fetuses. The second couple were each heterozygous for a novel RYR1 variant, c.14130-2A>G or p.Ser3074Phe; both were inherited by their three affected fetuses but not by their unaffected child. Biallelic GLE1 and RYR1 disease-causing variants have been described in other cases with fetal akinesia syndrome. We conclude that exome sequencing of parental samples can be an effective tool for diagnosing lethal recessive disorders in outbred couples. This permits early prenatal diagnosis in future pregnancies.

  14. An exome sequencing strategy to diagnose lethal autosomal recessive disorders

    PubMed Central

    Ellard, Sian; Kivuva, Emma; Turnpenny, Peter; Stals, Karen; Johnson, Matthew; Xie, Weijia; Caswell, Richard; Lango Allen, Hana

    2015-01-01

    Rare disorders resulting in prenatal or neonatal death are genetically heterogeneous. For some conditions, affected fetuses can be diagnosed by ultrasound scan, but this is not usually possible until mid-gestation. There is often limited fetal DNA available for investigation. We investigated a strategy for diagnosing autosomal recessive lethal disorders in non-consanguineous pedigrees with multiple affected fetuses. Exome sequencing was performed to identify genes where each parent is heterozygous for a rare non-synonymous-coding or splicing variant. Putative pathogenic variants were tested for cosegregation in affected fetuses and unaffected siblings. In eight couples of European ancestry, we found on average 1.75 genes (range 0–4) where both parents were heterozygous for rare potentially deleterious variants. A proof-of-principle study detected heterozygous DYNC2H1 variants in a couple whose five fetuses had short-rib polydactyly. Prospective analysis of two couples with multiple pregnancy terminations for fetal akinesia syndrome was performed and a diagnosis was obtained in both the families. The first couple were each heterozygous for a previously reported GLE1 variant, p.Arg569His or p.Val617Met; both were inherited by their two affected fetuses. The second couple were each heterozygous for a novel RYR1 variant, c.14130-2A>G or p.Ser3074Phe; both were inherited by their three affected fetuses but not by their unaffected child. Biallelic GLE1 and RYR1 disease-causing variants have been described in other cases with fetal akinesia syndrome. We conclude that exome sequencing of parental samples can be an effective tool for diagnosing lethal recessive disorders in outbred couples. This permits early prenatal diagnosis in future pregnancies. PMID:24961629

  15. Linkage of autosomal recessive lamellar ichthyosis to chromosome 14q

    SciTech Connect

    Russell, L.J.; Compton, J.G.; Bale, S.J.; DiGiovanna, J.J.; Hashem, N.

    1994-12-01

    The authors have mapped the locus for lamellar ichthyosis (LI), an autosomal recessive skin disease characterized by abnormal cornification of the epidermis. Analysis using both inbred and outbred families manifesting severe LI showed complete linkage to several markers within a 9.3-cM region on chromosome 14q11. Affected individuals in inbred families were also found to have striking homozygosity for markers in this region. Linkage-based genetic counseling and prenatal diagnosis is now available for informative at-risk families. Several transcribed genes have been mapped to the chromosome 14 region containing the LI gene. The transglutaminase 1 gene (TGM1), which encodes one of the enzymes responsible for cross-linking epidermal proteins during formation of the stratum corneum, maps to this interval. The TGM1 locus was completely linked to LI (Z = 9.11), suggesting that TGM1 is a good candidate for further investigation of this disorder. The genes for four serine proteases also map to this region but are expressed only in hematopoietic or mast cells, making them less likely candidates.

  16. Preimplantation genetic diagnosis for autosomal recessive polycystic kidney disease.

    PubMed

    Gigarel, N; Frydman, N; Burlet, P; Kerbrat, V; Tachdjian, G; Fanchin, R; Antignac, C; Frydman, R; Munnich, A; Steffann, J

    2008-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) is one of the most common hereditary renal cystic diseases, and is caused by mutations in the PKHD1 gene. Due to the poor prognosis, there is a strong demand for prenatal diagnosis. Preimplantation genetic diagnosis (PGD) represents an alternative because it avoids the physical and emotional trauma of a pregnancy termination in the case of an affected fetus. A standardized single-cell diagnostic procedure was developed, based on haplotype analysis, enabling PGD to be offered to couples at risk of transmitting ARPKD. Six linked markers within (D6S1714 and D6S243), or in close proximity to (D6S272, D6S436, KIAA0057, D6S1662) the PKHD1 gene were tested by multiplex nested-polymerase chain reaction (PCR), using a Qiagen multiplex PCR kit. PCR analyses were carried out on 50 single lymphocytes. The amplification rate was excellent (100%), with an allele drop-out (ADO) rate ranging from 0 to 8%. Five PGD cycles were performed and 23 embryos were biopsied and analysed using this test. Transferable embryos were obtained in 4 cycles, resulting in two pregnancies and the birth of a healthy boy. This standardized diagnostic procedure allowed the detection of recombination, contamination, and ADO events, providing high assay accuracy with wide applicability.

  17. Pathways of apoptosis in human autosomal recessive and autosomal dominant polycystic kidney diseases.

    PubMed

    Goilav, Beatrice; Satlin, Lisa M; Wilson, Patricia D

    2008-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a major cause of end-stage renal disease in adults. Autosomal recessive (AR) PKD affects approximately 1:20,000 live-born children with high perinatal mortality. Both diseases have abnormalities in epithelial proliferation, secretion, and cell-matrix interactions, leading to progressive cystic expansion and associated interstitial fibrosis. Cell number in a kidney reflects the balance between proliferation and apoptosis. Apoptosis results from extrinsic (ligand-induced, expression of caspase-8) and intrinsic (mitochondrial damage, expression of caspase-9) triggers. Previous studies have suggested a role for apoptosis in PKD cyst formation and parenchymal destruction. Mechanisms underlying apoptosis in human ADPKD and ARPKD were examined by quantitative immunohistochemistry and Western immunoblot analyses of age-matched normal and PKD tissues. Caspase-8 expression was significantly greater in small cysts and normal-appearing tubules than in larger cysts in ADPKD kidneys. Caspase-8 also appeared early in the disease process of ADPKD. In ARPKD, expression of caspase-8 was most pronounced in later stages of the disease and was not confined to a specific cyst size. In conclusion, apoptosis in human ADPKD is an early event, occurring predominantly in normal-appearing tubules and small cysts, and is triggered by an extrinsic factor, but it occurs later in ARPKD. PMID:18516626

  18. Isotretinoin treatment of autosomal recessive congenital ichthyosis complicated by coexisting dysferlinopathy.

    PubMed

    Mashiah, J; Harel, A; Bitterman, O; Sagi, L; Gat, A; Fellig, Y; Ben-Shachar, S; Sprecher, E

    2016-06-01

    Consanguinity is known to be associated with an increase in the prevalence of autosomal recessive disorders such as autosomal recessive congenital ichthyosis (ARCI). ARCI often responds well to retinoid treatment. We describe a patient with ARCI who improved under isotretinoin treatment. The patient subsequently developed elevated levels of serum creatinine phosphokinase (CPK), which led to the diagnosis of a second autosomal recessive disorder, dysferlinopathy, a rare myopathy characterized by muscle weakness, decreased tendon reflexes and marked elevation of CPK levels. This report demonstrates the need for physicians to remain alert to the possible coexistence of rare and mutually relevant disorders in populations with a high rate of consanguinity. PMID:26620441

  19. Distinct phenotypes within autosomal recessive ataxias not linked to already known loci.

    PubMed

    Bouhlal, Y; El-Euch-Fayeche, G; Amouri, R; Hentati, F

    2005-10-01

    Autosomal recessive ataxias represent a large group of neurodegenerative disorders characterized by progressive degeneration of central and peripheral nervous systems and a genetic heterogeneity. To analyse clinical, neurophysiological and nerve biopsy findings in 14 Tunisian unrelated families showing linkage exclusion to the known autosomal recessive ataxia loci, 20 Tunisian families with a total of 73 affected subjects were selected on the presence of a clinical phenotype associating a cerebellar ataxia with retained tendon reflexes on at least the index patient. A genetic linkage study was performed with markers spanning the Friedreich ataxia, Spastic ataxia of the Charlevoix-Saguenay, Autosomal recessive ataxia associated with isolated vitamin E deficiency, Ataxia with oculomotor apraxia, Infantile onset spinocerebellar ataxia, Ataxia with Hearing Loss and Optic Atrophy, AT, ATLD, Spinocerebellar ataxia with axonal neuropathy, Cayman ataxia, Cerebellar ataxia with mental retardation optic atrophy and skin abnormalities, Salla syndrome, Marinesco-Sjögren and the Childhood Spinocerebellar Ataxia loci. Out of the 20 families, 4 showed linkage to the spastic ataxia of the Charlevoix-Saguenay locus, one to the Friedreich ataxia locus and one to the Ataxia with oculomotor apraxia locus. Linkage to all tested loci has been excluded in the 14 remaining families. These families were divided into 3 groups according to tendon reflex status in lower limbs which appear as the most obvious distinguishing clinical sign between patients and families: Group A was characterized by brisk tendon reflexes in lower limbs, group B by a homogeneous feature of tendon reflexes with the absence of ankle reflexes and brisk knee reflexes and group C by variable features of tendon reflexes in lower limbs within the same family. Haplotype analysis and Lod score calculation did not show any evidence of linkage to the 16 known loci of cerebellar ataxias. Aim of this study was to reveal the

  20. Mutations in NSUN2 Cause Autosomal- Recessive Intellectual Disability

    PubMed Central

    Abbasi-Moheb, Lia; Mertel, Sara; Gonsior, Melanie; Nouri-Vahid, Leyla; Kahrizi, Kimia; Cirak, Sebahattin; Wieczorek, Dagmar; Motazacker, M. Mahdi; Esmaeeli-Nieh, Sahar; Cremer, Kirsten; Weißmann, Robert; Tzschach, Andreas; Garshasbi, Masoud; Abedini, Seyedeh S.; Najmabadi, Hossein; Ropers, H. Hilger; Sigrist, Stephan J.; Kuss, Andreas W.

    2012-01-01

    With a prevalence between 1 and 3%, hereditary forms of intellectual disability (ID) are among the most important problems in health care. Particularly, autosomal-recessive forms of the disorder have a very heterogeneous molecular basis, and genes with an increased number of disease-causing mutations are not common. Here, we report on three different mutations (two nonsense mutations, c.679C>T [p.Gln227∗] and c.1114C>T [p.Gln372∗], as well as one splicing mutation, g.6622224A>C [p.Ile179Argfs∗192]) that cause a loss of the tRNA-methyltransferase-encoding NSUN2 main transcript in homozygotes. We identified the mutations by sequencing exons and exon-intron boundaries within the genomic region where the linkage intervals of three independent consanguineous families of Iranian and Kurdish origin overlapped with the previously described MRT5 locus. In order to gain further evidence concerning the effect of a loss of NSUN2 on memory and learning, we constructed a Drosophila model by deleting the NSUN2 ortholog, CG6133, and investigated the mutants by using molecular and behavioral approaches. When the Drosophila melanogaster NSUN2 ortholog was deleted, severe short-term-memory (STM) deficits were observed; STM could be rescued by re-expression of the wild-type protein in the nervous system. The humans homozygous for NSUN2 mutations showed an overlapping phenotype consisting of moderate to severe ID and facial dysmorphism (which includes a long face, characteristic eyebrows, a long nose, and a small chin), suggesting that mutations in this gene might even induce a syndromic form of ID. Moreover, our observations from the Drosophila model point toward an evolutionarily conserved role of RNA methylation in normal cognitive development. PMID:22541559

  1. Proteins linked to autosomal dominant and autosomal recessive disorders harbor characteristic rare missense mutation distribution patterns.

    PubMed

    Turner, Tychele N; Douville, Christopher; Kim, Dewey; Stenson, Peter D; Cooper, David N; Chakravarti, Aravinda; Karchin, Rachel

    2015-11-01

    The role of rare missense variants in disease causation remains difficult to interpret. We explore whether the clustering pattern of rare missense variants (MAF < 0.01) in a protein is associated with mode of inheritance. Mutations in genes associated with autosomal dominant (AD) conditions are known to result in either loss or gain of function, whereas mutations in genes associated with autosomal recessive (AR) conditions invariably result in loss-of-function. Loss-of-function mutations tend to be distributed uniformly along protein sequence, whereas gain-of-function mutations tend to localize to key regions. It has not previously been ascertained whether these patterns hold in general for rare missense mutations. We consider the extent to which rare missense variants are located within annotated protein domains and whether they form clusters, using a new unbiased method called CLUstering by Mutation Position. These approaches quantified a significant difference in clustering between AD and AR diseases. Proteins linked to AD diseases exhibited more clustering of rare missense mutations than those linked to AR diseases (Wilcoxon P = 5.7 × 10(-4), permutation P = 8.4 × 10(-4)). Rare missense mutation in proteins linked to either AD or AR diseases was more clustered than controls (1000G) (Wilcoxon P = 2.8 × 10(-15) for AD and P = 4.5 × 10(-4) for AR, permutation P = 3.1 × 10(-12) for AD and P = 0.03 for AR). The differences in clustering patterns persisted even after removal of the most prominent genes. Testing for such non-random patterns may reveal novel aspects of disease etiology in large sample studies. PMID:26246501

  2. Progeria (Hutchison-Gilford syndrome) in siblings: in an autosomal recessive pattern of inheritance.

    PubMed

    Raghu, T Y; Venkatesulu, G A; Kantharaj, G R; Suresh, T; Veeresh, V; Hanumanthappa, Y

    2001-01-01

    Progeria is an autosomal dominant, premature aging syndrome. Six and three year old female siblings had sclerodermatous changes over the extremities, alopecia, beaked nose, prominent veins and bird-like facies. Radiological features were consistent with features of progeria. The present case highlights rarity of progeria in siblings with a possible autosomal recessive pattern.

  3. Autosomal Recessive Primary Microcephaly (MCPH): clinical manifestations, genetic heterogeneity and mutation continuum.

    PubMed

    Mahmood, Saqib; Ahmad, Wasim; Hassan, Muhammad J

    2011-01-01

    Autosomal Recessive Primary Microcephaly (MCPH) is a rare disorder of neurogenic mitosis characterized by reduced head circumference at birth with variable degree of mental retardation. In MCPH patients, brain size reduced to almost one-third of its original volume due to reduced number of generated cerebral cortical neurons during embryonic neurogensis. So far, seven genetic loci (MCPH1-7) for this condition have been mapped with seven corresponding genes (MCPH1, WDR62, CDK5RAP2, CEP152, ASPM, CENPJ, and STIL) identified from different world populations. Contribution of ASPM and WDR62 gene mutations in MCPH World wide is more than 50%. By and large, primary microcephaly patients are phenotypically indistinguishable, however, recent studies in patients with mutations in MCPH1, WDR62 and ASPM genes showed a broader clinical and/or cellular phenotype. It has been proposed that mutations in MCPH genes can cause the disease phenotype by disturbing: 1) orientation of mitotic spindles, 2) chromosome condensation mechanism during embryonic neurogenesis, 3) DNA damage-response signaling, 4) transcriptional regulations and microtubule dynamics, 5) certain unknown centrosomal mechanisms that control the number of neurons generated by neural precursor cells. Recent discoveries of mammalian models for MCPH have open up horizons for researchers to add more knowledge regarding the etiology and pathophysiology of MCPH. High incidence of MCPH in Pakistani population reflects the most probable involvement of consanguinity. Genetic counseling and clinical management through carrier detection/prenatal diagnosis in MCPH families can help reducing the incidence of this autosomal recessive disorder. PMID:21668957

  4. Fine genetic mapping of a gene for autosomal recessive retinitis pigmentosa on chromosome 6p21

    SciTech Connect

    Shugart, Yin Y.; Banerjee, P.; Knowles, J.A.

    1995-08-01

    The inherited retinal degenerations known as retinitis pigmentosa (RP) can be caused by mutations at many different loci and can be inherited as an autosomal recessive, autosomal dominant, or X-linked recessive trait. Two forms of autosomal recessive (arRP) have been reported to cosegregate with mutations in the rhodopsin gene and the beta-subunit of rod phosphodiesterase on chromosome 4p. Genetic linkage has been reported on chromosomes 6p and 1q. In a large Dominican family, we reported an arRp gene near the region of the peripherin/RDS gene. Four recombinations were detected between the disease locus and an intragenic marker derived from peripherin/RDS. 26 refs., 2 figs., 1 tab.

  5. Orofacial Manifestations of Autosomal Recessive Robinow's Syndrome: A Rare Case Report.

    PubMed

    Mali, Santosh; Bansal, Neha; Dhokar, Amol; Yadav, Monica

    2016-03-01

    Robinow's syndrome is a very rare genetic disorder which bears a resemblance to a foetal face. It is characterized by short-limbed dwarfism, defects in vertebral segmentation and abnormalities in the head, face and external genitalia. It has a genetic heterogeneity with autosomal dominant and recessive forms which relates to the severity of phenotype presentation. A rare case of an autosomal recessive form of Robinow's syndrome is presented with emphasis on, characteristic craniofacial and intraoral manifestations to aid in diagnosis and dental management of this patient. PMID:27135013

  6. Cartilage matrix deficiency (cmd): a new autosomal recessive lethal mutation in the mouse.

    PubMed

    Rittenhouse, E; Dunn, L C; Cookingham, J; Calo, C; Spiegelman, M; Dooher, G B; Bennett, D

    1978-02-01

    A new autosomal recessive lethal mutation in the mouse designated cartilage matrix deficiency (cmd) is described. Homozygotes are dwarfed, and have abnormally short trunk, limbs, tail and snout, as well as a protruding tongue and cleft palate. The abdomen is distended because the foreshortened rib cage and spinal column forces the liver ventrad from its normal location. Histological and electron microscopic study reveals a deficiency of cartilage matrix in tracheal cartilage and in all cartilagenous bones examined. The syndrome closely resembles the rare lethal condition achondrogenesis, found in human infants, which is also believed to be due to an autosomal recessive gene. PMID:632744

  7. Orofacial Manifestations of Autosomal Recessive Robinow’s Syndrome: A Rare Case Report

    PubMed Central

    Mali, Santosh; Dhokar, Amol; Yadav, Monica

    2016-01-01

    Robinow’s syndrome is a very rare genetic disorder which bears a resemblance to a foetal face. It is characterized by short-limbed dwarfism, defects in vertebral segmentation and abnormalities in the head, face and external genitalia. It has a genetic heterogeneity with autosomal dominant and recessive forms which relates to the severity of phenotype presentation. A rare case of an autosomal recessive form of Robinow’s syndrome is presented with emphasis on, characteristic craniofacial and intraoral manifestations to aid in diagnosis and dental management of this patient. PMID:27135013

  8. An autosomal recessive syndrome of cleft palate, cardiac defect, genital anomalies, and ectrodactyly (CCGE).

    PubMed Central

    Giannotti, A; Digilio, M C; Mingarelli, R; Dallapiccola, B

    1995-01-01

    We report a brother and sister affected by a constellation of malformations, including cleft palate, cardiac defect, genital anomalies, and ectrodactyly (CCGE). A similar association has been reported previously by Richieri-Costa and Orquizas in a male patient born to consanguineous parents. An autosomal recessive pattern of inheritance is proposed for this syndrome. Images PMID:7897634

  9. Autosomal recessive cerebellar ataxia of adult onset due to STUB1 mutations.

    PubMed

    Depondt, Chantal; Donatello, Simona; Simonis, Nicolas; Rai, Myriam; van Heurck, Roxane; Abramowicz, Marc; D'Hooghe, Marc; Pandolfo, Massimo

    2014-05-13

    Autosomal recessive ataxias affect about 1 person in 20,000. Friedreich ataxia accounts for one-third of the cases in Caucasians; the others are due to a growing list of very rare molecular defects, including mild forms of metabolic diseases. In nearly 50%, the genetic cause remains undetermined.

  10. Map of autosomal recessive genetic disorders in Saudi Arabia: concepts and future directions.

    PubMed

    Al-Owain, Mohammed; Al-Zaidan, Hamad; Al-Hassnan, Zuhair

    2012-10-01

    Saudi Arabia has a population of 27.1 million. Prevalence of many autosomal recessive disorders is higher than in other known populations. This is attributable to the high rate of consanguineous marriages (56%), the tribal structure, and large family size. Founder mutations have been recognized in many autosomal recessive disorders, many of which are overrepresented within certain tribes. On the other hand, allelic heterogeneity is also observed among common and rare autosomal recessive conditions. With the adoption of more advanced molecular techniques in the country in recent years in conjunction with international collaboration, the mapping of various autosomal recessive disorders has increased dramatically. Different genetic concepts pertinent to this highly inbred population are discussed here. Addressing such genetic disorders at the national level will become a cornerstone of strategic health care initiatives in the 21st century. Current efforts are hampered by many socio-cultural and health care related factors. Education about genetic diseases, establishment of a "national registry" and mutational database, and enhanced healthcare access are crucial for success of any preventative campaign. PMID:22903695

  11. Possible new autosomal recessive syndrome of lymphedema, hydroceles, atrial septal defect, and characteristic facial changes.

    PubMed

    Irons, M B; Bianchi, D W; Geggel, R L; Marx, G R; Bhan, I

    1996-12-01

    We describe two brothers with congenital lymphedema of lower limbs, atrial septal defect (ASD), and similar facial appearance. A sister had severe hydrops fetalis, ASD, omphalocele, and other anomalies. This combination of congenital lymphedema and ASD differs from other reported cases of congenital lymphedema and most likely constitutes a previously unrecognized autosomal recessive syndrome.

  12. Novel large deletion in the ACTA1 gene in a child with autosomal recessive nemaline myopathy.

    PubMed

    Friedman, Bethany; Simpson, Kara; Tesi-Rocha, Carolina; Zhou, Delu; Palmer, Cheryl A; Suchy, Sharon F

    2014-04-01

    Nemaline myopathy (NM) is a genetically and clinically heterogeneous disorder resulting from a disruption of the thin filament proteins of the striated muscle sarcomere. The disorder is typically characterized by muscle weakness including the face, neck, respiratory, and limb muscles and is clinically classified based on the age of onset and severity. Mutations in the ACTA1 gene contribute to a significant proportion of NM cases. The majority of ACTA1 gene mutations are missense mutations causing autosomal dominant NM by producing an abnormal protein. However, approximately 10% of ACTA1 gene mutations are associated with autosomal recessive NM; these mutations are associated with loss of protein function. We report the first case of a large deletion in the ACTA1 gene contributing to autosomal recessive NM. This case illustrates the importance of understanding disease mechanisms at the molecular level to accurately infer the inheritance pattern and potentially aid with clinical management. PMID:24447884

  13. Infantile variant of Bartter syndrome and sensorineural deafness: A new autosomal recessive disorder

    SciTech Connect

    Landau, D.; Shalev, H.; Carmi, Rivka; Ohaly, M.

    1995-12-04

    The infantile variant of Bartter syndrome (IBS) is usually associated with maternal polyhydramnios, premature birth, postnatal polyuria and hypokalemic hypochloremic metabolic alkalosis and a typical appearance. IBS is thought to be an autosomal recessive trait. Several congenital tubular defects are associated with sensorineural deafness (SND). However, an association between the IBS and SND has not been reported so far. Here we describe 5 children of an extended consanguineous Bedouin family with IBS and SND. In 3 of the cases, the typical electrolyte imbalance and facial appearance were detected neonatally. SND was detected as early as age 1 month, suggesting either coincidental homozygotization of 2 recessive genes or a pleiotropic effect of one autosomal recessive gene. This association suggests that evaluation of SND is warranted in every case of IBS. 35 refs., 2 figs., 2 tabs.

  14. Autosomal recessive primary microcephaly (MCPH): a review of clinical, molecular, and evolutionary findings.

    PubMed

    Woods, C Geoffrey; Bond, Jacquelyn; Enard, Wolfgang

    2005-05-01

    Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder. It is characterized by two principal features, microcephaly present at birth and nonprogressive mental retardation. The microcephaly is the consequence of a small but architecturally normal brain, and it is the cerebral cortex that shows the greatest size reduction. There are at least seven MCPH loci, and four of the genes have been identified: MCPH1, encoding Microcephalin; MCPH3, encoding CDK5RAP2; MCPH5, encoding ASPM; and MCPH6, encoding CENPJ. These findings are starting to have an impact on the clinical management of families affected with MCPH. Present data suggest that MCPH is the consequence of deficient neurogenesis within the neurogenic epithelium. Evolutionary interest in MCPH has been sparked by the suggestion that changes in the MCPH genes might also be responsible for the increase in brain size during human evolution. Indeed, evolutionary analyses of Microcephalin and ASPM reveal evidence for positive selection during human and great ape evolution. So an understanding of this rare genetic disorder may offer us significant insights into neurogenic mitosis and the evolution of the most striking differences between us and our closest living relatives: brain size and cognitive ability. PMID:15806441

  15. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease.

    PubMed

    Montecchiani, Celeste; Pedace, Lucia; Lo Giudice, Temistocle; Casella, Antonella; Mearini, Marzia; Gaudiello, Fabrizio; Pedroso, José L; Terracciano, Chiara; Caltagirone, Carlo; Massa, Roberto; St George-Hyslop, Peter H; Barsottini, Orlando G P; Kawarai, Toshitaka; Orlacchio, Antonio

    2016-01-01

    Charcot-Marie-Tooth disease is a group of hereditary peripheral neuropathies that share clinical characteristics of progressive distal muscle weakness and atrophy, foot deformities, distal sensory loss, as well as diminished tendon reflexes. Hundreds of causative DNA changes have been found, but much of the genetic basis of the disease is still unexplained. Mutations in the ALS5/SPG11/KIAA1840 gene are a frequent cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and peripheral axonal neuropathy, and account for ∼ 40% of autosomal recessive juvenile amyotrophic lateral sclerosis. The overlap of axonal Charcot-Marie-Tooth disease with both diseases, as well as the common autosomal recessive inheritance pattern of thin corpus callosum and axonal Charcot-Marie-Tooth disease in three related patients, prompted us to analyse the ALS5/SPG11/KIAA1840 gene in affected individuals with autosomal recessive axonal Charcot-Marie-Tooth disease. We investigated 28 unrelated families with autosomal recessive axonal Charcot-Marie-Tooth disease defined by clinical, electrophysiological, as well as pathological evaluation. Besides, we screened for all the known genes related to axonal autosomal recessive Charcot-Marie-Tooth disease (CMT2A2/HMSN2A2/MFN2, CMT2B1/LMNA, CMT2B2/MED25, CMT2B5/NEFL, ARCMT2F/dHMN2B/HSPB1, CMT2K/GDAP1, CMT2P/LRSAM1, CMT2R/TRIM2, CMT2S/IGHMBP2, CMT2T/HSJ1, CMTRID/COX6A1, ARAN-NM/HINT and GAN/GAN), for the genes related to autosomal recessive hereditary spastic paraplegia with thin corpus callosum and axonal peripheral neuropathy (SPG7/PGN, SPG15/ZFYVE26, SPG21/ACP33, SPG35/FA2H, SPG46/GBA2, SPG55/C12orf65 and SPG56/CYP2U1), as well as for the causative gene of peripheral neuropathy with or without agenesis of the corpus callosum (SLC12A6). Mitochondrial disorders related to Charcot-Marie-Tooth disease type 2 were also excluded by sequencing POLG and TYMP genes. An additional locus for autosomal recessive Charcot

  16. A novel homozygous mutation in HSF4 causing autosomal recessive congenital cataract.

    PubMed

    Behnam, Mahdiyeh; Imagawa, Eri; Chaleshtori, Ahmad Reza Salehi; Ronasian, Firooze; Salehi, Mansoor; Miyake, Noriko; Matsumoto, Naomichi

    2016-02-01

    Cataract is defined as opacity in the crystalline lens and congenital cataract occurs during the first year of life. Until now, mutations of more than 50 genes in congenital cataract have been reported with various modes of inheritance. Among them, HSF4 mutations have been reported in autosomal dominant, autosomal recessive and age-related forms of cataract. The inheritance patterns of these mutations depend on their mutational positions in HSF4: autosomal dominant or recessive mutations are respectively found either in a DNA-binding domain or in (or downstream of) hydrophobic repeats. Here we report a novel homozygous HSF4 mutation (c.521T>C, p.Leu174Pro) in two affected sibs of an Iranian consanguineous family using whole exome sequencing. The mutation is predicted as highly pathogenic by in silico analysis (SIFT, Polyphen2 and MutationTaster) and is not found in any of control databases. This mutation is located in a hydrophobic repeat of the HSF4 protein, which is consistent with the mode of inheritance as an autosomal recessive trait. PMID:26490182

  17. Conotruncal heart defect/microphthalmia syndrome: delineation of an autosomal recessive syndrome.

    PubMed Central

    Digilio, M C; Marino, B; Giannotti, A; Dallapiccola, B

    1997-01-01

    We report on three sibs born to healthy parents, one livebirth and two terminated pregnancies, presenting with a malformation complex characterised by conotruncal heart defect (CTHD), microphthalmia, genital anomalies, and facial dysmorphism. The recurrence of the association of CTHD, particularly truncus arteriosus, and microphthalmia in sibs has previously been reported in rare instances, but a correlation between the single descriptions has never been noted. CTHDs are included among the cardiac malformations characteristically associated with the group of syndromes caused by the microdeletion of chromosome 22q11, but no detectable hemizygosity has been found in our family. An autosomal recessive gene seems to be involved in syndromic patients with the combination of CTHD and microphthalmia. The map location of this gene is at present unknown, but autosomal recessive inheritance must be considered in genetic counselling of families with children presenting with this malformation complex. PMID:9391888

  18. The R402Q tyrosinase variant does not cause autosomal recessive ocular albinism.

    PubMed

    Oetting, William S; Pietsch, Jacy; Brott, Marcia J; Savage, Sarah; Fryer, James P; Summers, C Gail; King, Richard A

    2009-03-01

    Mutations in the gene for tyrosinase, the key enzyme in melanin synthesis, are responsible for oculocutaneous albinism type 1, and more than 100 mutations of this gene have been identified. The c.1205G > A variant of the tyrosinase gene (rs1126809) predicts p.R402Q and expression studies show thermolabile enzyme activity for the variant protein. The Q402 allele has been associated with autosomal recessive ocular albinism when it is in trans with a tyrosinase gene mutation associated with oculocutaneous albinism type 1. We have identified 12 families with oculocutaneous albinism type 1 that exhibit segregation of the c.1205G > A variant with a known pathologic mutation on the homologous chromosome, and demonstrate no genetic association between autosomal recessive oculocutaneous albinism and the Q402 variant. We conclude that the codon 402 variant of the tyrosinase gene is not associated with albinism. PMID:19208379

  19. Mutations in SYNGAP1 in Autosomal Nonsyndromic Mental Retardation

    PubMed Central

    Hamdan, Fadi F.; Gauthier, Julie; Spiegelman, Dan; Noreau, Anne; Yang, Yan; Pellerin, Stéphanie; Dobrzeniecka, Sylvia; Côté, Mélanie; Perreau-Linck, Elizabeth; Carmant, Lionel; D’Anjou, Guy; Fombonne, Éric; Addington, Anjene M.; Rapoport, Judith L.; Delisi, Lynn E.; Krebs, Marie-Odile; Mouaffak, Faycal; Joober, Ridha; Mottron, Laurent; Drapeau, Pierre; Marineau, Claude; Lafrenière, Ronald G.; Lacaille, Jean Claude; Rouleau, Guy A.; Michaud, Jacques L.

    2010-01-01

    Summary Although autosomal forms of nonsyndromic mental retardation account for the majority of cases of mental retardation, the genes that are involved remain largely unknown. We sequenced the autosomal gene SYNGAP1, which encodes a ras GTPase-activating protein that is critical for cognition and synapse function, in 94 patients with nonsyndromic mental retardation. We identified de novo truncating mutations (K138X, R579X, and L813RfsX22) in three of these patients. In contrast, we observed no de novo or truncating mutations in SYNGAP1 in samples from 142 subjects with autism spectrum disorders, 143 subjects with schizophrenia, and 190 control subjects. These results indicate that SYNGAP1 disruption is a cause of autosomal dominant nonsyndromic mental retardation. PMID:19196676

  20. AIPL1 implicated in the pathogenesis of two cases of autosomal recessive retinal degeneration

    PubMed Central

    Li, David; Jin, Chongfei; Jiao, Xiaodong; Li, Lin; Bushra, Tahmina; Naeem, Muhammad Asif; Butt, Nadeem H.; Husnain, Tayyab; Sieving, Paul A.; Riazuddin, Sheikh; Riazuddin, S. Amer

    2014-01-01

    Purpose To localize and identify the gene and mutations causing autosomal recessive retinal dystrophy in two consanguineous Pakistani families. Methods Consanguineous families from Pakistan were ascertained to be affected with autosomal recessive retinal degeneration. All affected individuals underwent thorough ophthalmologic examinations. Blood samples were collected, and genomic DNA was extracted using a salting out procedure. Genotyping was performed using microsatellite markers spaced at approximately 10 cM intervals. Two-point linkage analysis was performed with the lod score method. Direct DNA sequencing of amplified genomic DNA was performed for mutation screening of candidate genes. Results Genome-wide linkage scans yielded a lod score of 3.05 at θ=0 for D17S1832 and 3.82 at θ=0 for D17S938, localizing the disease gene to a 12.22 cM (6.64 Mb) region flanked by D17S1828 and D17S1852 for family 61032 and family 61227, which contains aryl hydrocarbon receptor interacting protein-like 1 (AIPL1), a gene previously implicated in recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. Sequencing of AIPL1 showed a homozygous c.773G>C (p.Arg258Pro) sequence change in all affected individuals of family 61032 and a homozygous c.465G>T (p.(H93_Q155del)) change in all affected members of family 61227. Conclusions The results strongly suggest that the c.773G>C (p.R258P) and c.465G>T (p.(H93_Q155del)) mutations in AIPL1 cause autosomal recessive retinal degeneration in these consanguineous Pakistani families. PMID:24426771

  1. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    PubMed

    Kelly, K J; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Gattone, Vincent H; Dominguez, Jesus H

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  2. Gonadal (ovarian) dysgenesis in 46,XX individuals: Frequency of the autosomal recessive form

    SciTech Connect

    Meyers, C.M.; Boughman, J.A.; Rivas, M.

    1996-06-28

    Gonadal (ovarian) dysgenesis with normal chromosomes (46,XX) clearly is a heterogeneous condition. In some forms, the defect is restricted to the gonads, whereas other affected females show neurosensory hearing loss (Perrault syndrome). In another form, brothers may have germ cell aplasia. Nongenetic causes exist as well. To elucidate the proportion of XX gonadal (ovarian) dysgenesis due to autosomal recessive genes, we analyzed published (N = 17) and unpublished (N = 8) families having at least two female offspring. Analysis was restricted to cases in whom ovarian failure was documented by the presence of streak ovaries (published cases) or elevated gonadotropins (unpublished cases). We reasoned that the closer to that segregation ratio expected for an autosomal recessive trait (0.25), the lower the frequency of nongenetic forms. Segregation analysis utilized standard correction for single ascertainment, with only females included in the preliminary analysis. The segregation ratio estimate was 0.16. Our results suggest that many 46,XX females with gonadal (ovarian) dysgenesis represent a disorder segregating as an autosomal recessive trait, placing sisters of these cases at a 25% risk for this disorder. 32 refs., 2 figs., 1 tab.

  3. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy

    PubMed Central

    Kelly, K. J.; Zhang, Jizhong; Han, Ling; Kamocka, Malgorzata; Miller, Caroline; Dominguez, Jesus H.

    2015-01-01

    Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA. PMID:26136112

  4. Apparent autosomal recessive inheritance in families with proximal spinal muscular atrophy affecting individuals in two generations

    SciTech Connect

    Rudnik-Schoeneborn, S.; Zerres, K.; Hahnen, E.

    1996-11-01

    With the evidence that deletions in the region responsible for childhood- and juvenile-onset proximal spinal muscular atrophy (SMA) are on chromosome 5 it is now possible to confirm autosomal recessive inheritance in most patients (denoted {open_quotes}SMA 5q{close_quotes}). Homozygous deletions in the telomeric copy of the survival motor neuron (SMN) gene can be detected in 95%-98% of patients with early-onset SMA (types I and II), whereas as many as 10%-20% of patients with the milder, juvenile-onset form (type III SMA) do not show deletions. In families with affected subjects in two generations, it is difficult to decide whether they are autosomal dominantly inherited or caused by three independent recessive mutations (pseudodominant inheritance). Given an incidence of >1/10,000 of SMA 5q, patients with autosomal recessive SMA have an {approximately}1% recurrence risk to their offspring. Although the dominant forms are not linked to chromosome 5q, pseudodominant families can now be identified by the presence of homozygous deletions in the SMN gene. 5 refs., 1 fig., 1 tab.

  5. Autosomal Recessive Hypophosphatasia Manifesting in Utero with Long Bone Deformity but Showing Spontaneous Postnatal Improvement

    PubMed Central

    Stevenson, David A.; Carey, John C.; Coburn, Stephen P.; Ericson, Karen L.; Byrne, Janice L. B.; Mumm, Steven; Whyte, Michael P.

    2008-01-01

    Context: Hypophosphatasia (HPP) is a heritable metabolic disorder of the skeleton that includes variable expressivity conditioned by gene dosage effect and the variety of mutations in the tissue nonspecific alkaline phosphatase (TNSALP) gene. Patient age when skeletal problems first manifest generally predicts the clinical course, with perinatal HPP causing bone disease in utero with postnatal lethality. Objective: Our objective was to identify TNSALP mutations and characterize the inheritance pattern of a family with clinically variable HPP with one child manifesting in utero with long bone deformity but showing spontaneous prenatal and postnatal improvement. Design: TNSALP enzyme and substrate analysis and TNSALP mutation analysis were performed on all family members. Patients: A boy with HPP showing long bone deformity that spontaneously improved in utero and after birth is described. His older brother has the childhood form of HPP without findings until after infancy. His parents and twin sister are clinically unaffected. Results: Both boys are compound heterozygotes for the same missense mutations in TNSALP, documenting autosomal recessive inheritance for their HPP. The parents each carry one defective allele. Conclusions: The patient is an autosomal recessive case of HPP with prenatal long bone deformity but with spontaneous prenatal and postnatal improvement. Thus, prenatal detection by sonography of bowing of long bones from HPP, even with autosomal recessive inheritance, does not necessarily predict lethality but can represent variable expressivity or the effects of modifiers on the TNSALP defect(s). PMID:18559907

  6. Inhabitual autosomal recessive form of dentin dysplasia type I in a large consanguineous Moroccan family.

    PubMed

    Cherkaoui Jaouad, I; El Alloussi, M; Laarabi, F Z; Bouhouche, A; Ameziane, R; Sefiani, A

    2013-08-01

    Dentin dysplasia is a rare autosomal dominant genetic disease characterized by defect of dentin development and the causal gene is DSPP (Dentin Sialophosphoprotein gene). We report in the present study a large Moroccan family in which dentin dysplasia is clearly transmitted as an autosomal recessive trait. Four males and females family members born from healthy consanguineous parents are carriers of the typical features of the dentin dysplasia type I. Polymorphic markers that span the DSPP gene, allowed us to show that this locus is not linked to dentin dysplasia in our family. We also excluded in our family the SMOC2 gene (Sparc Related Modular Calcium Binding Protein 2) which was recently identified as a causal gene in dentin dysplasia type I with microdontia and misshapen teeth. This family represents, a new description of autosomal recessive pattern of inheritance of dentin dysplasia type I. Moreover, this form of dentin dysplasia is not allelic to the autosomal dominant dentin dysplasia and the genetic cause is to be discovered.

  7. Misregulation of mitotic chromosome segregation in a new type of autosomal recessive primary microcephaly.

    PubMed

    Marchal, Juan Alberto; Ghani, Mahdi; Schindler, Detlev; Gavvovidis, Ioannis; Winkler, Tina; Esquitino, Veronique; Sternberg, Nadine; Busche, Andreas; Krawitz, Peter; Hecht, Joachim; Robinson, Peter; Mundlos, Stephan; Graul-Neumann, Luitgard; Sperling, Karl; Trimborn, Marc; Neitzel, Heidemarie

    2011-09-01

    Primary autosomal recessive microcephaly (MCPH) is a congenital disorder characterized by a pronounced reduction of brain size and mental retardation. We present here a consanguineous Turkish family clinically diagnosed with MCPH and without linkage to any of the known loci (MCPH1-MCPH7). Autozygosity mapping identified a homozygous region of 15.8 Mb on chromosome 10q11.23-21.3, most likely representing a new locus for MCPH. Although we were unable to identify the underlying genetic defect after extensive molecular screening, we could delineate a possible molecular function in chromosome segregation by the characterization of mitosis in the patients' cells. Analyses of chromosome nondisjunction in T-lymphocytes and fibroblasts revealed a significantly elevated rate of nondisjunction in the patients' cells as compared to controls. Mitotic progression was further explored by immunofluorescence analyses of several chromosome and spindle associated proteins. We detected a remarkable alteration in the anaphase distribution of Aurora B and INCENP, which are key regulators of chromosome segregation. In particular, a fraction of both proteins remained abnormally loaded on chromosomes during anaphase in MCPH patients' cells while in cells of normal control subjects both proteins are completely transferred to the spindle midzone. We did not observe any other alterations regarding cell cycle progression, chromosome structure, or response to DNA damage. Our observations point towards a molecular role of the underlying gene product in the regulation of anaphase/telophase progression possibly through interaction with chromosomal passenger proteins. In addition, our findings represent further evidence for the proposed role of MCPH genes in the regulation of mitotic progression.

  8. Hirschsprung disease associated with polydactyly, unilateral renal agenesis, hypertelorism, and congenital deafness: a new autosomal recessive syndrome.

    PubMed Central

    Santos, H; Mateus, J; Leal, M J

    1988-01-01

    An association of Hirschsprung disease with polydactyly, unilateral renal agenesis, hypertelorism, and congenital deafness is described in sibs (brother and sister) of consanguineous parents. It is suggested that this might represent a new autosomal recessive syndrome. Images PMID:3351909

  9. Thomsen or Becker myotonia? A novel autosomal recessive nonsense mutation in the CLCN1 gene associated with a mild phenotype.

    PubMed

    Gurgel-Giannetti, Juliana; Senkevics, Adriano S; Zilbersztajn-Gotlieb, Dinorah; Yamamoto, Lydia U; Muniz, Viviane P; Pavanello, Rita C M; Oliveira, Acary B; Zatz, Mayana; Vainzof, Mariz

    2012-02-01

    We describe a large Brazilian consanguineous kindred with 3 clinically affected patients with a Thomsen myotonia phenotype. They carry a novel homozygous nonsense mutation in the CLCN1 gene (K248X). None of the 6 heterozygote carriers show any sign of myotonia on clinical evaluation or electromyography. These findings confirm the autosomal recessive inheritance of the novel mutation in this family, as well as the occurrence of phenotypic variability in the autosomal recessive forms of myotonia.

  10. The acrocallosal syndrome in first cousins: widening of the spectrum of clinical features and further support for autosomal recessive inheritance.

    PubMed

    Schinzel, A

    1988-05-01

    First cousins, related through their mothers, showed a pattern of craniofacial, brain, and limb anomalies consistent with the acrocallosal syndrome. Both patients had a defect of the corpus callosum, macrocephaly with a protruding forehead and occiput, hypertelorism, non-horizontal palpebral fissures, a small nose, notched ear lobes, and postaxial polydactyly of the hands. The boy, in addition, had hypospadias, cryptorchidism, inguinal hernias, duplication with syndactyly of the phalanges of the big toe, and a bipartite right clavicle. The girl had an arachnoidal cyst, a calvarian defect, and digitalisation of the thumbs. Motor and mental development was retarded in both patients. This observation provides further evidence of probable autosomal recessive inheritance of the acrocallosal syndrome and widens the spectrum of clinical findings and the variability of features in this rare malformation syndrome. PMID:3385741

  11. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein.

    PubMed

    Garcia, C K; Wilund, K; Arca, M; Zuliani, G; Fellin, R; Maioli, M; Calandra, S; Bertolini, S; Cossu, F; Grishin, N; Barnes, R; Cohen, J C; Hobbs, H H

    2001-05-18

    Atherogenic low density lipoproteins are cleared from the circulation by hepatic low density lipoprotein receptors (LDLR). Two inherited forms of hypercholesterolemia result from loss of LDLR activity: autosomal dominant familial hypercholesterolemia (FH), caused by mutations in the LDLR gene, and autosomal recessive hypercholesterolemia (ARH), of unknown etiology. Here we map the ARH locus to an approximately 1-centimorgan interval on chromosome 1p35 and identify six mutations in a gene encoding a putative adaptor protein (ARH). ARH contains a phosphotyrosine binding (PTB) domain, which in other proteins binds NPXY motifs in the cytoplasmic tails of cell-surface receptors, including the LDLR. ARH appears to have a tissue-specific role in LDLR function, as it is required in liver but not in fibroblasts. PMID:11326085

  12. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy.

    PubMed

    Ravenscroft, Gianina; Miyatake, Satoko; Lehtokari, Vilma-Lotta; Todd, Emily J; Vornanen, Pauliina; Yau, Kyle S; Hayashi, Yukiko K; Miyake, Noriko; Tsurusaki, Yoshinori; Doi, Hiroshi; Saitsu, Hirotomo; Osaka, Hitoshi; Yamashita, Sumimasa; Ohya, Takashi; Sakamoto, Yuko; Koshimizu, Eriko; Imamura, Shintaro; Yamashita, Michiaki; Ogata, Kazuhiro; Shiina, Masaaki; Bryson-Richardson, Robert J; Vaz, Raquel; Ceyhan, Ozge; Brownstein, Catherine A; Swanson, Lindsay C; Monnot, Sophie; Romero, Norma B; Amthor, Helge; Kresoje, Nina; Sivadorai, Padma; Kiraly-Borri, Cathy; Haliloglu, Goknur; Talim, Beril; Orhan, Diclehan; Kale, Gulsev; Charles, Adrian K; Fabian, Victoria A; Davis, Mark R; Lammens, Martin; Sewry, Caroline A; Manzur, Adnan; Muntoni, Francesco; Clarke, Nigel F; North, Kathryn N; Bertini, Enrico; Nevo, Yoram; Willichowski, Ekkhard; Silberg, Inger E; Topaloglu, Haluk; Beggs, Alan H; Allcock, Richard J N; Nishino, Ichizo; Wallgren-Pettersson, Carina; Matsumoto, Naomichi; Laing, Nigel G

    2013-07-11

    Nemaline myopathy (NEM) is a common congenital myopathy. At the very severe end of the NEM clinical spectrum are genetically unresolved cases of autosomal-recessive fetal akinesia sequence. We studied a multinational cohort of 143 severe-NEM-affected families lacking genetic diagnosis. We performed whole-exome sequencing of six families and targeted gene sequencing of additional families. We identified 19 mutations in KLHL40 (kelch-like family member 40) in 28 apparently unrelated NEM kindreds of various ethnicities. Accounting for up to 28% of the tested individuals in the Japanese cohort, KLHL40 mutations were found to be the most common cause of this severe form of NEM. Clinical features of affected individuals were severe and distinctive and included fetal akinesia or hypokinesia and contractures, fractures, respiratory failure, and swallowing difficulties at birth. Molecular modeling suggested that the missense substitutions would destabilize the protein. Protein studies showed that KLHL40 is a striated-muscle-specific protein that is absent in KLHL40-associated NEM skeletal muscle. In zebrafish, klhl40a and klhl40b expression is largely confined to the myotome and skeletal muscle, and knockdown of these isoforms results in disruption of muscle structure and loss of movement. We identified KLHL40 mutations as a frequent cause of severe autosomal-recessive NEM and showed that it plays a key role in muscle development and function. Screening of KLHL40 should be a priority in individuals who are affected by autosomal-recessive NEM and who present with prenatal symptoms and/or contractures and in all Japanese individuals with severe NEM. PMID:23746549

  13. A novel frameshift mutation of DDHD1 in a Japanese patient with autosomal recessive spastic paraplegia.

    PubMed

    Miura, Shiroh; Morikawa, Takuya; Fujioka, Ryuta; Kosaka, Kengo; Yamada, Kohei; Hattori, Gohsuke; Motomura, Manabu; Taniwaki, Takayuki; Shibata, Hiroki

    2016-08-01

    Spastic paraplegia (SPG) type 28 is an autosomal recessive SPG caused by mutations in the DDHD1 gene. We examined a Japanese 54-years-old male patient with autosomal recessive SPG. His parents were consanguineous. He needed a wheelchair for transfer due to spastic paraplegia. There was a history of operations for bilateral hallux valgus, thoracic ossification of the yellow ligament, bilateral carpal tunnel syndrome, bilateral ankle contracture, and lumbar spinal canal stenosis. He noticed gait disturbance at age 14. He used a cane for walking in his 40s. On neurological examination, he showed hyperreflexia, spasticity, and weakness in the lower extremities and bilateral Babinski reflexes. Urinary dysfunctions and impaired vibration sense in the lower limbs were observed. By exome sequencing analysis using Agilent SureSelect and Illumina MiSeq, we identified 17,248 homozygous nucleotide variants in the patient. Through the examination of 48 candidate genes known to be responsible for autosomal recessive SPG, we identified a novel homozygous 4-bp deletion, c.914_917delGTAA, p.Ser305Ilefs*2 in exon2 of the DDHD1 gene encoding phosphatidic acid-preferring phospholipase A1 (PA-PLA1). The mutation is expected to cause a frameshift generating a premature stop codon 3-bp downstream from the deletion. In consequence, the DDHD domain that is known to be critical for PLA1 activity is completely depleted in the mutated DDHD1 protein, predicted to be a functionally null mutation of the DDHD1 gene. By Sanger sequencing, we confirmed that both parents are heterozygous for the mutation. This variation was not detected in 474 Japanese control subjects as well as the data of the 1,000G Project. We conclude that the novel mutation in DDHD1 is the causative variant for the SPG28 patient that is the first record of the disease in Japanese population. PMID:27216551

  14. Mutations in TNK2 in severe autosomal recessive infantile onset epilepsy.

    PubMed

    Hitomi, Yuki; Heinzen, Erin L; Donatello, Simona; Dahl, Hans-Henrik; Damiano, John A; McMahon, Jacinta M; Berkovic, Samuel F; Scheffer, Ingrid E; Legros, Benjamin; Rai, Myriam; Weckhuysen, Sarah; Suls, Arvid; De Jonghe, Peter; Pandolfo, Massimo; Goldstein, David B; Van Bogaert, Patrick; Depondt, Chantal

    2013-09-01

    We identified a small family with autosomal recessive, infantile onset epilepsy and intellectual disability. Exome sequencing identified a homozygous missense variant in the gene TNK2, encoding a brain-expressed tyrosine kinase. Sequencing of the coding region of TNK2 in 110 patients with a similar phenotype failed to detect further homozygote or compound heterozygote mutations. Pathogenicity of the variant is supported by the results of our functional studies, which demonstrated that the variant abolishes NEDD4 binding to TNK2, preventing its degradation after epidermal growth factor stimulation. Definitive proof of pathogenicity will require confirmation in unrelated patients.

  15. Mutations in TNK2 in severe autosomal recessive infantile-onset epilepsy

    PubMed Central

    Hitomi, Yuki; Heinzen, Erin L.; Donatello, Simona; Dahl, Hans-Henrik; Damiano, John A.; McMahon, Jacinta M.; Berkovic, Samuel F.; Scheffer, Ingrid E.; Legros, Benjamin; Rai, Myriam; Weckhuysen, Sarah; Suls, Arvid; De Jonghe, Peter; Pandolfo, Massimo; Goldstein, David B.; Van Bogaert, Patrick; Depondt, Chantal

    2013-01-01

    We identified a small family with autosomal recessive, infantile-onset epilepsy and intellectual disability. Exome sequencing identified a homozygous missense variant in the gene TNK2, encoding a brain-expressed tyrosine kinase. Sequencing of the coding region of TNK2 in 110 patients with a similar phenotype failed to detect further homozygote or compound heterozygote mutations. Pathogenicity of the variant is supported by the results of our functional studies, which demonstrated that the variant abolishes NEDD4 binding to TNK2, preventing its degradation after epidermal growth factor stimulation. Definitive proof of pathogenicity will require confirmation in unrelated patients. PMID:23686771

  16. Autosomal recessive ectodermal dysplasia: I. An undescribed dysplasia/malformation syndrome.

    PubMed

    Bustos, T; Simosa, V; Pinto-Cisternas, J; Abramovits, W; Jolay, L; Rodriguez, L; Fernandez, L; Ramela, M

    1991-12-15

    We describe 27 individuals of 7 families related to each other with high probability who showed manifestations of ectodermal dysplasia and other anomalies affecting females as severely as males with variable expressivity. All parents were normal. These families were detected in a relatively isolated and inbred population with very small neighbouring communities from a Caribbean Sea island, Margarita Island, in Northeastern Venezuela (Nueva Esparta State). The clinical picture common to all patients could not be classified within the heterogeneous group of known ectodermal dysplasias and the published cases do not resemble our patients. We believe that this condition constitutes a newly recognized autosomal recessive dysplasia/malformation syndrome of ectodermal dysplasia. PMID:1776626

  17. Exome analysis reveals a Japanese family with spinocerebellar ataxia, autosomal recessive 1.

    PubMed

    Ichikawa, Yaeko; Ishiura, Hiroyuki; Mitsui, Jun; Takahashi, Yuji; Kobayashi, Shunsuke; Takuma, Hiroshi; Kanazawa, Ichiro; Doi, Koichiro; Yoshimura, Jun; Morishita, Shinichi; Goto, Jun; Tsuji, Shoji

    2013-08-15

    Spinocerebellar ataxia autosomal recessive 1 (SCAR1/AOA2) is clinically characterized by an early-onset progressive cerebellar ataxia with axonal neuropathy, ocular motor apraxia, and elevation of serum alpha-fetoprotein level. The disorder is caused by mutations in senataxin (SETX) gene. Here, we report a Japanese SCAR1/AOA2 family with a homozygous nonsense mutation (p.Q1441X) of SETX that was identified by exome sequencing. The family was previously reported as early-onset ataxia of undetermined cause. The present study emphasized the role of whole exome-sequence analysis to establish the molecular diagnosis of neurodegenerative disease presenting with diverse clinical presentations.

  18. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    PubMed

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration.

  19. Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant).

    PubMed

    Bichet, Daniel G; Bockenhauer, Detlef

    2016-03-01

    Nephrogenic diabetes insipidus (NDI), which can be inherited or acquired, is characterized by an inability to concentrate urine despite normal or elevated plasma concentrations of the antidiuretic hormone, arginine vasopressin (AVP). Polyuria with hyposthenuria and polydipsia are the cardinal clinical manifestations of the disease. About 90% of patients with congenital NDI are males with X-linked NDI who have mutations in the vasopressin V2 receptor (AVPR2) gene encoding the vasopressin V2 receptor. In less than 10% of the families studied, congenital NDI has an autosomal recessive or autosomal dominant mode of inheritance with mutations in the aquaporin-2 (AQP2) gene. When studied in vitro, most AVPR2 and AQP2 mutations lead to proteins trapped in the endoplasmic reticulum and are unable to reach the plasma membrane. Prior knowledge of AVPR2 or AQP2 mutations in NDI families and perinatal mutation testing is of direct clinical value and can avert the physical and mental retardation associated with repeated episodes of dehydration. PMID:27156763

  20. Autozygosity mapping of autosomal recessive non-syndromic sensorineural hearing loss (ARNSSNHL)

    SciTech Connect

    Brown, K.A.; Nobel, A.; Markham, A.F.

    1994-09-01

    Congenital deafness affects about 1 in 2000 persons and is of genetic origin in approximately half these cases. The majority of congenital deafness is non-syndromic and over 75% of cases are compatible with autosomal recessive inheritance. Mapping of the loci responsible for ARNSSNHL will be complicated by genetic heterogeneity. Our approach to isolating genes involved in ARNSSNHL is by autozygosity mapping which involves the genetic analysis of children resulting from consanguineous marriages with the aim of identifying regions of homozygosity unique to the genomes of affected individuals which have been inherited from a common ancestor. The population employed in this study is the Pakistani community of Leeds, Bradford and Manchester in the UK which originated from the Mirpur region of Pakistan. Microsatellite analysis of the genome with markers spaced, on average, 10 cM apart is in progress and the investigation of 15 consanguineous families has identified one family which shows linkage to human chromosome 13q. This family appears to be linked to the same autosomal recessive deafness locus as two Tunisian families recently described and confirms that this chromosome 13q locus is also responsible, although as a minor contributor, to the deafness observed in the Pakistani population.

  1. Autosomal recessive congenital cataract, intellectual disability phenotype linked to STX3 in a consanguineous Tunisian family.

    PubMed

    Chograni, M; Alkuraya, F S; Ourteni, I; Maazoul, F; Lariani, I; Chaabouni, H B

    2015-09-01

    The aim of this study is to investigate the genetic basis of autosomal recessive congenital cataract and intellectual disability phenotype in a consanguineous Tunisian family. The whole genome scan of the studied family was performed with single nucleotide polymorphisms (SNPs). The resulted runs of homozygosity (ROH) were analyzed through the integrated Systems Tool for Eye gene discovery (iSyTE) in order to prioritize candidate genes associated with congenital cataract. Selected genes were amplified and sequenced. Bioinformatic analysis was conducted to predict the function of the mutant gene. We identified a new specific lens gene named syntaxin 3 linked to the studied phenotype. The direct sequencing of this gene revealed a novel missense mutation c.122A>G which results in p.E41G. Bioinformatic analysis suggested a deleterious effect of this mutation on protein structure and function. Here, we report for the first time a missense mutation of a novel lens specific gene STX3 in a phenotype associating autosomal recessive congenital cataract and intellectual disability.

  2. A nonsense mutation in PDE6H causes autosomal-recessive incomplete achromatopsia.

    PubMed

    Kohl, Susanne; Coppieters, Frauke; Meire, Françoise; Schaich, Simone; Roosing, Susanne; Brennenstuhl, Christina; Bolz, Sylvia; van Genderen, Maria M; Riemslag, Frans C C; Lukowski, Robert; den Hollander, Anneke I; Cremers, Frans P M; De Baere, Elfride; Hoyng, Carel B; Wissinger, Bernd

    2012-09-01

    Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM, and all encode functional components of the phototransduction cascade in cone photoreceptors. Applying a functional-candidate-gene approach that focused on screening additional genes involved in this process in a cohort of 611 index cases with ACHM or other cone photoreceptor disorders, we detected a homozygous single base change (c.35C>G) resulting in a nonsense mutation (p.Ser12(∗)) in PDE6H, encoding the inhibitory γ subunit of the cone photoreceptor cyclic guanosine monophosphate phosphodiesterase. The c.35C>G mutation was present in three individuals from two independent families with a clinical diagnosis of incomplete ACHM and preserved short-wavelength-sensitive cone function. Moreover, we show through immunohistochemical colocalization studies in mouse retina that Pde6h is evenly present in all retinal cone photoreceptors, a fact that had been under debate in the past. These findings add PDE6H to the set of genes involved in autosomal-recessive cone disorders and demonstrate the importance of the inhibitory γ subunit in cone phototransduction. PMID:22901948

  3. Comprehensive Analysis of Deafness Genes in Families with Autosomal Recessive Nonsyndromic Hearing Loss

    PubMed Central

    Atik, Tahir; Onay, Huseyin; Aykut, Ayca; Bademci, Guney; Kirazli, Tayfun; Tekin, Mustafa; Ozkinay, Ferda

    2015-01-01

    Comprehensive genetic testing has the potential to become the standard of care for individuals with hearing loss. In this study, we investigated the genetic etiology of autosomal recessive nonsyndromic hearing loss (ARNSHL) in a Turkish cohort including individuals with cochlear implant, who had a pedigree suggestive of an autosomal recessive inheritance. A workflow including prescreening of GJB2 and a targeted next generation sequencing panel (Illumına TruSightTM Exome) covering 2761 genes that we briefly called as mendelian exome sequencing was used. This panel includes 102 deafness genes and a number of genes causing Mendelian disorders. Using this approach, we identified causative variants in 21 of 29 families. Three different GJB2 variants were present in seven families. Remaining 14 families had 15 different variants in other known NSHL genes (MYO7A, MYO15A, MARVELD2, TMIE, DFNB31, LOXHD1, GPSM2, TMC1, USH1G, CDH23). Of these variants, eight are novel. Mutation detection rate of our workflow is 72.4%, confirming the usefulness of targeted sequencing approach in NSHL. PMID:26561413

  4. Comprehensive Analysis of Deafness Genes in Families with Autosomal Recessive Nonsyndromic Hearing Loss.

    PubMed

    Atik, Tahir; Onay, Huseyin; Aykut, Ayca; Bademci, Guney; Kirazli, Tayfun; Tekin, Mustafa; Ozkinay, Ferda

    2015-01-01

    Comprehensive genetic testing has the potential to become the standard of care for individuals with hearing loss. In this study, we investigated the genetic etiology of autosomal recessive nonsyndromic hearing loss (ARNSHL) in a Turkish cohort including individuals with cochlear implant, who had a pedigree suggestive of an autosomal recessive inheritance. A workflow including prescreening of GJB2 and a targeted next generation sequencing panel (Illumına TruSightTM Exome) covering 2761 genes that we briefly called as mendelian exome sequencing was used. This panel includes 102 deafness genes and a number of genes causing Mendelian disorders. Using this approach, we identified causative variants in 21 of 29 families. Three different GJB2 variants were present in seven families. Remaining 14 families had 15 different variants in other known NSHL genes (MYO7A, MYO15A, MARVELD2, TMIE, DFNB31, LOXHD1, GPSM2, TMC1, USH1G, CDH23). Of these variants, eight are novel. Mutation detection rate of our workflow is 72.4%, confirming the usefulness of targeted sequencing approach in NSHL.

  5. More Than Ataxia: Hyperkinetic Movement Disorders in Childhood Autosomal Recessive Ataxia Syndromes

    PubMed Central

    Pearson, Toni S.

    2016-01-01

    Background The autosomal recessive ataxias are a heterogeneous group of disorders that are characterized by complex neurological features in addition to progressive ataxia. Hyperkinetic movement disorders occur in a significant proportion of patients, and may sometimes be the presenting motor symptom. Presentations with involuntary movements rather than ataxia are diagnostically challenging, and are likely under-recognized. Methods A PubMed literature search was performed in October 2015 utilizing pairwise combinations of disease-related terms (autosomal recessive ataxia, ataxia–telangiectasia, ataxia with oculomotor apraxia type 1 (AOA1), ataxia with oculomotor apraxia type 2 (AOA2), Friedreich ataxia, ataxia with vitamin E deficiency), and symptom-related terms (movement disorder, dystonia, chorea, choreoathetosis, myoclonus). Results Involuntary movements occur in the majority of patients with ataxia–telangiectasia and AOA1, and less frequently in patients with AOA2, Friedreich ataxia, and ataxia with vitamin E deficiency. Clinical presentations with an isolated hyperkinetic movement disorder in the absence of ataxia include dystonia or dystonia with myoclonus with predominant upper limb and cervical involvement (ataxia–telangiectasia, ataxia with vitamin E deficiency), and generalized chorea (ataxia with oculomotor apraxia type 1, ataxia-telangiectasia). Discussion An awareness of atypical presentations facilitates early and accurate diagnosis in these challenging cases. Recognition of involuntary movements is important not only for diagnosis, but also because of the potential for effective targeted symptomatic treatment. PMID:27536460

  6. COL4A6 is dispensable for autosomal recessive Alport syndrome

    PubMed Central

    Murata, Tomohiro; Katayama, Kan; Oohashi, Toshitaka; Jahnukainen, Timo; Yonezawa, Tomoko; Sado, Yoshikazu; Ishikawa, Eiji; Nomura, Shinsuke; Tryggvason, Karl; Ito, Masaaki

    2016-01-01

    Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role. PMID:27377778

  7. Mutations in GRHL2 result in an autosomal-recessive ectodermal Dysplasia syndrome.

    PubMed

    Petrof, Gabriela; Nanda, Arti; Howden, Jake; Takeichi, Takuya; McMillan, James R; Aristodemou, Sophia; Ozoemena, Linda; Liu, Lu; South, Andrew P; Pourreyron, Celine; Dafou, Dimitra; Proudfoot, Laura E; Al-Ajmi, Hejab; Akiyama, Masashi; McLean, W H Irwin; Simpson, Michael A; Parsons, Maddy; McGrath, John A

    2014-09-01

    Grainyhead-like 2, encoded by GRHL2, is a member of a highly conserved family of transcription factors that play essential roles during epithelial development. Haploinsufficiency for GRHL2 has been implicated in autosomal-dominant deafness, but mutations have not yet been associated with any skin pathology. We investigated two unrelated Kuwaiti families in which a total of six individuals have had lifelong ectodermal defects. The clinical features comprised nail dystrophy or nail loss, marginal palmoplantar keratoderma, hypodontia, enamel hypoplasia, oral hyperpigmentation, and dysphagia. In addition, three individuals had sensorineural deafness, and three had bronchial asthma. Taken together, the features were consistent with an unusual autosomal-recessive ectodermal dysplasia syndrome. Because of consanguinity in both families, we used whole-exome sequencing to search for novel homozygous DNA variants and found GRHL2 mutations common to both families: affected subjects in one family were homozygous for c.1192T>C (p.Tyr398His) in exon 9, and subjects in the other family were homozygous for c.1445T>A (p.Ile482Lys) in exon 11. Immortalized keratinocytes (p.Ile482Lys) showed altered cell morphology, impaired tight junctions, adhesion defects, and cytoplasmic translocation of GRHL2. Whole-skin transcriptomic analysis (p.Ile482Lys) disclosed changes in genes implicated in networks of cell-cell and cell-matrix adhesion. Our clinical findings of an autosomal-recessive ectodermal dysplasia syndrome provide insight into the role of GRHL2 in skin development, homeostasis, and human disease.

  8. Is autosomal recessive deafness associated with oculocutaneous albinism a "coincidence syndrome"?

    PubMed

    Lezirovitz, Karina; Nicastro, Fernanda Stávale; Pardono, Eliete; Abreu-Silva, Ronaldo Serafim; Batissoco, Ana Carla; Neustein, Isaac; Spinelli, Mauro; Mingroni-Netto, Regina Célia

    2006-01-01

    Hearing impairment is frequently found associated with pigmentary disorders in many syndromes. However, total oculocutaneous albinism (OCA) associated with deafness has been described only once, by Ziprkowski and Adam (Arch Dermatol 89:151-155, 1964) in an inbred family. A syndrome associating deafness and OCA was suggested by the authors, but two separate recessive genes segregating in this inbred group were also proposed later by Fraser (OMIM # 220900). Combined deafness and total OCA were also observed by us in a family originally reported to be nonconsanguineous but in which haplotyping showed evidence of a common ancestry: the proband was affected by both diseases, one of his sisters had only OCA and another sister had only deafness. Both the proband and his deaf sister were found to be homozygotes for the 35delG mutation (GJB2 gene), the most frequent cause of hereditary deafness. Linkage analysis with markers close to the four known OCA loci excluded linkage to OCA1, OCA2, and OCA3, and homozygosity in markers near OCA4 locus was observed. Sequencing of the corresponding gene (MATP) revealed a c.1121delT mutation, which leads to a stop codon at position 397 (L374fsX397). Clearly, the combined occurrence of deafness and albinism in this pedigree was due to mutations in two different genes, showing autosomal recessive inheritance. We speculate that the putative syndrome reported by Ziprkowski and Adam might have resulted from the co-occurrence of autosomal recessive deafness and albinism in the same pedigree, as suggested by Fraser.

  9. Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations.

    PubMed

    Mancini, Cecilia; Nassani, Stefano; Guo, Yiran; Chen, Yulan; Giorgio, Elisa; Brussino, Alessandro; Di Gregorio, Eleonora; Cavalieri, Simona; Lo Buono, Nicola; Funaro, Ada; Pizio, Nicola Renato; Nmezi, Bruce; Kyttala, Aija; Santorelli, Filippo Maria; Padiath, Quasar Salem; Hakonarson, Hakon; Zhang, Hao; Brusco, Alfredo

    2015-01-01

    Autosomal recessive inherited ataxias are a growing group of genetic disorders. We report two Italian siblings presenting in their mid-50s with difficulty in walking, dysarthria and progressive cognitive decline. Visual loss, ascribed to glaucoma, manifested a few years before the other symptoms. Brain MRI showed severe cerebellar atrophy, prevalent in the vermis, with marked cortical atrophy of both hemispheres. Exome sequencing identified a novel homozygous mutation (c.935G > A;p.Ser312Asn) in the ceroid neuronal lipofuscinosis type 5 gene (CLN5). Bioinformatics predictions and in vitro studies showed that the mutation was deleterious and likely affects ER-lysosome protein trafficking. Our findings support CLN5 hypomorphic mutations cause autosomal recessive cerebellar ataxia, confirming other reports showing CLN mutations are associated with adult-onset neurodegenerative disorders. We suggest CLN genes should be considered in the molecular analyses of patients presenting with adult-onset autosomal recessive cerebellar ataxia.

  10. Root anomalies and dentin dysplasia in autosomal recessive hyperphosphatemic familial tumoral calcinosis (HFTC)

    PubMed Central

    Vieira, Alexandre R.; Lee, Moses; Vairo, Filippo; Leite, Julio Cesar Loguercio; Munerato, Maria Cristina; Visioli, Fernanda; D’Ávila, Stéphanie Rodrigues; Wang, Shih-Kai; Choi, Murim; Simmer, James P.; Hu, Jan C-C.

    2015-01-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC, OMIM #211900) is an autosomal recessive metabolic disorder characterized by hyperphosphatemia, tooth root defects, and the progressive deposition of calcium phosphate crystals in periarticular spaces, soft tissues, and sometimes bone.1 In this HFTC case report, we document the dental phenotype associated with a homozygous missense mutation (g.29077 C>T; c.484 C>T; p.Arg162*) in GALNT3 (OMIM 6017563), a gene encoding UDP-GalNAc transferase 3 that catalyzes the first step of O-linked oligosaccharide biosynthesis in the Golgi. The medical and dental pathology is believed to be caused primarily by high serum phosphate levels (hyperphosphatemia), which, in turn, is caused by failure of GALNT3 to glycosylate the phosphate regulator protein FGF23, impairing its ability inhibit reabsorption of filtered phosphate in the kidneys. PMID:26337219

  11. [A case of autosomal recessive hypomyelinating leukodystrophy without GJA12 mutation presenting a novel phenotype].

