Science.gov

Sample records for autotrophic nitrifying granules

  1. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies.

    PubMed

    Fujitani, Hirotsugu; Kumagai, Asami; Ushiki, Norisuke; Momiuchi, Kengo; Tsuneda, Satoshi

    2015-01-01

    Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB) or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representatives of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member's ecophysiology in a variety of habitats.

  2. Selective isolation of ammonia-oxidizing bacteria from autotrophic nitrifying granules by applying cell-sorting and sub-culturing of microcolonies

    PubMed Central

    Fujitani, Hirotsugu; Kumagai, Asami; Ushiki, Norisuke; Momiuchi, Kengo; Tsuneda, Satoshi

    2015-01-01

    Nitrification is a key process in the biogeochemical nitrogen cycle and biological wastewater treatment that consists of two stepwise reactions, ammonia oxidation by ammonia-oxidizing bacteria (AOB) or archaea followed by nitrite oxidation by nitrite-oxidizing bacteria. One of the representatives of the AOB group is Nitrosomonas mobilis species. Although a few pure strains of this species have been isolated so far, approaches to their preservation in pure culture have not been established. Here, we report isolation of novel members of the N. mobilis species from autotrophic nitrifying granules used for ammonia-rich wastewater treatment. We developed an isolation method focusing on microcolonies formation of nitrifying bacteria. Two kinds of distinctive light scattering signatures in a cell-sorting system enabled to separate microcolonies from single cells and heterogeneous aggregates within granule samples. Inoculation of a pure microcolony into 96-well microtiter plates led to successful sub-culturing and increased probability of isolation. Obtained strain Ms1 is cultivated in the liquid culture with relatively high ammonia or nitrite concentration, not extremely slow growing. Considering environmental clones that were closely related to N. mobilis and detected in various environments, the availability of this novel strain would facilitate to reveal this member’s ecophysiology in a variety of habitats. PMID:26528282

  3. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor.

    PubMed

    Thandar, Soe Myat; Ushiki, Norisuke; Fujitani, Hirotsugu; Sekiguchi, Yuji; Tsuneda, Satoshi

    2016-01-01

    Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L(-1) (2.14 mM) of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05-0.07 h(-1), which corresponded to a generation time of 10-14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70 ± 0.51 μM NH4(+) and 0.01 ± 0.002 pmol NH4(+) cells(-1) h(-1), respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were Km(O2) = 21.74 ± 4.01 μM O2 and V max(O2) = 0.06 ± 0.02 pmol O2 cells(-1) h(-1). Ms1 grew well at ammonium and NaCl concentrations of up to 100 and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM) compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The current

  4. Ecophysiology and Comparative Genomics of Nitrosomonas mobilis Ms1 Isolated from Autotrophic Nitrifying Granules of Wastewater Treatment Bioreactor

    PubMed Central

    Thandar, Soe Myat; Ushiki, Norisuke; Fujitani, Hirotsugu; Sekiguchi, Yuji; Tsuneda, Satoshi

    2016-01-01

    Ammonia-oxidizing bacteria (AOB), which oxidize ammonia to nitrite in the first step of nitrification, play an important role in biological wastewater treatment systems. Nitrosomonas mobilis is an important and dominant AOB in various wastewater treatment systems. However, the detailed physiological and genomic properties of N. mobilis have not been thoroughly investigated because of limited success isolating pure cultures. This study investigated the key physiological characteristics of N. mobilis Ms1, which was previously isolated into pure culture from the nitrifying granules of wastewater treatment bioreactor. The pure culture of N. mobilis Ms1 was cultivated in liquid mineral medium with 30 mg-N L-1 (2.14 mM) of ammonium at room temperature under dark conditions. The optimum growth of N. mobilis Ms1 occurred at 27°C and pH 8, with a maximum growth rate of 0.05–0.07 h-1, which corresponded to a generation time of 10–14 h. The half saturation constant for ammonium uptake rate and the maximum ammonium uptake rate of N. mobilis Ms1 were 30.70 ± 0.51 μM NH4+ and 0.01 ± 0.002 pmol NH4+ cells-1 h-1, respectively. N. mobilis Ms1 had higher ammonia oxidation activity than N. europaea in this study. The oxygen uptake activity kinetics of N. mobilis Ms1 were Km(O2) = 21.74 ± 4.01 μM O2 and V max(O2) = 0.06 ± 0.02 pmol O2 cells-1 h-1. Ms1 grew well at ammonium and NaCl concentrations of up to 100 and 500 mM, respectively. The nitrite tolerance of N. mobilis Ms1 was extremely high (up to 300 mM) compared to AOB previously isolated from activated sludge and wastewater treatment plants. The average nucleotide identity between the genomes of N. mobilis Ms1 and other Nitrosomonas species indicated that N. mobilis Ms1 was distantly related to other Nitrosomonas species. The organization of the genes encoding protein inventory involved in ammonia oxidation and nitrifier denitrification processes were different from other Nitrosomonas species. The current study

  5. Carbon and Energy Sources for the Nitrifying Autotroph Nitrobacter

    PubMed Central

    Delwiche, C. C.; Finstein, M. S.

    1965-01-01

    Delwiche, C. C. (University of California, Davis), and M. S. Finstein. Carbon and energy sources for the nitrifying autotroph Nitrobacter. J. Bacteriol. 90:102–107. 1965.—The effect of various organic compounds on the growth and metabolism of the obligatively autotrophic nitrifying organism Nitrobacter was studied. A slight stimulation of both nitrification and growth was obtainable with a number of organic amendments, including yeast extract, Vitamin Free Casamino Acids, and some amino acids. Depending upon culture conditions, a strong stimulation of growth was obtained with acetate as an amendment to the culture solution. Several compounds, including valine, hydroxyproline, and threonine, were inhibitory at concentrations of 10−3m. The incorporation of carbon from isotopically labeled organic compounds was demonstrated. Acetate and glycine were particularly strong contributors to cell carbons. These could not substitute for carbon dioxide as a sole carbon source for growth, however, nor could any other of the carbon compounds that were tried. PMID:16562002

  6. Variation in Heterotrophic and Autotrophic Nitrifier Populations in Relation to Nitrification in Organic Soils †

    PubMed Central

    Tate, Robert L.

    1980-01-01

    The occurrence of heterotrophic and autotrophic nitrifiers in Pahokee muck and the role of these organisms in the ecosystem were assessed by surveying their population densities under different field conditions and by observing the relationship of these populations with aerobic bacteria and soil moisture. Heterotrophic nitrifier populations varied from 2.0 × 105 to 3.8 × 106 bacteria per cm3 of muck in surface fallow (bare) Pahokee muck during the annual cycle. This population decreased 40-fold between the surface and the 60- to 70-cm depths of soil. Similar variations were noted with autotrophic nitrifier populations. Significant correlations were found between heterotrophic nitrifiers and both soil moisture and aerobic bacteria. These relationships did not exist for the autotrophic nitrifiers. In soil that had been heated to kill the autotrophic nitrifiers, while preserving a population of the heterotrophs, and then amended with sodium acetate or ammonium sulfate or both, no nitrate or nitrite accumulated, although significant increases in heterotrophic nitrifiers were detected. In unheated control soil, nitrate plus nitrite-N increased from 14.3 to 181 μg/g of wet soil, and 48 μg of nitrite-N per g was produced. These data suggest that the autotrophic nitrifiers were the sole population responsible for nitrification in Pahokee muck. PMID:16345599

  7. Autotrophic growth of nitrifying community in an agricultural soil

    PubMed Central

    Xia, Weiwei; Zhang, Caixia; Zeng, Xiaowei; Feng, Youzhi; Weng, Jiahua; Lin, Xiangui; Zhu, Jianguo; Xiong, Zhengqin; Xu, Jian; Cai, Zucong; Jia, Zhongjun

    2011-01-01

    The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. PMID:21326337

  8. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    NASA Astrophysics Data System (ADS)

    Veuger, Bart; Pitcher, Angela; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Middelburg, Jack J.

    2013-04-01

    A dual stable isotope (15N and 13C) tracer approach in combination with compound-specific stable isotope analysis of bacterial and Thaumarchaeotal lipid biomarkers was used to investigate nitrification and the associated growth of autotrophic nitrifiers in the Dutch coastal North Sea. This study focusses on the stoichiometry between nitrification and DIC fixation by autotrophic nitrifiers as well as on the contributions of bacteria versus Thaumarchaeota to total autotrophic DIC-fixation by nitrifiers. Water from the dutch coastal North Sea was collected at weekly to biweekly intervals during the winter of 2007-2008. Watersamples were incubated with 15N-labeled ammonium and 15N was traced into nitrate and suspended material to quantify rates of nitrification and ammonium assimilation respectively. Growth of autotrophic nitrifiers was measured by incubating water samples with 13C-DIC in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate) and subsequent analysis of 13C in bacterial phospholipid-derived fatty acids (PLFAs) and the Thaumarchaeotal biomarker crenarchaeol. Results revealed high nitrification rates with nitrification being the primary sink for ammonium. 13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27-95%). The ratio between rates of nitrification versus DIC fixation by nitrifiers was higher or even much higher than typical values for autotrophic nitrifiers, indicating that little DIC was fixed relative to the amount of energy that was generated by nitrification, and hence that other other processes for C acquisition may have been relevant as well. The inhibitor-sensitive 13C-PLFA pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. Cell-specific 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the

  9. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    NASA Astrophysics Data System (ADS)

    Veuger, B.; Pitcher, A.; Schouten, S.; Sinninghe Damsté, J. S.; Middelburg, J. J.

    2013-03-01

    Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC (dissolved inorganic carbon) in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate) in combination with compound-specific stable isotope (13C) analysis of bacterial and Thaumarchaeotal lipid biomarkers. Net nitrification during the sampling period was evident from the concentration dynamics of ammonium, nitrite and nitrate. Measured nitrification rates were high (41-221 nmol N L-1 h-1). Ammonium assimilation was always substantially lower than nitrification - with nitrification on average contributing 89% (range 73-97%) to total ammonium consumption. 13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27-95 %). The inhibitor-sensitive 13C-PLFA (phospholipid-derived fatty acid) pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the nitrifying Thaumarchaeota throughout the whole sampling period, even during the peak in Thaumarchaeotal abundance and activity. This suggests that the contribution of autotrophic Thaumarchaeota to nitrification during winter in the coastal North Sea may have been smaller than expected from their gene abundance (16S rRNA and amoA (ammonia monooxygenase)). These results emphasize the importance of direct measurements of the actual activity of bacteria and Thaumarchaeota, rather than abundance measurements only, in order to

  10. Nitrification and growth of autotrophic nitrifying bacteria and Thaumarchaeota in the coastal North Sea

    NASA Astrophysics Data System (ADS)

    Veuger, B.; Pitcher, A.; Schouten, S.; Sinninghe Damsté, J. S.; Middelburg, J. J.

    2012-11-01

    Nitrification and the associated growth of autotrophic nitrifiers, as well as the contributions of bacteria and Thaumarchaeota to total autotrophic C-fixation by nitrifiers were investigated in the Dutch coastal North Sea from October 2007 to March 2008. Rates of nitrification were determined by incubation of water samples with 15N-ammonium and growth of autotrophic nitrifiers was measured by incubation with 13C-DIC in the presence and absence of nitrification inhibitors (nitrapyrin and chlorate) in combination with compound-specific stable isotope (13C) analysis of bacterial- and Thaumarchaeotal lipid biomarkers. Net nitrification during the sampling period was evident from the concentration dynamics of ammonium, nitrite and nitrate. Measured nitrification rates were high (41-221 nmol N l-1h-1). Ammonium assimilation was always substantially lower than nitrification with nitrification on average contributing 89% (range 73-97%) to total ammonium consumption. 13C-DIC fixation into bacterial and Thaumarchaeotal lipids was strongly reduced by the nitrification inhibitors (27-95%). The inhibitor-sensitive 13C-PLFA pool was dominated by the common PLFAs 16:0, 16:1ω7c and 18:1ω7c throughout the whole sampling period and occasionally also included the polyunsaturated fatty acids 18:2ω6c and 18:3ω3. Cell-specific 13C-DIC fixation activity of the nitrifying bacteria was much higher than that of the nitrifying Thaumarchaeota throughout the whole sampling period, even during the peak in Thaumarchaeotal abundance and activity. This suggests that the contribution of autotrophic Thaumarchaeota to nitrification during winter in the coastal North Sea may have been smaller than expected from their gene abundance. These results emphasize the importance of direct measurements of the actual activity of bacteria and Thaumarchaeota, rather than abundance measurements only, in order to elucidate their biogeochemical importance. The ratio between rates of nitrification versus DIC

  11. Formation mechanism of nitrifying granules observed in an aerobic upflow fluidized bed (AUFB) reactor.

    PubMed

    Tsuneda, S; Ejiri, Y; Nagano, T; Hirata, A

    2004-01-01

    The influences of trace metals in the wastewater and shear stress by aeration were particularly examined to clarify the formation mechanism of nitrifying granules in an aerobic upflow fluidized bed (AUFB) reactor. It was found that Fe added as a trace element to the inorganic wastewater accumulated at the central part of the nitrifying granules. Another result obtained was that suitable shear stress by moderate aeration (0.07-0.20 L/min/L-bed) promoted granulation. Furthermore, it was successfully demonstrated that pre-aggregation of seed sludge using hematite promoted core formation, leading to rapid production of nitrifying granules. From these results, a nitrifying granulation mechanism is proposed: 1) as a first step, nitrifying bacteria aggregate along with Fe precipitation, and then the cores of granules are formed; 2) as a second step, the aggregates grow to be spherical or elliptical in form due to multiplication of the nitrifying bacteria and moderate shear stress in the reactor, and then mature nitrifying granules are produced. Fluorescence in situ hybridization (FISH) analysis successfully visualized the change in the spatial distribution of nitrifying bacteria in the granules, which supports the proposed granulation mechanism.

  12. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification.

    PubMed

    Yang, Weiming; Lu, Hui; Khanal, Samir K; Zhao, Qing; Meng, Liao; Chen, Guang-Hao

    2016-11-01

    Sulfur-oxidizing bacteria (SOB) was successfully employed for effective autotrophic denitrification and sludge minimization in a full-scale application of saline sewage treatment in Hong Kong. In this study, a Granular Sludge Autotrophic Denitrification (GSAD) reactor was continuously operated over 600 days for SOB granulation, and to evaluate the long-term stability of SOB granules, microbial communities and denitrification efficacy. Sludge granulation initiated within the first 40 days of start-up with an average particle size of 186.4 μm and sludge volume index (SVI5) of 40 mL/g in 5 min. The sludge granules continued to grow reaching a nearly uniform size of mean diameter 1380 ± 20 μm with SVI5 of 30 mL/g during 600 days of GSAD reactor operation at hydraulic retention time of 5 h and nitrate loading rate of 0.33 kg-N/m(3)/d. The GSAD reactor with SOB granular sludge achieved 93.7 ± 2.1% nitrogen and complete sulfide removal with low sludge yield of 0.15 g-volatile suspended solids (VSS)/g-N, and much lower nitrous oxide (N2O) emission than the heterotrophic denitrifying process. Microbial community analysis using fluorescence in situ hybridization (FISH) technique revealed that granules were enriched with SOB contributing to autotrophic denitrification. Furthermore, 16S rRNA analysis showed diverse autotrophic denitrification related genera, namely Thiobacillus (32.6%), Sulfurimonas (31.3%), and Arcobacter (0.01%), accounting for 63.9% of total operational taxonomic units at the generic level. No heterotrophic denitrification related genera were detected. The results from this study could provide useful design and operating conditions with respect to SOB sludge granulation and its subsequent application in a full-scale autotrophic denitrification in the Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI) process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Population dynamics and in situ kinetics of nitrifying bacteria in autotrophic nitrifying biofilms as determined by real-time quantitative PCR.

    PubMed

    Kindaichi, Tomonori; Kawano, Yoshiko; Ito, Tsukasa; Satoh, Hisashi; Okabe, Satoshi

    2006-08-20

    Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.

  14. Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N sub 2 O emissions

    SciTech Connect

    Tortoso, A.C.; Hutchinson, G.L. )

    1990-06-01

    Soil emission of gaseous N oxides during nitrification of ammonium represents loss of an available plant nutrient and has an important impact on the chemistry of the atmosphere. We used selective inhibitors and a glucose amendment in a factorial design to determine the relative contributions of autotrophic ammonium oxidizers, autotrophic nitrite oxidizers, and heterotrophic nitrifiers to nitric oxide (NO) and nitrous oxide (N{sub 2}O) emissions from aerobically incubated soil following the addition of 160 mg of N as ammonium sulfate kg{sup {minus}1}. Without added C, peak NO emissions of 4 {mu}g of N kg{sup {minus}1}h{sup {minus}1} were increased to 15 {mu}g of N kg{sup {minus}1} h{sup {minus}1} by the addition of sodium chlorate, a nitrite oxidation inhibitor, but were reduced to 0.01 {mu}g of N kg{sup {minus}1} h{sup {minus}1} in the presence of nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine), an inhibitor of autotrophic ammonium oxidation. Carbon-amended soils had somewhat higher NO emission rates from these three treatments (6, 18, and 0.1 {mu}g of N kg{sup {minus}1} h{sup {minus}1} after treatment with glucose, sodium chlorate, or nitrapyrin, respectively) until the glucose was exhausted but lower rates during the remainder of the incubation. Nitrous oxide emission levels exhibited trends similar to those observed for NO but were about 20 times lower. Periodic soil chemical analyses showed no increase in the nitrate concentration of soil treated with sodium chlorate until after the period of peak NO and N{sub 2}O emissions; the nitrate concentration of soil treated with nitrapyrin remained unchanged throughout the incubation. These results suggest that chemoautotrophic ammonium-oxidizing bacteria are the predominant source of NO and N{sub 2}O produced during nitrification in soil.

  15. Contributions of Autotrophic and Heterotrophic Nitrifiers to Soil NO and N2O Emissions †

    PubMed Central

    Tortoso, A. C.; Hutchinson, G. L.

    1990-01-01

    Soil emission of gaseous N oxides during nitrification of ammonium represents loss of an available plant nutrient and has an important impact on the chemistry of the atmosphere. We used selective inhibitors and a glucose amendment in a factorial design to determine the relative contributions of autotrophic ammonium oxidizers, autotrophic nitrite oxidizers, and heterotrophic nitrifiers to nitric oxide (NO) and nitrous oxide (N2O) emissions from aerobically incubated soil following the addition of 160 mg of N as ammonium sulfate kg−1. Without added C, peak NO emissions of 4 μg of N kg−1 h−1 were increased to 15 μg of N kg−1 h−1 by the addition of sodium chlorate, a nitrite oxidation inhibitor, but were reduced to 0.01 μg of N kg−1 h−1 in the presence of nitrapyrin [2-chloro-6-(trichloromethyl)-pyridine], an inhibitor of autotrophic ammonium oxidation. Carbon-amended soils had somewhat higher NO emission rates from these three treatments (6, 18, and 0.1 μg of N kg−1 h−1 after treatment with glucose, sodium chlorate, or nitrapyrin, respectively) until the glucose was exhausted but lower rates during the remainder of the incubation. Nitrous oxide emission levels exhibited trends similar to those observed for NO but were about 20 times lower. Periodic soil chemical analyses showed no increase in the nitrate concentration of soil treated with sodium chlorate until after the period of peak NO and N2O emissions; the nitrate concentration of soil treated with nitrapyrin remained unchanged throughout the incubation. These results suggest that chemoautotrophic ammonium-oxidizing bacteria are the predominant source of NO and N2O produced during nitrification in soil. PMID:16348220

  16. Rapid formation of nitrifying granules treating high-strength ammonium wastewater in a sequencing batch reactor.

    PubMed

    Chen, Fang-Yuan; Liu, Yong-Qiang; Tay, Joo-Hwa; Ning, Ping

    2015-05-01

    Short initial settling time and rapidly increased ammonium nitrogen loading were employed to cultivate nitrifying granular sludge treating inorganic wastewater with 1000 mg/L ammonium nitrogen. It was found that the nitrifying granule-dominant sludge was formed in a sequencing batch reactor (SBR) with influent ammonium concentration increased from 200 to 1000 mg N/L within 55 days. During the following 155-day operation period, nitrifying granules exhibited good performance with an ammonium removal efficiency of 99%. In the meantime, sludge volume index (SVI) decreased from 92 to 15 mL/g and the mean size of the nitrifying granules increased from 106 to 369 μm. Mixed liquor suspended solids (MLSS) decreased from the initial 6.4 to around 3 g/L during the granulation period and increased to over 10 g/L at the end of the operation. The long-term stability of nitrifying granules and the reactor performance were not negatively affected by inhibition from free ammonia (FA) and free nitrous acid (FNA) in this study. This makes the granule sludge technology promising in treating high-strength ammonium wastewater in practice.

  17. Influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules.

    PubMed

    Song, Zhiwei; Li, Ting; Wang, Qiuxu; Pan, Yu; Li, Lixin

    2015-09-01

    In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16s rDNA sequence and denaturing gradient gel electrophoresis (DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index (SVI) value of 20mL/g, high extracellular polymeric substance (EPS) content of 183.3mg/L, high NH4(+)-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules. Copyright © 2015. Published by Elsevier B.V.

  18. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers

    PubMed Central

    Mußmann, Marc; Brito, Ivana; Pitcher, Angela; Sinninghe Damsté, Jaap S.; Hatzenpichler, Roland; Richter, Andreas; Nielsen, Jeppe L.; Nielsen, Per Halkjær; Müller, Anneliese; Daims, Holger; Wagner, Michael; Head, Ian M.

    2011-01-01

    Nitrification is a core process in the global nitrogen cycle that is essential for the functioning of many ecosystems. The discovery of autotrophic ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota has changed our perception of the microbiology of nitrification, in particular since their numerical dominance over ammonia-oxidizing bacteria (AOB) in many environments has been revealed. These and other data have led to a widely held assumption that all amoA-encoding members of the Thaumarchaeota (AEA) are autotrophic nitrifiers. In this study, 52 municipal and industrial wastewater treatment plants were screened for the presence of AEA and AOB. Thaumarchaeota carrying amoA were detected in high abundance only in four industrial plants. In one plant, thaumarchaeotes closely related to soil group I.1b outnumbered AOB up to 10,000-fold, and their numbers, which can only be explained by active growth in this continuous culture system, were two to three orders of magnitude higher than could be sustained by autotrophic ammonia oxidation. Consistently, 14CO2 fixation could only be detected in AOB but not in AEA in actively nitrifying sludge from this plant via FISH combined with microautoradiography. Furthermore, in situ transcription of archaeal amoA, and very weak in situ labeling of crenarchaeol after addition of 13CO2, was independent of the addition of ammonium. These data demonstrate that some amoA-carrying group I.1b Thaumarchaeota are not obligate chemolithoautotrophs. PMID:21930919

  19. A comparison of NO and N2O production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis.

    PubMed Central

    Anderson, I C; Poth, M; Homstead, J; Burdige, D

    1993-01-01

    Soil microorganisms are important sources of the nitrogen trace gases NO and N2O for the atmosphere. Present evidence suggests that autotrophic nitrifiers such as Nitrosomonas europaea are the primary producers of NO and N2O in aerobic soils, whereas denitrifiers such as Pseudomonas spp. or Alcaligenes spp. are responsible for most of the NO and N2O emissions from anaerobic soils. It has been shown that Alcaligenes faecalis, a bacterium common in both soil and water, is capable of concomitant heterotrophic nitrification and denitrification. This study was undertaken to determine whether heterotrophic nitrification might be as important a source of NO and N2O as autotrophic nitrification. We compared the responses of N. europaea and A. faecalis to changes in partial O2 pressure (pO2) and to the presence of typical nitrification inhibitors. Maximal production of NO and N2O occurred at low pO2 values in cultures of both N. europaea (pO2, 0.3 kPa) and A. faecalis (pO2, 2 to 4 kPa). With N. europaea most of the NH4+ oxidized was converted to NO2-, with NO and N2O accounting for 2.6 and 1% of the end product, respectively. With A. faecalis maximal production of NO occurred at a pO2 of 2 kPa, and maximal production of N2O occurred at a pO2 of 4 kPa. At these low pO2 values there was net nitrite consumption. Aerobically, A. faecalis produced approximately the same amount of NO but 10-fold more N2O per cell than N. europaea did. Typical nitrification inhibitors were far less effective for reducing emissions of NO and N2O by A. faecalis than for reducing emissions of NO and N2O by N. europaea.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8285659

  20. Nitrification and Autotrophic Nitrifying Bacteria in a Hydrocarbon-Polluted Soil

    PubMed Central

    Deni, Jamal; Penninckx, Michel J.

    1999-01-01

    In vitro ammonia-oxidizing bacteria are capable of oxidizing hydrocarbons incompletely. This transformation is accompanied by competitive inhibition of ammonia monooxygenase, the first key enzyme in nitrification. The effect of hydrocarbon pollution on soil nitrification was examined in situ. In a microcosm study, adding diesel fuel hydrocarbon to an uncontaminated soil (agricultural unfertilized soil) treated with ammonium sulfate dramatically reduced the amount of KCl-extractable nitrate but stimulated ammonium consumption. In a soil with long history of pollution that was treated with ammonium sulfate, 90% of the ammonium was transformed into nitrate after 3 weeks of incubation. Nitrate production was twofold higher in the contaminated soil than in the agricultural soil to which hydrocarbon was not added. To assess if ammonia-oxidizing bacteria acquired resistance to inhibition by hydrocarbon, the contaminated soil was reexposed to diesel fuel. Ammonium consumption was not affected, but nitrate production was 30% lower than nitrate production in the absence of hydrocarbon. The apparent reduction in nitrification resulted from immobilization of ammonium by hydrocarbon-stimulated microbial activity. These results indicated that the hydrocarbon inhibited nitrification in the noncontaminated soil (agricultural soil) and that ammonia-oxidizing bacteria in the polluted soil acquired resistance to inhibition by the hydrocarbon, possibly by increasing the affinity of nitrifying bacteria for ammonium in the soil. PMID:10473409

  1. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    PubMed

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Distribution of Nitrosomonas europaea and Nitrobacter winogradskyi in an autotrophic nitrifying biofilm reactor as depicted by molecular analyses and mathematical modelling.

    PubMed

    Montràs, Anna; Pycke, Benny; Boon, Nico; Gòdia, Francesc; Mergeay, Max; Hendrickx, Larissa; Pérez, Julio

    2008-03-01

    The autotrophic two-species biofilm from the packed bed reactor of a life-support system, containing Nitrosomonas europaea ATCC 19718 and Nitrobacter winogradskyi ATCC 25391, was analysed after 4.8 years of continuous operation performing complete nitrification. Real-time quantitative polymerase chain reaction (Q-PCR) was used to quantify N. europaea and N. winogradskyi along the vertical axis of the reactor, revealing a spatial segregation of N. europaea and N. winogradskyi. The main parameters influencing the spatial segregation of both nitrifiers along the bed were assessed through a multi-species one-dimensional biofilm model generated with AQUASIM software. The factor that contributed the most to this distribution profile was a small deviation from the flow pattern of a perfectly mixed tank towards plug-flow. The results indicate that the model can estimate the impact of specific biofilm parameters and predict the nitrification efficiency and population dynamics of a multispecies biofilm.

  3. The small-scale production of (U-14C)acetylene from Ba14CO3: Application to labeling of ammonia monooxygenase in autotrophic nitrifying bacteria

    SciTech Connect

    Hyman, M.R.; Arp, D.J. )

    1990-11-01

    A small-scale method has been adapted from an established procedure for the generation of (U-14C)acetylene from inexpensive and commonly available precursors. The method involves the fusing of Ba14CO3 with excess barium metal to produce Ba14C2. The BaC2 is reacted with water to generate acetylene which is then selectively dissolved into dimethyl sulfoxide (DMSO). The results presented demonstrate the effect of Ba:BaCO3 ratio on the concentrations of various gases released during the hydrolysis reaction and quantify the selectivity of the DMSO-trapping process for each gas. (U-14C)Acetylene generated by this method has been used to inactivate ammonia monooxygenase in three species of autotrophic nitrifying bacteria: Nitrosomonas europaea, Nitrosococcus oceanus, and Nitrosolobus multiformis. Our results demonstrate that acetylene inactivation of this enzyme in all three species results in the covalent incorporation of radioactive label into a polypeptide of apparent Mr of 25,000-27,000, as determined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and fluorography.

  4. Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes.

    PubMed

    Kindaichi, T; Okabe, S; Satoh, H; Watanabe, Y

    2004-01-01

    Effects of hydroxylamine (NH2OH), an intermediate of NH4+ oxidation, on microbial community structure and function of two autotrophic nitrifying biofilms fed with and without NH2OH were analyzed by a 16S rRNA approach and the use of microelectrodes. In the NH2OH-added biofilm, partial oxidation of NH4+ to NO2- was observed, whereas complete oxidation of NH4+ to NO3- was achieved in the control biofilm. In situ hybridization results revealed that no nitrite-oxidizing bacteria (NOB) hybridized with any specific probes were detected in the NH2OH-added biofilm. Thus, the addition of low concentrations of NH2OH (250 microM) completely inhibited the growth of NOB. Phylogenetic analysis of 16S rDNA indicated that the ammonia-oxidizing bacteria (AOB) detected in both biofilms were closely related to Nitrosomonas europaea, and that the clone sequences from both biofilm libraries have more than 99% similarity to each other. However, in situ hybridization results revealed that the addition of NH2OH changed the form of growth pattern of the dominant Nitrosomonas spp. from dense clusters mode to single scattered cells mode. Microelectrode measurements revealed that the average NH4+ consumption rate calculated in the NH2OH-added biofilm was two times higher than that in the control biofilm. This clearly demonstrated that the oxidation of NH4+ was stimulated by NH2OH addition.

  5. Partial nitrifying granule stimulated by struvite carrier in treating pharmaceutical wastewater.

    PubMed

    Wang, Guowen; Wang, Dong; Xu, Xiaochen; Yang, Fenglin

    2013-10-01

    Aerobic granule was successfully cultivated in SBR (sequencing batch reactor) by struvite carrier (magnesium ammonium phosphate, MgNH4PO4), which can increase polysaccharides to 42.2 mg/gMLVSS (mixed liquor volatile suspended solid) versus only 28.4 mg/gMLVSS of the sludge without it. Meanwhile, it was found that struvite play a positive role in initial granulation and bacterial group distribution in treating pharmaceutical wastewater, involving effect of solid surface and special contents of struvite. The results of fluorescence in situ hybridization technique indicate that ammonia-oxidizing bacteria can dominate over nitrite-oxidizing bacteria in mature granules. COD removal efficiency of 90 % and NO2 (-)-N:(NO2 (-)-N + NO3 (-)-N) accumulation efficiency of 89 % were achieved in stable state. Emphasis is placed on that struvite addition can be applied as a new-type carrier to promote formation of partial nitrification granular sludge.

  6. A quantitative measure of nitrifying bacterial growth.

    PubMed

    Pollard, Peter C

    2006-05-01

    Nitrifying bacteria convert ammonia (NH3) to nitrate (NO3-) in a nitrification reaction. Methods to quantitatively separate the growth rate of these important bacterial populations from that of the dominant heterotrophic bacteria are important to our understanding of the nitrification process. The changing concentration of ammonia is often used as an indirect measure of nitrification but ammonification processes generate ammonia and confound this approach while heterotrophs remove nitrate via denitrification. Molecular probe methods can tell us what proportion of the microbial community is nitrifying bacteria but not their growth rate. The technique proposed here was able to quantify the growth rate of the nitrifying bacterial populations amidst complex ecological processes. The method incubates [methyl-3H] thymidine with water samples in the presence and absence of an inhibitor of nitrification-thiourea. The radioactively labeled DNA in the growing bacteria was extracted. The rate of incorporation of the label into the dividing bacterial DNA was used to determine bacterial growth rate. Total bacterial community growth rates in full-scale and pilot-scale fixed-film nitrifying reactors and an activated sludge reactor were 2.1 x 10(8), 4.1 x 10(8) and 0.4 x 10(8)cell ml(-1)d(-1), respectively; the growth rate of autotrophic-nitrifying bacteria was 0.7 x 10(8), 2.6 x 10(8) and 0.01 x 10(8)cell ml(-1)d(-1), respectively. Autotrophic-nitrifying bacteria contributed 30% and 60% of the total bacterial community growth rate in the nitrifying reactors whereas only 2% was observed in the activated sludge reactor that was not designed to nitrify. The rates of ammonia loss from the nitrifying reactors corresponded to the rate of growth of the nitrifying bacteria. This method has the potential to more often identify factors that enhance or limit nitrifying processes in both engineered and natural aquatic environments.

  7. Understanding Nitrifier Denitrification: How far are we?

    NASA Astrophysics Data System (ADS)

    Wrage-Mönnig, N.

    2014-12-01

    Nitrifier denitrification is the oxidation of ammonia (NH3) via hydroxylamine (NH2OH) to nitrite (NO2-) and subsequent reduction of NO2- via nitric oxide (NO) to the greenhouse gas nitrous oxide (N2O) and possibly to dinitrogen (N2) by autotrophic nitrifiers. Especially in recent years, a lot of research has been conducted on this pathway. Under some conditions, it might dominate the N2O production from soils. Methods for studying nitrifier denitrification include selective inhibition, stable isotope and isotopomer methods, molecular and modelling approaches. They are applied from pure culture and pot studies to the field scale, trying to improve our knowledge of the conditions and factors controlling nitrifier denitrification. But how far are we? What have we learned so far and what remains to be discovered? With this contribution, I am trying to give an update of our understanding of this less well-known but important pathway.

  8. Oxygen-Nitrogen Relationships in Autotrophic Nitrification

    PubMed Central

    Wezernak, C. T.; Gannon, J. J.

    1967-01-01

    Oxygen utilization by the autotrophic nitrifiers Nitrosomonas and Nitrobacter was studied. Experimental evidence is presented which reflects the effect of carbon dioxide fixation on overall oxygen utilization in autotrophic nitrification. Measurement of dissolved oxygen and inorganic nitrogen changes indicates that oxygen-nitrogen ratios in inorganic nitrogen oxidation are equal to 3.22 parts (expressed in milligrams per liter) of oxygen per part of ammonia nitrogen oxidized to nitrite nitrogen and 1.11 parts of oxygen per part of nitrite nitrogen oxidized to nitrate nitrogen. These values rather than the stoichiometric ratios should be used in nitrogenous oxygen demand calculations. PMID:6077417

  9. Nitrifying bacterial growth inhibition in the presence of algae and cyanobacteria.

    PubMed

    Choi, Okkyoung; Das, Atreyee; Yu, Chang-Ping; Hu, Zhiqiang

    2010-12-15

    Nitrifying bacteria, cyanobacteria, and algae are important microorganisms in open pond wastewater treatment systems. Nitrification involving the sequential oxidation of ammonia to nitrite and nitrate, mainly due to autotrophic nitrifying bacteria, is essential to biological nitrogen removal in wastewater and global nitrogen cycling. A continuous flow autotrophic bioreactor was initially designed for nitrifying bacterial growth only. In the presence of cyanobacteria and algae, we monitored both the microbial activity by measuring specific oxygen production rate (SOPR) for microalgae and cyanobacteria and specific oxygen uptake rate (SOUR) for nitrifying bacteria. The growth of cyanobacteria and algae inhibited the maximum nitrification rate by a factor of 4 although the ammonium nitrogen fed to the reactor was almost completely removed. Terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the community structures of nitrifying bacteria remained unchanged, containing the dominant Nitrosospira, Nitrospira, and Nitrobacter species. PCR amplification coupled with cloning and sequencing analysis resulted in identifying Chlorella emersonii and an uncultured cyanobacterium as the dominant species in the autotrophic bioreactor. Notwithstanding their fast growth rate and their toxicity to nitrifiers, microalgae and cyanobacteria were more easily lost in effluent than nitrifying bacteria because of their poor settling characteristics. The microorganisms were able to grow together in the bioreactor with constant individual biomass fractions because of the uncoupled solids retention times for algae/cyanobacteria and nitrifiers. The results indicate that compared to conventional wastewater treatment systems, longer solids retention times (e.g., by a factor of 4) should be considered in phototrophic bioreactors for complete nitrification and nitrogen removal. © 2010 Wiley Periodicals, Inc.