    PubMed

    Ishikawa, Tomoko; Sato, Kimiko; Shimazaki, Rie; Goto, Katsumasa; Matsuda, Takao; Ishiura, Hiroyuki

    2010-01-01

    A 50-year-old woman, who had consanguineous parents, developed gait disturbance at age 3, and revealed nystagmus, cerebellar ataxia, peripheral neuropathy, and spastic tetraparesis. She admitted to our hospital at age 14, and the symptoms progressed very slowly. MRI of this case at age 45 showed a remarkable, diffuse hypomyelination of the cerebrum. Her older sister who already deceased at age 16 showed neurological symptoms similar to this case. The patient was found to have no proteolipid protein-1 gene duplications and deletions and base substitution. Her symptoms were considered to be different from those of typical HLD2, 3, 4 and 5. She carried no GJA12 mutations. These facts suggested that this disease is a novel, autosomal recessive hypomyelinating leukodystrophy. PMID:20120347

  12. Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations

    PubMed Central

    Jaureguiberry, Graciana; De la Dure-Molla, Muriel; Parry, David; Quentric, Mickael; Himmerkus, Nina; Koike, Toshiyasu; Poulter, James; Klootwijk, Enriko; Robinette, Steven L.; Howie, Alexander J.; Patel, Vaksha; Figueres, Marie-Lucile; Stanescu, Horia C.; Issler, Naomi; Nicholson, Jeremy K.; Bockenhauer, Detlef; Laing, Christopher; Walsh, Stephen B.; McCredie, David A.; Povey, Sue; Asselin, Audrey; Picard, Arnaud; Coulomb, Aurore; Medlar, Alan J.; Bailleul-Forestier, Isabelle; Verloes, Alain; Le Caignec, Cedric; Roussey, Gwenaelle; Guiol, Julien; Isidor, Bertrand; Logan, Clare; Shore, Roger; Johnson, Colin; Inglehearn, Christopher; Al-Bahlani, Suhaila; Schmittbuhl, Matthieu; Clauss, François; Huckert, Mathilde; Laugel, Virginie; Ginglinger, Emmanuelle; Pajarola, Sandra; Spartà, Giuseppina; Bartholdi, Deborah; Rauch, Anita; Addor, Marie-Claude; Yamaguti, Paulo M.; Safatle, Heloisa P.; Acevedo, Ana Carolina; Martelli-Júnior, Hercílio; dos Santos Netos, Pedro E.; Coletta, Ricardo D.; Gruessel, Sandra; Sandmann, Carolin; Ruehmann, Denise; Langman, Craig B.; Scheinman, Steven J.; Ozdemir-Ozenen, Didem; Hart, Thomas C.; Hart, P. Suzanne; Neugebauer, Ute; Schlatter, Eberhard; Houillier, Pascal; Gahl, William A.; Vikkula, Miikka; Bloch-Zupan, Agnès; Bleich, Markus; Kitagawa, Hiroshi; Unwin, Robert J.; Mighell, Alan; Berdal, Ariane; Kleta, Robert

    2013-01-01

    Background/Aims Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. Methods We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. Results All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. Conclusions This au-tosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis. PMID:23434854

  13. A Mutation in SLC24A1 Implicated in Autosomal-Recessive Congenital Stationary Night Blindness

    PubMed Central

    Riazuddin, S. Amer; Shahzadi, Amber; Zeitz, Christina; Ahmed, Zubair M.; Ayyagari, Radha; Chavali, Venkata R.M.; Ponferrada, Virgilio G.; Audo, Isabelle; Michiels, Christelle; Lancelot, Marie-Elise; Nasir, Idrees A.; Zafar, Ahmad U.; Khan, Shaheen N.; Husnain, Tayyab; Jiao, Xiaodong; MacDonald, Ian M.; Riazuddin, Sheikh; Sieving, Paul A.; Katsanis, Nicholas; Hejtmancik, J. Fielding

    2010-01-01

    Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder that can be associated with impaired night vision. The last decade has witnessed huge progress in ophthalmic genetics, including the identification of three genes implicated in the pathogenicity of autosomal-recessive CSNB. However, not all patients studied could be associated with mutations in these genes and thus other genes certainly underlie this disorder. Here, we report a large multigeneration family with five affected individuals manifesting symptoms of night blindness. A genome-wide scan localized the disease interval to chromosome 15q, and recombination events in affected individuals refined the critical interval to a 10.41 cM (6.53 Mb) region that harbors SLC24A1, a member of the solute carrier protein superfamily. Sequencing of all the coding exons identified a 2 bp deletion in exon 2: c.1613_1614del, which is predicted to result in a frame shift that leads to premature termination of SLC24A1 (p.F538CfsX23) and segregates with the disorder under an autosomal-recessive model. Expression analysis using mouse ocular tissues shows that Slc24a1 is expressed in the retina around postnatal day 7. In situ and immunohistological studies localized both SLC24A1 and Slc24a1 to the inner segment, outer and inner nuclear layers, and ganglion cells of the retina, respectively. Our data expand the genetic basis of CSNB and highlight the indispensible function of SLC24A1 in retinal function and/or maintenance in humans. PMID:20850105

  14. Genetic analysis of TMPRSS3 gene in the Korean population with autosomal recessive nonsyndromic hearing loss.

    PubMed

    Lee, Jinwook; Baek, Jeong-In; Choi, Jae Young; Kim, Un-Kyung; Lee, Sang-Heun; Lee, Kyu-Yup

    2013-12-15

    The TMPRSS3 gene (DFNB8/10), which encodes a transmembrane serine protease, is a common hearing loss gene in several populations. Accurate functions of TMPRSS3 in the hearing pathway are still unknown, but TMPRSS3 has been reported to play a crucial role in inner ear development or maintenance. To date, 16 pathogenic mutations have been identified in many countries, but no mutational studies of the TMPRSS3 gene have been conducted in the Korean hearing loss population. In this study, we performed genetic analysis of TMPRSS3 in 40 unrelated Korean patients with autosomal recessive hearing loss to identify the aspect and frequency of TMPRSS3 gene mutations in the Korean population. A total of 22 variations were detected, including a novel variant (p.V291L) and a previously reported pathogenic mutation (p.A306T). The p.A306T mutation which has been detected in only compound heterozygous state in previous studies was identified in homozygous state for the first time in this study. Moreover, the clinical evaluation identified bilateral dilated vestibules in the patient with p.A306T mutation, and it suggested that p.A306T mutation of the TMPRSS3 gene might be associated with vestibular anomalies. In conclusion, this study investigated that only 2.5% of patients with autosomal recessive hearing loss were related to TMPRSS3 mutations suggesting low prevalence of TMPRSS3 gene in Korean hearing loss population. Also, it will provide the information of genotype-phenotype correlation to understand definite role of TMPRSS3 in the auditory system.

  15. Missense mutation (E150K) of rhodopsin in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Orth, U.; Oehlmann, R.; Gal, A.

    1994-09-01

    Missense or nonsense mutations of the rhodopsin gene have been implied in the pathogenesis of at least 3 different traits; autosomal dominant retinitis pigmentosa (adRP), congenital stationary night blindness (CSNB), and autosomal recessive retinitis pigmentosa (arRP). For the latter, a single patient has been reported with a nonsense mutation at codon 249 on both alleles. Heterozygous carriers of missense mutations of rhodopsin develop either adRP or CSNB depending on the particular amino acid substitution. Four of the 9 siblings from a consanguineous marriage in southern India were reported the have arRP. Mutational screening and sequencing of the rhodopsin gene revealed a G-to-A transition of the first nucleotide at codon 150 in exon II, which alters glutamate to lysine. The E150K mutation was present in the 4 patients in homozygous form, whereas the parents and 2 of the siblings were heterozygotes. Two-point analysis produced a Zmax=3.46 at theta=0.00. Two unaffected siblings who are heterozygotes for the E150K mutation underwent a thorough ophthalmological and psychophysical examination. No clinical abnormalities were found although these individuals were over forty, whereas the onset of RP in their affected siblings was in the second decade. Collectively, both the genetic and clinical findings strongly suggest that the E150K mutation of rhodopsin is recessive in this family. Glu150 forms part of the CD cytoplasmic loop of rhodopsin, which has been implicated in the binding and activation of transducin. We speculate that E150K leads to RP because the mutant protein may be incapable of activating transducin. It is tempting to speculate that, in addition to mutations in the genes for rhodopsin and the {beta}-subunit of PDE, mutations in the genes for transducin may also result in arRP.

  16. Autosomal recessive PGM3 mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment

    PubMed Central

    Zhang, Yu; Yu, Xiaomin; Ichikawa, Mie; Lyons, Jonathan J.; Datta, Shrimati; Lamborn, Ian T.; Jing, Huie; Kim, Emily S.; Biancalana, Matthew; Wolfe, Lynne A.; DiMaggio, Thomas; Matthews, Helen F.; Kranick, Sarah M.; Stone, Kelly D.; Holland, Steven M.; Reich, Daniel S.; Hughes, Jason D.; Mehmet, Huseyin; McElwee, Joshua; Freeman, Alexandra F.; Freeze, Hudson H.; Su, Helen C.; Milner, Joshua D.

    2014-01-01

    Background Identifying genetic syndromes that lead to significant atopic disease can open new pathways for investigation and intervention in allergy. Objective To define a genetic syndrome of severe atopy, elevated serum IgE, immune deficiency, autoimmunity, and motor and neurocognitive impairment. Methods Eight patients from two families who had similar syndromic features were studied. Thorough clinical evaluations, including brain MRI and sensory evoked potentials, were performed. Peripheral lymphocyte flow cytometry, antibody responses, and T cell cytokine production were measured. Whole exome sequencing was performed to identify disease-causing mutations. Immunoblotting, qRT-PCR, enzymatic assays, nucleotide sugar and sugar phosphate analyses along with MALDI-TOF mass spectrometry of glycans were used to determine the molecular consequences of the mutations. Results Marked atopy and autoimmunity were associated with increased TH2 and TH17 cytokine production by CD4+ T cells. Bacterial and viral infection susceptibility were noted along with T cell lymphopenia, particularly of CD8+ T cells, and reduced memory B cells. Apparent brain hypomyelination resulted in markedly delayed evoked potentials and likely contributed to neurological abnormalities. Disease segregated with novel autosomal recessive mutations in a single gene, phosphoglucomutase 3 (PGM3). Although PGM3 protein expression was variably diminished, impaired function was demonstrated by decreased enzyme activity and reduced UDP-GlcNAc, along with decreased O- and N-linked protein glycosylation in patients’ cells. These results define a new Congenital Disorder of Glycosylation. Conclusions Autosomal recessive, hypomorphic PGM3 mutations underlie a disorder of severe atopy, immune deficiency, autoimmunity, intellectual disability and hypomyelination. PMID:24589341

  17. Mutations in the interleukin receptor IL11RA cause autosomal recessive Crouzon-like craniosynostosis.

    PubMed

    Keupp, Katharina; Li, Yun; Vargel, Ibrahim; Hoischen, Alexander; Richardson, Rebecca; Neveling, Kornelia; Alanay, Yasemin; Uz, Elif; Elcioğlu, Nursel; Rachwalski, Martin; Kamaci, Soner; Tunçbilek, Gökhan; Akin, Burcu; Grötzinger, Joachim; Konas, Ersoy; Mavili, Emin; Müller-Newen, Gerhard; Collmann, Hartmut; Roscioli, Tony; Buckley, Michael F; Yigit, Gökhan; Gilissen, Christian; Kress, Wolfram; Veltman, Joris; Hammerschmidt, Matthias; Akarsu, Nurten A; Wollnik, Bernd

    2013-11-01

    We have characterized a novel autosomal recessive Crouzon-like craniosynostosis syndrome in a 12-affected member family from Antakya, Turkey, the presenting features of which include: multiple suture synostosis, midface hypoplasia, variable degree of exophthalmos, relative prognathism, a beaked nose, and conductive hearing loss. Homozygosity mapping followed by targeted next-generation sequencing identified a c.479+6T>G mutation in the interleukin 11 receptor alpha gene (IL11RA) on chromosome 9p21. This donor splice-site mutation leads to a high percentage of aberrant IL11RA mRNA transcripts in an affected individual and altered mRNA splicing determined by in vitro exon trapping. An extended IL11RA mutation screen was performed in a cohort of 79 patients with an initial clinical diagnosis of Crouzon syndrome, pansynostosis, or unclassified syndromic craniosynostosis. We identified mutations segregating with the disease in five families: a German patient of Turkish origin and a Turkish family with three affected sibs all of whom were homozygous for the previously identified IL11RA c.479+6T>G mutation; a family with pansynostosis with compound heterozygous missense mutations, p.Pro200Thr and p.Arg237Pro; and two further Turkish families with Crouzon-like syndrome carrying the homozygous nonsense mutations p.Tyr232* and p.Arg292*. Using transient coexpression in HEK293T and COS7 cells, we demonstrated dramatically reduced IL11-mediated STAT3 phosphorylation for all mutations. Immunofluorescence analysis of mouse Il11ra demonstrated specific protein expression in cranial mesenchyme which was localized around the coronal suture tips and in the lambdoidal suture. In situ hybridization analysis of adult zebrafish also detected zfil11ra expression in the coronal suture between the overlapping frontal and parietal plates. This study demonstrates that mutations in the IL11RA gene cause an autosomal recessive Crouzon-like craniosynostosis. PMID:24498618

  18. Characterization of an Early-Onset, Autosomal Recessive, Progressive Retinal Degeneration in Bengal Cats

    PubMed Central

    Ofri, Ron; Reilly, Christopher M.; Maggs, David J.; Fitzgerald, Paul G.; Shilo-Benjamini, Yael; Good, Kathryn L.; Grahn, Robert A.; Splawski, Danielle D.; Lyons, Leslie A.

    2015-01-01

    Purpose A form of retinal degeneration suspected to be hereditary was discovered in a family of Bengal cats. A breeding colony was established to characterize disease progression clinically, electrophysiologically, and morphologically, and to investigate the mode of inheritance. Methods Affected and related cats were donated by owners for breeding trials and pedigree analysis. Kittens from test and complementation breedings underwent ophthalmic and neuro-ophthalmic examinations and ERG, and globes were evaluated using light microscopy. Results Pedigree analysis, along with test and complementation breedings, indicated autosomal recessive inheritance and suggested that this disease is nonallelic to a retinal degeneration found in Persian cats. Mutation analysis confirmed the disease is not caused by CEP290 or CRX variants found predominantly in Abyssinian and Siamese cats. Ophthalmoscopic signs of retinal degeneration were noted at 9 weeks of age and became more noticeable over the next 4 months. Visual deficits were behaviorally evident by 1 year of age. Electroretinogram demonstrated reduced rod and cone function at 7 and 9 weeks of age, respectively. Rod responses were mostly extinguished at 14 weeks of age; cone responses were minimal by 26 weeks. Histologic degeneration was first observed at 8 weeks, evidenced by reduced photoreceptor numbers, then rapid deterioration of the photoreceptor layer and, subsequently, severe outer retinal degeneration. Conclusions A recessively inherited primary photoreceptor degeneration was characterized in the Bengal cat. The disease is characterized by early onset, with histologic, ophthalmoscopic, and electrophysiological signs evident by 2 months of age, and rapid progression to blindness. PMID:26258614

  19. Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia

    PubMed Central

    Stitziel, Nathan O.; Fouchier, Sigrid W.; Sjouke, Barbara; Peloso, Gina M.; Moscoso, Alessa M.; Auer, Paul L.; Goel, Anuj; Gigante, Bruna; Barnes, Timothy A.; Melander, Olle; Orho-Melander, Marju; Duga, Stefano; Sivapalaratnam, Suthesh; Nikpay, Majid; Martinelli, Nicola; Girelli, Domenico; Jackson, Rebecca D.; Kooperberg, Charles; Lange, Leslie A.; Ardissino, Diego; McPherson, Ruth; Farrall, Martin; Watkins, Hugh; Reilly, Muredach P.; Rader, Daniel J.; de Faire, Ulf; Schunkert, Heribert; Erdmann, Jeanette; Samani, Nilesh J.; Charnas, Lawrence; Altshuler, David; Gabriel, Stacey; Kastelein, John J.P.; Defesche, Joep C.; Nederveen, Aart J.; Kathiresan, Sekar; Hovingh, G. Kees

    2014-01-01

    Objective Autosomal recessive hypercholesterolemia (ARH) is a rare inherited disorder characterized by extremely high total and low-density lipoprotein cholesterol levels that has been previously linked to mutations in LDLRAP1. We identified a family with ARH not explained by mutations in LDLRAP1 or other genes known to cause monogenic hypercholesterolemia. The aim of this study was to identify the molecular etiology of ARH in this family. Approach and Results We used exome sequencing to assess all protein coding regions of the genome in three family members and identified a homozygous exon 8 splice junction mutation (c.894G>A, also known as E8SJM) in LIPA that segregated with the diagnosis of hypercholesterolemia. Since homozygosity for mutations in LIPA is known to cause cholesterol ester storage disease (CESD), we performed directed follow-up phenotyping by non-invasively measuring hepatic cholesterol content. We observed abnormal hepatic accumulation of cholesterol in the homozygote individuals, supporting the diagnosis of CESD. Given previous suggestions of cardiovascular disease risk in heterozygous LIPA mutation carriers, we genotyped E8SJM in >27,000 individuals and found no association with plasma lipid levels or risk of myocardial infarction, confirming a true recessive mode of inheritance. Conclusions By integrating observations from Mendelian and population genetics along with directed clinical phenotyping, we diagnosed clinically unapparent CESD in the affected individuals from this kindred and addressed an outstanding question regarding risk of cardiovascular disease in LIPA E8SJM heterozygous carriers. PMID:24072694

  20. CDK5RAP2 expression during murine and human brain development correlates with pathology in primary autosomal recessive microcephaly.

    PubMed

    Issa, Lina; Kraemer, Nadine; Rickert, Christian H; Sifringer, Marco; Ninnemann, Olaf; Stoltenburg-Didinger, Gisela; Kaindl, Angela M

    2013-09-01

    Homozygous mutations in the cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 cause primary autosomal recessive microcephaly (MCPH). MCPH is characterized by a pronounced reduction of brain volume, particularly of the cerebral cortex, and mental retardation. Though it is a rare developmental disorder, MCPH has moved into the spotlight of neuroscience because of its proposed central role in stem-cell biology and brain development. Investigation of the neural basis of genetically defined MCPH has been limited to animal studies and neuroimaging of affected patients as no neuropathological studies have been published. In the present study, we depict the spatiotemporal expression of CDK5RAP2 in the developing brain of mouse and human. We found intriguing concordance between regions of high CDK5RAP2 expression in the mouse and sites of pathology suggested by neuroimaging studies in humans and mouse. Our findings in human tissue confirm those in mouse tissues, underlining the function of CDK5RAP2 in cell proliferation and arguing for a conserved role of this protein in the development of the mammalian cerebral cortex. PMID:22806269

  1. Next-generation sequencing for molecular diagnosis of autosomal recessive polycystic kidney disease.

    PubMed

    Edrees, Burhan M; Athar, Mohammad; Al-Allaf, Faisal A; Taher, Mohiuddin M; Khan, Wajahatullah; Bouazzaoui, Abdellatif; Al-Harbi, Naffaa; Safar, Ramzia; Al-Edressi, Howaida; Alansary, Khawala; Anazi, Abulkareem; Altayeb, Naji; Ahmed, Muawia A; Abduljaleel, Zainularifeen

    2016-10-10

    Autosomal recessive polycystic kidney disease (ARPKD) a rare genetic disorder, described by formation of cysts in the kidney. A targeted customized sequencing of genes implicated in ARPKD phenotype was performed to identify candidate variants using the Ion torrent PGM next-generation sequencing. The results identified likely pathogenic disease causing variants during the validation process. Four potential pathogenic variants [c.4870C>T, p.(Arg1624Trp)], [c.5725C>T, p.(Arg1909Trp)], c.1736C>T, p.(Thr579Met)] and [(c.10628T>G), p.(Leu3543Trp)] were observed in PKHD1 gene among 12 out of 18 samples. The rest of the patient samples also showed few variants in ADPKD (Autosomal Dominant Polycystic Kidney Disease) disease causing genes PKD1 and PKD2 i.e. [c.12433G>A, p.(Val4145Ile)] and [c.1445T>G, p.(Phe482Cys)], respectively. All causative variants were validated by capillary sequencing, confirming the presence of a novel homozygous variants [c.10628T>G, p.(Leu3543Trp)] found in exon 61 of a male proband. All potentially deleterious variants identified in PKHD1, PKD1, and PKD2 gene, also exhibited pathologically or clinically significance based on the computational predictions involved in predicting the impact of non-synonymous SNPs (nsSNPs) on protein function such as Sorting Intolerant From Tolerant (SIFT) and Polymorphism Phenotyping (PolyPhen2). SIFT classified 50% of our nsSNPs as "deleterious", while PolyPhen2 identified 45% of our nsSNPs as "Probably damaged" and the results from both programs were largely complementary. Taken together, these results suggest that the NGS strategies provide a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in targeted genes sequence analysis. PMID:27401137

  2. Molecular and cellular pathophysiology of autosomal recessive polycystic kidney disease (ARPKD).

    PubMed

    Sweeney, William E; Avner, Ellis D

    2006-12-01

    Autosomal recessive polycystic kidney disease (ARPKD) belongs to a group of congenital hepatorenal fibrocystic syndromes characterized by dual renal and hepatic involvement of variable severity. Despite the wide clinical spectrum of ARPKD (MIM 263200), genetic linkage studies indicate that mutations at a single locus, PKHD1 (polycystic kidney and hepatic disease 1), located on human chromosome region 6p21.1-p12, are responsible for all phenotypes of ARPKD. Identification of cystic disease genes and their encoded proteins has provided investigators with critical tools to begin to unravel the molecular and cellular mechanisms of PKD. PKD cystic epithelia share common phenotypic abnormalities despite the different genetic mutations that underlie the disease. Recent studies have shown that many cyst-causing proteins are expressed in multimeric complexes at distinct subcellular locations within epithelia. This co-expression of cystoproteins suggests that cyst formation, regardless of the underlying disease gene, results from perturbations in convergent and/or integrated signal transduction pathways. To date, no specific therapies are in clinical use for ameliorating cyst growth in ARPKD. However, studies noted in this review suggest that therapeutic targeting of the cAMP and epidermal growth factor receptor (EGFR)-axis abnormalities in cystic epithelia may translate into effective therapies for ARPKD and, by analogy, autosomal dominant polycystic kidney disease (ADPKD). A particularly promising approach appears to be the targeting of downstream intermediates of both the cAMP and EGFR axis. This review focuses on ARPKD and presents a concise summary of the current understanding of the molecular genetics and cellular pathophysiology of this disease. It also highlights phenotypic and mechanistic similarities between ARPKD and ADPKD.

  3. Next-generation sequencing for molecular diagnosis of autosomal recessive polycystic kidney disease.

    PubMed

    Edrees, Burhan M; Athar, Mohammad; Al-Allaf, Faisal A; Taher, Mohiuddin M; Khan, Wajahatullah; Bouazzaoui, Abdellatif; Al-Harbi, Naffaa; Safar, Ramzia; Al-Edressi, Howaida; Alansary, Khawala; Anazi, Abulkareem; Altayeb, Naji; Ahmed, Muawia A; Abduljaleel, Zainularifeen

    2016-10-10

    Autosomal recessive polycystic kidney disease (ARPKD) a rare genetic disorder, described by formation of cysts in the kidney. A targeted customized sequencing of genes implicated in ARPKD phenotype was performed to identify candidate variants using the Ion torrent PGM next-generation sequencing. The results identified likely pathogenic disease causing variants during the validation process. Four potential pathogenic variants [c.4870C>T, p.(Arg1624Trp)], [c.5725C>T, p.(Arg1909Trp)], c.1736C>T, p.(Thr579Met)] and [(c.10628T>G), p.(Leu3543Trp)] were observed in PKHD1 gene among 12 out of 18 samples. The rest of the patient samples also showed few variants in ADPKD (Autosomal Dominant Polycystic Kidney Disease) disease causing genes PKD1 and PKD2 i.e. [c.12433G>A, p.(Val4145Ile)] and [c.1445T>G, p.(Phe482Cys)], respectively. All causative variants were validated by capillary sequencing, confirming the presence of a novel homozygous variants [c.10628T>G, p.(Leu3543Trp)] found in exon 61 of a male proband. All potentially deleterious variants identified in PKHD1, PKD1, and PKD2 gene, also exhibited pathologically or clinically significance based on the computational predictions involved in predicting the impact of non-synonymous SNPs (nsSNPs) on protein function such as Sorting Intolerant From Tolerant (SIFT) and Polymorphism Phenotyping (PolyPhen2). SIFT classified 50% of our nsSNPs as "deleterious", while PolyPhen2 identified 45% of our nsSNPs as "Probably damaged" and the results from both programs were largely complementary. Taken together, these results suggest that the NGS strategies provide a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in targeted genes sequence analysis.

  4. An intronic deletion in the PROM1 gene leads to autosomal recessive cone-rod dystrophy

    PubMed Central

    Eidinger, Osnat; Leibu, Rina; Newman, Hadas; Rizel, Leah; Perlman, Ido

    2015-01-01

    Purpose To investigate the genetic basis for autosomal recessive cone-rod dystrophy (CRD) in a consanguineous Israeli Jewish family. Methods Patients underwent a detailed ophthalmic evaluation, including eye examination, visual field testing, optical coherence tomography (OCT), and electrophysiological tests, electroretinography (ERG) and visual evoked potential (VEP). Genome-wide homozygosity mapping using a single nucleotide polymorphism (SNP) array was performed to identify homozygous regions shared among two of the affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico and in vitro analyses were used to predict the effect of the identified mutation on splicing. Results The affected family members are three siblings who have various degrees of progressive visual deterioration, glare, color vision abnormalities, and night vision difficulties. Visual field tests revealed central scotomas of different extension. Cone and rod ERG responses were reduced, with cones more severely affected. Homozygosity mapping revealed several homozygous intervals shared among two of the affected individuals. One included the PROM1 gene. Sequence analysis of the 26 coding exons of PROM1 in one affected individual revealed no mutations in the coding sequence or in intronic splice sites. However, in intron 21, proximate to the intron–exon junction, we observed a homozygous 10 bp deletion between positions −26 and −17 (c.2281–26_-17del). The deletion was linked to a known SNP, c.2281–6C>G. The deletion cosegregated with the disease in the family, and was not detected in public databases or in 101 ethnically-matched control individuals. In silico analysis predicted that this deletion would lead to altered intron 21 splicing. Bioinformatic analysis predicted that a recognition site for the SRSF2 splicing factor is located within the deleted sequence. The in vitro splicing assay demonstrated that c.2281–26_-17del leads to

  5. CHARACTERIZING THE SPECTRUM OF AUTOSOMAL RECESSIVE HEREDITARY HEARING LOSS IN IRAN

    PubMed Central

    Sloan-Heggen, Christina M; Babanejad, Mojgan; Beheshtian, Maryam; Simpson, Allen C; Booth, Kevin T; Ardalani, Fariba; Frees, Kathy L; Mohseni, Marzieh; Mozafari, Reza; Mehrjoo, Zohreh; Jamali, Leila; Vaziri, Saeideh; Akhtarkhavari, Tara; Bazazzadegan, Niloofar; Nikzat, Nooshin; Arzhangi, Sanaz; Sabbagh, Farahnaz; Otukesh, Hasan; Seifati, Seyed Morteza; Khodaei, Hossein; Taghdiri, Maryam; Meyer, Nicole C; Daneshi, Ahmad; Farhadi, Mohammad; Kahrizi, Kimia; Smith, Richard JH; Azaiez, Hela; Najmabadi, Hossein

    2016-01-01

    Background Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare. We sought to define the spectrum of autosomal recessive HHL in Iran by investigating both common and rarely diagnosed deafness-causing genes. Design Using a custom targeted genomic enrichment (TGE) panel we simultaneously interrogating all known genetic causes of NSHL in a cohort of 302 GJB2-negative Iranian families. Results We established a genetic diagnosis for 67% of probands and their families, with over half of all diagnoses attributable to variants in five genes: SLC26A4, MYO15A, MYO7A, CDH23, and PCDH15. As a reflection of the power of consanguinity mapping, 26 genes were identified as causative for NSHL in the Iranian population for the first time. In total, 179 deafness-causing variants were identified in 40 genes in 201 probands, including 110 novel single nucleotide or small insertion-deletion variants and 3 novel copy number variations. Several variants represent founder mutations. Conclusion This study attests to the power of TGE and massively parallel sequencing (TGE+MPS) as a diagnostic tool for the evaluation of hearing loss in Iran, and expands on our understanding of the genetics of HHL in this country. Families negative for variants in the genes represented on this panel represent an excellent cohort for novel gene discovery. PMID:26445815

  6. Elevated c-myc protooncogene expression in autosomal recessive polycystic kidney disease

    SciTech Connect

    Cowley, B.D. Jr.; Smardo, F.L. Jr.; Grantham, J.J.; Calvet, J.P.

    1987-12-01

    The polycystic kidney diseases (PKDs) are a group of disorders characterized by the growth of epithelial cysts from the nephrons and collecting ducts of kidney tubules. The diseases can be inherited or can be provoked by environmental factors. To investigate the molecular basis of the abnormal cell growth associated with PKD, c-myc protooncogene expression was studied in a mouse model for autosomal recessive PKD. Homozygous recessive C57BL/6J (cpk/cpk) mice develop massively enlarged cystic kidneys and die from renal failure shortly after 3 weeks of age. Quantitative dot blot and RNA blot hybridization experiments in which whole kidney poly(A)/sup +/ RNA was hybridized with a c-myc RNA probe showed a 2- to 6-fold increase in c-myc mRNA at 2 weeks, and a 25- to 30-fold increase in c-myc mRNA at 3 weeks of age in polycystic mice, as compared to normal littermates. c-myc expression was also examined under two conditions in which kidney cell growth was experimentally induced in normal adult mice: compensatory renal hypertrophy and tubule regeneration following folic acid-induced renal cell injury. While compensatory hypertrophy resulted in only a small increase in c-myc, folic acid treatment gave rise after 24 hr to a 12-fold increase in c-myc RNA. The induction of c-myc by folic acid is consistent with increased cellular proliferation regenerating tubules. In contrast, polycystic kidneys show only a minimal increase in cellular proliferation over that seen in normal kidneys, while c-myc levels were found to be markedly elevated. Thus, the level of c-myc expression in cystic kidneys appears to be out of proportion to the rate of cell division, suggesting that elevated and potentially abnormal c-myc expression may be involved in the pathogenesis of PKD.

  7. A novel frameshift mutation in KCNQ4 in a family with autosomal recessive non-syndromic hearing loss.

    PubMed

    Wasano, Koichiro; Mutai, Hideki; Obuchi, Chie; Masuda, Sawako; Matsunaga, Tatsuo

    2015-08-01

    Mutation of KCNQ4 has been reported to cause autosomal dominant non-syndromic hearing loss (DFNA2A) that usually presents as progressive hearing loss starting from mild to moderate hearing loss during childhood. Here, we identified a novel KCNQ4 mutation, c.1044_1051del8, in a family with autosomal recessive non-syndromic hearing loss. The proband was homozygous for the mutation and was born to consanguineous parents; she showed severe hearing loss that was either congenital or of early childhood onset. The proband had a sister who was heterozygous for the mutation but showed normal hearing. The mutation caused a frameshift that eliminated most of the cytoplasmic C-terminus, including the A-domain, which has an important role for protein tetramerization, and the B-segment, which is a binding site for calmodulin (CaM) that regulates channel function via Ca ions. The fact that the heterozygote had normal hearing indicates that sufficient tetramerization and CaM binding sites were present to preserve a normal phenotype even when only half the proteins contained an A-domain and B-segment. On the other hand, the severe hearing loss in the homozygote suggests that complete loss of the A-domain and B-segment in the protein caused loss of function due to the failure of tetramer formation and CaM binding. This family suggests that some KCNQ4 mutations can cause autosomal recessive hearing loss with more severe phenotype in addition to autosomal dominant hearing loss with milder phenotype. This genotype-phenotype correlation is analogous to that in KCNQ1 which causes autosomal dominant hereditary long QT syndrome 1 with milder phenotype and the autosomal recessive Jervell and Lange-Nielsen syndrome 1 with more severe phenotype due to deletion of the cytoplasmic C-terminus of the potassium channel.

  8. Novel Deletion of SERPINF1 Causes Autosomal Recessive Osteogenesis Imperfecta Type VI in Two Brazilian Families

    PubMed Central

    Moldenhauer Minillo, Renata; Sobreira, Nara; de Fatima de Faria Soares, Maria; Jurgens, Julie; Ling, Hua; Hetrick, Kurt N.; Doheny, Kimberly F.; Valle, David; Brunoni, Decio; Alvarez Perez, Ana B.

    2014-01-01

    Autosomal recessive osteogenesis imperfecta (OI) accounts for 10% of all OI cases, and, currently, mutations in 10 genes (CRTAP, LEPRE1, PPIB, SERPINH1, FKBP10, SERPINF1, SP7, BMP1, TMEM38B, and WNT1) are known to be responsible for this form of the disease. PEDF is a secreted glycoprotein of the serpin superfamily that maintains bone homeostasis and regulates osteoid mineralization, and it is encoded by SERPINF1, currently associated with OI type VI (MIM 172860). Here, we report a consanguineous Brazilian family in which multiple individuals from at least 4 generations are affected with a severe form of OI, and we also report an unrelated individual from the same small city in Brazil with a similar but more severe phenotype. In both families the same homozygous SERPINF1 19-bp deletion was identified which is not known in the literature yet. We described intra- and interfamilial clinical and radiological phenotypic variability of OI type VI caused by the same homozygous SERPINF1 19-bp deletion and suggest a founder effect. Furthermore, the SERPINF1 genotypes/phenotypes reported so far in the literature are reviewed. PMID:25565926

  9. The molecular basis of autosomal recessive diseases among the Arabs and Druze in Israel.

    PubMed

    Zlotogora, Joël

    2010-11-01

    The Israeli population mainly includes Jews, Muslim and Christian Arabs, and Druze In the last decade, data on genetic diseases present in the population have been systematically collected and are available online in the Israeli national genetic database ( http://www.goldenhelix.org/server/israeli ). In the non-Jewish population, up to 1 July 2010, the database included molecular data on six diseases relatively frequent in the whole population: thalassemia, familial Mediterranean fever (FMF), cystic fibrosis, deafness, phenylketonuria and congenital adrenal hyperplasia, as well as data on 195 autosomal recessive diseases among Muslim Israeli Arabs, 11 among the Christian Arabs and 31 among Druze. A single mutation was characterized in 149 out of the 238 rare disorders for which the molecular basis was known. In many diseases, mutation had never been observed in any other population and was present in one family only suggesting that it occurred as a de novo event. In other diseases, the mutation was present in more than one community or even in other populations such as Bedouins from the Arab peninsula or Christians from Lebanon. In the 89 other disorders, more than one mutation was characterized either in the same gene or in more than one gene. While it is probable that most of these cases represent random events in some cases such as Bardet Biedl among the Bedouins, the reason may be a selective advantage to the heterozygotes.

  10. Novel mutations in the genes TGM1 and ALOXE3 underlying autosomal recessive congenital ichthyosis

    PubMed Central

    Ullah, Rahim; Ansar, Muhammad; Durrani, Zaka Ullah; Lee, Kwanghyuk; Santos-Cortez, Regie Lyn P.; Muhammad, Dost; Ali, Mahboob; Zia, Muhammad; Ayub, Muhammad; Khan, Suliman; Smith, Josh D.; Nickerson, Deborah A.; Shendure, Jay; Bamshad, Michael; Leal, Suzanne M.; Ahmad, Wasim

    2016-01-01

    Background Ichthyoses are clinically characterized by scaling or hyperkeratosis of the skin or both. It can be an isolated condition limited to the skin or appear secondarily with involvement of other cutaneous or systemic abnormalities. Methods The present study investigated clinical and molecular characterization of three consanguineous families (A, B, C) segregating two different forms of autosomal recessive congenital ichthyosis (ARCI). Linkage in three consanguineous families (A, B, C) segregating two different forms of ARCI was searched by typing microsatellite and single nucleotide polymorphism marker analysis. Sequencing of the two genes TGM1 and ALOXE3 was performed by the dideoxy chain termination method. Results Genome-wide linkage analysis established linkage in family A to TGM1 gene on chromosome 14q11 and in families B and C to ALOXE3 gene on chromosome 17p13. Subsequently, sequencing of these genes using samples from affected family members led to the identification of three novel mutations: a missense variant p.Trp455Arg in TGM1 (family A); a nonsense variant p.Arg140* in ALOXE3 (family B); and a complex rearrangement in ALOXE3 (family C). Conclusion The present study further extends the spectrum of mutations in the two genes involved in causing ARCI. Characterizing the clinical spectrum resulting from mutations in the TGM1 and ALOXE3 genes will improve diagnosis and may direct clinical care of the family members. PMID:26578203

  11. A rare case of respiratory disorders associated with two autosomal recessive diseases and male infertility.

    PubMed

    Mendeluk, Gabriela Ruth; Costa, Sergio López; Scigliano, Sergio; Menga, Guillermo; Demiceu, Sergio; Palaoro, Luis Alberto

    2013-01-01

    The study of nasal ciliary beat frequency (CBF) and ultrastructure may contribute to the understanding of pathognomonic cases of male infertility associated with defects in sperm motility. This study was designed to report a particular case of male infertility, characterized by the association of two respiratory autosomal recessive genetic diseases (alpha-1-antitrypsin deficiency [AAT-D] and primary ciliary dyskinesia [PCD]). A 39-year-old patient with complete sperm immotility, AAT-D, and bronchiectasis was studied in the Laboratory of Male Fertility, the Department of Urology, the Respiratory Center of a Pediatric Hospital, and in the Department of Clinical Medicine of a Rehabilitation Respiratory Hospital. Family history, physical examination, hormonal analysis, microbial assays, semen analysis, nasal ciliary function, and structure study by digital high-speed video photography and transmission electron microscopy are described. A noninvasive nasal biopsy to retrieve ciliated epithelium lining the inferior surface of the inferior nasal turbinates was performed and CBF was determined. Beat pattern was slightly curved and rigid, not wide, and metacronic in all the observed fields analyzed. CBF was 8.2 Hz in average (reference value, 10-15 Hz) Ultrastructural assay revealed absence of the inner dynein arms in 97% of the cilia observed. The final infertility accurate diagnosis was achieved by the study of nasal CBF and ultrastructure contributing to the patient health management and genetic counseling while deciding fatherhood. Beyond this particular case, the present report may open a new field of studies in male infertility, mainly in cases of asthenozoospermia.

  12. Association between AgI-CA alleles and severity of autosomal recessive proximal spina lmuscular atrophy

    SciTech Connect

    DiDonato, C.J.; Carpten, J.D.; Fuerst, P.; Ingraham, S.E.; Mendell, J.R.; Burghes, A.H.M.; Morgan, K.; Prescott, G.; Simard, L.R.; McPherson, J.D.

    1994-12-01

    The gene for autosomal recessive proximal spinal muscular atrophy (SMA) has been mapped to an 850-kb interval on 5q11.2-q13.3, between the centromeric D5S823 and telomeric D5S557 markers. We report a new complex marker, Ag1-CA, that lies in this interval, whose primers produce one, two, or rarely three amplification-fragment-length variants (AFLVs) per allele. Class I chromosomes are those which amplify a single AFLV allele, and class II chromosomes are those which amplify an allele with two or three AFLVs. Ag1-CA shows highly significant allelic association with type I SMA in both the French Canadian (Hopital Sainte-Justine (HSJ)) and American (Ohio State University (OSU)) populations (P < .0001). Significant association between the Ag1-CA genotype and disease severity was also observed. Type I patients were predominantly homozygous for class I chromosomes (P = .0003 OSU; P = 0.0012 HSJ), whereas the majority of type II patients were heterozygous for class I and II chromosomes (P = .0014 OSU; P = .001 HSJ). There was no significant difference in Ag1-CA genotype frequencies between type III patients (P = .5 OSU; P = .25 HSJ) and the paired normal chromosomes from both carrier parents. Our results indicate that Ag1-CA is the most closely linked marker to SMA and defines the critical candidate-gene region. Finally, we have proposed a model that should be taken into consideration when screening candidates SMA genes.

  13. Autosomal recessive Wolfram syndrome associated with an 8.5 kb mtDNA single deletion

    SciTech Connect

    Barrientos, A.; Casademont, J.; Cardellach, F.

    1996-05-01

    Wolfram syndrome (MIM 222300) is characterized by optic atrophy, diabetes mellitus, diabetes insipidus, neurosensory hearing loss, urinary tract abnormalities, and neurological dysfunction. The association of clinical manifestations in tissues and organs unrelated functionally or embryologically suggested the possibility of a mitochondrial implication in the disease, which has been demonstrated in two sporadic cases. Nonetheless, familial studies suggested an autosomal recessive mode of transmission, and recent data demonstrated linkage with markers on the short arm of human chromosome 4. The patient reported here, as well as her parents and unaffected sister, carried a heteroplasmic 8.5-kb deletion in mtDNA. The deletion accounted for 23% of mitochondrial genomes in lymphocytes from the patient and {approximately}5% in the tissues studied from members of her family. The presence of the deletion in the patient in a proportion higher than in her unaffected parents suggests a putative defect in a nuclear gene that acts at the mitochondrial level. 39 refs., 6 figs., 3 tabs.

  14. Naturally- and experimentally-designed restorations of the Parkin gene deficit in autosomal recessive juvenile parkinsonism

    SciTech Connect

    Asai, Hirohide; Hirano, Makito; Kiriyama, Takao; Ikeda, Masanori; Ueno, Satoshi

    2010-01-01

    Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cycle proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF{sup hSel-10} ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.

  15. Estimation of carrier frequencies of six autosomal-recessive Mendelian disorders in the Korean population.

    PubMed

    Song, Min-Jung; Lee, Seung-Tae; Lee, Mi-Kyung; Ji, Yongick; Kim, Jong-Won; Ki, Chang-Seok

    2012-02-01

    Although many studies have been performed to identify mutations in Korean patients with various autosomal-recessive Mendelian disorders (AR-MDs), little is known about the carrier frequencies of AR-MDs in the Korean population. Twenty common mutations from six AR-MDs, including Wilson disease (WD), non-syndromic hearing loss (NSHL), glycogen storage disease type Ia (GSD Ia), phenylketonuria (PKU), congenital hypothyroidism (CH), and congenital lipoid adrenal hyperplasia (CLAH) were selected to screen for based on previous studies. A total of 3057 Koreans were genotyped by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry followed by confirmation using the Sanger sequencing. We found 201 and 8 carriers with either one or two mutations in different genes, respectively, yielding a total carrier frequency of 1 in 15 (6.7%). Of the six AR-MDs, NSHL has the highest carrier frequency followed by WD, CH, CLAH, GSD Ia, and PKU. As carrier screening tests are becoming prevalent and the number of mutations known and tested is rising, a priori data on the carrier frequencies in different ethnic groups is mandatory to plan a population screening program and to estimate its efficiency. In light of this, the present results can be used as a basis to establish a screening policy for common AR-MRs in the Korean population. PMID:22170460

  16. Autosomal recessive Wolfram syndrome associated with an 8.5-kb mtDNA single deletion.

    PubMed Central

    Barrientos, A.; Casademont, J.; Saiz, A.; Cardellach, F.; Volpini, V.; Solans, A.; Tolosa, E.; Urbano-Marquez, A.; Estivill, X.; Nunes, V.

    1996-01-01

    Wolfram syndrome (MIM 222300) is characterized by optic atrophy, diabetes mellitus, diabetes insipidus, neurosensory hearing loss, urinary tract abnormalities, and neurological dysfunction. The association of clinical manifestations in tissues and organs unrelated functionally or embryologically suggested the possibility of a mitochondrial implication in the disease, which has been demonstrated in two sporadic cases. Nonetheless, familial studies suggested an autosomal recessive mode of transmission, and recent data demonstrated linkage with markers on the short arm of human chromosome 4. The patient reported here, as well as her parents and unaffected sister, carried a heteroplasmic 8.5-kb deletion in mtDNA. The deletion accounted for 23% of mitochondrial genomes in lymphocytes from the patient and approximately 5% in the tissues studied from members of her family. The presence of the deletion in the patient in a proportion higher than in her unaffected parents suggests a putative defect in a nuclear gene that acts at the mitochondrial level. Images Figure 3 Figure 4 Figure 5 PMID:8651280

  17. A homozygous missense variant in type I keratin KRT25 causes autosomal recessive woolly hair

    PubMed Central

    Ansar, Muhammad; Raza, Syed Irfan; Lee, Kwanghyuk; Irfanullah; Shahi, Shamim; Acharya, Anushree; Dai, Hang; Smith, Joshua D; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Santos-Cortez, Regie Lyn P; Ahmad, Wasim; Leal, Suzanne M

    2016-01-01

    Background Woolly hair (WH) is a hair abnormality that is primarily characterised by tightly curled hair with abnormal growth. Methods In two unrelated consanguineous Pakistani families with non-syndromic autosomal recessive (AR) WH, homozygosity mapping and linkage analysis identified a locus within 17q21.1–q22, which contains the type I keratin gene cluster. A DNA sample from an affected individual from each family underwent exome sequencing. Results A homozygous missense variant c.950T>C (p.(Leu317Pro)) within KRT25 segregated with ARWH in both families, and has a combined maximum two-point LOD score of 7.9 at ϴ=0. The KRT25 variant is predicted to result in disruption of the second α-helical rod domain and the entire protein structure, thus possibly interfering with heterodimerisation of K25 with type II keratins within the inner root sheath (IRS) of the hair follicle and the medulla of the hair shaft. Conclusions Our findings implicate a novel gene involved in human hair abnormality, and are consistent with the curled, fragile hair found in mice with Krt25 mutations, and further support the role of IRS-specific type I keratins in hair follicle development and maintenance of hair texture. PMID:26160856

  18. Comparative proteomic analysis suggests that mitochondria are involved in autosomal recessive polycystic kidney disease.

    PubMed

    Li, Qing-Wei; Lu, Xiao-Yan; You, Yong; Sun, Huan; Liu, Xin-Yu; Ai, Jian-Zhong; Tan, Rui-Zhi; Chen, Tie-Lin; Chen, Mian-Zhi; Wang, Hong-Lian; Wei, Yu-Quan; Zhou, Qin

    2012-08-01

    Autosomal recessive polycystic kidney disease (ARPKD), characterized by ectatic collecting duct, is an infantile form of PKD occurring in 1 in 20 000 births. Despite having been studied for many years, little is known about the underlying mechanisms. In the current study, we employed, for the first time, a MS-based comparative proteomics approach to investigate the differently expressed proteins between kidney tissue samples of four ARPKD and five control individuals. Thirty two differently expressed proteins were identified and six of the identified protein encoding genes performed on an independent group (three ARPKD subjects, four control subjects) were verified by semi-quantitative RT-PCR, and part of them were further validated by Western blot and immunohistochemistry. Moreover, similar alteration tendency was detected after downregulation of PKHD1 by small interfering RNA in HEK293T cell. Interestingly, most of the identified proteins are associated with mitochondria. This implies that mitochondria may be implicated in ARPKD. Furthermore, the String software was utilized to investigate the biological association network, which is based on known and predicted protein interactions. In conclusion, our findings depicted a global understanding of ARPKD progression and provided a promising resource of targeting protein, and shed some light further investigation of ARPKD. PMID:22718539

  19. Mutation Screening of Multiple Genes in Spanish Patients with Autosomal Recessive Retinitis Pigmentosa by Targeted Resequencing

    PubMed Central

    González-del Pozo, María; Borrego, Salud; Barragán, Isabel; Pieras, Juan I.; Santoyo, Javier; Matamala, Nerea; Naranjo, Belén; Dopazo, Joaquín; Antiñolo, Guillermo

    2011-01-01

    Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing. PMID:22164218

  20. Mutation Spectrum of EYS in Spanish Patients with Autosomal Recessive Retinitis Pigmentosa

    PubMed Central

    Barragán, Isabel; Borrego, Salud; Pieras, Juan Ignacio; Pozo, María González-del; Santoyo, Javier; Ayuso, Carmen; Baiget, Montserrat; Millan, José M; Mena, Marcela; El-Aziz, Mai M Abd; Audo, Isabelle; Zeitz, Christina; Littink, Karin W; Dopazo, Joaquín; Bhattacharya, Shomi S; Antiñolo, Guillermo

    2010-01-01

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. We have recently identified a new gene (EYS) encoding an ortholog of Drosophila spacemaker (spam) as a commonly mutated gene in autosomal recessive RP. In the present study, we report the identification of 73 sequence variations in EYS, of which 28 are novel. Of these, 42.9% (12/28) are very likely pathogenic, 17.9% (5/28) are possibly pathogenic, whereas 39.3% (11/28) are SNPs. In addition, we have detected 3 pathogenic changes previously reported in other populations. We are also presenting the characterisation of EYS homologues in different species, and a detailed analysis of the EYS domains, with the identification of an interesting novel feature: a putative coiled-coil domain. Majority of the mutations in the arRP patients have been found within the domain structures of EYS. The minimum observed prevalence of distinct EYS mutations in our group of patients is of 15.9% (15/94), confirming a major involvement of EYS in the pathogenesis of arRP in the Spanish population. Along with the detection of three recurrent mutations in Caucasian population, our hypothesis of EYS being the first prevalent gene in arRP has been reinforced in the present study. © 2010 Wiley-Liss, Inc. PMID:21069908

  1. Mutations in the PDE6B gene in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Danciger, M.; Blaney, J.; Gao, Y.Q.; Zhao, D.Y.

    1995-11-01

    We have studied 24 small families with presumed autosomal recessive inheritance of retinitis pigmentosa by a combination of haplotype analysis and exon screening. Initial analysis of the families was made with a dinucleotide repeat polymorphism adjacent to the gene for rod cGMP-phosphodiesterase (PDE6B). This was followed by denaturing gradient gel electrophoresis (DGGE) and single-strand conformation polymorphism electrophoresis (SSCPE) of the 22 exons and a portion of the 5{prime} untranslated region of the PDE6B gene in the probands of each family in which the PDE6B locus could not be ruled out from segregating with disease. Two probands were found with compound heterozygous mutations: Gly576Asp and His620(1-bp del) mutations were present in one proband, and a Lys706X null mutation and an AG to AT splice acceptor site mutation in intron 2 were present in the other. Only the affecteds of each of the two families carried both corresponding mutations. 29 refs., 3 figs., 1 tab.

  2. Panel-based NGS Reveals Novel Pathogenic Mutations in Autosomal Recessive Retinitis Pigmentosa.

    PubMed

    Perez-Carro, Raquel; Corton, Marta; Sánchez-Navarro, Iker; Zurita, Olga; Sanchez-Bolivar, Noelia; Sánchez-Alcudia, Rocío; Lelieveld, Stefan H; Aller, Elena; Lopez-Martinez, Miguel Angel; López-Molina, Ma Isabel; Fernandez-San Jose, Patricia; Blanco-Kelly, Fiona; Riveiro-Alvarez, Rosa; Gilissen, Christian; Millan, Jose M; Avila-Fernandez, Almudena; Ayuso, Carmen

    2016-01-25

    Retinitis pigmentosa (RP) is a group of inherited progressive retinal dystrophies (RD) characterized by photoreceptor degeneration. RP is highly heterogeneous both clinically and genetically, which complicates the identification of causative genes and mutations. Targeted next-generation sequencing (NGS) has been demonstrated to be an effective strategy for the detection of mutations in RP. In our study, an in-house gene panel comprising 75 known RP genes was used to analyze a cohort of 47 unrelated Spanish families pre-classified as autosomal recessive or isolated RP. Disease-causing mutations were found in 27 out of 47 cases achieving a mutation detection rate of 57.4%. In total, 33 pathogenic mutations were identified, 20 of which were novel mutations (60.6%). Furthermore, not only single nucleotide variations but also copy-number variations, including three large deletions in the USH2A and EYS genes, were identified. Finally seven out of 27 families, displaying mutations in the ABCA4, RP1, RP2 and USH2A genes, could be genetically or clinically reclassified. These results demonstrate the potential of our panel-based NGS strategy in RP diagnosis.

  3. Molecular prenatal diagnosis of autosomal recessive childhood spinal muscular atrophies (SMAs).

    PubMed

    Essawi, Mona L; Al-Attribi, Ghada M; Gaber, Khaled R; El-Harouni, Ashraf A

    2012-11-01

    Autosomal recessive childhood spinal muscular atrophy (SMAs) is the second most common neuromuscular disorder and a common cause of infant disability and mortality. SMA patients are classified into three clinical types based on age of onset, and severity of symptoms. About 94% of patients have homozygous deletion of exon 7 in survival motor neuron (SMN1) gene. The neuronal apoptosis inhibitory protein (NAIP) gene was found to be more frequently deleted in the severest form of the disease. This study aimed to comment on the implementation of genetic counseling and prenatal diagnosis of SMAs for 85 fetuses from 75 Egyptian couples at risk of having an affected child. The homozygous deletion of exon 7 in SMN1 gene and the deletion of exon 5 of the NAIP gene were detected using PCR-REFLP and multiplex PCR methods respectively. Eighteen fetuses showed homozygous deletion of exon 7 in SMN1 gene and deletion of exon 5 in NAIP gene. In conclusion prenatal diagnosis is an important tool for accurate diagnosis and genetic counseling that help decision making in high risk families. PMID:22921322

  4. Genetic dissection of two Pakistani families with consanguineous localized autosomal recessive hypotrichosis (LAH)

    PubMed Central

    Abbas, Seyyedha; Naveed, Abdul Khaliq; Khan, Shakir; Yousaf, Muhammad Jawad; Azeem, Zahid; Razak, Suhail; Qaiser, Fatima

    2014-01-01

    Objective(s): Genetic analysis of two consanguineous Pakistani families with localized autosomal recessive hypotrichosis was performed with the goal to establish genotype-phenotype correlation. Materials and Methods: Genomic DNA extraction had been done from peripheral blood samples. Extracted DNA was then subjected to PCR (polymerase chain reaction) for amplification. Linkage analysis was performed using 8% polyacrylamide gel. Candidate gene was sequenced after gene linkage supported at highly polymorphic microsatellite markers of the diseased region. Results: Both families were initially tested for linkage to known genes, which were involved in human hereditary hypotrichosis, by genotyping Highly polymorphic microsatellite markers. Family B showed partial linkage at P2RY5 gene on chromosome 13q14.11-q21.32; hence, all exonic regions and their introns boundaries were subjected to DNA sequencing for any pathogenic mutation. Conclusion: Both families were tested for linkage by genotyping polymorphic microsatellite markers linked to known alopecia loci. Family A excluded all known diseased regions that is suggestive of some novel chromosomal disorder. However, sequencing of P2RY5 gene in family B showed no pathogenic mutation. PMID:25429336

  5. The renin-angiotensin system and hypertension in autosomal recessive polycystic kidney disease.

    PubMed

    Goto, Miwa; Hoxha, Nita; Osman, Rania; Dell, Katherine Macrae

    2010-12-01

    Hypertension is a well-recognized complication of autosomal recessive polycystic kidney disease (ARPKD). The renin-angiotensin system (RAS) is a key regulator of blood pressure; however, data on the RAS in ARPKD are limited and conflicting, showing both up- and down-regulation. In the current study, we characterized intrarenal and systemic RAS activation in relationship to hypertension and progressive cystic kidney disease in the ARPKD orthologous polycystic kidney (PCK) rat. Clinical and histological measures of kidney disease, kidney RAS gene expression by quantitative real-time PCR, angiotensin II (Ang II) immunohistochemistry, and systemic Ang I and II levels were assessed in 2-, 4-, and 6-month-old cystic PCK and age-matched normal rats. PCK rats developed hypertension and progressive cystic kidney disease without significant worsening of renal function or relative kidney size. Intrarenal renin, ACE and Ang II expression was increased significantly in cystic kidneys; angiotensinogen and Ang II Type I receptor were unchanged. Systemic Ang I and II levels did not differ. This study demonstrates that intrarenal, but not systemic, RAS activation is a prominent feature of ARPKD. These findings help reconcile previous conflicting reports and suggest that intrarenal renin and ACE gene upregulation may represent a novel mechanism for hypertension development or exacerbation in ARPKD.

  6. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy

    SciTech Connect

    Roberds, S.L.; Anderson, R.D.; Lim, L.E.

    1994-09-01

    Adhalin, the 50-kDa dystrophin-associated glycoprotein, is deficient in skeletal muscle of patients having severe childhood autosomal recessive muscular dystrophy (SCARMD). In several North African families, SCARMD has been linked to markers in the pericentromeric region of chromosome l3q, but SCARMD has been excluded from linkage to this locus in other families. To determine whether the adhalin gene might be involved in SCARMD, human adhalin cDNA and large portions of the adhalin gene were cloned. Adhalin is a transmembrane glycoprotein with an extracellular domain bearing limited homology to domains of entactin and nerve growth factor receptor, suggesting that adhalin may serve as a receptor for an extracellular matrix protein. The adhalin gene was mapped to chromosome 17q12-q21.33, excluding the gene from involvement in 13q-linked SCARMD. A polymorphic microsatellite was identified within intron 6 of the adhalin gene, and one allelic variant of this marker cosegregated with the disease phenotype in a large French family with a lod score of 3.61 at 0 recombination. Adhalin is undetectable in skeletal muscle from affected members of this family. Missense mutations were identified within the adhalin gene that might cause SCARMD in this family. Thus, genetic defects in at least two components, dystrophin and adhalin, of the dystrophin-glycoprotein complex can independently cause muscular dystrophies.

  7. A defect in the CLIP1 gene (CLIP-170) can cause autosomal recessive intellectual disability

    PubMed Central

    Larti, Farzaneh; Kahrizi, Kimia; Musante, Luciana; Hu, Hao; Papari, Elahe; Fattahi, Zohreh; Bazazzadegan, Niloofar; Liu, Zhe; Banan, Mehdi; Garshasbi, Masoud; Wienker, Thomas F; Ropers, H Hilger; Galjart, Niels; Najmabadi, Hossein

    2015-01-01

    In the context of a comprehensive research project, investigating novel autosomal recessive intellectual disability (ARID) genes, linkage analysis based on autozygosity mapping helped identify an intellectual disability locus on Chr.12q24, in an Iranian family (LOD score=3.7). Next-generation sequencing (NGS) following exon enrichment in this novel interval, detected a nonsense mutation (p.Q1010*) in the CLIP1 gene. CLIP1 encodes a member of microtubule (MT) plus-end tracking proteins, which specifically associates with the ends of growing MTs. These proteins regulate MT dynamic behavior and are important for MT-mediated transport over the length of axons and dendrites. As such, CLIP1 may have a role in neuronal development. We studied lymphoblastoid and skin fibroblast cell lines established from healthy and affected patients. RT-PCR and western blot analyses showed the absence of CLIP1 transcript and protein in lymphoblastoid cells derived from affected patients. Furthermore, immunofluorescence analyses showed MT plus-end staining only in fibroblasts containing the wild-type (and not the mutant) CLIP1 protein. Collectively, our data suggest that defects in CLIP1 may lead to ARID. PMID:24569606

  8. COL11A2 mutation associated with autosomal recessive Weissenbacher-Zweymuller syndrome: molecular and clinical overlap with otospondylomegaepiphyseal dysplasia (OSMED).

    PubMed

    Harel, Tamar; Rabinowitz, Ronen; Hendler, Netta; Galil, Aharon; Flusser, Hagit; Chemke, Juan; Gradstein, Libe; Lifshitz, Tova; Ofir, Rivka; Elbedour, Khalil; Birk, Ohad S

    2005-01-01

    Autosomal recessive Weissenbacher-Zweymuller syndrome (WZS) is a skeletal dysplasia characterized by rhizomelic dwarfism and severe hearing loss. Mutations in the COL11A2 gene have been implicated in causing the autosomal dominant form of this syndrome as well as non-ocular Stickler syndrome and the autosomal recessive syndrome otospondylomegaepiphyseal dysplasia (OSMED). In a consanguineous Bedouin tribe living in Southern Israel, five individuals affected by autosomal recessive WZS were available for genetic analysis. Homozygosity of a mutation in the COL11A2 gene was found in all affected individuals. This finding lends molecular support to the clinical notion that autosomal recessive WZS and OSMED are a single entity. PMID:15558753

  9. Using next-generation sequencing as a genetic diagnostic tool in rare autosomal recessive neurologic Mendelian disorders.

    PubMed

    Chen, Zhao; Wang, Jun-Ling; Tang, Bei-Sha; Sun, Zhan-Fang; Shi, Yu-Ting; Shen, Lu; Lei, Li-Fang; Wei, Xiao-Ming; Xiao, Jing-Jing; Hu, Zheng-Mao; Pan, Qian; Xia, Kun; Zhang, Qing-Yan; Dai, Mei-Zhi; Liu, Yu; Ashizawa, Tetsuo; Jiang, Hong

    2013-10-01

    Next-generation sequencing was used to investigate 9 rare Chinese pedigrees with rare autosomal recessive neurologic Mendelian disorders. Five probands with ataxia-telangectasia and 1 proband with chorea-acanthocytosis were analyzed by targeted gene sequencing. Whole-exome sequencing was used to investigate 3 affected individuals with Joubert syndrome, nemaline myopathy, or spastic ataxia Charlevoix-Saguenay type. A list of known and novel candidate variants was identified for each causative gene. All variants were genetically verified by Sanger sequencing or quantitative polymerase chain reaction with the strategy of disease segregation in related pedigrees and healthy controls. The advantages of using next-generation sequencing to diagnose rare autosomal recessive neurologic Mendelian disorders characterized by genetic and phenotypic heterogeneity are demonstrated. A genetic diagnostic strategy combining the use of targeted gene sequencing and whole-exome sequencing with the aid of next-generation sequencing platforms has shown great promise for improving the diagnosis of neurologic Mendelian disorders. PMID:23726790

  10. A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3.

    PubMed Central

    De Michele, G; De Fusco, M; Cavalcanti, F; Filla, A; Marconi, R; Volpe, G; Monticelli, A; Ballabio, A; Casari, G; Cocozza, S

    1998-01-01

    Hereditary spastic paraplegia is a genetically and phenotypically heterogeneous disorder. Both pure and complicated forms have been described, with autosomal dominant, autosomal recessive, and X-linked inheritance. Various loci (SPG1-SPG6) associated with this disorder have been mapped. Here, we report linkage analysis of a large consanguineous family affected with autosomal recessive spastic paraplegia with age at onset of 25-42 years. Linkage analysis of this family excluded all previously described spastic paraplegia loci. A genomewide linkage analysis showed evidence of linkage to chromosome 16q24.3, with markers D16S413 (maximum LOD score 3.37 at recombination fraction [theta] of .00) and D16S303 (maximum LOD score 3.74 at straight theta=.00). Multipoint analysis localized the disease gene in the most telomeric region, with a LOD score of 4.2. These data indicate the presence of a new locus linked to pure recessive spastic paraplegia, on chromosome 16q24.3, within a candidate region of 6 cM. PMID:9634528

  11. Autosomal recessive MFN2-related Charcot-Marie-Tooth disease with diaphragmatic weakness: Case report and literature review.

    PubMed

    Tan, Christopher A; Rabideau, Marina; Blevins, Amy; Westbrook, Marjorie Jody; Ekstein, Tali; Nykamp, Keith; Deucher, Anne; Harper, Amy; Demmer, Laurie

    2016-06-01

    Pathogenic variants in the mitofusin 2 gene (MFN2) are the most common cause of autosomal dominant Charcot-Marie-Tooth (CMT2) disease, which is typically characterized by axonal sensorimotor neuropathy. We report on a 7-month-old white female with hypotonia, motor delay, distal weakness, and motor/sensory axonal neuropathy in which next-generation sequencing analysis identified compound heterozygous pathogenic variants (c.2054_2069_1170del and c.392A>G) in MFN2. A review of the literature reveals that sporadic and familial cases of compound heterozygous or homozygous pathogenic MFN2 variants have been infrequently described, which indicates that MFN2 can also be inherited in a recessive manner. This case highlights several clinical findings not typically associated with MFN2 pathogenic variants, including young age of onset and rapidly progressing diaphragmatic paresis that necessitated tracheostomy and mechanical ventilation, and adds to the growing list of features identified in autosomal recessive MFN2-related CMT2. Our patient with MFN2-related CMT2 expands the clinical and mutational spectrum of individuals with autosomal recessive CMT2 and identifies a new clinical feature that warrants further observation. © 2016 Wiley Periodicals, Inc.

  12. Autosomal-recessive SASH1 variants associated with a new genodermatosis with pigmentation defects, palmoplantar keratoderma and skin carcinoma

    PubMed Central

    Courcet, Jean- Benoît; Elalaoui, Siham Chafai; Duplomb, Laurence; Tajir, Mariam; Rivière, Jean-Baptiste; Thevenon, Julien; Gigot, Nadège; Marle, Nathalie; Aral, Bernard; Duffourd, Yannis; Sarasin, Alain; Naim, Valeria; Courcet-Degrolard, Emilie; Aubriot-Lorton, Marie- Hélène; Martin, Laurent; Abrid, Jamal Eddin; Thauvin, Christel; Sefiani, Abdelaziz; Vabres, Pierre; Faivre, Laurence

    2015-01-01

    SASH1 (SAM and SH3 domain-containing protein 1) is a tumor suppressor gene involved in the tumorigenesis of a spectrum of solid cancers. Heterozygous SASH1 variants are known to cause autosomal-dominant dyschromatosis. Homozygosity mapping and whole-exome sequencing were performed in a consanguineous Moroccan family with two affected siblings presenting an unclassified phenotype associating an abnormal pigmentation pattern (hypo- and hyperpigmented macules of the trunk and face and areas of reticular hypo- and hyperpigmentation of the extremities), alopecia, palmoplantar keratoderma, ungueal dystrophy and recurrent spinocellular carcinoma. We identified a homozygous variant in SASH1 (c.1849G>A; p.Glu617Lys) in both affected individuals. Wound-healing assay showed that the patient's fibroblasts were better able than control fibroblasts to migrate. Following the identification of SASH1 heterozygous variants in dyschromatosis, we used reverse phenotyping to show that autosomal-recessive variants of this gene could be responsible for an overlapping but more complex phenotype that affected skin appendages. SASH1 should be added to the list of genes responsible for autosomal-dominant and -recessive genodermatosis, with no phenotype in heterozygous patients in the recessive form, and to the list of genes responsible for a predisposition to skin cancer. PMID:25315659

  13. Evidence for autosomal recessive inheritance in SPG3A caused by homozygosity for a novel ATL1 missense mutation

    PubMed Central

    Khan, Tahir Naeem; Klar, Joakim; Tariq, Muhammad; Anjum Baig, Shehla; Malik, Naveed Altaf; Yousaf, Raja; Baig, Shahid Mahmood; Dahl, Niklas

    2014-01-01

    Hereditary spastic paraplegias (HSPs) comprise a heterogeneous group of disorders characterized by progressive spasticity and weakness of the lower limbs. Autosomal dominant and ‘pure' forms of HSP account for ∼80% of cases in Western societies of whom 10% carry atlastin-1 (ATL1) gene mutations. We report on a large consanguineous family segregating six members with early onset HSP. The pedigree was compatible with both autosomal dominant and autosomal recessive inheritance. Whole-exome sequencing and segregation analysis revealed a homozygous novel missense variant c.353G>A, p.(Arg118Gln) in ATL1 in all six affected family members. Seven heterozygous carriers, five females and two males, showed no clinical signs of HSP with the exception of sub-clinically reduced vibration sensation in one adult female. Our combined findings show that homozygosity for the ATL1 missense variant remains the only plausible cause of HSP, whereas heterozygous carriers are asymptomatic. This apparent autosomal recessive inheritance adds to the clinical complexity of spastic paraplegia 3A and calls for caution using directed genetic screening in HSP. PMID:24473461

  14. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects

    PubMed Central

    Schaffner, Adam; Fedick, Anastasia; Kaye, Lauren E.; Liao, Jun; Yachelevich, Naomi; Chu, Mary-Lynn; Boles, Richard G.; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A.; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-01-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. PMID:27120463

  15. Brain Connectivity Changes in Autosomal Recessive Parkinson Disease: A Model for the Sporadic Form

    PubMed Central

    Makovac, Elena; Cercignani, Mara; Serra, Laura; Torso, Mario; Spanò, Barbara; Petrucci, Simona; Ricciardi, Lucia; Ginevrino, Monia; Caltagirone, Carlo; Bentivoglio, Anna Rita; Valente, Enza Maria; Bozzali, Marco

    2016-01-01

    Biallelic genetic mutations in the Park2 and PINK1 genes are frequent causes of autosomal recessive PD. Carriers of single heterozygous mutations may manifest subtle signs of disease, thus providing a unique model of preclinical PD. One emerging hypothesis suggests that non-motor symptom of PD, such as cognitive impairment may be due to a distributed functional disruption of various neuronal circuits. Using resting-state functional MRI (RS-fMRI), we tested the hypothesis that abnormal connectivity within and between brain networks may account for the patients’ cognitive status. Eight homozygous and 12 heterozygous carriers of either PINK1 or Park2 mutation and 22 healthy controls underwent RS-fMRI and cognitive assessment. RS-fMRI data underwent independent component analysis to identify five networks of interest: default-mode network, salience network, executive network, right and left fronto-parietal networks. Functional connectivity within and between each network was assessed and compared between groups. All mutation carriers were cognitively impaired, with the homozygous group reporting a more prominent impairment in visuo-spatial working memory. Changes in functional connectivity were evident within all networks between homozygous carriers and controls. Also heterozygotes reported areas of reduced connectivity when compared to controls within two networks. Additionally, increased inter-network connectivity was observed in both groups of mutation carriers, which correlated with their spatial working memory performance, and could thus be interpreted as compensatory. We conclude that both homozygous and heterozygous carriers exhibit pathophysiological changes unveiled by RS-fMRI, which can account for the presence/severity of cognitive symptoms. PMID:27788143

  16. Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2

    PubMed Central

    Santos-Cortez, Regie Lyn P.; Faridi, Rabia; Rehman, Atteeq U.; Lee, Kwanghyuk; Ansar, Muhammad; Wang, Xin; Morell, Robert J.; Isaacson, Rivka; Belyantseva, Inna A.; Dai, Hang; Acharya, Anushree; Qaiser, Tanveer A.; Muhammad, Dost; Ali, Rana Amjad; Shams, Sulaiman; Hassan, Muhammad Jawad; Shahzad, Shaheen; Raza, Syed Irfan; Bashir, Zil-e-Huma; Smith, Joshua D.; Nickerson, Deborah A.; Bamshad, Michael J.; Riazuddin, Sheikh; Ahmad, Wasim; Friedman, Thomas B.; Leal, Suzanne M.

    2016-01-01

    The sphingosine-1-phosphate receptors (S1PRs) are a well-studied class of transmembrane G protein-coupled sphingolipid receptors that mediate multiple cellular processes. However, S1PRs have not been previously reported to be involved in the genetic etiology of human traits. S1PR2 lies within the autosomal-recessive nonsyndromic hearing impairment (ARNSHI) locus DFNB68 on 19p13.2. From exome sequence data we identified two pathogenic S1PR2 variants, c.323G>C (p.Arg108Pro) and c.419A>G (p.Tyr140Cys). Each of these variants co-segregates with congenital profound hearing impairment in consanguineous Pakistani families with maximum LOD scores of 6.4 for family DEM4154 and 3.3 for family PKDF1400. Neither S1PR2 missense variant was reported among ∼120,000 chromosomes in the Exome Aggregation Consortium database, in 76 unrelated Pakistani exomes, or in 720 Pakistani control chromosomes. Both DNA variants affect highly conserved residues of S1PR2 and are predicted to be damaging by multiple bioinformatics tools. Molecular modeling predicts that these variants affect binding of sphingosine-1-phosphate (p.Arg108Pro) and G protein docking (p.Tyr140Cys). In the previously reported S1pr2−/− mice, stria vascularis abnormalities, organ of Corti degeneration, and profound hearing loss were observed. Additionally, hair cell defects were seen in both knockout mice and morphant zebrafish. Family PKDF1400 presents with ARNSHI, which is consistent with the lack of gross malformations in S1pr2−/− mice, whereas family DEM4154 has lower limb malformations in addition to hearing loss. Our findings suggest the possibility of developing therapies against hair cell damage (e.g., from ototoxic drugs) through targeted stimulation of S1PR2. PMID:26805784

  17. Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison.

    PubMed

    Pisciotta, Livia; Priore Oliva, Claudio; Pes, Giovanni Mario; Di Scala, Lilla; Bellocchio, Antonella; Fresa, Raffaele; Cantafora, Alfredo; Arca, Marcello; Calandra, Sebastiano; Bertolini, Stefano

    2006-10-01

    Autosomal recessive hypercholesterolemia (ARH) is a rare disorder, due to complete loss of function of an adaptor protein (ARH protein) required for receptor-mediated hepatic uptake of LDL. ARH is a phenocopy of homozygous familial hypercholesterolemia (HoFH) due to mutations in LDL receptor (LDLR) gene; however, previous studies suggested that ARH phenotype is less severe than that of HoFH. To test this hypothesis we compared 42 HoFH and 42 ARH patients. LDLR and ARH genes were analysed by Southern blotting and sequencing. LDLR activity was measured in cultured fibroblasts. In ARH plasma LDL cholestrol (LDL-C) level (14.25+/-2.29 mmol/L) was lower than in receptor-negative HoFH (21.38+/-3.56 mmol/L) but similar to that found in receptor-defective HoFH (15.52+/-2.39 mmol/L). The risk of coronary artery disease (CAD) was 9-fold lower in ARH patients. No ARH patients

  18. A Founder Mutation in VPS11 Causes an Autosomal Recessive Leukoencephalopathy Linked to Autophagic Defects.

    PubMed

    Zhang, Jinglan; Lachance, Véronik; Schaffner, Adam; Li, Xianting; Fedick, Anastasia; Kaye, Lauren E; Liao, Jun; Rosenfeld, Jill; Yachelevich, Naomi; Chu, Mary-Lynn; Mitchell, Wendy G; Boles, Richard G; Moran, Ellen; Tokita, Mari; Gorman, Elizabeth; Bagley, Kaytee; Zhang, Wei; Xia, Fan; Leduc, Magalie; Yang, Yaping; Eng, Christine; Wong, Lee-Jun; Schiffmann, Raphael; Diaz, George A; Kornreich, Ruth; Thummel, Ryan; Wasserstein, Melissa; Yue, Zhenyu; Edelmann, Lisa

    2016-04-01

    Genetic leukoencephalopathies (gLEs) are a group of heterogeneous disorders with white matter abnormalities affecting the central nervous system (CNS). The causative mutation in ~50% of gLEs is unknown. Using whole exome sequencing (WES), we identified homozygosity for a missense variant, VPS11: c.2536T>G (p.C846G), as the genetic cause of a leukoencephalopathy syndrome in five individuals from three unrelated Ashkenazi Jewish (AJ) families. All five patients exhibited highly concordant disease progression characterized by infantile onset leukoencephalopathy with brain white matter abnormalities, severe motor impairment, cortical blindness, intellectual disability, and seizures. The carrier frequency of the VPS11: c.2536T>G variant is 1:250 in the AJ population (n = 2,026). VPS11 protein is a core component of HOPS (homotypic fusion and protein sorting) and CORVET (class C core vacuole/endosome tethering) protein complexes involved in membrane trafficking and fusion of the lysosomes and endosomes. The cysteine 846 resides in an evolutionarily conserved cysteine-rich RING-H2 domain in carboxyl terminal regions of VPS11 proteins. Our data shows that the C846G mutation causes aberrant ubiquitination and accelerated turnover of VPS11 protein as well as compromised VPS11-VPS18 complex assembly, suggesting a loss of function in the mutant protein. Reduced VPS11 expression leads to an impaired autophagic activity in human cells. Importantly, zebrafish harboring a vps11 mutation with truncated RING-H2 domain demonstrated a significant reduction in CNS myelination following extensive neuronal death in the hindbrain and midbrain. Thus, our study reveals a defect in VPS11 as the underlying etiology for an autosomal recessive leukoencephalopathy disorder associated with a dysfunctional autophagy-lysosome trafficking pathway. PMID:27120463

  19. A rare case of respiratory disorders associated with two autosomal recessive diseases and male infertility

    PubMed Central

    Costa, Sergio López; Scigliano, Sergio; Menga, Guillermo; Demiceu, Sergio; Palaoro, Luis Alberto

    2013-01-01

    The study of nasal ciliary beat frequency (CBF) and ultrastructure may contribute to the understanding of pathognomonic cases of male infertility associated with defects in sperm motility. This study was designed to report a particular case of male infertility, characterized by the association of two respiratory autosomal recessive genetic diseases (alpha-1-antitrypsin deficiency [AAT-D] and primary ciliary dyskinesia [PCD]). A 39-year-old patient with complete sperm immotility, AAT-D, and bronchiectasis was studied in the Laboratory of Male Fertility, the Department of Urology, the Respiratory Center of a Pediatric Hospital, and in the Department of Clinical Medicine of a Rehabilitation Respiratory Hospital. Family history, physical examination, hormonal analysis, microbial assays, semen analysis, nasal ciliary function, and structure study by digital high-speed video photography and transmission electron microscopy are described. A noninvasive nasal biopsy to retrieve ciliated epithelium lining the inferior surface of the inferior nasal turbinates was performed and CBF was determined. Beat pattern was slightly curved and rigid, not wide, and metacronic in all the observed fields analyzed. CBF was 8.2 Hz in average (reference value, 10–15 Hz) Ultrastructural assay revealed absence of the inner dynein arms in 97% of the cilia observed. The final infertility accurate diagnosis was achieved by the study of nasal CBF and ultrastructure contributing to the patient health management and genetic counseling while deciding fatherhood. Beyond this particular case, the present report may open a new field of studies in male infertility, mainly in cases of asthenozoospermia. PMID:23772318

  20. Autosomal Recessive Polycystic Kidney Disease: A Hepatorenal Fibrocystic Disorder With Pleiotropic Effects

    PubMed Central

    Guay-Woodford, Lisa M.