  10. Nitrification in histosols: a potential role for the heterotrophic nitrifier.

    PubMed Central

    Tate, R L

    1977-01-01

    Insufficient populations of Nitrosomonas and Nitrobacter were found in a Pahokee muck soil (Lithic medidaprit) to account for the nitrate concentration observed. To determine if heterotrophic nitrifiers could account for some of this discrepancy, a method was developed to measure the levels of heterotrophic nitrifiers in soil. A population of 4.1 X 10(5) Arthrobacter per g of dry fallow soil, capable of producing nitrite and/or nitrate from reduced nitrogenous compounds, was observed. Amendment of the much with 0.5% (wt/wt) sodium acetate and 0.1% (wt/wt) ammonium-nitrogen as ammonium sulfate (final concentrations) not only resulted in the usual increase in autotrophic nitrifiers, but also in a fourfold increase in the heterotrophic nitrifying Arrthrobacter. Amendment of like samples with N-Serve [2-chloro-6(trichloromethyl) pyridinel] prevented the increase in Nitrosomonas, but not that in the heterotrophic nitrifiers. Nitrate production in the presence of the inhibitor was diminished but not prevented. An Arthrobacter sp., isolated from the muck, produced nitrite when inoculated at high densities into sterile soil, unamended or amended with sodium acetate and/or ammomium sulfate. These data suggest that the heterotrophic population may be responsible for some of the nitrate produced in these Histosols. PMID:869537

  11. Kinetic parameters for 17alpha-ethinylestradiol removal by nitrifying activated sludge developed in a membrane bioreactor.

    PubMed

    Clouzot, L; Doumenq, P; Roche, N; Marrot, B

    2010-08-01

    The synthetic hormone 17alpha-ethinylestradiol (EE2) is primarily removed in wastewater treatment plants (WWTPs) by sorption, and nitrifying biomass has been shown to be responsible for EE2 biodegradation. Membrane bioreactor (MBR) technology was chosen to develop a community of autotrophic, nitrifying micro-organisms and determine kinetic parameters for EE2 biodegradation. Biological inhibition by azide was applied to differentiate sorption from biodegradation. Activated sludge (AS) was acclimated in the MBR to a substrate specific to autotrophic biomass and resulted in an increase in nitrifying activity. Acclimated AS was used to successfully biodegrade EE2 (11% increase in EE2 removal), and the overall removal of EE2 was determined to be 99% (sorption+biodegradation). AS used directly from a WWTP without acclimation removed EE2 only through sorption (88% removal of EE2). Therefore, higher nitrifying activity developed by acclimating AS allowed almost complete removal of EE2. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Enhanced biodegradation of phenolic compounds in landfill leachate by enriched nitrifying membrane bioreactor sludge.

    PubMed

    Boonyaroj, Varinthorn; Chiemchaisri, Chart; Chiemchaisri, Wilai; Yamamoto, Kazuo

    2017-02-05

    The role of autotrophic nitrification on the biodegradation of toxic organic micro-pollutants presented in landfill leachate was assessed. A two-stage MBR system consisting of an inclined tube incorporated anoxic reactor followed by aerobic submerged membrane reactor was operated under long sludge age condition in which nitrifying bacteria could be enriched. During the reactor operation, organic removal efficiencies were more than 90% whereas phenolic compounds including bisphenol A (BPA) and 4-methyl-2,6-di-tert-butylphenol (BHT) were removed by 65 and 70% mainly through biodegradation in the aerobic reactor even at high feed concentrations of 1000μg/L for both compounds. Batch experiments revealed that enriched nitrifying sludge with nitrifying activities could biodegraded 88 and 75% of BPA and BHT, largely improved from non-nitrifying sludge and enriched nitrifying sludge with the presence of inhibitor. The first-order kinetic rates of BHT and BPA removal were 0.0108 and 0.096h(-1), also enhanced by 44% from the non-nitrifying sludge.

  13. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil

    PubMed Central

    Daebeler, Anne; Bodelier, Paul LE; Yan, Zheng; Hefting, Mariet M; Jia, Zhongjun; Laanbroek, Hendrikus J

    2014-01-01

    Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using 13CO2 and 13CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature. PMID:24858784

  14. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil.

    PubMed

    Daebeler, Anne; Bodelier, Paul L E; Yan, Zheng; Hefting, Mariet M; Jia, Zhongjun; Laanbroek, Hendrikus J

    2014-12-01

    Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using (13)CO2 and (13)CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature.

  15. Characteristics of aerobic granulation at mesophilic temperatures in wastewater treatment.

    PubMed

    Cui, Fenghao; Park, Seyong; Kim, Moonil

    2014-01-01

    Compact and structurally stable aerobic granules were developed in a sequencing batch reactor (SBR) at mesophilic temperatures (35°C). The morphological, biological and chemical characteristics of the aerobic granulation were investigated and a theoretical granulation mechanism was proposed according to the results of the investigation. The mature aerobic granules had compact structure, small size (mean diameter of 0.24 mm), excellent settleability and diverse microbial structures, and were effective for the removal of organics and nitrification. The growth kinetics demonstrated that the biomass growth depended on coexistence and interactions between heterotrophs and autotrophs in the granules. The functions of heterotrophs and autotrophs created a compact and secure layer on the outside of the granules, protecting the inside sludge containing environmentally sensitive and slow growing microorganisms. The mechanism and the reactor performance may promise feasibility and efficiency for treating industry effluents at mesophilic temperatures using aerobic granulation.

  16. Activated sludge filterability improvement by nitrifying bacteria abundance regulation in an adsorption membrane bioreactor (Ad-MBR).

    PubMed

    Sun, Fei-yun; Lv, Xiao-mei; Li, Ji; Peng, Zhong-yi; Li, Pu; Shao, Ming-fei

    2014-10-01

    Autotrophic nitrifying bacteria have its intrinsic properties including low EPS production, dense colonial structure and slow-growth rate, favoring the sludge filterability improvement. An adsorption-MBR (Ad-MBR) was developed to enrich nitrifier abundance in the MBR chamber by inlet C/N regulation, and its possible positive effect on sludge filterability and underlying mechanisms were investigated. By DNA extraction, PCR amplification and Illumina high-throughput pyrosequencing, the abundance of nitrifying bacteria was accurately quantified. More than 8.29% nitrifier abundance was achieved in Ad-MBR sludge, which was above three times of that in conventional MBR. Regulated C/N ratio and thereafter nitrifier abundance enrichment improved sludge filterability by altering sludge mixture and its supernatant properties, reflected by a good sludge settleability, a low supernatant viscosity and turbidity, a low supernatant organic substances concentration, and a small amount of strong hydrophobic fractional components, thus to profoundly improve sludge filterability and decelerate membrane fouling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [Endogenous respiration process analysis of heterotrophic biomass and autotrophic biomass based on respiration map ].

    PubMed

    Li, Zhi-hua; Bai, Xu-li; Zhang, Qin; Liu, Yi; He, Chun-bo

    2014-09-01

    The endogenous process is an important metabolic part of the activated sludge, and the understanding of this process is still unclear. Characteristics of endogenous respiration for heterotrophic bacteria and autotrophic nitrifiers were analyzed using respirogram. Results showed that both heterotrophic and autotrophic bacteria entered the stage of endogenous respiration at almost the same time, but heterotrophic bacteria first entered the stage of dormancy i. e. , they were easier to recover a higher proportion of biomass during the dormancy stage, indicating that heterotrophic bacteria exhibited strong environmental adaptability. Autotrophic bacteria were, however, quite different. This finding confirmed that autotrophic bacteria were more vulnerable from the viewpoint of endogenous respiration. In addition, the study also found that the increase of endogenous respiration rate ratio reflected the decreased sludge activity. And the proportion of endogenous respiration was an important parameter to characterize the activity of activated sludge, which can be used as a quantitative index for the health status of activated sludge. The findings further deepened the understanding of endogenous respiration process and provided a theoretical basis for the operation and management of wastewater treatment plants.

  18. Structure of nitrifying biofilms in a high-rate trickling filter designed for potable water pre-treatment.

    PubMed

    van den Akker, Ben; Holmes, Mike; Pearce, Peter; Cromar, Nancy J; Fallowfield, Howard J

    2011-05-01

    This study examined the composition and structure of nitrifying biofilms sampled from a high-rate nitrifying trickling filter which was designed to pre-treat raw surface water for potable supply. The filter was operated under a range of feed water ammonia and organic carbon concentrations that mimicked the raw water quality of poorly protected catchments. The biofilm structure was examined using a combination of fluorescence in situ hybridisation and scanning electron microscopy. Biopolymers (carbohydrate and protein) were also measured. When the filter was operated under low organic loads, nitrifiers were abundant, representing the majority of microorganisms present. Uniquely, the study identified not only Nitrospira but also the less common Nitrobacter. Small increases in organic carbon promoted the rapid growth of filamentous heterotrophs, as well as the production of large amounts of polysaccharide. Stratification of nitrifiers and heterotrophs, and high polysaccharide were observed at all filter bed depths, which coincided with the impediment of nitrification throughout most of the filter bed. Observations presented here specifically linked biofilm structure with filter functionality, physically validating previous empirical modelling hypotheses regarding competitive interactions between autotrophic and heterotrophic bacteria in biofilms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions.

    PubMed

    Yang, Weiming; Zhao, Qing; Lu, Hui; Ding, Zhi; Meng, Liao; Chen, Guang-Hao

    2016-03-01

    The Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI) process build on anaerobic carbon conversion through biological sulfate reduction and autotrophic denitrification by using the sulfide byproduct from the previous reaction. This study confirmed extra decreases in N2O emissions from the sulfide-driven autotrophic denitrification by investigating N2O reduction, accumulation, and emission in the presence of different sulfide/nitrate (S/N) mass ratios at pH 7 in a long-term laboratory-scale granular sludge autotrophic denitrification reactor. The N2O reduction rate was linearly proportional to the sulfide concentration, which confirmed that no sulfide inhibition of N2O reductase occurred. At S/N = 5.0 g-S/g-N, this rate resulted by sulfide-driven autotrophic denitrifying granular sludge (average granule size = 701 μm) was 27.7 mg-N/g-VSS/h (i.e., 2 and 4 times greater than those at 2.5 and 0.8 g-S/g-N, respectively). Sulfide actually stimulates rather than inhibits N2O reduction no matter what granule size of sulfide-driven autotrophic denitrifying sludge engaged. The accumulations of N2O, nitrite and free nitrous acid (FNA) with average granule size 701 μm of sulfide-driven autotrophic denitrifying granular sludge engaged at S/N = 5.0 g-S/g-N were 4.7%, 11.4% and 4.2% relative to those at 3.0 g-S/g-N, respectively. The accumulation of FNA can inhibit N2O reduction and increase N2O accumulation during sulfide-driven autotrophic denitrification. In addition, the N2O gas emission level from the reactor significantly increased from 14.1 ± 0.5 ppmv (0.002% of the N load) to 3707.4 ± 36.7 ppmv (0.405% of the N load) as the S/N mass ratio in the influent decreased from 2.1 to 1.4 g-S/g-N over the course of the 120-day continuous monitoring period. Sulfide-driven autotrophic denitrification may significantly reduce greenhouse gas emissions from biological nutrient removal when sulfur conversion processes are applied.

  20. Bacterial structure of aerobic granules is determined by aeration mode and nitrogen load in the reactor cycle.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka

    2015-04-01

    This study investigated how the microbial composition of biomass and kinetics of nitrogen conversions in aerobic granular reactors treating high-ammonium supernatant depended on nitrogen load and the number of anoxic phases in the cycle. Excellent ammonium removal and predomination of full nitrification was observed in the reactors operated at 1.1 kg TKN m(-3) d(-1) and with anoxic phases in the cycle. In all reactors, Proteobacteria and Actinobacteria predominated, comprising between 90.14% and 98.59% of OTUs. Extracellular polymeric substances-producing bacteria, such as Rhodocyclales, Xanthomonadaceae, Sphingomonadales and Rhizobiales, were identified in biomass from all reactors, though in different proportions. Under constant aeration, bacteria capable of autotrophic nitrification were found in granules, whereas under variable aeration heterotrophic nitrifiers such as Pseudomonas sp. and Paracoccus sp. were identified. Constant aeration promoted more even bacteria distribution among taxa; with 1 anoxic phase, Paracoccus aminophilus predominated (62.73% of OTUs); with 2 phases, Corynebacterium sp. predominated (65.10% of OTUs).

  1. Granulator Selection

    SciTech Connect

    Gould, T H; Armantrout, G

    1999-08-02

    Following our detailed review of the granulation reports and additional conversations with process and development personnel, we have reached a consensus position regarding granulator selection. At this time, we recommend going forward with implementation of the tumbling granulator approach (GEMCO) based on our assessment of the tested granulation techniques using the established criteria. The basis for this selection is summarized in the following sections, followed by our recommendations for proceeding with implementation of the tumbling granulation approach. All five granulation technologies produced granulated products that can be made into acceptable sintered pucks. A possible exception is the product from the fluidized bed granulator. This material has been more difficult to press into uniform pucks without subsequent cracking of the puck during the sintering cycle for the pucks in this series of tests. This problem may be an artifact of the conditions of the particular granulation demonstration run involved, but earlier results have also been mixed. All granulators made acceptable granulated feed from the standpoint of transfer and press feeding, though the roller compactor and fluidized bed products were dustier than the rest. There was also differentiation among the granulators in the operational areas of (1) potential for process upset, (2) plant implementation and operational complexity, and (3) maintenance concerns. These considerations will be discussed further in the next section. Note that concerns also exist regarding the extension of the granulation processes to powders containing actinides. Only the method that involves tumbling and moisture addition has been tested with uranium, and in that instance, significant differences were found in the granulation behavior of the powders.

  2. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal.

    PubMed

    Courtens, Emilie Np; Spieck, Eva; Vilchez-Vargas, Ramiro; Bodé, Samuel; Boeckx, Pascal; Schouten, Stefan; Jauregui, Ruy; Pieper, Dietmar H; Vlaeminck, Siegfried E; Boon, Nico

    2016-09-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to 'Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of (13)C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g(-1) VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology.

  3. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal

    PubMed Central

    Courtens, Emilie NP; Spieck, Eva; Vilchez-Vargas, Ramiro; Bodé, Samuel; Boeckx, Pascal; Schouten, Stefan; Jauregui, Ruy; Pieper, Dietmar H; Vlaeminck, Siegfried E; Boon, Nico

    2016-01-01

    The increasing production of nitrogen-containing fertilizers is crucial to meet the global food demand, yet high losses of reactive nitrogen associated with the food production/consumption chain progressively deteriorate the natural environment. Currently, mesophilic nitrogen-removing microbes eliminate nitrogen from wastewaters. Although thermophilic nitrifiers have been separately enriched from natural environments, no bioreactors are described that couple these processes for the treatment of nitrogen in hot wastewaters. Samples from composting facilities were used as inoculum for the batch-wise enrichment of thermophilic nitrifiers (350 days). Subsequently, the enrichments were transferred to a bioreactor to obtain a stable, high-rate nitrifying process (560 days). The community contained up to 17% ammonia-oxidizing archaea (AOAs) closely related to ‘Candidatus Nitrososphaera gargensis', and 25% nitrite-oxidizing bacteria (NOBs) related to Nitrospira calida. Incorporation of 13C-derived bicarbonate into the respective characteristic membrane lipids during nitrification supported their activity as autotrophs. Specific activities up to 198±10 and 894±81 mg N g−1 VSS per day for AOAs and NOBs were measured, where NOBs were 33% more sensitive to free ammonia. The NOBs were extremely sensitive to free nitrous acid, whereas the AOAs could only be inhibited by high nitrite concentrations, independent of the free nitrous acid concentration. The observed difference in product/substrate inhibition could facilitate the development of NOB inhibition strategies to achieve more cost-effective processes such as deammonification. This study describes the enrichment of autotrophic thermophilic nitrifiers from a nutrient-rich environment and the successful operation of a thermophilic nitrifying bioreactor for the first time, facilitating opportunities for thermophilic nitrogen removal biotechnology. PMID:26894446

  4. Isolation of an autotrophic ammonia-oxidizing marine archaeon.

    PubMed

    Könneke, Martin; Bernhard, Anne E; de la Torre, José R; Walker, Christopher B; Waterbury, John B; Stahl, David A

    2005-09-22

    For years, microbiologists characterized the Archaea as obligate extremophiles that thrive in environments too harsh for other organisms. The limited physiological diversity among cultivated Archaea suggested that these organisms were metabolically constrained to a few environmental niches. For instance, all Crenarchaeota that are currently cultivated are sulphur-metabolizing thermophiles. However, landmark studies using cultivation-independent methods uncovered vast numbers of Crenarchaeota in cold oxic ocean waters. Subsequent molecular surveys demonstrated the ubiquity of these low-temperature Crenarchaeota in aquatic and terrestrial environments. The numerical dominance of marine Crenarchaeota--estimated at 10(28) cells in the world's oceans--suggests that they have a major role in global biogeochemical cycles. Indeed, isotopic analyses of marine crenarchaeal lipids suggest that these planktonic Archaea fix inorganic carbon. Here we report the isolation of a marine crenarchaeote that grows chemolithoautotrophically by aerobically oxidizing ammonia to nitrite--the first observation of nitrification in the Archaea. The autotrophic metabolism of this isolate, and its close phylogenetic relationship to environmental marine crenarchaeal sequences, suggests that nitrifying marine Crenarchaeota may be important to global carbon and nitrogen cycles.

  5. Autotrophic processes in meromictic Big Soda Lake, Nevada.

    USGS Publications Warehouse

    Cloern, J.E.; Cole, B.E.; Oremland, R.S.

    1983-01-01

    Daily rates of oxygenic photosynthesis (OP) by phytoplankton, anoxygenic photosynthesis (AP) by purple sulfur bacteria, and chemoautotrophic productivity (CP = dark CO2 assimilation) were measured once each season. Total daily productivity and the relative importance of each autotrophic process varied with seasonal changes in vertical mixing, light availability, and the biomass of phototrophs. Daily productivity was highest (2830 mg C.m-2) and was dominated by OP in winter when the mixolimnion was isothermal, the biomass of phytoplankton was high, and the biomass of purple sulfur bacteria was low. During the summer-fall period of thermal stratification, phytoplankton biomass decreased, a plate of purple sulfur bacteria formed below the oxycline, and daily rates of dark CO2 assimilation (CP = 390-680 mg C.m-2) exceeded phototrophic productivity (OP + AP = 200-370 mg C.m-2). Total annual productivity was approx 500 g C.m-2, of which 60% was produced by phytoplankton (mostly in winter), 30% by chemoautotrophs (nitrifying and sulfur-oxidizing bacteria), and only 10% by photosynthetic bacteria. -Authors

  6. Cyanate as an energy source for nitrifiers.

    PubMed

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-08-06

    Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment.

  7. Analysis of microbial community and nitrogen transition with enriched nitrifying soil microbes for organic hydroponics.

    PubMed

    Saijai, Sakuntala; Ando, Akinori; Inukai, Ryuya; Shinohara, Makoto; Ogawa, Jun

    2016-06-27

    Nitrifying microbial consortia were enriched from bark compost in a water system by regulating the amounts of organic nitrogen compounds and by controlling the aeration conditions with addition of CaCO3 for maintaining suitable pH. Repeated enrichment showed reproducible mineralization of organic nitrogen via the conversion of ammonium ions ([Formula: see text]) and nitrite ions ([Formula: see text]) into nitrate ions ([Formula: see text]). The change in microbial composition during the enrichment was investigated by PCR-DGGE analysis with a focus on prokaryote, ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and eukaryote cell types. The microbial transition had a simple profile and showed clear relation to nitrogen ions transition. Nitrosomonas and Nitrobacter were mainly detected during [Formula: see text] and [Formula: see text] oxidation, respectively. These results revealing representative microorganisms acting in each ammonification and nitrification stages will be valuable for the development of artificial simple microbial consortia for organic hydroponics that consisted of identified heterotrophs and autotrophic nitrifying bacteria.

  8. Linking autotrophic activity in environmental samples with specific bacterial taxa by detection of 13C-labelled fatty acids.

    PubMed

    Knief, Claudia; Altendorf, Karlheinz; Lipski, André

    2003-11-01

    A method for the detection of physiologically active autotrophic bacteria in complex microbial communities was developed based on labelling with the stable isotope 13C. Labelling of autotrophic nitrifying, sulphur-oxidizing and iron-oxidizing populations was performed in situ by incubation with NaH[13C]O3. Incorporated label into fatty acid methyl esters (FAMEs) was detected and quantified using gas chromatography-mass spectrometry in single ion monitoring mode. Before the analyses of different environmental samples, the protocol was evaluated in pure culture experiments. In different environmental samples a selective labelling of fatty acids demonstrated which microbial taxa were responsible for the respective chemolithoautotrophic activity. The most strongly labelled fatty acids of a sample from a sulphide treating biofilter from an animal rendering plant were cis-7-hexadecenoic acid (16:1 cis7) and 11-methyl hexadecanoic acid (16:0 11methyl), which are as-yet not known for any sulphide-oxidizing autotroph. The fatty acid labelling pattern of an experimental biotrickling filter sample supplied with dimethyl disulphide clearly indicated the presence and activity of sulphide-oxidizing bacteria of the genus Thiobacillus. For a third environmental sample from an acid mining lake sediment, the assignment of autotrophic activity to bacteria of the genus Leptospirillum but not to Acidithiobacillus could be made by this method, as the fatty acid patterns of these bacteria show clear differences.

  9. Cyanate as energy source for nitrifiers

    PubMed Central

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-01-01

    Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031

  10. Monochloramine Cometabolism by Nitrifying Biofilm Relevant ...

    EPA Pesticide Factsheets

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kinetic experiments were not representative of drinking water distribution systems where bacteria grow predominantly as biofilm attached to pipe walls or sediments and physiological differences may exist between suspension and biofilm growth. Therefore, the current research was an important next step in extending the previous results to investigate monochloramine cometabolism by biofilm grown in annular reactors under drinking water relevant conditions. Estimated monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (25–40% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in drinking water relevant nitrifying biofilm; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in distribution systems. Investigate whether or not nitrifying biofilm can biologically transform monochloramine under drinking water relevant conditions.

  11. Ammonium Removal by the Oxygen-Limited Autotrophic Nitrification-Denitrification System

    PubMed Central

    Kuai, Linping; Verstraete, Willy

    1998-01-01

    The present lab-scale research reveals the potential of implementation of an oxygen-limited autotrophic nitrification-denitrification (OLAND) system with normal nitrifying sludge as the biocatalyst for the removal of nitrogen from nitrogen-rich wastewater in one step. In a sequential batch reactor, synthetic wastewater containing 1 g of NH4+-N liter−1 and minerals was treated. Oxygen supply to the reactor was double-controlled with a pH controller and a timer. At a volumetric loading rate (Bv) of 0.13 g of NH4+-N liter−1 day−1, about 22% of the fed NH4+-N was converted to NO2−-N or NO3−-N, 38% remained as NH4+-N, and the other 40% was removed mainly as N2. The specific removal rate of nitrogen was on the order of 50 mg of N liter−1 day−1, corresponding to 16 mg of N g of volatile suspended solids−1 day−1. The microorganisms which catalyzed the OLAND process are assumed to be normal nitrifiers dominated by ammonium oxidizers. The loss of nitrogen in the OLAND system is presumed to occur via the oxidation of NH4+ to N2 with NO2− as the electron acceptor. Hydroxylamine stimulated the removal of NH4+ and NO2−. Hydroxylamine oxidoreductase (HAO) or an HAO-related enzyme might be responsible for the loss of nitrogen. PMID:9797314

  12. The oligotrophic ocean is autotrophic.

    PubMed

    Williams, Peter J le B; Quay, Paul D; Westberry, Toby K; Behrenfeld, Michael J

    2013-01-01

    In vitro observations of net community production (NCP) imply that the oligotrophic subtropical gyres of the open ocean are net heterotrophic; in situ observations, in contrast, consistently imply that they are net autotrophic. At least one approach must be returning an incorrect answer. We find that (a) no bias in in situ oxygen-based production estimates would give false-positive (net autotrophy) rates, (b) observed (13)C enrichment of surface water dissolved inorganic carbon (DIC) can be explained only by positive NCP (net autotrophy), (c) lateral and vertical inputs of organic carbon are insufficient to sustain net heterotrophy, and (d) atmospheric input of organic material is too small to support in vitro rates of net heterotrophy and would yield δ(13)C depletion of surface DIC, quite the opposite of what is observed in the subtropical gyres. We conclude that the in vitro observations, implying net heterotrophy, must contain a bias that is due to an underestimate of photosynthetic rate and/or an overestimate of respiration rate.

  13. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. [Pseudomonas fluorescens; Serratia marcescens; Alcaligenes faecalis

    SciTech Connect

    Anderson, I.C.; Levine, J.S.

    1986-05-01

    The authors investigated the effect of the partial pressure of oxygen (pO/sub 2/) on the production of NO and N/sub 2/O by a wide variety of common soil nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The production of NO per cell was highest by autotrophic nitrifiers and was independent of pO/sub 2/ in the range tested (0.5 to 10%), whereas N/sub 2/O production was inversely proportional to pO/sub 2/. Nitrous oxide production was highest in the denitrifier Pseudomonas fluorescens, but only under anaerobic conditions. The molar ratio of NO/N/sub 2/O produced was usually greater than unity for nitrifiers and much less than unity for denitrifiers. Chemodenitrification was the major source of both the NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of NO and N/sub 2/O produced by the nitrate respirer Serratia marcescens. Chemodenitrification was also a possible source of No and N/sub 2/O in nitrifier cultures but only when high concentrations of nitrite had accumulated or were added to the medium. Although most of the denitrifiers produced NO and N/sub 2/O only under anaerobic conditions, chemostat cultures of Alcaligenes faecalis continued to emit these gases even when the cultures were sprayed with air. Based upon these results, we predict that aerobic soils are primary sources of NO and that N/sub 2/O is produced only when there is sufficient soil moisture to provide the anaerobic microsites necessary for denitrification by either denitrifiers or nitrifiers.

  14. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.

    PubMed

    Wantawin, C; Juateea, J; Noophan, P L; Munakata-Marr, J

    2008-01-01

    Conventional nitrification-denitrification treatment is a common way to treat nitrogen in wastewater, but this process is costly for low COD/N wastewaters due to the addition of air and external carbon-source. However, ammonia may alternatively be converted to dinitrogen gas by autotrophic bacteria utilizing aerobically autotrophically produced nitrite as an electron acceptor under anoxic conditions. Lab-scale sequencing batch biofilm reactors (SBBRs) inoculated with normal nitrifying sludge were employed to study the potential of an oxygen-limited autotrophic nitrification-denitrification process initiated with typical nitrifying sludge for treating a synthetic ammonia wastewater devoid of organic carbon in one step. The ring-laced fibrous carrier (length 0.32 m, surface area 3.4 m2/m) was fixed vertically in a 3 L reactor. Two different air supply modes were applied:continuous aeration to control dissolved oxygen at 1.5 mg/L and intermittent aeration. High nitrogen removals of more than 50% were obtained in both SBBRs. At an ammonia loading of 0.882 gm N/m2-day [hydraulic retention time (HRT) of 24 hr], the SBBR continuously aerated to 1.5 mg DO/L had slightly higher nitrogen removal (64%) than the intermittently alternated SBBR (55%). The main form of residual nitrogen in the effluent was ammonia, at concentrations of 25 mg/L and 37 mg N/L in continuous and intermittent aeration SBBRs, respectively. Ammonia was completely consumed when ammonia loading was reduced to 0.441 gm N/m2-day [HRT extended to 48 hr]. The competitive use of nitrite by aerobic nitrite oxidizing bacteria (ANOB) with anaerobic ammonia-oxidizing bacteria (anammox bacteria) during the expanded aeration period under low remaining ammonia concentration resulted in higher nitrate production and lower nitrogen loss in the continuous aeration SBBR than in the intermittent aeration SBBR. The nitrogen removal efficiencies in SBBRs with continuous and alternating aerated were 80% and 86% respectively

  15. Autotrophic ammonia oxidation by soil thaumarchaea

    PubMed Central

    Zhang, Li-Mei; Offre, Pierre R.; He, Ji-Zheng; Verhamme, Daniel T.; Nicol, Graeme W.; Prosser, James I.

    2010-01-01

    Nitrification plays a central role in the global nitrogen cycle and is responsible for significant losses of nitrogen fertilizer, atmospheric pollution by the greenhouse gas nitrous oxide, and nitrate pollution of groundwaters. Ammonia oxidation, the first step in nitrification, was thought to be performed by autotrophic bacteria until the recent discovery of archaeal ammonia oxidizers. Autotrophic archaeal ammonia oxidizers have been cultivated from marine and thermal spring environments, but the relative importance of bacteria and archaea in soil nitrification is unclear and it is believed that soil archaeal ammonia oxidizers may use organic carbon, rather than growing autotrophically. In this soil microcosm study, stable isotope probing was used to demonstrate incorporation of 13C-enriched carbon dioxide into the genomes of thaumarchaea possessing two functional genes: amoA, encoding a subunit of ammonia monooxygenase that catalyses the first step in ammonia oxidation; and hcd, a key gene in the autotrophic 3-hydroxypropionate/4-hydroxybutyrate cycle, which has been found so far only in archaea. Nitrification was accompanied by increases in archaeal amoA gene abundance and changes in amoA gene diversity, but no change was observed in bacterial amoA genes. Archaeal, but not bacterial, amoA genes were also detected in 13C-labeled DNA, demonstrating inorganic CO2 fixation by archaeal, but not bacterial, ammonia oxidizers. Autotrophic archaeal ammonia oxidation was further supported by coordinate increases in amoA and hcd gene abundance in 13C-labeled DNA. The results therefore provide direct evidence for a role for archaea in soil ammonia oxidation and demonstrate autotrophic growth of ammonia oxidizing archaea in soil. PMID:20855593

  16. Tracking the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors operated at different COD/N ratios.

    PubMed

    Bassin, J P; Abbas, B; Vilela, C L S; Kleerebezem, R; Muyzer, G; Rosado, A S; van Loosdrecht, M C M; Dezotti, M

    2015-09-01

    In this study, the impact of COD/N ratio and feeding regime on the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors was addressed. Based on DGGE analysis of 16S rRNA genes, the influent COD was found to be the main factor determining the overall bacterial diversity. The amoA-gene-based analysis suggested that the dynamic behavior of the substrate in continuous and pulse-feeding reactors influenced the selection of specific ammonium-oxidizing bacteria (AOB) strains. Furthermore, AOB diversity was directly related to the applied COD/N ratio and ammonium-nitrogen load. Maximum specific ammonium oxidation rates observed under non-substrate-limiting conditions were observed to be proportional to the fraction of nitrifiers within the bacterial community. FISH analysis revealed that Nitrosomonas genus dominated the AOB community in all reactors. Moreover, Nitrospira was found to be the only nitrite-oxidizing bacteria (NOB) in the fully autotrophic system, whereas Nitrobacter represented the dominant NOB genus in the organic carbon-fed reactors.

  17. Modeling of trihalomethane cometabolism in nitrifying biofilters.

    PubMed

    Wahman, David G; Katz, Lynn E; Speitel, Gerald E

    2007-01-01

    The computer program AQUASIM was used to model biofilter experiments seeded with Lake Austin, Texas mixed-culture nitrifiers. These biofilters degraded four trihalomethanes (THMs) (trichloromethane (TCM) or chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), tribromomethane (TBM) or bromoform) commonly found in treated drinking water. Apparent steady-state data from the biofilter experiments and supporting batch experiments were used to estimate kinetic parameters for TCM, DBCM and ammonia degradation. Subsequently, the model was verified against other experimental biofilter data. To allow for full-scale simulations, BDCM and TBM rate constants were estimated using data from batch kinetic studies. Finally, the model was used to simulate full-scale filter performance under different filter surface loading rates and THM speciation seen in practice. Overall, total THM removals ranged from 16% to 54% in these simulations with influent total THM concentrations of 75-82microg/L, which illustrates the potential of THM cometabolism to have a significant impact on treated water quality.

  18. Twin screw granulation: steps in granule growth.

    PubMed

    Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2012-11-15

    The present work focuses on the study of the progression of granules in different compartments along the length of screws in a twin screw granulator (TSG). The effects of varying powder feed rate; liquid to solid ratio and viscosity of granulation liquid on properties of granules was studied. The bigger granules produced at the start of the process were found to change in terms of size, shape and strength along the screw length at all the conditions investigated. The granules became more spherical and their strength increased along the screw length. Tracer granules were also introduced in order to understand the role of kneading and conveying elements in the TSG. The kneading elements promoted consolidation and breakage while the conveying elements led to coalescence, breakage and some consolidation. The results presented here help to provide a qualitative and quantitative understanding of the twin screw granulation process.

  19. Performance and Biofilm Activity of Nitrifying Biofilters Removing Trihalomethanes

    EPA Science Inventory

    Nitrifying biofilters seeded with three different mixed-culture sources degraded trichloromethane (TCM) and dibromochloromethane (DBCM). In addition, resuspended biofilm degraded TCM, bromododichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests,...

  20. Monochloramine Cometabolism by Nitrifying Biofilm Relevant to Drinking Water

    EPA Science Inventory

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kine...

  1. Performance and Biofilm Activity of Nitrifying Biofilters Removing Trihalomethanes

    EPA Science Inventory

    Nitrifying biofilters seeded with three different mixed-culture sources degraded trichloromethane (TCM) and dibromochloromethane (DBCM). In addition, resuspended biofilm degraded TCM, bromododichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests,...

  2. Monochloramine Cometabolism by Nitrifying Biofilm Relevant to Drinking Water

    EPA Science Inventory

    Recently, biological monochloramine removal (i.e., cometabolism) by a pure culture ammonia–oxidizing bacteria, Nitrosomonas europaea, and a nitrifying mixed–culture have been shown to increase monochloramine demand. Although important, these previous suspended culture batch kine...

  3. Identification of inorganic and organic species of phosphorus and its bio-availability in nitrifying aerobic granular sludge.

    PubMed

    Huang, Wenli; Cai, Wei; Huang, He; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-01-01

    Phosphorus (P) recovery from sewage sludge is necessary for a sustainable development of the environment and thus the society due to gradual depletion of non-renewable P resources. Aerobic granular sludge is a promising biotechnology for wastewater treatment, which could achieve P-rich granules during simultaneous nitrification and denitrification processes. This study aimed to disclose the changes in inorganic and organic P species and their correlation with P mobility and bio-availability in aerobic granules. Two identical square reactors were used to cultivate aerobic granules, which were operated for 120 days with influent ammonia nitrogen (NH₄-N) of 100 mg/L before day 60 and then increased to 200 mg/L during the subsequent 60 days (chemical oxygen demand (COD) was kept constant at 600 mg/L). The aerobic granules exhibited excellent COD removal and nitrification efficiency. Results showed that inorganic P (IP) was about 61.4-67.7% of total P (TP) and non-apatite inorganic P (NAIP) occupied 61.9-70.2% of IP in the granules. The enrichment amount of NAIP and apatite P (AP) in the granules had strongly positive relationship with the contents of metal ions, i.e. Fe and Ca, respectively accumulated in the granules. X-ray diffraction (XRD) analysis and solution index calculation demonstrated that hydroxyapatite (Ca₅(PO₄)₃(OH)) and iron phosphate (Fe₇(PO₄)₆) were the major P minerals in the granules. Organic P (OP) content maintained around 7.5 mg per gram of biomass in the aerobic granules during the 120 days' operation. Monoester phosphate (21.8% of TP in extract), diester phosphate (1.8%) and phosphonate (0.1%) were identified as OP species by Phosphorus-31 nuclear magnetic resonance (³¹P NMR). The proportion of NAIP + OP to TP was about 80% in the granules, implying high potentially mobile and bio-available P was stored in the nitrifying aerobic granules. The present results provide a new insight into the characteristics of P species in aerobic

  4. In Situ Identification and Stratification of Monochloramine Inhibition Effects on Nitrifying Biofilms as Determined by the Use of Microelectrodes

    EPA Science Inventory

    The nitrifying biofilm grown in an annular biofilm reactor and the microbial deactivation achieved after monochloramine treatment were investigated using microelectrodes. The nitrifying biofilm ammonium microprofile was measured and the effect of monochloramine on nitrifying bio...

  5. In Situ Identification and Stratification of Monochloramine Inhibition Effects on Nitrifying Biofilms as Determined by the Use of Microelectrodes

    EPA Science Inventory

    The nitrifying biofilm grown in an annular biofilm reactor and the microbial deactivation achieved after monochloramine treatment were investigated using microelectrodes. The nitrifying biofilm ammonium microprofile was measured and the effect of monochloramine on nitrifying bio...

  6. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system

    SciTech Connect

    Kuai, L.; Verstraete, W.