    2014-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) is an important cause of chronic kidney disease in children. The care of ARPKD patients has traditionally been the realm of pediatric nephrologists; however, the disease has multisystem effects, and a comprehensive care strategy often requires a multidisciplinary team. Most notably, ARPKD patients have congenital hepatic fibrosis, which can lead to portal hypertension, requiring close follow-up by pediatric gastroenterologists. In severely affected infants, the diagnosis is often first suspected by obstetricians detecting enlarged, echogenic kidneys and oligohydramnios on prenatal ultrasounds. Neonatologists are central to the care of these infants, who may have respiratory compromise due to pulmonary hypoplasia and massively enlarged kidneys. Surgical considerations can include the possibility of nephrectomy to relieve mass effect, placement of dialysis access, and kidney and/or liver transplantation. Families of patients with ARPKD also face decisions regarding genetic testing of affected children, testing of asymptomatic siblings, or consideration of preimplantation genetic diagnosis for future pregnancies. They may therefore interface with genetic counselors, geneticists, and reproductive endocrinologists. Children with ARPKD may also be at risk for neurocognitive dysfunction and may require neuropsychological referral. The care of patients and families affected by ARPKD is therefore a multidisciplinary effort, and the general pediatrician can play a central role in this complex web of care. In this review, we outline the spectrum of clinical manifestations of ARPKD and review genetics of the disease, clinical and genetic diagnosis, perinatal management, management of organ-specific complications, and future directions for disease monitoring and potential therapies. PMID:25113295

  1. Autosomal-Recessive Hearing Impairment Due to Rare Missense Variants within S1PR2.

    PubMed

    Santos-Cortez, Regie Lyn P; Faridi, Rabia; Rehman, Atteeq U; Lee, Kwanghyuk; Ansar, Muhammad; Wang, Xin; Morell, Robert J; Isaacson, Rivka; Belyantseva, Inna A; Dai, Hang; Acharya, Anushree; Qaiser, Tanveer A; Muhammad, Dost; Ali, Rana Amjad; Shams, Sulaiman; Hassan, Muhammad Jawad; Shahzad, Shaheen; Raza, Syed Irfan; Bashir, Zil-E-Huma; Smith, Joshua D; Nickerson, Deborah A; Bamshad, Michael J; Riazuddin, Sheikh; Ahmad, Wasim; Friedman, Thomas B; Leal, Suzanne M

    2016-02-01

    The sphingosine-1-phosphate receptors (S1PRs) are a well-studied class of transmembrane G protein-coupled sphingolipid receptors that mediate multiple cellular processes. However, S1PRs have not been previously reported to be involved in the genetic etiology of human traits. S1PR2 lies within the autosomal-recessive nonsyndromic hearing impairment (ARNSHI) locus DFNB68 on 19p13.2. From exome sequence data we identified two pathogenic S1PR2 variants, c.323G>C (p.Arg108Pro) and c.419A>G (p.Tyr140Cys). Each of these variants co-segregates with congenital profound hearing impairment in consanguineous Pakistani families with maximum LOD scores of 6.4 for family DEM4154 and 3.3 for family PKDF1400. Neither S1PR2 missense variant was reported among ∼120,000 chromosomes in the Exome Aggregation Consortium database, in 76 unrelated Pakistani exomes, or in 720 Pakistani control chromosomes. Both DNA variants affect highly conserved residues of S1PR2 and are predicted to be damaging by multiple bioinformatics tools. Molecular modeling predicts that these variants affect binding of sphingosine-1-phosphate (p.Arg108Pro) and G protein docking (p.Tyr140Cys). In the previously reported S1pr2(-/-) mice, stria vascularis abnormalities, organ of Corti degeneration, and profound hearing loss were observed. Additionally, hair cell defects were seen in both knockout mice and morphant zebrafish. Family PKDF1400 presents with ARNSHI, which is consistent with the lack of gross malformations in S1pr2(-/-) mice, whereas family DEM4154 has lower limb malformations in addition to hearing loss. Our findings suggest the possibility of developing therapies against hair cell damage (e.g., from ototoxic drugs) through targeted stimulation of S1PR2. PMID:26805784

  2. Autosomal Recessive Retinitis Pigmentosa with Early Macular Affectation Caused by Premature Truncation in PROM1

    PubMed Central

    Permanyer, Jon; Navarro, Rafael; Friedman, James; Pomares, Esther; Castro-Navarro, Joaquín; Marfany, Gemma; Swaroop, Anand

    2010-01-01

    Purpose. To identify the genetic basis of a large consanguineous Spanish pedigree affected with autosomal recessive retinitis pigmentosa (arRP) with premature macular atrophy and myopia. Methods. After a high-throughput cosegregation gene chip was used to exclude all known RP and Leber congenital amaurosis (LCA) candidates, genome-wide screening and linkage analysis were performed. Direct mutational screening identified the pathogenic mutation, and primers were designed to obtain the RT-PCR products for isoform characterization. Results. Mutational analysis detected a novel homozygous PROM1 mutation, c.869delG in exon 8 cosegregating with the disease. This variant causes a frameshift that introduces a premature stop codon, producing truncation of approximately two-thirds of the protein. Analysis of PROM1 expression in the lymphocytes of patients, carriers, and control subjects revealed an aberrant transcript that is degraded by the nonsense-mediated decay pathway, suggesting that the disease is caused by the absence of the PROM1 protein. Three (s2, s11 and s12) of the seven alternatively spliced isoforms reported in humans, accounted for 98% of the transcripts in the retina. Given that these three contained exon 8, no PROM1 isoform is expected in the affected retinas. Conclusions. A remarkable clinical finding in the affected family is early macular atrophy with concentric spared areas. The authors propose that the hallmark of PROM1 truncating mutations is early and severe progressive degeneration of both rods and cones and highlight this gene as a candidate of choice to prioritize in the molecular genetic study of patients with noncanonical clinical peripheral and macular affectation. PMID:20042663

  3. Proof-of-principle rapid noninvasive prenatal diagnosis of autosomal recessive founder mutations

    PubMed Central

    Zeevi, David A.; Altarescu, Gheona; Weinberg-Shukron, Ariella; Zahdeh, Fouad; Dinur, Tama; Chicco, Gaya; Herskovitz, Yair; Renbaum, Paul; Elstein, Deborah; Levy-Lahad, Ephrat; Rolfs, Arndt; Zimran, Ari

    2015-01-01

    BACKGROUND. Noninvasive prenatal testing can be used to accurately detect chromosomal aneuploidies in circulating fetal DNA; however, the necessity of parental haplotype construction is a primary drawback to noninvasive prenatal diagnosis (NIPD) of monogenic disease. Family-specific haplotype assembly is essential for accurate diagnosis of minuscule amounts of circulating cell-free fetal DNA; however, current haplotyping techniques are too time-consuming and laborious to be carried out within the limited time constraints of prenatal testing, hampering practical application of NIPD in the clinic. Here, we have addressed this pitfall and devised a universal strategy for rapid NIPD of a prevalent mutation in the Ashkenazi Jewish (AJ) population. METHODS. Pregnant AJ couples, carrying mutation(s) in GBA, which encodes acid β-glucosidase, were recruited at the SZMC Gaucher Clinic. Targeted next-generation sequencing of GBA-flanking SNPs was performed on peripheral blood samples from each couple, relevant mutation carrier family members, and unrelated individuals who are homozygotes for an AJ founder mutation. Allele-specific haplotypes were constructed based on linkage, and a consensus Gaucher disease–associated founder mutation–flanking haplotype was fine mapped. Together, these haplotypes were used for NIPD. All test results were validated by conventional prenatal or postnatal diagnostic methods. RESULTS. Ten parental alleles in eight unrelated fetuses were diagnosed successfully based on the noninvasive method developed in this study. The consensus mutation–flanking haplotype aided diagnosis for 6 of 9 founder mutation alleles. CONCLUSIONS. The founder NIPD method developed and described here is rapid, economical, and readily adaptable for prenatal testing of prevalent autosomal recessive disease-causing mutations in an assortment of worldwide populations. FUNDING. SZMC, Protalix Biotherapeutics Inc., and Centogene AG. PMID:26426075

  4. Association between Ag1-CA Alleles and Severity of Autosomal Recessive Proximal Spinal Muscular Atrophy

    PubMed Central

    DiDonato, Christine J.; Morgan, Kenneth; Carpten, John D.; Fuerst, Paul; Ingraham, Susan E.; Prescott, Gary; McPherson, John D.; Wirth, Brunhilde; Zerres, Klaus; Hurko, Orest; Wasmuth, John J.; Mendell, Jerry R.; Burghes, Arthur H. M.; Simard, Louise R.

    1994-01-01

    The gene for autosomal recessive proximal spinal muscular atrophy (SMA) has been mapped to an 850-kb interval on 5q11.2-q13.3, between the centromeric D5S823 and telomeric D5S557 markers. We report a new complex marker, Ag1-CA, that lies in this interval, whose primers produce one, two, or rarely three amplification-fragment-length variants (AFLVs) per allele. Class I chromosomes are those which amplify a single AFLV allele, and class II chromosomes are those which amplify an allele with two or three AFLVs. Ag1-CA shows highly significant allelic association with type I SMA in both the French Canadian (Hôpital Sainte-Justine [HSJ]) and American (Ohio State University [OSU]) populations (P<.0001). Significant association between the Ag1-CA genotype and disease severity was also observed. Type I patients were predominantly homozygous for class I chromosomes (P=.0003 OSU; P=.0012 HSJ), whereas the majority of type II patients were heterozygous for class I and II chromosomes (P=.0014 OSU; P=.001 HSJ). There was no significant difference in Ag1-CA genotype frequencies between type III patients (P=.5 OSU; P=.25 HSJ) and the paired normal chromosomes from both carrier parents. Our results indicate that Ag1-CA is the most closely linked marker to SMA and defines the critical candidate-gene region. Finally, we have proposed a model that should be taken into consideration when screening candidate SMA genes. ImagesFigure 1Figure 2 PMID:7977383

  5. UBA5 Mutations Cause a New Form of Autosomal Recessive Cerebellar Ataxia

    PubMed Central

    Yu, Li; Zhang, Gehan; Li, Jia; Lin, Yunting; Guo, Jifeng; Wang, Junling; Shen, Lu; Jiang, Hong; Wang, Guanghui; Tang, Beisha

    2016-01-01

    Autosomal recessive cerebellar ataxia (ARCA) comprises a large and heterogeneous group of neurodegenerative disorders. For many affected patients, the genetic cause remains undetermined. Through whole-exome sequencing, we identified compound heterozygous mutations in ubiquitin-like modifier activating enzyme 5 gene (UBA5) in two Chinese siblings presenting with ARCA. Moreover, copy number variations in UBA5 or ubiquitin-fold modifier 1 gene (UFM1) were documented with the phenotypes of global developmental delays and gait disturbances in the ClinVar database. UBA5 encodes UBA5, the ubiquitin-activating enzyme of UFM1. However, a crucial role for UBA5 in human neurological disease remains to be reported. Our molecular study of UBA5-R246X revealed a dramatically decreased half-life and loss of UFM1 activation due to the absence of the catalytic cysteine Cys250. UBA5-K310E maintained its interaction with UFM1, although with less stability, which may affect the ability of this UBA5 mutant to activate UFM1. Drosophila modeling revealed that UBA5 knockdown induced locomotive defects and a shortened lifespan accompanied by aberrant neuromuscular junctions (NMJs). Strikingly, we found that UFM1 and E2 cofactor knockdown induced markedly similar phenotypes. Wild-type UBA5, but not mutant UBA5, significantly restored neural lesions caused by the absence of UBA5. The finding of a UBA5 mutation in cerebellar ataxia suggests that impairment of the UFM1 pathway may contribute to the neurological phenotypes of ARCA. PMID:26872069

  6. A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness.

    PubMed

    Kondo, Mineo; Das, Gautami; Imai, Ryoetsu; Santana, Evelyn; Nakashita, Tomio; Imawaka, Miho; Ueda, Kosuke; Ohtsuka, Hirohiko; Sakai, Kazuhiko; Aihara, Takehiro; Kato, Kumiko; Sugimoto, Masahiko; Ueno, Shinji; Nishizawa, Yuji; Aguirre, Gustavo D; Miyadera, Keiko

    2015-01-01

    Congenital stationary night blindness (CSNB) is a non-progressive, clinically and genetically heterogeneous disease of impaired night vision. We report a naturally-occurring, stationary, autosomal recessive phenotype in beagle dogs with normal daylight vision but absent night vision. Affected dogs had normal retinas on clinical examination, but showed no detectable rod responses. They had "negative-type" mixed rod and cone responses in full-field ERGs. Their photopic long-flash ERGs had normal OFF-responses associated with severely reduced ON-responses. The phenotype is similar to the Schubert-Bornschein form of complete CSNB in humans. Homozygosity mapping ruled out most known CSNB candidates as well as CACNA2D4 and GNB3. Three remaining genes were excluded based on sequencing the open reading frame and intron-exon boundaries (RHO, NYX), causal to a different form of CSNB (RHO) or X-chromosome (NYX, CACNA1F) location. Among the genes expressed in the photoreceptors and their synaptic terminals, and mGluR6 cascade and modulators, reduced expression of GNAT1, CACNA2D4 and NYX was observed by qRT-PCR in both carrier (n = 2) and affected (n = 2) retinas whereas CACNA1F was down-regulated only in the affecteds. Retinal morphology revealed normal cellular layers and structure, and electron microscopy showed normal rod spherules and synaptic ribbons. No difference from normal was observed by immunohistochemistry (IHC) for antibodies labeling rods, cones and their presynaptic terminals. None of the retinas showed any sign of stress. Selected proteins of mGluR6 cascade and its modulators were examined by IHC and showed that PKCα weakly labeled the rod bipolar somata in the affected, but intensely labeled axonal terminals that appeared thickened and irregular. Dendritic terminals of ON-bipolar cells showed increased Goα labeling. Both PKCα and Goα labeled the more prominent bipolar dendrites that extended into the OPL in affected but not normal retinas. Interestingly

  7. A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness.

    PubMed

    Kondo, Mineo; Das, Gautami; Imai, Ryoetsu; Santana, Evelyn; Nakashita, Tomio; Imawaka, Miho; Ueda, Kosuke; Ohtsuka, Hirohiko; Sakai, Kazuhiko; Aihara, Takehiro; Kato, Kumiko; Sugimoto, Masahiko; Ueno, Shinji; Nishizawa, Yuji; Aguirre, Gustavo D; Miyadera, Keiko

    2015-01-01

    Congenital stationary night blindness (CSNB) is a non-progressive, clinically and genetically heterogeneous disease of impaired night vision. We report a naturally-occurring, stationary, autosomal recessive phenotype in beagle dogs with normal daylight vision but absent night vision. Affected dogs had normal retinas on clinical examination, but showed no detectable rod responses. They had "negative-type" mixed rod and cone responses in full-field ERGs. Their photopic long-flash ERGs had normal OFF-responses associated with severely reduced ON-responses. The phenotype is similar to the Schubert-Bornschein form of complete CSNB in humans. Homozygosity mapping ruled out most known CSNB candidates as well as CACNA2D4 and GNB3. Three remaining genes were excluded based on sequencing the open reading frame and intron-exon boundaries (RHO, NYX), causal to a different form of CSNB (RHO) or X-chromosome (NYX, CACNA1F) location. Among the genes expressed in the photoreceptors and their synaptic terminals, and mGluR6 cascade and modulators, reduced expression of GNAT1, CACNA2D4 and NYX was observed by qRT-PCR in both carrier (n = 2) and affected (n = 2) retinas whereas CACNA1F was down-regulated only in the affecteds. Retinal morphology revealed normal cellular layers and structure, and electron microscopy showed normal rod spherules and synaptic ribbons. No difference from normal was observed by immunohistochemistry (IHC) for antibodies labeling rods, cones and their presynaptic terminals. None of the retinas showed any sign of stress. Selected proteins of mGluR6 cascade and its modulators were examined by IHC and showed that PKCα weakly labeled the rod bipolar somata in the affected, but intensely labeled axonal terminals that appeared thickened and irregular. Dendritic terminals of ON-bipolar cells showed increased Goα labeling. Both PKCα and Goα labeled the more prominent bipolar dendrites that extended into the OPL in affected but not normal retinas. Interestingly

  8. A Naturally Occurring Canine Model of Autosomal Recessive Congenital Stationary Night Blindness

    PubMed Central

    Kondo, Mineo; Das, Gautami; Imai, Ryoetsu; Santana, Evelyn; Nakashita, Tomio; Imawaka, Miho; Ueda, Kosuke; Ohtsuka, Hirohiko; Sakai, Kazuhiko; Aihara, Takehiro; Kato, Kumiko; Sugimoto, Masahiko; Ueno, Shinji; Nishizawa, Yuji; Aguirre, Gustavo D.; Miyadera, Keiko

    2015-01-01

    Congenital stationary night blindness (CSNB) is a non-progressive, clinically and genetically heterogeneous disease of impaired night vision. We report a naturally-occurring, stationary, autosomal recessive phenotype in beagle dogs with normal daylight vision but absent night vision. Affected dogs had normal retinas on clinical examination, but showed no detectable rod responses. They had “negative-type” mixed rod and cone responses in full-field ERGs. Their photopic long-flash ERGs had normal OFF-responses associated with severely reduced ON-responses. The phenotype is similar to the Schubert-Bornschein form of complete CSNB in humans. Homozygosity mapping ruled out most known CSNB candidates as well as CACNA2D4 and GNB3. Three remaining genes were excluded based on sequencing the open reading frame and intron-exon boundaries (RHO, NYX), causal to a different form of CSNB (RHO) or X-chromosome (NYX, CACNA1F) location. Among the genes expressed in the photoreceptors and their synaptic terminals, and mGluR6 cascade and modulators, reduced expression of GNAT1, CACNA2D4 and NYX was observed by qRT-PCR in both carrier (n = 2) and affected (n = 2) retinas whereas CACNA1F was down-regulated only in the affecteds. Retinal morphology revealed normal cellular layers and structure, and electron microscopy showed normal rod spherules and synaptic ribbons. No difference from normal was observed by immunohistochemistry (IHC) for antibodies labeling rods, cones and their presynaptic terminals. None of the retinas showed any sign of stress. Selected proteins of mGluR6 cascade and its modulators were examined by IHC and showed that PKCα weakly labeled the rod bipolar somata in the affected, but intensely labeled axonal terminals that appeared thickened and irregular. Dendritic terminals of ON-bipolar cells showed increased Goα labeling. Both PKCα and Goα labeled the more prominent bipolar dendrites that extended into the OPL in affected but not normal retinas

  9. Rare Variants in the Notch Signaling Pathway Describe a Novel Type of Autosomal Recessive Klippel–Feil Syndrome

    PubMed Central

    Karaca, Ender; Yuregir, Ozge O.; Bozdogan, Sevcan T.; Aslan, Huseyin; Pehlivan, Davut; Jhangiani, Shalini N.; Akdemir, Zeynep C.; Gambin, Tomasz; Bayram, Yavuz; Atik, Mehmed M.; Erdin, Serkan; Muzny, Donna; Gibbs, Richard A.; Lupski, James R.

    2016-01-01

    Klippel–Feil syndrome is a rare disorder represented by a subgroup of segmentation defects of the vertebrae and characterized by fusion of the cervical vertebrae, low posterior hairline, and short neck with limited motion. Both autosomal dominant and recessive inheritance patterns were reported in families with Klippel–Feil. Mutated genes for both dominant (GDF6 and GDF3) and recessive (MEOX1) forms of Klippel–Feil syndrome have been shown to be involved in somite development via transcription regulation and signaling pathways. Heterotaxy arises from defects in proteins that function in the development of left–right asymmetry of the developing embryo. We describe a consanguineous family with a male proband who presents with classical Klippel–Feil syndrome together with heterotaxy (situs inversus totalis). The present patient also had Sprengel’s deformity, deformity of the sternum, and a solitary kidney. Using exome sequencing, we identified a homozygous frameshift mutation (c.299delT; p.L100fs) in RIPPLY2, a gene shown to play a crucial role in somitogenesis and participate in the Notch signaling pathway via negatively regulating Tbx6. Our data confirm RIPPLY2 as a novel gene for autosomal recessive Klippel–Feil syndrome, and in addition—from a mechanistic standpoint—suggest the possibility that mutations in RIPPLY2 could also lead to heterotaxy. PMID:26238661

  10. Rare variants in the notch signaling pathway describe a novel type of autosomal recessive Klippel-Feil syndrome.

    PubMed

    Karaca, Ender; Yuregir, Ozge O; Bozdogan, Sevcan T; Aslan, Huseyin; Pehlivan, Davut; Jhangiani, Shalini N; Akdemir, Zeynep C; Gambin, Tomasz; Bayram, Yavuz; Atik, Mehmed M; Erdin, Serkan; Muzny, Donna; Gibbs, Richard A; Lupski, James R

    2015-11-01

    Klippel-Feil syndrome is a rare disorder represented by a subgroup of segmentation defects of the vertebrae and characterized by fusion of the cervical vertebrae, low posterior hairline, and short neck with limited motion. Both autosomal dominant and recessive inheritance patterns were reported in families with Klippel-Feil. Mutated genes for both dominant (GDF6 and GDF3) and recessive (MEOX1) forms of Klippel-Feil syndrome have been shown to be involved in somite development via transcription regulation and signaling pathways. Heterotaxy arises from defects in proteins that function in the development of left-right asymmetry of the developing embryo. We describe a consanguineous family with a male proband who presents with classical Klippel-Feil syndrome together with heterotaxy (situs inversus totalis). The present patient also had Sprengel's deformity, deformity of the sternum, and a solitary kidney. Using exome sequencing, we identified a homozygous frameshift mutation (c.299delT; p.L100fs) in RIPPLY2, a gene shown to play a crucial role in somitogenesis and participate in the Notch signaling pathway via negatively regulating Tbx6. Our data confirm RIPPLY2 as a novel gene for autosomal recessive Klippel-Feil syndrome, and in addition-from a mechanistic standpoint-suggest the possibility that mutations in RIPPLY2 could also lead to heterotaxy. © 2015 Wiley Periodicals, Inc. PMID:26238661

  11. Bilateral sensorineural deafness and hydrocephalus due to foramen of Monro obstruction in sibs: A newly described autosomal recessive disorder

    SciTech Connect

    Chudley, A.E.; McCullough, C.; McCullough, D.W.

    1997-01-31

    We identified a Canadian-Mennonite family in which a brother and sister have hydrocephalus due to obstruction at the foramen of Monro and profound bilateral sensorineural deafness. This appears to be a unique combination of anomalies and, to our knowledge, has not been reported previously. Both parents and a brother are phenotypically normal. The parents are second cousins. Thus, on the basis of consanguinity, affected sibs of both sexes, and in the absence of evidence for intrauterine infections or other adverse perinatal events, this syndrome is likely inherited in an autosomal recessive fashion. 37 refs., 5 figs.

  12. Arthrogryposis multiplex with deafness, inguinal hernias, and early death: a family report of a probably autosomal recessive trait.

    PubMed

    Tiemann, Christian; Bührer, Christoph; Burwinkel, Barbara; Wirtenberger, Michael; Hoehn, Thomas; Hübner, Christoph; van Landeghem, Frank K H; Stoltenburg, Gisela; Obladen, Michael

    2005-08-30

    We report on three male newborn infants of a highly inbred Lebanese family presenting with a characteristic phenotype: arthrogryposis multiplex, deafness, large inguinal hernia, hiccup-like diaphragmatic contractions, and inability to suck, requiring nasogastric gavage feeding. All three boys died from respiratory failure during the first 3 months of life. Intra vitam or post mortem examinations revealed myopathic changes and elevated glycogen content of muscle tissue. This new syndrome is probably transmitted in an autosomal recessive mode, although X-linked inheritance cannot be excluded.

  13. G418-mediated ribosomal read-through of a nonsense mutation causing autosomal recessive proximal renal tubular acidosis

    PubMed Central

    Azimov, Rustam; Abuladze, Natalia; Sassani, Pakan; Newman, Debra; Kao, Liyo; Liu, Weixin; Orozco, Nicholas; Ruchala, Piotr; Pushkin, Alexander; Kurtz, Ira

    2008-01-01

    Autosomal recessive proximal renal tubular acidosis is caused by mutations in the SLC4A4 gene encoding the electrogenic sodium bicarbonate cotransporter NBCe1-A. The mutations that have been characterized thus far result in premature truncation, mistargeting, or decreased function of the cotransporter. Despite bicarbonate treatment to correct the metabolic acidosis, extrarenal manifestations persist, including glaucoma, cataracts, corneal opacification, and mental retardation. Currently, there are no known therapeutic approaches that can specifically target mutant NBCe1-A proteins. In the present study, we tested the hypothesis that the NBCe1-A-Q29X mutation can be rescued in vitro by treatment with aminoglycoside antibiotics, which are known for their ability to suppress premature stop codons. As a model system, we cloned the NBCe1-A-Q29X mutant into a vector lacking an aminoglycoside resistance gene and transfected the mutant cotransporter in HEK293-H cells. Cells transfected with the NBCe1-A-Q29X mutant failed to express the cotransporter because of the premature stop codon. Treatment of the cells with G418 significantly increased the expression of the full-length cotransporter, as assessed by immunoblot analysis. Furthermore, immunocytochemical studies demonstrated that G418 treatment induced cotransporter expression on the plasma membrane whereas in the absence of G418, NBCe1-A-Q29X was not expressed. In HEK293-H cells transfected with the NBCe1-A-Q29X mutant not treated with G418, NBCe1-A-mediated flux was not detectable. In contrast, in cells transfected with the NBCe1-A-Q29X mutant, G418 treatment induced Na+- and HCO3−-dependent transport that did not differ from wild-type NBCe1-A function. G418 treatment in mock-transfected cells was without effect. In conclusion, G418 induces ribosomal read-through of the NBCe1-A-Q29X mutation in HEK293-H cells. These findings represent the first evidence that in the presence of the NBCe1-A-Q29X mutation that causes

  14. Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease

    PubMed Central

    2013-01-01

    Background Mutations in the Pleckstrin homology domain-containing, family G member 5 (PLEKHG5) gene has been reported in a family harboring an autosomal recessive lower motor neuron disease (LMND). However, the PLEKHG5 mutation has not been described to cause Charcot-Marie-Tooth disease (CMT). Methods To identify the causative mutation in an autosomal recessive intermediate CMT (RI-CMT) family with childhood onset, whole exome sequencing (WES), histopathology, and lower leg MRIs were performed. Expression and activity of each mutant protein were analyzed. Results We identified novel compound heterozygous (p.Thr663Met and p.Gly820Arg) mutations in the PLEKHG5 gene in the present family. The patient revealed clinical manifestations of sensory neuropathy. Fatty replacements in the distal lower leg muscles were more severe than in the thigh muscles. Although the symptoms and signs of this patient harboring slow nerve conduction velocities suggested the possibility of demyelinating neuropathy, a distal sural nerve biopsy was compatible with axonal neuropathy. Immunohistochemical analysis revealed that the patient has a low level of PLEKHG5 in the distal sural nerve and an in vitro assay suggested that the mutant proteins have a defect in activating the NF-κB signaling pathway. Conclusions This study identifies compound heterozygous PLEKHG5 mutations as the cause of RI-CMT. We suggest that PLEKHG5 might play a role in the peripheral motor and sensory nervous system. This study expands the phenotypic spectrum of PLEKHG5 mutations. PMID:23844677

  15. Novel mutations confirm that COL11A2 is responsible for autosomal recessive non-syndromic hearing loss DFNB53.

    PubMed

    Chakchouk, Imen; Grati, M'hamed; Bademci, Guney; Bensaid, Mariem; Ma, Qi; Chakroun, Amine; Foster, Joseph; Yan, Denise; Duman, Duygu; Diaz-Horta, Oscar; Ghorbel, Abdelmonem; Mittal, Rahul; Farooq, Amjad; Tekin, Mustafa; Masmoudi, Saber; Liu, Xue Zhong

    2015-08-01

    Hearing loss (HL) is a major public health issue. It is clinically and genetically heterogeneous.The identification of the causal mutation is important for early diagnosis, clinical follow-up, and genetic counseling. HL due to mutations in COL11A2, encoding collagen type XI alpha-2, can be non-syndromic autosomal-dominant or autosomal-recessive, and also syndromic as in Otospondylomegaepiphyseal Dysplasia, Stickler syndrome type III, and Weissenbacher-Zweymuller syndrome. However, thus far only one mutation co-segregating with autosomal recessive non-syndromic hearing loss (ARNSHL) in a single family has been reported. In this study, whole exome sequencing of two consanguineous families with ARNSHL from Tunisia and Turkey revealed two novel causative COL11A2 mutations, c.109G > T (p.Ala37Ser) and c.2662C > A (p.Pro888Thr). The variants identified co-segregated with deafness in both families. All homozygous individuals in those families had early onset profound hearing loss across all frequencies without syndromic findings. The variants are predicted to be damaging the protein function. The p.Pro888Thr mutation affects a -Gly-X-Y- triplet repeat motif. The novel p.Ala37Ser is the first missense mutation located in the NC4 domain of the COL11A2 protein. Structural model suggests that this mutation will likely obliterate, or at least partially compromise, the ability of NC4 domain to interact with its cognate ligands. In conclusion, we confirm that COL11A2 mutations cause ARNSHL and broaden the mutation spectrum that may shed new light on genotype-phenotype correlation for the associated phenotypes and clinical follow-up. PMID:25633957

  16. Novel mutations confirm that COL11A2 is responsible for autosomal recessive non-syndromic hearing loss DFNB53

    PubMed Central

    Chakchouk, Imen; Grati, M’hamed; Bademci, Guney; Bensaid, Mariem; Ma, Qi; Chakroun, Amine; Foster, Joseph; Yan, Denise; Duman, Duygu; Diaz-Horta, Oscar; Ghorbel, Abdelmonem; Mittal, Rahul; Farooq, Amjad; Tekin, Mustafa

    2015-01-01

    Hearing loss (HL) is a major public health issue. It is clinically and genetically heterogeneous. The identification of the causal mutation is important for early diagnosis, clinical follow-up, and genetic counseling. HL due to mutations in COL11A2, encoding collagen type XI alpha-2, can be non-syndromic autosomal-dominant or autosomal-recessive, and also syndromic as in Otospondylomegaepiphyseal Dysplasia, Stickler syndrome type III, and Weissenbacher–Zweymuller syndrome. However, thus far only one mutation co-segregating with autosomal recessive non-syndromic hearing loss (ARNSHL) in a single family has been reported. In this study, whole exome sequencing of two consanguineous families with ARNSHL from Tunisia and Turkey revealed two novel causative COL11A2 mutations, c.109G > T (p.Ala37Ser) and c.2662C > A (p.Pro888Thr). The variants identified co-segregated with deafness in both families. All homozygous individuals in those families had early onset profound hearing loss across all frequencies without syndromic findings. The variants are predicted to be damaging the protein function. The p.Pro888Thr mutation affects a -Gly-X–Y- triplet repeat motif. The novel p.Ala37Ser is the first missense mutation located in the NC4 domain of the COL11A2 protein. Structural model suggests that this mutation will likely obliterate, or at least partially compromise, the ability of NC4 domain to interact with its cognate ligands. In conclusion, we confirm that COL11A2 mutations cause ARNSHL and broaden the mutation spectrum that may shed new light on genotype–phenotype correlation for the associated phenotypes and clinical follow-up. PMID:25633957

  17. Mitochondrial Hsp60 Chaperonopathy Causes an Autosomal-Recessive Neurodegenerative Disorder Linked to Brain Hypomyelination and Leukodystrophy

    PubMed Central

    Magen, Daniella; Georgopoulos, Costa; Bross, Peter; Ang, Debbie; Segev, Yardena; Goldsher, Dorit; Nemirovski, Alexandra; Shahar, Eli; Ravid, Sarit; Luder, Anthony; Heno, Bayan; Gershoni-Baruch, Ruth; Skorecki, Karl; Mandel, Hanna

    2008-01-01

    Hypomyelinating leukodystrophies (HMLs) are disorders involving aberrant myelin formation. The prototype of primary HMLs is the X-linked Pelizaeus-Merzbacher disease (PMD) caused by mutations in PLP1. Recently, homozygous mutations in GJA12 encoding connexin 47 were found in patients with autosomal-recessive Pelizaeus-Merzbacher-like disease (PMLD). However, many patients of both genders with PMLD carry neither PLP1 nor GJA12 mutations. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD, in which linkage to PLP1 and GJA12 was excluded. Using homozygosity mapping and mutation analysis, we have identified a homozygous missense mutation (D29G) not previously described in HSPD1, encoding the mitochondrial heat-shock protein 60 (Hsp60) in all affected individuals. The D29G mutation completely segregates with the disease-associated phenotype. The pathogenic effect of D29G on Hsp60-chaperonin activity was verified by an in vivo E. coli complementation assay, which demonstrated compromised ability of the D29G-Hsp60 mutant protein to support E. coli survival, especially at high temperatures. The disorder, which we have termed MitCHAP-60 disease, can be distinguished from spastic paraplegia 13 (SPG13), another Hsp60-associated autosomal-dominant neurodegenerative disorder, by its autosomal-recessive inheritance pattern, as well as by its early-onset, profound cerebral involvement and lethality. Our findings suggest that Hsp60 defects can cause neurodegenerative pathologies of varying severity, not previously suspected on the basis of the SPG13 phenotype. These findings should help to clarify the important role of Hsp60 in myelinogenesis and neurodegeneration. PMID:18571143

  18. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy.

    PubMed

    Magen, Daniella; Georgopoulos, Costa; Bross, Peter; Ang, Debbie; Segev, Yardena; Goldsher, Dorit; Nemirovski, Alexandra; Shahar, Eli; Ravid, Sarit; Luder, Anthony; Heno, Bayan; Gershoni-Baruch, Ruth; Skorecki, Karl; Mandel, Hanna

    2008-07-01

    Hypomyelinating leukodystrophies (HMLs) are disorders involving aberrant myelin formation. The prototype of primary HMLs is the X-linked Pelizaeus-Merzbacher disease (PMD) caused by mutations in PLP1. Recently, homozygous mutations in GJA12 encoding connexin 47 were found in patients with autosomal-recessive Pelizaeus-Merzbacher-like disease (PMLD). However, many patients of both genders with PMLD carry neither PLP1 nor GJA12 mutations. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD, in which linkage to PLP1 and GJA12 was excluded. Using homozygosity mapping and mutation analysis, we have identified a homozygous missense mutation (D29G) not previously described in HSPD1, encoding the mitochondrial heat-shock protein 60 (Hsp60) in all affected individuals. The D29G mutation completely segregates with the disease-associated phenotype. The pathogenic effect of D29G on Hsp60-chaperonin activity was verified by an in vivo E. coli complementation assay, which demonstrated compromised ability of the D29G-Hsp60 mutant protein to support E. coli survival, especially at high temperatures. The disorder, which we have termed MitCHAP-60 disease, can be distinguished from spastic paraplegia 13 (SPG13), another Hsp60-associated autosomal-dominant neurodegenerative disorder, by its autosomal-recessive inheritance pattern, as well as by its early-onset, profound cerebral involvement and lethality. Our findings suggest that Hsp60 defects can cause neurodegenerative pathologies of varying severity, not previously suspected on the basis of the SPG13 phenotype. These findings should help to clarify the important role of Hsp60 in myelinogenesis and neurodegeneration.

  19. Exonic duplication CNV of NDRG1 associated with autosomal-recessive HMSN-Lom/CMT4D

    PubMed Central

    Pehlivan, Davut; Beck, Christine R.; Gonzaga-Jauregui, Claudia; Muzny, Donna M.; Atik, Mehmed M.; Carvalho, Claudia M.B.; Matur, Zeliha; Bayraktar, Serife; Boone, Philip M.; Akyuz, Kaya; Gibbs, Richard A.; Battaloglu, Esra; Parman, Yesim; Lupski, James R.

    2014-01-01

    Purpose Copy-number variations as a mutational mechanism contribute significantly to human disease. Approximately one-half of the patients with Charcot–Marie–Tooth (CMT) disease have a 1.4 Mb duplication copy-number variation as the cause of their neuropathy. However, non-CMT1A neuropathy patients rarely have causative copy-number variations, and to date, autosomal-recessive CMT disease has not been associated with copy-number variation as a mutational mechanism. Methods We performed Agilent 8 × 60K array comparative genomic hybridization on DNA from 12 recessive Turkish families with CMT disease. Additional molecular studies were conducted to detect breakpoint junctions and to evaluate gene expression levels in a family in which we detected an intragenic duplication copy-number variation. Results We detected an ~6.25 kb homozygous intragenic duplication in NDRG1, a gene known to be causative for recessive HMSNL/CMT4D, in three individuals from a Turkish family with CMT neuropathy. Further studies showed that this intragenic copy-number variation resulted in a homozygous duplication of exons 6–8 that caused decreased mRNA expression of NDRG1. Conclusion Exon-focused high-resolution array comparative genomic hybridization enables the detection of copy-number variation carrier states in recessive genes, particularly small copy-number variations encompassing or disrupting single genes. In families for whom a molecular diagnosis has not been elucidated by conventional clinical assays, an assessment for copy-number variations in known CMT genes might be considered. PMID:24136616

  20. Exclusion of the locus for autosomal recessive pseudohypoaldosteronism type 1 from the mineralocorticoid receptor gene region on human chromosome 4q by linkage analysis

    SciTech Connect

    Chung, E.; Hanukoglu, A.; Rees, M.; Thompson, R.; Gardiner, R.M.

    1995-10-01

    Pseudohypoaldosteronism type 1 (PHA1) is an uncommon inherited disorder characterized by salt-wasting in infancy arising from target organ unresponsiveness to mineralocorticoids. Clinical expression of the disease varies from severely affected infants who may die to apparently asymptomatic individuals. Inheritance is Mendelian and may be either autosomal dominant or autosomal recessive. A defect in the mineralocortiocoid receptor has been implicated as a likely cause of PHA1. The gene for human mineralocorticoid receptor (MLR) has been cloned and physically mapped to human chromosome 4q31.1-31.2. The etiological role of MLR in autosomal recessive PHA1 was investigated by performing linkage analysis between PHA1 and three simple sequence length polymorphisms (D4S192, D4S1548, and D4S413) on chromosome 4q in 10 consanguineous families. Linkage analysis was carried out assuming autosomal recessive inheritance with full penetrance and zero phenocopy rate using the MLINK program for two-point analysis and the HOMOZ program for multipoint analysis. Lod scores of less than -2 were obtained over the whole region from D4S192 to D4S413 encompassing MLR. This provides evidence against MLR as the site of mutations causing PHA1 in the majority of autosomal recessive families. 34 refs., 3 figs., 2 tabs.

  1. Diabetes mellitus, diabetes insipidus, and optic atrophy. An autosomal recessive syndrome?

    PubMed Central

    Fraser, F C; Gunn, T

    1977-01-01

    Twenty-one families were selected from the published reports in which the propositus had the triad of juvenile diabetes mellitus, diabetes insipidus, and optic atrophy. The data were consistent with the hypothesis of an autosomal gene which, in the homozygote, causes juvenile diabetes mellitus and one or more of diabetes insipidus, optic atrophy, and nerve deafness. Heterozygotes appear to have an increased probability of developing juvenile diabetes mellitus. PMID:881709

  2. Protein composition of liver cyst fluid from the BALB/c-cpk/+ mouse model of autosomal recessive polycystic kidney disease.

    PubMed

    Lai, Xianyin; Blazer-Yost, Bonnie L; Gattone, Vincent H; Muchatuta, Monalisa N; Witzmann, Frank A

    2009-07-01

    Cysts arising from hepatic bile ducts are a common extra-renal pathology associated with polycystic kidney disease in humans. As an initial step in identifying active components that could contribute to disease progression, we have investigated the protein composition of hepatic cyst fluid in an orthologous animal model of autosomal recessive polycystic kidney disease, heterozygous (BALB/c-cpk/+) mice. Proteomic analysis of cyst fluid tryptic digests using LC-MS/MS identified 303 proteins, many of which are consistent with enhanced inflammatory cell processes, cellular proliferation, and basal laminar fibrosis associated with the development of hepatic bile duct cysts. Protein identifications have been submitted to the PRIDE database (http://www.ebi.ac.uk/pride), accession number 9227.

  3. Autosomal Recessive Disorder Otospondylomegaepiphyseal Dysplasia Is Associated with Loss-of-Function Mutations in the COL11A2 Gene

    PubMed Central

    Melkoniemi, MiiaÂ; Brunner, Han G.Â; Manouvrier, SylvieÂ; Hennekam, RaoulÂ; Superti-Furga, AndreaÂ; Kääriäinen, HelenaÂ; Pauli, Richard M.Â; van Essen, TonÂ; Warman, Matthew L.Â; Bonaventure, JackyÂ; Miny, PeterÂ; Ala-Kokko, LeenaÂ

    2000-01-01

    Summary Otospondylomegaepiphyseal dysplasia (OSMED) is an autosomal recessive skeletal dysplasia accompanied by severe hearing loss. The phenotype overlaps that of the autosomal dominant disorders—Stickler and Marshall syndromes—but can be distinguished by disproportionately short limbs, severe hearing loss, and lack of ocular involvement. In one family with OSMED, a homozygous Gly→Arg substitution has been described in COL11A2, which codes for the α2 chain of type XI collagen. We report seven further families with OSMED. All affected individuals had a remarkably similar phenotype: profound sensorineural hearing loss, skeletal dysplasia with limb shortening and large epiphyses, cleft palate, an extremely flat face, hypoplasia of the mandible, a short nose with anteverted nares, and a flat nasal bridge. We screened affected individuals for mutations in COL11A2 and found different mutations in each family. Individuals from four families, including three with consanguineous parents, were homozygous for mutations. Individuals from three other families, in whom parents were nonconsanguineous, were compound heterozygous. Of the 10 identified mutations, 9 are predicted to cause premature termination of translation, and 1 is predicted to cause an in-frame deletion. We conclude that the OSMED phenotype is highly homogenous and results from homozygosity or compound heterozygosity for COL11A2 mutations, most of which are predicted to cause complete absence of α2(XI) chains. PMID:10677296

  4. A Population-Based Study of Autosomal-Recessive Disease-Causing Mutations in a Founder Population

    PubMed Central

    Chong, Jessica X.; Ouwenga, Rebecca; Anderson, Rebecca L.; Waggoner, Darrel J.; Ober, Carole

    2012-01-01

    The decreasing cost of whole-genome and whole-exome sequencing has resulted in a renaissance for identifying Mendelian disease mutations, and for the first time it is possible to survey the distribution and characteristics of these mutations in large population samples. We conducted carrier screening for all autosomal-recessive (AR) mutations known to be present in members of a founder population and revealed surprisingly high carrier frequencies for many of these mutations. By utilizing the rich demographic, genetic, and phenotypic data available on these subjects and simulations in the exact pedigree that these individuals belong to, we show that the majority of mutations were most likely introduced into the population by a single founder and then drifted to the high carrier frequencies observed. We further show that although there is an increased incidence of AR diseases overall, the mean carrier burden is likely to be lower in the Hutterites than in the general population. Finally, on the basis of simulations, we predict the presence of 30 or more undiscovered recessive mutations among these subjects, and this would at least double the number of AR diseases that have been reported in this isolated population. PMID:22981120

  5. Probable autosomal recessive inheritance of polysplenia, situs inversus and cardiac defects in an Amish family.

    PubMed

    Arnold, G L; Bixler, D; Girod, D

    1983-09-01

    We report on an Amish family with five individuals in two generations with complex congenital heart disease. Autopsy findings in one and clinical examination in the others support the diagnosis of polysplenia "syndrome." In a mouse model, this spectrum of situs abnormalities and cardiovascular defects shows recessive inheritance with homozygotes having either situs solitus or situs inversus or ambiguous situs. The parents of the four affected sibs are fourth cousins. We think that the father of these four children is an affected but clinically normal homozygote, that his deceased sister was an affected homozygote, and it seems likely that they too had consanguinous parents. PMID:6638068

  6. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia.

    PubMed

    Lukacs, Viktor; Mathur, Jayanti; Mao, Rong; Bayrak-Toydemir, Pinar; Procter, Melinda; Cahalan, Stuart M; Kim, Helen J; Bandell, Michael; Longo, Nicola; Day, Ronald W; Stevenson, David A; Patapoutian, Ardem; Krock, Bryan L

    2015-01-01

    Piezo1 ion channels are mediators of mechanotransduction in several cell types including the vascular endothelium, renal tubular cells and erythrocytes. Gain-of-function mutations in PIEZO1 cause an autosomal dominant haemolytic anaemia in humans called dehydrated hereditary stomatocytosis. However, the phenotypic consequence of PIEZO1 loss of function in humans has not previously been documented. Here we discover a novel role of this channel in the lymphatic system. Through whole-exome sequencing, we identify biallelic mutations in PIEZO1 (a splicing variant leading to early truncation and a non-synonymous missense variant) in a pair of siblings affected with persistent lymphoedema caused by congenital lymphatic dysplasia. Analysis of patients' erythrocytes as well as studies in a heterologous system reveal greatly attenuated PIEZO1 function in affected alleles. Our results delineate a novel clinical category of PIEZO1-associated hereditary lymphoedema. PMID:26387913

  7. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia

    PubMed Central

    Lukacs, Viktor; Mathur, Jayanti; Mao, Rong; Bayrak-Toydemir, Pinar; Procter, Melinda; Cahalan, Stuart M.; Kim, Helen J.; Bandell, Michael; Longo, Nicola; Day, Ronald W.; Stevenson, David A.; Patapoutian, Ardem; Krock, Bryan L.

    2015-01-01

    Piezo1 ion channels are mediators of mechanotransduction in several cell types including the vascular endothelium, renal tubular cells and erythrocytes. Gain-of-function mutations in PIEZO1 cause an autosomal dominant haemolytic anaemia in humans called dehydrated hereditary stomatocytosis. However, the phenotypic consequence of PIEZO1 loss of function in humans has not previously been documented. Here we discover a novel role of this channel in the lymphatic system. Through whole-exome sequencing, we identify biallelic mutations in PIEZO1 (a splicing variant leading to early truncation and a non-synonymous missense variant) in a pair of siblings affected with persistent lymphoedema caused by congenital lymphatic dysplasia. Analysis of patients' erythrocytes as well as studies in a heterologous system reveal greatly attenuated PIEZO1 function in affected alleles. Our results delineate a novel clinical category of PIEZO1-associated hereditary lymphoedema. PMID:26387913

  8. Evidence of genetic heterogeneity in the autosomal recessive adult forms of limb-girdle muscular dystrophy following linkage analysis with 15q probes in Brazilian families.

    PubMed Central

    Passos-Bueno, M R; Richard, I; Vainzof, M; Fougerousse, F; Weissenbach, J; Broux, O; Cohen, D; Akiyama, J; Marie, S K; Carvalho, A A

    1993-01-01

    The autosomal recessive limb-girdle muscular dystrophies (LGMD) represent a heterogeneous group of diseases which may be characterised by one or more autosomal loci. A gene at 15q has recently been found to be responsible for a mild form of LGMD in a group of families from the isolated island of Réunion, now classified as LGMD2. Based on results of eight out of 11 large Brazilian LGMD families of different racial background (which were informative for the closest available probe to the LGMD2 gene), we confirmed linkage to the LGMD2 gene at 15q in two of these families and exclusion in six others. These data provide the first evidence of genetic heterogeneity for the autosomal recessive limb-girdle muscular dystrophies. PMID:8320700

  9. A Lebanese family with autosomal recessive oculo-auriculo-vertebral (OAV) spectrum and review of the literature: is OAV a genetically heterogeneous disorder?

    PubMed Central

    Farra, Chantal; Yunis, Khaled; Yazbeck, Nadine; Majdalani, Marianne; Charafeddine, Lama; Wakim, Rima; Awwad, Johnny

    2011-01-01

    Oculo-auriculo-vertebral (OAV) spectrum summarizes a continuum of ocular, auricular, and vertebral anomalies. Goldenhar syndrome is a variant of this spectrum and is characterized by pre-auricular skin tags, microtia, facial asymmetry, ocular abnormalities, and vertebral anomalies of different sizes and shapes. Most cases are thought to be sporadic. However, a few families were reported to have an autosomal recessive inheritance and other families’ presentation of the syndrome strongly supported an autosomal dominant inheritance. We report OAV in a female infant presenting with tracheomalacia, diaphragmatic hernia, encephalomeningocele, sacral neural tube defect, and cardiac defect and her brother having no more than dysmorphic features. The mode of inheritance in this family supports an autosomal recessive inheritance where the transmission was from normal first-degree consanguineous parents to one of the sons and to the daughter. This report further broadens the clinical presentation and symptoms of OAV and supports the hypothesis advancing OAV as a genetically heterogeneous disorder. PMID:23776370

  10. A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia

    PubMed Central

    Miryounesi, Mohammad; Ghafouri-Fard, Soudeh; Fardaei, Majid

    2016-01-01

    Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which started in early childhood. We analyzed CLCN1 sequence in this patient and other members of his family. We found a new missense mutation in CLCN1 gene (c.1886T>C, p.Leu629Pro). Co-segregation of this mutation with the disease was demonstrated by direct sequencing of the fragment in affected as well as unaffected members of this family. In addition, in silico analyses predicted that this nucleotide change would impair the protein function. Thus, this new nucleotide variation can be used for prenatal diagnosis in this family. PMID:27582597

  11. A Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia.

    PubMed

    Miryounesi, Mohammad; Ghafouri-Fard, Soudeh; Fardaei, Majid

    2016-09-01

    Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which started in early childhood. We analyzed CLCN1 sequence in this patient and other members of his family. We found a new missense mutation in CLCN1 gene (c.1886T>C, p.Leu629Pro). Co-segregation of this mutation with the disease was demonstrated by direct sequencing of the fragment in affected as well as unaffected members of this family. In addition, in silico analyses predicted that this nucleotide change would impair the protein function. Thus, this new nucleotide variation can be used for prenatal diagnosis in this family. PMID:27582597

  12. Mutations in SNX14 Cause a Distinctive Autosomal-Recessive Cerebellar Ataxia and Intellectual Disability Syndrome

    PubMed Central

    Thomas, Anna C.; Williams, Hywel; Setó-Salvia, Núria; Bacchelli, Chiara; Jenkins, Dagan; O’Sullivan, Mary; Mengrelis, Konstantinos; Ishida, Miho; Ocaka, Louise; Chanudet, Estelle; James, Chela; Lescai, Francesco; Anderson, Glenn; Morrogh, Deborah; Ryten, Mina; Duncan, Andrew J.; Pai, Yun Jin; Saraiva, Jorge M.; Ramos, Fabiana; Farren, Bernadette; Saunders, Dawn; Vernay, Bertrand; Gissen, Paul; Straatmaan-Iwanowska, Anna; Baas, Frank; Wood, Nicholas W.; Hersheson, Joshua; Houlden, Henry; Hurst, Jane; Scott, Richard; Bitner-Glindzicz, Maria; Moore, Gudrun E.; Sousa, Sérgio B.; Stanier, Philip

    2014-01-01

    Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum. PMID:25439728

  13. Two sisters with clinical diagnosis of Wiskott-Aldrich Syndrome: Is the condition in the family autosomal recessive?

    SciTech Connect

    Kondoh, T.; Hayashi, K.; Matsumoto, T.

    1995-10-09

    We report two sisters in a family representing manifestations of Wiskott-Aldrich syndrome (WAS), an X-linked immunodeficiency disorder. An elder sister had suffered from recurrent infections, small thrombocytopenic petechiae, purpura, and eczema for 7 years. The younger sister had the same manifestations as the elder sister`s for a 2-year period, and died of intracranial bleeding at age 2 years. All the laboratory data of the two patients were compatible with WAS, although they were females. Sialophorin analysis with the selective radioactive labeling method of this protein revealed that in the elder sister a 115-KD band that should be specific for sialophorin was reduced in quantity, and instead an additional 135-KD fragment was present as a main band. Polymerase chain reaction (PCR) analysis of the sialophorin gene and single-strand conformation polymorphism (SSCP) analysis of the PCR product demonstrated that there were no detectable size-change nor electrophoretic mobility change in the DNA from both patients. The results indicated that their sialophorin gene structure might be normal. Studies on the mother-daughter transmission of X chromosome using a pERT84-MaeIII polymorphic marker mapped at Xp21 and HPRT gene polymorphism at Xq26 suggested that each sister had inherited a different X chromosome from the mother. Two explanations are plausible for the occurrence of the WAS in our patients: the WAS in the patients is attributable to an autosomal gene mutation which may regulate the sialophorin gene expression through the WAS gene, or, alternatively, the condition in this family is an autosomal recessive disorder separated etiologically from the X-linked WAS. 17 refs., 6 figs., 1 tab.

  14. Examining non-syndromic autosomal recessive intellectual disability (NS-ARID) genes for an enriched association with intelligence differences☆

    PubMed Central

    Hill, W.D.; Davies, G.; Liewald, D.C.; Payton, A.; McNeil, C.J.; Whalley, L.J.; Horan, M.; Ollier, W.; Starr, J.M.; Pendleton, N.; Hansel, N.K.; Montgomery, G.W.; Medland, S.E.; Martin, N.G.; Wright, M.J.; Bates, T.C.; Deary, I.J.

    2016-01-01

    Two themes are emerging regarding the molecular genetic aetiology of intelligence. The first is that intelligence is influenced by many variants and those that are tagged by common single nucleotide polymorphisms account for around 30% of the phenotypic variation. The second, in line with other polygenic traits such as height and schizophrenia, is that these variants are not randomly distributed across the genome but cluster in genes that work together. Less clear is whether the very low range of cognitive ability (intellectual disability) is simply one end of the normal distribution describing individual differences in cognitive ability across a population. Here, we examined 40 genes with a known association with non-syndromic autosomal recessive intellectual disability (NS-ARID) to determine if they are enriched for common variants associated with the normal range of intelligence differences. The current study used the 3511 individuals of the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium. In addition, a text mining analysis was used to identify gene sets biologically related to the NS-ARID set. Gene-based tests indicated that genes implicated in NS-ARID were not significantly enriched for quantitative trait loci (QTL) associated with intelligence. These findings suggest that genes in which mutations can have a large and deleterious effect on intelligence are not associated with variation across the range of intelligence differences. PMID:26912939

  15. Unraveling the genetic landscape of autosomal recessive Charcot-Marie-Tooth neuropathies using a homozygosity mapping approach

    PubMed Central

    Zimoń, Magdalena; Battaloǧlu, Esra; Parman, Yesim; Erdem, Sevim; Baets, Jonathan; De Vriendt, Els; Atkinson, Derek; Almeida-Souza, Leonardo; Deconinck, Tine; Ozes, Burcak; Goossens, Dirk; Cirak, Sebahattin; Van Damme, Philip; Shboul, Mohammad; Voit, Thomas; Van Maldergem, Lionel; Dan, Bernard; El-Khateeb, Mohammed S.; Guergueltcheva, Velina; Lopez-Laso, Eduardo; Goemans, Nathalie; Masri, Amira; Züchner, Stephan; Timmerman, Vincent; Topaloǧlu, Haluk; De Jonghe, Peter

    2016-01-01

    Autosomal recessive forms of Charcot-Marie-Tooth disease (ARCMT) are rare but severe disorders of the peripheral nervous system. Their molecular basis is poorly understood due to the extensive genetic and clinical heterogeneity, posing considerable challenges for patients, physicians, and researchers. We report on the genetic findings from a systematic study of a large collection of 174 independent ARCMT families. Initial sequencing of the three most common ARCMT genes (ganglioside-induced differentiation protein 1—GDAP1, SH3 domain and tetratricopeptide repeats-containing protein 2—SH3TC2, histidine-triad nucleotide binding protein 1—HINT1) identified pathogenic mutations in 41 patients. Subsequently, 87 selected nuclear families underwent single nucleotide polymorphism (SNP) genotyping and homozygosity mapping, followed by targeted screening of known ARCMT genes. This strategy provided molecular diagnosis to 22 % of the families. Altogether, our unbiased genetic approach identified pathogenic mutations in ten ARCMT genes in a total of 41.3 % patients. Apart from a newly described founder mutation in GDAP1, the majority of variants constitute private molecular defects. Since the gene testing was independent of the clinical phenotype of the patients, we identified mutations in patients with unusual or additional clinical features, extending the phenotypic spectrum of the SH3TC2 gene. Our study provides an overview of the ARCMT genetic landscape and proposes guidelines for tackling the genetic heterogeneity of this group of hereditary neuropathies. PMID:25231362

  16. Homozygous SLC6A17 Mutations Cause Autosomal-Recessive Intellectual Disability with Progressive Tremor, Speech Impairment, and Behavioral Problems

    PubMed Central

    Iqbal, Zafar; Willemsen, Marjolein H.; Papon, Marie-Amélie; Musante, Luciana; Benevento, Marco; Hu, Hao; Venselaar, Hanka; Wissink-Lindhout, Willemijn M.; Vulto-van Silfhout, Anneke T.; Vissers, Lisenka E.L.M.; de Brouwer, Arjan P.M.; Marouillat, Sylviane; Wienker, Thomas F.; Ropers, Hans Hilger; Kahrizi, Kimia; Nadif Kasri, Nael; Najmabadi, Hossein; Laumonnier, Frédéric; Kleefstra, Tjitske; van Bokhoven, Hans

    2015-01-01

    We report on Dutch and Iranian families with affected individuals who present with moderate to severe intellectual disability and additional phenotypes including progressive tremor, speech impairment, and behavioral problems in certain individuals. A combination of exome sequencing and homozygosity mapping revealed homozygous mutations c.484G>A (p.Gly162Arg) and c.1898C>G (p.Pro633Arg) in SLC6A17. SLC6A17 is predominantly expressed in the brain, encodes a synaptic vesicular transporter of neutral amino acids and glutamate, and plays an important role in the regulation of glutamatergic synapses. Prediction programs and 3D modeling suggest that the identified mutations are deleterious to protein function. To directly test the functional consequences, we investigated the neuronal subcellular localization of overexpressed wild-type and mutant variants in mouse primary hippocampal neuronal cells. Wild-type protein was present in soma, axons, dendrites, and dendritic spines. p.Pro633Arg altered SLC6A17 was found in soma and proximal dendrites but did not reach spines. p.Gly162Arg altered SLC6A17 showed a normal subcellular distribution but was associated with an abnormal neuronal morphology mainly characterized by the loss of dendritic spines. In summary, our genetic findings implicate homozygous SLC6A17 mutations in autosomal-recessive intellectual disability, and their pathogenic role is strengthened by genetic evidence and in silico and in vitro functional analyses. PMID:25704603

  17. A homozygous mutation in a consanguineous family consolidates the role of ALDH1A3 in autosomal recessive microphthalmia.

    PubMed

    Roos, L; Fang, M; Dali, C; Jensen, H; Christoffersen, N; Wu, B; Zhang, J; Xu, R; Harris, P; Xu, X; Grønskov, K; Tümer, Z

    2014-09-01

    Anomalies of eye development can lead to the rare eye malformations microphthalmia and anophthalmia (small or absent ocular globes), which are genetically very heterogeneous. Several genes have been associated with microphthalmia and anophthalmia, and exome sequencing has contributed to the identification of new genes. Very recently, homozygous variations within ALDH1A3 have been associated with autosomal recessive microphthalmia with or without cysts or coloboma, and with variable subphenotypes of developmental delay/autism spectrum disorder in eight families. In a consanguineous family where three of the five siblings were affected with microphthalmia/coloboma, we identified a novel homozygous missense mutation in ALDH1A3 using exome sequencing. Of the three affected siblings, one had intellectual disability and one had intellectual disability and autism, while the last one presented with normal development. This study contributes further to the description of the clinical spectrum associated with ALDH1A3 mutations, and illustrates the interfamilial clinical variation observed in individuals with ALDH1A3 mutations.

  18. Novel Mutation in the PKHD1 Gene Diagnosed Prenatally in a Fetus with Autosomal Recessive Polycystic Kidney Disease

    PubMed Central

    Thakur, Pankaj; Speer, Paul; Rajkovic, Aleksandar

    2014-01-01

    We report a 29-year-old gravida 2, para 0100, who presented at 19 weeks and 4 days of gestation for ultrasound to assess fetal anatomy. Routine midtrimester fetal anatomy ultrasound revealed enlarged, hyperechoic fetal kidneys and normal amniotic fluid index. Follow-up ultrasound at 23 weeks and 5 days revealed persistently enlarged, hyperechoic fetal kidneys. Progressive oligohydramnios was not evident until 29 weeks of gestation, with anhydramnios noted by 35 weeks of gestation. Amniocentesis was performed for karyotype and to search for mutations in the PKHD1 for the presumptive diagnosis of autosomal recessive polycystic kidney disease (ARPKD). In our patient, a maternally inherited, previously reported pathogenic missense mutation in the PKHD1 gene, c.10444C>T, was identified. A second, previously unreported de novo mutation, c.5909-2delA, was also identified. This mutation affects the canonical splice site and is most likely pathogenic. Our case highlights PKHD1 allelic heterogeneity and the importance of genetic testing in the prenatal setting where many other genetic etiologies can phenocopy ARPKD. PMID:25114813

  19. Identification of two novel mutations in CDHR1 in consanguineous Spanish families with autosomal recessive retinal dystrophy

    PubMed Central

    Nikopoulos, Konstantinos; Avila-Fernandez, Almudena; Corton, Marta; Lopez-Molina, Maria Isabel; Perez-Carro, Raquel; Bontadelli, Lara; Di Gioia, Silvio Alessandro; Zurita, Olga; Garcia-Sandoval, Blanca; Rivolta, Carlo; Ayuso, Carmen

    2015-01-01

    Inherited retinal dystrophies present extensive phenotypic and genetic heterogeneity, posing a challenge for patients’ molecular and clinical diagnoses. In this study, we wanted to clinically characterize and investigate the molecular etiology of an atypical form of autosomal recessive retinal dystrophy in two consanguineous Spanish families. Affected members of the respective families exhibited an array of clinical features including reduced visual acuity, photophobia, defective color vision, reduced or absent ERG responses, macular atrophy and pigmentary deposits in the peripheral retina. Genetic investigation included autozygosity mapping coupled with exome sequencing in the first family, whereas autozygome-guided candidate gene screening was performed by means of Sanger DNA sequencing in the second family. Our approach revealed nucleotide changes in CDHR1; a homozygous missense variant (c.1720C > G, p.P574A) and a homozygous single base transition (c.1485 + 2T > C) affecting the canonical 5’ splice site of intron 13, respectively. Both changes co-segregated with the disease and were absent among cohorts of unrelated control individuals. To date, only five mutations in CDHR1 have been identified, all resulting in premature stop codons leading to mRNA nonsense mediated decay. Our work reports two previously unidentified homozygous mutations in CDHR1 further expanding the mutational spectrum of this gene. PMID:26350383

  20. Congenital central hypothyroidism due to a homozygous mutation in the thyrotropin beta-subunit gene follows an autosomal recessive inheritance.

    PubMed

    Doeker, B M; Pfäffle, R W; Pohlenz, J; Andler, W

    1998-05-01

    A 5-month-old infant of nonconsanguineous parents had severe hypothyroidism. Undetectable serum levels of T3 and T4 in combination with an undetectable baseline TSH level led to the diagnosis of central hypothyroidism. Administration of TRH failed to increase serum TSH, but not PRL, confirming isolated TSH deficiency. Measurement of the TSH in serum with three different immunoassays that recognize different epitopes of the TSH molecule failed to detect TSH, suggesting an aberrant or absent TSH. Direct sequencing of the entire coding region of the human TSH beta-subunit gene revealed a homozygous single base pair deletion in codon 105, resulting in a frame shift with a premature stop at codon 114. The truncated TSH beta peptide lacks the terminal five amino acids. Furthermore, the cysteine in codon 105 that is believed to be important for the interaction of the TSH beta-subunit with the alpha-subunit, is replaced with a valine (C105V), supporting the theory of a conformational change in the TSH molecule. Genotyping confirmed that the proposita was homozygous for this mutation, whereas her unaffected parents, the paternal grand-mother, and the maternal grandfather were heterozygous. Thus, isolated TSH deficiency follows an autosomal recessive mode of inheritance in this kindred.

  1. Autosomal recessive posterior column ataxia with retinitis pigmentosa caused by novel mutations in the FLVCR1 gene.

    PubMed

    Shaibani, Aziz; Wong, Lee-Jun; Wei Zhang, Victor; Lewis, Richard Alan; Shinawi, Marwan

    2015-01-01

    Posterior column ataxia with retinitis pigmentosa (PCARP) is an autosomal recessive disorder characterized by severe sensory ataxia, muscle weakness and atrophy, and progressive pigmentary retinopathy. Recently, mutations in the FLVCR1 gene were described in four families with this condition. We investigated the molecular basis and studied the phenotype of PCARP in a new family. The proband is a 33-year-old woman presented with sensory polyneuropathy and retinitis pigmentosa (RP). The constellation of clinical findings with normal metabolic and genetic evaluation, including mitochondrial DNA (mtDNA) analysis and normal levels of phytanic acid and vitamin E, prompted us to seek other causes of our patient's condition. Sequencing of FLVCR1 in the proband and targeted mutation testing in her two affected siblings revealed two novel variants, c.1547G > A (p.R516Q) and c.1593+5_+8delGTAA predicted, respectively, to be highly conserved throughout evolution and affecting the normal splicing, therefore, deleterious. This study supports the pathogenic role of FLVCR1 in PCARP and expands the molecular and clinical spectra of PCARP. We show for the first time that nontransmembrane domain (TMD) mutations in the FLVCR1 can cause PCARP, suggesting different mechanisms for pathogenicity. Our clinical data reveal that impaired sensation can be part of the phenotypic spectrum of PCARP. This study along with previously reported cases suggests that targeted sequencing of the FLVCR1 gene should be considered in patients with severe sensory ataxia, RP, and peripheral sensory neuropathy.

  2. Whole exome sequencing identified novel CRB1 mutations in Chinese and Indian populations with autosomal recessive retinitis pigmentosa

    PubMed Central

    Yang, Yin; Yang, Yeming; Huang, Lulin; Zhai, Yaru; Li, Jie; Jiang, Zhilin; Gong, Bo; Fang, Hao; Kim, Ramasamy; Yang, Zhenglin; Sundaresan, Periasamy; Zhu, Xianjun; Zhou, Yu

    2016-01-01

    Retinitis pigmentosa (RP) is a leading cause of inherited blindness characterized by progressive degeneration of the retinal photoreceptor cells. This study aims to identify genetic mutations in a Chinese family RP-2236, an Indian family RP-IC-90 and 100 sporadic Indian individuals with autosomal recessive RP (arRP). Whole exome sequencing was performed on the index patients of RP-2236, RP-IC-90 and all of the 100 sporadic Indian patients. Direct Sanger sequencing was used to validate the mutations identified. Four novel mutations and one reported mutation in the crumbs homolog 1 (CRB1) gene, which has been known to cause severe retinal dystrophies, were identified. A novel homozygous splicing mutation c.2129-1G>C was found in the three patients In family RP-2236. A homozygous point mutation p.R664C was found in RP-IC-90. A novel homozygous mutation p.G1310C was identified in patient I-44, while novel compound heterozygous mutations p.N629D and p.A593T were found in patient I-7. All mutations described above were not present in the 1000 normal controls. In conclusion, we identified four novel mutations in CRB1 in a cohort of RP patients from the Chinese and Indian populations. Our data enlarges the CRB1 mutation spectrums and may provide new target loci for RP diagnose and treatment. PMID:27670293

  3. Mutations in NALCN cause an autosomal-recessive syndrome with severe hypotonia, speech impairment, and cognitive delay.

    PubMed

    Al-Sayed, Moeenaldeen D; Al-Zaidan, Hamad; Albakheet, Albandary; Hakami, Hana; Kenana, Rosan; Al-Yafee, Yusra; Al-Dosary, Mazhor; Qari, Alya; Al-Sheddi, Tarfa; Al-Muheiza, Muhammed; Al-Qubbaj, Wafa; Lakmache, Yamina; Al-Hindi, Hindi; Ghaziuddin, Muhammad; Colak, Dilek; Kaya, Namik

    2013-10-01

    Sodium leak channel, nonselective (NALCN) is a voltage-independent and cation-nonselective channel that is mainly responsible for the leaky sodium transport across neuronal membranes and controls neuronal excitability. Although NALCN variants have been conflictingly reported to be in linkage disequilibrium with schizophrenia and bipolar disorder, to our knowledge, no mutations have been reported to date for any inherited disorders. Using linkage, SNP-based homozygosity mapping, targeted sequencing, and confirmatory exome sequencing, we identified two mutations, one missense and one nonsense, in NALCN in two unrelated families. The mutations cause an autosomal-recessive syndrome characterized by subtle facial dysmorphism, variable degrees of hypotonia, speech impairment, chronic constipation, and intellectual disability. Furthermore, one of the families pursued preimplantation genetic diagnosis on the basis of the results from this study, and the mother recently delivered healthy twins, a boy and a girl, with no symptoms of hypotonia, which was present in all the affected children at birth. Hence, the two families we describe here represent instances of loss of function in human NALCN. PMID:24075186

  4. Targeted Next-generation Sequencing Reveals Novel EYS Mutations in Chinese Families with Autosomal Recessive Retinitis Pigmentosa

    PubMed Central

    Chen, Xue; Liu, Xiaoxing; Sheng, Xunlun; Gao, Xiang; Zhang, Xiumei; Li, Zili; Li, Huiping; Liu, Yani; Rong, Weining; Zhao, Kanxing; Zhao, Chen

    2015-01-01

    EYS mutations demonstrate great genotypic and phenotypic varieties, and are one of the major causes for patients with autosomal recessive retinitis pigmentosa (ARRP). Here, we aim to determine the genetic lesions with phenotypic correlations in two Chinese families with ARRP. Medical histories and ophthalmic documentations were obtained from all participants from the two pedigrees. Targeted next-generation sequencing (NGS) on 189 genes was performed to screen for RP causative mutations in the two families. Two biallelic mutations in EYS, p.[R164*];[C2139Y] and p.[W2640*];[F2954S], were identified in the two families, respectively. EYS p.R164* and p.F2954S are novel alleles associated with RP, while p.C2139Y and p.W2640* are known mutations. Crystal structure modeling on the protein eyes shut homolog encoded by the EYS gene revealed abnormal hydrogen bonds generated by p.C2139Y and p.F2954S, which would likely affect the solubility and cause significant structural changes of the two mutated proteins. In conclusion, our study expands the genotypic spectrums for EYS mutations, and may provide novel insights into the relevant pathogenesis for RP. We also demonstrate targeted NGS approach as a valuable tool for genetic diagnosis. PMID:25753737

  5. Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson’s disease

    PubMed Central

    da Costa, Cristine Alves; Sunyach, Claire; Giaime, Emilie; West, Andrew; Corti, Olga; Brice, Alexis; Safe, Stephen; Abou-Sleiman, Patrick M.; Wood, Nicholas W.; Takahashi, Hitoshi; Goldberg, Mathew S.; Shen, Jie; Checler, Frédéric

    2009-01-01

    Mutations of the ubiquitin ligase parkin account for most autosomal recessive forms of juvenile Parkinson’s disease (AR-JP). Several studies have suggested that parkin possesses DNA-binding and transcriptional activity. We report here that parkin is a p53 transcriptional repressor. First, parkin prevented 6-hydroxydopamine-induced caspase-3 activation in a p53-dependent manner. Concomitantly, parkin reduced p53 expression and activity, an effect abrogated by familial parkin mutations known to either abolish or preserve its ligase activity. ChIP experiments indicate that overexpressed and endogenous parkin interact physically with the p53 promoter and that pathogenic mutations abolish DNA binding to and promoter transactivation of p53. Parkin lowered p53 mRNA levels and repressed p53 promoter transactivation through its Ring1 domain. Conversely, parkin depletion enhanced p53 expression and mRNA levels in fibroblasts and mouse brains, and increased cellular p53 activity and promoter transactivation in cells. Finally, familial parkin missense and deletion mutations enhanced p53 expression in human brains affected by AR-JP. This study reveals a ubiquitin ligase-independent function of parkin in the control of transcription and a functional link between parkin and p53 that is altered by AR-JP mutations. PMID:19801972

  6. Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27

    SciTech Connect

    Matsumine, Hiroto; Shimoda-Matsubayashi, Satoe; Nakagawa-Hattori, Yuko

    1997-03-01

    An autosomal recessive form of juvenile Parkinsonism (AR-JP) (MIM 600116) is a levodopa-responsive Parkinsonism whose pathological finding is a highly selective degeneration of dopaminergic neurons in the zona compacta of the substantia nigra. By linkage analysis of diallelic polymorphism of the Mn-superoxide dismutase gene (SOD2), we found a family with AR-JP showing perfect segregation of the disease with the SOD2 locus. By extending the linkage analysis to 13 families with AR-JP, we discovered strong evidence for the localization of the AR-JP gene at chromosome 6q25.2-27, including the SOD2 locus, with the maximal cumulative pairwise LOD scores of 7.26 and 7.71 at D6S305 ({theta} = .03) and D6S253 ({theta} = .02), respectively. Observation of obligate recombination events, as well as multipoint linkage analysis, placed the AR-JP gene in a 17-cM interval between D6S437 and D6S264. Delineation of the AR-JP gene will be an important step toward our understanding of the molecular mechanism underlying selective degeneration of the nigral neurons. 38 refs., 4 figs., 1 tab.