    1998-11-01

    The present lab-scale research reveals the potential of implementation of an oxygen-limited autotrophic nitrification-denitrification (OLAND) system with normal nitrifying sludge as the biocatalyst for the removal of nitrogen from nitrogen-rich wastewater in one step. In a sequential batch reactor, synthetic wastewater containing 1 g of NH{sub 4}{sup +}-N liter{sup {minus}1} and minerals was treated. Oxygen supply to the reactor was double-controlled with a pH controller and a timer. At a volumetric loading rate (B{sub {nu}}) of 0.13 g of NH{sub 4}{sup +}-N liter{sup {minus}1} day{sup {minus}1}, about 22% of the fed NH{sub 4}{sup +}-N was converted to NO{sub 2}{sup {minus}}-N, 38% remained as NH{sub 4}{sup +}-N, and the other 40% was removed mainly as N{sub 2}. The specific removal rate of nitrogen was on the order of 50 mg of N liter{sup {minus}1} day{sup {minus}1}, corresponding to 16 mg of N g of volatile suspended solids{sup {minus}1} day{sup {minus}1}. The microorganisms which catalyzed the OLAND process are assumed to be normal nitrifiers dominated by ammonium oxidizers. The loss of nitrogen in the OLAND system is presumed to occur via the oxidation of NH{sub 4}{sup +} to N{sub 2} with NO{sub 2}{sup {minus}} as the electron acceptor. Hydroxylamine stimulated the removal of NH{sub 4}{sup +} and NO{sub 2}{sup {minus}}. Hydroxylamine oxidoreductase (HAO) or an HAO-related enzyme might be responsible for the loss of nitrogen.

  7. Autotrophic nitrogen removal from low strength waste water at low temperature.

    PubMed

    Hendrickx, Tim L G; Wang, Yang; Kampman, Christel; Zeeman, Grietje; Temmink, Hardy; Buisman, Cees J N

    2012-05-01

    Direct anaerobic treatment of municipal waste waters allows for energy recovery in the form of biogas. A further decrease in the energy requirement for waste water treatment can be achieved by removing the ammonium in the anaerobic effluent with an autotrophic process, such as anammox. Until now, anammox has mainly been used for treating warm (>30 °C) and concentrated (>500 mg N/L) waste streams. Application in the water line of municipal waste water treatment poses the challenges of a lower nitrogen concentration (<100 mg N/L) and a lower temperature (≤ 20 °C). Good biomass retention and a short HRT are required to achieve a sufficiently high nitrogen loading rate. For this purpose a 4.5 L gaslift reactor was inoculated with a small amount of anammox granules and operated for 253 days at 20 °C. The synthetic influent contained (69 ± 5) mg (NH(4)(+) + NO(2)(-))/L and 20 vol.% of anaerobically stabilised effluent. Results showed a clear increase in nitrogen loading rate (NLR) up to 0.31 g (NH(4) + NO(2))-N/(L × d) at a hydraulic retention time (HRT) of 5.3 h. A low effluent concentration of 0.03-0.17 mg (NH(4)(+)+NO(2)(-))-N/L could be achieved. Anammox biomass was retained as granules and as a biofilm on the reactor walls, which contributed 54 and 46%, respectively, towards total activity. The biomass was further characterised by an estimated net growth rate of 0.040 d(-1) and an apparent activation energy of 72 kJ/mol. The results presented in this paper showed that anammox bacteria can be applied for autotrophic nitrogen removal from the water line at a municipal waste water treatment plant. Combining direct anaerobic treatment with autotrophic nitrogen removal opens opportunities for energy-efficient treatment of municipal waste waters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Carbon isotope effects associated with autotrophic acetogenesis

    USGS Publications Warehouse

    Gelwicks, J.T.; Risatti, J.B.; Hayes, J.M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30??C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken into account. For the overall reaction, total carbonate ??? total acetate, isotope effects measured in replicate experiments ranged from -59.0 ?? 0.9% to - 57.2 ?? 2.3z%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 ?? 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring. ?? 1989.

  9. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition.

    PubMed

    Pynaert, Kris; Smets, Barth F; Beheydt, Daan; Verstraete, Willy

    2004-02-15

    A procedure for start-up of oxygen-limited autotrophic nitrification-denitrification (OLAND) in a lab-scale rotating biological contactor (RBC) is presented. In this one-step process, NH4+ is directly converted to N2 without the need for an organic carbon source. The approach is based on a sequential addition of two types of easily available biocatalyst to the reactor during start-up: aerobic nitrifying and anaerobic, granular methanogenic sludge. The first is added as a source of aerobic ammonia-oxidizing bacteria (AAOB), the second as a possible source of planctomycetes including anaerobic ammonia-oxidizing bacteria (AnAOB). The initial nitrifying biofilm serves as a matrix for anaerobic cell incorporation. By subsequently imposing oxygen limitation, one can create an optimal environment for autotrophic N removal. In this way, N removal of about 250 mg of N L(-1) d(-1) was achieved after 100 d treating a synthetic NH4+-rich wastewater. By gradually imposing higher loads on the reactor, the N elimination could be increased to about 1.8 g of N L(-1) d(-1) at 250 d. The resulting microbial community was compared with that of the inocula using general bacterial and AAOB- and planctomycete-specific PCR primers. Subsequently, the RBC reactor was shown to treat a sludge digestor effluent under suboptimal and strongly varying conditions. The RBC biocatalyst was also submitted to complete absence of oxygen in a fixed-film bioreactor (FFBR) and proved able to remove NH4+ with NO2- as electron acceptor (maximal 434 mg of NH4+-N (g of VSS)(-1) d(-1) on day 136). DGGE and real-time PCR analysis demonstrated that the RBC biofilm was dominated by members of the genus Nitrosomonas and close relatives of Kuenenia stuttgartiensis, a known AnAOB. The latter was enriched during FFBR operation, but AAOB were still present and the ratio planctomycetes/AAOB rRNA gene copies was about 4.3 after 136 d of reactor operation. Whether this relates to an active role of AAOB in the anoxic N

  10. Monochloramine Cometabolism by Mixed-Culture Nitrifiers ...

    EPA Pesticide Factsheets

    The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under drinking water relevant conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Three batch reactors were used in each experiment: (1) a positive control to estimate ammonia kinetic parameters, (2) a negative control to account for abiotic reactions, and (3) a cometabolism reactor to estimate cometabolism kinetic constants. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to all experimental data. Cometabolism kinetics were best described by a first order model. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism was a significant loss mechanism (30% of the observed monochloramine loss). These results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems. The results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; thus, cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems.

  11. Advanced nitrogen elimination by encapsulated nitrifiers.

    PubMed

    Sievers, M; Vorlop, K D; Hahne, J; Schlieker, M; Schäfer, S

    2003-01-01

    By introducing a mixed population of nitrifiers encapsulated in gel lens beads a more selective nitrification process was found in treatment of settled sewage in lab scale at a hydraulic retention time (HRT) of about 30 to 60 minutes. The reaction rates for oxidation of soluble chemical oxygen demand (SCOD) were found to vary between 25 to 150 mg/L x h while nitrification takes place around 50 mg nitrogen per hour and litre reaction volume. However, based on this SCOD removal in the nitrification step, a consequent post-denitrification process without nitrate recycle and dosage of external carbon sources has been proven to reach substantial nitrate elimination of up to 20 mg nitrogen per litre at COD/N-ratios of approx. 6 in settled sewage. At such COD/N-ratios, suitable nitrogen elimination seems to be possible, because the bioflocs of settled sewage, produced so far by SCOD oxidation and entrapment of particulate COD, are passing through the nitrification process having a substantial contribution to the denitrification rate additionally to the remaining SCOD.

  12. Enumeration and activity of nitrifying bacteria in zeoponic substrates

    NASA Astrophysics Data System (ADS)

    McGilloway, Robyn Leigh

    Regenerative life-support systems are needed for long-term space missions. One component of a proposed life-support system is the use of zeoponic growth substrates, which slowly release NH4 into 'soil' solution for the production of plants. Nitrifying bacteria that convert NH4 to NO3 are among the important microbial components of these systems. Some evidence suggests that a balance between NH4 and NO3 is desirable in promoting plant growth and seed development. Therefore, enumeration of nitrifying bacteria and evaluation of the kinetics of nitrification in zeoponic substrates warrants investigation. A method for rapid detection and enumeration of a commercial inoculum of nitrifying bacteria in a zeoponic substrate was developed using a most probable number (MPN)-polymerase chain reaction (PCR) approach, and a TaqMan probe-based assay. The detection limit of the MPN-PCR methodology was 2,000 cells per assay. Detection sensitivity for the TaqMan assay was determined to be 60 cells. The quantitative assay demonstrated that the zeoponic substrate was capable of supporting 105 to 107 Nitrobacter cells g-1 substrate. The MPN-PCR method and TaqMan probe-based assay can be effective and rapid approaches to enumerate nitrifying bacteria in zeoponic substrates. Column studies and a growth chamber study were conducted to evaluate the production of NO2 and NO3, and nitrifier populations in zeoponic substrates. The zeoponic substrate provided a readily available source of NH4, and nitrifying bacteria were active in the substrate. Quantities of NH4 oxidized, 10 mug N g-1 h-1, to NO2 and NO3 in inoculated zeoponic substrate were in excess of plant uptake. Acidification as a result of NH4 oxidation resulted in decline of pH to 5.5. The zeoponic substrate showed limited pH buffering capacity. Survival of nitrifying bacteria during periods of desiccation was evaluated, as the zeoponic substrate would likely be stored in an air-dry state between croppings. Substrate was enriched for

  13. Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.

    1999-01-01

    As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.

  14. Population of Nitrifying Bacteria and Nitrification in Ammonium Saturated Clinoptilolite

    NASA Technical Reports Server (NTRS)

    McGilloway, R. L.; Weaver, R. W.; Ming, Douglas W.; Gruener, J.

    1999-01-01

    As humans begin to spend longer periods of time in space, plants will be incorporated into life support systems. Ammonium saturated clinoptilolite is one plant growth substrate but a balance between ammonium and nitrate is needed. A laboratory study was conducted to determine effects of nitrifying bacteria on ammonium concentrations and kinetics of nitrification. Columns containing clinoptilolite substrate amended with nitrifying bacteria obtained from soil enrichment were analyzed weekly for a 90 day period. The enrichment culture initially contained 1 x 10(exp 5) ammonium oxidizing bacteria and 1 x 10(exp 2) nitrite oxidizing bacteria per gram of substrate. Populations of ammonium oxidizing bacteria increased to 1 x 10(exp 6) and nitrite oxidizing bacteria increased to 1 x 10(exp 3) per gram of substrate. The nitrification rate was approximately 0.25mg NO3(-)-N/kg.hr. Experiments were also conducted to enumerate nitrifying bacteria in a clinoptilolite substrate used to grow wheat (Triticum aestivum L.). Seventy days following the initial inoculation with an unknown number of commercial nitrifying bacteria, 1 x 10(exp 5) ammonium oxidizing bacteria per gram of substrate were present. The number of nitrite oxidizing bacteria was between 1 x 10(exp 3) to 10(exp 4) per gram of substrate as measured by the most probable number method. Nitrification rates were approximately 0.20mg NO3(-)-N/kg.hr. Clinoptilolite readily exchanged sufficient concentrations of ammonium to support nitrifying bacteria and they survived well in this medium.

  15. [Study on rapid start-up of a nitrifying process using aerobic granular sludge as seed sludge].

    PubMed

    Liu, Wen-Ru; Shen, Yao-Liang; Ding, Ling-Ling; Ding, Min

    2013-06-01

    Using synthetic ammonia-rich wastewater as influent, rapid start-up of the nitrification reactor was attained in a laboratory-scale column-type sequencing batch reactor (SBR) inoculated with aerobic granular sludge, by gradually increasing the influent NH4(+) -N concentration (100-1000 mg x L(-1)) and decreasing the hydraulic retention time (8-4 h) under mesophilic condition (28-30 degrees C). The influent loading rate of NH4(+) -N reached 3.9 kg x (m3 x d)(-1) and the average ammonia removal efficiency was above 95% within one month. Values of ammonia oxidizing rate (AOR) as high as 5.0 kg x (m3 x d)(-1) was obtained in the following operational stage with extremely high nitrogen loading rate. Nitrite accumulation obviously occurred during the start-up period. The nitrite accumulation rate reached 2-4.5 kg x (m3 x d)(-1) from day 25 to 70. In spite of the change in the feeding composition (COD/N ratio) and the frequent fluctuations of nitrogen loading rate, the granules maintained their structures, with the SVI of 30-40 mL x g(-1). The amount of granules with diameter larger than 0.21 mm was about 93% (mass fraction) of the total on day 36. The granular color changed from yellow to brownish-yellow, and some turned brown in this study. All these results suggested the critical role of aerobic granular sludge as seed sludge for the rapid start-up of nitrifying processes and the formation of nitrifying granules.

  16. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.

    PubMed

    Sahinkaya, Erkan; Kilic, Adem; Duygulu, Bahadir

    2014-09-01

    Sulfur-based autotrophic denitrification of nitrified activated sludge process effluent was studied in pilot and full scale column bioreactors. Three identical pilot scale column bioreactors packed with varying sulfur/lime-stone ratios (1/1-3/1) were setup in a local wastewater treatment plant and the performances were compared under varying loading conditions for long-term operation. Complete denitrification was obtained in all pilot bioreactors even at nitrate loading of 10 mg NO3(-)-N/(L.h). When the temperature decreased to 10 °C during the winter time at loading of 18 mg NO3(-)-N/(L.h), denitrification efficiency decreased to 60-70% and the bioreactor with S/L ratio of 1/1 gave slightly better performance. A full scale sulfur-based autotrophic denitrification process with a S/L ratio of 1/1 was set up for the denitrification of an activated sludge process effluent with a flow rate of 40 m(3)/d. Almost complete denitrification was attained with a nitrate loading rate of 6.25 mg NO3(-)-N/(L.h).

  17. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell.

    PubMed

    Zhan, Guoqiang; Zhang, Lixia; Li, Daping; Su, Wentao; Tao, Yong; Qian, Junwei

    2012-07-01

    A new approach was developed to achieve autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment 3-dimensional microbial electrolysis cell (MEC). The MEC consisted of anodic and cathodic electrodes, on which nitrifying and denitrifying biofilms, respectively, were attached. Nitrogen removal can be enhanced at an applied voltage in the MEC. Besides, the nitrogen removal efficiency gradually increased from 70.3% to 92.6% with the increase of applied voltage from 0.2 to 0.4V, as well as the maximum current was varied from 4.4 to 14 mA. The corresponding coulombic efficiency also increased from 82% to 94.4%, indicating that the increasing applied voltage could enhance electron extraction from ammonium during its oxidative removal. The DO was found to be a critical factor which affected the nitrogen removal in this MEC system. These results demonstrated that the MEC process was applicable to achieve autotrophic nitrogen removal from wastewater containing ammonium.

  18. Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter.

    PubMed

    Sánchez Guillén, J A; Jayawardana, L K M C B; Lopez Vazquez, C M; de Oliveira Cruz, L M; Brdjanovic, D; van Lier, J B

    2015-01-01

    Partial nitritation in sponge-bed trickling filters (STF) under natural air circulation was studied in two reactors: STF-1 and STF-2 operated at 30°C with sponge thickness of 0.75 and 1.50cm, respectively. The coexistence of nitrifiers and Anammox bacteria was obtained and attributed to the favorable environment created by the reactors' design and operational regimes. After 114days of operation, the STF-1 had an average NH4(+)-N removal of 69.3% (1.17kgN/m(3)sponged) and a total nitrogen removal of 52.2% (0.88kgN/m(3)sponged) at a Nitrogen Loading Rate (NLR) of 1.68kgN/m(3)sponged and Hydraulic Retention Time (HRT) of 1.71h. The STF-2 showed an average NH4(+)-N removal of 81.6 % (0.77kgN/m(3)sponged) and a total nitrogen removal of 54% (0.51kgN/m(3)sponged), at an NLR of 0.95kgN/m(3)sponged and HRT of 2.96h. The findings suggest that autotrophic nitrogen removal over nitrite in STF systems is a feasible alternative. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Engineering the Autotroph Methanococcus maripaludis for Geraniol Production.

    PubMed

    Lyu, Zhe; Jain, Rachit; Smith, Peyton; Fetchko, Travis; Yan, Yajun; Whitman, William B

    2016-07-15

    The rapid autotrophic growth of the methanogenic archaeon Methanococcus maripaludis on H2 and CO2 makes it an attractive microbial chassis to inexpensively produce biochemicals. To explore this potential, a synthetic gene encoding geraniol synthase (GES) derived from Ocimum basilicum was cloned into a M. maripaludis expression vector under selection for puromycin resistance. Recombinant expression of GES in M. maripaludis during autotrophic growth on H2/CO2 or formate yielded geraniol at 2.8 and 4.0 mg g(-1) of dry weight, respectively. The yield of geraniol decreased 2-3-fold when organic carbon sources were added to stimulate heterotrophic growth. In the absence of puromycin, geraniol production during autotrophic growth on formate increased to 4.6 mg g(-1) of dry weight. A conceptual model centered on the autotrophic acetyl coenzyme A biosynthetic pathway identified strategies to divert more autotrophic carbon flux to geraniol production.

  20. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications.

    PubMed

    Shao, Ming-Fei; Zhang, Tong; Fang, Herbert Han-Ping

    2010-11-01

    Sulfur-driven autotrophic denitrification refers to the chemolithotrophic process coupling denitrification with the oxidation of reduced inorganic sulfur compounds. Ever since 1904, when Thiobacillus denitrificans was isolated, autotrophic denitrifiers and their uncultured close relatives have been continuously identified from highly diverse ecosystems including hydrothermal vents, deep sea redox transition zones, sediments, soils, inland soda lakes, etc. Currently, 14 valid described species within α-, β-, γ-, and ε-Proteobacteria have been identified as capable of autotrophic denitrification. Autotrophic denitrification is also widely applied in environmental engineering for the removal of sulfide and nitrate from different water environments. This review summarizes recent researches on autotrophic denitrification, highlighting its diversity, metabolic traits, and engineering applications.

  1. 2-Chlorophenol consumption and its effect on the nitrifying sludge.

    PubMed

    Martínez-Hernández, Sergio; Texier, Anne-Claire; de María Cuervo-López, Flor; Gómez, Jorge

    2011-01-30

    The kinetic behavior of a nitrifying sludge exposed to 2-chlorophenol (2-CP) was evaluated in batch culture. The assays were performed using a stabilized nitrifying sludge. In control assays with (mg L(-1)): NH(4)(+)-N (100) and NaHCO(3)(-)-C (250), the substrates were consumed in 8h, the ammonium consumption efficiency was 99% and the NO(3)(-) yield higher than 0.9. When 5mg 2-CP-C L(-1) was added, it was transformed into an unidentified intermediate and the nitrifying efficiency decreased to 10%. Ammonium specific consumption rate diminished 95%, but the NO(3)(-) yield remained higher than 0.9. The biomass previously exposed to 2-CP was newly suspended with NH(4)(+)-N or NO(2)(-)-N in order to evaluate the ammonium and nitrite oxidizing processes. The consumption efficiencies and NO(3)(-) yields were similar to those obtained in control assays. However, the total time required for ammonium and nitrite consumption increased to 120 and 42 h, respectively. Specific consumption rates for NH(4)(+)-N and NO(2)(-)-N decreased by 95% and 83% respectively, compared to control assays. Thus, the previous contact to 2-CP had more influence on ammonium oxidizing process than the nitrite oxidizing process. These are the first evidences where a nitrifying sludge exposed to 2-CP are reported. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Granulation of fine powder

    DOEpatents

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  3. Apparatus and method for controlling autotroph cultivation

    DOEpatents

    Fuxman, Adrian M; Tixier, Sebastien; Stewart, Gregory E; Haran, Frank M; Backstrom, Johan U; Gerbrandt, Kelsey

    2013-07-02

    A method includes receiving at least one measurement of a dissolved carbon dioxide concentration of a mixture of fluid containing an autotrophic organism. The method also includes determining an adjustment to one or more manipulated variables using the at least one measurement. The method further includes generating one or more signals to modify the one or more manipulated variables based on the determined adjustment. The one or more manipulated variables could include a carbon dioxide flow rate, an air flow rate, a water temperature, and an agitation level for the mixture. At least one model relates the dissolved carbon dioxide concentration to one or more manipulated variables, and the adjustment could be determined by using the at least one model to drive the dissolved carbon dioxide concentration to at least one target that optimize a goal function. The goal function could be to optimize biomass growth rate, nutrient removal and/or lipid production.

  4. Dense autotrophic cultures of Alcaligenes eutrophus.

    PubMed Central

    Repaske, R; Mayer, R

    1976-01-01

    Alcaligenes eutrophus was grown autotrophically in 23-liter batch cultures in a controlled H2-O2-CO2 atmosphere. It was demonstrated that the need for periodic supplements of individual nutrients could be anticipated before cell growth depleted these nutrients to the point of becoming growth rate limiting. As a result, exponential growth was extended to optical densities of 44, with doubling times maintained at 2 h. Cultures having an initial optical density of 0.040 to 0.70 reached the final optical density of 60 in about 25 h. The final viable count was 1.2 X 10(11) cells per ml, and the dry weight was 25 g/liter. PMID:10840

  5. Vertical distribution of nitrifying populations in bacterial biofilms from a full-scale nitrifying trickling filter.

    PubMed

    Lydmark, Pär; Lind, Magnus; Sörensson, Fred; Hermansson, Malte

    2006-11-01

    Cryosectioned biofilm from three depths (0.5, 3.0 and 6.0 m) in a full-scale nitrifying trickling filter (NTF) were studied using fluorescence in situ hybridization (FISH). A large number of sections were used to determine how the biofilm thickness, structure and community composition varied with depth along the ammonium concentration gradient in the NTF, and how the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were distributed vertically within the biofilm. Both the biofilm thickness and relative biomass content of the biofilm decreased with depth, along with structural differences such as void size and surface roughness. Four AOB populations were found, with two Nitrosomonas oligotropha populations dominating at all depths. A smaller population of Nitrosomonas europaea was present only at 0.5 m, while a population of Nitrosomonas communis increased with depth. The two N. oligotropha populations showed different vertical distribution patterns within the biofilm, indicating different ecophysiologies even though they belong to the same AOB lineage. All NOB were identified as Nitrospira sp., and were generally more associated with the biofilm base than the surface-associated dominating AOB population. Additionally, a small population of anaerobic ammonia-oxidizers was found at 6.0 m, even though the biofilm was well aerated.

  6. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    PubMed

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1).

  7. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  8. Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius.

    PubMed

    Langworthy, T A

    1977-06-01

    Complex lipids from the thermoacidophilic facultative autotroph Sulfolobus acidocaldarius, as well as a strictly autotrophic isolate, were compared between cells grown on yeast extract and elemental sulfur. Lipids from both organisms grown autotrophically were nearly identical. Each contained about 15% neutral lipids, 35% glycolipids, and 50% acidic lipids. Glycolipids and acidic lipids contained C40H82-76-derived glycerol ether residues. Major glycolipids included the glycerol ether analogues of glucosyl galactosyl diglyceride (5%) and glucosyl polyol diglyceride (75%). Acidic lipids were comprised mainly of the glycerol ether analogues of phosphatidyl inositol (7%), inositolphosphoryl glucosyl polyol diglyceride (72%), and a partially characterized sulfate- and phosphate-containing derivative of glucosyl polyol diglyceride (13%). The lipids from cells grown heterotrophically were similar to those from autotrophically grown cells, except that the partially characterized acidic lipid was absent. In addition, the two glycolipids as well as the respective inositolphosphoryl derivatives were each present in nearly equal proportions.

  9. Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius.

    PubMed Central

    Langworthy, T A

    1977-01-01

    Complex lipids from the thermoacidophilic facultative autotroph Sulfolobus acidocaldarius, as well as a strictly autotrophic isolate, were compared between cells grown on yeast extract and elemental sulfur. Lipids from both organisms grown autotrophically were nearly identical. Each contained about 15% neutral lipids, 35% glycolipids, and 50% acidic lipids. Glycolipids and acidic lipids contained C40H82-76-derived glycerol ether residues. Major glycolipids included the glycerol ether analogues of glucosyl galactosyl diglyceride (5%) and glucosyl polyol diglyceride (75%). Acidic lipids were comprised mainly of the glycerol ether analogues of phosphatidyl inositol (7%), inositolphosphoryl glucosyl polyol diglyceride (72%), and a partially characterized sulfate- and phosphate-containing derivative of glucosyl polyol diglyceride (13%). The lipids from cells grown heterotrophically were similar to those from autotrophically grown cells, except that the partially characterized acidic lipid was absent. In addition, the two glycolipids as well as the respective inositolphosphoryl derivatives were each present in nearly equal proportions. Images PMID:863856

  10. An Experiment in Autotrophic Fermentation: Microbial Oxidation of Hydrogen Sulfide.

    ERIC Educational Resources Information Center

    Sublette, Kerry L.

    1989-01-01

    Described is an experiment which uses an autotrophic bacterium to anaerobically oxidize hydrogen sulfide to sulfate in a batch-stirred tank reactor. Discusses background information, experimental procedure, and sample results of this activity. (CW)

  11. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean.

    PubMed

    Hügler, Michael; Sievert, Stefan M

    2011-01-01

    Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.

  12. Beyond the Calvin Cycle: Autotrophic Carbon Fixation in the Ocean

    NASA Astrophysics Data System (ADS)

    Hügler, Michael; Sievert, Stefan M.

    2011-01-01

    Organisms capable of autotrophic metabolism assimilate inorganic carbon into organic carbon. They form an integral part of ecosystems by making an otherwise unavailable form of carbon available to other organisms, a central component of the global carbon cycle. For many years, the doctrine prevailed that the Calvin-Benson-Bassham (CBB) cycle is the only biochemical autotrophic CO2 fixation pathway of significance in the ocean. However, ecological, biochemical, and genomic studies carried out over the last decade have not only elucidated new pathways but also shown that autotrophic carbon fixation via pathways other than the CBB cycle can be significant. This has ramifications for our understanding of the carbon cycle and energy flow in the ocean. Here, we review the recent discoveries in the field of autotrophic carbon fixation, including the biochemistry and evolution of the different pathways, as well as their ecological relevance in various oceanic ecosystems.

  13. p-Cresol biotransformation by a nitrifying consortium.

    PubMed

    Silva, C D; Gómez, J; Houbron, E; Cuervo-López, F M; Texier, A-C

    2009-06-01

    The oxidizing ability of a nitrifying consortium exposed to p-cresol (25 mg CL(-1)) was evaluated in batch cultures. Biotransformation of the phenolic compound was investigated by identifying the different intermediates formed. p-Cresol inhibited the ammonia-oxidizing process with a decrease of 83% in the specific rate of ammonium consumption. After 48 h, ammonium consumption efficiency was 96+/-9% while nitrate yield reached 0.95+/-0.06 g NO(3)(-)-Ng(-1)NH(4)(+)-N consumed. High value for nitrate production yield showed that the nitrifying metabolic pathway was only affected at the specific rate level being nitrate the main end product. The consortium was able to totally oxidize p-cresol at a specific rate of 0.17+/-0.06 mg p-cresol-Cmg(-1) microbial protein h(-1). p-Cresol was first transformed to p-hydroxybenzaldehyde and p-hydroxybenzoate, which were later completely mineralized. In the presence of allylthiourea, a specific inhibitor of ammonia monooxygenase (AMO), p-cresol was oxidized to the same intermediates and in a similar pattern as obtained without the AMO inhibitor. AMO seemed not to be involved in the p-cresol oxidation process. When p-hydroxybenzaldehyde was added (25 mg CL(-1)), the nitrifying process was inhibited in the same way as observed with p-cresol, indicating that p-hydroxybenzaldehyde could be the main compound responsible for nitrification inhibition. p-Hydroxybenzaldehyde was accumulated during 15 h before complete consumption at a specific rate value eight times lower than the p-cresol consumption rate. Results showed that p-hydroxybenzaldehyde oxidation was the limiting step in p-cresol mineralization by the nitrifying consortium.

  14. Biotransformation of chlorinated aliphatic compounds by mixed nitrifying cultures

    SciTech Connect

    Wilber, G.G.; Chakkamadathil, S.V.

    1995-12-31

    The ability of pure cultures of nitrifying bacteria, such as Nitrosomonas europaea, to oxidize chlorinated aliphatic compounds has been demonstrated previously in laboratory experiments. In the current study, mixed nitrifying cultures originating from a municipal wastewater plant were also tested for the ability to biotransform chlorinated aliphatic compounds, including trichloroethene (TCE). A number of variables were tested, including the effects of two different concentrations of TCE, the effect of culture density, and the influence of the primary substrate, ammonia, on the initial rate of TCE biotransformation. The primary conclusions of the research include the following. The mixed nitrifying cultures did exhibit the ability to transform TCE, and the initial rate of transformation (before oxygen limitations became significant) was directly proportional to the culture density. In general, the transformation rate of TCE was slightly faster at an initial concentration of 0.1 mg/L than at 1 mg/L. Lastly, high initial ammonia concentrations (300 mg/L) resulted in faster initial rates of TCE transformation than in cultures which started with lower ammonia concentrations.

  15. Resistance of nitrifiers inhabiting activated sludge to ciliate grazing.

    PubMed

    Pajdak-Stós, Agnieszka; Fiałkowska, Edyta; Fyda, Janusz; Babko, Roman

    2010-01-01

    We monitored the succession of nitrifiers in a newly opened wastewater treatment plant for five weeks. After the first distinct decrease in total nitrogen, we began monitoring the appearance, size and number of nitrifying bacteria colonies using the fluorescence in situ hybridization (FISH) method. Ammonia oxidizing bacteria (AOB) colonies were visualized under green excitation as red, and nitrite oxidizing bacteria (NOB) colonies were visualized under blue excitation as green. The changes in protozoan community were monitored simultaneously. Ciliates were divided into four functional groups: predatory, bacterivorous free-swimming, bacterivorous crawling, and sessile. The results showed that at the time of the first distinct total nitrogen decrease, the mean length of both AOB and NOB were relatively low, but the colonies, especially those of nitrite oxidizers, were abundant. In time, the distribution of ammonia oxidizer colonies shifted towards larger sizes, but their quantity decreased. In the case of nitrite oxidizers, a similar trend was noticeable but less pronounced. These changes corresponded with an increasing number of crawling bacterivorous ciliates dominated by the "scavenger" genus Aspidisca. The increasing size of nitrifier colonies may have been due to the growing grazing pressure from crawling bacterivorous ciliates. The strong grazing pressure did not negatively affect N-NH(4)(+) removal effectiveness.

  16. STUDIES ON THE METABOLISM OF AUTOTROPHIC BACTERIA

    PubMed Central

    Vogler, K. G.; LePage, G. A.; Umbreit, W. W.

    1942-01-01

    The data of this paper indicate that: 1. The "energy of activation" (µ) of sulfur oxidation by the autotrophic bacterium, Thiobacillus thiooxidans, is similar to that of other respirations. 2. The pH of the menstruum does not influence the respiration on sulfur between the limits of pH 2 to 4.8 once contact between the bacterial cell and the sulfur particle has been established but it does influence the rate at which such contact occurs. 3. The pO2 has little effect upon the respiration of this organism. 4. Most organic materials have no detectable effect upon the respiration of Thiobacillus thiooxidans, but the organic acids of terminal respiration seem to stimulate the respiration in the absence of oxidizable sulfur and certain of them inhibit sulfur oxidation. 5. In so far as inhibitor studies on intact cells are trustworthy, sulfur oxidation goes through iron-containing systems similar to cytochrome. It is possible that the oxygen contained in the sulfuric acid formed during sulfur oxidation is derived from the oxygen of the water. PMID:19873331

  17. Quantification of nitrifying bacterial populations in a full-scale nitrifying trickling filter using fluorescent in situ hybridization.

    PubMed

    Biesterfeld, S; Figueroa, L; Hernandez, M; Russell, P

    2001-01-01

    Fluorescent in situ hybridization (FISH) was used to quantify the ammonia-oxidizing populations within intact biofilm samples collected from a full-scale nitrifying trickling filter (NTF). Ammonia, nitrite, and nitrate concentrations were measured for aqueous samples taken in conjunction with biofilm samples at multiple filter depths. Correlation coefficients for individual sampling events, calculated by simple linear regression of FISH signal area and ammonia removal rates, ranged from 0.558 when using probe NEU23a to 0.982 when using probe Nso190. The improved correlations with Nso190 suggest that genera other than Nitrosomonas are present in this system. Percent biofilm coverage, as determined by 4',6-diamidino-2-phenylindole counterstaining and dry weight biomass measurements, did not change throughout the NTF. This indicates that biofilm growth is fairly uniform throughout the filter even if nitrifier growth is not.

  18. Understanding size enlargement and hardening of granules on tabletability of unlubricated granules prepared by dry granulation.

    PubMed

    Patel, Sarsvatkumar; Dahiya, Sandeepkumar; Sun, Changquan Calvin; Bansal, Arvind Kumar

    2011-02-01

    The mechanism of loss of "reworkability" or tabletability of dry granulated microcrystalline cellulose (MCC) was investigated in relation to both granule size enlargement and granule hardness. Slugs of MCC were prepared under three pressures (12.5, 37.5, and 93.8 MPa) and tabletability (tensile strength vs. pressure) of respective granules (three different sizes) was determined. Nominal single granule fracture strength and granule friability were measured. The reduction in tabletability was profound for harder granules, which were obtained from higher slugging pressure. This is consistent with their ability to resist granule fragmentation during tableting. Variation in granule size exhibits negligible effect on tabletability for the lowest slugging pressure and only a small effect for the middle and highest slugging pressure. This observation is again related to different tendency to granule fragmentation during compaction. The results suggest that granule-hardening negatively affects tensile strength more than that of granule size enlargement for MCC.

  19. Novel Transcriptional Regulons for Autotrophic Cycle Genes in Crenarchaeota

    PubMed Central

    Leyn, Semen A.; Rodionova, Irina A.; Li, Xiaoqing

    2015-01-01

    ABSTRACT Autotrophic microorganisms are able to utilize carbon dioxide as their only carbon source, or, alternatively, many of them can grow heterotrophically on organics. Different variants of autotrophic pathways have been identified in various lineages of the phylum Crenarchaeota. Aerobic members of the order Sulfolobales utilize the hydroxypropionate-hydroxybutyrate cycle (HHC) to fix inorganic carbon, whereas anaerobic Thermoproteales use the dicarboxylate-hydroxybutyrate cycle (DHC). Knowledge of transcriptional regulation of autotrophic pathways in Archaea is limited. We applied a comparative genomics approach to predict novel autotrophic regulons in the Crenarchaeota. We report identification of two novel DNA motifs associated with the autotrophic pathway genes in the Sulfolobales (HHC box) and Thermoproteales (DHC box). Based on genome context evidence, the HHC box regulon was attributed to a novel transcription factor from the TrmB family named HhcR. Orthologs of HhcR are present in all Sulfolobales genomes but were not found in other lineages. A predicted HHC box regulatory motif was confirmed by in vitro binding assays with the recombinant HhcR protein from Metallosphaera yellowstonensis. For the DHC box regulon, we assigned a different potential regulator, named DhcR, which is restricted to the order Thermoproteales. DhcR in Thermoproteus neutrophilus (Tneu_0751) was previously identified as a DNA-binding protein with high affinity for the promoter regions of two autotrophic operons. The global HhcR and DhcR regulons reconstructed by comparative genomics were reconciled with available omics data in Metallosphaera and Thermoproteus spp. The identified regulons constitute two novel mechanisms for transcriptional control of autotrophic pathways in the Crenarchaeota. IMPORTANCE Little is known about transcriptional regulation of carbon dioxide fixation pathways in Archaea. We previously applied the comparative genomics approach for reconstruction of Dtx

  20. Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria

    PubMed Central

    Casciotti, Karen L.; Ward, Bess B.

    2001-01-01

    The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of β-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria. PMID:11319103

  1. STUDIES ON THE METABOLISM OF AUTOTROPHIC BACTERIA

    PubMed Central

    Vogler, K. G.

    1942-01-01

    In a study of chemosynthesis (the fixation of CO2 by autotrophic bacteria in the dark) in Thiobacillus thiooxidans, the data obtained support the following conclusions: 1. CO2 can be fixed by "resting cells" of Thiobacillus thiooxidans; the fixation is not "growth bound." 2. The physiological condition of the cell is of considerable importance in determining CO2 fixation. 3. CO2 fixation can occur in the absence of oxidizable sulfur in "young" cells. The extent of this fixation appears to be dependent upon the pCO2. 4. CO2 fixation can also occur under anaerobic conditions and the presence of sulfur does not influence such fixation. 5. However, in the CO2 fixation by cells in the absence of sulfur, only a limited amount of CO2 can be fixed. This amount is approximately 40 µl. CO2 per 100 micrograms bacterial nitrogen. After a culture has utilized this amount of CO2 it no longer has the ability to fix CO2 but releases it during its respiration. 6. Relatively short periods of sulfur oxidation can restore the ability of cells to fix CO2 under conditions where sulfur oxidation is prevented. 7. It is possible to oxidize sulfur in the absence of CO2 and to store the energy thus formed within the cell. It is then possible to use this energy at a later time for the fixation of CO2 in the entire absence of sulfur oxidation. 8. Cultures of Thiobacillus thiooxidans respiring on sulfur utilize CO2 in a reaction which proceeds to a zero concentration of CO2 in the atmosphere. 9. CO2 may act as an oxidizing agent for sulfur. 10. Hydrogen is not utilized by the organism. 11. It is possible to selectively inhibit sulfur oxidation and CO2 fixation. PMID:19873324

  2. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier.