  7. ABCA12 mutations and autosomal recessive congenital ichthyosis: a review of genotype/phenotype correlations and of pathogenetic concepts.

    PubMed

    Akiyama, Masashi

    2010-10-01

    Mutations in ABCA12 have been described in autosomal recessive congenital ichthyoses (ARCI) including harlequin ichthyosis (HI), congenital ichthyosiform erythroderma (CIE), and lamellar ichthyosis (LI). HI shows the most severe phenotype. CIE and LI are clinically characterized by fine, whitish scales on a background of erythematous skin, and large, thick, dark scales over the entire body without serious background erythroderma, respectively. To date, a total of 56 ABCA12 mutations have been reported in 66 ARCI families including 48 HI, 10 LI, and 8 CIE families of African, European, Pakistani/Indian, and Japanese origin (online database: http://www.derm-hokudai.jp/ABCA12/). A total of 62.5% of reported ABCA12 mutations are expected to lead to truncated proteins. Most mutations in HI are truncation mutations and homozygous or compound heterozygous truncation mutations always results in HI phenotype. In CIE families, at least one mutation on each allele is typically a missense mutation. Combinations of missense mutations in the first ATP-binding cassette of ABCA12 underlie the LI phenotype. ABCA12 is a keratinocyte lipid transporter associated with lipid transport in lamellar granules, and loss of ABCA12 function leads to a defective lipid barrier in the stratum corneum, resulting in an ichthyotic phenotype. Recent work using mouse models confirmed ABCA12 roles in skin barrier formation.

  8. Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy.

    PubMed

    Wycisk, Katharina Agnes; Zeitz, Christina; Feil, Silke; Wittmer, Mariana; Forster, Ursula; Neidhardt, John; Wissinger, Bernd; Zrenner, Eberhart; Wilke, Robert; Kohl, Susanne; Berger, Wolfgang

    2006-11-01

    Retinal signal transmission depends on the activity of high voltage-gated l-type calcium channels in photoreceptor ribbon synapses. We recently identified a truncating frameshift mutation in the Cacna2d4 gene in a spontaneous mouse mutant with profound loss of retinal signaling and an abnormal morphology of ribbon synapses in rods and cones. The Cacna2d4 gene encodes an l-type calcium-channel auxiliary subunit of the alpha (2) delta type. Mutations in its human orthologue, CACNA2D4, were not yet known to be associated with a disease. We performed mutation analyses of 34 patients who received an initial diagnosis of night blindness, and, in two affected siblings, we detected a homozygous nucleotide substitution (c.2406C-->A) in CACNA2D4. The mutation introduces a premature stop codon that truncates one-third of the corresponding open reading frame. Both patients share symptoms of slowly progressing cone dystrophy. These findings represent the first report of a mutation in the human CACNA2D4 gene and define a novel gene defect that causes autosomal recessive cone dystrophy.

  9. Mutations in the Gene Encoding the Wnt-Signaling Component R-Spondin 4 (RSPO4) Cause Autosomal Recessive Anonychia

    PubMed Central

    Bergmann, C. ; Senderek, J. ; Anhuf, D. ; Thiel, C. T. ; Ekici, A. B. ; Poblete-Gutiérrez, P. ; van Steensel, M. ; Seelow, D. ; Nürnberg, G. ; Schild, H. H. ; Nürnberg, P. ; Reis, A. ; Frank, J. ; Zerres, K. 

    2006-01-01

    Anonychia is an autosomal recessive disorder characterized by the congenital absence of finger- and toenails. In a large German nonconsanguineous family with four affected and five unaffected siblings with isolated total congenital anonychia, we performed genomewide mapping and showed linkage to 20p13. Analysis of the RSPO4 gene within this interval revealed a frameshift and a nonconservative missense mutation in exon 2 affecting the highly conserved first furin-like cysteine-rich domain. Both mutations were not present among controls and were shown to segregate with the disease phenotype. RSPO4 is a member of the recently described R-spondin family of secreted proteins that play a major role in activating the Wnt/β-catenin signaling pathway. Wnt signaling is evolutionarily conserved and plays a pivotal role in embryonic development, growth regulation of multiple tissues, and cancer development. Our findings add to the increasing body of evidence indicating that mesenchymal-epithelial interactions are crucial in nail development and put anonychia on the growing list of congenital malformation syndromes caused by Wnt-signaling–pathway defects. To the best of our knowledge, this is the first gene known to be responsible for an isolated, nonsyndromic nail disorder. PMID:17186469

  10. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability.

    PubMed

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J M; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D James; Carter, Melissa T; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B

    2015-10-15

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability.

  11. Mutations in the histamine N-methyltransferase gene, HNMT, are associated with nonsyndromic autosomal recessive intellectual disability

    PubMed Central

    Heidari, Abolfazl; Tongsook, Chanakan; Najafipour, Reza; Musante, Luciana; Vasli, Nasim; Garshasbi, Masoud; Hu, Hao; Mittal, Kirti; McNaughton, Amy J. M.; Sritharan, Kumudesh; Hudson, Melissa; Stehr, Henning; Talebi, Saeid; Moradi, Mohammad; Darvish, Hossein; Arshad Rafiq, Muhammad; Mozhdehipanah, Hossein; Rashidinejad, Ali; Samiei, Shahram; Ghadami, Mohsen; Windpassinger, Christian; Gillessen-Kaesbach, Gabriele; Tzschach, Andreas; Ahmed, Iltaf; Mikhailov, Anna; Stavropoulos, D. James; Carter, Melissa T.; Keshavarz, Soraya; Ayub, Muhammad; Najmabadi, Hossein; Liu, Xudong; Ropers, Hans Hilger; Macheroux, Peter; Vincent, John B.

    2015-01-01

    Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability. PMID:26206890

  12. Modeling autosomal recessive cutis laxa type 1C in mice reveals distinct functions for Ltbp-4 isoforms

    PubMed Central

    Bultmann-Mellin, Insa; Conradi, Anne; Maul, Alexandra C.; Dinger, Katharina; Wempe, Frank; Wohl, Alexander P.; Imhof, Thomas; Wunderlich, F. Thomas; Bunck, Alexander C.; Nakamura, Tomoyuki; Koli, Katri; Bloch, Wilhelm; Ghanem, Alexander; Heinz, Andrea; von Melchner, Harald; Sengle, Gerhard; Sterner-Kock, Anja

    2015-01-01

    Recent studies have revealed an important role for LTBP-4 in elastogenesis. Its mutational inactivation in humans causes autosomal recessive cutis laxa type 1C (ARCL1C), which is a severe disorder caused by defects of the elastic fiber network. Although the human gene involved in ARCL1C has been discovered based on similar elastic fiber abnormalities exhibited by mice lacking the short Ltbp-4 isoform (Ltbp4S−/−), the murine phenotype does not replicate ARCL1C. We therefore inactivated both Ltbp-4 isoforms in the mouse germline to model ARCL1C. Comparative analysis of Ltbp4S−/− and Ltbp4-null (Ltbp4−/−) mice identified Ltbp-4L as an important factor for elastogenesis and postnatal survival, and showed that it has distinct tissue expression patterns and specific molecular functions. We identified fibulin-4 as a previously unknown interaction partner of both Ltbp-4 isoforms and demonstrated that at least Ltbp-4L expression is essential for incorporation of fibulin-4 into the extracellular matrix (ECM). Overall, our results contribute to the current understanding of elastogenesis and provide an animal model of ARCL1C. PMID:25713297

  13. Abnormal expression of laminin suggests disturbance of sarcolemma-extracellular matrix interaction in Japanese patients with autosomal recessive muscular dystrophy deficient in adhalin.

    PubMed Central

    Higuchi, I; Yamada, H; Fukunaga, H; Iwaki, H; Okubo, R; Nakagawa, M; Osame, M; Roberds, S L; Shimizu, T; Campbell, K P

    1994-01-01

    Dystrophin is associated with several novel sarcolemmal proteins, including a laminin-binding extracellular glycoprotein of 156 kD (alpha-dystroglycan) and a transmembrane glycoprotein of 50 kD (adhalin). Deficiency of adhalin characterizes a severe autosomal recessive muscular dystrophy prevalent in Arabs. Here we report for the first time two mongoloid (Japanese) patients with autosomal recessive muscular dystrophy deficient in adhalin. Interestingly, adhalin was not completely absent and was faintly detectable in a patchy distribution along the sarcolemma in our patients. Although the M and B2 subunits of laminin were preserved, the B1 subunit was greatly reduced in the basal lamina surrounding muscle fibers. Our results raise a possibility that the deficiency of adhalin may be associated with the disturbance of sarcolemma-extracellular matrix interaction leading to sarcolemmal instability. Images PMID:8040315

  14. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

    PubMed

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis

    2016-03-01

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. PMID:26942284

  15. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    SciTech Connect

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. ); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya )

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  16. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

    PubMed Central

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A.; Hernandez, Dena G.; Heutink, Peter; Gibbs, J. Raphael; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Viallet, François; Brice, Alexis; Lesage, Suzanne; Majounie, Elisa; Tison, François; Vidailhet, Marie; Corvol, Jean Christophe; Nalls, Michael A.; Hernandez, Dena G.; Gibbs, J. Raphael; Dürr, Alexandra; Arepalli, Sampath; Barker, Roger A.; Ben-Shlomo, Yoav; Berg, Daniela; Bettella, Francesco; Bhatia, Kailash; de Bie, Rob M.A.; Biffi, Alessandro; Bloem, Bastiaan R.; Bochdanovits, Zoltan; Bonin, Michael; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Dong, Jing; Durif, Frank; Edkins, Sarah; Escott-Price, Valentina; Evans, Jonathan R.; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holmans, Peter; Holton, Janice; Hu, Michèle; Huang, Xuemei; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Kilarski, Laura L.; Jansen, Iris E.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; Lubbe, Steven; Lungu, Codrin; Martinez, María; Mätzler, Walter; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morrison, Karen E.; Mudanohwo, Ese; O’Sullivan, Sean S.; Owen, Michael J.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Plagnol, Vincent; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Saad, Mohamad; Simón-Sánchez, Javier; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Schulte, Claudia; Sharma, Manu; Shaw, Karen; Sheerin, Una-Marie; Shoulson, Ira; Shulman, Joshua; Sidransky, Ellen; Spencer, Chris C.A.; Stefánsson, Hreinn; Stefánsson, Kári; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Wurster, Isabel; Williams, Nigel; Morris, Huw R.; Heutink, Peter; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Singleton, Andrew B.; Brice, Alexis

    2016-01-01

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. PMID:26942284

  17. A Missense Mutation in a Highly Conserved Region of CASQ2 Is Associated with Autosomal Recessive Catecholamine-Induced Polymorphic Ventricular Tachycardia in Bedouin Families from Israel

    PubMed Central

    Lahat, Hadas; Pras, Elon; Olender, Tsviya; Avidan, Nili; Ben-Asher, Edna; Man, Orna; Levy-Nissenbaum, Etgar; Khoury, Asad; Lorber, Avraham; Goldman, Boleslaw; Lancet, Doron; Eldar, Michael

    2001-01-01

    Catecholamine-induced polymorphic ventricular tachycardia (PVT) is characterized by episodes of syncope, seizures, or sudden death, in response to physical activity or emotional stress. Two modes of inheritance have been described: autosomal dominant and autosomal recessive. Mutations in the ryanodine receptor 2 gene (RYR2), which encodes a cardiac sarcoplasmic reticulum (SR) Ca2+-release channel, were recently shown to cause the autosomal dominant form of the disease. In the present report, we describe a missense mutation in a highly conserved region of the calsequestrin 2 gene (CASQ2) as the potential cause of the autosomal recessive form. The CASQ2 protein serves as the major Ca2+ reservoir within the SR of cardiac myocytes and is part of a protein complex that contains the ryanodine receptor. The mutation, which is in full segregation in seven Bedouin families affected by the disorder, converts a negatively charged aspartic acid into a positively charged histidine, in a highly negatively charged domain, and is likely to exert its deleterious effect by disrupting Ca2+ binding. PMID:11704930

  18. Buried in the Middle but Guilty: Intronic Mutations in the TCIRG1 Gene Cause Human Autosomal Recessive Osteopetrosis.

    PubMed

    Palagano, Eleonora; Blair, Harry C; Pangrazio, Alessandra; Tourkova, Irina; Strina, Dario; Angius, Andrea; Cuccuru, Gianmauro; Oppo, Manuela; Uva, Paolo; Van Hul, Wim; Boudin, Eveline; Superti-Furga, Andrea; Faletra, Flavio; Nocerino, Agostino; Ferrari, Matteo C; Grappiolo, Guido; Monari, Marta; Montanelli, Alessandro; Vezzoni, Paolo; Villa, Anna; Sobacchi, Cristina

    2015-10-01

    Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease with genotypic and phenotypic heterogeneity, sometimes translating into delayed diagnosis and treatment. In particular, cases of intermediate severity often constitute a diagnostic challenge and represent good candidates for exome sequencing. Here, we describe the tortuous path to identification of the molecular defect in two siblings, in which osteopetrosis diagnosed in early childhood followed a milder course, allowing them to reach the adult age in relatively good conditions with no specific therapy. No clearly pathogenic mutation was identified either with standard amplification and resequencing protocols or with exome sequencing analysis. While evaluating the possible impact of a 3'UTR variant on the TCIRG1 expression, we found a novel single nucleotide change buried in the middle of intron 15 of the TCIRG1 gene, about 150 nucleotides away from the closest canonical splice site. By sequencing a number of independent cDNA clones covering exons 14 to 17, we demonstrated that this mutation reduced splicing efficiency but did not completely abrogate the production of the normal transcript. Prompted by this finding, we sequenced the same genomic region in 33 patients from our unresolved ARO cohort and found three additional novel single nucleotide changes in a similar location and with a predicted disruptive effect on splicing, further confirmed in one of them at the transcript level. Overall, we identified an intronic region in TCIRG1 that seems to be particularly prone to splicing mutations, allowing the production of a small amount of protein sufficient to reduce the severity of the phenotype usually associated with TCIRG1 defects. On this basis, we would recommend including TCIRG1 not only in the molecular work-up of severe infantile osteopetrosis but also in intermediate cases and carefully evaluating the possible effects of intronic changes. PMID:25829125

  19. Hypomorphic Mutations in PGAP2, Encoding a GPI-Anchor-Remodeling Protein, Cause Autosomal-Recessive Intellectual Disability

    PubMed Central

    Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko; Mang, Yuan; ur Rehman, Shoaib; Buchert, Rebecca; Schaffer, Stefanie; Muhammad, Safia; Bak, Mads; Nöthen, Markus M.; Bennett, Eric P.; Maeda, Yusuke; Aigner, Michael; Reis, André; Kinoshita, Taroh; Tommerup, Niels; Baig, Shahid Mahmood; Abou Jamra, Rami

    2013-01-01

    PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous families. Rescue experiments with the altered proteins in PGAP2-deficient Chinese hamster ovary cell lines showed less expression of cell-surface GPI-anchored proteins DAF and CD59 than of the wild-type protein, substantiating the pathogenicity of the identified alterations. Furthermore, we observed a full rescue when we used strong promoters before the mutant cDNAs, suggesting a hypomorphic effect of the mutations. We report on alterations in the Golgi-located part of the GPI-anchor-biosynthesis pathway and extend the phenotypic spectrum of the GPI-anchor deficiencies to isolated intellectual disability with elevated ALP. GPI-anchor deficiencies can be interpreted within the concept of a disease family, and we propose that the severity of the phenotype is dependent on the location of the altered protein in the biosynthesis chain. PMID:23561846

  20. Determination of Autosomal Dominant or Recessive Methionine Adenosyltransferase I/III Deficiencies Based on Clinical and Molecular Studies

    PubMed Central

    Kim, Yoo-Mi; Kim, Ja Hye; Choi, Jin-Ho; Kim, Gu-Hwan; Kim, Jae-Min; Kang, Minji; Choi, In-Hee; Cheon, Chong Kun; Sohn, Young Bae; Maccarana, Marco; Yoo, Han-Wook; Lee, Beom Hee

    2016-01-01

    Methionine adenosyltransferase (MAT) I/III deficiency can be inherited as autosomal dominant (AD) or as recessive (AR) traits in which mono- or biallelic MAT1A mutations have been identified, respectively. Although most patients have benign clinical outcomes, some with the AR form have neurological deficits. Here we describe 16 Korean patients with MAT I/III deficiency from 15 unrelated families identified by newborn screening. Ten probands had the AD MAT I/III deficiency, while six had AR MAT I/III deficiency. Plasma methionine (145.7 μmol/L versus 733.2 μmol/L, P < 0.05) and homocysteine levels (12.3 μmol/L versus 18.6 μmol/L, P < 0.05) were lower in the AD type than in AR type. In addition to the only reported AD MAT1A mutation, p.Arg264His, we identified two novel AD mutations, p.Arg249Gln and p.Gly280Arg. In the AR type, four previously reported and two novel mutations, p.Arg163Trp and p.Tyr335*, were identified. No exonic deletions were found by quantitative genomic polymerase chain reaction (PCR). Three-dimensional structural prediction programs indicated that the AD-type mutations were located on the dimer interface or in the substrate binding site, hindering MAT I/III dimerization or substrate binding, respectively, whereas the AR mutations were distant from the interface or substrate binding site. These results indicate that the AD or AR MAT I/III deficiency is correlated with clinical findings, substrate levels and structural features of the mutant proteins, which is important for the neurological management and genetic counseling of the patients. PMID:26933843

  1. An easy test but a hard decision: ethical issues concerning non-invasive prenatal testing for autosomal recessive disorders.

    PubMed

    Skirton, Heather; Goldsmith, Lesley; Chitty, Lyn S

    2015-08-01

    Prenatal testing based on cell-free fetal DNA in maternal serum is now possible for specific monogenic conditions, and studies have shown that the use of non-invasive testing is supported by prospective parents and health professionals. However, some ethical issues have been raised concerning informed consent and paternal rights. The objective of this study was to explore ethical aspects of the use of non-invasive prenatal diagnostic testing for autosomal recessive disorders. We used a qualitative cross-sectional design, based on Thematic Analysis, and recruited 27 individuals of reproductive age who were carriers of one of four conditions: thalassaemia, sickle cell disease, cystic fibrosis or spinal muscular atrophy. Data were collected via focus groups or interviews. Participants were aware of the potential for such tests to be viewed as routine and suggested that obtaining written consent and allowing time for consideration is needed to facilitate autonomous choice and informed consent. All participants felt that mothers should be able to request such tests, but fathers who declined carrier testing should be made aware that fetal test results may reveal their status. We suggest that a written record of consent for non-invasive prenatal diagnosis should be used as a standard to help reinforce the serious nature of the test results. Where the father's carrier status could be revealed through fetal testing, he should be made aware of this before the results are available. Health professionals should discuss with the pregnant woman the best way to manage unsought information about the father's carrier status to minimise family disruption. PMID:25351779

  2. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature.

    PubMed

    Abou Jamra, Rami; Philippe, Orianne; Raas-Rothschild, Annick; Eck, Sebastian H; Graf, Elisabeth; Buchert, Rebecca; Borck, Guntram; Ekici, Arif; Brockschmidt, Felix F; Nöthen, Markus M; Munnich, Arnold; Strom, Tim M; Reis, Andre; Colleaux, Laurence

    2011-06-10

    Intellectual disability inherited in an autosomal-recessive fashion represents an important fraction of severe cognitive-dysfunction disorders. Yet, the extreme heterogeneity of these conditions markedly hampers gene identification. Here, we report on eight affected individuals who were from three consanguineous families and presented with severe intellectual disability, absent speech, shy character, stereotypic laughter, muscular hypotonia that progressed to spastic paraplegia, microcephaly, foot deformity, decreased muscle mass of the lower limbs, inability to walk, and growth retardation. Using a combination of autozygosity mapping and either Sanger sequencing of candidate genes or next-generation exome sequencing, we identified one mutation in each of three genes encoding adaptor protein complex 4 (AP4) subunits: a nonsense mutation in AP4S1 (NM_007077.3: c.124C>T, p.Arg42(∗)), a frameshift mutation in AP4B1 (NM_006594.2: c.487_488insTAT, p.Glu163_Ser739delinsVal), and a splice mutation in AP4E1 (NM_007347.3: c.542+1_542+4delGTAA, r.421_542del, p.Glu181Glyfs(∗)20). Adaptor protein complexes (AP1-4) are ubiquitously expressed, evolutionarily conserved heterotetrameric complexes that mediate different types of vesicle formation and the selection of cargo molecules for inclusion into these vesicles. Interestingly, two mutations affecting AP4M1 and AP4E1 have recently been found to cause cerebral palsy associated with severe intellectual disability. Combined with previous observations, these results support the hypothesis that AP4-complex-mediated trafficking plays a crucial role in brain development and functioning and demonstrate the existence of a clinically recognizable syndrome due to deficiency of the AP4 complex. PMID:21620353

  3. Mutations in the 3β-Hydroxysterol Δ24-Reductase Gene Cause Desmosterolosis, an Autosomal Recessive Disorder of Cholesterol Biosynthesis

    PubMed Central

    Waterham, Hans R.; Koster, Janet; Romeijn, Gerrit Jan; Hennekam, Raoul C.M.; Vreken, Peter; Andersson, Hans C.; FitzPatrick, David R.; Kelley, Richard. I.; Wanders, Ronald J. A.

    2001-01-01

    Desmosterolosis is a rare autosomal recessive disorder characterized by multiple congenital anomalies. Patients with desmosterolosis have elevated levels of the cholesterol precursor desmosterol, in plasma, tissue, and cultured cells; this abnormality suggests a deficiency of the enzyme 3β-hydroxysterol Δ24-reductase (DHCR24), which, in cholesterol biosynthesis, catalyzes the reduction of the Δ24 double bond of sterol intermediates. We identified the human DHCR24 cDNA, by the similarity between the encoded protein and a recently characterized plant enzyme—DWF1/DIM, from Arabidopsis thaliana—catalyzing a different but partially similar reaction in steroid/sterol biosynthesis in plants. Heterologous expression, in the yeast Saccharomyces cerevisiae, of the DHCR24 cDNA, followed by enzyme-activity measurements, confirmed that it encodes DHCR24. The encoded DHCR24 protein has a calculated molecular weight of 60.1 kD, contains a potential N-terminal secretory-signal sequence as well as at least one putative transmembrane helix, and is a member of a recently defined family of flavin adenine dinucleotide (FAD)–dependent oxidoreductases. Conversion of desmosterol to cholesterol by DHCR24 in vitro is strictly dependent on reduced nicotinamide adenine dinucleotide phosphate and is increased twofold by the addition of FAD to the assay. The corresponding gene, DHCR24, was identified by database searching, spans ∼46.4 kb, is localized to chromosome 1p31.1-p33, and comprises nine exons and eight introns. Sequence analysis of DHCR24 in two patients with desmosterolosis revealed four different missense mutations, which were shown, by functional expression, in yeast, of the patient alleles, to be disease causing. Our data demonstrate that desmosterolosis is a cholesterol-biosynthesis disorder caused by mutations in DHCR24. PMID:11519011

  4. Buried in the Middle but Guilty: Intronic Mutations in the TCIRG1 Gene Cause Human Autosomal Recessive Osteopetrosis.

    PubMed

    Palagano, Eleonora; Blair, Harry C; Pangrazio, Alessandra; Tourkova, Irina; Strina, Dario; Angius, Andrea; Cuccuru, Gianmauro; Oppo, Manuela; Uva, Paolo; Van Hul, Wim; Boudin, Eveline; Superti-Furga, Andrea; Faletra, Flavio; Nocerino, Agostino; Ferrari, Matteo C; Grappiolo, Guido; Monari, Marta; Montanelli, Alessandro; Vezzoni, Paolo; Villa, Anna; Sobacchi, Cristina

    2015-10-01

    Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease with genotypic and phenotypic heterogeneity, sometimes translating into delayed diagnosis and treatment. In particular, cases of intermediate severity often constitute a diagnostic challenge and represent good candidates for exome sequencing. Here, we describe the tortuous path to identification of the molecular defect in two siblings, in which osteopetrosis diagnosed in early childhood followed a milder course, allowing them to reach the adult age in relatively good conditions with no specific therapy. No clearly pathogenic mutation was identified either with standard amplification and resequencing protocols or with exome sequencing analysis. While evaluating the possible impact of a 3'UTR variant on the TCIRG1 expression, we found a novel single nucleotide change buried in the middle of intron 15 of the TCIRG1 gene, about 150 nucleotides away from the closest canonical splice site. By sequencing a number of independent cDNA clones covering exons 14 to 17, we demonstrated that this mutation reduced splicing efficiency but did not completely abrogate the production of the normal transcript. Prompted by this finding, we sequenced the same genomic region in 33 patients from our unresolved ARO cohort and found three additional novel single nucleotide changes in a similar location and with a predicted disruptive effect on splicing, further confirmed in one of them at the transcript level. Overall, we identified an intronic region in TCIRG1 that seems to be particularly prone to splicing mutations, allowing the production of a small amount of protein sufficient to reduce the severity of the phenotype usually associated with TCIRG1 defects. On this basis, we would recommend including TCIRG1 not only in the molecular work-up of severe infantile osteopetrosis but also in intermediate cases and carefully evaluating the possible effects of intronic changes.

  5. Clinical manifestations of autosomal recessive polycystic kidney disease (ARPKD): kidney-related and non-kidney-related phenotypes.

    PubMed

    Büscher, Rainer; Büscher, Anja K; Weber, Stefanie; Mohr, Julia; Hegen, Bianca; Vester, Udo; Hoyer, Peter F

    2014-10-01

    Autosomal recessive polycystic kidney disease (ARPKD), although less frequent than the dominant form, is a common, inherited ciliopathy of childhood that is caused by mutations in the PKHD1-gene on chromosome 6. The characteristic dilatation of the renal collecting ducts starts in utero and can present at any stage from infancy to adulthood. Renal insufficiency may already begin in utero and may lead to early abortion or oligohydramnios and lung hypoplasia in the newborn. However, there are also affected children who have no evidence of renal dysfunction in utero and who are born with normal renal function. Up to 30 % of patients die in the perinatal period, and those surviving the neonatal period reach end stage renal disease (ESRD) in infancy, early childhood or adolescence. In contrast, some affected patients have been diagnosed as adults with renal function ranging from normal to moderate renal insufficiency to ESRD. The clinical spectrum of ARPKD is broader than previously recognized. While bilateral renal enlargement with microcystic dilatation is the predominant clinical feature, arterial hypertension, intrahepatic biliary dysgenesis remain important manifestations that affect approximately 45 % of infants. All patients with ARPKD develop clinical findings of congenital hepatic fibrosis (CHF); however, non-obstructive dilation of the intrahepatic bile ducts in the liver (Caroli's disease) is seen at the histological level in only a subset of patients. Cholangitis and variceal bleeding, sequelae of portal hypertension, are life-threatening complications that may occur more often in advanced cases of liver disease. In this review we focus on common and uncommon kidney-related and non-kidney-related phenotypes. Clinical management of ARPKD patients should include consideration of potential problems related to these manifestations.

  6. Whole-Exome Sequencing Identifies LRIT3 Mutations as a Cause of Autosomal-Recessive Complete Congenital Stationary Night Blindness

    PubMed Central

    Zeitz, Christina; Jacobson, Samuel G.; Hamel, Christian P.; Bujakowska, Kinga; Neuillé, Marion; Orhan, Elise; Zanlonghi, Xavier; Lancelot, Marie-Elise; Michiels, Christelle; Schwartz, Sharon B.; Bocquet, Béatrice; Antonio, Aline; Audier, Claire; Letexier, Mélanie; Saraiva, Jean-Paul; Luu, Tien D.; Sennlaub, Florian; Nguyen, Hoan; Poch, Olivier; Dollfus, Hélène; Lecompte, Odile; Kohl, Susanne; Sahel, José-Alain; Bhattacharya, Shomi S.; Audo, Isabelle

    2013-01-01

    Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440∗]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384∗]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs∗59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated. PMID:23246293

  7. Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa.

    PubMed

    Bandah-Rozenfeld, Dikla; Mizrahi-Meissonnier, Liliana; Farhy, Chen; Obolensky, Alexey; Chowers, Itay; Pe'er, Jacob; Merin, Saul; Ben-Yosef, Tamar; Ashery-Padan, Ruth; Banin, Eyal; Sharon, Dror

    2010-09-10

    Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal degenerations caused by mutations in at least 45 genes. Using homozygosity mapping, we identified a ∼4 Mb homozygous region on chromosome 2p15 in patients with autosomal-recessive RP (arRP). This region partially overlaps with RP28, a previously identified arRP locus. Sequence analysis of 12 candidate genes revealed three null mutations in FAM161A in 20 families. RT-PCR analysis in 21 human tissues revealed high levels of FAM161A expression in the retina and lower levels in the brain and testis. In the human retina, we identified two alternatively spliced transcripts with an intact open reading frame, the major one lacking a highly conserved exon. During mouse embryonic development, low levels of Fam161a transcripts were detected throughout the optic cup. After birth, Fam161a expression was elevated and confined to the photoreceptor layer. FAM161A encodes a protein of unknown function that is moderately conserved in mammals. Clinical manifestations of patients with FAM161A mutations varied but were largely within the spectrum associated with arRP. On funduscopy, pallor of the optic discs and attenuation of blood vessels were common, but bone-spicule-like pigmentation was often mild or lacking. Most patients had nonrecordable electroretinographic responses and constriction of visual fields upon diagnosis. Our data suggest a pivotal role for FAM161A in photoreceptors and reveal that FAM161A loss-of-function mutations are a major cause of arRP, accounting for ∼12% of arRP families in our cohort of patients from Israel and the Palestinian territories.

  8. An easy test but a hard decision: ethical issues concerning non-invasive prenatal testing for autosomal recessive disorders

    PubMed Central

    Skirton, Heather; Goldsmith, Lesley; Chitty, Lyn S

    2015-01-01

    Prenatal testing based on cell-free fetal DNA in maternal serum is now possible for specific monogenic conditions, and studies have shown that the use of non-invasive testing is supported by prospective parents and health professionals. However, some ethical issues have been raised concerning informed consent and paternal rights. The objective of this study was to explore ethical aspects of the use of non-invasive prenatal diagnostic testing for autosomal recessive disorders. We used a qualitative cross-sectional design, based on Thematic Analysis, and recruited 27 individuals of reproductive age who were carriers of one of four conditions: thalassaemia, sickle cell disease, cystic fibrosis or spinal muscular atrophy. Data were collected via focus groups or interviews. Participants were aware of the potential for such tests to be viewed as routine and suggested that obtaining written consent and allowing time for consideration is needed to facilitate autonomous choice and informed consent. All participants felt that mothers should be able to request such tests, but fathers who declined carrier testing should be made aware that fetal test results may reveal their status. We suggest that a written record of consent for non-invasive prenatal diagnosis should be used as a standard to help reinforce the serious nature of the test results. Where the father's carrier status could be revealed through fetal testing, he should be made aware of this before the results are available. Health professionals should discuss with the pregnant woman the best way to manage unsought information about the father's carrier status to minimise family disruption. PMID:25351779

  9. Unmasking an autosomal recessive disorder by a deletion in the DiGeorge/Velo-cardio-facial chromosome region (DGCR) in 22q11.2

    SciTech Connect

    Budarf, M.L.; Michaud, D.; Emanuel, B.

    1994-09-01

    Unmasking an autosomal recessive disorder by constitutional hemizygosity is well documented for the embryonal tumors RB and WAGR, where the second hit is a somatic event. Few deletion-mediated recessive conditions have been reported in patients with germline mutations. The major platelet receptor for von Willebrand factor, Glycoprotein Ib (GpIb), is a complex of two plasma membrane glycoproteins, Ib{alpha} and Ib{beta}, covalently linked by disulfide bonds. Defects in this receptor have been associated with the rare congenital autosomal recessive bleeding disorder, Bernard-Soulier syndrome (BSS). BSS is characterized by prolonged bleeding times, thrombocytopenia and very large platelets. The GpIb{beta} gene has been cloned and we have mapped it within the DGCR. We have identified a patient with phenotypic features of both BSS and VCFS. The patient was referred for 22q11-deletion FISH studies because of a conventricular VSD and mild dysmorphia. FISH with the N25 DiGeorge cosmid demonstrated a deletion in 22q11.2. Western blot analysis of the patient`s platelet proteins demonstrates a complete absence of GpIb{beta}. We suggest that haploinsufficiency for the DGCR in this patient unmasks a mutation in the remaining GpIb{beta} allele, resulting in manifestations of BSS. This mechanism, haploinsufficiency coupled with a mutation of the {open_quotes}normal{close_quotes} chromosome, might explain some of the phenotypic variability seen amongst patients with 22q11.2 microdeletions. These results further suggest that patients with contiguous gene deletion syndromes are at increased risk for autosomal recessive disorders and that they provide the opportunity to {open_quotes}map{close_quotes}disease loci.

  10. Hereditary palmoplantar keratosis of the Gamborg Nielsen type. Clinical and ultrastructural characteristics of a new type of autosomal recessive palmoplantar keratosis.

    PubMed

    Kastl, I; Anton-Lamprecht, I; Gamborg Nielsen, P

    1990-01-01

    A new kind of diffuse palmoplantar keratoderma with autosomal recessive inheritance and without associated symptoms was described in Norrbotten, Sweden by Gamborg Nielsen in 1985. Clinically, it ranges between the less severe dominant Unna-Thost type and the more severe recessive Meleda type, as it is milder than the latter. Skin biopsies of five patients from three different families with this new palmoplantar keratoderma, as well as five obligatory heterozygotes from one family, were investigated ultrastructurally in order to characterize this new entity and to differentiate it from the Meleda type. Several features are common to both autosomal recessive palmoplantar keratoses. They show a broadened granular layer, a transit region consisting of cells with a marginal envelope, and considerable hyperkeratosis. Morphologically, this transformation delay is less pronounced in the Gamborg Nielsen type than in the classical Meleda type. As is typical for ridged skin, both types of palmoplantar keratoses possess composite keratohyaline granules. In contrast to the normal appearance of keratohyaline granules in the Meleda type, the Gamborg Nielsen type also shows qualitative deviations of keratohyaline granules with different degrees of spongiosity and electron density and sometimes with a granular border. It seems that abnormal keratohyaline proteins are synthesized that behave differently. The sudden transformation of a granular into a horny cell is physiologically regulated by different enzymes. A delay in this process may be caused by a mutation that reduces or alters the enzymes concerned. We assume the palmoplantar keratoderma of the Gamborg Nielsen type to be a variant of the heterogeneous group of the Meleda type of palmoplantar keratoderma with autosomal recessive inheritance.

  11. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets.

    PubMed

    Wacker, Michael J; Touchberry, Chad D; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J; Bonewald, Lynda F; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL-slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these

  12. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets

    PubMed Central

    Wacker, Michael J.; Touchberry, Chad D.; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J.; Bonewald, Lynda F.; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL–slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary

  13. Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa.

    PubMed

    Dryja, T P; Finn, J T; Peng, Y W; McGee, T L; Berson, E L; Yau, K W

    1995-10-24

    Mutations in the genes encoding two proteins of the retinal rod phototransduction cascade, opsin and the beta subunit of rod cGMP phosphodiesterase, cause retinitis pigmentosa (RP) in some families. Here we report defects in a third member of this biochemical pathway in still other patients with this disease. We screened 94 unrelated patients with autosomal dominant RP and 173 unrelated patients with autosomal recessive RP for mutations in the gene encoding the alpha subunit of the rod cGMP-gated cation channel. Five mutant sequences cosegregated with disease among four unrelated families with autosomal recessive RP. Two of these were nonsense mutations early in the reading frame (Glu76End and Lys139End) and one was a deletion encompassing most if not all of the transcriptional unit; these three alleles would not be expected to encode a functional channel. The remaining two mutations were a missense mutation (Ser316Phe) and a frameshift [Arg654(1-bp del)] mutation truncating the last 32 aa in the C terminus. The latter two mutations were expressed in vitro and found to encode proteins that were predominantly retained inside the cell instead of being targeted to the plasma membrane. We conclude that the absence or paucity of functional cGMP-gated cation channels in the plasma membrane is deleterious to rod photoreceptors and is an uncommon cause of RP.

  14. A novel splice site mutation of CDHR1 in a consanguineous Israeli Christian Arab family segregating autosomal recessive cone-rod dystrophy

    PubMed Central

    Cohen, Ben; Chervinsky, Elena; Jabaly-Habib, Haneen; Shalev, Stavit A.; Briscoe, Daniel

    2012-01-01

    Purpose To investigate the genetic basis for autosomal recessive cone-rod dystrophy in a consanguineous Israeli Christian Arab family. Methods Patients underwent a detailed ophthalmic examination, including funduscopy, electroretinography (ERG), visual field testing, and optical coherence tomography. Genome-wide homozygosity mapping using a single nucleotide polymorphism array was performed to identify homozygous regions shared between the two affected individuals. Mutation screening of the underlying gene was performed with direct sequencing. In silico analysis was used to predict the effect of the mutation on splicing. Results The family included two affected individuals. Clinical findings included progressive deterioration of visual acuity, photophobia, defective color vision, loss of central visual fields, pigmentary deposits localized mainly in the peripheral retina, a thinned and atrophic macular region, retinal vessel attenuation, absent ERG cone responses, and reduced ERG rod responses. Homozygosity mapping revealed several homozygous intervals shared among the affected individuals. One, a 12Mb interval on chromosome 10, included the CDHR1 gene. Direct sequencing revealed a single base transversion, c.1485+2T>G, located in the conserved donor splice site of Intron 13. This mutation cosegregated with the disease in the family, and was not detected in 208 Israeli Christian Arab control chromosomes. In silico analysis predicted that this mutation eliminates the Intron 13 donor splice site. Conclusions Only three distinct pathogenic mutations of CDHR1 have been reported to date in patients with autosomal recessive retinal degeneration. Here we report a novel splice site mutation of CDHR1, c.1485+2T>G, underlying autosomal recessive cone-rod dystrophy in a consanguineous Israeli Christian Arab family. This report expands the spectrum of pathogenic mutations of the CDHR1 gene. PMID:23233793

  15. Refining the map and defining flanking markers of the gene for autosomal recessive polycystic kidney disease on chromosome 6p21.1-p12

    SciTech Connect

    Muecher, G.; Wirth, B.; Zerres, K.

    1994-12-01

    Autosomal recessive polycystic kidney disease (ARPKD) is one of the most important hereditary nephropathies in childhood. The reported incidence is 1:6,000 - 1:40,000 live births. We recently mapped the gene for ARPKD to chromosome 6p21-cen by linkage analysis. In a more extensive study, we analyzed two additional microsatellite markers of the region 6p21 in 12 multiplex and 4 simplex ARPKD families, which have previously been published by Zerres et al. (1994). Because of additional typing, more families have become informative for single markers. 12 refs., 2 figs., 2 tabs.

  16. Mutations in SLC13A5 Cause Autosomal-Recessive Epileptic Encephalopathy with Seizure Onset in the First Days of Life

    PubMed Central

    Thevenon, Julien; Milh, Mathieu; Feillet, François; St-Onge, Judith; Duffourd, Yannis; Jugé, Clara; Roubertie, Agathe; Héron, Delphine; Mignot, Cyril; Raffo, Emmanuel; Isidor, Bertrand; Wahlen, Sandra; Sanlaville, Damien; Villeneuve, Nathalie; Darmency-Stamboul, Véronique; Toutain, Annick; Lefebvre, Mathilde; Chouchane, Mondher; Huet, Frédéric; Lafon, Arnaud; de Saint Martin, Anne; Lesca, Gaetan; El Chehadeh, Salima; Thauvin-Robinet, Christel; Masurel-Paulet, Alice; Odent, Sylvie; Villard, Laurent; Philippe, Christophe; Faivre, Laurence; Rivière, Jean-Baptiste

    2014-01-01

    Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due to mutations in the same gene, and we performed exome sequencing in three affected individuals. Analysis of rare variants in genes consistent with an autosomal-recessive mode of inheritance led to identification of mutations in SLC13A5, which encodes the cytoplasmic sodium-dependent citrate carrier, notably expressed in neurons. Disease association was confirmed by cosegregation analysis in additional family members. Screening of 68 additional unrelated individuals with early-onset epileptic encephalopathy for SLC13A5 mutations led to identification of one additional subject with compound heterozygous mutations of SLC13A5 and a similar clinical presentation as the index subjects. Mutations affected key residues for sodium binding, which is critical for citrate transport. These findings underline the value of careful clinical characterization for genetic investigations in highly heterogeneous conditions such as EE and further highlight the role of citrate metabolism in epilepsy. PMID:24995870

  17. Magnetic resonance microscopy of renal and biliary abnormalities in excised tissues from a mouse model of autosomal recessive polycystic kidney disease.

    PubMed

    Lee, Choong H; O'Connor, Amber K; Yang, Chaozhe; Tate, Joshua M; Schoeb, Trenton R; Flint, Jeremy J; Blackband, Stephen J; Guay-Woodford, Lisa M

    2015-08-01

    Polycystic kidney disease (PKD) is transmitted as either an autosomal dominant or recessive trait and is a major cause of renal failure and liver fibrosis. The cpk mouse model of autosomal recessive PKD (ARPKD) has been extensively characterized using standard histopathological techniques after euthanasia. In the current study, we sought to validate magnetic resonance microscopy (MRM) as a robust tool for assessing the ARPKD phenotype. We used MRM to evaluate the liver and kidney of wild-type and cpk animals at resolutions <100 μm and generated three-dimensional (3D) renderings for pathological evaluation. Our study demonstrates that MRM is an excellent method for evaluating the complex, 3D structural defects in this ARPKD mouse model. We found that MRM was equivalent to water displacement in assessing kidney volume. Additionally, using MRM we demonstrated for the first time that the cpk liver exhibits less extensive ductal arborization, that it was reduced in volume, and that the ductal volume was disproportionately smaller. Histopathology indicates that this is a consequence of bile duct malformation. With its reduced processing time, volumetric information, and 3D capabilities, MRM will be a useful tool for future in vivo and longitudinal studies of disease progression in ARPKD. In addition, MRM will provide a unique tool to determine whether the human disease shares the newly appreciated features of the murine biliary phenotype. PMID:26320214

  18. Magnetic resonance microscopy of renal and biliary abnormalities in excised tissues from a mouse model of autosomal recessive polycystic kidney disease

    PubMed Central

    Lee, Choong H; O’Connor, Amber K; Yang, Chaozhe; Tate, Joshua M; Schoeb, Trenton R; Flint, Jeremy J; Blackband, Stephen J; Guay-Woodford, Lisa M

    2015-01-01

    Polycystic kidney disease (PKD) is transmitted as either an autosomal dominant or recessive trait and is a major cause of renal failure and liver fibrosis. The cpk mouse model of autosomal recessive PKD (ARPKD) has been extensively characterized using standard histopathological techniques after euthanasia. In the current study, we sought to validate magnetic resonance microscopy (MRM) as a robust tool for assessing the ARPKD phenotype. We used MRM to evaluate the liver and kidney of wild-type and cpk animals at resolutions <100 μm and generated three-dimensional (3D) renderings for pathological evaluation. Our study demonstrates that MRM is an excellent method for evaluating the complex, 3D structural defects in this ARPKD mouse model. We found that MRM was equivalent to water displacement in assessing kidney volume. Additionally, using MRM we demonstrated for the first time that the cpk liver exhibits less extensive ductal arborization, that it was reduced in volume, and that the ductal volume was disproportionately smaller. Histopathology indicates that this is a consequence of bile duct malformation. With its reduced processing time, volumetric information, and 3D capabilities, MRM will be a useful tool for future in vivo and longitudinal studies of disease progression in ARPKD. In addition, MRM will provide a unique tool to determine whether the human disease shares the newly appreciated features of the murine biliary phenotype. PMID:26320214

  19. Whole-exome sequencing reveals a novel frameshift mutation in the FAM161A gene causing autosomal recessive retinitis pigmentosa in the Indian population.

    PubMed

    Zhou, Yu; Saikia, Bibhuti B; Jiang, Zhilin; Zhu, Xiong; Liu, Yuqing; Huang, Lulin; Kim, Ramasamy; Yang, Yin; Qu, Chao; Hao, Fang; Gong, Bo; Tai, Zhengfu; Niu, Lihong; Yang, Zhenglin; Sundaresan, Periasamy; Zhu, Xianjun

    2015-10-01

    Retinitis pigmentosa (RP) is a heterogenous group of inherited retinal degenerations caused by mutations in at least 50 genes. To identify genetic mutations underlying autosomal recessive RP (arRP), we performed whole-exome sequencing study on two consanguineous marriage Indian families (RP-252 and RP-182) and 100 sporadic RP patients. Here we reported novel mutation in FAM161A in RP-252 and RP-182 with two patients affected with RP in each family. The FAM161A gene was identified as the causative gene for RP28, an autosomal recessive form of RP. By whole-exome sequencing we identified several homozygous genomic regions, one of which included the recently identified FAM161A gene mutated in RP28-linked arRP. Sequencing analysis revealed the presence of a novel homozygous frameshift mutation p.R592FsX2 in both patients of family RP-252 and family RP-182. In 100 sporadic Indian RP patients, this novel homozygous frameshift mutation p.R592FsX2 was identified in one sporadic patient ARRP-S-I-46 by whole-exome sequencing and validated by Sanger sequencing. Meanwhile, this homozygous frameshift mutation was absent in 1000 ethnicity-matched control samples screened by direct Sanger sequencing. In conclusion, we identified a novel homozygous frameshift mutations of RP28-linked RP gene FAM161A in Indian population.

  20. Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life.

    PubMed

    Thevenon, Julien; Milh, Mathieu; Feillet, François; St-Onge, Judith; Duffourd, Yannis; Jugé, Clara; Roubertie, Agathe; Héron, Delphine; Mignot, Cyril; Raffo, Emmanuel; Isidor, Bertrand; Wahlen, Sandra; Sanlaville, Damien; Villeneuve, Nathalie; Darmency-Stamboul, Véronique; Toutain, Annick; Lefebvre, Mathilde; Chouchane, Mondher; Huet, Frédéric; Lafon, Arnaud; de Saint Martin, Anne; Lesca, Gaetan; El Chehadeh, Salima; Thauvin-Robinet, Christel; Masurel-Paulet, Alice; Odent, Sylvie; Villard, Laurent; Philippe, Christophe; Faivre, Laurence; Rivière, Jean-Baptiste

    2014-07-01

    Epileptic encephalopathy (EE) refers to a clinically and genetically heterogeneous group of severe disorders characterized by seizures, abnormal interictal electro-encephalogram, psychomotor delay, and/or cognitive deterioration. We ascertained two multiplex families (including one consanguineous family) consistent with an autosomal-recessive inheritance pattern of EE. All seven affected individuals developed subclinical seizures as early as the first day of life, severe epileptic disease, and profound developmental delay with no facial dysmorphism. Given the similarity in clinical presentation in the two families, we hypothesized that the observed phenotype was due to mutations in the same gene, and we performed exome sequencing in three affected individuals. Analysis of rare variants in genes consistent with an autosomal-recessive mode of inheritance led to identification of mutations in SLC13A5, which encodes the cytoplasmic sodium-dependent citrate carrier, notably expressed in neurons. Disease association was confirmed by cosegregation analysis in additional family members. Screening of 68 additional unrelated individuals with early-onset epileptic encephalopathy for SLC13A5 mutations led to identification of one additional subject with compound heterozygous mutations of SLC13A5 and a similar clinical presentation as the index subjects. Mutations affected key residues for sodium binding, which is critical for citrate transport. These findings underline the value of careful clinical characterization for genetic investigations in highly heterogeneous conditions such as EE and further highlight the role of citrate metabolism in epilepsy.

  1. Localization of a Gene for Autosomal Recessive Distal Renal Tubular Acidosis with Normal Hearing (rdRTA2) to 7q33-34

    PubMed Central

    Karet, Fiona E.; Finberg, Karin E.; Nayir, Ahmet; Bakkaloglu, Aysin; Ozen, Seza; Hulton, Sally A.; Sanjad, Sami A.; Al-Sabban, Essam A.; Medina, Juan F.; Lifton, Richard P.

    1999-01-01

    Summary Failure of distal nephrons to excrete excess acid results in the “distal renal tubular acidoses” (dRTA). Early childhood features of autosomal recessive dRTA include severe metabolic acidosis with inappropriately alkaline urine, poor growth, rickets, and renal calcification. Progressive bilateral sensorineural hearing loss (SNHL) is evident in approximately one-third of patients. We have recently identified mutations in ATP6B1, encoding the B-subunit of the collecting-duct apical proton pump, as a cause of recessive dRTA with SNHL. We now report the results of genetic analysis of 13 kindreds with recessive dRTA and normal hearing. Analysis of linkage and molecular examination of ATP6B1 indicated that mutation in ATP6B1 rarely, if ever, accounts for this phenotype, prompting a genomewide linkage search for loci underlying this trait. The results strongly supported linkage with locus heterogeneity to a segment of 7q33-34, yielding a maximum multipoint LOD score of 8.84 with 68% of kindreds linked. The LOD-3 support interval defines a 14-cM region flanked by D7S500 and D7S688. That 4 of these 13 kindreds do not support linkage to rdRTA2 and ATP6B1 implies the existence of at least one additional dRTA locus. These findings establish that genes causing recessive dRTA with normal and impaired hearing are different, and they identify, at 7q33-34, a new locus, rdRTA2, for recessive dRTA with normal hearing. PMID:10577919

  2. Estimated number of loci for autosomal recessive severe nerve deafness within the Israeli Jewish population, with implications for genetic counseling.

    PubMed

    Brownstein, Z; Friedlander, Y; Peritz, E; Cohen, T

    1991-12-01

    Deafness occurs in about 1 per thousand live births, and at least 50% of congenital deafness is hereditary. The aim of this study was to examine the number of loci for recessively inherited severe nerve deafness of early onset within the Israeli population and to compare the results to those obtained in other populations. The Jewish population in Israel originates from many countries and may be divided into Sephardi, Eastern and Ashkenazi Jews, and the matings will be intraethnic or interethnic. Data were obtained on 133 deaf couples who lived in the Tel Aviv area, through the files of the Helen Keller Center. Causes of deafness in the spouses were studied and data on their children were obtained. Among 111 couples who had recessive or possibly recessive deafness and had at least 1 child, there were 12 with only deaf children and 5 with both deaf and hearing children. The number of loci for recessive deafness in the whole group was estimated at 8-9. Intraethnic and interethnic matings gave an estimate of 6.7 and 22.0 loci, respectively, which indicates that within populations fewer loci exist with recessive mutations for deafness than between populations. It could be shown that the sharing of loci between spouses decreased with increasing geographical distance of their origin. The results provide data for genetic counseling in Israel for deaf couples who have no children or have one hearing or one deaf child.

  3. Nonsyndromic autosomal recessive deafness is linked to the DFNB1 locus in a large inbred Bedouin family from Israel

    SciTech Connect

    Scott, D.A.; Sheffield, V.C.; Stone, E.M.

    1995-10-01

    Nonsyndromic deafness accounts for {approximately}70% of all genetically determined deafness. Several types of nonsyndromic deafness, with a variety of inheritance patterns, have been genetically linked, including dominant, recessive and X-linked forms. Two of these forms - DFNA3, a dominant form causing moderate to severe hearing loss, predominantly in the high frequencies, and DFNB1, a recessive form causing profound, prelingual, neurosensory deafness affecting all frequencies - have been linked to the same pericentromeric region of chromosome 13. This finding is equally compatible with (1) the existence two closely linked deafness genes, (2) different mutations within a single deafness gene, and (3) a single mutation in a single gene that behaves differently in different genetic backgrounds. 12 refs., 2 figs., 1 tab.

  4. Biallelic truncating mutations in FMN2, encoding the actin-regulatory protein Formin 2, cause nonsyndromic autosomal-recessive intellectual disability.

    PubMed

    Law, Rosalind; Dixon-Salazar, Tracy; Jerber, Julie; Cai, Na; Abbasi, Ansar A; Zaki, Maha S; Mittal, Kirti; Gabriel, Stacey B; Rafiq, Muhammad Arshad; Khan, Valeed; Nguyen, Maria; Ali, Ghazanfar; Copeland, Brett; Scott, Eric; Vasli, Nasim; Mikhailov, Anna; Khan, Muhammad Nasim; Andrade, Danielle M; Ayaz, Muhammad; Ansar, Muhammad; Ayub, Muhammad; Vincent, John B; Gleeson, Joseph G

    2014-12-01

    Dendritic spines represent the major site of neuronal activity in the brain; they serve as the receiving point for neurotransmitters and undergo rapid activity-dependent morphological changes that correlate with learning and memory. Using a combination of homozygosity mapping and next-generation sequencing in two consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability, we identified truncating mutations in formin 2 (FMN2), encoding a protein that belongs to the formin family of actin cytoskeleton nucleation factors and is highly expressed in the maturing brain. We found that FMN2 localizes to punctae along dendrites and that germline inactivation of mouse Fmn2 resulted in animals with decreased spine density; such mice were previously demonstrated to have a conditioned fear-learning defect. Furthermore, patient neural cells derived from induced pluripotent stem cells showed correlated decreased synaptic density. Thus, FMN2 mutations link intellectual disability either directly or indirectly to the regulation of actin-mediated synaptic spine density.

  5. Novel homozygous mutations in the EVC and EVC2 genes in two consanguineous families segregating autosomal recessive Ellis-van Creveld syndrome.

    PubMed

    Aziz, Abdul; Raza, Syed I; Ali, Salman; Ahmad, Wasim

    2016-01-01

    Ellis-van Creveld syndrome (EVC) is a rare developmental disorder characterized by short limbs, short ribs, postaxial polydactyly, dysplastic nails, teeth, oral and cardiac abnormalities. It is caused by biallelic mutations in the EVC or EVC2 gene, separated by 2.6 kb of genomic sequence on chromosome 4p16. In the present study, we have investigated two consanguineous families of Pakistani origin, segregating EVC in autosomal recessive manner. Linkage in the families was established to chromosome 4p16. Subsequently, sequence analysis identified a novel nonsense mutation (p.Trp234*) in exon 8 of the EVC2 gene and 15 bp duplication in exon 14 of the EVC gene in the two families. This further expands the mutations in the EVC or EVC2 genes resulting in the EVC syndrome.

  6. The search for mutations in the gene for the beta subunit of the cGMP phosphodiesterase (PDEB) in patients with autosomal recessive retinitis pigmentosa

    SciTech Connect

    Riess, O.; Weber, B.; Hayden, M.R. ); Noerremoelle, A. ); Musarella, M.A. )

    1992-10-01

    The finding of a mutation in the beta subunit of the cyclic GMP (cGMP) phosphodiesterase gene causing retinal degeneration in mice (the Pdeb gene) prompted a search for disease-causing mutations in the human phosphodiesterase gene (PDEB gene) in patients with retinitis pigmentosa. All 22 exons including 196 bp of the 5[prime] region of the PDEB gene have been assessed for mutations by using single-strand conformational polymorphism analysis in 14 patients from 13 unrelated families with autosomal recessive retinitis pigmentosa (ARRP). No disease-causing mutations were found in this group of affected individuals of seven different ancestries. However, a frequent intronic and two exonic polymorphisms (Leu[sup 489][yields]Gln and Gly[sup 842][yields]Gly) were identified. Segregation analysis using these polymorphic sites excludes linkage of ARRP to the PDEB gene in a family with two affected children. 43 refs., 3 figs., 2 tabs.

  7. A Missense Mutation in the LIM2 Gene Is Associated with Autosomal Recessive Presenile Cataract in an Inbred Iraqi Jewish Family

    PubMed Central

    Pras, Eran; Levy-Nissenbaum, Etgar; Bakhan, Tangiz; Lahat, Hadas; Assia, Ehud; Geffen-Carmi, Noa; Frydman, Moshe; Goldman, Boleslaw; Pras, Elon

    2002-01-01

    In an inbred Iraqi Jewish family, we have studied three siblings with presenile cataract first noticed between the ages of 20 and 51 years and segregating in an autosomal recessive mode. Using microsatellite repeat markers in close proximity to 25 genes and loci previously associated with congenital cataracts in humans and mice, we identified five markers on chromosome 19q that cosegregated with the disease. Sequencing of LIM2, one of two candidate genes in this region, revealed a homozygous T→G change resulting in a phenylalanine-to-valine substitution at position 105 of the protein. To our knowledge, this constitutes the first report, in humans, of cataract formation associated with a mutation in LIM2. Studies of late-onset single-gene cataracts may provide insight into the pathogenesis of the more common age-related cataracts. PMID:11917274

  8. Botulinum toxin treatment of pes cavovarus in a child suffering from autosomal recessive axonal Charcot-Marie-Tooth neuropathy (AR-CMT2).

    PubMed

    Tiffreau, V; Allart, E; Dangleterre, C; Boutry, N; Petit, F; Cuisset, J M; Thevenon, A

    2015-06-01

    In a 12-year old girl suffering from autosomal recessive axonal Charcot-Marie-Tooth (CMT) neuropathy, pes cavovarus was treated with botulinum toxin injection in the tibialis posterior. The patient underwent a clinical evaluation, video analysis of spatiotemporal gait parameters and dynamic foot plantar pressure assessment before treatment and then two weeks, three months and six months thereafter. The video gait analysis revealed a decrease in varus during the swing phase of gait. The dynamic foot plantar pressure decreased by 50% in the excessive pressure at the side of the foot six months after the injection (maximal pressure=42.6N/cm2 before treatment and 18.9 N/cm2 after 6 month). Botulinum toxin injection appears to be an efficacious means of correcting pes cavovarus in CMT disease. A larger-scale clinical trial is now required to evaluate the putative longer-term preventive effect of this treatment on the pes cavus deformity. PMID:24980632

  9. Autosomal Recessive HEM/Greenberg Skeletal Dysplasia Is Caused by 3β-Hydroxysterol Δ14-Reductase Deficiency Due to Mutations in the Lamin B Receptor Gene

    PubMed Central

    Waterham, Hans R.; Koster, Janet; Mooyer, Petra; Noort, Gerard van; Kelley, Richard I.; Wilcox, William R.; Wanders, Ronald J. A.; Hennekam, Raoul C. M.; Oosterwijk, Jan C.

    2003-01-01

    Hydrops-ectopic calcification-“moth-eaten” (HEM) or Greenberg skeletal dysplasia is an autosomal recessive chondrodystrophy with a lethal course, characterized by fetal hydrops, short limbs, and abnormal chondro-osseous calcification. We found elevated levels of cholesta-8,14-dien-3β-ol in cultured skin fibroblasts of an 18-wk-old fetus with HEM, compatible with a deficiency of the cholesterol biosynthetic enzyme 3β-hydroxysterol Δ14-reductase. Sequence analysis of two candidate genes encoding putative human sterol Δ14-reductases (TM7SF2 and LBR) identified a homozygous 1599–1605TCTTCTA→CTAGAAG substitution in exon 13 of the LBR gene encoding the lamin B receptor, which results in a truncated protein. Functional complementation of the HEM cells by transfection with control LBR cDNA confirmed that LBR encoded the defective sterol Δ14-reductase. Mutations in LBR recently have been reported also to cause Pelger-Huët anomaly, an autosomal dominant trait characterized by hypolobulated nuclei and abnormal chromatin structure in granulocytes. The fact that the healthy mother of the fetus showed hypolobulated nuclei in 60% of her granulocytes confirms that classic Pelger-Huët anomaly represents the heterozygous state of 3β-hydroxysterol Δ14-reductase deficiency. PMID:12618959

  10. The Effect of Inbreeding on the Distribution of Compound Heterozygotes: A Lesson from Lipase H Mutations in Autosomal Recessive Woolly Hair/Hypotrichosis

    PubMed Central

    Petukhova, Lynn; Shimomura, Yutaka; Wajid, Muhammad; Gorroochurn, Prakash; Hodge, Susan E.; Christiano, Angela M.

    2009-01-01

    Autozygosity mapping in consanguineous families has proven to be a powerful method for identifying recessive disease genes. Using this technique with whole genome SNP data generated from low density mapping arrays, we previously identified two genes that underlie autosomal recessive woolly hair (ARWH/hypotrichosis; OMIM278150), specifically P2RY5 and Lipase H (LIPH). In the current study, we sought to identify a novel disease locus for ARWH/hypotrichosis by analyzing two large consanguineous families from Pakistan who had initially been excluded for mutations at either of these disease loci by haplotype analysis with microsatellite markers. A genome-wide analysis of 10 members from each of the two families failed to identify significant regions of autozygosity or linkage. Upon genotyping an additional 10 family members in one of the families, parametric linkage analysis identified a region on chromosome 3q27 with evidence for linkage (Z = 2.5). Surprisingly, this region contains the LIPH gene. Microsatellite markers located within the LIPH gene were used for haplotype analysis and demonstrated that not one, but two haplotypes were segregating with the phenotype in each of these families. DNA sequencing identified two distinct LIPH mutations (280_369dup90 and 659_660delTA). Each affected individual (n = 38) was either homozygous for one mutation (n = 7 and 16 respectively), or compound heterozygous (n = 15). A review of the literature identified several reports of compound heterozygotes in consanguineous families. Prompted by this finding, we derived the probability that a patient affected with a recessive disease is carrying two mutations at the disease locus. We suggest that the validity of the IBD assumption may be challenged in large consanguineous families. PMID:19365138

  11. Autosomal recessive diseases among the Athabaskans of the southwestern United States: recent advances and implications for the future.

    PubMed

    Erickson, Robert P

    2009-11-01

    Genetic and linguistic data suggest that the Na-Dene, of which the Athabaskans are the largest group, are part of a later immigration into the Americas than the first Amerind immigration. Whether a second and third immigration can be separated seems unlikely but continued cross-Bering Strait exchanges may have masked what was a greater separation in the past. The movement of tribes into Siberia appears to have involved a genetic bottleneck leading to at least one disease allele shared by Eskimo/Aleuts and Navajos and a second possibly shared by the Navajo and a Siberian population, but not the same Siberian population that share deep linguistic affinities with the Navajo. A second bottleneck appears to have occurred with the migration of Athabaskans from Northwest North America to the Southwestern United States along the Rocky Mountains. This bottleneck is reflected in several rare recessive diseases shared by the Navajo and Apache. Finally, the Navajo were captured and imprisoned under conditions which led to severe population loss. This, and the "hiding away" of a small number of Navajos in what is now the Western portion of the reservation, led to a Navajo-specific bottleneck(s) resulting in an increased frequency of several rare recessive diseases among the Navajo. Prejudice against human genetic research is high among the Southwestern Athabaskans but attempts to bridge the gap are now occurring. The involvement of Navajo scientists in this process is especially encouraging. PMID:19842189

  12. Evidence for autosomal recessive inheritance of infantile dilated cardiomyopathy: studies from the Eastern Province of Saudi Arabia.

    PubMed

    Seliem, M A; Mansara, K B; Palileo, M; Ye, X; Zhang, Z; Benson, D W

    2000-12-01

    Familial dilated cardiomyopathy is being increasingly recognized, but affected individuals <10 y are rarely identified. We describe the natural history of dilated cardiomyopathy and evaluate the mode of inheritance among infants of Arab descent from the Eastern Province of Saudi Arabia. We evaluated 55 consecutive cases of dilated cardiomyopathy in patients <10 y of age seen during a 5-y interval. Echocardiography was the primary diagnostic modality. The 55 cases represented 20% of the offspring of 41 families of Arab descent. In 19 families (46%), parents were first cousins; there was no obvious consanguinity in 22 families (54%). Age at presentation was <30 mo (95%) (range, 1 to 100 mo); males (38%) and females (62%) were affected. Patients died (25 patients, 46%), improved (15 patients, 27%), or recovered (15 patients, 27%). The left ventricular shortening fraction at diagnosis ranged from 5 to 28% and did not differ in those who died, improved, or recovered. Complex segregation analysis of the family data using the mixed model of inheritance showed that a model of recessive inheritance best fits the data. Recessively inherited dilated cardiomyopathy has been infrequently reported, perhaps because it may be difficult to recognize in other patient groups in which consanguineous marriage is uncommon and the number of children per family is small. In the setting of consanguineous marriage, homozygosity mapping should lead to identification of the gene(s) causing dilated cardiomyopathy in the families we studied.

  13. A novel transgenic line of mice exhibiting autosomal recessive male-specific lethality and non-alcoholic fatty liver disease.

    PubMed

    Sollars, Vincent E; McEntee, Benjamin J; Engiles, Julie B; Rothstein, Jay L; Buchberg, Arthur M

    2002-10-15

    We have isolated a Meis1a transgenic mouse line exhibiting recessive male-specific lethality and non-alcoholic fatty liver disease (NAFLD), which coincides with pubescence and is androgen-dependent. The phenotype is due to disruption of an endogenous locus, since other Meis1a transgenic lines do not exhibit these phenotypes. Necropsy analysis revealed hepatic microvesicular steatosis in pubescent male homozygous mice, which is absent in transgenic females. The transgene insertion site was localized to chromosome 1 and further refined by cloning the flanking regions. Sequence analysis shows that the integration site disrupts a putative metallo-beta-lactamase gene with a 21.3 kb deletion encompassing exons 5-7.

  14. Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause Pontocerebellar Hypoplasia and Progressive Microcephaly.

    PubMed

    Breuss, Martin W; Sultan, Tipu; James, Kiely N; Rosti, Rasim O; Scott, Eric; Musaev, Damir; Furia, Bansri; Reis, André; Sticht, Heinrich; Al-Owain, Mohammed; Alkuraya, Fowzan S; Reuter, Miriam S; Abou Jamra, Rami; Trotta, Christopher R; Gleeson, Joseph G

    2016-07-01

    The tRNA splicing endonuclease is a highly evolutionarily conserved protein complex, involved in the cleavage of intron-containing tRNAs. In human it consists of the catalytic subunits TSEN2 and TSEN34, as well as the non-catalytic TSEN54 and TSEN15. Recessive mutations in the corresponding genes of the first three are known to cause pontocerebellar hypoplasia (PCH) types 2A-C, 4, and 5. Here, we report three homozygous TSEN15 variants that cause a milder version of PCH2. The affected individuals showed progressive microcephaly, delayed developmental milestones, intellectual disability, and, in two out of four cases, epilepsy. None, however, displayed the central visual failure seen in PCH case subjects where other subunits of the TSEN are mutated, and only one was affected by the extensive motor defects that are typical in other forms of PCH2. The three amino acid substitutions impacted the protein level of TSEN15 and the stoichiometry of the interacting subunits in different ways, but all resulted in an almost complete loss of in vitro tRNA cleavage activity. Taken together, our results demonstrate that mutations in any known subunit of the TSEN complex can cause PCH and progressive microcephaly, emphasizing the importance of its function during brain development.

  15. Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause Pontocerebellar Hypoplasia and Progressive Microcephaly.

    PubMed

    Breuss, Martin W; Sultan, Tipu; James, Kiely N; Rosti, Rasim O; Scott, Eric; Musaev, Damir; Furia, Bansri; Reis, André; Sticht, Heinrich; Al-Owain, Mohammed; Alkuraya, Fowzan S; Reuter, Miriam S; Abou Jamra, Rami; Trotta, Christopher R; Gleeson, Joseph G

    2016-07-01

    The tRNA splicing endonuclease is a highly evolutionarily conserved protein complex, involved in the cleavage of intron-containing tRNAs. In human it consists of the catalytic subunits TSEN2 and TSEN34, as well as the non-catalytic TSEN54 and TSEN15. Recessive mutations in the corresponding genes of the first three are known to cause pontocerebellar hypoplasia (PCH) types 2A-C, 4, and 5. Here, we report three homozygous TSEN15 variants that cause a milder version of PCH2. The affected individuals showed progressive microcephaly, delayed developmental milestones, intellectual disability, and, in two out of four cases, epilepsy. None, however, displayed the central visual failure seen in PCH case subjects where other subunits of the TSEN are mutated, and only one was affected by the extensive motor defects that are typical in other forms of PCH2. The three amino acid substitutions impacted the protein level of TSEN15 and the stoichiometry of the interacting subunits in different ways, but all resulted in an almost complete loss of in vitro tRNA cleavage activity. Taken together, our results demonstrate that mutations in any known subunit of the TSEN complex can cause PCH and progressive microcephaly, emphasizing the importance of its function during brain development. PMID:27392077

  16. Mutations in CNNM4 Cause Jalili Syndrome, Consisting of Autosomal-Recessive Cone-Rod Dystrophy and Amelogenesis Imperfecta

    PubMed Central

    Parry, David A.; Mighell, Alan J.; El-Sayed, Walid; Shore, Roger C.; Jalili, Ismail K.; Dollfus, Hélène; Bloch-Zupan, Agnes; Carlos, Roman; Carr, Ian M.; Downey, Louise M.; Blain, Katharine M.; Mansfield, David C.; Shahrabi, Mehdi; Heidari, Mansour; Aref, Parissa; Abbasi, Mohsen; Michaelides, Michel; Moore, Anthony T.; Kirkham, Jennifer; Inglehearn, Chris F.

    2009-01-01

    The combination of recessively inherited cone-rod dystrophy (CRD) and amelogenesis imperfecta (AI) was first reported by Jalili and Smith in 1988 in a family subsequently linked to a locus on chromosome 2q11, and it has since been reported in a second small family. We have identified five further ethnically diverse families cosegregating CRD and AI. Phenotypic characterization of teeth and visual function in the published and new families reveals a consistent syndrome in all seven families, and all link or are consistent with linkage to 2q11, confirming the existence of a genetically homogenous condition that we now propose to call Jalili syndrome. Using a positional-candidate approach, we have identified mutations in the CNNM4 gene, encoding a putative metal transporter, accounting for the condition in all seven families. Nine mutations are described in all, three missense, three terminations, two large deletions, and a single base insertion. We confirmed expression of Cnnm4 in the neural retina and in ameloblasts in the developing tooth, suggesting a hitherto unknown connection between tooth biomineralization and retinal function. The identification of CNNM4 as the causative gene for Jalili syndrome, characterized by syndromic CRD with AI, has the potential to provide new insights into the roles of metal transport in visual function and biomineralization. PMID:19200525

  17. Main clinical features of the three mapped autosomal recessive limb-girdle muscular dystrophies and estimated proportion of each form in 13 Brazilian families.

    PubMed Central

    Passos-Bueno, M R; Moreira, E S; Marie, S K; Bashir, R; Vasquez, L; Love, D R; Vainzof, M; Iughetti, P; Oliveira, J R; Bakker, E; Strachan, T; Bushby, K; Zatz, M

    1996-01-01

    Autosomal recessive limb-girdle muscular dystrophies (AR LGMD) represent a group of muscle diseases with a wide spectrum of clinical signs, varying from very severe to mild. Four different loci that when mutated cause the AR LGMD phenotype have been mapped or cloned or both: in two of them the linked families seem to have a relatively mild phenotype (LGMD2a and LGMD2b), in the third one the reported linked families show a more severe clinical course (LGMD2c), while mutations in the fourth locus may cause severe or mild phenotypes (LGMD2d). The relative proportion of each of these genetic forms among the LGMD families and whether there are other genes that when mutated cause this phenotype is unknown. The closest available informative markers for each of the mapped AR LGMD genes have been tested in 13 Brazilian families with at least three affected patients. The findings from the present report confirm non-allelic heterogeneity for LGMD and suggest that in our population about 33% of the LGMD families are caused by mutations in the 15q gene, 33% in the 2p gene, 17% by mutations in the adhalin gene, and less than 10% may be by mutations at the 13q locus. They also suggest that there is at least one other gene responsible for this phenotype. In addition, the main clinical features of the different forms are discussed. PMID:8929943

  18. A missense mutation in the PISA domain of HsSAS-6 causes autosomal recessive primary microcephaly in a large consanguineous Pakistani family.

    PubMed

    Khan, Muzammil A; Rupp, Verena M; Orpinell, Meritxell; Hussain, Muhammad S; Altmüller, Janine; Steinmetz, Michel O; Enzinger, Christian; Thiele, Holger; Höhne, Wolfgang; Nürnberg, Gudrun; Baig, Shahid M; Ansar, Muhammad; Nürnberg, Peter; Vincent, John B; Speicher, Michael R; Gönczy, Pierre; Windpassinger, Christian

    2014-11-15

    Asymmetric cell division is essential for normal human brain development. Mutations in several genes encoding centrosomal proteins that participate in accurate cell division have been reported to cause autosomal recessive primary microcephaly (MCPH). By homozygosity mapping including three affected individuals from a consanguineous MCPH family from Pakistan, we delineated a critical region of 18.53 Mb on Chromosome 1p21.3-1p13.1. This region contains the gene encoding HsSAS-6, a centrosomal protein primordial for seeding the formation of new centrioles during the cell cycle. Both next-generation and Sanger sequencing revealed a homozygous c.185T>C missense mutation in the HsSAS-6 gene, resulting in a p.Ile62Thr substitution within a highly conserved region of the PISA domain of HsSAS-6. This variant is neither present in any single-nucleotide polymorphism or exome sequencing databases nor in a Pakistani control cohort. Experiments in tissue culture cells revealed that the Ile62Thr mutant of HsSAS-6 is substantially less efficient than the wild-type protein in sustaining centriole formation. Together, our findings demonstrate a dramatic impact of the mutation p.Ile62Thr on HsSAS-6 function and add this component to the list of genes mutated in primary microcephaly.

  19. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8.

    PubMed

    Boycott, Kym M; Beaulieu, Chandree L; Kernohan, Kristin D; Gebril, Ola H; Mhanni, Aziz; Chudley, Albert E; Redl, David; Qin, Wen; Hampson, Sarah; Küry, Sébastien; Tetreault, Martine; Puffenberger, Erik G; Scott, James N; Bezieau, Stéphane; Reis, André; Uebe, Steffen; Schumacher, Johannes; Hegele, Robert A; McLeod, D Ross; Gálvez-Peralta, Marina; Majewski, Jacek; Ramaekers, Vincent T; Nebert, Daniel W; Innes, A Micheil; Parboosingh, Jillian S; Abou Jamra, Rami

    2015-12-01

    Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development.

  20. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8

    PubMed Central

    Boycott, Kym M.; Beaulieu, Chandree L.; Kernohan, Kristin D.; Gebril, Ola H.; Mhanni, Aziz; Chudley, Albert E.; Redl, David; Qin, Wen; Hampson, Sarah; Küry, Sébastien; Tetreault, Martine; Puffenberger, Erik G.; Scott, James N.; Bezieau, Stéphane; Reis, André; Uebe, Steffen; Schumacher, Johannes; Hegele, Robert A.; McLeod, D. Ross; Gálvez-Peralta, Marina; Majewski, Jacek; Ramaekers, Vincent T.; Nebert, Daniel W.; Innes, A. Micheil; Parboosingh, Jillian S.; Abou Jamra, Rami

    2015-01-01

    Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development. PMID:26637978

  1. Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome.

    PubMed

    Cabral, Rita M; Kurban, Mazen; Wajid, Muhammad; Shimomura, Yutaka; Petukhova, Lynn; Christiano, Angela M

    2012-04-01

    Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A.

  2. The severe perinatal form of autosomal recessive polycystic kidney disease maps to chromosome 6p21.1-p12: Implications for genetic counseling

    SciTech Connect

    Guay-Woodford, L.M.; Hopkins, S.D.; Waldo, F.B.; Muecher, G.; Zerres, K.; Avner, E.D.; Holleman, R.; Germino, G.G.; Guillot, A.P.; Herrin, J.

    1995-05-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a one of the most common hereditary renal cystic diseases in children. Its clinical spectrum is widely variable with most cases presenting in infancy. Most affected neonates die within the first few hours of life. At present, prenatal diagnosis relies on fetal sonography, which is often imprecise in detecting even the severe form of the disease. Recently, in a cohort of families with mostly milder ARPKD phenotypes, an ARPKD locus was mapped to a 13-cM region of chromosome 6p21-cen. To determine whether severe perinatal ARPKD also maps to chromosome 6p, we have analyzed the segregation of seven microsatellite markers from the ARPKD interval in 22 families with the severe phenotype. In the majority of the affected infants, ARPKD was documented by hisopathology. Our data confirm linkage and refine the ARPKD region to a 3.8-cM interval, delimited by the markers D6S465/D6S427/D6S436/D6S272 and D6S466. Taken together, these results suggest that, despite the wide variability in clinical phenotypes, there is a single ARPKD gene. These linkage data and the absence of genetic heterogeneity in all families tested to date have important implications for DNA-based prenatal diagnoses as well as for the isolation of the ARPKD gene. 22 refs., 4 figs., 1 tab.

  3. Mutations in TUBGCP4 Alter Microtubule Organization via the γ-Tubulin Ring Complex in Autosomal-Recessive Microcephaly with Chorioretinopathy

    PubMed Central

    Scheidecker, Sophie; Etard, Christelle; Haren, Laurence; Stoetzel, Corinne; Hull, Sarah; Arno, Gavin; Plagnol, Vincent; Drunat, Séverine; Passemard, Sandrine; Toutain, Annick; Obringer, Cathy; Koob, Mériam; Geoffroy, Véronique; Marion, Vincent; Strähle, Uwe; Ostergaard, Pia; Verloes, Alain; Merdes, Andreas; Moore, Anthony T.; Dollfus, Hélène

    2015-01-01

    We have identified TUBGCP4 variants in individuals with autosomal-recessive microcephaly and chorioretinopathy. Whole-exome sequencing performed on one family with two affected siblings and independently on another family with one affected child revealed compound-heterozygous mutations in TUBGCP4. Subsequent Sanger sequencing was performed on a panel of individuals from 12 French families affected by microcephaly and ophthalmic manifestations, and one other individual was identified with compound-heterozygous mutations in TUBGCP4. One synonymous variant was common to all three families and was shown to induce exon skipping; the other mutations were frameshift mutations and a deletion. TUBGCP4 encodes γ-tubulin complex protein 4, a component belonging to the γ-tubulin ring complex (γ-TuRC) and known to regulate the nucleation and organization of microtubules. Functional analysis of individual fibroblasts disclosed reduced levels of the γ-TuRC, altered nucleation and organization of microtubules, abnormal nuclear shape, and aneuploidy. Moreover, zebrafish treated with morpholinos against tubgcp4 were found to have reduced head volume and eye developmental anomalies with chorioretinal dysplasia. In summary, the identification of TUBGCP4 mutations in individuals with microcephaly and a spectrum of anomalies in eye development, particularly photoreceptor anomalies, provides evidence of an important role for the γ-TuRC in brain and eye development. PMID:25817018

  4. [New recurrent extended deletion, including GJB2 and GJB6 genes, results in isolated sensorineural hearing impairment with autosomal recessive type of inheritance].

    PubMed

    Bliznets, E A; Makienko, O N; Okuneva, E G; Markova, T G; Poliakov, A V

    2014-04-01

    Hereditary hearing loss with the autosomal recessive type of inheritance of the DFNB 1 genetic type, caused by mutations in the GJB2 gene, is the main reason of innate non-syndromal hearing impairment in most developed countries of the world (including Russia). Intragenic point mutations prevail among the GJB2 gene defectors; however, extended deletions in the DFNB1 locus are also found with considerable frequency in some populations (for example, Spain, Great Britain, France, United States, and Brazil). Among the four known extended deletions, only one deletion affects directly the GJB2 gene sequence and was described in a single family. A new extended deletion in the GJB2 and GJB6 gene sequences (approximately 101 kb in size; NC_000013.10:g.20,757,021_20,858,394del), detected in three unrelated Russian patients, was described and characterized. Ingush origin of this mutation is assumed. If the new deletion is frequent, its detection is very important for the genetic consulting of families with hereditary hearing impairment. PMID:25715449

  5. Two New Loci for Autosomal Recessive Ichthyosis on Chromosomes 3p21 and 19p12-q12 and Evidence for Further Genetic Heterogeneity

    PubMed Central

    Fischer, Judith; Faure, Alexandra; Bouadjar, Bakar; Blanchet-Bardon, Claudine; Karaduman, Aysen; Thomas, Isabelle; Emre, Serap; Cure, Susan; Özgüc, Meral; Weissenbach, Jean; Prud'homme, Jean-François

    2000-01-01

    Autosomal recessive ichthyosis (ARI) includes a heterogeneous group of disorders of keratinization characterized by desquamation over the whole body. Two forms largely limited to the skin have been defined: lamellar ichthyosis (LI) and nonbullous congenital ichthyosiform erythroderma (NCIE). A first gene for LI, transglutaminase TGM1, has been identified on chromosome 14, and a second one has been localized on chromosome 2. In a genomewide scan of nine large consanguineous families, using homozygosity mapping, two new loci for ARI were found, one for a lamellar form in a 6-cM interval on chromosome 19 and a second for an erythrodermic form in a 7.7-cM interval on chromosome 3. Linkage to one of the four loci could be demonstrated in more than half of 51 consanguineous families, most of them from the Mediterranean basin. All four loci could be excluded in the others, implying further genetic heterogeneity in this disorder. Multipoint linkage analysis gave maximal LOD scores of 11.25 at locus D19S566 and 8.53 at locus D3S3564. PMID:10712205

  6. A new autosomal recessive nonsyndromic hearing impairment locus DFNB96 on chromosome 1p36.31-p36.13.

    PubMed

    Ansar, Muhammad; Lee, Kwanghyuk; Naqvi, Syed Kamran-Ul-Hassan; Andrade, Paula B; Basit, Sulman; Santos-Cortez, Regie Lyn P; Ahmad, Wasim; Leal, Suzanne M

    2011-12-01

    A novel locus for autosomal recessive nonsyndromic hearing impairment (ARNSHI), DFNB96, was mapped to the 1p36.31-p36.13 region. A whole-genome linkage scan was performed using DNA samples from a consanguineous family from Pakistan with ARNSHI. A maximum two-point logarithm of odds (LOD) score of 3.2 was obtained at marker rs8627 (chromosome 1: 8.34 Mb) at θ=0 and a significant maximum multipoint LOD score of 3.8 was achieved at 15 contiguous markers from rs630075 (9.3 Mb) to rs10927583 (15.13 Mb). The 3-unit support interval and the region of homozygosity were both delimited by markers rs3817914 (6.42 Mb) and rs477558 (18.09 Mb) and contained 11.67 Mb. Of the 125 genes within the DFNB96 interval, the previously identified ARNSHI gene for DFNB36, ESPN, and two genes that cause Bartter syndrome, CLCNKA and CLCNKB, were sequenced, but no potentially causal variants were identified.

  7. Mutations in the ganglioside-induced differentiation-associated protein-1 (GDAP1) gene in intermediate type autosomal recessive Charcot-Marie-Tooth neuropathy.

    PubMed

    Senderek, Jan; Bergmann, Carsten; Ramaekers, Vincent T; Nelis, Eva; Bernert, Günther; Makowski, Astrid; Züchner, Stephan; De Jonghe, Peter; Rudnik-Schöneborn, Sabine; Zerres, Klaus; Schröder, J Michael

    2003-03-01

    Mutations in the gene for the ganglioside-induced differentiation-associated protein-1 (GDAP1) on 8q21 recently were reported to cause autosomal recessive Charcot-Marie-Tooth (CMT) sensorimotor neuropathy. Neurophysiology and nerve pathology were heterogeneous in these cases: a subset of GDAP1 mutations was associated with peripheral nerve demyelination, whereas others resulted in axonal degeneration. In this study, we identified two novel mutations disrupting the GDAP1 reading frame. Homozygosity for a single base pair insertion in exon 3 (c.349_350insT) was observed in affected children from a Turkish inbred pedigree. The other novel allele detected in a German patient was a homozygous mutation of the intron 4 donor splice site (c.579 + 1G>A). Patients with GDAP1 mutations displayed severe, early childhood-onset CMT neuropathy with prominent pes equinovarus deformity and impairment of hand muscles. Nerve conduction velocities were between 25 and 35 m/s and peripheral nerve pathology showed axonal as well as demyelinating changes. These findings fitted the definition of intermediate type CMT and further support the view that GDAP1 is vital for both, axonal integrity and Schwann cell properties.

  8. WDR19: An ancient, retrograde, intraflagellar ciliary protein is mutated in autosomal recessive retinitis pigmentosa and in Senior-Loken syndrome

    PubMed Central

    Coussa, RG; Otto, EA; Gee, H-Y; Arthurs, P; Ren, H; Lopez, I; Keser, V; Fu, Q; Faingold, R; Khan, A; Schwartzentruber, J; Majewski, J; Hildebrandtand, F; Koenekoop, RK

    2014-01-01

    Autosomal recessive retinitis pigmentosa (arRP) is a clinically and genetically heterogeneous retinal disease that causes blindness. Our purpose was to identify the causal gene, describe the phenotype and delineate the mutation spectrum in a consanguineous Quebec arRP family. We performed Arrayed Primer Extension (APEX) technology to exclude ~500 arRP mutations in ~20 genes. Homozygosity mapping [single nucleotide polymorphism (SNP) genotyping] identified 10 novel significant homozygous regions. We performed next generation sequencing and whole exome capture. Sanger sequencing provided cosegregation. We screened another 150 retinitis pigmentosa (RP) and 200 patients with Senior-Løken Syndrome (SLS). We identified a novel missense mutation in WDR19, c.2129T>C which lead to a p.Leu710Ser. We found the same mutation in a second Quebec arRP family. Interestingly, two of seven affected members of the original family developed ‘sub-clinical’ renal cysts. We hypothesized that more severe WDR19 mutations may lead to severe ciliopathies and found seven WDR19 mutations in five SLS families. We identified a new gene for both arRP and SLS. WDR19 is a ciliary protein associated with the intraflagellar transport machinery. We are currently investigating the full extent of the mutation spectrum. Our findings are crucial in expanding the understanding of childhood blindness and identifying new genes. PMID:23683095

  9. Validation of a clinical practice-based algorithm for the diagnosis of autosomal recessive cerebellar ataxias based on NGS identified cases.

    PubMed

    Mallaret, Martial; Renaud, Mathilde; Redin, Claire; Drouot, Nathalie; Muller, Jean; Severac, Francois; Mandel, Jean Louis; Hamza, Wahiba; Benhassine, Traki; Ali-Pacha, Lamia; Tazir, Meriem; Durr, Alexandra; Monin, Marie-Lorraine; Mignot, Cyril; Charles, Perrine; Van Maldergem, Lionel; Chamard, Ludivine; Thauvin-Robinet, Christel; Laugel, Vincent; Burglen, Lydie; Calvas, Patrick; Fleury, Marie-Céline; Tranchant, Christine; Anheim, Mathieu; Koenig, Michel

    2016-07-01

    Establishing a molecular diagnosis of autosomal recessive cerebellar ataxias (ARCA) is challenging due to phenotype and genotype heterogeneity. We report the validation of a previously published clinical practice-based algorithm to diagnose ARCA. Two assessors performed a blind analysis to determine the most probable mutated gene based on comprehensive clinical and paraclinical data, without knowing the molecular diagnosis of 23 patients diagnosed by targeted capture of 57 ataxia genes and high-throughput sequencing coming from a 145 patients series. The correct gene was predicted in 61 and 78 % of the cases by the two assessors, respectively. There was a high inter-rater agreement [K = 0.85 (0.55-0.98) p < 0.001] confirming the algorithm's reproducibility. Phenotyping patients with proper clinical examination, imaging, biochemical investigations and nerve conduction studies remain crucial for the guidance of molecular analysis and to interpret next generation sequencing results. The proposed algorithm should be helpful for diagnosing ARCA in clinical practice.

  10. Autosomal-Recessive Intellectual Disability with Cerebellar Atrophy Syndrome Caused by Mutation of the Manganese and Zinc Transporter Gene SLC39A8.

    PubMed

    Boycott, Kym M; Beaulieu, Chandree L; Kernohan, Kristin D; Gebril, Ola H; Mhanni, Aziz; Chudley, Albert E; Redl, David; Qin, Wen; Hampson, Sarah; Küry, Sébastien; Tetreault, Martine; Puffenberger, Erik G; Scott, James N; Bezieau, Stéphane; Reis, André; Uebe, Steffen; Schumacher, Johannes; Hegele, Robert A; McLeod, D Ross; Gálvez-Peralta, Marina; Majewski, Jacek; Ramaekers, Vincent T; Nebert, Daniel W; Innes, A Micheil; Parboosingh, Jillian S; Abou Jamra, Rami

    2015-12-01

    Manganese (Mn) and zinc (Zn) are essential divalent cations used by cells as protein cofactors; various human studies and animal models have demonstrated the importance of Mn and Zn for development. Here we describe an autosomal-recessive disorder in six individuals from the Hutterite community and in an unrelated Egyptian sibpair; the disorder is characterized by intellectual disability, developmental delay, hypotonia, strabismus, cerebellar atrophy, and variable short stature. Exome sequencing in one affected Hutterite individual and the Egyptian family identified the same homozygous variant, c.112G>C (p.Gly38Arg), affecting a conserved residue of SLC39A8. The affected Hutterite and Egyptian individuals did not share an extended common haplotype, suggesting that the mutation arose independently. SLC39A8 is a member of the solute carrier gene family known to import Mn, Zn, and other divalent cations across the plasma membrane. Evaluation of these two metal ions in the affected individuals revealed variably low levels of Mn and Zn in blood and elevated levels in urine, indicating renal wasting. Our findings identify a human Mn and Zn transporter deficiency syndrome linked to SLC39A8, providing insight into the roles of Mn and Zn homeostasis in human health and development. PMID:26637978

  11. A homozygous contiguous gene deletion in chromosome 16p13.3 leads to autosomal recessive osteopetrosis in a Jordanian patient.

    PubMed

    Pangrazio, Alessandra; Frattini, Annalisa; Valli, Roberto; Maserati, Emanuela; Susani, Lucia; Vezzoni, Paolo; Villa, Anna; Al-Herz, Waleed; Sobacchi, Cristina

    2012-10-01

    Human malignant autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder caused by reduced bone resorption by osteoclasts. Mutations in the CLCN7 gene are responsible not only for a substantial portion of ARO patients but also for other forms of osteopetrosis characterized by different severity and inheritance. The lack of a clear genotype/phenotype correlation makes genetic counseling a tricky issue for CLCN7-dependent osteopetrosis. Here, we characterize the first homozygous interstitial deletion in 16p13.3, detected by array comparative genomic hybridization in an ARO patient of Jordanian origin. The deletion involved other genes besides CLCN7, while the proband displayed a classic ARO phenotype; however, her early death did not allow more extensive clinical investigations. The identification of this novel genomic deletion involving a large part of the CLCN7 gene is of clinical relevance, especially in prenatal diagnosis, and suggests the possibility that this kind of mutation has been underestimated so far. These data highlight the need for alternative approaches to genetic analysis also in other ARO-causative genes.

  12. Mutations in the MGAT2 gene controlling complex N-glycan synthesis cause carbohydrate-deficient glycoprotein syndrome type II, an autosomal recessive disease with defective brain development

    SciTech Connect

    Tan, J.; Schachter, H.; Dunn, J.

    1996-10-01

    Carbohydrate-deficient glycoprotein syndrome (CDGS) type II is a multisystemic congenital disease with severe involvement of the nervous system. Two unrelated CDGS type II patients are shown to have point mutations (one patient having Ser{r_arrow}Phe and the other having His{r_arrow}Arg) in the catalytic domain of the gene MGAT2, encoding UDP-GlcNAc:{alpha}-6-D-mannoside {Beta}-1,2-N-ace-tylglucosaminyltransferase II (GnT II), an enzyme essential for biosynthesis of complex Asn-linked glycans. Both mutations caused both decreased expression of enzyme protein in a baculovirus/insect cell system and inactivation of enzyme activity. Restriction-endonuclease analysis of DNA from 23 blood relatives of one of these patients showed that 13 donors were heterozygotes; the other relatives and 21 unrelated donors were normal homozygotes. All heterozygotes showed a significant reduction (33%-68%) in mononuclear-cell GnT II activity. The data indicate that CDGS type II is an autosomal recessive disease and that complex Asn-linked glycans are essential for normal neurological development. 38 refs., 4 figs., 1 tab.

  13. Assignment of a gene for autosomal recessive retinitis pigmentosa (RP12) to chromosome 1q31-q32.1 in an inbred and genetically heterogeneous disease population

    SciTech Connect

    Van Soest, S.; Ingeborgh Van Den Born, L.; Bergen, A.A.B.

    1994-08-01

    Linkage analysis was carried out in a large family segregating for autosomal recessive retinitis pigmentosa (arRP), originating from a genetically isolated population in The Netherlands. Within the family, clinical heterogeneity was observed, with a major section of the family segregating arRP with characteristic para-arteriolar preservation of the retinal pigment epithelium (PPRPE). In the remainder of the arRP patients no PPRPE was found. Initially, all branches of the family were analyzed jointly, and linkage was found between the marker F13B, located at 1q31-q32.1, and RP12 ({Zeta}{sub max} = 4.99 at 8% recombination). Analysis of linkage heterogeneity between five branches of the family yielded significant evidence for nonallelic genetic heterogeneity within this family, coinciding with the observed clinical differences. Multipoint analysis, carried out in the branches that showed linkage, favored the locus order 1cen-D1S158-(F13B, RP12)-D1S53-1qter ({Zeta}{sub max} = 9.17). The finding of a single founder allele associated with the disease phenotype supports this localization. This study reveals that even in a large family, apparently segregating for a single disease entity, genetic heterogeneity can be detected and resolved successfully. 35 refs., 5 figs.

  14. A novel autosomal recessive non-syndromic hearing impairment locus (DFNB47) maps to chromosome 2p25.1-p24.3

    PubMed Central

    Hassan, Muhammad Jawad; Santos, Regie Lyn P.; Rafiq, Muhammad Arshad; Chahrour, Maria H.; Pham, Thanh L.; Wajid, Muhammad; Hijab, Nadine; Wambangco, Michael; Lee, Kwanghyuk; Ansar, Muhammad; Yan, Kai; Ahmad, Wasim; Leal, Suzanne M.

    2010-01-01

    Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for ~75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants. PMID:16261342

  15. Lethal neonatal chondrodysplasias in the West of Scotland 1970-1983 with a description of a thanatophoric, dysplasialike, autosomal recessive disorder, Glasgow variant.

    PubMed

    Connor, J M; Connor, R A; Sweet, E M; Gibson, A A; Patrick, W J; McNay, M B; Redford, D H

    1985-10-01

    Complete ascertainment of lethal neonatal short-limb chondrodysplasias was attempted in the West of Scotland for the period 1970-1983. Forty-three cases were identified, representing a minimum incidence of 1 in 8,900. The differential diagnosis included 11 well-delineated skeletal dysplasias, one case of warfarin embryopathy, and one apparently new condition with presumed autosomal recessive inheritance that has radiographic similarities to those of thanatophoric dysplasia (TD). In this series TD had an incidence of 1 in 42,221, which is consistent with new dominant mutation at a rate of 11.8 +/- 4.1 X 10(-6) mutations per gene per generation. Ultrasonic measurement of fetal long bone length was performed in eight subsequent pregnancies at risk. Five unaffected fetuses were predicted correctly and three affected fetuses were detected during the second trimester (one with rhizomelic chondrodysplasia punctata-second trimester prenatal diagnosis not previously reported; one with achondrogenesis type II; and one with the new lethal condition). PMID:3901754

  16. Mutations in CDC14A, Encoding a Protein Phosphatase Involved in Hair Cell Ciliogenesis, Cause Autosomal-Recessive Severe to Profound Deafness.

    PubMed

    Delmaghani, Sedigheh; Aghaie, Asadollah; Bouyacoub, Yosra; El Hachmi, Hala; Bonnet, Crystel; Riahi, Zied; Chardenoux, Sebastien; Perfettini, Isabelle; Hardelin, Jean-Pierre; Houmeida, Ahmed; Herbomel, Philippe; Petit, Christine

    2016-06-01

    By genetic linkage analysis in a large consanguineous Iranian family with eleven individuals affected by severe to profound congenital deafness, we were able to define a 2.8 Mb critical interval (at chromosome 1p21.2-1p21.1) for an autosomal-recessive nonsyndromic deafness locus (DFNB). Whole-exome sequencing allowed us to identify a CDC14A biallelic nonsense mutation, c.1126C>T (p.Arg376(∗)), which was present in the eight clinically affected individuals still alive. Subsequent screening of 115 unrelated individuals affected by severe or profound congenital deafness of unknown genetic cause led us to identify another CDC14A biallelic nonsense mutation, c.1015C>T (p.Arg339(∗)), in an individual originating from Mauritania. CDC14A encodes a protein tyrosine phosphatase. Immunofluorescence analysis of the protein distribution in the mouse inner ear showed a strong labeling of the hair cells' kinocilia. By using a morpholino strategy to knockdown cdc14a in zebrafish larvae, we found that the length of the kinocilia was reduced in inner-ear hair cells. Therefore, deafness caused by loss-of-function mutations in CDC14A probably arises from a morphogenetic defect of the auditory sensory cells' hair bundles, whose differentiation critically depends on the proper growth of their kinocilium.

  17. A novel class of antihyperlipidemic agents with low density lipoprotein receptor up-regulation via the adaptor protein autosomal recessive hypercholesterolemia.

    PubMed

    Asano, Shigehiro; Ban, Hitoshi; Tsuboya, Norie; Uno, Shinsaku; Kino, Kouichi; Ioriya, Katsuhisa; Kitano, Masafumi; Ueno, Yoshihide

    2010-04-22

    We have previously reported compound 2 as a inhibitor of acyl-coenzyme A:cholesterol O-acyltransferase (ACAT) and up-regulator of the low density lipoprotein receptor (LDL-R) expression. In this study we focused on compound 2, a unique LDL-R up-regulator, and describe the discovery of a novel class of up-regulators of LDL-R. Replacement the methylene urea linker in compound 2 with an acylsulfonamide linker kept a potent LDL-R up-regulatory activity, and subsequent optimization work gave compound 39 as a highly potent LDL-R up-regulator (39; EC(25) = 0.047 microM). Compound 39 showed no ACAT inhibitory activity even at 1 microM. The sodium salts of compound 39 reduced plasma total and LDL cholesterol levels in a dose-dependent manner in an experimental animal model of hyperlipidemia. Moreover, we revealed in this study using RNA interference that autosomal recessive hypercholesterolemia (ARH), an adaptor protein of LDL-R, is essential for compound 39 up-regulation of LDL-R expression. PMID:20356098

  18. Genetic Linkage Analysis of DFNB3, DFNB9 and DFNB21 Loci in GJB2 Negative Families with Autosomal Recessive Non-syndromic Hearing Loss

    PubMed Central

    MASOUDI, Marjan; AHANGARI, Najmeh; POURSADEGH ZONOUZI, Ali Akbar; POURSADEGH ZONOUZI, Ahmad; NEJATIZADEH, Azim

    2016-01-01

    Background: Autosomal recessive non-syndromic hearing loss (ARNSHL) is the most common hereditary form of deafness, and exhibits a great deal of genetic heterogeneity. So far, more than seventy various DFNB loci have been mapped for ARNSHL by linkage analysis. The contribution of three common DFNB loci including DFNB3, DFNB9, DFNB21 and gap junction beta-2 (GJB2) gene mutations in ARNSHL was investigated in south of Iran for the first time. Methods: In this descriptive study, we investigated sixteen large families with at least two affected individuals. After DNA extraction, GJB2 gene mutations were analyzed using direct sequencing method. Negative samples for GJB2 gene mutations were analyzed for the linkage to DFNB3, DFNB9 and DFNB21 loci by genotyping the corresponding short tandem repeat (STR) markers using polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis (PAGE) methods. Results: GJB2 mutations (283G>A and 29delT) were causes of hearing loss in 12.5% of families with ARNSHL and no evidence of linkage were found for any of DFNB3, DFNB9 and DFNB21 loci. Conclusion: GJB2 mutations are associated with ARNSHL. We failed to find linkage of the DFNB3, DFNB9 and DFNB21 loci among GJB2 negative families. Therefore, further studies on large-scale population and other loci will be needed to find conclusively linkage of DFNB loci and ARNSHL in the future. PMID:27398341

  19. Validation of a clinical practice-based algorithm for the diagnosis of autosomal recessive cerebellar ataxias based on NGS identified cases.

    PubMed

    Mallaret, Martial; Renaud, Mathilde; Redin, Claire; Drouot, Nathalie; Muller, Jean; Severac, Francois; Mandel, Jean Louis; Hamza, Wahiba; Benhassine, Traki; Ali-Pacha, Lamia; Tazir, Meriem; Durr, Alexandra; Monin, Marie-Lorraine; Mignot, Cyril; Charles, Perrine; Van Maldergem, Lionel; Chamard, Ludivine; Thauvin-Robinet, Christel; Laugel, Vincent; Burglen, Lydie; Calvas, Patrick; Fleury, Marie-Céline; Tranchant, Christine; Anheim, Mathieu; Koenig, Michel

    2016-07-01

    Establishing a molecular diagnosis of autosomal recessive cerebellar ataxias (ARCA) is challenging due to phenotype and genotype heterogeneity. We report the validation of a previously published clinical practice-based algorithm to diagnose ARCA. Two assessors performed a blind analysis to determine the most probable mutated gene based on comprehensive clinical and paraclinical data, without knowing the molecular diagnosis of 23 patients diagnosed by targeted capture of 57 ataxia genes and high-throughput sequencing coming from a 145 patients series. The correct gene was predicted in 61 and 78 % of the cases by the two assessors, respectively. There was a high inter-rater agreement [K = 0.85 (0.55-0.98) p < 0.001] confirming the algorithm's reproducibility. Phenotyping patients with proper clinical examination, imaging, biochemical investigations and nerve conduction studies remain crucial for the guidance of molecular analysis and to interpret next generation sequencing results. The proposed algorithm should be helpful for diagnosing ARCA in clinical practice. PMID:27142713

  20. The nuclear factor kappaB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset.

    PubMed

    Maystadt, Isabelle; Rezsöhazy, René; Barkats, Martine; Duque, Sandra; Vannuffel, Pascal; Remacle, Sophie; Lambert, Barbara; Najimi, Mustapha; Sokal, Etienne; Munnich, Arnold; Viollet, Louis; Verellen-Dumoulin, Christine

    2007-07-01

    Lower motor neuron diseases (LMNDs) include a large spectrum of clinically and genetically heterogeneous disorders. Studying a large inbred African family, we recently described a novel autosomal recessive LMND variant characterized by childhood onset, generalized muscle involvement, and severe outcome, and we mapped the disease gene to a 3.9-cM interval on chromosome 1p36. We identified a homozygous missense mutation (c.1940 T-->C [p.647 Phe-->Ser]) of the Pleckstrin homology domain-containing, family G member 5 gene, PLEKHG5. In transiently transfected HEK293 and MCF10A cell lines, we found that wild-type PLEKHG5 activated the nuclear factor kappa B (NF kappa B) signaling pathway and that both the stability and the intracellular location of mutant PLEKHG5 protein were altered, severely impairing the NF kappa B transduction pathway. Moreover, aggregates were observed in transiently transfected NSC34 murine motor neurons overexpressing the mutant PLEKHG5 protein. Both loss of PLEKHG5 function and aggregate formation may contribute to neurotoxicity in this novel form of LMND.

  1. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    PubMed

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  2. The Severe Perinatal Form of Autosomal Recessive Polycystic Kidney Disease Maps to Chromosome 6p21.1-p12: Implications for Genetic Counseling

    PubMed Central

    Guay-Woodford, L. M.; Muecher, G.; Hopkins, S. D.; Avner, E. D.; Germino, G. G.; Guillot, A. P.; Herrin, J.; Holleman, R.; Irons, D. A.; Primack, W.; Thomson, P. D.; Waldo, F. B.; Lunt, P. W.; Zerres, K.

    1995-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a one of the most common hereditary renal cystic diseases in children. Its clinical spectrum is widely variable with most cases presenting in infancy. Most affected neonates die within the first few hours of life. At present, prenatal diagnosis relies on fetal sonography, which is often imprecise in detecting even the severe form of the disease. Recently, in a cohort of families with mostly milder ARPKD phenotypes, an ARPKD locus was mapped to a 13-cM region of chromosome 6p21-cen. To determine whether severe perinatal ARPKD also maps to chromosome 6p, we have analyzed the segregation of seven microsatellite markers from the ARPKD interval in 22 families with the severe phenotype. In the majority of the affected infants, ARPKD was documented by histopathology. Our data confirm linkage and refine the ARPKD region to a 3.8-cM interval, delimited by the markers D6S465/D6S427/D6S436/D6S272 and D6S466. Taken together, these results suggest that, despite the wide variability in clinical phenotypes, there is a single ARPKD gene. These linkage data and the absence of genetic heterogeneity in all families tested to date have important implications for DNA-based prenatal diagnoses as well as for the isolation of the ARPKD gene. PMID:7726165

  3. X-Linked and Autosomal Recessive Alport Syndrome: Pathogenic Variant Features and Further Genotype-Phenotype Correlations.

    PubMed

    Savige, Judith; Storey, Helen; Il Cheong, Hae; Gyung Kang, Hee; Park, Eujin; Hilbert, Pascale; Persikov, Anton; Torres-Fernandez, Carmen; Ars, Elisabet; Torra, Roser; Hertz, Jens Michael; Thomassen, Mads; Shagam, Lev; Wang, Dongmao; Wang, Yanyan; Flinter, Frances; Nagel, Mato

    2016-01-01

    Alport syndrome results from mutations in the COL4A5 (X-linked) or COL4A3/COL4A4 (recessive) genes. This study examined 754 previously- unpublished variants in these genes from individuals referred for genetic testing in 12 accredited diagnostic laboratories worldwide, in addition to all published COL4A5, COL4A3 and COL4A4 variants in the LOVD databases. It also determined genotype-phenotype correlations for variants where clinical data were available. Individuals were referred for genetic testing where Alport syndrome was suspected clinically or on biopsy (renal failure, hearing loss, retinopathy, lamellated glomerular basement membrane), variant pathogenicity was assessed using currently-accepted criteria, and variants were examined for gene location, and age at renal failure onset. Results were compared using Fisher's exact test (DNA Stata). Altogether 754 new DNA variants were identified, an increase of 25%, predominantly in people of European background. Of the 1168 COL4A5 variants, 504 (43%) were missense mutations, 273 (23%) splicing variants, 73 (6%) nonsense mutations, 169 (14%) short deletions and 76 (7%) complex or large deletions. Only 135 of the 432 Gly residues in the collagenous sequence were substituted (31%), which means that fewer than 10% of all possible variants have been identified. Both missense and nonsense mutations in COL4A5 were not randomly distributed but more common at the 70 CpG sequences (p<10-41 and p<0.001 respectively). Gly>Ala substitutions were underrepresented in all three genes (p< 0.0001) probably because of an association with a milder phenotype. The average age at end-stage renal failure was the same for all mutations in COL4A5 (24.4 ±7.8 years), COL4A3 (23.3 ± 9.3) and COL4A4 (25.4 ± 10.3) (COL4A5 and COL4A3, p = 0.45; COL4A5 and COL4A4, p = 0.55; COL4A3 and COL4A4, p = 0.41). For COL4A5, renal failure occurred sooner with non-missense than missense variants (p<0.01). For the COL4A3 and COL4A4 genes, age at renal failure

  4. X-Linked and Autosomal Recessive Alport Syndrome: Pathogenic Variant Features and Further Genotype-Phenotype Correlations

    PubMed Central

    Savige, Judith; Storey, Helen; Il Cheong, Hae; Gyung Kang, Hee; Park, Eujin; Hilbert, Pascale; Persikov, Anton; Torres-Fernandez, Carmen; Ars, Elisabet; Torra, Roser; Hertz, Jens Michael; Thomassen, Mads; Shagam, Lev; Wang, Dongmao; Wang, Yanyan; Flinter, Frances; Nagel, Mato

    2016-01-01

    Alport syndrome results from mutations in the COL4A5 (X-linked) or COL4A3/COL4A4 (recessive) genes. This study examined 754 previously- unpublished variants in these genes from individuals referred for genetic testing in 12 accredited diagnostic laboratories worldwide, in addition to all published COL4A5, COL4A3 and COL4A4 variants in the LOVD databases. It also determined genotype-phenotype correlations for variants where clinical data were available. Individuals were referred for genetic testing where Alport syndrome was suspected clinically or on biopsy (renal failure, hearing loss, retinopathy, lamellated glomerular basement membrane), variant pathogenicity was assessed using currently-accepted criteria, and variants were examined for gene location, and age at renal failure onset. Results were compared using Fisher’s exact test (DNA Stata). Altogether 754 new DNA variants were identified, an increase of 25%, predominantly in people of European background. Of the 1168 COL4A5 variants, 504 (43%) were missense mutations, 273 (23%) splicing variants, 73 (6%) nonsense mutations, 169 (14%) short deletions and 76 (7%) complex or large deletions. Only 135 of the 432 Gly residues in the collagenous sequence were substituted (31%), which means that fewer than 10% of all possible variants have been identified. Both missense and nonsense mutations in COL4A5 were not randomly distributed but more common at the 70 CpG sequences (p<10−41 and p<0.001 respectively). Gly>Ala substitutions were underrepresented in all three genes (p< 0.0001) probably because of an association with a milder phenotype. The average age at end-stage renal failure was the same for all mutations in COL4A5 (24.4 ±7.8 years), COL4A3 (23.3 ± 9.3) and COL4A4 (25.4 ± 10.3) (COL4A5 and COL4A3, p = 0.45; COL4A5 and COL4A4, p = 0.55; COL4A3 and COL4A4, p = 0.41). For COL4A5, renal failure occurred sooner with non-missense than missense variants (p<0.01). For the COL4A3 and COL4A4 genes, age at renal

  5. X-Linked and Autosomal Recessive Alport Syndrome: Pathogenic Variant Features and Further Genotype-Phenotype Correlations.

    PubMed

    Savige, Judith; Storey, Helen; Il Cheong, Hae; Gyung Kang, Hee; Park, Eujin; Hilbert, Pascale; Persikov, Anton; Torres-Fernandez, Carmen; Ars, Elisabet; Torra, Roser; Hertz, Jens Michael; Thomassen, Mads; Shagam, Lev; Wang, Dongmao; Wang, Yanyan; Flinter, Frances; Nagel, Mato

    2016-01-01

    Alport syndrome results from mutations in the COL4A5 (X-linked) or COL4A3/COL4A4 (recessive) genes. This study examined 754 previously- unpublished variants in these genes from individuals referred for genetic testing in 12 accredited diagnostic laboratories worldwide, in addition to all published COL4A5, COL4A3 and COL4A4 variants in the LOVD databases. It also determined genotype-phenotype correlations for variants where clinical data were available. Individuals were referred for genetic testing where Alport syndrome was suspected clinically or on biopsy (renal failure, hearing loss, retinopathy, lamellated glomerular basement membrane), variant pathogenicity was assessed using currently-accepted criteria, and variants were examined for gene location, and age at renal failure onset. Results were compared using Fisher's exact test (DNA Stata). Altogether 754 new DNA variants were identified, an increase of 25%, predominantly in people of European background. Of the 1168 COL4A5 variants, 504 (43%) were missense mutations, 273 (23%) splicing variants, 73 (6%) nonsense mutations, 169 (14%) short deletions and 76 (7%) complex or large deletions. Only 135 of the 432 Gly residues in the collagenous sequence were substituted (31%), which means that fewer than 10% of all possible variants have been identified. Both missense and nonsense mutations in COL4A5 were not randomly distributed but more common at the 70 CpG sequences (p<10-41 and p<0.001 respectively). Gly>Ala substitutions were underrepresented in all three genes (p< 0.0001) probably because of an association with a milder phenotype. The average age at end-stage renal failure was the same for all mutations in COL4A5 (24.4 ±7.8 years), COL4A3 (23.3 ± 9.3) and COL4A4 (25.4 ± 10.3) (COL4A5 and COL4A3, p = 0.45; COL4A5 and COL4A4, p = 0.55; COL4A3 and COL4A4, p = 0.41). For COL4A5, renal failure occurred sooner with non-missense than missense variants (p<0.01). For the COL4A3 and COL4A4 genes, age at renal failure

  6. Case Report: Whole exome sequencing helps in accurate molecular diagnosis in siblings with a rare co-occurrence of paternally inherited 22q12 duplication and autosomal recessive non-syndromic ichthyosis.

    PubMed Central

    Gupta, Aayush; Sharma, Yugal; Deo, Kirti; Vellarikkal, Shamsudheen; Jayarajan, Rijith; Dixit, Vishal; Verma, Ankit; Scaria, Vinod; Sivasubbu, Sridhar

    2015-01-01

    Lamellar ichthyosis (LI), considered an autosomal recessive monogenic genodermatosis, has an incidence of approximately 1 in 250,000. Usually associated with mutations in the transglutaminase gene ( TGM1), mutations in six other genes have, less frequently, been shown to be causative. Two siblings, born in a collodion membrane, presented with fish like scales all over the body. Karyotyping revealed duplication of the chromosome arm on 22q12+ in the father and two siblings. Whole exome sequencing revealed a homozygous p.Gly218Ser variation in TGM1; a variation reported earlier in an isolated Finnish population in association with autosomal recessive non-syndromic ichthyosis. This concurrence of a potentially benign 22q12+ duplication and LI, both rare individually, is reported here likely for the first time. PMID:26594337

  7. Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: clinical, genetic and biochemical characterisation

    PubMed Central

    Liu, Yo-Tsen; Hersheson, Joshua; Plagnol, Vincent; Fawcett, Katherine; Duberley, Kate E C; Preza, Elisavet; Hargreaves, Iain P; Chalasani, Annapurna; Laurá, Matilde; Wood, Nick W; Reilly, Mary M; Houlden, Henry

    2014-01-01

    Background The autosomal-recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of neurodegenerative disorders. The large number of ARCA genes leads to delay and difficulties obtaining an exact diagnosis in many patients and families. Ubiquinone (CoQ10) deficiency is one of the potentially treatable causes of ARCAs as some patients respond to CoQ10 supplementation. The AarF domain containing kinase 3 gene (ADCK3) is one of several genes associated with CoQ10 deficiency. ADCK3 encodes a mitochondrial protein which functions as an electron-transfer membrane protein complex in the mitochondrial respiratory chain (MRC). Methods We report two siblings from a consanguineous Pakistani family who presented with cerebellar ataxia and severe myoclonus from adolescence. Whole exome sequencing and biochemical assessment of fibroblasts were performed in the index patient. Results A novel homozygous frameshift mutation in ADCK3 (p.Ser616Leufs*114), was identified in both siblings. This frameshift mutation results in the loss of the stop codon, extending the coding protein by 81 amino acids. Significant CoQ10 deficiency and reduced MRC enzyme activities in the index patient's fibroblasts suggested that the mutant protein may reduce the efficiency of mitochondrial electron transfer. CoQ10 supplementation was initiated following these genetic and biochemical analyses. She gained substantial improvement in myoclonic movements, ataxic gait and dysarthric speech after treatment. Conclusion This study highlights the importance of diagnosing ADCK3 mutations and the potential benefit of treatment for patients. The identification of this new mutation broadens the phenotypic spectrum associated with ADCK3 mutations and provides further understanding of their pathogenic mechanism. PMID:24218524

  8. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement.

    PubMed

    Estrada-Cuzcano, Alejandro; Neveling, Kornelia; Kohl, Susanne; Banin, Eyal; Rotenstreich, Ygal; Sharon, Dror; Falik-Zaccai, Tzipora C; Hipp, Stephanie; Roepman, Ronald; Wissinger, Bernd; Letteboer, Stef J F; Mans, Dorus A; Blokland, Ellen A W; Kwint, Michael P; Gijsen, Sabine J; van Huet, Ramon A C; Collin, Rob W J; Scheffer, H; Veltman, Joris A; Zrenner, Eberhart; den Hollander, Anneke I; Klevering, B Jeroen; Cremers, Frans P M

    2012-01-13

    Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166(∗)]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156-2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156-2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.

  9. PPAR-γ agonist ameliorates kidney and liver disease in an orthologous rat model of human autosomal recessive polycystic kidney disease

    PubMed Central

    Yoshihara, Daisuke; Kurahashi, Hiroki; Morita, Miwa; Kugita, Masanori; Hiki, Yoshiyuki; Aukema, Harold M.; Yamaguchi, Tamio; Calvet, James P.; Wallace, Darren P.

    2011-01-01

    In autosomal recessive polycystic kidney disease (ARPKD), progressive enlargement of fluid-filled cysts is due to aberrant proliferation of tubule epithelial cells and transepithelial fluid secretion leading to extensive nephron loss and interstitial fibrosis. Congenital hepatic fibrosis associated with biliary cysts/dilatations is the most common extrarenal manifestation in ARPKD and can lead to massive liver enlargement. Peroxisome proliferator-activated receptor γ (PPAR-γ), a member of the ligand-dependent nuclear receptor superfamily, is expressed in a variety of tissues, including the kidneys and liver, and plays important roles in cell proliferation, fibrosis, and inflammation. In the current study, we determined that pioglitazone (PIO), a PPAR-γ agonist, decreases polycystic kidney and liver disease progression in the polycystic kidney rat, an orthologous model of human ARPKD. Daily treatment with 10 mg/kg PIO for 16 wk decreased kidney weight (% of body weight), renal cystic area, serum urea nitrogen, and the number of Ki67-, pERK1/2-, and pS6-positive cells in the kidney. There was also a decrease in liver weight (% of body weight), liver cystic area, fibrotic index, and the number of Ki67-, pERK1/2-, pERK5-, and TGF-β-positive cells in the liver. Taken together, these data suggest that PIO inhibits the progression of polycystic kidney and liver disease in a model of human ARPKD by inhibiting cell proliferation and fibrosis. These findings suggest that PPAR-γ agonists may have therapeutic value in the treatment of the renal and hepatic manifestations of ARPKD. PMID:21147840

  10. An Empirical Biomarker-Based Calculator for Cystic Index in a Model of Autosomal Recessive Polycystic Kidney Disease—The Nieto-Narayan Formula

    PubMed Central

    Nieto, Jake A.; Yamin, Michael A.; Goldberg, Itzhak D.

    2016-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) is associated with progressive enlargement of the kidneys fuelled by the formation and expansion of fluid-filled cysts. The disease is congenital and children that do not succumb to it during the neonatal period will, by age 10 years, more often than not, require nephrectomy+renal replacement therapy for management of both pain and renal insufficiency. Since increasing cystic index (CI; percent of kidney occupied by cysts) drives both renal expansion and organ dysfunction, management of these patients, including decisions such as elective nephrectomy and prioritization on the transplant waitlist, could clearly benefit from serial determination of CI. So also, clinical trials in ARPKD evaluating the efficacy of novel drug candidates could benefit from serial determination of CI. Although ultrasound is currently the imaging modality of choice for diagnosis of ARPKD, its utilization for assessing disease progression is highly limited. Magnetic resonance imaging or computed tomography, although more reliable for determination of CI, are expensive, time-consuming and somewhat impractical in the pediatric population. Using a well-established mammalian model of ARPKD, we undertook a big data-like analysis of minimally- or non-invasive blood and urine biomarkers of renal injury/dysfunction to derive a family of equations for estimating CI. We then applied a signal averaging protocol to distill these equations to a single empirical formula for calculation of CI. Such a formula will eventually find use in identifying and monitoring patients at high risk for progressing to end-stage renal disease and aid in the conduct of clinical trials. PMID:27695033

  11. Initial evaluation of hepatic T1 relaxation time as an imaging marker of liver disease associated with autosomal recessive polycystic kidney disease (ARPKD).

    PubMed

    Gao, Ying; Erokwu, Bernadette O; DeSantis, David A; Croniger, Colleen M; Schur, Rebecca M; Lu, Lan; Mariappuram, Jose; Dell, Katherine M; Flask, Chris A

    2016-01-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a potentially lethal multi-organ disease affecting both the kidneys and the liver. Unfortunately, there are currently no non-invasive methods to monitor liver disease progression in ARPKD patients, limiting the study of potential therapeutic interventions. Herein, we perform an initial investigation of T1 relaxation time as a potential imaging biomarker to quantitatively assess the two primary pathologic hallmarks of ARPKD liver disease: biliary dilatation and periportal fibrosis in the PCK rat model of ARPKD. T1 relaxation time results were obtained for five PCK rats at 3 months of age using a Look-Locker acquisition on a Bruker BioSpec 7.0 T MRI scanner. Six three-month-old Sprague-Dawley (SD) rats were also scanned as controls. All animals were euthanized after the three-month scans for histological and biochemical assessments of bile duct dilatation and hepatic fibrosis for comparison. PCK rats exhibited significantly increased liver T1 values (mean ± standard deviation = 935 ± 39 ms) compared with age-matched SD control rats (847 ± 26 ms, p = 0.01). One PCK rat exhibited severe cholangitis (mean T1  = 1413 ms), which occurs periodically in ARPKD patients. The observed increase in the in vivo liver T1 relaxation time correlated significantly with three histological and biochemical indicators of biliary dilatation and fibrosis: bile duct area percent (R = 0.85, p = 0.002), periportal fibrosis area percent (R = 0.82, p = 0.004), and hydroxyproline content (R = 0.76, p = 0.01). These results suggest that hepatic T1 relaxation time may provide a sensitive and non-invasive imaging biomarker to monitor ARPKD liver disease.

  12. Confirmation of a third locus, at 2p, for autosomal recessive limb-girdle muscular dystrophy indicates that at least 4 genes are responsible for this condition

    SciTech Connect

    Passos-Bueno, M.R.; Moreira, E.S.; Vasques, L.R.

    1994-09-01

    Autosomal recessive limb-girdle muscular dystrophies (AR LGMD) represent a heterogeneous group of diseases with a wide spectrum of clinical signs, varying from very severe to mild ones. One gene for a mild form was mapped at 15q while another gene for a severe form was mapped at 13p. In both cases, evidence of genetic heterogeneity were demonstrated following analysis of Brazilian families. More recently, a third gene was identified at 2p based on linkage analysis in 2 LGMD families with the markers D2S166, D2S136 and D2S134. The relative proportion of each genetic form among affected families is unknown. Therefore, the closest available markers for each of the LGMD genes have been tested in 12 Brazilian families with at least 3 affected patients. The following results have been observed: 3 were 15q-linked families, 1 was 13p-linked, at least 2 were linked to 2p and 2 were excluded for any of these 3 loci. In relation to the 2p locus, we have tested a total of 12 markers in the 2 linked Brazilian families. The maximum lod score for the marker which was informative for the two families (D2S291) was 8.35 at {theta}=0.01. Therefore, these results suggest the existence of at least 4 different genes causing the LGMD phenotype and confirm linkage to the 2p locus. In addition, our data refine the localization of the third locus since the marker D2S291 is at least 9 cM closer to this gene (FAPESP, CNPq, MDA, PADCT).

  13. The Mental Health Consequences of the Recession: Economic Hardship and Employment of People with Mental Health Problems in 27 European Countries

    PubMed Central

    Evans-Lacko, Sara; Knapp, Martin; McCrone, Paul

    2013-01-01

    Objectives A period of economic recession may be particularly difficult for people with mental health problems as they may be at higher risk of losing their jobs, and more competitive labour markets can also make it more difficult to find a new job. This study assesses unemployment rates among individuals with mental health problems before and during the current economic recession. Methods Using individual and aggregate level data collected from 27 EU countries in the Eurobarometer surveys of 2006 and 2010, we examined changes in unemployment rates over this period among individuals with and without mental health problems. Results Following the onset of the recession, the gap in unemployment rates between individuals with and without mental health problems significantly widened (odds ratio: 1.12, 95% confidence interval: 1.03, 1.34). This disparity became even greater for males, and individuals with low levels of education. Individuals with mental health problems living in countries with higher levels of stigmatizing attitudes regarding dangerousness of people with mental illness were more vulnerable to unemployment in 2010, but not 2006. Greater agreement that people with mental health problems have themselves to blame, was associated with lower likelihood of unemployment for individuals with and without mental health problems. Conclusion These findings study suggest that times of economic hardship may intensify social exclusion of people with mental health problems, especially males and individuals with lower education. Interventions to combat economic exclusion and to promote social participation of individuals with mental health problems are even more important during times of economic crisis, and these efforts should target support to the most vulnerable groups. PMID:23922801

  14. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: New insights into molecular mechanisms responsible for the disease

    SciTech Connect

    Hahnen, E.; Schoenling, J.; Zerres, K.

    1996-11-01

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive neurodegenerative disorder leading to weakness and atrophy of voluntary muscles. The survival motor-neuron gene (SMN), a strong candidate for SMA, is present in two highly homologous copies (telSMN and cenSMN) within the SMA region. Only five nucleotide differences within the region between intron 6 and exon 8 distinguish these homologues. Independent of the severity of the disease, 90%-98% of all SMA patients carry homozygous deletions in telSMN, affecting either exon 7 or both exons 7 and 8. We present the molecular analysis of 42 SMA patients who carry homozygous deletions of telSMN exon 7 but not of exon 8. The question arises whether in these cases the telSMN is truncated upstream of exon 8 or whether hybrid SMN genes exist that are composed of centromeric and telomeric sequences. By a simple PCR-based assay we demonstrate that in each case the remaining telSMN exon 8 is part of a hybrid SMN gene. Sequencing of cloned hybrid SMN genes from seven patients revealed the same composition in all but two patients: the base-pair differences in introns 6 and 7 and exon 7 are of centromeric origin whereas exon 8 is of telomeric origin. Nonetheless, haplotype analysis with polymorphic multicopy markers, Ag1-CA and C212, localized at the 5{prime} end of the SMN genes, suggests different mechanisms of occurrence, unequal rearrangements, and gene conversion involving both copies of the SMN genes. In approximately half of all patients, we identified a consensus haplotype, suggesting a common origin. Interestingly, we identified a putative recombination hot spot represented by recombination-simulating elements (TGGGG and TGAGGT) in exon 8 that is homologous to the human deletion-hot spot consensus sequence in the immunoglobulin switch region, the {alpha}-globin cluster, and the polymerase {alpha} arrest sites. This may explain why independent hybrid SMN genes show identical sequences. 35 refs., 4 figs., 1 tab.

  15. Autosomal Recessive Bestrophinopathy Is Not Associated With the Loss of Bestrophin-1 Anion Channel Function in a Patient With a Novel BEST1 Mutation

    PubMed Central

    Johnson, Adiv A.; Bachman, Lori A.; Gilles, Benjamin J.; Cross, Samuel D.; Stelzig, Kimberly E.; Resch, Zachary T.; Marmorstein, Lihua Y.; Pulido, Jose S.; Marmorstein, Alan D.

    2015-01-01

    Purpose Mutations in BEST1, encoding bestrophin-1 (Best1), cause autosomal recessive bestrophinopathy (ARB). Encoding bestrophin-1 is a pentameric anion channel localized to the basolateral plasma membrane of the RPE. Here, we characterize the effects of the mutations R141H (CGC > CAC) and I366fsX18 (c.1098_1100+7del), identified in a patient in our practice, on Best1 trafficking, oligomerization, and channel activity. Methods Currents of Cl− were assessed in transfected HEK293 cells using whole-cell patch clamp. Best1 localization was assessed by confocal microscopy in differentiated, human-induced pluripotent stem cell-derived RPE (iPSC-RPE) cells following expression of mutants via adenovirus-mediated gene transfer. Oligomerization was evaluated by coimmunoprecipitation in iPSC-RPE and MDCK cells. Results Compared to Best1, Best1I366fsX18 currents were increased while Best1R141H Cl− currents were diminished. Coexpression of Best1R141H with Best1 or Best1I366fsX18 resulted in rescued channel activity. Overexpressed Best1, Best1R141H, and Best1I366fsX18 were all properly localized in iPSC-RPE cells; Best1R141H and Best1I366fsX18 coimmunoprecipitated with endogenous Best1 in iPSC-RPE cells and with each other in MDCK cells. Conclusions The first 366 amino acids of Best1 are sufficient to mediate channel activity and homo-oligomerization. The combination of Best1 and Best1R141H does not cause disease, while Best1R141H together with Best1I366fsX18 causes ARB. Since both combinations generate comparable Cl− currents, this indicates that ARB in this patient is not caused by a loss of channel activity. Moreover, Best1I366fsX18 differs from Best1 in that it lacks most of the cytosolic C-terminal domain, suggesting that the loss of this region contributes significantly to the pathogenesis of ARB in this patient. PMID:26200502

  16. The PDAC syndrome (pulmonary hypoplasia/agenesis, diaphragmatic hernia/eventration, anophthalmia/microphthalmia, and cardiac defect) (Spear syndrome, Matthew-Wood syndrome): report of eight cases including a living child and further evidence for autosomal recessive inheritance.

    PubMed

    Chitayat, David; Sroka, Hana; Keating, Sarah; Colby, Randall S; Ryan, Greg; Toi, Ants; Blaser, Susan; Viero, Sandra; Devisme, Louise; Boute-Bénéjean, Odile; Manouvrier-Hanu, Sylvie; Mortier, Geert; Loeys, Bart; Rauch, Anita; Bitoun, Pierre

    2007-06-15

    The combination of pulmonary agenesis/dysgenesis/hypoplasia, microphthalmia/anophthalmia, and a diaphragmatic defect (agenesis or eventration) is a rare syndrome presumed to have an autosomal recessive mode of inheritance based on a report of affected siblings born to unaffected parents [Seller et al., 1996]. The condition is known as Spear syndrome and Matthew-Wood syndrome, although genetic heterogeneity cannot be ruled out. We report on eight patients with this condition including a living child, three sibs and three isolated cases. Most presented with fetal ultrasound findings of microphthalmia/anophthalmia, and diaphragmatic eventration/hernia and in five, cardiac abnormalities were also found. The earliest detection was at 20 weeks gestation. This is the second report of sibs affected with this condition, which supports an autosomal recessive mode of inheritance. We present the first and only reported living patient with this condition and expand the intrafamilial, interfamilial, and ethnic variability of this condition. We suggest changing the condition's name to PDAC to reflect the most important components of this condition.

  17. Addressing key issues in the consanguinity-related risk of autosomal recessive disorders in consanguineous communities: lessons from a qualitative study of British Pakistanis.

    PubMed

    Darr, A; Small, N; Ahmad, W I U; Atkin, K; Corry, P; Modell, B

    2016-01-01

    Currently, there is no consensus regarding services required to help families with consanguineous marriages manage their increased genetic reproductive risk. Genetic services for communities with a preference for consanguineous marriage in the UK remain patchy, often poor. Receiving two disparate explanations of the cause of recessive disorders (cousin marriage and recessive inheritance) leads to confusion among families. Further, the realisation that couples in non-consanguineous relationships have affected children leads to mistrust of professional advice. British Pakistani families at-risk for recessive disorders lack an understanding of recessive disorders and their inheritance. Such an understanding is empowering and can be shared within the extended family to enable informed choice. In a three-site qualitative study of British Pakistanis, we explored family and health professional perspectives on recessively inherited conditions. Our findings suggest, firstly, that family networks hold strong potential for cascading genetic information, making the adoption of a family-centred approach an efficient strategy for this community. However, this is dependent on provision of high-quality and timely information from health care providers. Secondly, families' experience was of ill-coordinated and time-starved services, with few having access to specialist provision from Regional Genetics Services; these perspectives were consistent with health professionals' views of services. Thirdly, we confirm previous findings that genetic information is difficult to communicate and comprehend, further complicated by the need to communicate the relationship between cousin marriage and recessive disorders. A communication tool we developed and piloted is described and offered as a useful resource for communicating complex genetic information. PMID:26363620

  18. Addressing key issues in the consanguinity-related risk of autosomal recessive disorders in consanguineous communities: lessons from a qualitative study of British Pakistanis.

    PubMed

    Darr, A; Small, N; Ahmad, W I U; Atkin, K; Corry, P; Modell, B

    2016-01-01

    Currently, there is no consensus regarding services required to help families with consanguineous marriages manage their increased genetic reproductive risk. Genetic services for communities with a preference for consanguineous marriage in the UK remain patchy, often poor. Receiving two disparate explanations of the cause of recessive disorders (cousin marriage and recessive inheritance) leads to confusion among families. Further, the realisation that couples in non-consanguineous relationships have affected children leads to mistrust of professional advice. British Pakistani families at-risk for recessive disorders lack an understanding of recessive disorders and their inheritance. Such an understanding is empowering and can be shared within the extended family to enable informed choice. In a three-site qualitative study of British Pakistanis, we explored family and health professional perspectives on recessively inherited conditions. Our findings suggest, firstly, that family networks hold strong potential for cascading genetic information, making the adoption of a family-centred approach an efficient strategy for this community. However, this is dependent on provision of high-quality and timely information from health care providers. Secondly, families' experience was of ill-coordinated and time-starved services, with few having access to specialist provision from Regional Genetics Services; these perspectives were consistent with health professionals' views of services. Thirdly, we confirm previous findings that genetic information is difficult to communicate and comprehend, further complicated by the need to communicate the relationship between cousin marriage and recessive disorders. A communication tool we developed and piloted is described and offered as a useful resource for communicating complex genetic information.

  19. FXR1, an autosomal homolog of the fragile X mental retardation gene.

    PubMed Central

    Siomi, M C; Siomi, H; Sauer, W H; Srinivasan, S; Nussbaum, R L; Dreyfuss, G

    1995-01-01

    Fragile X mental retardation syndrome, the most common cause of hereditary mental retardation, is directly associated with the FMR1 gene at Xq27.3. FMR1 encodes an RNA binding protein and the syndrome results from lack of expression of FMR1 or expression of a mutant protein that is impaired in RNA binding. We found a novel gene, FXR1, that is highly homologous to FMR1 and located on chromosome 12 at 12q13. FXR1 encodes a protein which, like FMR1, contains two KH domains and is highly conserved in vertebrates. The 3' untranslated regions (3'UTRs) of the human and Xenopus laevis FXR1 mRNAs are strikingly conserved (approximately 90% identity), suggesting conservation of an important function. The KH domains of FXR1 and FMR1 are almost identical, and the two proteins have similar RNA binding properties in vitro. However, FXR1 and FMR1 have very different carboxy-termini. FXR1 and FMR1 are expressed in many tissues, and both proteins, which are cytoplasmic, can be expressed in the same cells. Interestingly, cells from a fragile X patient that do not have any detectable FMR1 express normal levels of FXR1. These findings demonstrate that FMR1 and FXR1 are members of a gene family and suggest a biological role for FXR1 that is related to that of FMR1. Images PMID:7781595

  20. Case Report: Whole exome sequencing reveals a novel frameshift deletion mutation p.G2254fs in COL7A1 associated with autosomal recessive dystrophic epidermolysis bullosa

    PubMed Central

    Karuthedath Vellarikkal, Shamsudheen; Jayarajan, Rijith; Verma, Ankit; Nair, Sreelata; Ravi, Rowmika; Senthivel, Vigneshwar; Sivasubbu, Sridhar; Scaria, Vinod

    2016-01-01

    Dystrophic epidermolysis bullosa simplex (DEB) is a phenotypically diverse inherited skin fragility disorder. It is majorly manifested by appearance of epidermal bullae upon friction caused either by physical or environmental trauma. The phenotypic manifestations also include appearance of milia, scarring all over the body and nail dystrophy. DEB can be inherited in a recessive or dominant form and the recessive form of DEB (RDEB) is more severe. In the present study, we identify a novel p.G2254fs mutation in COL7A1 gene causing a sporadic case of RDEB by whole exome sequencing (WES). Apart from adding a novel frameshift Collagen VII mutation to the repertoire of known mutations reported in the disease, to the best of our knowledge, this is the first report of a genetically characterized case of DEB from India. PMID:27408687

  1. Confirmation of the 2p locus for the mild autosomal recessive lim-girdle muscular dystrophy gene (LGMD2B) in three families allows refinement of the candidate region

    SciTech Connect

    Bashir, R.; Iughetti, P.; Strachan, T.

    1995-05-01

    The mild autosomal recessive limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of muscle diseases. The first gene to be mapped and associated with this phenotype was a locus on 15q geographic isolate. These results have been confirmed in other populations, but it was shown that there is genetic heterogeneity for this form of LGMD. Recently, a second locus has been mapped to chromosome 2p. The confirmation of the mapping of this second locus in LGMD families from different populations is of utmost importance for the positional cloning of this gene (HGMW-approved symbol LGMD2B). In this publication, haplotypes generated from five chromosome 2 markers from all of the known large families linked to chromosome 2p are reported together with the recombinants that show the current most likely location of the LGMD 2B gene. 9 refs., 2 figs., 1 tab.

  2. Recession Depression: Mental Health Effects of the 2008 Stock Market Crash*

    PubMed Central

    McInerney, Melissa; Mellor, Jennifer M.; Nicholas, Lauren Hersch

    2013-01-01

    Do sudden, large wealth losses affect mental health? We use exogenous variation in the interview dates of the 2008 Health and Retirement Study to assess the impact of large wealth losses on mental health among older U.S. adults. We compare cross-wave changes in wealth and mental health for respondents interviewed before and after the October 2008 stock market crash. We find that the crash reduced wealth and increased feelings of depression and use of antidepressant drugs, and that these effects were largest among respondents with high levels of stock holdings prior to the crash. These results suggest that sudden wealth losses cause immediate declines in subjective measures of mental health. However, we find no evidence that wealth losses lead to increases in clinically-validated measures of depressive symptoms or indicators of depression. PMID:24113241

  3. A prescription for unemployment? Recessions and the demand for mental health drugs.

    PubMed

    Bradford, W David; Lastrapes, William D

    2014-11-01

    We estimate the relationship between mental health drug prescriptions and the level of labor market activity in the USA. Based on monthly data from the National Ambulatory Medical Care Survey of physicians and aggregated by US census regions, we find that the number of mental health drug prescriptions (those aimed at alleviating depression and anxiety) rises by about 10% when employment falls by 1% and when unemployment rises by 100 basis points, but only for patients in the Northeast region. This paper is one of the first to look at compensatory health behavior in response to the business cycle.

  4. Mutations in UNC80, Encoding Part of the UNC79-UNC80-NALCN Channel Complex, Cause Autosomal-Recessive Severe Infantile Encephalopathy

    PubMed Central

    Shamseldin, Hanan E.; Faqeih, Eissa; Alasmari, Ali; Zaki, Maha S.; Gleeson, Joseph G.; Alkuraya, Fowzan S.

    2016-01-01

    Brain channelopathies represent a growing class of brain disorders that usually result in paroxysmal disorders, although their role in other neurological phenotypes, including the recently described NALCN-related infantile encephalopathy, is increasingly recognized. In three Saudi Arabian families and one Egyptian family all affected by a remarkably similar phenotype (infantile encephalopathy and largely normal brain MRI) to that of NALCN-related infantile encephalopathy, we identified a locus on 2q34 in which whole-exome sequencing revealed three, including two apparently loss-of-function, recessive mutations in UNC80. UNC80 encodes a large protein that is necessary for the stability and function of NALCN and for bridging NALCN to UNC79 to form a functional complex. Our results expand the clinical relevance of the UNC79-UNC80-NALCN channel complex. PMID:26708753

  5. Autosomal recessive multiple epiphyseal dysplasia with homozygosity for C653S in the DTDST gene: double-layer patella as a reliable sign.

    PubMed

    Mäkitie, Outi; Savarirayan, Ravi; Bonafé, Luisa; Robertson, Stephen; Susic, Miki; Superti-Furga, Andrea; Cole, William G

    2003-10-15

    Mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene result in a family of skeletal dysplasias, which comprise lethal (achondrogenesis type 1B and atelosteogenesis type 2) and non-lethal conditions (diastrophic dysplasia and recessive multiple epiphyseal dysplasia (rMED)). The most frequent mutation is R279W, which in a homozygous state results in rMED with bilateral clubfoot, MED, and "double layered" patella. We describe three patients with rMED caused by a previously unreported homozygous mutation in the DTDST gene. The three patients (from two families) were born to healthy, non-consanguineous parents. All developed signs of hip dysplasia in early childhood and two had episodes of recurrent patella dislocation. Two underwent bilateral total hip replacements at ages 13 and 14 years. The feet, external ears, and palate were normal. Stature was normal in all cases. Radiographs showed dysplastic femoral heads, mild generalized epiphyseal dysplasia, abnormal patella ossification, and normal hands and feet. Direct sequence analysis of genomic DNA demonstrated a homozygous 1984T > A (C653S) change in the DTDST gene in all patients. The clinically normal parents were heterozygous for the change. This is the first description of a homozygous C653S mutation of the DTDST gene. Hip dysplasia and patella hypermobility dominates the otherwise mild phenotype. These patients further expand the range of causative mutations in the DTD skeletal dysplasia family. PMID:12966518

  6. Exclusion of the GNAS locus in PHP-Ib patients with broad GNAS methylation changes: evidence for an autosomal recessive form of PHP-Ib?

    PubMed

    Fernández-Rebollo, Eduardo; Pérez de Nanclares, Guiomar; Lecumberri, Beatriz; Turan, Serap; Anda, Emma; Pérez-Nanclares, Gustavo; Feig, Denice; Nik-Zainal, Serena; Bastepe, Murat; Jüppner, Harald

    2011-08-01

    Most patients with autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib) carry maternally inherited microdeletions upstream of GNAS that are associated with loss of methylation restricted to GNAS exon A/B. Only few AD-PHP-Ib patients carry microdeletions within GNAS that are associated with loss of all maternal methylation imprints. These epigenetic changes are often indistinguishable from those observed in patients affected by an apparently sporadic PHP-Ib form that has not yet been defined genetically. We have now investigated six female patients affected by PHP-Ib (four unrelated and two sisters) with complete or almost complete loss of GNAS methylation, whose healthy children (11 in total) showed no epigenetic changes at this locus. Analysis of several microsatellite markers throughout the 20q13 region made it unlikely that PHP-Ib is caused in these patients by large deletions involving GNAS or by paternal uniparental isodisomy or heterodisomy of chromosome 20 (patUPD20). Microsatellite and single-nucleotide variation (SNV) data revealed that the two affected sisters share their maternally inherited GNAS alleles with unaffected relatives that lack evidence for abnormal GNAS methylation, thus excluding linkage to this locus. Consistent with these findings, healthy children of two unrelated sporadic PHP-Ib patients had inherited different maternal GNAS alleles, also arguing against linkage to this locus. Based on our data, it appears plausible that some forms of PHP-Ib are caused by homozygous or compound heterozygous mutation(s) in an unknown gene involved in establishing or maintaining GNAS methylation.

  7. Truncation of the E3 ubiquitin ligase component FBXO31 causes non-syndromic autosomal recessive intellectual disability in a Pakistani family.

    PubMed

    Mir, Asif; Sritharan, Kumudesh; Mittal, Kirti; Vasli, Nasim; Araujo, Carolina; Jamil, Talal; Rafiq, Muhammad Arshad; Anwar, Zubair; Mikhailov, Anna; Rauf, Sobiah; Mahmood, Huda; Shakoor, Abdul; Ali, Sabir; So, Joyce; Naeem, Farooq; Ayub, Muhammad; Vincent, John B

    2014-08-01

    In this study, we have performed autozygosity mapping on a large consanguineous Pakistani family segregating with intellectual disability. We identified two large regions of homozygosity-by-descent (HBD) on 16q12.2-q21 and 16q24.1-q24.3. Whole exome sequencing (WES) was performed on an affected individual from the family, but initially, no obvious mutation was detected. However, three genes within the HBD regions that were not fully captured during the WES were Sanger sequenced and we identified a five base pair deletion (actually six base pairs deleted plus one base pair inserted) in exon 7 of the gene FBXO31. The variant segregated completely in the family, in recessive fashion giving a LOD score of 3.95. This variant leads to a frameshift and a premature stop codon and truncation of the FBXO31 protein, p.(Cys283Asnfs*81). Quantification of mRNA and protein expression suggests that nonsense-mediated mRNA decay also contributes to the loss of FBXO31 protein in affected individuals. FBXO31 functions as a centrosomal E3 ubiquitin ligase, in association with SKP1 and Cullin-1, involved in ubiquitination of proteins targeted for degradation. The FBXO31/SKP1/Cullin1 complex is important for neuronal morphogenesis and axonal identity. FBXO31 also plays a role in dendrite growth and neuronal migration in developing cerebellar cortex. Our finding adds further evidence of the involvement of disruption of the protein ubiquitination pathway in intellectual disability.