    PubMed

    Segawa, Takahiro; Ishii, Satoshi; Ohte, Nobuhito; Akiyoshi, Ayumi; Yamada, Akinori; Maruyama, Fumito; Li, Zhongqin; Hongoh, Yuichi; Takeuchi, Nozomu

    2014-10-01

    Cryoconites are microbial aggregates commonly found on glacier surfaces where they tend to take spherical, granular forms. While it has been postulated that the microbes in cryoconite granules play an important role in glacier ecosystems, information on their community structure is still limited, and their functions remain unclear. Here, we present evidence for the occurrence of nitrogen cycling in cryoconite granules on a glacier in Central Asia. We detected marker genes for nitrogen fixation, nitrification and denitrification in cryoconite granules by digital polymerase chain reaction (PCR), while digital reverse transcription PCR analysis revealed that only marker genes for nitrification and denitrification were abundantly transcribed. Analysis of isotope ratios also indicated the occurrence of nitrification; nitrate in the meltwater on the glacier surface was of biological origin, while nitrate in the snow was of atmospheric origin. The predominant nitrifiers on this glacier belonged to the order Nitrosomonadales, as suggested by amoA sequences and 16S ribosomal RNA pyrosequencing analysis. Our results suggest that the intense carbon and nitrogen cycles by nitrifiers, denitrifiers and cyanobacteria support abundant and active microbes on the Asian glacier.

  3. A comparison of artificial solar granules with real solar granules

    NASA Technical Reports Server (NTRS)

    Woehl, H.; Nordlund, A.

    1985-01-01

    The properties of computer-generated images of solar granules were compared with data from the literature and with observations of granules from 1975 and 1979. The lifetimes, shapes, and dimensions of the granules were estimated, and the results are discussed. No significant differences were found between the artificial images and the observed granules. The ratios of width to length among the artificial granules are given in a table.

  4. Autotrophic acetyl coenzyme A biosynthesis in Methanococcus maripaludis.

    PubMed Central

    Shieh, J; Whitman, W B

    1988-01-01

    To detect autotrophic CO2 assimilation in cell extracts of Methanococcus maripaludis, lactate dehydrogenase and NADH were added to convert pyruvate formed from autotrophically synthesized acetyl coenzyme A to lactate. The lactate produced was determined spectrophotometrically. When CO2 fixation was pulled in the direction of lactate synthesis, CO2 reduction to methane was inhibited. Bromoethanesulfonate (BES), a potent inhibitor of methanogenesis, enhanced lactate synthesis, and methyl coenzyme M inhibited it in the absence of BES. Lactate synthesis was dependent on CO2 and H2, but H2 + CO2-independent synthesis was also observed. In cell extracts, the rate of lactate synthesis was about 1.2 nmol min-1 mg of protein-1. When BES was added, the rate of lactate synthesis increased to 2.3 nmol min-1 mg of protein-1. Because acetyl coenzyme A did not stimulate lactate synthesis, pyruvate synthase may have been the limiting activity in these assays. Radiolabel from 14CO2 was incorporated into lactate. The percentages of radiolabel in the C-1, C-2, and C-3 positions of lactate were 73, 33, and 11%, respectively. Both carbon monoxide and formaldehyde stimulated lactate synthesis. 14CH2O was specifically incorporated into the C-3 of lactate, and 14CO was incorporated into the C-1 and C-2 positions. Low concentrations of cyanide also inhibited autotrophic growth, CO dehydrogenase activity, and autotrophic lactate synthesis. These observations are in agreement with the acetogenic pathway of autotrophic CO2 assimilation. PMID:3133359

  5. Substrate interactions during trichloroethene degradation by nitrifying cultures

    SciTech Connect

    Ochoa, M.H.; Hughes, J.B.

    1994-12-31

    Studies have been conducted assessing the influence of competitive substrate interactions on the rate/extent of trichloroethene degradation by nitrifying mixed cultures. Specifically, the effect of ammonia, hydroxylamine, tetrachloroethene and cis-dichloroethene have been examined. Results demonstrate that rates of degradation and finite transformation capacity are significantly influenced by these interactions. Adding hydroxylamine as an exogenous source of energy in the absence of the primary substrate produced an increase in the degradation capacity of these cultures up to threefold. Models are being tested to predict these phenomena.

  6. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation.

    PubMed

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-03

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R(2) = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.

  7. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    PubMed Central

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-01-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR. PMID:28367960

  8. Nitrous Oxide Production in a Granule-based Partial Nitritation Reactor: A Model-based Evaluation

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Sun, Jing; Liu, Yiwen; Dai, Xiaohu; Ni, Bing-Jie

    2017-04-01

    Sustainable wastewater treatment has been attracting increasing attentions over the past decades. However, the production of nitrous oxide (N2O), a potent GHG, from the energy-efficient granule-based autotrophic nitrogen removal is largely unknown. This study applied a previously established N2O model, which incorporated two N2O production pathways by ammonia-oxidizing bacteria (AOB) (AOB denitrification and the hydroxylamine (NH2OH) oxidation). The two-pathway model was used to describe N2O production from a granule-based partial nitritation (PN) reactor and provide insights into the N2O distribution inside granules. The model was evaluated by comparing simulation results with N2O monitoring profiles as well as isotopic measurement data from the PN reactor. The model demonstrated its good predictive ability against N2O dynamics and provided useful information about the shift of N2O production pathways inside granules for the first time. The simulation results indicated that the increase of oxygen concentration and granule size would significantly enhance N2O production. The results further revealed a linear relationship between N2O production and ammonia oxidation rate (AOR) (R2 = 0.99) under the conditions of varying oxygen levels and granule diameters, suggesting that bulk oxygen and granule size may exert an indirect effect on N2O production by causing a change in AOR.

  9. Photosynthesis in Rhodospirillum rubrum. I. Autotrophic Carbon Dioxide Fixation 1

    PubMed Central

    Anderson, Louise; Fuller, R. C.

    1967-01-01

    The incorporation and distribution of activity from 14CO2 was investigated under autotrophic conditions in the facultative photoautotroph, Rhodospirillum rubrum, with cells cultured on hydrogen, carbon dioxide, and ammonium sulfate. In 1 second 14CO2 fixation experiments essentially all of the activity was found in 3-phosphoglyceric acid: plotted against time percent incorporation into phosphate esters has a strikingly negative slope. These results suggest that under autotrophic conditions the reductive pentose phosphate cycle or the key reactions of the cycle play a major role in carbon metabolism in this photosynthetic bacterium. Incorporation into amino acids and into intermediates of the tricarboxylic acid cycle was quite low. PMID:6042357

  10. Biosynthesis of Cytokinins in Cytokinin-Autotrophic Tobacco Callus

    PubMed Central

    Einset, John W.; Skoog, Folke

    1973-01-01

    A cytokinin-autotrophic strain of tobacco callus contained cytokinin-active compounds with chromatographic mobilities on Sephadex LH-20 corresponding to ribosylzeatin, zeatin, and 6-Δ2-isopentenylaminopurine. Zeatin, the apparent major cytokinin, was estimated to be present at a concentration of 10-4 μmol/kg of tissue. Cytokinin-autotrophic callus supplied with [14C]adenine produced radioactive components with the same chromatographic properties as zeatin and 6-Δ2-isopentenylaminopurine. These components were not obtained from cytokinin-dependent tissue supplied with [14C]adenine in the same manner. PMID:16592068

  11. Biotransformation of acyclovir by an enriched nitrifying culture.

    PubMed

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2017-03-01

    This work evaluates the biodegradation of the antiviral drug acyclovir by an enriched nitrifying culture during ammonia oxidation and without the addition of ammonium. The study on kinetics was accompanied with the structural elucidation of biotransformation products through batch biodegradation experiments at two different initial levels of acyclovir (15 mg L(-1) and 15 μg L(-1)). The pseudo first order kinetic studies of acyclovir in the presence of ammonium indicated the higher degradation rates under higher ammonia oxidation rates than those constant degradation rates in the absence of ammonium. The positive correlation was found between acyclovir degradation rate and ammonia oxidation rate, confirming the cometabolism of acyclovir by the enriched nitrifying culture in the presence of ammonium. Formation of the product carboxy-acyclovir (P239) indicated the main biotransformation pathway was aerobic oxidation of the terminal hydroxyl group, which was independent on the metabolic type (i.e. cometabolism or metabolism). This enzyme-linked reaction might be catalyzed by monooxygenase from ammonia oxidizing bacteria or heterotrophs. The formation of carboxy-acyclovir was demonstrated to be irrelevant to the acyclovir concentrations applied, indicating the revealed biotransformation pathway might be the dominant removal pathway of acyclovir in wastewater treatment.

  12. Microelectrode Measurements of the Activity Distribution in Nitrifying Bacterial Aggregates

    PubMed Central

    de Beer, D.; van den Heuvel, J. C.; Ottengraf, S. P. P.

    1993-01-01

    Microelectrodes for ammonium, oxygen, nitrate, and pH were used to study nitrifying aggregates grown in a fluidized-bed reactor. Local reactant fluxes and distribution of microbial activity could be determined from the microprofiles. The interfacial fluxes of the reactants closely reflected the stoichiometry of bacterial nitrification. Both ammonium consumption and nitrate production were localized in the outer shells, with a thickness of approximately 100 to 120 μm, of the aggregates. Under conditions in which ammonium and oxygen penetrated the whole aggregate, nitrification was restricted to this zone; oxygen was consumed in the central parts of the aggregates as well, probably because of oxidation of dead biomass. A sudden increase of the oxygen concentration to saturation (pure oxygen) was inhibitory to nitrification. The pH profiles showed acidification in the aggregates, but not to an inhibitory level. The distribution of activity was determined by the penetration depth of oxygen during aggregate development in the reactor. Mass transfer was significantly limited by the boundary layer surrounding the aggregates. Microelectrode measurements showed that the thickness of this layer was correlated with the diffusion coefficient of the species. Determination of the distribution of nitrifying activity required the use of ammonium or nitrate microelectrodes, whereas the use of oxygen microelectrodes alone would lead to erroneous results. Images PMID:16348875

  13. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria.

    PubMed

    Shan, H; Obbard, J P

    2001-12-01

    Intensive prawn aquaculture in tropical regions is associated with high concentrations of total ammoniacal nitrogen (TAN) as a result of high rates of prawn excretion and feed loading. Excessive TAN can adversely effect productivity and result in adverse impacts on coastal waters. Cultures of indigenous nitrifying bacteria were enriched from intensive prawn aquaculture pond water using continuous and batch enrichment techniques. Cultures were capable of TAN removal over a wide range of initial TAN concentrations - up to 200 mg/l. Cultures were immobilized onto porous clay pellets to enhance cell density and applied to culture medium and TAN-augmented pond water under aerobic conditions to determine TAN removal proficiency. Immobilized cultures were able to achieve a high TAN removal proficiency in pond water--even at a low density of 0.1 pellet per liter. A concentration of less than 0.5 mg TAN/l could be maintained under a fed-batch condition of 3.2 mg TAN/l per day, after an initial 2-day lag phase. A simplified and effective culture enrichment process was developed for culture immobilization onto pellets using TAN-augmented pond water. Overall, pellet immobilization of indigenous nitrifying bacteria represents a potentially effective TAN control system for prawn aquaculture in low-cost, but intensive tropical prawn farms.

  14. Inferred properties of stellar granulation

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1985-06-01

    Apparent characteristics of stellar granulation in F and G main-sequence stars are inferred directly from observed spectral-line asymmetries and from comparisons of numerical simulations with the observations: (1) the apparent granulation velocity increases with effective temperature, (2) the dispersion of granule velocities about their mean velocity of rise increases with the apparent granulation velocity, (3) the mean velocity of rise of granules must be less than the total line broadening, (4) the apparent velocity difference between granules and dark lanes corresponds to the granulation velocity deduced from stellar line bisectors, (5) the dark lanes show velocities of fall approximately twice as large as the granule rise velocities, (6) the light contributed to the stellar flux by the granules is four to ten times more than the light from the dark lanes. Stellar rotation is predicted to produce distortions in the line bisectors which may give information on the absolute velocity displacements of the line bisectors. 37 references.

  15. Population Ecology of Nitrifiers in a Stream Receiving Geothermal Inputs of Ammonium

    PubMed Central

    Cooper, A. Bryce

    1983-01-01

    The distribution, activity, and generic diversity of nitrifying bacteria in a stream receiving geothermal inputs of ammonium were studied. The high estimated rates of benthic nitrate flux (33 to 75 mg of N · m−2 · h−1) were a result of the activity of nitrifiers located in the sediment. Nitrifying potentials and ammonium oxidizer most probable numbers in the sediments were at least one order of magnitude higher than those in the waters. Nitrifiers in the oxygenated surface (0 to 2 cm) sediments were limited by suboptimal temperature, pH, and substrate level. Nitrifiers in deep (nonsurface) oxygenated sediments did not contribute significantly to the changes measured in the levels of inorganic nitrogen species in the overlying waters and presumably derived their ammonium supply from ammonification within the sediment. Ammonium-oxidizing isolates obtained by a most-probable number nonenrichment procedure were species of either Nitrosospira or Nitrosomonas, whereas all those obtained by an enrichment procedure (i.e., selective culture) were Nitrosomonas spp. The efficiency of the most-probable-number method for enumerating ammonium oxidizers was calculated to be between 0.05 and 2.0%, suggesting that measurements of nitrifying potentials provide a better estimate of nitrifying populations. PMID:16346261

  16. mRNP granules

    PubMed Central

    Buchan, J Ross

    2014-01-01

    Messenger ribonucleoprotein (mRNP) granules are dynamic, self-assembling structures that harbor non-translating mRNAs bound by various proteins that regulate mRNA translation, localization, and turnover. Their importance in gene expression regulation is far reaching, ranging from precise spatial-temporal control of mRNAs that drive developmental programs in oocytes and embryos, to similarly exquisite control of mRNAs in neurons that underpin synaptic plasticity, and thus, memory formation. Analysis of mRNP granules in their various contexts has revealed common themes of assembly, disassembly, and modes of mRNA regulation, yet new studies continue to reveal unexpected and important findings, such as links between aberrant mRNP granule assembly and neurodegenerative disease. Continued study of these enigmatic structures thus promises fascinating new insights into cellular function, and may also suggest novel therapeutic strategies in various disease states. PMID:25531407

  17. Estimating autotrophic respiration in streams using daily metabolism data

    EPA Science Inventory

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  18. Estimating autotrophic respiration in streams using daily metabolism data

    EPA Science Inventory

    Knowing the fraction of gross primary production (GPP) that is immediately respired by autotrophs and their closely associated heterotrophs (ARf) is necessary to understand the trophic base and carbon spiraling in streams. We show a means to estimate ARf from daily metabolism da...

  19. General medium for the autotrophic cultivation of acetogens.

    PubMed

    Groher, Anna; Weuster-Botz, Dirk

    2016-10-01

    Syngas fermentation, a microbial process in which synthesis gas serves as a substrate for acetogens, has attracted increasing interest in the last few years. For the purposeful selection of acetogens for various applications, it would be useful to characterize and compare the process performances of as many autotrophic strains as possible under identical process conditions. Unfortunately, all the media compositions so far recommended for syngas fermentation differ considerably with respect to each individual strain. Therefore, a general medium for syngas fermentation was designed. The suitability of this new general-acetogen medium (GA-medium) was proven based on the autotrophic batch cultivation of Acetobacterium fimetarium, Acetobacterium wieringae, Blautia hydrogenotrophica, Clostridium magnum, Eubacterium aggregans, Sporomusa acidovorans, Sporomusa ovata and Terrisporobacter mayombei in anaerobic flasks with an initial gas phase of H2:CO2 (66:34) (P = 200 kPa). A comparison of the autotrophic batch processes with this medium revealed T. mayombei as the bacterium with the highest maximum growth rate of 5.77 day(-1) which was more than 10 times higher than the lowest identified maximum growth rate of A. fimetarium. The maximum growth rates of A. wieringae, C. magnum and S. acidovorans were all in the same order of magnitude around 1.7 day(-1). The newly designed GA-medium offers the possibility to compare autotrophic process performances of different acetogens under similar conditions absent the effects of various media compositions.

  20. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota).

    PubMed

    Hügler, Michael; Huber, Harald; Stetter, Karl Otto; Fuchs, Georg

    2003-03-01

    Representative autotrophic and thermophilic archaeal species of different families of Crenarchaeota were examined for key enzymes of the known autotrophic CO(2) fixation pathways. Pyrobaculum islandicum ( Thermoproteaceae) contained key enzymes of the reductive citric acid cycle. This finding is consistent with the operation of this pathway in the related Thermoproteus neutrophilus. Pyrodictium abyssi and Pyrodictium occultum ( Pyrodictiaceae) contained ribulose 1,5-bisphosphate carboxylase, which was active in boiling water. Yet, phosphoribulokinase activity was not detectable. Operation of the Calvin cycle remains to be demonstrated. Ignicoccus islandicus and Ignicoccus pacificus ( Desulfurococcaceae) contained pyruvate oxidoreductase as potential carboxylating enzyme, but apparently lacked key enzymes of known pathways; their mode of autotrophic CO(2) fixation is at issue. Metallosphaera sedula, Acidianus ambivalens and Sulfolobus sp. strain VE6 ( Sulfolobaceae) contained key enzymes of a 3-hydroxypropionate cycle. This finding is in line with the demonstration of acetyl-coenzyme A (CoA) and propionyl-CoA carboxylase activities in the related Acidianus brierleyi and Sulfolobus metallicus. Enzymes of central carbon metabolism in Metallosphaera sedula were studied in more detail. Enzyme activities of the 3-hydroxypropionate cycle were strongly up-regulated during autotrophic growth, supporting their role in CO(2) fixation. However, formation of acetyl-CoA from succinyl-CoA could not be demonstrated, suggesting a modified pathway of acetyl-CoA regeneration. We conclude that Crenarchaeota exhibit a mosaic of three or possibly four autotrophic pathways. The distribution of the pathways so far correlates with the 16S-rRNA-based taxa of the Crenarchaeota.