  8. Is health care a right or a commodity? Implementing mental health reform in a recession.

    PubMed

    Aggarwal, Neil Krishan; Rowe, Michael; Sernyak, Michael A

    2010-11-01

    The Patient Protection and Affordable Care Act, signed into law by President Obama in March 2010, contains elements of two seemingly contradictory positions: health care as a commodity and as a right. The commodity argument posits that the marketplace should govern demand, supply, and costs of care. The law's establishment of state insurance exchanges reflects this position. The argument that health care is a right posits that it is a need, not a choice, and that government should regulate care standards that may be compromised as insurers attempt to minimize costs. The law's requirement for coverage of mental and substance use disorders reflects this position. This Open Forum examines these arguments in light of current state fiscal crises and impending reforms. Despite the federal government's interest in expanding prevention and treatment of mental illness, states may demonstrate varying levels of commitment, based in part on their perception of health care as a right or a commodity. The federal government should outline clear performance standards, with minimum services specified to maximize state commitments to services. PMID:21041355

  9. Screening of DFNB3 in Iranian families with autosomal recessive non-syndromic hearing loss reveals a novel pathogenic mutation in the MyTh4 domain of the MYO15A gene in a linked family

    PubMed Central

    Reiisi, Somayeh; Tabatabaiefar, Mohammad Amin; Sanati, Mohammad Hosein; Chaleshtori, Morteza Hashemzadeh

    2016-01-01

    Objective(s): Non-syndromic sensorineural hearing loss (NSHL) is a common disorder affecting approximately 1 in 500 newborns. This type of hearing loss is extremely heterogeneous and includes over 100 loci. Mutations in the GJB2 gene have been implicated in about half of autosomal recessive non-syndromic hearing loss (ARNSHL) cases, making this the most common cause of ARNSHL. For the latter form of deafness, most frequent genes proposed include GJB2, SLC26A4, MYO15A, OTOF, and CDH23 worldwide. Materials and Methods: The aim of the present study was to define the role and frequency of MYO15A gene mutation in Iranian families. In this study 30 Iranian families were enrolled with over three deaf children and negative for GJB2. Then linkage analysis was performed by six DFNB3 short tandem repeat markers. Following that, mutation detection accomplished using DNA sequencing. Results: One family (3.33%) showed linkage to DFNB3 and a novel mutation was identified in the MYO15A gene (c.6442T>A): as the disease-causing mutation. Mutation co-segregated with hearing loss in the family but was not present in the 100 ethnicity-matched controls. Conclusion: Our results confirmed that the hearing loss of the linked Iranian family was caused by a novel missense mutation in the MYO15A gene. This mutation is the first to be reported in the world and affects the first MyTH4 domain of the protein.

  10. Screening of DFNB3 in Iranian families with autosomal recessive non-syndromic hearing loss reveals a novel pathogenic mutation in the MyTh4 domain of the MYO15A gene in a linked family

    PubMed Central

    Reiisi, Somayeh; Tabatabaiefar, Mohammad Amin; Sanati, Mohammad Hosein; Chaleshtori, Morteza Hashemzadeh

    2016-01-01

    Objective(s): Non-syndromic sensorineural hearing loss (NSHL) is a common disorder affecting approximately 1 in 500 newborns. This type of hearing loss is extremely heterogeneous and includes over 100 loci. Mutations in the GJB2 gene have been implicated in about half of autosomal recessive non-syndromic hearing loss (ARNSHL) cases, making this the most common cause of ARNSHL. For the latter form of deafness, most frequent genes proposed include GJB2, SLC26A4, MYO15A, OTOF, and CDH23 worldwide. Materials and Methods: The aim of the present study was to define the role and frequency of MYO15A gene mutation in Iranian families. In this study 30 Iranian families were enrolled with over three deaf children and negative for GJB2. Then linkage analysis was performed by six DFNB3 short tandem repeat markers. Following that, mutation detection accomplished using DNA sequencing. Results: One family (3.33%) showed linkage to DFNB3 and a novel mutation was identified in the MYO15A gene (c.6442T>A): as the disease-causing mutation. Mutation co-segregated with hearing loss in the family but was not present in the 100 ethnicity-matched controls. Conclusion: Our results confirmed that the hearing loss of the linked Iranian family was caused by a novel missense mutation in the MYO15A gene. This mutation is the first to be reported in the world and affects the first MyTH4 domain of the protein. PMID:27635202

  11. Rescue of the temperature-sensitive, autosomal-recessive mutation R298S in the sodium-bicarbonate cotransporter NBCe1-A characterized by a weakened dimer and abnormal aggregation

    PubMed Central

    Gill, Harindarpal S.; Choi, Kun-Young; Kammili, Lakshmi; Popratiloff, Anastas

    2015-01-01

    Background Band keratopathy, an ocular disease that is characterized by hypercalcemia and opaque bands across the cornea, has been associated with kidney disease. Type-II renal tubular acidosis (RTA), a condition in which the kidneys fail to recover bicarbonate (HCO3−) in the proximal tubule of the nephron, results in HCO3− wastage in the urine and low blood pH. The development of these diseases is associated with autosomal-recessive mutations in the Na+-coupled HCO3− cotransporter NBCe1-A located at the basolateral membranes of either cell type. Methods We provide insight into the devastating R298S mutation found in type-II RTA-afflicted individuals using confocal-microscopy imaging of fluorescently-tagged NBCe1-A and NBCe1-A-R298S molecules expressed in human corneal endothelial and proximal tubule cells and from in-depth biophysical studies of their cytoplasmic N-terminal domains (Nt and Nt-R298S), including Nt crystal structure, melting-temperature, and homodimer dissociation constant (KD) analyses. Results We illuminate and rescue trafficking defects of the R298S mutation of NBCe1-A. The KD for Nt monomer-dimer equilibrium is established. The KD for Nt-R298S is significantly higher, but immeasurable due to environmental factors (pH, temperature, concentration) that result in dimer instability leading to precipitation. The crystal structure of Nt-dimer shows that R298 is part of a putative substrate conduit and resides near the dimer interface held together by hydrogen-bond networks. Conclusions The R298S is a temperature-sensitive mutation in Nt that results in instability of the colloidal system leading to abnormal aggregation. General significance Our findings provide new perspectives to the aberrant mechanism of certain ocular pathologies and type-II RTA associated with the R298S mutation. PMID:25743102

  12. Genetics Home Reference: autosomal recessive primary microcephaly

    MedlinePlus

    ... associated with MCPH play important roles in early brain development, particularly in determining brain size. Studies suggest that ... of the genes associated with MCPH impair early brain development. As a result, affected infants have fewer nerve ...

  13. Genetics Home Reference: autosomal recessive congenital methemoglobinemia

    MedlinePlus

    ... congenital methemoglobinemia is caused by mutations in the CYB5R3 gene. This gene provides instruction for making an ... isoforms) of this enzyme are produced from the CYB5R3 gene. The soluble isoform is present only in ...

  14. Cytochrome b[sub 558]-negative, autosomal recessive chronic granulomatous disease: Two new mutations in the cyctochrome b[sub 558] light chain of the NADPH oxidase (p22-phox)

    SciTech Connect

    Boer, M. de; Klein, A. de; Weening, R.S.; Roos, D. ); Hossle, J.P.; Seger, R.; Corbeel, L.

    1992-11-01

    Chronic granulomatous disease (CGD) is characterized by the failure of activated phagocytes to generate superoxide. Defects in at least four different genes lead to CGD. Patients with the X-linked form of CGD have mutations in the gene for the beta-subunit of cytochrome b[sub 558] (gp91-phox). Patients with a rare autosomal recessive form of CGD have mutations in the gene for the alpha-subunit of this cytochrome (p22-phox). Usually, this leads to the absence of cytochrome b[sub 558] in the phagocytes (A22[sup 0] CGD). The authors studied the molecular defect in five European patients from three unrelated families with this type of CGD. P22-phox mRNA was reverse-transcribed, and the coding region was amplified by PCR in one fragment and sequenced. Three patients from one family, with parents that were first cousins, were homozygous for a single base substitution (G-297[yields]A) resulting in a nonconservative amino acid change (Arg-90-Gln). This mutation was previously found in a compound heterozygote A22[sup 0] CGD patient. Another patient, also from first-cousin parents, was homozygous for an A-309[yields]G mutation in the open reading frame that predicts a nonconservative amino acid replacement (His-94[yields]Arg). The fifth patient was also born from a first-cousin marriage and was shown to be homozygous for the absence of exon 4 from the cDNA. In this patient, a G[yields]A substitution was found at position 1 one intron 4 in the genomic DNA. Therefore, the absence of exon 4 in the cDNA of this patient is due to a splicing error. Two additional polymorphisms were also identified - one silent mutation in the open reading frame (G-508[l arrow][r arrow]A) and one A-640[l arrow][r arrow]G mutation in the 3'untranslated region of the p22-phox mRNA. This last mutation destroys a DraIII recognition site and is therefore potentially useful for RFLP analysis of CGD families. 22 refs., 4 figs., 2 tabs.

  15. Trends in population mental health before and after the 2008 recession: a repeat cross-sectional analysis of the 1991–2010 Health Surveys of England

    PubMed Central

    Katikireddi, Srinivasa Vittal; Niedzwiedz, Claire L; Popham, Frank

    2012-01-01

    Objective To assess short-term differences in population mental health before and after the 2008 recession and explore how and why these changes differ by gender, age and socio-economic position. Design Repeat cross-sectional analysis of survey data. Setting England. Participants Representative samples of the working age (25–64 years) general population participating in the Health Survey for England between 1991 and 2010 inclusive. Main outcome measures Prevalence of poor mental health (caseness) as measured by the general health questionnaire-12 (GHQ). Results Age–sex standardised prevalence of GHQ caseness increased from 13.7% (95% CI 12.9% to 14.5%) in 2008 to 16.4% (95% CI 14.9% to 17.9%) in 2009 and 15.5% (95% CI 14.4% to 16.7%) in 2010. Women had a consistently greater prevalence since 1991 until the current recession. However, compared to 2008, men experienced an increase in age-adjusted caseness of 5.1% (95% CI 2.6% to 7.6%, p<0.001) in 2009 and 3% (95% CI 1.2% to 4.9%, p=0.001) in 2010, while no statistically significant changes were seen in women. Adjustment for differences in employment status and education level did not account for the observed increase in men nor did they explain the differential gender patterning. Over the last decade, socio-economic inequalities showed a tendency to increase but no clear evidence for an increase in inequalities associated with the recession was found. Similarly, no evidence was found for a differential effect between age groups. Conclusions Population mental health in men has deteriorated within 2 years of the onset of the current recession. These changes, and their patterning by gender, could not be accounted for by differences in employment status. Further work is needed to monitor recessionary impacts on health inequalities in response to ongoing labour market and social policy changes. PMID:23075569

  16. Recombination suppression in the vicinity of the breakpoints of a balanced 1:11 autosomal translocation associated with schizophrenia and other forms of major mental illness

    SciTech Connect

    He, L.; Blackwood, D.H.R.; Maclean, A.W.

    1994-09-01

    The frequency and extent of pairing failure around human translocations is unknown. We have examined the pattern of recombination around the breakpoints of a balanced autosomal translocation t(1:11)(q43:q21) associated with major mental illness. We have postulated that the association with mental illness in the family has not arisen by chance, but rather that functional disruption of a gene at or near a breakpoint site is responsible. Efforts to isolate the breakpoints for molecular analysis of the region are now at an advanced stage. On the other hand if pairing failure is occurring in the family in the region of the breakpoints, a susceptibility allele for mental illness, acting independently of the translocation, may be located some distance away. DNA was available from seventeen carriers and ten non-translocation carriers, giving a total of thirty-one informative meioses spanning 4 generations. The derivative one and eleven chromosomes were also isolated in somatic cell hybrids and were used to confirm allele phase. We genotyped the pedigree members using nine markers covering 30 cMs on either side of both the chromosome one and eleven breakpoints. No recombinants were found with markers within 3 cMs of either breakpoint. Four markers at an average of 7 cMs respectively on either side of the two breakpoints gave a total of three crossovers from thirty-one meioses versus an expected 9, demonstrating (p<0.05) significant recombination suppression. By contrast, examination of chromosome regions at greater distances from the breakpoints showed recombination rates similar to those expected from CEPH data with no evidence of suppression. We conclude that crossover suppression occurs in this family but is restricted to a region within 7 cMs of the breakpoints.

  17. Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile parkinsonism.

    PubMed

    Bonilla-Ramirez, Leonardo; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2013-01-10

    Previous studies have shown that polyphenols might be potent neuroprotective agents in Drosophila melanogaster wild type Canton-S acutely or chronically treated with paraquat (PQ), a selective toxin for elimination of dopaminergic (DAergic) neurons by oxidative stress (OS), as model of Parkinson's disease (PD). This study reports for the first time that knock-down (K-D) parkin Drosophila melanogaster (TH-GAL4; UAS-RNAi-parkin) chronically exposed to PQ (0.1-0.25 mM), FeSO(4) (Fe, 0.1mM), deferoxamine (DFO, 0.01 mM) alone or (0.1mM) PQ in combination with polyphenols propyl gallate (PG, 0.1mM) and epigallocathecin gallate (EGCG, 0.1, 0.5mM) showed significantly higher life span and locomotor activity than untreated K-D flies or treated with (1, 5, 20mM) PQ alone. Whilst gallic acid (GA, 0.1, 0.5mM) alone or in the presence of PQ provoked no effect on K-D flies, epicathecin (EC, 0.5mM) only showed a positive effect on prolonging K-D flies' life span. It is shown that PG (and EGCG) protected protocerebral posterolateral 1 (PPL1) DAergic neurons against PQ. Interestingly, the protective effect of low PQ concentrations, DFO and iron might be explained by a phenomenon known as "hormesis." However, pre-fed K-D flies with (0.1mM) PQ for 7 days and then exposed to (0.25 mM) for additional 8 days affect neither survival nor climbing of K-D Drosophila compared to flies treated with (0.25 mM) PQ alone. Remarkably, K-D flies treated with 0.1mM PQ (7 days) and then with (0.25 mM) PQ plus PG (8 days) behaved almost as flies treated with (0.25 mM) PQ. Taken these data suggest that antioxidant supplements that synergistically act with low pro-oxidant stimuli to prolong and increase locomotor activity become inefficient once a threshold of OS has been reached in K-D flies. Our present findings support the notion that genetically altered Drosophila melanogaster as suitable model to study genetic and environmental factors as causal and/or modulators in the development of autosomal

  18. The impact of the great recession on community-based mental health organizations: an analysis of top managers' perceptions of the economic downturn's effects and adaptive strategies used to manage the consequences in Ohio.

    PubMed

    Sweeney, Helen Anne; Knudsen, Kraig

    2014-04-01

    The Great Recession of 2007-2009 adversely affected the financial stability of the community-based mental health infrastructure in Ohio. This paper presents survey results of the type of adaptive strategies used by Ohio community-based mental health organizations to manage the consequences of the economic downturn. Results were aggregated into geographical classifications of rural, mid-sized urban, and urban. Across all groups, respondents perceived, to varying degrees, that the Great Recession posed a threat to their organization's survival. Urban organizations were more likely to implement adaptive strategies to expand operations while rural and midsized urban organizations implemented strategies to enhance internal efficiencies.

  19. Trends in mental health inequalities in England during a period of recession, austerity and welfare reform 2004 to 2013.

    PubMed

    Barr, Ben; Kinderman, Peter; Whitehead, Margaret

    2015-12-01

    Several indicators of population mental health in the UK have deteriorated since the financial crisis, during a period when a number of welfare reforms and austerity measures have been implemented. We do not know which groups have been most affected by these trends or the extent to which recent economic trends or recent policies have contributed to them. We use data from the Quarterly Labour Force Survey to investigate trends in self reported mental health problems by socioeconomic group and employment status in England between 2004 and 2013. We then use panel regression models to investigate the association between local trends in mental health problems and local trends in unemployment and wages to investigate the extent to which these explain increases in mental health problems during this time. We found that the trend in the prevalence of people reporting mental health problems increased significantly more between 2009 and 2013 compared to the previous trends. This increase was greatest amongst people with low levels of education and inequalities widened. The gap in prevalence between low and high educated groups widened by 1.29 percentage points for women (95% CI: 0.50 to 2.08) and 1.36 percentage points for men (95% CI: 0.31 to 2.42) between 2009 and 2013. Trends in unemployment and wages only partly explained these recent increases in mental health problems. The trend in reported mental health problems across England broadly mirrored the pattern of increases in suicides and antidepressant prescribing. Welfare policies and austerity measures implemented since 2010 may have contributed to recent increases in mental health problems and widening inequalities. This has led to rising numbers of people with low levels of education out of work with mental health problems. These trends are likely to increase social exclusion as well as demand for and reliance on social welfare systems.

  20. Trends in mental health inequalities in England during a period of recession, austerity and welfare reform 2004 to 2013.

    PubMed

    Barr, Ben; Kinderman, Peter; Whitehead, Margaret

    2015-12-01

    Several indicators of population mental health in the UK have deteriorated since the financial crisis, during a period when a number of welfare reforms and austerity measures have been implemented. We do not know which groups have been most affected by these trends or the extent to which recent economic trends or recent policies have contributed to them. We use data from the Quarterly Labour Force Survey to investigate trends in self reported mental health problems by socioeconomic group and employment status in England between 2004 and 2013. We then use panel regression models to investigate the association between local trends in mental health problems and local trends in unemployment and wages to investigate the extent to which these explain increases in mental health problems during this time. We found that the trend in the prevalence of people reporting mental health problems increased significantly more between 2009 and 2013 compared to the previous trends. This increase was greatest amongst people with low levels of education and inequalities widened. The gap in prevalence between low and high educated groups widened by 1.29 percentage points for women (95% CI: 0.50 to 2.08) and 1.36 percentage points for men (95% CI: 0.31 to 2.42) between 2009 and 2013. Trends in unemployment and wages only partly explained these recent increases in mental health problems. The trend in reported mental health problems across England broadly mirrored the pattern of increases in suicides and antidepressant prescribing. Welfare policies and austerity measures implemented since 2010 may have contributed to recent increases in mental health problems and widening inequalities. This has led to rising numbers of people with low levels of education out of work with mental health problems. These trends are likely to increase social exclusion as well as demand for and reliance on social welfare systems. PMID:26623942

  1. Absence of PAX6 gene mutations in Gillespie syndrome (partial aniridia, cerebellar ataxia, and mental retardation)

    SciTech Connect

    Glaser, T.; Maas, R.L. ); Ton, C.C.T.; Housman, D.E. ); Mueller, R.; Oliver, C. ); Petzl-Erler, M.L. ); Nevin, N.C. )

    1994-01-01

    The PAX6 gene is expressed at high levels in the developing eye and cerebellum and is mutated in patients with autosomal dominant aniridia. The authors have tested the role of PAX6 mutations in three families with Gillespie syndrome, a rare autosomal recessive condition consisting of partial aniridia, cerebellar ataxia, and mental retardation. Single-strand conformational polymorphism analysis of affected individuals revealed no alteration of PAX6 sequences. In two families, the disease trait segregates independently from chromosome 11p markers flanking PAX6. The authors conclude that Gillespie syndrome is genetically distinct from autosomal dominant aniridia. 28 refs., 2 figs., 1 tab.

  2. Genetic heterogeneity of syndromic X-linked recessive microphthalmia-anophthalmia: is Lenz microphthalmia a single disorder?

    PubMed

    Ng, David; Hadley, Donald W; Tifft, Cynthia J; Biesecker, Leslie G

    2002-07-15

    Nonsyndromic congenital microphthalmia or anophthalmia is a heterogeneous malformation with autosomal dominant, autosomal recessive, and X-linked modes of inheritance. Lenz microphthalmia syndrome comprises microphthalmia with mental retardation, malformed ears, skeletal anomalies, and is inherited in an X-linked recessive pattern. Prior studies have shown linkage of both isolated (or nonsyndromic) anophthalmos (ANOP1, [MIM 301590]) and Lenz syndrome [MIM 309800] to Xq27-q28. Nonsyndromic colobomatous microphthalmia [MIM 300345] has been linked to Xp11.4-Xq11.1. We describe a five-generation African-American family with microphthalmia or anophthalmia, mental retardation, and urogenital anomalies, in an X-linked recessive inheritance pattern, consistent with Lenz syndrome. Initial linkage analysis with microsatellite markers excluded the region in Xq27-q28 previously reported as a candidate region for ANOP1 [MIM 301590]. An X-chromosome scan revealed linkage to a 10-cM region between markers DXS228 and DXS992 in Xp11.4-p21.2. Multipoint analysis gave a maximum LOD score of 2.46 at marker DXS993. These data show that X-linked recessive syndromic microphthalmia exhibits genetic heterogeneity. In addition, it suggests that Lenz microphthalmia syndrome, previously thought to be a single disorder, may represent an amalgam of two distinct disorders.

  3. TBC1D24 mutation causes autosomal-dominant nonsyndromic hearing loss.

    PubMed

    Azaiez, Hela; Booth, Kevin T; Bu, Fengxiao; Huygen, Patrick; Shibata, Seiji B; Shearer, A Eliot; Kolbe, Diana; Meyer, Nicole; Black-Ziegelbein, E Ann; Smith, Richard J H

    2014-07-01

    Hereditary hearing loss is extremely heterogeneous. Over 70 genes have been identified to date, and with the advent of massively parallel sequencing, the pace of novel gene discovery has accelerated. In a family segregating progressive autosomal-dominant nonsyndromic hearing loss (NSHL), we used OtoSCOPE® to exclude mutations in known deafness genes and then performed segregation mapping and whole-exome sequencing to identify a unique variant, p.Ser178Leu, in TBC1D24 that segregates with the hearing loss phenotype. TBC1D24 encodes a GTPase-activating protein expressed in the cochlea. Ser178 is highly conserved across vertebrates and its change is predicted to be damaging. Other variants in TBC1D24 have been associated with a panoply of clinical symptoms including autosomal recessive NSHL, syndromic hearing impairment associated with onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS syndrome), and a wide range of epileptic disorders. PMID:24729539

  4. Localization to Xq22 and clinical update of a family with X-linked recessive mental retardation with progression sensorineural deafness, progressive tapeto-retinal degeneration and dystonia

    SciTech Connect

    Tranebjaerg, L.; Schwartz, C.; Huggins, K.; Barker, D.; Stevenson, R.; Arena, J.F.; Gedde-Dahl, T.; Mikkelsen, M.; Mellgren, S.; Anderson, K. ||||

    1994-07-15

    In a reinvestigation of a six-generation Norwegian family, originally reported with non-syndromic X-linked recessive deafness by Mohr and Mageroy, we have demonstrated several syndromic manifestations. The 10 clinically characterized affected males range in age from 14-61 years, and show progressive mental deterioration and visual disability. Ophthalmological and electrophysiological studies showed myopia, decreased visual acuity, combined cone-rod dystrophy as well as central areolar dystrophy by means of ERG. Brain CT-scans showed cortical and central atrophy without predilection to specific areas. Linkage analysis, using X-chromosomal RFLPs and CA-repeats, yielded a maximum LOD score of 4.37 with linkage to DXS17. DXS17 is localized to Xq22. One recombinant with COL4A5 (deficient in Alport syndrome) was observed. Results from the studies of this family will be important in reclassification of non-syndromic X-linked deafness since the family now represents syndromic deafness and XLMR with a specific phenotype.

  5. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome.

    PubMed

    Krawitz, Peter M; Schweiger, Michal R; Rödelsperger, Christian; Marcelis, Carlo; Kölsch, Uwe; Meisel, Christian; Stephani, Friederike; Kinoshita, Taroh; Murakami, Yoshiko; Bauer, Sebastian; Isau, Melanie; Fischer, Axel; Dahl, Andreas; Kerick, Martin; Hecht, Jochen; Köhler, Sebastian; Jäger, Marten; Grünhagen, Johannes; de Condor, Birgit Jonske; Doelken, Sandra; Brunner, Han G; Meinecke, Peter; Passarge, Eberhard; Thompson, Miles D; Cole, David E; Horn, Denise; Roscioli, Tony; Mundlos, Stefan; Robinson, Peter N

    2010-10-01

    Hyperphosphatasia mental retardation (HPMR) syndrome is an autosomal recessive form of mental retardation with distinct facial features and elevated serum alkaline phosphatase. We performed whole-exome sequencing in three siblings of a nonconsanguineous union with HPMR and performed computational inference of regions identical by descent in all siblings to establish PIGV, encoding a member of the GPI-anchor biosynthesis pathway, as the gene mutated in HPMR. We identified homozygous or compound heterozygous mutations in PIGV in three additional families.

  6. Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome.

    PubMed

    Krawitz, Peter M; Schweiger, Michal R; Rödelsperger, Christian; Marcelis, Carlo; Kölsch, Uwe; Meisel, Christian; Stephani, Friederike; Kinoshita, Taroh; Murakami, Yoshiko; Bauer, Sebastian; Isau, Melanie; Fischer, Axel; Dahl, Andreas; Kerick, Martin; Hecht, Jochen; Köhler, Sebastian; Jäger, Marten; Grünhagen, Johannes; de Condor, Birgit Jonske; Doelken, Sandra; Brunner, Han G; Meinecke, Peter; Passarge, Eberhard; Thompson, Miles D; Cole, David E; Horn, Denise; Roscioli, Tony; Mundlos, Stefan; Robinson, Peter N

    2010-10-01

    Hyperphosphatasia mental retardation (HPMR) syndrome is an autosomal recessive form of mental retardation with distinct facial features and elevated serum alkaline phosphatase. We performed whole-exome sequencing in three siblings of a nonconsanguineous union with HPMR and performed computational inference of regions identical by descent in all siblings to establish PIGV, encoding a member of the GPI-anchor biosynthesis pathway, as the gene mutated in HPMR. We identified homozygous or compound heterozygous mutations in PIGV in three additional families. PMID:20802478

  7. Recession Rebound

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2011-01-01

    A return to normal after a crisis is a good thing. Who doesn't want back what once seemed lost? The problem is it usually isn't a simple task figuring out how to patch together a scaled-back training program. When the recession hit in fall 2008, trainers were asked to scale down programming and make do with fewer resources. With a recovery in full…

  8. Mutation of ATF6 causes autosomal recessive achromatopsia.

    PubMed

    Ansar, Muhammad; Santos-Cortez, Regie Lyn P; Saqib, Muhammad Arif Nadeem; Zulfiqar, Fareeha; Lee, Kwanghyuk; Ashraf, Naeem Mahmood; Ullah, Ehsan; Wang, Xin; Sajid, Sundus; Khan, Falak Sher; Amin-ud-Din, Muhammad; Smith, Joshua D; Shendure, Jay; Bamshad, Michael J; Nickerson, Deborah A; Hameed, Abdul; Riazuddin, Saima; Ahmed, Zubair M; Ahmad, Wasim; Leal, Suzanne M

    2015-09-01

    Achromatopsia (ACHM) is an early-onset retinal dystrophy characterized by photophobia, nystagmus, color blindness and severely reduced visual acuity. Currently mutations in five genes CNGA3, CNGB3, GNAT2, PDE6C and PDE6H have been implicated in ACHM. We performed homozygosity mapping and linkage analysis in a consanguineous Pakistani ACHM family and mapped the locus to a 15.12-Mb region on chromosome 1q23.1-q24.3 with a maximum LOD score of 3.6. A DNA sample from an affected family member underwent exome sequencing. Within the ATF6 gene, a single-base insertion variant c.355_356dupG (p.Glu119Glyfs*8) was identified, which completely segregates with the ACHM phenotype within the family. The frameshift variant was absent in public variant databases, in 130 exomes from unrelated Pakistani individuals, and in 235 ethnically matched controls. The variant is predicted to result in a truncated protein that lacks the DNA binding and transmembrane domains and therefore affects the function of ATF6 as a transcription factor that initiates the unfolded protein response during endoplasmic reticulum (ER) stress. Immunolabeling with anti-ATF6 antibodies showed localization throughout the mouse neuronal retina, including retinal pigment epithelium, photoreceptor cells, inner nuclear layer, inner and outer plexiform layers, with a more prominent signal in retinal ganglion cells. In contrast to cytoplasmic expression of wild-type protein, in heterologous cells ATF6 protein with the p.Glu119Glyfs*8 variant is mainly confined to the nucleus. Our results imply that response to ER stress as mediated by the ATF6 pathway is essential for color vision in humans. PMID:26063662

  9. Genetics Home Reference: autosomal recessive congenital stationary night blindness

    MedlinePlus

    ... Moskova-Doumanova V, Berger W, Wissinger B, Hamel CP, Schorderet DF, De Baere E, Sharon D, Banin ... I, Defoort-Dhellemmes S, Wissinger B, Léveillard T, Hamel CP, Schorderet DF, De Baere E, Berger W, Jacobson ...

  10. Genetics Home Reference: autosomal recessive axonal neuropathy with neuromyotonia

    MedlinePlus

    ... intolerance) and can lead to an unusual walking style (gait), frequent falls, and joint deformities (contractures) in ... of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA HONCode ...

  11. Genetics Home Reference: autosomal recessive hyper-IgE syndrome

    MedlinePlus

    ... 038. Erratum in: J Allergy Clin Immunol. 2010 Mar;125(3):743. Kutuculer, Necil [corrected to Kutukculer, ... cytokinesis 8 deficiency. J Allergy Clin Immunol. 2013 Mar;131(3):840-8. doi: 10.1016/j. ...

  12. Ataxias with autosomal, X-chromosomal or maternal inheritance.

    PubMed

    Finsterer, Josef

    2009-07-01

    Heredoataxias are a group of genetic disorders with a cerebellar syndrome as the leading clinical manifestation. The current classification distinguishes heredoataxias according to the trait of inheritance into autosomal dominant, autosomal recessive, X-linked, and maternally inherited heredoataxias. The autosomal dominant heredoataxias are separated into spinocerebellar ataxias (SCA1-8, 10-15, 17-23, 25-30, and dentato-rubro-pallido-luysian atrophy), episodic ataxias (EA1-7), and autosomal dominant mitochondrial heredoataxias (Leigh syndrome, MIRAS, ADOAD, and AD-CPEO). The autosomal recessive ataxias are separated into Friedreich ataxia, ataxia due to vitamin E deficiency, ataxia due to Abeta-lipoproteinemia, Refsum disease, late-onset Tay-Sachs disease, cerebrotendineous xanthomatosis, spinocerebellar ataxia with axonal neuropathy, ataxia telangiectasia, ataxia telangiectasia-like disorder, ataxia with oculomotor apraxia 1 and 2, spastic ataxia of Charlevoix-Saguenay, Cayman ataxia, Marinesco-Sjögren syndrome, and autosomal recessive mitochondrial ataxias (AR-CPEO, SANDO, SCAE, AHS, IOSCA, MEMSA, LBSL CoQ-deficiency, PDC-deficiency). Only two of the heredoataxias, fragile X/tremor/ataxia syndrome, and XLSA/A are transmitted via an X-linked trait. Maternally inherited heredoataxias are due to point mutations in genes encoding for tRNAs, rRNAs, respiratory chain subunits or single large scale deletions/duplications of the mitochondrial DNA and include MELAS, MERRF, KSS, PS, MILS, NARP, and non-syndromic mitochondrial disorders. Treatment of heredoataxias is symptomatic and supportive and may have a beneficial effect in single patients. **Please see page 424 for abbreviation list. PMID:19650351

  13. HPGD mutations cause cranioosteoarthropathy but not autosomal dominant digital clubbing.

    PubMed

    Seifert, Wenke; Beninde, Julia; Hoffmann, Katrin; Lindner, Tom H; Bassir, Christian; Aksu, Fuat; Hübner, Christoph; Verbeek, Nienke E; Mundlos, Stefan; Horn, Denise

    2009-12-01

    Cranio-osteoarthropathy, clinically classified as a variant of primary hypertrophic osteoarthropathy, is a very rare autosomal-recessive condition characterized by delayed closure of the cranial sutures and fontanels, digital clubbing, arthropathy, and periostosis. Recently, mutations in the gene HPGD, which encodes the NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase, were reported in four families affected with primary hypertrophic osteoarthropathy and one family with autosomal-recessive isolated nail clubbing. We report the clinical and molecular findings in four patients from two families affected with cranio-osteoarthropathy and one family with isolated, autosomal dominant digital clubbing. Genome-wide homozygosity mapping identified a locus for cranio-osteoarthropathy harboring the HPGD gene in one affected family. We detected two novel homozygous mutations in HPGD in these families: a missense mutation affecting the NAD(+) binding motif and a frameshift mutation. The clinical presentation in our patients was variable. Digital clubbing and hyperhidrosis were present in all cases. Delayed closure of the cranial sutures and fontanels, periostosis, and arthropathy were not consistent clinical features. No HPGD mutation was detected in a familial case of autosomal dominant isolated digital clubbing. The failure to identify any mutation in a family with an autosomal dominant type of isolated digital clubbing suggests that HPGD is not the major gene for this condition. PMID:19568269

  14. Autosomal dominant vitreoretinochoroidopathy (ADVIRC).

    PubMed Central

    Blair, N P; Goldberg, M F; Fishman, G A; Salzano, T

    1984-01-01

    We report the second family recognised to have autosomal dominant vitreoretinochoroidopathy. The clinical features were (1) autosomal dominant inheritance; (2) peripheral, coarse pigmentary degeneration of the fundus for 360 degrees, with a relatively discrete posterior border in the equatorial region (this finding may be pathognomonic); (3) superficial punctate yellowish-white opacities in the retina; (4) various vascular abnormalities; (5) breakdown of the blood-retinal barrier; (6) retinal neovascularisation; (7) vitreous abnormalities; and (8) choroidal atrophy. Visual reduction was mainly due to macular oedema or vitreous haemorrhage. Images PMID:6689931

  15. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  16. Towards a middle-range theory of mental health and well-being effects of employment transitions: Findings from a qualitative study on unemployment during the 2009-2010 economic recession.

    PubMed

    Giuntoli, Gianfranco; Hughes, Skye; Karban, Kate; South, Jane

    2015-07-01

    This article builds upon previous theoretical work on job loss as a status passage to help explain how people's experiences of involuntary unemployment affected their mental well-being during the 2009-2010 economic recession. It proposes a middle-range theory that interprets employment transitions as status passages and suggests that their health and well-being effects depend on the personal and social meanings that people give to them, which are called properties of the transitions. The analyses, which used a thematic approach, are based on the findings of a qualitative study undertaken in Bradford (North England) consisting of 73 people interviewed in 16 focus groups. The study found that the participants experienced their job losses as divestment passages characterised by three main properties: experiences of reduced agency, disruption of role-based identities, for example, personal identity crises, and experiences of 'spoiled identities', for example, experiences of stigma. The proposed middle-range theory allows us to federate these findings together in a coherent framework which makes a contribution to illuminating not just the intra-personal consequences of unemployment, that is, its impact on subjective well-being and common mental health problems, but also its inter-personal consequences, that is, the hidden and often overlooked social processes that affect unemployed people's social well-being. This article discusses how the study findings and the proposed middle-range theory can help to address the theoretical weaknesses and often contradictory empirical findings from studies that use alternative frameworks, for example, deprivation models and 'incentive theory' of unemployment.

  17. Starving for Recess

    ERIC Educational Resources Information Center

    Patt, Mary Johnson

    2011-01-01

    Every weekday, millions of American schoolchildren throw away their half-eaten cafeteria lunches so that they can run outside to play. The traditional placement of lunch before recess, coupled with the recent decline in overall recess time to meet academic time constraints, forces children to choose between two essential needs: (1) food; and (2)…

  18. Recess--It's Indispensable!

    ERIC Educational Resources Information Center

    Jarrett, Olga; Waite-Stupiansky, Sandra

    2009-01-01

    The demise of recess in many elementary schools--and of outdoor play in general--is an issue of great concern to many members of the Play, Policy, and Practice Interest Forum. Most people remember recess as an important part of the school day. It was a time to be outdoors; to organize games; to play on the swings, slides, and other playground…

  19. More Recess Time, Please!

    ERIC Educational Resources Information Center

    Chang, Rong; Coward, Fanni Liu

    2015-01-01

    Students in Shanghai, China, get much more recess time than their U.S. counterparts throughout their education. As U.S. education reform efforts seek ways of raising achievement, they have begun replacing recess with academic time. The lesson from Shanghai is that this may not be the best strategy. But whether the Shanghai system of more and…

  20. Recession in the Regions

    ERIC Educational Resources Information Center

    Plant, Helen

    2009-01-01

    National policy stresses the key role of adult learning and skills in securing economic recovery. This close linking of adult learning policy to the recession agenda raises important questions. How has the recession impacted on the implementation of adult learning policy? What has it meant for service delivery? And what have been the consequences…

  1. Evidence of autosomal dominant mutations in childhood-onset proximal spinal muscular atrophy

    SciTech Connect

    Rudnik-Schoeneborn, S.; Wirth, B.; Zerres, K. )

    1994-07-01

    Autosomal recessive and dominant inheritance of proximal spinal muscular atrophy (SMA) are well documented. Several genetic studies found a significant deviation from the assumption of recessive inheritance in SMA, with affected children in one generation. The existence of new autosomal dominant mutations has been assumed as the most suitable explanation, which is supported by three observations of this study: (1) The segregation ratio calculated in 333 families showed a significant deviation from autosomal recessive inheritance in the milder forms of SMA (= .09[+-].06 for onset at 10-36 mo and .13[+-].07 for onset at >36 mo; and P = .09[+-]0.7 for SMA IIIa and .12[+-].07 for SMA IIIb). (2) Three families with affected subjects in two generations are reported, in whom the disease could have started as an autosomal dominant mutation. (3) Linkage studies with chromosome 5q markers showed that in 5 (5.4%) of 93 informative families the patient shared identical haplotypes with at least one healthy sib. Other mechanisms, such as the existence of phenocopies, pseudodominance, or a second autosomal recessive gene locus, cannot be excluded in single families. The postulation of spontaneous mutations, however, is a suitable explanation for all three observations. Estimated risk figures for genetic counseling are given. 29 refs., 2 figs., 5 tabs.

  2. Expanding the spectrum of PEX10-related peroxisomal biogenesis disorders: slowly progressive recessive ataxia.

    PubMed

    Renaud, Mathilde; Guissart, Claire; Mallaret, Martial; Ferdinandusse, Sacha; Cheillan, David; Drouot, Nathalie; Muller, Jean; Claustres, Mireille; Tranchant, Christine; Anheim, Mathieu; Koenig, Michel

    2016-08-01

    Peroxisomal biogenesis disorders (PBDs) consist of a heterogeneous group of autosomal recessive diseases, in which peroxisome assembly and proliferation are impaired leading to severe multisystem disease and early death. PBDs include Zellweger spectrum disorders (ZSDs) with a relatively mild clinical phenotype caused by PEX1, (MIM# 602136), PEX2 (MIM# 170993), PEX6 (MIM# 601498), PEX10 (MIM# 602859), PEX12 (MIM# 601758), and PEX16 (MIM# 603360) mutations. Three adult patients are reported belonging to a non-consanguineous French family affected with slowly progressive cerebellar ataxia, axonal neuropathy, and pyramidal signs. Mental retardation and diabetes mellitus were optional. The age at onset was in childhood or in adolescence (3-15 years). Brain MRI showed marked cerebellar atrophy. Biochemical blood analyses suggested a mild peroxisomal defect. With whole exome sequencing, two mutations in PEX10 were found in the three patients: c.827G>T (novel) causing the missense change p.Cys276Phe and c.932G>A causing the missense change p.Arg311Gln. The phenotypic spectrum related to PEX10 mutations includes slowly progressive, syndromic recessive ataxia.

  3. The population genetics of X-autosome synthetic lethals and steriles.

    PubMed

    Lachance, Joseph; Johnson, Norman A; True, John R

    2011-11-01

    Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.

  4. A novel recessive GUCY2D mutation causing cone-rod dystrophy and not Leber's congenital amaurosis.

    PubMed

    Ugur Iseri, Sibel A; Durlu, Yusuf K; Tolun, Aslihan

    2010-10-01

    Cone-rod dystrophies are inherited retinal dystrophies that are characterized by progressive degeneration of cones and rods, causing an early decrease in central visual acuity and colour vision defects, followed by loss of peripheral vision in adolescence or early adult life. Both genetic and clinical heterogeneity are well known. In a family with autosomal recessive cone-rod dystrophy, genetic analyses comprising genome scan with microsatellite markers, fine mapping and candidate gene approach resulted in the identification of a homozygous missense GUCY2D mutation. This is the first GUCY2D mutation associated with autosomal recessive cone-rod dystrophy rather than Leber's congenital amaurosis (LCA), a severe disease leading to childhood blindness. This study hence establishes GUCY2D, which is a common cause for both recessive LCA and dominant cone-rod dystrophy, as a good candidate for autosomal recessive cone-rod dystrophy. PMID:20517349

  5. The Recess Renaissance

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2015-01-01

    The author tells of his work around the country and world on transforming how schools do recess, free play, and outside time by transforming their outdoor spaces to match. Instead of a playground of fixed structures like traditional school grounds, newer spaces are filled with loose materials that children can use to build forts, dens, and tree…

  6. Gene therapy in animal models of autosomal dominant retinitis pigmentosa.

    PubMed

    Rossmiller, Brian; Mao, Haoyu; Lewin, Alfred S

    2012-01-01

    Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease may require gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression. In this review, we examine some of the gene delivery approaches used to treat animal models of autosomal dominant retinitis pigmentosa, focusing on those models associated with mutations in the gene for rhodopsin. We conclude that combinatorial approaches have the greatest promise for success.

  7. What Is a Recessive Allele?

    ERIC Educational Resources Information Center

    American Biology Teacher, 1991

    1991-01-01

    Presents four misconceptions students have concerning the concepts of recessive and dominant alleles. Discusses the spectrum of dominant-recessive relationships, different levels of analysis between phenotype and genotype, possible causes of dominance, and an example involving wrinkled peas. (MDH)

  8. A gene for autosomal dominant congenital nystagmus localizes to 6p12

    SciTech Connect

    Kerrison, J.B.; Arnould, V.J.; Koenekoop, R.K.

    1996-05-01

    Congenital nystagmus is an idiopathic disorder characterized by bilateral ocular oscillations usually manifest during infancy. Vision is typically decreased due to slippage of images across the fovea. As such, visual acuity correlates with nystagmus intensity, which is the amplitude and frequency of eye movements at a given position of gaze. X-linked, autosomal dominant, and autosomal recessive pedigrees have been described, but no mapping studies have been published. We recently described a large pedigree with autosomal dominant congenital nystagmus. A genome-wide search resulted in six markers on 6p linked by two-point analysis at {theta} = 0 (D6S459, D6S452, D6S465, FTHP1, D6S257, D6S430). Haplotype analysis localizes the gene for autosomal dominant congenital motor mystagmus to an 18-cM region between D6S271 and D6S455. 16 refs., 1 fig., 1 tab.

  9. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta.

    PubMed

    Kim, J W; Seymen, F; Lee, K E; Ko, J; Yildirim, M; Tuna, E B; Gencay, K; Shin, T J; Kyun, H K; Simmer, J P; Hu, J C-C

    2013-10-01

    Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related. PMID:23958762

  10. Familial distal foregut atresia in a family with likely autosomal dominant inheritance pattern.

    PubMed

    Robinson, Ian; Gill, Harinder; Ng, Li Yen; Hayes, Roisin

    2012-11-01

    Familial occurrence of distal foregut atresia (DFA) (Type 1) is rare. Diagnosis is based upon the clinical symptomatology and confirmed by radiological studies, surgery and histology. A number of reports have described families in which several family members have been involved and suggested an autosomal recessive mode of inheritance. Little is known about the underlying genetic causes or indeed the likely pathogenic mechanism. We report a family in which there are five affected cases including three siblings where the DFA appears to be inherited in an autosomal dominant inheritance pattern with reduced penetrance.

  11. Absence of ocular manifestations in autosomal dominant Alport syndrome associated with haematological abnormalties.

    PubMed

    Colville, D; Wang, Y Y; Jamieson, R; Collins, F; Hood, J; Savige, J

    2000-12-01

    Most patients with Alport syndrome have X-linked or autosomal recessive disease that is characterised by renal failure, hearing loss, and, in nearly 75% of the cases, a dot-and-fleck retinopathy and anterior lenticonus. There are only case reports of individuals with the rare autosomal dominant form, who can have haematuria or renal failure, deafness, and, in addition, low platelet counts and neutrophil inclusions. The ocular features of autosomal dominant inheritance have not been described. We have examined the eyes in the members of two families where Alport syndrome was diagnosed on the basis of the clinical features and family history, and where autosomal dominant inheritance was confirmed by father-to-son disease transmission, the associated haematological abnormalities, and haplotypes that segregated with the recently described locus at chromosome 22q. In Family A, the eyes of two individuals with haematuria, hearing loss, and haematological abnormalities and of nine unaffected family members were examined. In Family B, the eyes of two individuals with renal failure, normal hearing, and haematological abnormalities were examined. None of the affected or unaffected members in either family had a dot-and-fleck retinopathy, anterior lenticonus, a history suggesting recurrent corneal erosions, or corneal dystrophy. These results indicate that the protein abnormality in autosomal dominant Alport syndrome does not produce the retinopathy and lenticonus typical of X-linked and autosomal recessive disease. This may be because the abnormal protein is not present or is less important in the ocular basement membranes than elsewhere, or because the presence of a normal allele in autosomal dominant disease compensates for the defective allele. PMID:11135492

  12. A novel approach identifying hybrid sterility QTL on the autosomes of Drosophila simulans and D. mauritiana.

    PubMed

    Dickman, Christopher T D; Moehring, Amanda J

    2013-01-01

    When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.

  13. Periaxin mutations cause recessive Dejerine-Sottas neuropathy.

    PubMed

    Boerkoel, C F; Takashima, H; Stankiewicz, P; Garcia, C A; Leber, S M; Rhee-Morris, L; Lupski, J R

    2001-02-01

    The periaxin gene (PRX) encodes two PDZ-domain proteins, L- and S-periaxin, that are required for maintenance of peripheral nerve myelin. Prx(-/-) mice develop a severe demyelinating peripheral neuropathy, despite apparently normal initial formation of myelin sheaths. We hypothesized that mutations in PRX could cause human peripheral myelinopathies. In accordance with this, we identified three unrelated Dejerine-Sottas neuropathy patients with recessive PRX mutations-two with compound heterozygous nonsense and frameshift mutations, and one with a homozygous frameshift mutation. We mapped PRX to 19q13.13-13.2, a region recently associated with a severe autosomal recessive demyelinating neuropathy in a Lebanese family (Delague et al. 2000) and syntenic to the location of Prx on murine chromosome 7 (Gillespie et al. 1997). PMID:11133365

  14. Small operator outwits recession

    SciTech Connect

    Jackson, D.

    1982-12-01

    Explains how Rockcastle, Inc., one of the smallest surface coal mine operators in the West, maintains production during the recession by concentrating on short-term contracts and spot sales to industrial and commercial users. The mining company has selected well established coal brokers to market its product to users such as sugar beet and cement plants, a brewery, steel mill, utility, and a molybdenum mill. Rockcastle produces, on a two-shift schedule, about 1,200 tpd of coal with a total workforce of 20, or approximately 30 tons per manshift. A fleet of 4 scrapers, with dozer-assist in most cases, is capable of removing 5,000 to 6,000 cu yd of overburden and interburden per shift.

  15. Endoscopic Gastrocnemius Intramuscular Aponeurotic Recession

    PubMed Central

    Lui, Tun Hing

    2015-01-01

    Gastrocnemius aponeurotic recession is the surgical treatment for symptomatic gastrocnemius contracture. Endoscopic gastrocnemius recession procedures has been developed recently and reported to have fewer complications and better cosmetic outcomes. Classically, this is performed at the aponeurosis distal to the gastrocnemius muscle attachment. We describe an alternative endoscopic approach in which the intramuscular portion of the aponeurosis is released. PMID:26900563

  16. Fort Play Children Recreate Recess

    ERIC Educational Resources Information Center

    Powell, Mark

    2007-01-01

    Recess beckons well before it actually arrives. Its allure can be heard in children's lunchtime conversations as they discuss imaginary roles, plans, alliances and teams, with an obvious appetite for play and its unbounded possibility. For some children, recess provides the most important reasons to come to school. In team sports, games of chase…

  17. Neuroscience in recession?

    PubMed

    Amara, Susan G; Grillner, Sten; Insel, Tom; Nutt, David; Tsumoto, Tadaharu

    2011-05-01

    As the global financial downturn continues, its impact on neuroscientists - both on an individual level and at the level of their research institute - becomes increasingly apparent. How is the economic crisis affecting neuroscience funding, career prospects, international collaborations and scientists' morale in different parts of the world? Nature Reviews Neuroscience gauged the opinions of a number of leading neuroscientists: the President of the Society for Neuroscience, the President Elect of the British Neuroscience Association, the former President of the Japan Neuroscience Society, the President of the Federation of European Neuroscience Societies and the Director of the US National Institute of Mental Health. Their responses provide interesting and important insights into the regional impact of the global financial downturn, with some causes for optimism for the future of neuroscience research.

  18. Neuroscience in recession?

    PubMed

    Amara, Susan G; Grillner, Sten; Insel, Tom; Nutt, David; Tsumoto, Tadaharu

    2011-05-01

    As the global financial downturn continues, its impact on neuroscientists - both on an individual level and at the level of their research institute - becomes increasingly apparent. How is the economic crisis affecting neuroscience funding, career prospects, international collaborations and scientists' morale in different parts of the world? Nature Reviews Neuroscience gauged the opinions of a number of leading neuroscientists: the President of the Society for Neuroscience, the President Elect of the British Neuroscience Association, the former President of the Japan Neuroscience Society, the President of the Federation of European Neuroscience Societies and the Director of the US National Institute of Mental Health. Their responses provide interesting and important insights into the regional impact of the global financial downturn, with some causes for optimism for the future of neuroscience research. PMID:21505517

  19. Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome

    PubMed Central

    Hoveyda, N.; Shield, J.; Garrett, C.; Chong, W; Beardsall, K.; Bentsi-Enchill, E.; Mallya, H.; Thompson, M.

    1999-01-01

    Classical neonatal diabetes mellitus is defined as hyperglycaemia occurring within the first six weeks of life in term infants. Cerebellar agenesis is rare. We report three cases of neonatal diabetes mellitus, cerebellar hypoplasia/agenesis, and dysmorphism occurring within a highly consanguineous family. This constellation of abnormalities has not previously been described. Two of these cases are sisters and the third case is a female first cousin. The pattern of inheritance suggests this is a previously undescribed autosomal recessive disorder. Prenatal diagnosis of the condition in this family was possible by demonstration of the absence of the cerebellum and severe IUGR.


Keywords: cerebellar agenesis/hypoplasia; neonatal diabetes mellitus; dysmorphic features; autosomal recessive PMID:10507728

  20. Homozygous SALL1 Mutation Causes a Novel Multiple Congenital Anomaly—Mental Retardation Syndrome

    PubMed Central

    Vodopiutz, Julia; Zoller, Heinz; Fenwick, Aimée L.; Arnhold, Richard; Schmid, Max; Prayer, Daniela; Müller, Thomas; Repa, Andreas; Pollak, Arnold; Aufricht, Christoph; Wilkie, Andrew O.M.; Janecke, Andreas R.

    2013-01-01

    Objective To delineate a novel autosomal recessive multiple congenital anomaly-mental retardation (MCA-MR) syndrome in 2 female siblings of a consanguineous pedigree and to identify the disease-causing mutation. Study design Both siblings were clinically characterized and homozygosity mapping and sequencing of candidate genes were applied. The contribution of nonsense-mediated messenger RNA (mRNA) decay to the expression of mutant mRNA in fibroblasts of a healthy carrier and a control was studied by pyrosequencing. Results We identified the first homozygous SALL1 mutation, c.3160C > T (p.R1054*), in 2 female siblings presenting with multiple congenital anomalies, central nervous system defects, cortical blindness, and absence of psychomotor development (ie, a novel recognizable, autosomal recessive MCA-MR). The mutant SALL1 transcript partially undergoes nonsense-mediated mRNA decay and is present at 43% of the normal transcript level in the fibroblasts of a healthy carrier. Conclusion Previously heterozygous SALL1 mutations and deletions have been associated with dominantly inherited anal-renal-radial-ear developmental anomalies. We identified an allelic recessive SALL1-related MCA-MR. Our findings imply that quantity and quality of SALL1 transcript are important for SALL1 function and determine phenotype, and mode of inheritance, of allelic SALL1-related disorders. This novel MCA-MR emphasizes SALL1 function as critical for normal central nervous system development and warrants a detailed neurologic investigation in all individuals with SALL1 mutations. PMID:23069192

  1. Objective hydrograph baseflow recession analysis

    NASA Astrophysics Data System (ADS)

    Thomas, Brian F.; Vogel, Richard M.; Famiglietti, James S.

    2015-06-01

    A streamflow hydrograph recession curve expresses the theoretical relationship between aquifer structure and groundwater outflow to a stream channel. That theoretical relationship is often portrayed empirically using a recession plot defined as a plot of ln(-dQ/dt) versus ln(Q), where Q is streamflow discharge. Such hydrograph recession plots are commonly used to estimate recession parameters, aquifer properties and for evaluating alternative hydrologic hypotheses. We introduce a comprehensive and objective approach to analyze baseflow recessions with innovations including the use of quantile regression, efficient and objective numerical estimation of dQ/dt, inclusion of groundwater withdrawals, and incorporation of seasonal effects. We document that these innovations when all combined, lead to significant improvements, over previous studies, in our ability to discern the theoretical behavior of stream aquifer systems. A case study reveals that our methodology enables us to reject the simple linear reservoir hypothesis of stream aquifer interactions for watersheds in New Jersey and results in improved correlations between low flow statistics and aquifer properties for those same watersheds.

  2. Mapping autosomal recessive vitamin D dependency type I to chromosome 12q14 by linkage analysis.

    PubMed Central

    Labuda, M; Morgan, K; Glorieux, F H

    1990-01-01

    Linkage analysis in French-Canadian families with vitamin D dependency type I (VDD1) demonstrated that the gene responsible for the disease is linked to polymorphic RFLP markers in the 12q14 region. We studied 76 subjects in 14 sibships which included 17 affected individuals and 17 obligate heterozygotes. Significant results for linkage were obtained with the D12S17 locus at the male recombination fraction (theta m) .018 (Z[theta m theta f] = 3.20) and with D126 at (theta m = .025 (Z[theta m theta f] = 3.07). Multipoint linkage analysis and studies of haplotypes and recombinants strongly suggest the localization of the VDD1 locus between the collagen type II alpha 1 (COL2A1) locus and clustered loci D12S14, D12S17, and D12S6, which segregate as a three-marker haplotype. Linkage disequilibrium between VDD1 and this three-marker haplotype supports the notion of a founder effect in the studied population. The current status of the localization of the disease allows for carrier detection in the families at risk. PMID:1971995

  3. Mutations in BRAT1 cause autosomal recessive progressive encephalopathy: Report of a Spanish patient

    PubMed Central

    Fernández-Jáen, Alberto; Álvarez, Sara; So, Eui Young; Ouchi, Toru; de la Peña, Mar Jiménez; Duat, Anna; Fernández-Mayoralas, Daniel Martín; Fernández-Perrone, Ana Laura; Albert, Jacobo; Calleja-Pérez, Beatriz

    2016-01-01

    We describe a 4-year-old male child born to non-consanguineous Spanish parents with progressive encephalopathy (PE), microcephaly, and hypertonia. Whole exome sequencing revealed compound heterozygous BRAT1 mutations [c.1564G > A (p.Glu522Lys) and c.638dup (p.Val214Glyfs*189)]. Homozygous and compound heterozygous BRAT1 mutations have been described in patients with lethal neonatal rigidity and multifocal seizure syndrome (MIM# 614498). The seven previously described patients suffered from uncontrolled seizures, and all of those patients died in their first months of life. BRAT1 acts as a regulator of cellular proliferation and migration and is required for mitochondrial function. The loss of these functions may explain the cerebral atrophy observed in this case of PE. This case highlights the extraordinary potential of next generation technologies for the diagnosis of rare genetic diseases, including PE. Making a prompt diagnosis of PE is important for genetic counseling and disease management. PMID:26947546

  4. New approaches to the autosomal recessive polycystic kidney disease patient with dual kidney-liver complications.

    PubMed

    Telega, Grzegorz; Cronin, David; Avner, Ellis D

    2013-06-01

    Improved neonatal medical care and renal replacement technology have improved the long-term survival of patients with ARPKD. Ten-yr survival of those surviving the first year of life is reported to be 82% and is continuing to improve further. However, despite increases in overall survival and improved treatment of systemic hypertension and other complications of their renal disease, nearly 50% of survivors will develop ESRD within the first decade of life. In addition to renal pathology, patients with ARPKD develop ductal plate malformations with cystic dilation of intra- and extrahepatic bile ducts resulting in CHF and Caroli syndrome. Many patients with CHF will develop portal hypertension with resulting esophageal varices, splenomegaly, hypersplenism, protein losing enteropathy, and gastrointestinal bleeding. Management of portal hypertension may require EBL of esophageal varices or porto-systemic shunting. Complications of hepatic involvement can include ascending cholangitis, cholestasis with malabsorption of fat-soluble vitamins, and rarely benign or malignant liver tumors. Patients with ARPKD who eventually reach ESRD, and ultimately require kidney transplantation, present a unique set of complications related to their underlying hepato-biliary disease. In this review, we focus on new approaches to these challenging patients, including the indications for liver transplantation in ARPKD patients with severe chronic kidney disease awaiting kidney transplant. While survival in patients with ARPKD and isolated kidney transplant is comparable to that of age-matched pediatric patients who have received kidney transplants due to other primary renal diseases, 64-80% of the mortality occurring in ARPKD kidney transplant patients is attributed to cholangitis/sepsis, which is related to their hepato-biliary disease. Recent data demonstrate that surgical mortality among pediatric liver transplant recipients is decreased to <10% at one yr. The immunosuppressive regimen used for kidney transplant recipients is adequate for most liver transplant recipients. We therefore suggest that in a select group of ARPKD patients with recurrent cholangitis or complications of portal hypertension, combined liver-kidney transplant is a viable option. Although further study is necessary to confirm our approach, we believe that combined liver-kidney transplantation can potentially decrease overall mortality and morbidity in carefully selected ARPKD patients with ESRD and clinically significant CHF.

  5. Genetics Home Reference: autosomal recessive spastic ataxia of Charlevoix-Saguenay

    MedlinePlus

    ... with ARSACS have also been identified in Japan, Turkey, Tunisia, Spain, Italy, and Belgium. The signs and ... spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics. 2004 Sep;5(3):165-70. Epub ...

  6. [Autosomal recessive GTPCH 1 deficiency: the importance of the analysis of neurotransmitters in cerebrospinal fluid].

    PubMed

    Moreno-Medinilla, E E; Mora-Ramirez, M D; Calvo-Medina, R; Martinez-Anton, J

    2016-06-01

    Introduccion. El deficit de la enzima trifosfato de guanosina ciclohidrolasa 1 (GTPCH 1) origina una disminucion de la sintesis de la tetrahidrobiopterina (BH4), cofactor indispensable en la sintesis de la tirosina, la dopamina y la serotonina. Es una enfermedad poco frecuente que produce un retraso o regresion psicomotora y trastornos del movimiento, y en la que el tratamiento puede mejorar o incluso corregir la clinica. Caso clinico. Niña afecta de deficit de GTPCH con herencia autosomica recesiva, diagnosticada a los 14 meses con estudio del liquido cefalorraquideo con deficit de pterinas, HVA y 5-HIAA, test de sobrecarga de fenilalanina y estudio genetico positivos. La clinica comenzo a los 5 meses con temblor cefalico y de las extremidades superiores, en reposo e intencional, intermitente, que desaparecio en un mes. El desarrollo psicomotor era normal, destacaba una hipotonia axial leve en la exploracion y las pruebas complementarias realizadas fueron normales. Posteriormente presento regresion psicomotora con perdida del sosten cefalico, disminucion de los movimientos activos, dificultad para la manipulacion bimanual, hipomimia e hipotonia global grave, lo que motivo el estudio de una encefalopatia progresiva. Tras el diagnostico de deficit de GTPCH, inicio tratamiento sustitutivo con levodopa/carbidopa, OH triptofano y BH4, con muy buena evolucion tanto motora como cognitiva. Actualmente, la paciente tiene 5 años, presenta un desarrollo psicomotor adecuado a su edad, cursa tercer curso de educacion infantil y ha alcanzado el nivel de su clase. Conclusion. Hay que destacar en este caso la mejoria tan satisfactoria, tanto motora como cognitiva, tras iniciar el tratamiento sustitutivo, ya que el nivel cognitivo suele quedar afectado en muchos casos.

  7. Aquaporin-2: new mutations responsible for autosomal-recessive nephrogenic diabetes insipidus—update and epidemiology

    PubMed Central

    El Tarazi, Abdulah; Matar, Jessica; Lussier, Yoann; Arthus, Marie-Françoise; Lonergan, Michèle; Bockenhauer, Detlef; Bissonnette, Pierre

    2012-01-01

    It is clinically useful to distinguish between two types of hereditary nephrogenic diabetes insipidus (NDI): a ‘pure’ type characterized by loss of water only and a complex type characterized by loss of water and ions. Patients with congenital NDI bearing mutations in the vasopressin 2 receptor gene, AVPR2, or in the aquaporin-2 gene, AQP2, have a pure NDI phenotype with loss of water but normal conservation of sodium, potassium, chloride and calcium. Patients with hereditary hypokalemic salt-losing tubulopathies have a complex phenotype with loss of water and ions. They have polyhydramnios, hypercalciuria and hypo- or isosthenuria and were found to bear KCNJ1 (ROMK) and SLC12A1 (NKCC2) mutations. Patients with polyhydramnios, profound polyuria, hyponatremia, hypochloremia, metabolic alkalosis and sensorineural deafness were found to bear BSND mutations. These clinical phenotypes demonstrate the critical importance of the proteins ROMK, NKCC2 and Barttin to transfer NaCl in the medullary interstitium and thereby to generate, together with urea, a hypertonic milieu. This editorial describes two new developments: (i) the genomic information provided by the sequencing of the AQP2 gene is key to the routine care of these patients, and, as in other genetic diseases, reduces health costs and provides psychological benefits to patients and families and (ii) the expression of AQP2 mutants in Xenopus oocytes and in polarized renal tubular cells recapitulates the clinical phenotypes and reveals a continuum from severe loss of function with urinary osmolalities <150 mOsm/kg H2O to milder defects with urine osmolalities >200 mOsm/kg H2O. PMID:26069764

  8. Aquaporin-2: new mutations responsible for autosomal-recessive nephrogenic diabetes insipidus-update and epidemiology.

    PubMed

    Bichet, Daniel G; El Tarazi, Abdulah; Matar, Jessica; Lussier, Yoann; Arthus, Marie-Françoise; Lonergan, Michèle; Bockenhauer, Detlef; Bissonnette, Pierre

    2012-06-01

    It is clinically useful to distinguish between two types of hereditary nephrogenic diabetes insipidus (NDI): a 'pure' type characterized by loss of water only and a complex type characterized by loss of water and ions. Patients with congenital NDI bearing mutations in the vasopressin 2 receptor gene, AVPR2, or in the aquaporin-2 gene, AQP2, have a pure NDI phenotype with loss of water but normal conservation of sodium, potassium, chloride and calcium. Patients with hereditary hypokalemic salt-losing tubulopathies have a complex phenotype with loss of water and ions. They have polyhydramnios, hypercalciuria and hypo- or isosthenuria and were found to bear KCNJ1 (ROMK) and SLC12A1 (NKCC2) mutations. Patients with polyhydramnios, profound polyuria, hyponatremia, hypochloremia, metabolic alkalosis and sensorineural deafness were found to bear BSND mutations. These clinical phenotypes demonstrate the critical importance of the proteins ROMK, NKCC2 and Barttin to transfer NaCl in the medullary interstitium and thereby to generate, together with urea, a hypertonic milieu. This editorial describes two new developments: (i) the genomic information provided by the sequencing of the AQP2 gene is key to the routine care of these patients, and, as in other genetic diseases, reduces health costs and provides psychological benefits to patients and families and (ii) the expression of AQP2 mutants in Xenopus oocytes and in polarized renal tubular cells recapitulates the clinical phenotypes and reveals a continuum from severe loss of function with urinary osmolalities <150 mOsm/kg H2O to milder defects with urine osmolalities >200 mOsm/kg H2O. PMID:26069764

  9. Genetics Home Reference: cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy

    MedlinePlus

    ... premature hair loss (alopecia) and attacks of low back pain. The hair loss often begins during adolescence and is limited to the scalp. Back pain, which develops in early to mid-adulthood, results ...

  10. Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees

    PubMed Central

    Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng

    2015-01-01

    Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258

  11. GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability.

    PubMed

    Lodder, Elisabeth M; De Nittis, Pasquelena; Koopman, Charlotte D; Wiszniewski, Wojciech; Moura de Souza, Carolina Fischinger; Lahrouchi, Najim; Guex, Nicolas; Napolioni, Valerio; Tessadori, Federico; Beekman, Leander; Nannenberg, Eline A; Boualla, Lamiae; Blom, Nico A; de Graaff, Wim; Kamermans, Maarten; Cocciadiferro, Dario; Malerba, Natascia; Mandriani, Barbara; Akdemir, Zeynep Hande Coban; Fish, Richard J; Eldomery, Mohammad K; Ratbi, Ilham; Wilde, Arthur A M; de Boer, Teun; Simonds, William F; Neerman-Arbez, Marguerite; Sutton, V Reid; Kok, Fernando; Lupski, James R; Reymond, Alexandre; Bezzina, Connie R; Bakkers, Jeroen; Merla, Giuseppe

    2016-09-01

    GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision. PMID:27523599

  12. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    PubMed

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  13. Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness.

    PubMed

    Liu, X Z; Xia, X J; Adams, J; Chen, Z Y; Welch, K O; Tekin, M; Ouyang, X M; Kristiansen, A; Pandya, A; Balkany, T; Arnos, K S; Nance, W E

    2001-12-01

    Mutations in four members of the connexin gene family have been shown to underlie distinct genetic forms of deafness, including GJB2 [connexin 26 (Cx26)], GJB3 (Cx31), GJB6 (Cx30) and GJB1 (Cx32). We have found that alterations in a fifth member of this family, GJA1 (Cx43), appear to cause a common form of deafness in African Americans. We identified two different GJA1 mutations in four of 26 African American probands. Three were homozygous for a Leu-->Phe substitution in the absolutely conserved codon 11, whereas the other was homozygous for a Val-->Ala transversion at the highly conserved codon 24. Neither mutation was detected in DNA from 100 control subjects without deafness. Cx43 is expressed in the cochlea, as is demonstrated by PCR amplification from human fetal cochlear cDNA and by RT-PCR of mouse cochlear tissues. Immunohistochemical staining of mouse cochlear preparations showed immunostaining for Cx43 in non-sensory epithelial cells and in fibrocytes of the spiral ligament and the spiral limbus. To our knowledge this is the first alpha connexin gene to be associated with non-syndromic deafness. Cx43 must also play a critical role in the physiology of hearing, presumably by participating in the recycling of potassium to the cochlear endolymph. PMID:11741837

  14. Homozygous mutation of STXBP5L explains an autosomal recessive infantile-onset neurodegenerative disorder.

    PubMed

    Kumar, Raman; Corbett, Mark A; Smith, Nicholas J C; Jolly, Lachlan A; Tan, Chuan; Keating, Damien J; Duffield, Michael D; Utsumi, Toshihiko; Moriya, Koko; Smith, Katherine R; Hoischen, Alexander; Abbott, Kim; Harbord, Michael G; Compton, Alison G; Woenig, Joshua A; Arts, Peer; Kwint, Michael; Wieskamp, Nienke; Gijsen, Sabine; Veltman, Joris A; Bahlo, Melanie; Gleeson, Joseph G; Haan, Eric; Gecz, Jozef

    2015-04-01

    We report siblings of consanguineous parents with an infantile-onset neurodegenerative disorder manifesting a predominant sensorimotor axonal neuropathy, optic atrophy and cognitive deficit. We used homozygosity mapping to identify an ∼12-Mbp interval identical by descent (IBD) between the affected individuals on chromosome 3q13.13-21.1 with an LOD score of 2.31. We combined family-based whole-exome and whole-genome sequencing of parents and affected siblings and, after filtering of likely non-pathogenic variants, identified a unique missense variant in syntaxin-binding protein 5-like (STXBP5L c.3127G>A, p.Val1043Ile [CCDS43137.1]) in the IBD interval. Considering other modes of inheritance, we also found compound heterozygous variants in FMNL3 (c.114G>C, p.Phe38Leu and c.1372T>G, p.Ile458Leu [CCDS44874.1]) located on chromosome 12. STXBP5L (or Tomosyn-2) is expressed in the central and peripheral nervous system and is known to inhibit neurotransmitter release through inhibition of the formation of the SNARE complexes between synaptic vesicles and the plasma membrane. FMNL3 is expressed more widely and is a formin family protein that is involved in the regulation of cell morphology and cytoskeletal organization. The STXBP5L p.Val1043Ile variant enhanced inhibition of exocytosis in comparison with wild-type (WT) STXBP5L. Furthermore, WT STXBP5L, but not variant STXBP5L, promoted axonal outgrowth in manipulated mouse primary hippocampal neurons. However, the FMNL3 p.Phe38Leu and p.Ile458Leu variants showed minimal effects in these cells. Collectively, our clinical, genetic and molecular data suggest that the IBD variant in STXBP5L is the likely cause of the disorder.

  15. Autosomal recessive spinocerebellar ataxia and peripheral neuropathy with raised alpha-fetoprotein.

    PubMed

    Izatt, Louise; Németh, Andrea H; Meesaq, Anjela; Mills, Kerry R; Taylor, A Malcolm R; Shaw, Christopher E

    2004-07-01

    We describe three patients from two families with progressive spinocerebellar ataxia, peripheral neuropathy, raised alpha-fetoprotein (AFP) and hypercholesterolaemia. Two siblings had identical clinical features, with late childhood onset of symptoms and slow progression, requiring crutches to walk at ages 37 and 38 years. Another patient developed ataxia aged 13 years and became wheel-chair bound by 20 years of age. Although they all had raised serum AFP levels, their clinical, immunological, biochemical, cytogenetic and molecular genetic studies failed to support a diagnosis of Ataxia Telangiectasia. Extensive investigation including imaging, biochemical and genetic studies excluded other known ataxias. Their clinical features most closely resemble the phenotype of a single consanguineous Japanese family with four individuals affected by spinocerebellar ataxia, peripheral neuropathy, raised AFP and hypercholesterolaemia. Homozygosity mapping has identified a locus in this Japanese family at 9q34. Haplotype analysis of our cases demonstrated possible linkage to 9q34, suggesting these may be the first Caucasian families described with this disorder.

  16. New approaches to the autosomal recessive polycystic kidney disease patient with dual kidney-liver complications.

    PubMed

    Telega, Grzegorz; Cronin, David; Avner, Ellis D

    2013-06-01

    Improved neonatal medical care and renal replacement technology have improved the long-term survival of patients with ARPKD. Ten-yr survival of those surviving the first year of life is reported to be 82% and is continuing to improve further. However, despite increases in overall survival and improved treatment of systemic hypertension and other complications of their renal disease, nearly 50% of survivors will develop ESRD within the first decade of life. In addition to renal pathology, patients with ARPKD develop ductal plate malformations with cystic dilation of intra- and extrahepatic bile ducts resulting in CHF and Caroli syndrome. Many patients with CHF will develop portal hypertension with resulting esophageal varices, splenomegaly, hypersplenism, protein losing enteropathy, and gastrointestinal bleeding. Management of portal hypertension may require EBL of esophageal varices or porto-systemic shunting. Complications of hepatic involvement can include ascending cholangitis, cholestasis with malabsorption of fat-soluble vitamins, and rarely benign or malignant liver tumors. Patients with ARPKD who eventually reach ESRD, and ultimately require kidney transplantation, present a unique set of complications related to their underlying hepato-biliary disease. In this review, we focus on new approaches to these challenging patients, including the indications for liver transplantation in ARPKD patients with severe chronic kidney disease awaiting kidney transplant. While survival in patients with ARPKD and isolated kidney transplant is comparable to that of age-matched pediatric patients who have received kidney transplants due to other primary renal diseases, 64-80% of the mortality occurring in ARPKD kidney transplant patients is attributed to cholangitis/sepsis, which is related to their hepato-biliary disease. Recent data demonstrate that surgical mortality among pediatric liver transplant recipients is decreased to <10% at one yr. The immunosuppressive regimen used for kidney transplant recipients is adequate for most liver transplant recipients. We therefore suggest that in a select group of ARPKD patients with recurrent cholangitis or complications of portal hypertension, combined liver-kidney transplant is a viable option. Although further study is necessary to confirm our approach, we believe that combined liver-kidney transplantation can potentially decrease overall mortality and morbidity in carefully selected ARPKD patients with ESRD and clinically significant CHF. PMID:23593929

  17. SIGMAR1 mutation associated with autosomal recessive Silver-like syndrome

    PubMed Central

    Horga, Alejandro; Tomaselli, Pedro J.; Gonzalez, Michael A.; Laurà, Matilde; Muntoni, Francesco; Manzur, Adnan Y.; Hanna, Michael G.; Blake, Julian C.; Houlden, Henry; Züchner, Stephan

    2016-01-01

    Objective: To describe the genetic and clinical features of a simplex patient with distal hereditary motor neuropathy (dHMN) and lower limb spasticity (Silver-like syndrome) due to a mutation in the sigma nonopioid intracellular receptor–1 gene (SIGMAR1) and review the phenotypic spectrum of mutations in this gene. Methods: We used whole-exome sequencing to investigate the proband. The variants of interest were investigated for segregation in the family using Sanger sequencing. Subsequently, a larger cohort of 16 unrelated dHMN patients was specifically screened for SIGMAR1 mutations. Results: In the proband, we identified a homozygous missense variant (c.194T>A, p.Leu65Gln) in exon 2 of SIGMAR1 as the probable causative mutation. Pathogenicity is supported by evolutionary conservation, in silico analyses, and the strong phenotypic similarities with previously reported cases carrying coding sequence mutations in SIGMAR1. No other mutations were identified in 16 additional patients with dHMN. Conclusions: We suggest that coding sequence mutations in SIGMAR1 present clinically with a combination of dHMN and pyramidal tract signs, with or without spasticity, in the lower limbs. Preferential involvement of extensor muscles of the upper limbs may be a distinctive feature of the disease. These observations should be confirmed in future studies. PMID:27629094

  18. GNB5 Mutations Cause an Autosomal-Recessive Multisystem Syndrome with Sinus Bradycardia and Cognitive Disability.

    PubMed

    Lodder, Elisabeth M; De Nittis, Pasquelena; Koopman, Charlotte D; Wiszniewski, Wojciech; Moura de Souza, Carolina Fischinger; Lahrouchi, Najim; Guex, Nicolas; Napolioni, Valerio; Tessadori, Federico; Beekman, Leander; Nannenberg, Eline A; Boualla, Lamiae; Blom, Nico A; de Graaff, Wim; Kamermans, Maarten; Cocciadiferro, Dario; Malerba, Natascia; Mandriani, Barbara; Akdemir, Zeynep Hande Coban; Fish, Richard J; Eldomery, Mohammad K; Ratbi, Ilham; Wilde, Arthur A M; de Boer, Teun; Simonds, William F; Neerman-Arbez, Marguerite; Sutton, V Reid; Kok, Fernando; Lupski, James R; Reymond, Alexandre; Bezzina, Connie R; Bakkers, Jeroen; Merla, Giuseppe

    2016-09-01

    GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.

  19. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia

    PubMed Central

    Coutelier, Marie; Goizet, Cyril; Durr, Alexandra; Habarou, Florence; Morais, Sara; Dionne-Laporte, Alexandre; Tao, Feifei; Konop, Juliette; Stoll, Marion; Charles, Perrine; Jacoupy, Maxime; Matusiak, Raphaël; Alonso, Isabel; Tallaksen, Chantal; Mairey, Mathilde; Kennerson, Marina; Gaussen, Marion; Schule, Rebecca; Janin, Maxime; Morice-Picard, Fanny; Durand, Christelle M.; Depienne, Christel; Calvas, Patrick; Coutinho, Paula; Saudubray, Jean-Marie; Rouleau, Guy; Brice, Alexis; Nicholson, Garth; Darios, Frédéric; Loureiro, José L.; Zuchner, Stephan; Ottolenghi, Chris; Mochel, Fanny

    2015-01-01

    Hereditary spastic paraplegias are heterogeneous neurological disorders characterized by a pyramidal syndrome with symptoms predominantly affecting the lower limbs. Some limited pyramidal involvement also occurs in patients with an autosomal recessive neurocutaneous syndrome due to ALDH18A1 mutations. ALDH18A1 encodes delta-1-pyrroline-5-carboxylate synthase (P5CS), an enzyme that catalyses the first and common step of proline and ornithine biosynthesis from glutamate. Through exome sequencing and candidate gene screening, we report two families with autosomal recessive transmission of ALDH18A1 mutations, and predominant complex hereditary spastic paraplegia with marked cognitive impairment, without any cutaneous abnormality. More interestingly, we also identified monoallelic ALDH18A1 mutations segregating in three independent families with autosomal dominant pure or complex hereditary spastic paraplegia, as well as in two sporadic patients. Low levels of plasma ornithine, citrulline, arginine and proline in four individuals from two families suggested P5CS deficiency. Glutamine loading tests in two fibroblast cultures from two related affected subjects confirmed a metabolic block at the level of P5CS in vivo. Besides expanding the clinical spectrum of ALDH18A1-related pathology, we describe mutations segregating in an autosomal dominant pattern. The latter are associated with a potential trait biomarker; we therefore suggest including amino acid chromatography in the clinico-genetic work-up of hereditary spastic paraplegia, particularly in dominant cases, as the associated phenotype is not distinct from other causative genes. PMID:26026163

  20. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4.

    PubMed

    Bras, Jose; Alonso, Isabel; Barbot, Clara; Costa, Maria Manuela; Darwent, Lee; Orme, Tatiana; Sequeiros, Jorge; Hardy, John; Coutinho, Paula; Guerreiro, Rita

    2015-03-01

    Hereditary autosomal-recessive cerebellar ataxias are a genetically and clinically heterogeneous group of disorders. We used homozygosity mapping and exome sequencing to study a cohort of nine Portuguese families who were identified during a nationwide, population-based, systematic survey as displaying a consistent phenotype of recessive ataxia with oculomotor apraxia (AOA). The integration of data from these analyses led to the identification of the same homozygous PNKP (polynucleotide kinase 3'-phosphatase) mutation, c.1123G>T (p.Gly375Trp), in three of the studied families. When analyzing this particular gene in the exome sequencing data from the remaining cohort, we identified homozygous or compound-heterozygous mutations in five other families. PNKP is a dual-function enzyme with a key role in different pathways of DNA-damage repair. Mutations in this gene have previously been associated with an autosomal-recessive syndrome characterized by microcephaly; early-onset, intractable seizures; and developmental delay (MCSZ). The finding of PNKP mutations associated with recessive AOA extends the phenotype associated with this gene and identifies a fourth locus that causes AOA. These data confirm that MCSZ and some forms of ataxia share etiological features, most likely reflecting the role of PNKP in DNA-repair mechanisms. PMID:25728773

  1. Mutations in PNKP cause recessive ataxia with oculomotor apraxia type 4.

    PubMed

    Bras, Jose; Alonso, Isabel; Barbot, Clara; Costa, Maria Manuela; Darwent, Lee; Orme, Tatiana; Sequeiros, Jorge; Hardy, John; Coutinho, Paula; Guerreiro, Rita

    2015-03-01

    Hereditary autosomal-recessive cerebellar ataxias are a genetically and clinically heterogeneous group of disorders. We used homozygosity mapping and exome sequencing to study a cohort of nine Portuguese families who were identified during a nationwide, population-based, systematic survey as displaying a consistent phenotype of recessive ataxia with oculomotor apraxia (AOA). The integration of data from these analyses led to the identification of the same homozygous PNKP (polynucleotide kinase 3'-phosphatase) mutation, c.1123G>T (p.Gly375Trp), in three of the studied families. When analyzing this particular gene in the exome sequencing data from the remaining cohort, we identified homozygous or compound-heterozygous mutations in five other families. PNKP is a dual-function enzyme with a key role in different pathways of DNA-damage repair. Mutations in this gene have previously been associated with an autosomal-recessive syndrome characterized by microcephaly; early-onset, intractable seizures; and developmental delay (MCSZ). The finding of PNKP mutations associated with recessive AOA extends the phenotype associated with this gene and identifies a fourth locus that causes AOA. These data confirm that MCSZ and some forms of ataxia share etiological features, most likely reflecting the role of PNKP in DNA-repair mechanisms.

  2. Mutations in PNKP Cause Recessive Ataxia with Oculomotor Apraxia Type 4

    PubMed Central

    Bras, Jose; Alonso, Isabel; Barbot, Clara; Costa, Maria Manuela; Darwent, Lee; Orme, Tatiana; Sequeiros, Jorge; Hardy, John; Coutinho, Paula; Guerreiro, Rita

    2015-01-01

    Hereditary autosomal-recessive cerebellar ataxias are a genetically and clinically heterogeneous group of disorders. We used homozygosity mapping and exome sequencing to study a cohort of nine Portuguese families who were identified during a nationwide, population-based, systematic survey as displaying a consistent phenotype of recessive ataxia with oculomotor apraxia (AOA). The integration of data from these analyses led to the identification of the same homozygous PNKP (polynucleotide kinase 3′-phosphatase) mutation, c.1123G>T (p.Gly375Trp), in three of the studied families. When analyzing this particular gene in the exome sequencing data from the remaining cohort, we identified homozygous or compound-heterozygous mutations in five other families. PNKP is a dual-function enzyme with a key role in different pathways of DNA-damage repair. Mutations in this gene have previously been associated with an autosomal-recessive syndrome characterized by microcephaly; early-onset, intractable seizures; and developmental delay (MCSZ). The finding of PNKP mutations associated with recessive AOA extends the phenotype associated with this gene and identifies a fourth locus that causes AOA. These data confirm that MCSZ and some forms of ataxia share etiological features, most likely reflecting the role of PNKP in DNA-repair mechanisms. PMID:25728773

  3. Recessive ACTA1 variant causes congenital muscular dystrophy with rigid spine.

    PubMed

    O'Grady, Gina L; Best, Heather A; Oates, Emily C; Kaur, Simranpreet; Charlton, Amanda; Brammah, Susan; Punetha, Jaya; Kesari, Akanchha; North, Kathryn N; Ilkovski, Biljana; Hoffman, Eric P; Clarke, Nigel F

    2015-06-01

    Variants in ACTA1, which encodes α-skeletal actin, cause several congenital myopathies, most commonly nemaline myopathy. Autosomal recessive variants comprise approximately 10% of ACTA1 myopathy. All recessive variants reported to date have resulted in loss of skeletal α-actin expression from muscle and severe weakness from birth. Targeted next-generation sequencing in two brothers with congenital muscular dystrophy with rigid spine revealed homozygous missense variants in ACTA1. Skeletal α-actin expression was preserved in these patients. This report expands the clinical and histological phenotype of ACTA1 disease to include congenital muscular dystrophy with rigid spine and dystrophic features on muscle biopsy. This represents a new class of recessive ACTA1 variants, which do not abolish protein expression. PMID:25182138

  4. Gardner-Silengo-Wachtel or genito-palato-cadiac syndrome with associated autosomal aneuploidy.

    PubMed

    Golabi, Mahin; James, Aaron W; Desai, Nina; Culver, Katherine; Cotter, Philip D

    2009-02-15

    Gardner-Silengo-Wachtel or genito-palato-cardiac syndrome is a disorder of male (46,XY) gonadal dysgenesis, thought to be either an X-linked recessive or an autosomal recessive disorder. The propositus in our report presented with multiple congenital anomalies including micrognathia, cleft palate, congenital heart defect with D-transposition, double outlet right ventricle, PFO, VSD, PDA and pulmonary valve stenosis and gonadal dysgenesis. Chromosome analysis showed a 46, XY, t(1;7)(q32,q22.1) der(10) t(3;10) (q21;q26)pat karyotype. This represents a rare case of autosomal aneuploidy associated with Gardner-Silengo-Wachtel or genito-palato-cardiac syndrome and suggests genetic heterogeneity for this syndrome. Partial monosomy of 10q also shares many of the prominent features of genito-palato-cardiac syndrome, including gonadal dysgenesis, cardiac defects and facial features. Monosomy for distal 10q may present as a phenocopy of Gardner-Silengo-Wachtel or genito-palato-cardiac syndrome. Alternatively, unmasking of a recessive allele on distal 10q may result in genito-palato-cardiac syndrome, thus potentially localizing a candidate region for the gene to 10q26 --> qter.

  5. Algebra, Home Mortgages, and Recessions

    ERIC Educational Resources Information Center

    Mariner, Jean A. Miller; Miller, Richard A.

    2009-01-01

    The current financial crisis and recession in the United States present an opportunity to discuss relevant applications of some topics in typical first-and second-year algebra and precalculus courses. Real-world applications of percent change, exponential functions, and sums of finite geometric sequences can help students understand the problems…

  6. Firms Still Training Despite Recession

    ERIC Educational Resources Information Center

    Felstead, Alan; Green, Francis; Jewson, Nick

    2011-01-01

    It is commonly assumed that company training is one of the first casualties in times of recession. Falling recruitment, pressures to cut costs and a focus on short-term survival force businesses to put training on the backburner. Expecting the worst, the UK Commission for Employment and Skills (UKCES), the Confederation of British Industry (CBI)…

  7. Differences in Physical Activity during School Recess

    ERIC Educational Resources Information Center

    Ridgers, Nicola D.; Saint-Maurice, Pedro F.; Welk, Gregory J.; Siahpush, Mohammad; Huberty, Jennifer

    2011-01-01

    Background: School recess provides a daily opportunity for physical activity engagement. The purpose of this study was to examine physical activity levels during recess by gender, ethnicity, and grade, and establish the contribution of recess to daily school physical activity levels. Methods: Two hundred and ten children (45% boys) from grades 3…

  8. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene

    SciTech Connect

    Lieburg, A.F. van; Verdijk, M.A.J.; Knoers, V.V.A.M.; Monnens, L.A.H.; Oost, B.A. van; Os, C.H. van; Deen, P.M.T.; Essen, A.J. van; Proesmans, W.; Mallmann, R.

    1994-10-01

    Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanquineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI. 32 refs., 4 figs.

  9. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1

    PubMed Central

    LEE, JINHO; JUNG, SUNG-CHUL; HONG, YOUNG BIN; YOO, JEONG HYUN; KOO, HEASOO; LEE, JA HYUN; HONG, HYUN DAE; KIM, SANG-BEOM; CHUNG, KI WHA; CHOI, BYUNG-OK

    2016-01-01

    Mutations in the optic atrophy 1 gene (OPA1) are associated with autosomal dominant optic atrophy and 20% of patients demonstrate extra-ocular manifestations. In addition to these autosomal dominant cases, only a few syndromic cases have been reported thus far with compound heterozygous OPA1 mutations, suggestive of either recessive or semi-dominant patterns of inheritance. The majority of these patients were diagnosed with Behr syndrome, characterized by optic atrophy, ataxia and peripheral neuropathy. The present study describes a 10-year-old boy with Behr syndrome presenting with early-onset severe optic atrophy, sensorimotor neuropathy, ataxia and congenital cataracts. He had optic atrophy and was declared legally blind at six years old. Electrophysiological, radiological, and histopathological findings were compatible with axonal sensorimotor polyneuropathy. At birth, he presented with a congenital cataract, which has not been previously described in patients with OPA1 mutations. Whole exome sequencing indicated a pair of novel compound heterozygous mutations: p.L620fs*13 (c.1857–1858delinsT) and p.R905Q (c.G2714A). Neither mutation was observed in controls (n=300), and thus, they were predicted to be pathogenic by multiple in silico analyses. The mutation sites were highly conserved throughout different vertebrate species. The patients parents did not have any ophthalmic or neurologic symptoms and the results of electrophysiological studies were normal, suggestive of an autosomal recessive pattern of inheritance. The present study identified novel compound heterozygous OPA1 mutations in a patient with recessive optic atrophy, sensorimotor neuropathy and congenital cataracts, indicating an expansion of the clinical spectrum of pathologies associated with OPA1 mutations. Thus, OPA1 gene screening is advisable in the workup of patients with recessive optic atrophy, particularly with Behr syndrome and cataracts. PMID:27150940

  10. Are streamflow recession characteristics really characteristic?

    NASA Astrophysics Data System (ADS)

    Stoelzle, M.; Stahl, K.; Weiler, M.

    2013-02-01

    Streamflow recession has been investigated by a variety of methods, often involving the fit of a model to empirical recession plots to parameterize a non-linear storage-outflow relationship based on the dQ/dt-Q method. Such recession analysis methods (RAMs) are used to estimate hydraulic conductivity, storage capacity, or aquifer thickness and to model streamflow recession curves for regionalization and prediction at the catchment scale. Numerous RAMs have been published, but little is known about how comparably the resulting recession models distinguish characteristic catchment behavior. In this study we combined three established recession extraction methods with three different parameter-fitting methods to the power-law storage-outflow model to compare the range of recession characteristics that result from the application of these different RAMs. Resulting recession characteristics including recession time and corresponding storage depletion were evaluated for 20 meso-scale catchments in Germany. We found plausible ranges for model parameterization; however, calculated recession characteristics varied over two orders of magnitude. While recession characteristics of the 20 catchments derived with the different methods correlate strongly, particularly for the RAMs that use the same extraction method, not all rank the catchments consistently, and the differences among some of the methods are larger than among the catchments. To elucidate this variability we discuss the ambiguous roles of recession extraction procedures and the parameterization of the storage-outflow model and the limitations of the presented recession plots. The results suggest strong limitations to the comparability of recession characteristics derived with different methods, not only in the model parameters but also in the relative characterization of different catchments. A multiple-methods approach to investigating streamflow recession characteristics should be considered for applications

  11. Are streamflow recession characteristics really characteristic?

    NASA Astrophysics Data System (ADS)

    Stoelzle, M.; Stahl, K.; Weiler, M.

    2012-09-01

    Streamflow recession has been investigated by a variety of methods, often involving the fit of a model to empirical recession plots to parameterize a non-linear storage-outflow relationship. Such recession analysis methods (RAMs) are used to estimate hydraulic conductivity, storage capacity, or aquifer thickness and to model streamflow recession curves for regionalization and prediction at the catchment scale. Numerous RAMs have been published, but little is known about how characteristic the resulting recession models are to distinguish characteristic catchment behavior. In this study we combined three established recession extraction methods with three different parameter-fitting methods to the power-law storage-outflow model to compare the range of recession characteristics that result from the application of these different RAMs. Resulting recession characteristics including recession time and corresponding storage depletion were evaluated for 20 meso-scale catchments in Germany. We found plausible ranges for model parameterization, however, calculated recession characteristics varied over two orders of magnitude. While recession characteristics of the 20 catchments derived with the different methods correlate strongly, particularly for the RAMs that use the same extraction method and while they rank the catchments relatively consistent, there are still considerable differences among the methods. To elucidate this variability we discuss the ambiguous roles of recession extraction procedures and the parameterization of storage-outflow model and the limitations of the presented recession plots. The results suggest strong limitations to the comparability of recession characteristics derived with different methods, not only in the model parameters but also in the relative characterization of different catchments. A multiple methods approach to investigate streamflow recession characteristics should be considered for applications whenever possible.

  12. An Estimate of the Average Number of Recessive Lethal Mutations Carried by Humans

    PubMed Central

    Gao, Ziyue; Waggoner, Darrel; Stephens, Matthew; Ober, Carole; Przeworski, Molly

    2015-01-01

    The effects of inbreeding on human health depend critically on the number and severity of recessive, deleterious mutations carried by individuals. In humans, existing estimates of these quantities are based on comparisons between consanguineous and nonconsanguineous couples, an approach that confounds socioeconomic and genetic effects of inbreeding. To overcome this limitation, we focused on a founder population that practices a communal lifestyle, for which there is almost complete Mendelian disease ascertainment and a known pedigree. Focusing on recessive lethal diseases and simulating allele transmissions, we estimated that each haploid set of human autosomes carries on average 0.29 (95% credible interval [0.10, 0.84]) recessive alleles that lead to complete sterility or death by reproductive age when homozygous. Comparison to existing estimates in humans suggests that a substantial fraction of the total burden imposed by recessive deleterious variants is due to single mutations that lead to sterility or death between birth and reproductive age. In turn, comparison to estimates from other eukaryotes points to a surprising constancy of the average number of recessive lethal mutations across organisms with markedly different genome sizes. PMID:25697177

  13. Assessing the putative roles of X-autosome and X-Y interactions in hybrid male sterility of the Drosophila bipectinata species complex.

    PubMed

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2007-07-01

    Interspecific F1 hybrid males of the Drosophila bipectinata species complex are sterile, while females are fertile, following Haldane's rule. A backcross scheme involving a single recessive visible marker on the X chromosome has been used to assess the putative roles of X-autosome and X-Y interactions in hybrid male sterility in the D. bipectinata species complex. The results suggest that X-Y interactions are playing the major role in hybrid male sterility in the crosses D. bipectinata x D. parabipectinata and D. bipectinata x D. pseudoananassae, while X-autosome interactions are largely involved in hybrid male sterility in the crosses D. malerkotliana x D. bipectinata and D. malerkotliana x D. parabipectinata. However, by using this single marker it is not possible to rule out the involvement of autosome-autosome interactions in hybrid male sterility. These findings also lend further support to the phylogenetic relationships among 4 species of the D. bipectinata complex.

  14. The Great Recession and Mother’s Health

    PubMed Central

    Currie, Janet; Duque, Valentina; Garfinkel, Irwin

    2016-01-01

    We use longitudinal data from the Fragile Families and Child Well-being Study to investigate the impacts of the Great Recession on the health of mothers. We focus on a wide range of physical and mental health outcomes, as well as health behaviors. We find that increases in the unemployment rate decrease self-reported health status and increase smoking and drug use. We also find evidence of heterogeneous impacts. Disadvantaged mothers—African-American, Hispanic, less educated, and unmarried–experience greater deterioration in their health than advantaged mothers—those who are white, married, and college educated. PMID:27212714

  15. Campus Counseling Centers React to Recession-Related Stress among Students

    ERIC Educational Resources Information Center

    Bushong, Steven

    2009-01-01

    The recession has complicated the path in life that many students had envisioned. As a result, campus mental-health counselors say more students are expressing anxiety about the economy's effect on their future. Visits to campus counseling centers have been climbing for several years, according to the Association for University and College…

  16. Cleft lip with or without cleft palate in Shanghai, China: Evidence for an autosomal major locus

    SciTech Connect

    Marazita, M.L. ); Hu, Dan-Ning; Liu, You-E. ); Spence, A. ); Melnick, M. )

    1992-09-01

    Orientals are at higher risk for cleft lip with our without cleft palate (CL[+-] P) than Caucasians or blacks. The authors collected demographic and family data to study factors contributing to the etiology of CL[+-]P in Shanghai. The birth incidence of nonsyndromic CL[+-]P (SHanghai 1980-87) was 1.11/1,000, with a male/female ratio of 1.42. Almost 2,000 nonsyndromic CL[+-]P probands were ascertained from individuals operated on during the years 1956-83 at surgical hospitals in Shanghai. Detailed family histories and medical examinations were obtained for the probands and all available family members. Genetic analysis of the probands' families were performed under the mixed model with major locus (ML) and multifactorial (MFT) components. The hypothesis of no familial transmission and of MFT alone could be rejected. Of the ML models, the autosomal recessive was significantly most likely and was assumed for testing three complex hypothesis: (1) ML and sporadics; (2) ML and MFT; (3) ML, MFT, and sporadics. None of the complex models were more likely than the ML alone model. In conclusion, the best-fitting, most parsimonious model for CL[+-]P in Shanghai was that of an autosomal recessive major locus. 37 refs., 1 tab.

  17. Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3

    PubMed Central

    Chong, Jessica X.; Burrage, Lindsay C.; Beck, Anita E.; Marvin, Colby T.; McMillin, Margaret J.; Shively, Kathryn M.; Harrell, Tanya M.; Buckingham, Kati J.; Bacino, Carlos A.; Jain, Mahim; Alanay, Yasemin; Berry, Susan A.; Carey, John C.; Gibbs, Richard A.; Lee, Brendan H.; Krakow, Deborah; Shendure, Jay; Nickerson, Deborah A.; Bamshad, Michael J.; Shendure, Jay; Nickerson, Deborah A.; Abecasis, Gonçalo R.; Anderson, Peter; Blue, Elizabeth Marchani; Annable, Marcus; Browning, Brian L.; Buckingham, Kati J.; Chen, Christina; Chin, Jennifer; Chong, Jessica X.; Cooper, Gregory M.; Davis, Colleen P.; Frazar, Christopher; Harrell, Tanya M.; He, Zongxiao; Jain, Preti; Jarvik, Gail P.; Jimenez, Guillaume; Johanson, Eric; Jun, Goo; Kircher, Martin; Kolar, Tom; Krauter, Stephanie A.; Krumm, Niklas; Leal, Suzanne M.; Luksic, Daniel; Marvin, Colby T.; McMillin, Margaret J.; McGee, Sean; O’Reilly, Patrick; Paeper, Bryan; Patterson, Karynne; Perez, Marcos; Phillips, Sam W.; Pijoan, Jessica; Poel, Christa; Reinier, Frederic; Robertson, Peggy D.; Santos-Cortez, Regie; Shaffer, Tristan; Shephard, Cindy; Shively, Kathryn M.; Siegel, Deborah L.; Smith, Joshua D.; Staples, Jeffrey C.; Tabor, Holly K.; Tackett, Monica; Underwood, Jason G.; Wegener, Marc; Wang, Gao; Wheeler, Marsha M.; Yi, Qian; Bamshad, Michael J.

    2015-01-01

    Multiple pterygium syndrome (MPS) is a phenotypically and genetically heterogeneous group of rare Mendelian conditions characterized by multiple pterygia, scoliosis, and congenital contractures of the limbs. MPS typically segregates as an autosomal-recessive disorder, but rare instances of autosomal-dominant transmission have been reported. Whereas several mutations causing recessive MPS have been identified, the genetic basis of dominant MPS remains unknown. We identified four families affected by dominantly transmitted MPS characterized by pterygia, camptodactyly of the hands, vertebral fusions, and scoliosis. Exome sequencing identified predicted protein-altering mutations in embryonic myosin heavy chain (MYH3) in three families. MYH3 mutations underlie distal arthrogryposis types 1, 2A, and 2B, but all mutations reported to date occur in the head and neck domains. In contrast, two of the mutations found to cause MPS in this study occurred in the tail domain. The phenotypic overlap among persons with MPS, coupled with physical findings distinct from other conditions caused by mutations in MYH3, suggests that the developmental mechanism underlying MPS differs from that of other conditions and/or that certain functions of embryonic myosin might be perturbed by disruption of specific residues and/or domains. Moreover, the vertebral fusions in persons with MPS, coupled with evidence of MYH3 expression in bone, suggest that embryonic myosin plays a role in skeletal development. PMID:25957469

  18. Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3.

    PubMed

    Chong, Jessica X; Burrage, Lindsay C; Beck, Anita E; Marvin, Colby T; McMillin, Margaret J; Shively, Kathryn M; Harrell, Tanya M; Buckingham, Kati J; Bacino, Carlos A; Jain, Mahim; Alanay, Yasemin; Berry, Susan A; Carey, John C; Gibbs, Richard A; Lee, Brendan H; Krakow, Deborah; Shendure, Jay; Nickerson, Deborah A; Bamshad, Michael J

    2015-05-01

    Multiple pterygium syndrome (MPS) is a phenotypically and genetically heterogeneous group of rare Mendelian conditions characterized by multiple pterygia, scoliosis, and congenital contractures of the limbs. MPS typically segregates as an autosomal-recessive disorder, but rare instances of autosomal-dominant transmission have been reported. Whereas several mutations causing recessive MPS have been identified, the genetic basis of dominant MPS remains unknown. We identified four families affected by dominantly transmitted MPS characterized by pterygia, camptodactyly of the hands, vertebral fusions, and scoliosis. Exome sequencing identified predicted protein-altering mutations in embryonic myosin heavy chain (MYH3) in three families. MYH3 mutations underlie distal arthrogryposis types 1, 2A, and 2B, but all mutations reported to date occur in the head and neck domains. In contrast, two of the mutations found to cause MPS in this study occurred in the tail domain. The phenotypic overlap among persons with MPS, coupled with physical findings distinct from other conditions caused by mutations in MYH3, suggests that the developmental mechanism underlying MPS differs from that of other conditions and/or that certain functions of embryonic myosin might be perturbed by disruption of specific residues and/or domains. Moreover, the vertebral fusions in persons with MPS, coupled with evidence of MYH3 expression in bone, suggest that embryonic myosin plays a role in skeletal development.

  19. Fine localization of the locus for autosomal dominant retinitis pigmentosa on chromosome 17p

    SciTech Connect

    Goliath, R.; Janssens, P.; Beighton, P.

    1995-10-01

    The term {open_quotes}retintis pigmentosa{close_quotes} (RP) refers to a group of inherited retinal degenerative disorders. Clinical manifestations include night-blindness, with variable age of onset, followed by constriction of the visual field that may progress to total loss of sight in later life. Previous studies have shown that RP is caused by mutations within different genes and may be inherited as an X-linked recessive (XLRRP), autosomal recessive (ARRP), or autosomal dominant (ADRP) trait. The AD form of this group of conditions has been found to be caused by mutations within the rhodopsin gene in some families and the peripherin/RDS gene in others. In addition, some ADRP families have been found to be linked to anonymous markers on 8cen, 7p, 7q,19q, and, more recently, 17p. The ADRP gene locus on the short arm of chromosome 17 was identified in a large South African family (ADRP-SA) of British origin. The phenotypic expression of the disorder, which has been described elsewhere is consistent in the pedigree with an early onset of disease symptoms. In all affected subjects in the family, onset of symptoms commenced before the age of 10 years. 16 refs., 3 figs., 1 tab.

  20. Does gingival recession require surgical treatment?

    PubMed Central

    Chan, Hsun-Liang; Chun, Yong-Hee Patricia; MacEachern, Mark

    2016-01-01

    Gingival recession represents a clinical condition in adults frequently encountered in the general dental practice. It is estimated that 23% of adults in the US have one or more tooth surfaces with ≥ 3 mm gingival recession. Clinicians often time face dilemmas of whether or not to treat such a condition surgically. Therefore, we were charged by the editorial board to answer this critical question: “Does gingival recession require surgical treatment?” An initial condensed literature search was performed using a combination of gingival recession and surgery controlled terms and keywords. An analysis of the search results highlights our limited understanding of the factors that often guide the treatment of gingival recession. Understanding the etiology, prognosis and treatment of gingival recession continues to offer many unanswered questions and challenges in the field of periodontics as we strive to provide the best care possible for our patients. PMID:26427577

  1. Streamflow Recession Analysis Incorporating Human Water Use

    NASA Astrophysics Data System (ADS)

    Thomas, B. F.; Vogel, R. M.

    2011-12-01

    Hydrologic studies of streamflow recessions are common in hydrology, yet nearly all previous studies have ignored the impact of human water withdrawals on the recession behavior of streamflow. The baseflow recession constant (Kb), commonly used in hydrologic models, can be estimated from a hydrologic recession. Resulting estimates of Kb are used widely in rainfall runoff models, low flow forecasting, and estimation of low flow characteristics. The accurate estimation of the baseflow recession constant is critical due to its common use in low flow characterization for water management strategies and Clean Water Act permitting requirements. This study documents the impact of water withdrawals on estimates of streamflow recession constants. We combine existing information on both groundwater and surface water resources and readily available information on human water use. We document that estimates of the baseflow recession constant depend critically upon the ratio of groundwater withdrawals to the average magnitude of baseflows. We document that without careful attention to the impact of groundwater withdrawals, estimates of streamflow recession constants will exhibit significant bias. Observed streamflow response is best approximated by a streamflow recession constant that incorporates human water use.

  2. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how?

    PubMed

    Cotta, Ana; Carvalho, Elmano; da-Cunha-Júnior, Antonio Lopes; Paim, Júlia Filardi; Navarro, Monica M; Valicek, Jaquelin; Menezes, Miriam Melo; Nunes, Simone Vilela; Xavier Neto, Rafael; Takata, Reinaldo Issao; Vargas, Antonio Pedro

    2014-09-01

    Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.

  3. Genetics Home Reference: autosomal dominant vitreoretinochoroidopathy

    MedlinePlus

    ... autosomal dominant vitreoretinochoroidopathy: a degenerative disease with a range of developmental ocular anomalies. Eye (Lond). 2011 Jan;25(1):113-8. doi: 10.1038/eye.2010.165. Epub 2010 Nov 12. Citation on PubMed or Free article on PubMed Central Yardley J, Leroy BP, ...

  4. Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice

    SciTech Connect

    Moyer, J.H.; Lee-Tischler, M.J.; Kwon, H.Y.; Schrick, J.J. ); Avner, E.D.; Sweeney, W.E. ); Godfrey, V.L.; Cacheiro, N.L.A.; Woychik, R.P. ); Wilkinson, J.E. )

    1994-05-27

    A line of transgenic mice was generated that contains an insertional mutation causing a phenotype similar to human autosomal recessive polycystic kidney disease. Homozygotes displayed a complex phenotype that included bilateral polycystic kidneys and an unusual liver lesion. The mutant locus was cloned and characterized through use of the transgene as a molecular marker. Additionally, a candidate polycystic kidney disease (PKD) gene was identified whose structure and expression are directly associated with the mutant locus. A complementary DNA derived from this gene predicted a peptide containing a motif that was originally identified in several genes involved in cell cycle control.

  5. Discovery of four recessive developmental disorders using probabilistic genotype and phenotype matching among 4,125 families.

    PubMed

    Akawi, Nadia; McRae, Jeremy; Ansari, Morad; Balasubramanian, Meena; Blyth, Moira; Brady, Angela F; Clayton, Stephen; Cole, Trevor; Deshpande, Charu; Fitzgerald, Tomas W; Foulds, Nicola; Francis, Richard; Gabriel, George; Gerety, Sebastian S; Goodship, Judith; Hobson, Emma; Jones, Wendy D; Joss, Shelagh; King, Daniel; Klena, Nikolai; Kumar, Ajith; Lees, Melissa; Lelliott, Chris; Lord, Jenny; McMullan, Dominic; O'Regan, Mary; Osio, Deborah; Piombo, Virginia; Prigmore, Elena; Rajan, Diana; Rosser, Elisabeth; Sifrim, Alejandro; Smith, Audrey; Swaminathan, Ganesh J; Turnpenny, Peter; Whitworth, James; Wright, Caroline F; Firth, Helen V; Barrett, Jeffrey C; Lo, Cecilia W; FitzPatrick, David R; Hurles, Matthew E

    2015-11-01

    Discovery of most autosomal recessive disease-associated genes has involved analysis of large, often consanguineous multiplex families or small cohorts of unrelated individuals with a well-defined clinical condition. Discovery of new dominant causes of rare, genetically heterogeneous developmental disorders has been revolutionized by exome analysis of large cohorts of phenotypically diverse parent-offspring trios. Here we analyzed 4,125 families with diverse, rare and genetically heterogeneous developmental disorders and identified four new autosomal recessive disorders. These four disorders were identified by integrating Mendelian filtering (selecting probands with rare, biallelic and putatively damaging variants in the same gene) with statistical assessments of (i) the likelihood of sampling the observed genotypes from the general population and (ii) the phenotypic similarity of patients with recessive variants in the same candidate gene. This new paradigm promises to catalyze the discovery of novel recessive disorders, especially those with less consistent or nonspecific clinical presentations and those caused predominantly by compound heterozygous genotypes. PMID:26437029

  6. Strategies for Supporting Recess in Elementary Schools

    ERIC Educational Resources Information Center

    Centers for Disease Control and Prevention, 2014

    2014-01-01

    Recess provides students with a needed break from their structured school day. It can improve children's physical, social, and emotional well-being, and enhance learning. Recess helps children meet the goal of 60 minutes of physical activity (PA) each day, as recommended by the US Department of Health and Human Services. National…

  7. The Crucial Role of Recess in Schools

    ERIC Educational Resources Information Center

    Ramstetter, Catherine L.; Murray, Robert; Garner, Andrew S.

    2010-01-01

    Background: Recess is at the heart of a vigorous debate over the role of schools in promoting optimal child development and well-being. Reallocating time to accentuate academic concerns is a growing trend and has put recess at risk. Conversely, pressure to increase activity in school has come from efforts to combat childhood obesity. The purpose…

  8. The crucial role of recess in school.

    PubMed

    Murray, Robert; Ramstetter, Catherine

    2013-01-01

    Recess is at the heart of a vigorous debate over the role of schools in promoting the optimal development of the whole child. A growing trend toward reallocating time in school to accentuate the more academic subjects has put this important facet of a child's school day at risk. Recess serves as a necessary break from the rigors of concentrated, academic challenges in the classroom. But equally important is the fact that safe and well-supervised recess offers cognitive, social, emotional, and physical benefits that may not be fully appreciated when a decision is made to diminish it. Recess is unique from, and a complement to, physical education--not a substitute for it. The American Academy of Pediatrics believes that recess is a crucial and necessary component of a child's development and, as such, it should not be withheld for punitive or academic reasons.

  9. Genetics Home Reference: autosomal dominant partial epilepsy with auditory features

    MedlinePlus

    ... Genetics Home Health Conditions ADPEAF autosomal dominant partial epilepsy with auditory features Enable Javascript to view the ... Open All Close All Description Autosomal dominant partial epilepsy with auditory features ( ADPEAF ) is an uncommon form ...

  10. Genetics Home Reference: autosomal dominant congenital stationary night blindness

    MedlinePlus

    ... stationary night blindness autosomal dominant congenital stationary night blindness Enable Javascript to view the expand/collapse boxes. ... Close All Description Autosomal dominant congenital stationary night blindness is a disorder of the retina , which is ...

  11. Associations between STR autosomal markers and longevity.

    PubMed

    Bediaga, N G; Aznar, J M; Elcoroaristizabal, X; Albóniga, O; Gómez-Busto, F; Artaza Artabe, I; Rocandio, Ana; de Pancorbo, M M

    2015-10-01

    Life span is a complex and multifactorial trait, which is shaped by genetic, epigenetic, environmental, and stochastic factors. The possibility that highly hypervariable short tandem repeats (STRs) associated with longevity has been largely explored by comparing the genotypic pools of long lived and younger individuals, but results so far have been contradictory. In view of these contradictory findings, the present study aims to investigate whether HUMTHO1 and HUMCSF1PO STRs, previously associated with longevity, exert a role as a modulator of life expectancy, as well as to assess the extent to which other autosomal STR markers are associated with human longevity in population from northern Spain. To that end, 21 autosomal microsatellite markers have been studied in 304 nonagenarian individuals (more than 90 years old) and 516 younger controls of European descent. Our results do not confirm the association found in previous studies between longevity and THO1 and CSF1PO loci. However, significant association between longevity and autosomal STR markers D12S391, D22S1045, and DS441 was observed. Even more, when we compared allelic frequency distribution of the 21 STR markers between cases and controls, we found that 6 out of the 21 STRs studied showed different allelic frequencies, thus suggesting that the genomic portrait of the human longevity is far complex and probably shaped by a high number of genomic loci. PMID:26335621

  12. Weill-Marchesani syndrome - possible linkage of the autosomal dominant form to 15q21.1

    SciTech Connect

    Wirtz, M.K.; Samples, J.R.; Rust, K.

    1996-10-02

    Weill-Marchesani syndrome comprises short stature, brachydactyly, microspherophakia, glaucoma, and ectopia lentis is regarded as an autosomal recessive trait. We present two families each with affected individuals in 3 generations demonstrating autosomal dominant inheritance of Weill-Marchesani syndrome. Linkage analysis in these 2 families suggests a gene for Weill-Marchesani syndrome maps to 15q21.1. The dislocated lenses and connective tissue disorder in these families suggests that fibrillin-1 and microfibril-associated protein 1, which both map to 15q21.1, are candidate genes for Weill-Marchesani syndrome. Immunohistochemistry staining of skin sections from family 1 showed an apparent decrease in fibrillin staining compared to control individuals. 28 refs., 3 figs., 2 tabs.

  13. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind

    PubMed Central

    Quartier, Pierre

    2015-01-01

    All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity. PMID:25645939

  14. Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind.

    PubMed

    Boisson, Bertrand; Quartier, Pierre; Casanova, Jean-Laurent

    2015-02-01

    All the human primary immunodeficiencies (PIDs) recognized as such in the 1950s were Mendelian traits and, whether autosomal or X-linked, displayed recessive inheritance. The first autosomal dominant (AD) PID, hereditary angioedema, was recognized in 1963. However, since the first identification of autosomal recessive (AR), X-linked recessive (XR) and AD PID-causing genes in 1985 (ADA; severe combined immunodeficiency), 1986 (CYBB, chronic granulomatous disease) and 1989 (SERPING1; hereditary angioedema), respectively, the number of genetically defined AD PIDs has increased more rapidly than that of any other type of PID. AD PIDs now account for 61 of the 260 known conditions (23%). All known AR PIDs are caused by alleles with some loss-of-function (LOF). A single XR PID is caused by gain-of-function (GOF) mutations (WASP-related neutropenia, 2001). In contrast, only 44 of 61 AD defects are caused by LOF alleles, which exert dominance by haploinsufficiency or negative dominance. Since 2003, up to 17 AD disorders of the third kind, due to GOF alleles, have been described. Remarkably, six of the 17 genes concerned also harbor monoallelic (STAT3), biallelic (C3, CFB, CARD11, PIK3R1) or both monoallelic and biallelic (STAT1) LOF alleles in patients with other clinical phenotypes. Most heterozygous GOF alleles result in auto-inflammation, auto-immunity, or both, with a wide range of immunological and clinical forms. Some also underlie infections and, fewer, allergies, by impairing or enhancing immunity to non-self. Malignancies are also rare. The enormous diversity of immunological and clinical phenotypes is thought provoking and mirrors the diversity and pleiotropy of the underlying genotypes. These experiments of nature provide a unique insight into the quantitative regulation of human immunity. PMID:25645939

  15. Systematic review of suicide in economic recession

    PubMed Central

    Oyesanya, Mayowa; Lopez-Morinigo, Javier; Dutta, Rina

    2015-01-01

    AIM: To provide a systematic update of the evidence concerning the relationship between economic recession and suicide. METHODS: A keyword search of Ovid Medline, Embase, Embase Classic, PsycINFO and PsycARTICLES was performed to identify studies that had investigated the association between economic recession and suicide. RESULTS: Thirty-eight studies met predetermined selection criteria and 31 of them found a positive association between economic recession and increased suicide rates. Two studies reported a negative association, two articles failed to find such an association, and three studies were inconclusive. CONCLUSION: Economic recession periods appear to increase overall suicide rates, although further research is warranted in this area, particularly in low income countries. PMID:26110126

  16. Have Employment Patterns in Recessions Changed?.

    ERIC Educational Resources Information Center

    Bowers, Norman

    1981-01-01

    A survey of postwar recessions shows that the increasing proportion of service sector jobs has moderated overall employment declines and that women in nontraditional jobs, Blacks, and youths bear a disproportionate share of job losses. (LRA)

  17. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy

    PubMed Central

    Ceyhan-Birsoy, Ozge; Agrawal, Pankaj B.; Hidalgo, Carlos; Schmitz-Abe, Klaus; DeChene, Elizabeth T.; Swanson, Lindsay C.; Soemedi, Rachel; Vasli, Nasim; Iannaccone, Susan T.; Shieh, Perry B.; Shur, Natasha; Dennison, Jane M.; Lawlor, Michael W.; Laporte, Jocelyn; Markianos, Kyriacos; Fairbrother, William G.; Granzier, Henk

    2013-01-01

    Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes. PMID:23975875

  18. HYDRORECESSION: A toolbox for streamflow recession analysis

    NASA Astrophysics Data System (ADS)

    Arciniega, S.

    2015-12-01

    Streamflow recession curves are hydrological signatures allowing to study the relationship between groundwater storage and baseflow and/or low flows at the catchment scale. Recent studies have showed that streamflow recession analysis can be quite sensitive to the combination of different models, extraction techniques and parameter estimation methods. In order to better characterize streamflow recession curves, new methodologies combining multiple approaches have been recommended. The HYDRORECESSION toolbox, presented here, is a Matlab graphical user interface developed to analyse streamflow recession time series with the support of different tools allowing to parameterize linear and nonlinear storage-outflow relationships through four of the most useful recession models (Maillet, Boussinesq, Coutagne and Wittenberg). The toolbox includes four parameter-fitting techniques (linear regression, lower envelope, data binning and mean squared error) and three different methods to extract hydrograph recessions segments (Vogel, Brutsaert and Aksoy). In addition, the toolbox has a module that separates the baseflow component from the observed hydrograph using the inverse reservoir algorithm. Potential applications provided by HYDRORECESSION include model parameter analysis, hydrological regionalization and classification, baseflow index estimates, catchment-scale recharge and low-flows modelling, among others. HYDRORECESSION is freely available for non-commercial and academic purposes.

  19. Prenatal diagnosis of X-linked recessive Lenz microphthalmia syndrome.

    PubMed

    Suzumori, Nobuhiro; Kaname, Tadashi; Muramatsu, Yukako; Yanagi, Kumiko; Kumagai, Kyoko; Mizuno, Seiji; Naritomi, Kenji; Saitoh, Shinji; Sugiura-Ogasawara, Mayumi

    2013-11-01

    Lenz microphthalmia syndrome comprises microphthalmia-anophthalmia with mental retardation, malformed ears and skeletal anomalies, and is inherited in an X-linked recessive pattern. In 2004, it was reported that the missense mutation (BCL-6 co-repressor gene [BCOR] c.254C>T, p.P85L) in a single family with Lenz microphthalmia syndrome co-segregated with the disease phenotype. We report a case of prenatal diagnosis for X-linked recessive Lenz microphthalmia syndrome with the mutation. A 32-year-old gravida 5, para 2 Japanese woman was referred to Nagoya City University Hospital at 15 weeks of gestation. After genetic counseling and informed consent, amniocentesis was performed for fetal karyotyping, which was 46,XY. Using the extracted DNA from cultured amniotic cells, fetal search for BCOR c.254C>T mutation was undertaken. The couple requested medical termination of pregnancy, and the postabortion examination confirmed the diagnosis. This is the third report of a BCOR mutation, associated with X-linked syndromic microphthalmia, and most importantly, it is always the same mutation. The prenatal genetic diagnosis of the Lenz microphthalmia syndrome allowed time for parental counseling and delivery planning.

  20. Prenatal diagnosis of X-linked recessive Lenz microphthalmia syndrome.

    PubMed

    Suzumori, Nobuhiro; Kaname, Tadashi; Muramatsu, Yukako; Yanagi, Kumiko; Kumagai, Kyoko; Mizuno, Seiji; Naritomi, Kenji; Saitoh, Shinji; Sugiura-Ogasawara, Mayumi

    2013-11-01

    Lenz microphthalmia syndrome comprises microphthalmia-anophthalmia with mental retardation, malformed ears and skeletal anomalies, and is inherited in an X-linked recessive pattern. In 2004, it was reported that the missense mutation (BCL-6 co-repressor gene [BCOR] c.254C>T, p.P85L) in a single family with Lenz microphthalmia syndrome co-segregated with the disease phenotype. We report a case of prenatal diagnosis for X-linked recessive Lenz microphthalmia syndrome with the mutation. A 32-year-old gravida 5, para 2 Japanese woman was referred to Nagoya City University Hospital at 15 weeks of gestation. After genetic counseling and informed consent, amniocentesis was performed for fetal karyotyping, which was 46,XY. Using the extracted DNA from cultured amniotic cells, fetal search for BCOR c.254C>T mutation was undertaken. The couple requested medical termination of pregnancy, and the postabortion examination confirmed the diagnosis. This is the third report of a BCOR mutation, associated with X-linked syndromic microphthalmia, and most importantly, it is always the same mutation. The prenatal genetic diagnosis of the Lenz microphthalmia syndrome allowed time for parental counseling and delivery planning. PMID:23815237

  1. Recessive transmission of a multiple endocrine neoplasia syndrome in the rat.

    PubMed

    Fritz, Andreas; Walch, Axel; Piotrowska, Kamilla; Rosemann, Michael; Schäffer, Ekkehard; Weber, Karin; Timper, Andreas; Wildner, Gerhild; Graw, Jochen; Höfler, Heinz; Atkinson, Michael J

    2002-06-01

    We describe a novel hereditary cancer syndrome in the rat that is transmitted by a recessive gene mutation. Animals exhibiting the mutant phenotype develop multiple neuroendocrine malignancies within the first year of life. The endocrine neoplasia is characterized by bilateral adrenal pheochromocytoma, multiple extra-adrenal pheochromocytoma, bilateral medullary thyroid cell neoplasia, bilateral parathyroid hyperplasia, and pituitary adenoma. The appearance of neoplastic disease is preceded by the development of bilateral juvenile cataracts. Although the spectrum of affected tissues is reminiscent of human forms of multiple endocrine neoplasia (MEN), no germ-line mutations were detected in the Ret or Menin genes that are responsible for the dominantly inherited MEN syndromes in humans. Segregation studies in F1 and F2 crosses yielded frequencies of affected animals entirely consistent with a recessive autosomal mode of inheritance. The lack of the phenotype in F1 animals effectively excludes a germ-line tumor suppressor gene mutation as the causal event. The absence of mutation of known MEN genes and the unique constellation of affected tissues, plus the recessive mode of inheritance, lead us to conclude that the mutation of an as yet unknown gene is responsible for this syndrome of inherited neuroendocrine cancer.

  2. [Treatment of autosomal dominant polycystic kidney disease].

    PubMed

    Torra, Roser

    2014-01-21

    Autosomal dominant polycystic kidney disease is the most frequent hereditary kidney disease. However it lacks a specific treatment. Its prevalence is 1/800 and causes the need for renal replacement therapy in 8-10% of patients on dialysis or kidney transplant. It is caused by mutations in the PKD1 and PKD2 genes, which cause a series of alterations in the polycystic cells, which have become therapeutic targets. There are many molecules that are being tested to counteract the alterations of these therapeutic targets. There are studies in all phases of research, from phase i to phase iv. Some of the molecules being tested are tolvaptan, mTOR inhibitors and, among many other, somatostatin analogues. These drugs are extensively reviewed in this article. Based on the accumulated experience the primary objective of the trials is the slowing of the increase in renal volume. Yet other renal end points such as renal function and hypertension are necessary. It is expected that in the coming years we can have specific, well tolerated, effective and affordable drugs for the treatment of autosomal dominant polycystic kidney disease.

  3. [Economic recession, unemployment and suicide].

    PubMed

    Duleba, Timea; Gonda, Xenia; Rihmer, Zoltan; Dome, Peter

    2012-03-01

    Considering the ongoing global economic crisis which began in 2007 it is reasonable to discuss its possible and expectable effects on mental health. In our narrative review we have summarized the scientific literature on the relationship between economic downturns, unemployment and suicide rate. In addition, we have summarized the theories about the background of this relationship as well. Suicide is an extremely complex phenomenon since it is influenced by several environmental and genetic factors. Furthermore, some of these factors are mutually interrelated, so the independent effect of these frequently remains elusive and hard to investigate from a methodological point of view. Although results are somewhat contradictory, it seems that unemployment is an independent risk factor for both suicide and depression. The first papers about the effect of the current economic crisis on suicide rates have been published and their results confirmed the association between the rise of unemployment rate and the increase of suicide rate in both old and new members of the European Union. Although psychiatric, and primarily depressive illness is a major risk factor for suicide, understanding the contributing role of other etiologic factors in their complex relationship may be an important task in predicting and preventing suicide both at the level of at risk individuals and the whole population. PMID:22427469

  4. Aeroacoustical Study of the Tgv Pantograph Recess

    NASA Astrophysics Data System (ADS)

    NOGER, C.; PATRAT, J. C.; PEUBE, J.; PEUBE, J. L.

    2000-03-01

    The general focus of this aerodynamic noise research, induced by turbulent incompressible flow, is to improve our knowledge of acoustic production mechanisms in the TGV pantograph recess in order to be able to reduce the radiated noise. This work is performed under contract with SNCF as a part of the German-French Cooperation DEUFRAKO K2, and is supported by French Ministries for Transport and Research. Previous studies on TGV noise source locations (DEUFRAKO K) have identified the pantograph recess as one of the important aerodynamic noise sources, for speeds higher than 300 km/h, due to flow separation. The pantograph recess is a very complex rectangular cavity, located both on the power car and the first coach roofs of the TGV, and has not been studied before due to the complex shapes. Its aeroacoustic features are investigated experimentally in a low-subsonic wind tunnel, on a realistic 1/7th scale mock-up both with and without pantographs. Flow velocities, estimated with hot-wire anemometry, and parietal visualizations show the flow to reattach on the recess bottom wall and to separate again at the downstream face. Wall pressure fluctuations and “acoustic” measurements using 14 and 12 in microphones respectively are also measured to qualify the flow: no aerodynamic or acoustic oscillations are observed. The study indicates that the pantograph recess has a different behaviour compared to the usual cavity grazing flows.

  5. Management and prevention of gingival recession.

    PubMed

    Merijohn, George K

    2016-06-01

    Gingival recession is highly prevalent worldwide. It increases the risk for root caries and can interfere with patient comfort, function and esthetics. Progressive gingival recession also increases the risk of tooth loss secondary to clinical attachment loss. Although mitigating the causes of gingival recession decreases its incidence and severity, implementing practical management and prevention strategies in the clinical setting can be challenging. Identification of susceptible patients and evaluating them for the presence of modifiable risk exposures are essential first steps in developing action plans for appropriate interventions. This article reviews these steps and introduces chairside tools that can help in the selection of interventions designed to reduce the risk of future gingival recession and may also facilitate patient communication. Practical decision-making criteria are proposed for when and how to monitor gingival recession, for deciding when a patient is a candidate for surgical evaluation or referral to a periodontist, and, if surgery is the treatment of choice, what should be considered as key surgical outcome objectives. PMID:27045439

  6. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome.

    PubMed

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander; Jhangiani, Shalini N; Gambin, Tomasz; Alcino, Michele Calijorne; Penney, Samantha; Saraiva, Jorge M; Hove, Hanne; Skovby, Flemming; Kayserili, Hülya; Estrella, Elicia; Vulto-van Silfhout, Anneke T; Steehouwer, Marloes; Muzny, Donna M; Sutton, V Reid; Gibbs, Richard A; Lupski, James R; Brunner, Han G; van Bon, Bregje W M; Carvalho, Claudia M B

    2015-04-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical signaling gene WNT5A underlie a subset of autosomal-dominant Robinow syndrome (DRS) cases, but most individuals with DRS remain without a molecular diagnosis. We performed whole-exome sequencing in four unrelated DRS-affected individuals without coding mutations in WNT5A and found heterozygous DVL1 exon 14 mutations in three of them. Targeted Sanger sequencing in additional subjects with DRS uncovered DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. In total, six distinct frameshift mutations were found in eight subjects, and all were heterozygous truncating variants within the penultimate exon of DVL1. In five families in which samples from unaffected parents were available, the variants were demonstrated to represent de novo mutations. All variant alleles are predicted to result in a premature termination codon within the last exon, escape nonsense-mediated decay (NMD), and most likely generate a C-terminally truncated protein with a distinct -1 reading-frame terminus. Study of the transcripts extracted from affected subjects' leukocytes confirmed expression of both wild-type and variant alleles, supporting the hypothesis that mutant mRNA escapes NMD. Genomic variants identified in our study suggest that truncation of the C-terminal domain of DVL1, a protein hypothesized to have a downstream role in the Wnt-5a non-canonical pathway, is a common cause of DRS. PMID:25817016

  7. "Universal" Recession Curves and their Geomorphological Roots

    NASA Astrophysics Data System (ADS)

    Marani, M.; Biswal, B.

    2011-12-01

    The basic structural organization of channel networks, and of the connected hillslopes, have been shown to be intimately linked to basin responses to rainfall events, leading to geomorphological theories of the hydrologic response. Here, We identify a previously undetected link between the river network morphology and key recession curves properties. We show that the power-law exponent of -dQ/dt vs. Q curves is related to the power-law exponent of N(l) vs. G(l) curves (which we show to be connected to Hack's law), where l is the downstream distance from the channel heads, N(l) is the number of channel reaches exactly located at a distance l from their channel head, and G(l) is the total length of the network located at a distance greater or equal to l from channel heads. We then generalize the power-law expressions of recession curves, to identify "universal" curves, independent of the initial moisture conditions and of basin area, by making the -dQ/dt vs. Q curve non-dimensional using an index discharge representative of initial moisture conditions. We subsequently rescale the geomorphic recession curve, N(l) vs. G(l), producing a collapse of the geomorphic recession curves constructed from the DTM's of 67 US study basins. Finally, by use of the specific discharge u = Q/A, we link the two previous results and define the specific recession curves, whose collapse across basins within homogeneous geographical areas lends further, decisive, support to the notion that the statistical properties of observational recession curves bear the signature of the geomorphological structure of the networks producing them.

  8. A gene responsible for profound congenital nonsyndromal recessive deafness maps to the pericentromeric region of chromosome 17

    SciTech Connect

    Friedman, T.B.; Liang, Y.; Asher, J.H. Jr.

    1994-09-01

    Autosomal recessive deafness is the most common form of human hereditary hearing loss. Two percent of the 2,185 residents of Bengkala, Bali, Indonesia have profound congenital neurosensory nonsyndromal hereditary deafness due to a fully penetrant autosomal recessive mutation (NARD1). Families, identified through children with profound congenital deafness having hearing parents, give the expected 25% deaf progeny when corrected for ascertainment bias. Congenitally deaf individuals from Bengkala show no response to pure tone audiological examination. Obligate heterozygotes for autosomal recessive deafness in Bengkala have normal or borderline normal hearing. A chromosomal location for NARD1 was assigned directly using a linkage strategy that combines allele-frequency dependent homozygosity mapping (AHM) followed by an analysis of historical recombinants to position NARD1 relative to flanking markers. Thirteen deaf Bengkala villagers of hearing parents were typed initially for 148 STRPs distributed across the human genome and a cluster of tightly linked 17p markers with a significantly higher number of homozygotes than expected under Hardy-Weinberg and linkage equilibrium were identified. NARD1 maps closest to STRPs for D17S261 (Mfd41) and D17S805 (AFM234ta1) that are 3.2 cM apart. Recombinant genotypes for the flanking markers, D17S122 (VAW409) and D17S783 (AFM026vh7), in individuals homozygous for NARD1 place NARD1 in a 5.3 cM interval of the pericentromeric region of chromosome 17 on a refined 17p-17q12 genetic map.

  9. Is Sanfilippo type B in your mind when you see adults with mental retardation and behavioral problems?

    PubMed

    Moog, Ute; van Mierlo, Ingrid; van Schrojenstein Lantman-de Valk, Henny M J; Spaapen, Leo; Maaskant, Marian A; Curfs, Leopold M G

    2007-08-15

    Sanfilippo type B is an autosomal recessive mucopolysaccharidosis (MPS IIIB) caused by deficiency of N-acetyl-alpha-D-glucosaminidase, a lysosomal enzyme involved in the degradation of heparan sulfate. It is characterized by neurologic degeneration, behavioral problems, and mental decline. Somatic features are relatively mild and patients with this disorder can reach late adulthood. It is the most common subtype of MPS in the Netherlands and probably underdiagnosed in adult persons with mental retardation (MR). In order to increase knowledge on the adult phenotype and natural history in Sanfilippo type B, we present the clinical data of 20 patients with this disorder. Sixteen of them were followed for one to three decades. Six died between 28 and 69 years of age, mainly from pneumonia and cachexia; the surviving patients were 18-63 years old. Apart from the youngest, they had lost mobility at 36-68 years. Most had developed physical problems, in particular in the 4th-6th decade of life: cardiac disease (cardiomyopathy, atrial fibrillations), arthritis, skin blistering, swallowing difficulties requiring feeding by a gastrostomy tube, and seizures. The course of the disease was dominated in most of them by challenging behavioral problems with restlessness, extreme screaming and hitting, difficult to prevent or to treat pharmaceutically. Even in absence of knowledge of the history of an elderly patient with MR, the presence of behavioral problems should prompt metabolic investigation for MPS.

  10. Glacier recession in Iceland and Austria

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Bayr, Klaus J.

    1992-01-01

    It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewater glacier cycle.

  11. Glacier recession in Iceland and Austria

    SciTech Connect

    Hall, D.K.; Williams, R.S. Jr.; Bayr, K.J. USGS, Reston, VA Keene State College, NH )

    1992-03-01

    It has been possible to measure glacier recession on the basis of Landsat data, in conjunction with comparisons of the magnitude of recession of a glacier margin with in situ measurements at fixed points along the same margin. Attention is presently given to the cases of Vatnajokull ice cap, in Iceland, and the Pasterze Glacier, in Austria, on the basis of satellite data from 1973-1987 and 1984-1990, respectively. Indications of a trend toward negative mass balance are noted. Nevertheless, while most of the world's small glaciers have been receding, some are advancing either due to local climate or the tidewater glacier cycle. 21 refs.

  12. Cleidocranial dysplasia with autosomal dominant inheritance pattern.

    PubMed

    Bhargava, P; Khan, S; Sharma, R; Bhargava, S

    2014-07-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant disease with a wide range of expression, characterized by clavicular hypoplasia, retarded cranial ossification, delayed bone and teeth development, supernumerary teeth, stomatognathic, craniofacial and skeletal abnormalities. This paper presents a case of CCD in a female with brachycephalic skull, depressed frontal bone and nasal bridge, hypoplastic middle one-third of face with mandibular prognathism and hyper mobility of both shoulders with associated radiographic features. Odontologist is often the first professional who patient of CCD approaches, since there is a delay in the eruption or absence of permanent teeth. The premature diagnosis allows a scope for proper treatment modalities, offering a better life quality for patient. PMID:25184084

  13. Cleidocranial Dysplasia with Autosomal Dominant Inheritance Pattern

    PubMed Central

    Bhargava, P; Khan, S; Sharma, R; Bhargava, S

    2014-01-01

    Cleidocranial dysplasia (CCD) is an autosomal dominant disease with a wide range of expression, characterized by clavicular hypoplasia, retarded cranial ossification, delayed bone and teeth development, supernumerary teeth, stomatognathic, craniofacial and skeletal abnormalities. This paper presents a case of CCD in a female with brachycephalic skull, depressed frontal bone and nasal bridge, hypoplastic middle one-third of face with mandibular prognathism and hyper mobility of both shoulders with associated radiographic features. Odontologist is often the first professional who patient of CCD approaches, since there is a delay in the eruption or absence of permanent teeth. The premature diagnosis allows a scope for proper treatment modalities, offering a better life quality for patient. PMID:25184084

  14. Angiogenesis and autosomal dominant polycystic kidney disease.

    PubMed

    Huang, Jennifer L; Woolf, Adrian S; Long, David A

    2013-09-01

    Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the growth of multiple cysts that in many cases result in end-stage renal disease. Current strategies to reduce cyst progression in ADPKD focus on modulating cell turnover, fluid secretion, and vasopressin signalling; but an alternative approach may be to target pathways providing "general support" for cyst growth, such as surrounding blood vessels. This could be achieved by altering the expression of growth factors involved in vascular network formation, such as the vascular endothelial growth factor (VEGF) and angiopoietin families. We highlight the evidence that blood vessels and vascular growth factors play a role in ADPKD progression. Recent experiments manipulating VEGF in ADPKD are described, and we discuss how alternative strategies to manipulate angiogenesis may be used in the future as a novel treatment for ADPKD. PMID:22990303

  15. Linkage analysis of a new locus for autosomal recessive retinitis pigmentosa (arRP) on chromosome 6p

    SciTech Connect

    Shugart, Y.Y.; Knowles, J.A.; Banerjee, P.

    1994-09-01

    We report the localization of the arRP gene segregating in a large kindred from the Dominican Republic and the progress in refining the arRP region. The arRP gene in this family was found to be closely linked to markers D6S291, D6S273 with lod scores of 6.75, 3.08 at {theta}=0, 0.08, respectively. Since it was suggested that mutant peripherin causes arRP on 6p, we typed marker RDS1 at the peripherin-rds locus and detected four recombinants. More markers have been typed to further refine the location of arRP. Lod scores of 5.31. 5.89 and 2.05 were obtained with D6S439, UT722 and D6S426 at {theta}=0, 0, and 0.14, respectively. Some of the new markers were not included in the Genethon map, thus we used the CEPH (V7.0) data to order markers D6S273, D6S439, UT722, D6S426 and to estimate the recombination fractions as well as the ratios of female to male map distance. The best supported order is: D6S273 - D6S439 - D6S291 - UT722 - D6S426. Multipoint analyses were performed with the markers D6S273 - ({theta}{sub m}=0.0-21) - D6S439 - ({theta}{sub m}=0.066) - D6S426 with a constant sex ratio of 2.749. A maximum lod score of 9.74 was obtained at the marker D6S439. In conclusion, the most likely location for the arRP gene in the Dominican pedigree is approximately 20 centimorgans (cM) telomeric from peripherin.

  16. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa

    PubMed Central

    Corton, M.; Avila-Fernández, A.; Campello, L.; Sánchez, M.; Benavides, B.; López-Molina, M. I.; Fernández-Sánchez, L.; Sánchez-Alcudia, R.; da Silva, L. R. J.; Reyes, N.; Martín-Garrido, E.; Zurita, O.; Fernández-San José, P.; Pérez-Carro, R.; García-García, F.; Dopazo, J.; García-Sandoval, B.; Cuenca, N.; Ayuso, C.

    2016-01-01

    Retinitis pigmentosa (RP), the most frequent form of inherited retinal dystrophy is characterized by progressive photoreceptor degeneration. Many genes have been implicated in RP development, but several others remain to be identified. Using a combination of homozygosity mapping, whole-exome and targeted next-generation sequencing, we found a novel homozygous nonsense mutation in SAMD11 in five individuals diagnosed with adult-onset RP from two unrelated consanguineous Spanish families. SAMD11 is ortholog to the mouse major retinal SAM domain (mr-s) protein that is implicated in CRX-mediated transcriptional regulation in the retina. Accordingly, protein-protein network analysis revealed a significant interaction of SAMD11 with CRX. Immunoblotting analysis confirmed strong expression of SAMD11 in human retina. Immunolocalization studies revealed SAMD11 was detected in the three nuclear layers of the human retina and interestingly differential expression between cone and rod photoreceptors was observed. Our study strongly implicates SAMD11 as novel cause of RP playing an important role in the pathogenesis of human degeneration of photoreceptors. PMID:27734943

  17. Next-generation sequencing confirms the implication of SLC24A1 in autosomal-recessive congenital stationary night blindness.

    PubMed

    Neuillé, M; Malaichamy, S; Vadalà, M; Michiels, C; Condroyer, C; Sachidanandam, R; Srilekha, S; Arokiasamy, T; Letexier, M; Démontant, V; Sahel, J-A; Sen, P; Audo, I; Soumittra, N; Zeitz, C

    2016-06-01

    Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder which represents rod photoreceptor dysfunction or signal transmission defect from photoreceptors to adjacent bipolar cells. Patients displaying photoreceptor dysfunction show a Riggs-electroretinogram (ERG) while patients with a signal transmission defect show a Schubert-Bornschein ERG. The latter group is subdivided into complete or incomplete (ic) CSNB. Only few CSNB cases with Riggs-ERG and only one family with a disease-causing variant in SLC24A1 have been reported. Whole-exome sequencing (WES) in a previously diagnosed icCSNB patient identified a homozygous nonsense variant in SLC24A1. Indeed, re-investigation of the clinical data corrected the diagnosis to Riggs-form of CSNB. Targeted next-generation sequencing (NGS) identified compound heterozygous deletions and a homozygous missense variant in SLC24A1 in two other patients, respectively. ERG abnormalities varied in these three cases but all patients had normal visual acuity, no myopia or nystagmus, unlike in Schubert-Bornschein-type of CSNB. This confirms that SLC24A1 defects lead to CSNB and outlines phenotype/genotype correlations in CSNB subtypes. In case of unclear clinical characteristics, NGS techniques are helpful to clarify the diagnosis.

  18. Homozygous mutation of VPS16 gene is responsible for an autosomal recessive adolescent-onset primary dystonia

    PubMed Central

    Cai, Xiaodong; Chen, Xin; Wu, Song; Liu, Wenlan; Zhang, Xiejun; Zhang, Doudou; He, Sijie; Wang, Bo; Zhang, Mali; Zhang, Yuan; Li, Zongyang; Luo, Kun; Cai, Zhiming; Li, Weiping

    2016-01-01

    Dystonia is a neurological movement disorder that is clinically and genetically heterogeneous. Herein, we report the identification a novel homozygous missense mutation, c.156 C > A in VPS16, co-segregating with disease status in a Chinese consanguineous family with adolescent-onset primary dystonia by whole exome sequencing and homozygosity mapping. To assess the biological role of c.156 C > A homozygous mutation of VPS16, we generated mice with targeted mutation site of Vps16 through CRISPR-Cas9 genome-editing approach. Vps16 c.156 C > A homozygous mutant mice exhibited significantly impaired motor function, suggesting that VPS16 is a new causative gene for adolescent-onset primary dystonia. PMID:27174565

  19. New autosomal recessive mutations in aquaporin-2 causing nephrogenic diabetes insipidus through deficient targeting display normal expression in Xenopus oocytes.

    PubMed

    Leduc-Nadeau, Alexandre; Lussier, Yoann; Arthus, Marie-Françoise; Lonergan, Michèle; Martinez-Aguayo, Alejandro; Riveira-Munoz, Eva; Devuyst, Olivier; Bissonnette, Pierre; Bichet, Daniel G

    2010-06-15

    Aquaporin-2 (AQP2), located at the luminal side of the collecting duct principal cells, is a water channel responsible for the final concentration of urine. Lack of function, often occurring through mistargeting of mutated proteins, induces nephrogenic diabetes insipidus (NDI), a condition characterized by large urinary volumes. In the present study, two new mutations (K228E and V24A) identified in NDI-affected individuals from distinct families along with the already reported R187C were analysed in comparison to the wild-type protein (AQP2-wt) using Xenopus laevis oocytes and a mouse collecting duct cell-line (mIMCD-3). Initial data in oocytes showed that all mutations were adequately expressed at reduced levels when compared to AQP2-wt. K228E and V24A were found to be properly targeted at the plasma membrane and exhibited adequate functionality similar to AQP2-wt, as opposed to R187C which was retained in internal stores and was thus inactive. In coexpression studies using oocytes, R187C impeded the functionality of all other AQP2 variants while combinations with K228E, V24A and AQP2-wt only showed additive functionalities. When expressed in mIMCD-3 cells, forskolin treatment efficiently promoted the targeting of AQP2-wt at the plasma membrane (>90%) while K228E only weakly responded to the same treatment (approximately 20%) and both V24A and R187C remained completely insensitive to the treatment. We concluded that both V24A and K228E are intrinsically functional water channels that lack a proper response to vasopressin, which leads to NDI as found in both compound mutations studied (K228E + R187C and V24A + R187C). The discrepancies in plasma membrane targeting response found in both expression systems stress the need to evaluate such data using mammalian cell systems.

  20. Update of the spectrum of GJB2 gene mutations in 152 Moroccan families with autosomal recessive nonsyndromic hearing loss.

    PubMed

    Bakhchane, Amina; Bousfiha, Amale; Charoute, Hicham; Salime, Sara; Detsouli, Mustapha; Snoussi, Khalid; Nadifi, Sellama; Kabine, Mostafa; Rouba, Hassan; Dehbi, Hind; Roky, Rachida; Charif, Majida; Barakat, Abdelhamid

    2016-06-01

    Deafness is one of the most common genetic diseases in humans and is subject to important genetic heterogeneity. The most common cause of non syndromic hearing loss (NSHL) is mutations in the GJB2 gene. This study aims to update and evaluate the spectrum of GJB2 allele variants in 152 Moroccan multiplex families with non syndromic hearing loss. Seven different mutations were detected: c.35delG, p.V37I, p.E47X, p.G200R, p.Del120E, p.R75Q, the last three mutations were described for the first time in Moroccan deaf patients, in addition to a novel nonsense mutation, the c.385G>T which is not referenced in any database. Sixty six families (43.42%) have mutations in the coding region of GJB2, while the homozygous c.35delG mutation still to date the most represented 51/152 (33.55%). The analysis of the geographical distribution of mutations located in GJB2 gene showed more allelic heterogeneity in the north and center compared to the south of Morocco. Our results showed that the GJB2 gene is a major contributor to non syndromic hearing loss in Morocco. Thus, this report of the GJB2 mutations spectrum all over Morocco has an important implication for establishing a suitable molecular diagnosis. PMID:27169813

  1. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness.

    PubMed

    Vincent, Ajoy; Audo, Isabelle; Tavares, Erika; Maynes, Jason T; Tumber, Anupreet; Wright, Thomas; Li, Shuning; Michiels, Christelle; Condroyer, Christel; MacDonald, Heather; Verdet, Robert; Sahel, José-Alain; Hamel, Christian P; Zeitz, Christina; Héon, Elise

    2016-05-01

    Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339(∗)]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339(∗)]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the β subunit of G protein heterotrimer (Gαβγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling. PMID:27063057

  2. Next-generation sequencing confirms the implication of SLC24A1 in autosomal-recessive congenital stationary night blindness.

    PubMed

    Neuillé, M; Malaichamy, S; Vadalà, M; Michiels, C; Condroyer, C; Sachidanandam, R; Srilekha, S; Arokiasamy, T; Letexier, M; Démontant, V; Sahel, J-A; Sen, P; Audo, I; Soumittra, N; Zeitz, C

    2016-06-01

    Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder which represents rod photoreceptor dysfunction or signal transmission defect from photoreceptors to adjacent bipolar cells. Patients displaying photoreceptor dysfunction show a Riggs-electroretinogram (ERG) while patients with a signal transmission defect show a Schubert-Bornschein ERG. The latter group is subdivided into complete or incomplete (ic) CSNB. Only few CSNB cases with Riggs-ERG and only one family with a disease-causing variant in SLC24A1 have been reported. Whole-exome sequencing (WES) in a previously diagnosed icCSNB patient identified a homozygous nonsense variant in SLC24A1. Indeed, re-investigation of the clinical data corrected the diagnosis to Riggs-form of CSNB. Targeted next-generation sequencing (NGS) identified compound heterozygous deletions and a homozygous missense variant in SLC24A1 in two other patients, respectively. ERG abnormalities varied in these three cases but all patients had normal visual acuity, no myopia or nystagmus, unlike in Schubert-Bornschein-type of CSNB. This confirms that SLC24A1 defects lead to CSNB and outlines phenotype/genotype correlations in CSNB subtypes. In case of unclear clinical characteristics, NGS techniques are helpful to clarify the diagnosis. PMID:26822852

  3. Adhalin, the 50 kD dystrophin associated protein, is not the locus for severe childhood autosomal recessive dystrophy (SCARMD)

    SciTech Connect

    McNally, E.M.; Selig, S.; Kunkel, L.M.

    1994-09-01

    Mutations in the carboxyl-terminus in dystrophin are normally sufficient to produce severely dystrophic muscle. This portion of dystrophin binds a complex of dystrophin-associated glycoproteins (DAGs). The genes encoding these DAGs are candidate genes for causing neuromuscular disease. Immunoreactivity for adhalin, the 50 kD DAG, is absent in muscle biopsies from patients with SCARMD, a form of dystrophy clinically similar Duchenne muscular dystrophy. Prior linkage analysis in SCARMD families revealed that the disease gene segregates with markers on chromosome 13. To determine the molecular role that adhalin may play in SCARMD, human cDNA and genomic sequences were isolated. Primers were designed based on predicted areas of conservation in rabbit adhalin and used in RT-PCR with human skeletal and cardiac muscle. RT-PCR products were confirmed by sequence as human adhalin and then used as probes for screening human cDNA and genomic libraries. Human and rabbit adhalin are 90% identical, and among the cDNAs, a novel splice form of adhalin was seen which may encode part of the 35 kD component of the dystrophin-glycoprotein complex. To our surprise, only human/rodent hybrids containing human chromosome 17 amplified adhalin sequences in a PCR analysis. FISH analysis with three overlapping genomic sequences confirmed the chromosome 17 location and further delineated the map position to 17q21. Therefore, adhalin is excluded as the gene causing SCARMD.

  4. X chromosomes and autosomes evolve at similar rates in Drosophila: no evidence for faster-X protein evolution.

    PubMed

    Thornton, Kevin; Bachtrog, Doris; Andolfatto, Peter

    2006-04-01

    Recent data from Drosophila suggest that a substantial fraction of amino acid substitutions observed between species are beneficial. If these beneficial mutations are on average partially recessive, then the rate of protein evolution is predicted to be faster for X-linked genes compared to autosomal genes (the "faster-X" hypothesis). We test this prediction by comparing rates of protein substitutions between orthologous genes, taking advantage of variations in chromosome fusions within the genus Drosophila. In members of the Drosophila melanogaster species group, the chromosomal arm 3L segregates as an ordinary autosome (i.e., two homologous copies in both males and females). However, in the Drosophila pseudoobscura species group, this chromosomal arm has become fused to the ancestral X chromosome and is hemizygous in males. The faster-X hypothesis predicts that protein evolution should be faster for genes on this chromosomal arm in the D. pseudoobscura lineage, relative to the D. melanogaster lineage. Here we combine new sequence data for 202 gene fragments in Drosophila miranda (in the pseudoobscura species group) with the completed genomes of D. melanogaster, D. pseudoobscura, and Drosophila yakuba to show that there are no detectable differences in rates of amino acid evolution for orthologous X-linked and autosomal genes. Our results imply that the contribution of the faster-X (if any) to the large-X effect on reproductive isolation in Drosophila is not due to a generally faster rate of protein evolution. The lack of a detectable faster-X effect in these species suggests either that beneficial amino acids are not partially recessive on average, or that adaptive evolution does not often use newly arising amino acid mutations.

  5. Autosomal dominant polycystic kidney disease diagnosed in utero. Review.

    PubMed

    Nowak, Magdalena; Huras, Hubert; Wiecheć, Marcin; Jach, Robert; Radoń-Pokracka, Małgorzata; Górecka, Joanna

    2016-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of most common inherited renal diseases. It is estimated that very early onset ADPKD affects even 2% patients. The purpose of this article is to provide a comprehensive review of genetics, prenatal diagnosis and prognosis in very early onset autosomal dominant polycystic kidney disease. PMID:27629138

  6. Weathering the Recession in College Health

    ERIC Educational Resources Information Center

    Christmas, William A.

    2010-01-01

    The current global recession has increased personal stress levels throughout our society. With dwindling resources, institutions of higher learning are especially prone to budgetary cutbacks during such periods. Based on 22 years of experience as a health service director, the author offers some personal insights in the hope that they will help…

  7. [Periodontology and esthetics: the gingival recession].

    PubMed

    Corba, N H

    1991-06-01

    Gingival recessions are regarded by many people as an esthetical problem. Successively the etiology, the significance and the indications for therapy are discussed. Different kinds of therapy such as oral hygiene instruction, the free gingival graft and various pedicle grafts are explained. Finally it is advocated that surgical kinds of therapy have to be applied with reservedness.

  8. The Recession and Education: Seize New Opportunities!

    ERIC Educational Resources Information Center

    Haskvitz, Alan

    2011-01-01

    The teaching profession has long been thought of as recession proof. Indeed, that may have been one of the reasons why teachers took far lower starting salaries right out of college. Perhaps the greatest common feature of teachers, besides their desire to serve society in a humanitarian way, may be the lack of risk-taking the occupation previously…

  9. Shop Steward Resistance in the Recession.

    ERIC Educational Resources Information Center

    Spencer, Bruce

    1985-01-01

    This article draws on work carried out in a British brewery, refutes the claim that the recession has made trade unions irrelevant to managerial concerns, and argues that cohesive, factor-based shop steward organization can resist a management onslaught. (Author/CT)

  10. The effect of recessions on gambling expenditures.

    PubMed

    Horváth, Csilla; Paap, Richard

    2012-12-01

    This article examines the influence of the business cycle on expenditures of three major types of legalized gambling activities: Casino gambling, lottery, and pari-mutuel wagering. Empirical results are obtained using monthly aggregated US per capita consumption time series for the period 1959.01-2010.08. Among the three gambling activities only lottery consumption appears to be recession-proof. This series is characterized by a vast and solid growth that exceeds the growth in income and the growth in other gambling sectors. Casino gambling expenditures show a positive growth during expansions and no growth during recessions. Hence, the loss in income during recessions affects casino gambling. However, income shocks which are not directly related to the business cycle do not influence casino gambling expenditures. Pari-mutuel wagering displays an overall negative trend and its average growth rate is smaller than the growth in income, especially during recessions. The findings of this article provide important implications for the gambling industry and for local governments.

  11. Recession curbs gas pipeline construction costs

    SciTech Connect

    Morgan, J.M.

    1983-01-24

    This paper shows how after 5 yrs. of inflation, gas pipeline construction costs have finally felt the effects of a severe building recession. First quarter (1982) construction activity, compressor equipment and drive units, and high-pressure gas-station piping are discussed. Graphs of OGJ-Morgan composite gas pipeline cost, and gas pipeline cost component indexes are presented.

  12. Gender Differences during Recess in Elementary Schools.

    ERIC Educational Resources Information Center

    Twarek, Linda S.; George, Halley S.

    A study examined the differences in what boys and girls choose, or are free to choose, to do on the playground during recess. Given the apparent problem that boys dominate the playground area, leaving girls on the perimeter, it was hypothesized that girls engage in passive, non-competitive, small group activities, whereas boys engage in…

  13. Nevada, the Great Recession, and Education

    ERIC Educational Resources Information Center

    Verstegen, Deborah A.

    2013-01-01

    The impact of the Great Recession and its aftermath has been devastating in Nevada, especially for public education. This article discusses the budget shortfalls and the impact of the economic crisis in Nevada using case study methodology. It provides a review of documents, including Governor Gibbon's proposals for the public K-12 education system…

  14. Weathering the recession in college health.

    PubMed

    Christmas, William A

    2010-01-01

    The current global recession has increased personal stress levels throughout our society. With dwindling resources, institutions of higher learning are especially prone to budgetary cutbacks during such periods. Based on 22 years of experience as a health service director, the author offers some personal insights in the hope that they will help colleagues cope with the current situation.

  15. Testing Faces Ups and Downs Amid Recession

    ERIC Educational Resources Information Center

    Sawchuk, Stephen

    2009-01-01

    As the recession crimps education budgets, states are beginning to pare the number of standardized tests they give, particularly those that no longer factor into state or federal accountability decisions. At the district level, though, it's a different story. Despite pressure not to cut staffing and programs, many districts are preserving local…

  16. Cryptic x; autosome translocation in a boy--delineation of the phenotype.

    PubMed

    Jezela-Stanek, Aleksandra; Ciara, Elżbieta; Juszczak, Marzena; Pelc, Magdalena; Materna-Kiryluk, Anna; Krajewska-Walasek, Małgorzata

    2011-03-01

    Chromosome X-to-autosome translocations [t(X;A)] are rare rearrangements with an estimated occurrence of 1 to 3 per 10,000 live births. Occurrences of Xq duplications have been observed in male and female subjects in whom the X chromosome segment escapes inactivation and results in functional disomy. We report a case of X;6 translocation in a 7-year-old boy with severe mental retardation, hypotonia, and recurrent respiratory tract infections. High-resolution chromosome analyses (fluorescence in situ hybridization, multiplex ligation probe-dependent amplification, and whole-genome array) revealed a terminal duplication of chromosome X at q28-qter (approximately 3.246 Mb in size) involving gene MECP2 and a terminal deletion (approximately 1.89 Mb) with the breakpoint at 6q27. This is the second report of a boy with a cryptic unbalanced Xq-autosome translocation. This case increases our understanding of mental disability caused by terminal Xq duplication.

  17. New Recessive Syndrome of Microcephaly, Cerebellar Hypoplasia, and Congenital Heart Conduction Defect

    PubMed Central

    Zaki, Maha S; Salam, Ghada M H Abdel; Saleem, Sahar N; Dobyns, William B; Issa, Mahmoud Y; Sattar, Shifteh; Gleeson, Joseph G

    2011-01-01

    We identified a two-branch consanguineous family in which four affected members (three females and one male) presented with constitutive growth delay, severe psychomotor retardation, microcephaly, cerebellar hypoplasia, and second-degree heart block. They also shared distinct facial features and similar appearance of their hands and feet. Childhood-onset insulin-dependent diabetes mellitus developed in one affected child around the age of 9 years. Molecular analysis excluded mutations in potentially related genes such as PTF1A, EIF2AK3, EOMES, and WDR62. This condition appears to be unique of other known conditions, suggesting a unique clinical entity of autosomal recessive mode of inheritance. © 2011 Wiley Periodicals, Inc. PMID:22002884

  18. Hyperphosphatasia-mental retardation syndrome due to PIGV mutations: expanded clinical spectrum.

    PubMed

    Horn, Denise; Krawitz, Peter; Mannhardt, Anca; Korenke, Georg Christoph; Meinecke, Peter

    2011-08-01

    Hyperphosphatasia-mental retardation syndrome is a recently delineated disorder associated with a recognizable facial phenotype and brachytelephalangy. This autosomal recessive condition is caused by homozygous and compound heterozygous missense mutations of PIGV, encoding a member of the GPI-anchor biosynthesis pathway. Here, we report on two further, unrelated patients with developmental delay, elevated serum levels of AP, distinctive facial features, hypoplastic terminal phalanges, anal atresia in one and Hirschsprung disease in the other patient. By sequencing PIGV we detected compound heterozygous mutations c.467G>A and c.1022C>A in Patient 1 and a homozygous mutation c.1022C>A in Patient 2. We reviewed the eight reported cases with proven PIGV mutations and re-defined the phenotypic spectrum associated with PIGV mutations: intellectual disability, the distinct facial gestalt, brachytelephalangy, and hyperphosphatasia are constant features but also anorectal malformations and Hirschsprung disease as well as cleft lip/palate and hearing impairment should be considered as part of the clinical spectrum. Moreover, seizures and muscular hypotonia are frequently associated with PIGV mutations. PMID:21739589

  19. X chromosome regulation of autosomal gene expression in bovine blastocysts.

    PubMed

    Itoh, Yuichiro; Arnold, Arthur P

    2014-10-01

    Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.

  20. Recessive mutations in SPTBN2 implicate β-III spectrin in both cognitive and motor development.

    PubMed

    Lise, Stefano; Clarkson, Yvonne; Perkins, Emma; Kwasniewska, Alexandra; Sadighi Akha, Elham; Schnekenberg, Ricardo Parolin; Suminaite, Daumante; Hope, Jilly; Baker, Ian; Gregory, Lorna; Green, Angie; Allan, Chris; Lamble, Sarah; Jayawant, Sandeep; Quaghebeur, Gerardine; Cader, M Zameel; Hughes, Sarah; Armstrong, Richard J E; Kanapin, Alexander; Rimmer, Andrew; Lunter, Gerton; Mathieson, Iain; Cazier, Jean-Baptiste; Buck, David; Taylor, Jenny C; Bentley, David; McVean, Gilean; Donnelly, Peter; Knight, Samantha J L; Jackson, Mandy; Ragoussis, Jiannis; Németh, Andrea H

    2012-01-01

    β-III spectrin is present in the brain and is known to be important in the function of the cerebellum. Heterozygous mutations in SPTBN2, the gene encoding β-III spectrin, cause Spinocerebellar Ataxia Type 5 (SCA5), an adult-onset, slowly progressive, autosomal-dominant pure cerebellar ataxia. SCA5 is sometimes known as "Lincoln ataxia," because the largest known family is descended from relatives of the United States President Abraham Lincoln. Using targeted capture and next-generation sequencing, we identified a homozygous stop codon in SPTBN2 in a consanguineous family in which childhood developmental ataxia co-segregates with cognitive impairment. The cognitive impairment could result from mutations in a second gene, but further analysis using whole-genome sequencing combined with SNP array analysis did not reveal any evidence of other mutations. We also examined a mouse knockout of β-III spectrin in which ataxia and progressive degeneration of cerebellar Purkinje cells has been previously reported and found morphological abnormalities in neurons from prefrontal cortex and deficits in object recognition tasks, consistent with the human cognitive phenotype. These data provide the first evidence that β-III spectrin plays an important role in cortical brain development and cognition, in addition to its function in the cerebellum; and we conclude that cognitive impairment is an integral part of this novel recessive ataxic syndrome, Spectrin-associated Autosomal Recessive Cerebellar Ataxia type 1 (SPARCA1). In addition, the identification of SPARCA1 and normal heterozygous carriers of the stop codon in SPTBN2 provides insights into the mechanism of molecular dominance in SCA5 and demonstrates that the cell-specific repertoire of spectrin subunits underlies a novel group of disorders, the neuronal spectrinopathies, which includes SCA5, SPARCA1, and a form of West syndrome.

  1. Semiconductor devices having a recessed electrode structure

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  2. Recession trims third-quarter building costs

    SciTech Connect

    Morgan, J.M.

    1983-05-09

    The composite cost index for building oil pipelines during the third quarter of 1982 showed a decrease of 0.96%. This decrease was due to a steady drop in the rate of inflation for most pipeline construction materials during the first 9 months of the year. The major thrust behind the pipeline materials decline was a sharp 5.3% drop in the average price of steel line pipe. However, the pipeline construction recession has failed to deter escalating pipeline labor rates.

  3. Cutting Symmetrical Recesses In Soft Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Nesotas, Tony C.; Tyler, Brent

    1989-01-01

    Simple tool cuts hemispherical recesses in soft ceramic tiles. Designed to expose wires of thermocouples embedded in tiles without damaging leads. Creates neat, precise holes around wires. End mill includes axial hole to accommodate thermocouple wires embedded in material to be cut. Wires pass into hole without being bent or broken. Dimensions in inches. Used in place of such tools as dental picks, tweezers, spatulas, and putty knives.

  4. Etiology and occurrence of gingival recession - An epidemiological study

    PubMed Central

    Mythri, Sarpangala; Arunkumar, Suryanarayan Maiya; Hegde, Shashikanth; Rajesh, Shanker Kashyap; Munaz, Mohamed; Ashwin, Devasya

    2015-01-01

    Objectives: Gingival recession is the term used to characterize the apical shift of the marginal gingiva from its normal position on the crown of the tooth. It is frequently observed in adult subjects. The occurrence and severity of the gingival recession present considerable differences between populations. To prevent gingival recession from occurring, it is essential to detect the underlying etiology. The aim of the present study was to determine the occurrence of gingival recession and to identify the most common factor associated with the cause of gingival recession. Methods: A total of 710 subjects aged between 15 years to 60 years were selected. Data were collected by an interview with the help of a proforma and then the dental examination was carried out. The presence of gingival recession was recorded using Miller's classification of gingival recession. The Silness and Loe Plaque Index, Loe and Silness gingival index, community periodontal index were recorded. The data thus obtained were subjected to statistical analysis using Chi-square test and Student's unpaired t-test. Results: Of 710 subjects examined, 291 (40.98%) subjects exhibited gingival recession. The frequency of gingival recession was found to increase with age. High frequency of gingival recession was seen in males (60.5%) compared to females (39.5%). Gingival recession was commonly seen in mandibular incisors (43.0%). Miller's class I gingival recession was more commonly seen. The most common cause for gingival recession was dental plaque accumulation (44.1%) followed by faulty toothbrushing (42.7%). Conclusion: Approximately half of the subjects examined exhibited gingival recession. The etiology of gingival recession is multifactorial, and its appearance is always the result of more than one factor acting together. PMID:26941519

  5. Recessive Mutations in RTN4IP1 Cause Isolated and Syndromic Optic Neuropathies

    PubMed Central

    Angebault, Claire; Guichet, Pierre-Olivier; Talmat-Amar, Yasmina; Charif, Majida; Gerber, Sylvie; Fares-Taie, Lucas; Gueguen, Naig; Halloy, François; Moore, David; Amati-Bonneau, Patrizia; Manes, Gael; Hebrard, Maxime; Bocquet, Béatrice; Quiles, Mélanie; Piro-Mégy, Camille; Teigell, Marisa; Delettre, Cécile; Rossel, Mireille; Meunier, Isabelle; Preising, Markus; Lorenz, Birgit; Carelli, Valerio; Chinnery, Patrick F.; Yu-Wai-Man, Patrick; Kaplan, Josseline; Roubertie, Agathe; Barakat, Abdelhamid; Bonneau, Dominique; Reynier, Pascal; Rozet, Jean-Michel; Bomont, Pascale; Hamel, Christian P.; Lenaers, Guy

    2015-01-01

    Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased susceptibility to UV light. Silencing of RTN4IP1 altered the number and morphogenesis of mouse RGC dendrites in vitro and the eye size, neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mechanism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology, response to UV light, and dendrite growth during eye maturation. PMID:26593267

  6. Mutational founder effect in recessive dystrophic epidermolysis bullosa families from Southern Tunisia.

    PubMed

    Ben Brick, Ahlem Sabrine; Laroussi, Nadia; Mesrati, Hela; Kefi, Rym; Bchetnia, Mbarka; Lasram, Khaled; Ben Halim, Nizar; Romdhane, Lilia; Ouragini, Houyem; Marrakchi, Salaheddine; Boubaker, Mohamed Samir; Meddeb Cherif, Mounira; Castiglia, Daniele; Hovnanian, Alain; Abdelhak, Sonia; Turki, Hamida

    2014-05-01

    Dystrophic epidermolysis bullosa (DEB) is a group of heritable bullous skin disorders caused by mutations in the COL7A1 gene. One of the most severe forms of DEB is the severe generalized [recessive dystrophic epidermolysis bullosa (RDEB-SG)] subtype, which is inherited in an autosomal recessive manner. This subtype is most often due to COL7A1 mutations resulting in a premature termination codon on both alleles. We report here, the molecular investigation of 15 patients belonging to 14 nuclear families from the city of Sfax in Southern Tunisia, with clinical features of RDEB-SG complicated by squamous cell carcinoma in 3 patients. We identified two novel mutations, p.Val769LeufsX1 and p.Ala2297SerfsX91, in addition to one previously reported mutation (p.Arg2063Trp). The p.Val769LeufsX1 mutation was shared by 11 families and haplotype analysis indicated that it is a founder mutation. The p.Ala2297SerfsX91 mutation was a private mutation found in only one family. Together with the previously described recurrent mutations in Tunisia, screening for the founder p.Val769LeufsX1 mutation should provide a rapid molecular diagnosis tool for mutation screening in RDEB patients from Southern Tunisia and possibly from other Mediterranean populations sharing the same genetic background.

  7. X Chromosome and Autosome Dosage Responses in Drosophila melanogaster Heads

    PubMed Central

    Chen, Zhen-Xia; Oliver, Brian

    2015-01-01

    X chromosome dosage compensation is required for male viability in Drosophila. Dosage compensation relative to autosomes is two-fold, but this is likely to be due to a combination of homeostatic gene-by-gene regulation and chromosome-wide regulation. We have baseline values for gene-by-gene dosage compensation on autosomes, but not for the X chromosome. Given the evolutionary history of sex chromosomes, these baseline values could differ. We used a series of deficiencies on the X and autosomes, along with mutations in the sex-determination gene transformer-2, to carefully measure the sex-independent X-chromosome response to gene dosage in adult heads by RNA sequencing. We observed modest and indistinguishable dosage compensation for both X chromosome and autosome genes, suggesting that the X chromosome is neither inherently more robust nor sensitive to dosage change. PMID:25850426

  8. X Chromosome and Autosome Dosage Responses in Drosophila melanogaster Heads.

    PubMed

    Chen, Zhen-Xia; Oliver, Brian

    2015-04-07

    X chromosome dosage compensation is required for male viability in Drosophila. Dosage compensation relative to autosomes is two-fold, but this is likely to be due to a combination of homeostatic gene-by-gene regulation and chromosome-wide regulation. We have baseline values for gene-by-gene dosage compensation on autosomes, but not for the X chromosome. Given the evolutionary history of sex chromosomes, these baseline values could differ. We used a series of deficiencies on the X and autosomes, along with mutations in the sex-determination gene transformer-2, to carefully measure the sex-independent X-chromosome response to gene dosage in adult heads by RNA sequencing. We observed modest and indistinguishable dosage compensation for both X chromosome and autosome genes, suggesting that the X chromosome is neither inherently more robust nor sensitive to dosage change.

  9. A novel locus for alopecia with mental retardation syndrome (APMR2) maps to chromosome 3q26.2-q26.31.

    PubMed

    Wali, A; John, P; Gul, A; Lee, K; Chishti, M S; Ali, G; Hassan, M J; Leal, S M; Ahmad, W

    2006-09-01

    Congenital alopecia may occur either alone or in association with ectodermal and other abnormalities. On the bases of such associations, several different syndromes featuring congenital alopecia can be distinguished. Alopecia with mental retardation syndrome (APMR) is a rare autosomal recessive disorder, clinically characterized by total or partial hair loss and mental retardation. In the present study, a five-generation Pakistani family with multiple affected individuals with APMR was ascertained. Patients in this family exhibited typical features of APMR syndrome. The disease locus was mapped to chromosome 3q26.2-q26.31 by carrying out a genome scan followed by fine mapping. A maximum two-point logarithm of odds (LOD) score of 2.93 at theta=0.0 was obtained at markers D3S3053 and D3S2309. Multipoint linkage analysis resulted in a maximum LOD score of 4.57 with several markers, which supports the linkage. The disease locus was flanked by markers D3S1564 and D3S2427, which corresponds to 9.6-cM region according to the Rutgers combined linkage-physical map of the human genome (build 35) and contains 5.6 Mb. The linkage interval of the APMR locus identified here does not overlap with the one described previously; therefore, this locus has been designated as APMR2.

  10. A new classification system for gingival and palatal recession.

    PubMed

    Kumar, Ashish; Masamatti, Sujata Surendra

    2013-03-01

    Various classifications have been proposed to classify gingival recession. Miller's classification of gingival recession is most widely followed. With a wide array of cases in daily clinical practice, it is often difficult to classify numerous gingival recession cases according to defined criteria of the present classification systems. To propose a new classification system that gives a comprehensive depiction of recession defect that can be used to include cases that cannot be classified according to present classifications. A separate classification system for palatal recessions (PR) is also proposed. This article outlines the limitations of present classification systems and also the inability to classify PR. A new comprehensive classification system is proposed to classify recession on the basis of the position of interdental papilla and buccal/lingual/palatal recessions. PMID:23869122

  11. Recessive Mutations in the α3 (VI) Collagen Gene COL6A3 Cause Early-Onset Isolated Dystonia

    PubMed Central

    Zech, Michael; Lam, Daniel D.; Francescatto, Ludmila; Schormair, Barbara; Salminen, Aaro V.; Jochim, Angela; Wieland, Thomas; Lichtner, Peter; Peters, Annette; Gieger, Christian; Lochmüller, Hanns; Strom, Tim M.; Haslinger, Bernhard; Katsanis, Nicholas; Winkelmann, Juliane

    2015-01-01

    Isolated dystonia is a disorder characterized by involuntary twisting postures arising from sustained muscle contractions. Although autosomal-dominant mutations in TOR1A, THAP1, and GNAL have been found in some cases, the molecular mechanisms underlying isolated dystonia are largely unknown. In addition, although emphasis has been placed on dominant isolated dystonia, the disorder is also transmitted as a recessive trait, for which no mutations have been defined. Using whole-exome sequencing in a recessive isolated dystonia-affected kindred, we identified disease-segregating compound heterozygous mutations in COL6A3, a collagen VI gene associated previously with muscular dystrophy. Genetic screening of a further 367 isolated dystonia subjects revealed two additional recessive pedigrees harboring compound heterozygous mutations in COL6A3. Strikingly, all affected individuals had at least one pathogenic allele in exon 41, including an exon-skipping mutation that induced an in-frame deletion. We tested the hypothesis that disruption of this exon is pathognomonic for isolated dystonia by inducing a series of in-frame deletions in zebrafish embryos. Consistent with our human genetics data, suppression of the exon 41 ortholog caused deficits in axonal outgrowth, whereas suppression of other exons phenocopied collagen deposition mutants. All recessive mutation carriers demonstrated early-onset segmental isolated dystonia without muscular disease. Finally, we show that Col6a3 is expressed in neurons, with relevant mRNA levels detectable throughout the adult mouse brain. Taken together, our data indicate that loss-of-function mutations affecting a specific region of COL6A3 cause recessive isolated dystonia with underlying neurodevelopmental deficits and highlight the brain extracellular matrix as a contributor to dystonia pathogenesis. PMID:26004199

  12. Autosomal dominant inheritance of Brachmann-de Lange syndrome

    SciTech Connect

    Kozma, C.

    1996-12-30

    A mother with mild phenotype and her severely affected son, both with classic manifestations of Brachmann-de Lange syndrome (BDLS), are described. This documented mother-to-child transmission supports the hypothesis of autosomal dominant transmission with intrafamilial variability. Known cases of BDLS with autosomal dominant inheritance are reviewed. Although most cases of BDLS are sporadic, a careful evaluation of parents of affected children is important for appropriate genetic counseling. 15 refs., 3 figs., 1 tab.

  13. What mainly controls recession flows in river basins?

    NASA Astrophysics Data System (ADS)

    Biswal, Basudev; Nagesh Kumar, D.

    2014-03-01

    The ubiquity of the power law relationship between dQ/dt and Q for recession periods (-dQ/dt=kQα,Q being discharge at the basin outlet at time t) clearly hints at the existence of a dominant recession flow process that is common to all real basins. It is commonly assumed that a basin, during recession events, functions as a single phreatic aquifer resting on a impermeable horizontal bed or the Dupuit-Boussinesq (DB) aquifer, and with time different aquifer geometric conditions arise that give different values of α and k. The recently proposed alternative model, geomorphological recession flow model, however, suggests that recession flows are controlled primarily by the dynamics of the active drainage network (ADN). In this study we use data for several basins and compare the above two contrasting recession flow models in order to understand which of the above two factors dominates during recession periods in steep basins. Particularly, we do the comparison by selecting three key recession flow properties: (1) power law exponent α, (2) dynamic dQ/dt-Q relationship (characterized by k) and (3) recession timescale (time period for which a recession event lasts). Our observations suggest that neither drainage from phreatic aquifers nor evapotranspiration significantly controls recession flows. Results show that the value of α and recession timescale are not modeled well by DB aquifer model. However, the above mentioned three recession curve properties can be captured satisfactorily by considering the dynamics of the ADN as described by geomorphological recession flow model, possibly indicating that the ADN represents not just phreatic aquifers but the organization of various sub-surface storage systems within the basin.

  14. Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae.

    PubMed

    Vozdova, Miluse; Ruiz-Herrera, Aurora; Fernandez, Jonathan; Cernohorska, Halina; Frohlich, Jan; Sebestova, Hana; Kubickova, Svatava; Rubes, Jiri

    2016-09-01

    The recurrent occurrence of sex-autosome translocations during mammalian evolution suggests common mechanisms enabling a precise control of meiotic synapsis, recombination and inactivation of sex chromosomes. We used immunofluorescence and FISH to study the meiotic behaviour of sex chromosomes in six species of Bovidae with evolutionary sex-autosome translocations (Tragelaphus strepsiceros, Taurotragus oryx, Tragelaphus imberbis, Tragelaphus spekii, Gazella leptoceros and Nanger dama ruficollis). The autosomal regions of fused sex chromosomes showed normal synapsis with their homologous counterparts. Synapsis in the pseudoautosomal region (PAR) leads to the formation of characteristic bivalent (in T. imberbis and T. spekii with X;BTA13/Y;BTA13), trivalent (in T. strepsiceros and T. oryx with X/Y;BTA13 and G. leptoceros with X;BTA5/Y) and quadrivalent (in N. dama ruficollis with X;BTA5/Y;BTA16) structures at pachynema. However, when compared with other mammals, the number of pachynema lacking MLH1 foci in the PAR was relatively high, especially in T. imberbis and T. spekii, species with both sex chromosomes involved in sex autosome translocations. Meiotic transcriptional inactivation of the sex-autosome translocations assessed by γH2AX staining was restricted to their gonosomal regions. Despite intraspecies differences, the evolutionary fixation of sex-autosome translocations among bovids appears to involve general mechanisms ensuring sex chromosome pairing, synapsis, recombination and inactivation. PMID:27136937

  15. Meiotic behaviour of evolutionary sex-autosome translocations in Bovidae.

    PubMed

    Vozdova, Miluse; Ruiz-Herrera, Aurora; Fernandez, Jonathan; Cernohorska, Halina; Frohlich, Jan; Sebestova, Hana; Kubickova, Svatava; Rubes, Jiri

    2016-09-01

    The recurrent occurrence of sex-autosome translocations during mammalian evolution suggests common mechanisms enabling a precise control of meiotic synapsis, recombination and inactivation of sex chromosomes. We used immunofluorescence and FISH to study the meiotic behaviour of sex chromosomes in six species of Bovidae with evolutionary sex-autosome translocations (Tragelaphus strepsiceros, Taurotragus oryx, Tragelaphus imberbis, Tragelaphus spekii, Gazella leptoceros and Nanger dama ruficollis). The autosomal regions of fused sex chromosomes showed normal synapsis with their homologous counterparts. Synapsis in the pseudoautosomal region (PAR) leads to the formation of characteristic bivalent (in T. imberbis and T. spekii with X;BTA13/Y;BTA13), trivalent (in T. strepsiceros and T. oryx with X/Y;BTA13 and G. leptoceros with X;BTA5/Y) and quadrivalent (in N. dama ruficollis with X;BTA5/Y;BTA16) structures at pachynema. However, when compared with other mammals, the number of pachynema lacking MLH1 foci in the PAR was relatively high, especially in T. imberbis and T. spekii, species with both sex chromosomes involved in sex autosome translocations. Meiotic transcriptional inactivation of the sex-autosome translocations assessed by γH2AX staining was restricted to their gonosomal regions. Despite intraspecies differences, the evolutionary fixation of sex-autosome translocations among bovids appears to involve general mechanisms ensuring sex chromosome pairing, synapsis, recombination and inactivation.

  16. Screening for mutations in rhodopsin and peripherin/RDS in patients with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Rodriguez, J.A.; Gannon, A.M.; Daiger, S.P.

    1994-09-01

    Mutations in rhodopsin account for approximately 30% of all cases of autosomal dominant retinits pigmentosa (adRP) and mutations in peripherin/RDS account for an additional 5% of cases. Also, mutations in rhodopsin can cause autosomal recessive retinitis pigmentosa and mutations in peripherin/RDS can cause dominant macular degeneration. Most disease-causing mutations in rhodopsin and peripherin/RDS are unique to one family or, at most, to a few families within a limited geographic region, though a few mutations are found in multiple, unrelated families. To further determine the spectrum of genetic variation in these genes, we screened DNA samples from 134 unrelated patients with retinitis pigmentosa for mutations in both rhodopsin and peripherin/RDS using SSCP followed by genomic sequencing. Of the 134 patients, 86 were from families with apparent adRP and 48 were either isolated cases or were from families with an equivocal mode of inheritance. Among these patients we found 14 distinct rhodopsin mutations which are likely to cause retinal disease. Eleven of these mutations were found in one individual or one family only, whereas the Pro23His mutation was found in 14 {open_quotes}unrelated{close_quotes}individuals. The splice-site mutation produces dominant disease though with highly variable expression. Among the remaining patients were found 6 distinct peripherin/RDS mutations which are likely to cause retinal disease. These mutations were also found in one patient or family only, except the Gly266Asp mutation which was found in two unrelated patients. These results confirm the expected frequency and broad spectrum of mutations causing adRP.

  17. Molecular genetics of autosomal-dominant demyelinating Charcot-Marie-Tooth disease.

    PubMed

    Houlden, Henry; Reilly, Mary M

    2006-01-01

    Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous group of disorders and is the most common inherited neuromuscular disorder, with an estimated overall prevalence of 17-40/10,000. Although there has been major advances in the understanding of the genetic basis of CMT in recent years, the most useful classification is still a neurophysiological classification that divides CMT into type 1 (demyelinating; median motor conduction velocity < 38 m/s) and type 2 (axonal; median motor conduction velocity > 38 m/s). An intermediate type is also increasingly being described. Inheritance can be autosomal-dominant (AD), X-linked, or autosomal-recessive (AR). AD CMT1 is the most common type of CMT and was the first form of CMT in which a causative gene was described. This review provides an up-to-date overview of AD CMT1 concentrating on the molecular genetics as the clinical, neurophysiological, and pathological features have been covered elsewhere. Four genes (PMP22, MPZ, LITAF, and EGR2) have been described in the last 15 yr associated with AD CMTI and a further gene (NEFL), originally described as causing AD CMT2 can also cause AD CMT1 (by neurophysiological criteria). Studies have shown many of these genes, when mutated, can cause a wide range of CMT phenotypes from the relatively mild CMT1 to the more severe Dejerine-Sottas disease and congenital hypomyelinating neuropathy, and even in some cases axonal CMT2. This review discusses what is known about these genes and in particular how they cause a peripheral neuropathy, when mutated. PMID:16775366

  18. De Novo GMNN Mutations Cause Autosomal-Dominant Primordial Dwarfism Associated with Meier-Gorlin Syndrome

    PubMed Central

    Burrage, Lindsay C.; Charng, Wu-Lin; Eldomery, Mohammad K.; Willer, Jason R.; Davis, Erica E.; Lugtenberg, Dorien; Zhu, Wenmiao; Leduc, Magalie S.; Akdemir, Zeynep C.; Azamian, Mahshid; Zapata, Gladys; Hernandez, Patricia P.; Schoots, Jeroen; de Munnik, Sonja A.; Roepman, Ronald; Pearring, Jillian N.; Jhangiani, Shalini; Katsanis, Nicholas; Vissers, Lisenka E.L.M.; Brunner, Han G.; Beaudet, Arthur L.; Rosenfeld, Jill A.; Muzny, Donna M.; Gibbs, Richard A.; Eng, Christine M.; Xia, Fan; Lalani, Seema R.; Lupski, James R.; Bongers, Ernie M.H.F.; Yang, Yaping

    2015-01-01

    Meier-Gorlin syndrome (MGS) is a genetically heterogeneous primordial dwarfism syndrome known to be caused by biallelic loss-of-function mutations in one of five genes encoding pre-replication complex proteins: ORC1, ORC4, ORC6, CDT1, and CDC6. Mutations in these genes cause disruption of the origin of DNA replication initiation. To date, only an autosomal-recessive inheritance pattern has been described in individuals with this disorder, with a molecular etiology established in about three-fourths of cases. Here, we report three subjects with MGS and de novo heterozygous mutations in the 5′ end of GMNN, encoding the DNA replication inhibitor geminin. We identified two truncating mutations in exon 2 (the 1st coding exon), c.16A>T (p.Lys6∗) and c.35_38delTCAA (p.Ile12Lysfs∗4), and one missense mutation, c.50A>G (p.Lys17Arg), affecting the second-to-last nucleotide of exon 2 and possibly RNA splicing. Geminin is present during the S, G2, and M phases of the cell cycle and is degraded during the metaphase-anaphase transition by the anaphase-promoting complex (APC), which recognizes the destruction box sequence near the 5′ end of the geminin protein. All three GMNN mutations identified alter sites 5′ to residue Met28 of the protein, which is located within the destruction box. We present data supporting a gain-of-function mechanism, in which the GMNN mutations result in proteins lacking the destruction box and hence increased protein stability and prolonged inhibition of replication leading to autosomal-dominant MGS. PMID:26637980

  19. Recessive mutations in DOCK6, encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and Adams-Oliver syndrome.

    PubMed

    Shaheen, Ranad; Faqeih, Eissa; Sunker, Asma; Morsy, Heba; Al-Sheddi, Tarfa; Shamseldin, Hanan E; Adly, Nouran; Hashem, Mais; Alkuraya, Fowzan S

    2011-08-12

    Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition.

  20. Recessive Mutations in DOCK6, Encoding the Guanidine Nucleotide Exchange Factor DOCK6, Lead to Abnormal Actin Cytoskeleton Organization and Adams-Oliver Syndrome

    PubMed Central

    Shaheen, Ranad; Faqeih, Eissa; Sunker, Asma; Morsy, Heba; Al-Sheddi, Tarfa; Shamseldin, Hanan E.; Adly, Nouran; Hashem, Mais; Alkuraya., Fowzan S.

    2011-01-01

    Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition. PMID:21820096

  1. Evidence of Recessive Alzheimer Disease Loci in a Caribbean Hispanic Data Set

    PubMed Central

    Ghani, Mahdi; Sato, Christine; Lee, Joseph H.; Reitz, Christiane; Moreno, Danielle; Mayeux, Richard; St George-Hyslop, Peter; Rogaeva, Ekaterina

    2014-01-01

    IMPORTANCE The search for novel Alzheimer disease (AD) genes or pathologic mutations within known AD loci is ongoing. The development of array technologies has helped to identify rare recessive mutations among long runs of homozygosity (ROHs), in which both parental alleles are identical. Caribbean Hispanics are known to have an elevated risk for AD and tend to have large families with evidence of inbreeding. OBJECTIVE To test the hypothesis that the late-onset AD in a Caribbean Hispanic population might be explained in part by the homozygosity of unknown loci that could harbor recessive AD risk haplotypes or pathologic mutations. DESIGN We used genome-wide array data to identify ROHs (>1 megabase) and conducted global burden and locus-specific ROH analyses. SETTING A whole-genome case-control ROH study. PARTICIPANTS A Caribbean Hispanic data set of 547 unrelated cases (48.8% with familial AD) and 542 controls collected from a population known to have a 3-fold higher risk of AD vs non-Hispanics in the same community. Based on a Structure program analysis, our data set consisted of African Hispanic (207 cases and 192 controls) and European Hispanic (329 cases and 326 controls) participants. EXPOSURE Alzheimer disease risk genes. MAIN OUTCOMES AND MEASURES We calculated the total and mean lengths of the ROHs per sample. Global burden measurements among autosomal chromosomes were investigated in cases vs controls. Pools of overlapping ROH segments (consensus regions) were identified, and the case to control ratio was calculated for each consensus region. We formulated the tested hypothesis before data collection. RESULTS In total, we identified 17 137 autosomal regions with ROHs. The mean length of the ROH per person was significantly greater in cases vs controls (P = .0039), and this association was stronger with familial AD (P = .0005). Among the European Hispanics, a consensus region at the EXOC4 locus was significantly associated with AD even after correction for

  2. Homozygous carriers of APP A713T mutation in an autosomal dominant Alzheimer disease family

    PubMed Central

    Conidi, Maria E.; Bernardi, Livia; Puccio, Gianfranco; Smirne, Nicoletta; Muraca, Maria G.; Curcio, Sabrina A.M.; Colao, Rosanna; Piscopo, Paola; Gallo, Maura; Anfossi, Maria; Frangipane, Francesca; Clodomiro, Alessandra; Mirabelli, Maria; Vasso, Franca; Cupidi, Chiara; Torchia, Giusi; Di Lorenzo, Raffaele; Mandich, Paola; Confaloni, Annamaria; Maletta, Raffaele G.

    2015-01-01

    Objective: To report, for the first time, a large autosomal dominant Alzheimer disease (AD) family in which the APP A713T mutation is present in the homozygous and heterozygous state. To date, the mutation has been reported as dominant, and in the heterozygous state associated with familial AD and cerebrovascular lesions. Methods: The family described here has been genealogically reconstructed over 6 generations dating back to the 19th century. Plasma β-amyloid peptide was measured. Sequencing of causative AD genes was performed. Results: Twenty-one individuals, all but 1 born from 2 consanguineous unions, were studied: 8 were described as affected through history, 5 were studied clinically and genetically, and 8 were asymptomatic at-risk subjects. The A713T mutation was detected in the homozygous state in 3 patients and in the heterozygous state in 8 subjects (6 asymptomatic and 2 affected). Conclusions: Our findings, also supported by the β-amyloid plasma assay, confirm (1) the pathogenic role of the APP A713T mutation, (2) the specific phenotype (AD with cerebrovascular lesions) associated with this mutation, and (3) the large span of age at onset, not influenced by APOE, TOMM40, and TREM2 genes. No substantial differences concerning clinical phenotype were evidenced between heterozygous and homozygous patients, in line with the classic definition of dominance. Therefore, in this study, AD followed the classic definition of a dominant disease, contrary to that reported in a previously described AD family with recessive APP mutation. This confirms that genetic AD may be considered a disease with dominant and recessive traits of inheritance. PMID:25948718

  3. A gene defect causing a novel progressive epilepsy with mental retardation, EPMR, maps to chromosome 8p

    SciTech Connect

    Ranta, S.; Tahvanainen, E.; Karila, E.

    1994-09-01

    EPMR (progressive epilepsy with mental retardation) is a newly discovered autosomal recessively inherited disorder which occurs with high frequency in an isolated rural population in Finland. So far 25 patients have been identified, 21 of whom are alive. Twenty-three patients share a common ancestor from the 18th century. The main features of EPMR are: normal early development, tonic-clonic seizures with onset between ages 5 and 10, and mental retardation which begins approximately 2 years after the onset of epilepsy and soon leads to deepening mental retardation. Adult patients do not manage their daily life without help. The EEG is normal at the onset of epilepsy but later progressive slowing of the background activity occurs. The etiology and pathogenesis of EPMR remain known. As this is a novel disease entity without any definitive diagnostic marker we wished to begin its elucidation by first defining its gene locus. A random search for linkage in four multiplex families (only 20 individuals tested) resulted in the finding of linkage to marker D8S264 with a lod score of 4.45 at zero recombination. The EPMR gene resides in a 7 centimorgan interval between marker loci AFM185xb2 and D8S262 with a maximum multipoint lod score of 7.03 at 1.8 centimorgans proximal to D8S264. Physically this region is very distal on 8p. Of the sixteen EPMR chromosomes haplotyped 15 were identical or almost identical. One chromosome, however, had a distinctly different haplotype raising the possibility of there being two different mutations or one very old mutation. These findings are a starting point toward isolating and characterizing the gene and its protein product. Physical mapping has been initiated by isolating nine YACs from the region.

  4. CFLs in Recessed Downlights: Technical Challenges

    SciTech Connect

    Ledbetter, Marc R.; McCullough, Jeffrey J.; Dillon, Heather E.; Sandahl, Linda J.; Gordon, Kelly L.

    2005-05-09

    Recessed downlights are the most popular residential lighting fixture in the United States representing about 12 percent of installed residential lighting fixtures and 15 percent of total lighting energy use nationwide. We estimate 400 million recessed downlights are currently installed in American homes, almost all using incandescent light sources. In the year 2000, only 0.44 percent of recessed cans sold were hard-wired for using pin-based CFLs. Recessed downlights consume energy in three ways. First, their incandescent light sources use energy directly, drawing 65 to 150 watts. Second, they consume energy indirectly by adding heat from their light sources to air-conditioning loads. Third, since most are not airtight, they also consume energy indirectly by allowing conditioned air to escape into unconditioned areas above the downlights, such as attics. PNNL calculated potential energy savings and found that if a 65W incandescent non-airtight downlight is replaced with a 26W CFL ICAT downlight operated at 3 hrs per day savings will be 126 kWh/yr. Early reflector CFLs have had high return rates primarily because of failure due to thermal related stress. A PNNL laboratory test of ten commercially available R-CFLs selected from retail store shelves showed almost all operated above their manufacturer rated maximum operating temperatures when they were installed and tested in ICAT downlights in a simulated insulated ceiling apparatus. DOE asked PNNL to investigate the development and introduction of both pin-based and screw-based CFLs for use in ICAT fixtures. PNNL invited manufacturers to submit lamps to a procurement program. PNNL conducted short- and long-term thermal testing of the lamps to measure performance parameters affected by elevated temperatures. 8 out of 10 R-CFLs (secrew-based lamps) failed the long-tem testing. Five out of nine CFL-ICAT (pin-based CFL) fixtures passed the long-term test, surviving a full year of operation in a simulated insulated

  5. Mental Health

    MedlinePlus

    Mental health includes our emotional, psychological, and social well-being. It affects how we think, feel and act as ... stress, relate to others, and make choices. Mental health is important at every stage of life, from ...

  6. Autosomal Translocation Patient Who Experienced Premature Menopause: A Case Report

    PubMed Central

    Kim, Yesol; Jeong, Do-won; Lee, Eun-gyeong; Jeon, Dong-Su; Kim, Jun-Mo

    2015-01-01

    Premature ovarian failure (POF) is a condition in which the ovarian functions of hormone production and oocyte development become impaired before the typical age for menopause. POF and early menopause are present in a broad spectrum of gonad dysgenesis, from a complete cessation of ovarian function to an intermittent follicle maturation failure. Actually POF has been identified as a genetic entity (especially chromosome X), but data on genetic factors of premature menopause are limited. Until now, several cases revealed that inactivation of X chromosomes has an effect on ages of premature menopause and females with balanced or unbalanced X-autosome translocations can have several reproductive problems. On the other hand, there have been a few data that was caused by autosome-autosome translocation can lead. Therefore we report a relevant case of POF with translocation between chromosomes 1 and 4. She had her first menstrual period at the age of 12, and after 7 years she stopped menstruation. Chromosomal analysis showed 46, XX, t (1;4) (p22.3;q31.3). While evaluating this rare case, we could review various causes (especially genetic factors) of POF. To remind clinicians about this disease, we report a case of POF caused by autosome-autosome translocation with a literature review. PMID:26356509

  7. Autosomal Translocation Patient Who Experienced Premature Menopause: A Case Report.

    PubMed

    Kim, Tae-Hee; Kim, Yesol; Jeong, Do-Won; Lee, Eun-Gyeong; Jeon, Dong-Su; Kim, Jun-Mo

    2015-08-01

    Premature ovarian failure (POF) is a condition in which the ovarian functions of hormone production and oocyte development become impaired before the typical age for menopause. POF and early menopause are present in a broad spectrum of gonad dysgenesis, from a complete cessation of ovarian function to an intermittent follicle maturation failure. Actually POF has been identified as a genetic entity (especially chromosome X), but data on genetic factors of premature menopause are limited. Until now, several cases revealed that inactivation of X chromosomes has an effect on ages of premature menopause and females with balanced or unbalanced X-autosome translocations can have several reproductive problems. On the other hand, there have been a few data that was caused by autosome-autosome translocation can lead. Therefore we report a relevant case of POF with translocation between chromosomes 1 and 4. She had her first menstrual period at the age of 12, and after 7 years she stopped menstruation. Chromosomal analysis showed 46, XX, t (1;4) (p22.3;q31.3). While evaluating this rare case, we could review various causes (especially genetic factors) of POF. To remind clinicians about this disease, we report a case of POF caused by autosome-autosome translocation with a literature review. PMID:26356509

  8. Identification and Characterization of Autosomal Genes That Interact with Glass in the Developing Drosophila Eye

    PubMed Central

    Ma, C.; Liu, H.; Zhou, Y.; Moses, K.

    1996-01-01

    The glass gene encodes a zinc finger, DNA-binding protein that is required for photoreceptor cell development in Drosophila melanogaster. In the developing compound eye, glass function is regulated at two points: (1) the protein is expressed in all cells' nuclei posterior to the morphogenetic furrow and (2) the ability of the Glass protein to regulate downstream genes is largely limited to the developing photoreceptor cells. We conducted a series of genetic screens for autosomal dominant second-site modifiers of the weak allele glass(3), to discover genes with products that may regulate glass function at either of these levels. Seventy-six dominant enhancer mutations were recovered (and no dominant suppressors). Most of these dominant mutations are in essential genes and are associated with recessive lethality. We have assigned these mutations to 23 complementation groups that include multiple alleles of Star and hedgehog as well as single alleles of Delta, roughened eye, glass and hairy. Mutations in 18 of the complementation groups are embryonic lethals, and of these, 13 show abnormal adult retinal phenotypes in homozygous clones, usually with altered numbers of photoreceptor cells in some of the ommatidia. PMID:8846898

  9. Identification and characterization of autosomal genes that interact with glass in the developing Drosophila eye

    SciTech Connect

    Ma, Chaoyong; Liu, Hui; Zhou, Ying; Moses, K.

    1996-04-01

    The glass gene encodes a zinc finger, DNA-binding protein that is required for photoreceptor cell development in Drosophila melanogaster. In the developing compound eye, glass function is regulated at two points: (1) the protein is expressed in all cells` nuclei posterior to the morphogenetic furrow and (2) the ability of the Glass protein to regulate downstream genes is largely limited to the developing photoreceptor cells. We conducted a series of genetic screen for autosomal dominant second-site modifiers of the weak allele glass, to discover genes with products that may regulate glass function at either of these levels. Seventy-six dominant enhancer mutations were recovered (and no dominant suppressors). Most of these dominant mutations are in essential genes and are associated with recessive lethality. We have assigned these mutations to 23 complementation groups that include multiple alleles of Star and hedgehog as well as single alleles of Delta, roughened eye, glass and hairy. Mutations in 18 of the complementation groups are embryonic lethals, and of these, 13 show abnormal adult retinal phenotypes in homozygous clones, usually with altered numbers of photoreceptor cells in some of the ommatidia. 116 refs., 9 figs., 2 tabs.

  10. Simple Y-autosomal incompatibilities cause hybrid male sterility in reciprocal crosses between Drosophila virilis and D. americana.

    PubMed

    Sweigart, Andrea L

    2010-03-01

    Postzygotic reproductive isolation evolves when hybrid incompatibilities accumulate between diverging populations. Here, I examine the genetic basis of hybrid male sterility between two species of Drosophila, Drosophila virilis and D. americana. From these analyses, I reach several conclusions. First, neither species carries any autosomal dominant hybrid male sterility alleles: reciprocal F(1) hybrid males are perfectly fertile. Second, later generation (backcross and F(2)) hybrid male sterility between D. virilis and D. americana is not polygenic. In fact, I identified only three genetically independent incompatibilities that cause hybrid male sterility. Remarkably, each of these incompatibilities involves the Y chromosome. In one direction of the cross, the D. americana Y is incompatible with recessive D. virilis alleles at loci on chromosomes 2 and 5. In the other direction, the D. virilis Y chromosome causes hybrid male sterility in combination with recessive D. americana alleles at a single QTL on chromosome 5. Finally, in contrast with findings from other Drosophila species pairs, the X chromosome has only a modest effect on hybrid male sterility between D. virilis and D. americana.

  11. Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras.

    PubMed

    Chou, T B; Noll, E; Perrimon, N

    1993-12-01

    The 'dominant female-sterile' technique used to generate germ-line mosaics in Drosophila is a powerful tool to determine the tissue specificity (germ line versus somatic) of recessive female-sterile mutations as well as to analyze the maternal effect of recessive zygotic lethal mutations. This technique requires the availability of germ-line-dependent, dominant female-sterile (DFS) mutations that block egg laying but do not affect viability. To date only one X-linked mutation, ovoD1 has been isolated that completely fulfills these criteria. Thus the 'DFS technique' has been largely limited to the X-chromosome. To extend this technique to the autosomes, we have cloned the ovoD1 mutation into a P-element vector and recovered fully expressed P[ovoD1] insertions on each autosomal arm. We describe the generation of these P[ovoD1] strains as well as demonstrate their use in generating germ-line chimeras. Specifically, we show that the Gap1 gene, which encodes a Drosophila homologue of mammalian GTPase-activating protein, is required in somatic follicle cells for embryonic dorsoventral polarity determination.

  12. Impact of recession on Swiss pension program.

    PubMed

    McArdle, F B

    1978-04-01

    Legislation drafted in Switzerland in 1975--77 aims at countering the effects of inflation and recession by bringing increased revenues into the system, reducing expenditures, devising a mechanism to adjust pensions automatically, and improving income maintenance for the unemployed. The proposed legislation to place the social security system on a sound financial basis now needs voter approval in a referendum. Swiss voters meanwhile rejected (in mid-1977) a government-proposed value-added tax designed to finance increasing government contributions during 1978-82. Still to be resolved, therefore, is the problem of how the government will finance higher contributions and still achieve its staged goal of a balanced budget. PMID:644419

  13. Intimate Partner Violence in the Great Recession.

    PubMed

    Schneider, Daniel; Harknett, Kristen; McLanahan, Sara

    2016-04-01

    In the United States, the Great Recession was marked by severe negative shocks to labor market conditions. In this study, we combine longitudinal data from the Fragile Families and Child Wellbeing Study with U.S. Bureau of Labor Statistics data on local area unemployment rates to examine the relationship between adverse labor market conditions and mothers' experiences of abusive behavior between 2001 and 2010. Unemployment and economic hardship at the household level were positively related to abusive behavior. Further, rapid increases in the unemployment rate increased men's controlling behavior toward romantic partners even after we adjust for unemployment and economic distress at the household level. We interpret these findings as demonstrating that the uncertainty and anticipatory anxiety that go along with sudden macroeconomic downturns have negative effects on relationship quality, above and beyond the effects of job loss and material hardship. PMID:27003136

  14. Did the Great Recession influence retirement plans?

    PubMed

    Szinovacz, Maximiliane E; Davey, Adam; Martin, Lauren

    2015-04-01

    The recent recession constitutes one of the macro forces that may have influenced workers' retirement plans. We evaluate a multilevel model that addresses the influence of macro-, meso-, and micro-level factors on retirement plans, changes in these plans, and expected retirement age. Using data from Waves 8 and 9 of the Health and Retirement Study (N=2,618), we find that individuals with defined benefit plans are more prone to change toward plans to stop work before the stock market declined, whereas the opposite trend holds for those without pensions. Debts, ability to reduce work hours, and firm unionization also influenced retirement plans. Findings suggest retirement planning education may be particularly important for workers without defined pensions, especially in times of economic volatility.

  15. Sex Differences in Speed of Mental Rotation and the X-Linked Genetic Hypothesis.

    ERIC Educational Resources Information Center

    Thomas, Hoben; Kail, Robert

    1991-01-01

    Mental-rotation task response times from 12 studies involving 505 adults--251 males and 254 females--were used to evaluate 5 hypotheses concerning sex differences derived from an X-linked genetic model. The model assumes that task facilitation in speed of mental rotation is mediated by a recessive gene. Four hypotheses derived from the model were…

  16. Parents' Victory in Reclaiming Recess for Their Children

    ERIC Educational Resources Information Center

    Zygmunt-Fillwalk, Eva; Bilello, Teresa Evanko

    2005-01-01

    This article discusses the issue of schools limiting the opportunities for children's physical, cognitive, social-emotional, and creative development that recess affords. Red Rover, hopscotch, jump rope, chase, telling secrets, hanging out, making friends, losing friends--these familiar pursuits of childhood recess are vividly memorable. While…

  17. Physical Education and Recess Contributions to Sixth Graders' Physical Activity

    ERIC Educational Resources Information Center

    Gutierrez, Ashley A.; Williams, Skip M.; Coleman, Margaret M.; Garrahy, Deborah A.; Laurson, Kelly R.

    2016-01-01

    Background: The purpose of this study was twofold: (a) to examine the percentage of the daily threshold (12,000 steps) that physical education (PE) class and recess contribute to 6th grade students' overall daily physical activity (PA) and (b) to examine the relationships between gender, PA outside of school, BMI, and steps during both recess and…

  18. Social Skills Intervention during Elementary School Recess: A Visual Analysis.

    ERIC Educational Resources Information Center

    Anderson-Butcher, Dawn; Newsome, W. Sean; Nay, Stephanie

    2003-01-01

    This study builds on two studies that explored the effect of a social skills intervention on problem behaviors displayed by elementary school children during recess. Findings conclude that social skills intervention significantly decreased problem behaviors among school children at recess. Implications for behavioral management and healthy school…

  19. The Impact of the Recession on College Students

    ERIC Educational Resources Information Center

    Berg-Cross, Linda; Green, Rodney

    2010-01-01

    This article had three goals: (a) to provide a brief economic review of the relationship between recessionary times, institutional reactions, and the life trajectory of recession-era college students; (b) to discuss the recession-related psychosocial stressors facing today's college students; and (c) to discuss how counseling centers can help…

  20. Withholding Recess from Elementary School Students: Policies Matter

    ERIC Educational Resources Information Center

    Turner, Lindsey; Chriqui, Jamie F.; Chaloupka, Frank J.

    2013-01-01

    Background: Recess is a key aspect of a healthy elementary school environment and helps to keep students physically active during the school day. Although national organizations recommend that students not be withheld from recess, this practice occurs in schools. This study examined whether district policies were associated with school practices…

  1. Children's Recess Physical Activity: Movement Patterns and Preferences

    ERIC Educational Resources Information Center

    Woods, Amelia Mays; Graber, Kim C.; Daum, David Newman

    2012-01-01

    The benefits of recess can be reaped by all students regardless of socioeconomic status, race, or gender and at relatively little cost. The purpose of this study was to examine physical activity (PA) variables related to the recess PA patterns of third and fourth grade children and the social preferences and individuals influencing their PA…

  2. The Fourth R: Recess and Its Link to Learning.

    ERIC Educational Resources Information Center

    Waite-Stupiansky, Sandra; Findlay, Marcia

    2001-01-01

    Review of research on recess shows how its presence or absence affects children's brain development, health and physical development, attention, memory, social and emotional adjustment, language development, and classroom behavior. Despite demonstrated benefits, recess is endangered by pressures on schools to increase achievement. (Contains 52…

  3. Who Suffers during Recessions? NBER Working Paper No. 17951

    ERIC Educational Resources Information Center

    Hoynes, Hilary W.; Miller, Douglas L.; Schaller, Jessamyn

    2012-01-01

    In this paper we examine how business cycles affect labor market outcomes in the United States. We conduct a detailed analysis of how cycles affect outcomes differentially across persons of differing age, education, race, and gender, and we compare the cyclical sensitivity during the Great Recession to that in the early 1980s recession. We present…

  4. "United Pedicle Flap" for management of multiple gingival recessions.

    PubMed

    Chopra, Aditi; Sivaraman, Karthik; Bhat, Subraya Giliyar

    2016-01-01

    Numerous surgical procedures have evolved and are being modified with time to treat gingival recession by manipulating gingival or mucosal tissues in various ways. However, the decision to choose the most appropriate technique for a given recession site still remains a challenging task for clinicians. Mucogingival deformities such as shallow vestibule, frenal pull, or inadequate attached gingiva complicate the decision and limit the treatment options to an invasive procedure involving soft tissue grafts. The situation is further comprised if there is a nonavailability of adequate donor tissue and patients' unwillingness for procedures involving a second surgical site. In such situations, the recession either remains untreated or has poor treatment outcomes. This case report presents a modified pedicle graft technique for treatment of multiple gingival recessions with shallow vestibule and inadequate attached gingiva. The technique is a promising therapeutic alternative to invasive surgical procedures such as soft tissue grafts for treatment of multiple gingival recessions. PMID:27563212

  5. Mental Retardation.

    ERIC Educational Resources Information Center

    Purpura, Dominick P.; And Others

    Evidence today indicates that the causes of mental retardation are biological, psychological, and social in origin and that a combination of these causes frequently occur in a single individual. Mental retardation is identified clinically by the presence of several signs that include, but are not limited to, a significant impairment of…

  6. Exome sequencing identifies recessive CDK5RAP2 variants in patients with isolated agenesis of corpus callosum.

    PubMed

    Jouan, Loubna; Ouled Amar Bencheikh, Bouchra; Daoud, Hussein; Dionne-Laporte, Alexandre; Dobrzeniecka, Sylvia; Spiegelman, Dan; Rochefort, Daniel; Hince, Pascale; Szuto, Anna; Lassonde, Maryse; Barbelanne, Marine; Tsang, William Y; Dion, Patrick A; Théoret, Hugo; Rouleau, Guy A

    2016-04-01

    Agenesis of the corpus callosum (ACC) is a common brain malformation which can be observed either as an isolated condition or as part of numerous congenital syndromes. Therefore, cognitive and neurological involvements in patients with ACC are variable, from mild linguistic and behavioral impairments to more severe neurological deficits. To date, the underlying genetic causes of isolated ACC remains elusive and causative genes have yet to be identified. We performed exome sequencing on three acallosal siblings from the same non-consanguineous family and identified compound heterozygous variants, p.[Gly94Arg];[Asn1232Ser], in the protein encoded by the CDK5RAP2 gene, also known as MCPH3, a gene previously reported to cause autosomal recessive primary microcephaly. Our findings suggest a novel role for this gene in the pathogenesis of isolated ACC. PMID:26197979

  7. Coat color genetics of Peromyscus: III. Golden-nugget--a recessive trait in the white-footed mouse, P. leucopus.

    PubMed

    Horner, B E; Dawson, W D

    1993-01-01

    A novel pelage color variant appeared in a laboratory colony of white-footed mice (Peromyscus leucopus) from Massachusetts. The mature adult coat color of this variant exhibits a rich golden tan appearance on the dorsum with white underparts. The trait is inherited as an autosomal recessive. Phenotypic comparisons with other rodents suggest that the trait is attributable to an allele at the brown (b) locus. Under laboratory conditions homozygous or heterozygous golden-nugget Peromyscus do not differ significantly from the wild type in litter size, litter survival, nest defense, or body weight. The possibility that the allele confers some adaptive value in nature is considered. The trait is given the tentative designation bgn (golden-nugget).

  8. Expanding the Clinical Spectrum of SPG11 Gene Mutations in Recessive Hereditary Spastic Paraplegia with Thin Corpus Callosum

    PubMed Central

    Aleem, Alice Abdel; Abu-Shahba, Nourhan; Swistun, Dominika; Silhavy, Jennifer; Bielas, Stephanie L.; Sattar, Shifteh; Gleeson, Joseph G.; Zaki, Maha

    2011-01-01

    Hereditary spastic paraplegia (HSP) represents a large group of neurological disorders characterized by progressive spasticity of the lower limbs. One subtype of HSP shows an autosomal recessive form of inheritance with this corpus callosum (ARHSP-TCC), and displays genetic heterogeneity with four known loci. We identified a consanguineous Egyptian family with five affected individuals with ARHSP-TCC. We found linkage to the SPG11 locus and identified a novel homozygous p.Q498X stop codon mutation in exon 7 in the SPG11 gene encoding Spatacsin. Cognitive impairment and polyneuropathy, reported as frequent in SPG11, were not evident. This family supports the importance of SPG11 as a frequent cause for ARHSP-TCC, and expands the clinic SPG11 spectrum. PMID:20971220

  9. A novel L218P mutation in NADH-cytochrome b5 reductase associated with type I recessive congenital methemoglobinemia.

    PubMed

    Arikoglu, Tugba; Yarali, Nese; Kara, Abdurrahman; Bay, Ali; Bozkaya, Ikbal O; Tunc, Bahattin; Percy, Melanie J

    2009-01-01

    The presence of central cyanosis that is unrelated to cardiopulmonary causes alerts clinicians to a possible diagnosis of methemoglobinemia. Congenital methemoglobinemia due to deficiency of nicotinamide-adenine dinucleotide (NADH)-cytochrome b5 reductase (cb(5)r) is an autosomal recessive disorder characterized by life long cyanosis. Here we report a six-year old boy who presented with central cyanosis and upon examination revealed a methemoglobin level of 19.0%. Sequencing the CYB5R3 gene identified a homozygous T-->C transition at base c.653, which changed codon 218 from leucine to proline (L218P) in cb(5)r protein. Treatment with ascorbic acid relieved the cyanosis and returned methemoglobin levels to normal. PMID:19579085

  10. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis.

    PubMed

    Adam, Ronja; Spier, Isabel; Zhao, Bixiao; Kloth, Michael; Marquez, Jonathan; Hinrichsen, Inga; Kirfel, Jutta; Tafazzoli, Aylar; Horpaopan, Sukanya; Uhlhaas, Siegfried; Stienen, Dietlinde; Friedrichs, Nicolaus; Altmüller, Janine; Laner, Andreas; Holzapfel, Stefanie; Peters, Sophia; Kayser, Katrin; Thiele, Holger; Holinski-Feder, Elke; Marra, Giancarlo; Kristiansen, Glen; Nöthen, Markus M; Büttner, Reinhard; Möslein, Gabriela; Betz, Regina C; Brieger, Angela; Lifton, Richard P; Aretz, Stefan

    2016-08-01

    In ∼30% of families affected by colorectal adenomatous polyposis, no germline mutations have been identified in the previously implicated genes APC, MUTYH, POLE, POLD1, and NTHL1, although a hereditary etiology is likely. To uncover further genes with high-penetrance causative mutations, we performed exome sequencing of leukocyte DNA from 102 unrelated individuals with unexplained adenomatous polyposis. We identified two unrelated individuals with differing compound-heterozygous loss-of-function (LoF) germline mutations in the mismatch-repair gene MSH3. The impact of the MSH3 mutations (c.1148delA, c.2319-1G>A, c.2760delC, and c.3001-2A>C) was indicated at the RNA and protein levels. Analysis of the diseased individuals' tumor tissue demonstrated high microsatellite instability of di- and tetranucleotides (EMAST), and immunohistochemical staining illustrated a complete loss of nuclear MSH3 in normal and tumor tissue, confirming the LoF effect and causal relevance of the mutations. The pedigrees, genotypes, and frequency of MSH3 mutations in the general population are consistent with an autosomal-recessive mode of inheritance. Both index persons have an affected sibling carrying the same mutations. The tumor spectrum in these four persons comprised colorectal and duodenal adenomas, colorectal cancer, gastric cancer, and an early-onset astrocytoma. Additionally, we detected one unrelated individual with biallelic PMS2 germline mutations, representing constitutional mismatch-repair deficiency. Potentially causative variants in 14 more candidate genes identified in 26 other individuals require further workup. In the present study, we identified biallelic germline MSH3 mutations in individuals with a suspected hereditary tumor syndrome. Our data suggest that MSH3 mutations represent an additional recessive subtype of colorectal adenomatous polyposis. PMID:27476653

  11. Urbanization and the global malaria recession

    PubMed Central

    2013-01-01

    Background The past century has seen a significant contraction in the global extent of malaria transmission, resulting in over 50 countries being declared malaria free, and many regions of currently endemic countries eliminating the disease. Moreover, substantial reductions in transmission have been seen since 1900 in those areas that remain endemic today. Recent work showed that this malaria recession was unlikely to have been driven by climatic factors, and that control measures likely played a significant role. It has long been considered, however, that economic development, and particularly urbanization, has also been a causal factor. The urbanization process results in profound socio-economic and landscape changes that reduce malaria transmission, but the magnitude and extent of these effects on global endemicity reductions are poorly understood. Methods Global data at subnational spatial resolution on changes in malaria transmission intensity and urbanization trends over the past century were combined to examine the relationships seen over a range of spatial and temporal scales. Results/Conclusions A consistent pattern of increased urbanization coincident with decreasing malaria transmission and elimination over the past century was found. Whilst it remains challenging to untangle whether this increased urbanization resulted in decreased transmission, or that malaria reductions promoted development, the results point to a close relationship between the two, irrespective of national wealth. The continuing rapid urbanization in malaria-endemic regions suggests that such malaria declines are likely to continue, particularly catalyzed by increasing levels of direct malaria control. PMID:23594701

  12. New method for calculating a mathematical expression for streamflow recession

    USGS Publications Warehouse

    Rutledge, Albert T.

    1991-01-01

    An empirical method has been devised to calculate the master recession curve, which is a mathematical expression for streamflow recession during times of negligible direct runoff. The method is based on the assumption that the storage-delay factor, which is the time per log cycle of streamflow recession, varies linearly with the logarithm of streamflow. The resulting master recession curve can be nonlinear. The method can be executed by a computer program that reads a data file of daily mean streamflow, then allows the user to select several near-linear segments of streamflow recession. The storage-delay factor for each segment is one of the coefficients of the equation that results from linear least-squares regression. Using results for each recession segment, a mathematical expression of the storage-delay factor as a function of the log of streamflow is determined by linear least-squares regression. The master recession curve, which is a second-order polynomial expression for time as a function of log of streamflow, is then derived using the coefficients of this function.

  13. Recessions, Job Loss, and Mortality Among Older US Adults

    PubMed Central

    Beckfield, Jason

    2014-01-01

    Objectives. We analyzed how recessions and job loss jointly shape mortality risks among older US adults. Methods. We used data for 50 states from the Health and Retirement Study and selected individuals who were employed at ages 45 to 66 years during 1992 to 2011. We assessed whether job loss affects mortality risks, whether recessions moderate the effect of job loss on mortality, and whether individuals who do and do not experience job loss are differentially affected by recessions. Results. Compared with individuals not experiencing job loss, mortality risks among individuals losing their job in a recession were strongly elevated (hazard ratio = 1.6; 95% confidence interval = 1.1, 2.3). Job loss during normal times or booms is not associated with mortality. For employed workers, we found a reduction in mortality risks if local labor market conditions were depressed, but this result was not consistent across different model specifications. Conclusions. Recessions increase mortality risks among older US adults who experience job loss. Health professionals and policymakers should target resources to this group during recessions. Future research should clarify which health conditions are affected by job loss during recessions and whether access to health care following job loss moderates this relation. PMID:25211731

  14. A general geomorphological recession flow model for river basins

    NASA Astrophysics Data System (ADS)

    Biswal, Basudev; Nagesh Kumar, D.

    2013-08-01

    Recession flows in a basin are controlled by the temporal evolution of its active drainage network (ADN). The geomorphological recession flow model (GRFM) assumes that both the rate of flow generation per unit ADN length (q) and the speed at which ADN heads move downstream (c) remain constant during a recession event. Thereby, it connects the power law exponent of -dQ/dt versus Q (discharge at the outlet at time t) curve, α, with the structure of the drainage network, a fixed entity. In this study, we first reformulate the GRFM for Horton-Strahler networks and show that the geomorphic α (αg) is equal to D/>(D-1>), where D is the fractal dimension of the drainage network. We then propose a more general recession flow model by expressing both q and c as functions of Horton-Strahler stream order. We show that it is possible to have α =α g for a recession event even when q and c do not remain constant. The modified GRFM suggests that α is controlled by the spatial distribution of subsurface storage within the basin. By analyzing streamflow data from 39 U.S. Geological Survey basins, we show that α is having a power law relationship with recession curve peak, which indicates that the spatial distribution of subsurface storage varies across recession events.

  15. ADCK3, an Ancestral Kinase, Is Mutated in a Form of Recessive Ataxia Associated with Coenzyme Q10 Deficiency

    PubMed Central

    Lagier-Tourenne, Clotilde; Tazir, Meriem; López, Luis Carlos; Quinzii, Catarina M.; Assoum, Mirna; Drouot, Nathalie; Busso, Cleverson; Makri, Samira; Ali-Pacha, Lamia; Benhassine, Traki; Anheim, Mathieu; Lynch, David R.; Thibault, Christelle; Plewniak, Frédéric; Bianchetti, Laurent; Tranchant, Christine; Poch, Olivier; DiMauro, Salvatore; Mandel, Jean-Louis; Barros, Mario H.; Hirano, Michio; Koenig, Michel

    2008-01-01

    Muscle coenzyme Q10 (CoQ10 or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ10 biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ10 deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ10 in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ10 biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphoinositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production. PMID:18319074

  16. Visual mental imagery in congenital prosopagnosia.

    PubMed

    Grüter, Thomas; Grüter, Martina; Bell, Vaughan; Carbon, Claus-Christian

    2009-04-10

    Congenital prosopagnosia (cPA) is a selective impairment in the visual learning and recognition of faces without detectable brain damage or malformation. There is evidence that it can be inherited in an autosomal dominant mode of inheritance. We assessed the capacity for visual mental imagery in 53 people with cPA using an adapted Marks' VVIQ (Vividness of Visual Imaging Questionnaire). The mean score of the prosopagnosic group showed the lowest mental imagery scores ever published for a non-brain damaged group. In a subsample of 12 people with cPA, we demonstrated that the cPA is a deficit of configural face processing. We suggest that the 'VVIQ-PA' (VVIQ-Prosopagnosia) questionnaire can help to confirm the diagnosis of cPA. Poor mental imagery, a configural face processing impairment and clinical prosopagnosia should be considered as symptoms of a yet poorly understood hereditary cerebral dysfunction.