  1. Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria

    PubMed Central

    Burnap, Robert L.

    2014-01-01

    Recent advances in the modeling of microbial growth and metabolism have shown that growth rate critically depends upon the optimal allocation of finite proteomic resources among different cellular functions and that modeling growth rates becomes more realistic with the explicit accounting for the costs of macromolecular synthesis, most importantly, protein expression. The “proteomic constraint” is considered together with its application to understanding photosynthetic microbial growth. The central hypothesis is that physical limits of cellular space (and corresponding solvation capacity) in conjunction with cell surface-to-volume ratios represent the underlying constraints on the maximal rate of autotrophic microbial growth. The limitation of cellular space thus constrains the size the total complement of macromolecules, dissolved ions, and metabolites. To a first approximation, the upper limit in the cellular amount of the total proteome is bounded this space limit. This predicts that adaptation to osmotic stress will result in lower maximal growth rates due to decreased cellular concentrations of core metabolic proteins necessary for cell growth owing the accumulation of compatible osmolytes, as surmised previously. The finite capacity of membrane and cytoplasmic space also leads to the hypothesis that the species-specific differences in maximal growth rates likely reflect differences in the allocation of space to niche-specific proteins with the corresponding diminution of space devoted to other functions including proteins of core autotrophic metabolism, which drive cell reproduction. An optimization model for autotrophic microbial growth, the autotrophic replicator model, was developed based upon previous work investigating heterotrophic growth. The present model describes autotrophic growth in terms of the allocation protein resources among core functional groups including the photosynthetic electron transport chain, light-harvesting antennae, and the

  2. Nitrous oxide emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment plant.

    PubMed

    Aboobakar, Amina; Cartmell, Elise; Stephenson, Tom; Jones, Mark; Vale, Peter; Dotro, Gabriela

    2013-02-01

    This paper reports findings from online, continuous monitoring of dissolved and gaseous nitrous oxide (N₂O), combined with dissolved oxygen (DO) and ammonia loading, in a full-scale nitrifying activated sludge plant. The study was conducted over eight weeks, at a 210,000 population equivalent sewage treatment works in the UK. Results showed diurnal variability in the gaseous and dissolved N₂O emissions, with hourly averages ranging from 0 to 0.00009 kgN₂O-N/h for dissolved and 0.00077-0.0027 kgN₂O-N/h for gaseous nitrous oxide emissions respectively, per ammonia loading, depending on the time of day. Similarly, the spatial variability was high, with the highest emissions recorded immediately after the anoxic zone and in the final pass of the aeration lane, where ammonia concentrations were typically below 0.5 mg/L. Emissions were shown to be negatively correlated to dissolved oxygen, which fluctuated between 0.5 and 2.5 mgO₂/L, at the control set point of 1.5 mgO₂/L. The resulting dynamic DO conditions are known to favour N₂O production, both by autotrophic and heterotrophic processes in mixed cultures. Average mass emissions from the lane were greater in the gaseous (0.036% of the influent total nitrogen) than in the dissolved (0.01% of the influent total nitrogen) phase, and followed the same diurnal and spatial patterns. Nitrous oxide emissions corresponded to over 34,000 carbon dioxide equivalents/year, adding 13% to the carbon footprint associated with the energy requirements of the monitored lane. A clearer understanding of emissions obtained from real-time data can help towards finding the right balance between improving operational efficiency and saving energy, without increasing N₂O emissions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Apparatus for granulating coal

    SciTech Connect

    Ogino, E.; Harada, K.; Yoshii, N.

    1983-08-30

    A granulating apparatus is disclosed comprising a stirring tank or a duct for containing a slurry particulate to granular coal having a binder incorporated therein, a rotary shaft disposed in the tank or duct and at least one agitating blade made of metal netting and attached to the rotary shaft.

  4. Transcriptional response of nitrifying communities to wetting of dry soil.

    PubMed

    Placella, Sarah A; Firestone, Mary K

    2013-05-01

    The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubations of soils taken from two California annual grasslands following a typically dry Mediterranean summer. By quantifying transcripts for a subunit of bacterial and archaeal ammonia monooxygenases (amoA) and a bacterial nitrite oxidoreductase (nxrA) in soil from 15 min to 72 h after water addition, we identified transcriptional response patterns for each of these three groups of nitrifiers. An increase in quantity of bacterial amoA transcripts was detectable within 1 h of wet-up and continued until the size of the ammonium pool began to decrease, reflecting a possible role of transcription in upregulation of nitrification after drought-induced stasis. In one soil, the pulse of amoA transcription lasted for less than 24 h, demonstrating the transience of transcriptional pools and the tight coupling of transcription to the local soil environment. Analysis of 16S rRNA using a high-density microarray suggested that nitrite-oxidizing Nitrobacter spp. respond in tandem with ammonia-oxidizing bacteria while nitrite-oxidizing Nitrospina spp. and Nitrospira bacteria may not. Archaeal ammonia oxidizers may respond slightly later than bacterial ammonia oxidizers but may maintain elevated transcription longer. Despite months of desiccation-induced inactivation, we found rapid transcriptional response by all three groups of soil nitrifiers.

  5. Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes

    EPA Science Inventory

    The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...

  6. Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions

    EPA Science Inventory

    The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under drinking water relevant conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Three batch reactors were used in each ...

  7. Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions

    EPA Science Inventory

    The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under drinking water relevant conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Three batch reactors were used in each ...

  8. Pyrosequencing Analysis of Bench-Scale Nitrifying BiofiltersRemoving Trihalomethanes

    EPA Science Inventory

    The bacterial biofilm communities in four nitrifying biofilters degrading regulated drinking water trihalomethanes were characterized by 454 pyrosequencing. The three most abundant phylotypes based on total diversity were Nitrosomonas (70%), Nitrobacter (14%), and Chitinophagace...

  9. Characterization of canine neutrophil granules.

    PubMed Central

    O'Donnell, R T; Andersen, B R

    1982-01-01

    The purpose of this study was to isolate distinct populations of canine neutrophil granules and to compare them with neutrophil granules from other species. Size, shape, density, and content of canine neutrophil granules were determined. Neutrophils obtained by Ficoll-Hypaque sedimentation were homogenized, and granule populations were separated by isopycnic centrifugation on a linear sucrose gradient (rho, 1.14 to 1.22 g/ml). The most dense granule population (rho, 1.197 g/ml) contained all of the myeloperoxidase, beta-glucuronidase, and elastase, more than half of the acid beta-glycerophosphatase, and most of the lysozyme. The population with intermediate density (rho, 1.179 g/ml) contained lactoferrin, vitamin B12-binding protein, and the remainder of the acid beta-glycerophosphatase and lysozyme. The least dense granule population did not contain a major peak of any of the enzymes or binding proteins tested but was distinguished by density and morphology. The size and shape of the granules were determined from scanning electron micrographs and assessment of shape was aided by transmission electron micrographs. By these methods three populations of canine neutrophil granules were characterized and named: myeloperoxidase granules, vitamin B12-binding protein granules, and low-density granules. Images PMID:6292095

  10. Volutin Granules in Zoogloea ramigera

    PubMed Central

    Roinestad, Frank A.; Yall, Irving

    1970-01-01

    Zoogloea ramigera, a gram-negative bacterium found in activated sludge, formed volutin granules when excess orthophosphate was added to a phosphate-starved culture. These volutin granules were stainable by hydrogen sulfide after lead acetate treatment and extractable by N-perchloric acid but were not adsorbed by activated charcoal. They appeared to consist of inorganic polyphosphate. Optimum granule formation in the arginine broth required 10 g of glucose, 3 mg of phosphate, and 1 to 20 mg of magnesium per liter of medium. At an Mg2+ concentration of 1 mg/liter, very large granules appeared which often appeared to fill the cell. An excess of glucose, orthophosphate, or magnesium reduced granule formation. In the absence of sulfate, moderate granulation occurred in arginine broth before the addition of excess orthophosphate; granulation did not increase after the addition of phosphate. Images PMID:4195479

  11. Volutin granules in Zoogloea ramigera.

    PubMed

    Roinestad, F A; Yall, I

    1970-06-01

    Zoogloea ramigera, a gram-negative bacterium found in activated sludge, formed volutin granules when excess orthophosphate was added to a phosphate-starved culture. These volutin granules were stainable by hydrogen sulfide after lead acetate treatment and extractable by N-perchloric acid but were not adsorbed by activated charcoal. They appeared to consist of inorganic polyphosphate. Optimum granule formation in the arginine broth required 10 g of glucose, 3 mg of phosphate, and 1 to 20 mg of magnesium per liter of medium. At an Mg(2+) concentration of 1 mg/liter, very large granules appeared which often appeared to fill the cell. An excess of glucose, orthophosphate, or magnesium reduced granule formation. In the absence of sulfate, moderate granulation occurred in arginine broth before the addition of excess orthophosphate; granulation did not increase after the addition of phosphate.

  12. Formation of nitrifying biofilms on small suspended particles in airlift reactors.

    PubMed

    Tijhuis, L; Huisman, J L; Hekkelman, H D; van Loosdrecht, M C; Heijnen, J J

    1995-09-05

    For a stable and reliable operation of a BAS-reactor a high, active biomass concentration is required with mainly biofilm-covered carriers. The effect of reactor conditions on the formation of nitrifying biofilms in BAS-reactors was investigated in this article. A start-up strategy to obtain predominantly biofilm-covered carriers, based on the balancing of detachment and a biomass production per carrier surface area, proved tp be very successful. The amount of biomass and the fraction of covered carrier were high and development of nitrification activity was fast, leading to a volumetric conversion of 5 kg(N) . m(-3) . d(-1) at a hydraulic retention time of 1h. A 1-week, continuous inoculation with suspended purely nitrifying microorganisms resulted in a swift start-up compared with batch addition of a small number of biofilms with some nitrification activity. The development of nitrifying biofilms was very similar to the formation of heterotrophic biofilms. In contrast to heterotrophic bio-films, the diameter of nitrifying biofilms increased during start-up. The detachment rate from nitrifying biofilms decreased with lower concentrations of bare carrier, in a fashion comparable with heterotrophic biofilms, but the nitrifying biofilms were much more robust and resistant. Standard diffusion theory combined with reaction kinetics are capable of predicting the activity and conversion of biofilms on small suspended particles. (c) 1995 John Wiley & Sons Inc.

  13. Autotrophic biorefinery: dawn of the gaseous carbon feedstock.

    PubMed

    Butti, Sai Kishore; Mohan, S Venkata

    2017-10-02

    CO2 is a resource yet to be effectively utilized in the autotrophic biotechnology, not only to mitigate and moderate the anthropogenic influence on our climate, but also to steer CO2 sequestration for sustainable development and carbon neutral status. The atmospheric CO2 concentration has seen an exponential increase with the turn of the new millennia causing numerous environmental issues and also in a way feedstock crisis. To progressively regulate the growing CO2 concentrations and to incorporate the integration strategies to our existing CO2 capturing tools, all the influencing factors need to be collectively considered. The review article puts forth the change in perception of CO2 from which was once considered a harmful pollutant having deleterious effects to a renewable carbon source bearing the potential to replace the fossils as the carbon source through an autotrophic biorefinery. Here, we review the current methods employed for CO2 storage and capture, the need to develop sustainable methods and the ways of improving the sequestration efficiencies by various novice technologies. The review also provides an autotrophic biorefinery model with the potential to operate and produces a multitude of biobased products analogous to the petroleum refinery to establish a circular bioeconomy. Furthermore, fundamental and applied research niches that merit further research are delineated. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.

    PubMed

    Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo

    2014-01-01

    An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.

  15. [Advances: granulation mechanism, characteristics and application of aerobic sludge granules].

    PubMed

    Peng, Yong-zhen; Wu, Lei; Ma, Yong; Wang, Shu-ying; Li, Ling-yun

    2010-02-01

    Aerobic sludge granules with compact structure, wide diverse microbial species and excellent settling capabilities have drawn interest of researchers engaging in work in the area of biological wastewater treatment. This review provides recent advances on aerobic biogranulation technology and application. Granulation mechanism, characteristics and its microbial phase, influence of different environmental factors, granulation model and its application in treating the municipal and toxic industrial wastewater were discussed. Then a prospect concerned for future research is also put forward.

  16. Granulation of increasingly hydrophobic formulations using a twin screw granulator.

    PubMed

    Yu, Shen; Reynolds, Gavin K; Huang, Zhenyu; de Matas, Marcel; Salman, Agba D

    2014-11-20

    The application of twin screw granulation in the pharmaceutical industry has generated increasing interest due to its suitability for continuous processing. However, an understanding of the impact of formulation properties such as hydrophobicity on intermediate and finished product quality has not yet been established. Hence, the current work investigated the granulation behaviour of three formulations containing increasing amounts of hydrophobic components using a Consigma™-1 twin screw granulator. Process conditions including powder feed rate, liquid to solid ratio, granulation liquid composition and screw configuration were also evaluated. The size of the wet granules was measured in order to enable exploration of granulation behaviour in isolation without confounding effects from downstream processes such as drying. The experimental observations indicated that the granulation process was not sensitive to the powder feed rate. The hydrophobicity led to heterogeneous liquid distribution and hence a relatively large proportion of un-wetted particles. Increasing numbers of kneading elements led to high shear and prolonged residence time, which acted to enhance the distribution of liquid and feeding materials. The bimodal size distributions considered to be characteristic of twin screw granulation were primarily ascribed to the breakage of relatively large granules by the kneading elements.

  17. Pharmaceutical standardization of Kamsaharitaki granules.

    PubMed

    Khemuka, Nidhi; Galib, R; Patgiri, Biswa Jyoti; Prajapati, Pradeep Kumar

    2015-01-01

    Kamsaharitaki Avaleha is a well-known ayurvedic preparation. Considering certain inconveniences of Avaleha, an attempt has been made to convert it into granules that are convenient in handling, dispensing, and storage. To convert Kamsaharitaki Avaleha into granules form and develop standard manufacturing procedure. Seven pilot batches were prepared to fix the ratio of formulation composition. The procedure was repeated for 14 times to ensure the process validation. Converting into granules in presence of jaggery and Haritaki pulp is found to be difficult. Replacing these two with Khanda Sharkara and Haritaki powder yielded desired characteristics of granules. This modified proportion of ingredients can be considered as standard in preparing Kamsaharitaki Avaleha granules. As no manufacturing and physicochemical properties are available for Kamsaharitaki granules; the current findings can be considered as standard for future studies.

  18. Pharmaceutical standardization of Kamsaharitaki granules

    PubMed Central

    Khemuka, Nidhi; Galib, R.; Patgiri, Biswa Jyoti; Prajapati, Pradeep Kumar

    2015-01-01

    Introduction: Kamsaharitaki Avaleha is a well-known ayurvedic preparation. Considering certain inconveniences of Avaleha, an attempt has been made to convert it into granules that are convenient in handling, dispensing, and storage. Aim: To convert Kamsaharitaki Avaleha into granules form and develop standard manufacturing procedure. Materials and Methods: Seven pilot batches were prepared to fix the ratio of formulation composition. The procedure was repeated for 14 times to ensure the process validation. Results: Converting into granules in presence of jaggery and Haritaki pulp is found to be difficult. Replacing these two with Khanda Sharkara and Haritaki powder yielded desired characteristics of granules. Conclusion: This modified proportion of ingredients can be considered as standard in preparing Kamsaharitaki Avaleha granules. As no manufacturing and physicochemical properties are available for Kamsaharitaki granules; the current findings can be considered as standard for future studies. PMID:27833371

  19. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    PubMed

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P < 0.05), except the rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  20. Performance and biofilm activity of nitrifying biofilters removing trihalomethanes.

    PubMed

    Wahman, David G; Katz, Lynn E; Speitel, Gerald E

    2011-02-01

    Nitrifying biofilters seeded with three different mixed-culture sources removed trichloromethane (TCM) and dibromochloromethane (DBCM) with removals reaching 18% for TCM and 75% for DBCM. In addition, resuspended biofilm removed TCM, bromodichloromethane (BDCM), DBCM, and tribromomethane (TBM) in backwash batch kinetic tests, demonstrating that the biofilters contained organisms capable of biotransforming the four regulated trihalomethanes (THMs) commonly found in treated drinking water. Upon the initial and subsequent increased TCM addition, total ammonia nitrogen (TOTNH(3)) removal decreased and then reestablished, indicating an adjustment by the biofilm bacteria. In addition, changes in DBCM removal indicated a change in activity related to DBCM. The backwash batch kinetic tests provided a useful tool to evaluate the biofilm's bacteria. Based on these experiments, the biofilters contained bacteria with similar THM removal kinetics to those seen in previous batch kinetic experiments. Overall, performance or selection does not seem based specifically on nutrients, source water, or source cultures and most likely results from THM product toxicity, and the use of GAC media appeared to offer benefits over anthracite for biofilter stability and long-term performance, although the reasons for this advantage are not apparent based on research to date.

  1. Design Model Parameter Analysis for Nitrifying Trickling Filters.

    PubMed

    Coats, Erik R

    Nitrifying trickling filters (NTFs) represent an effective technology for water resource recovery facilities (WRRFs) to achieve compliance with ammonia-N permits. However, while the potential benefits of NTFs are many, the design methods and associated parameter databases are underdeveloped. Research herein focused on analysis of pilot-scale NTF data to develop enhanced design guidance. rn(max,0) values ranged from 1.19-3.38 gN m(-2)*d(-1), and correlated with influent ammonia-N concentration and loading. The transition concentration from rn(max,0) ranged from 0.9-22.2 mgN/L, and correlated with ammonia-N loading. Zero-order nitrification ranging from 0.24-1.58 gN m(-2)*d(-1) was observed down-gradient of rn(max,0). First-order nitrification was not observed, nor was there a strong exponential correlation for decreasing nitrification rate. To translate results to NTF media different from that utilized, a relationship between the NTF media effectiveness parameter, E, and rn(max,0) was established. Collectively, the data presented enhances the engineer's ability to model and design NTFs.

  2. RNA Granules in Germ Cells

    PubMed Central

    Voronina, Ekaterina; Seydoux, Geraldine; Sassone-Corsi, Paolo; Nagamori, Ippei

    2011-01-01

    “Germ granules” are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program. PMID:21768607

  3. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition.

    PubMed

    Wang, Wei; Ding, Yi; Wang, Yuhui; Song, Xinshan; Ambrose, Richard F; Ullman, Jeffrey L

    2016-10-01

    Nitrogen removal performance response of twelve constructed wetlands (CWs) to immobilized nitrifier pellets and different influent COD/N ratios (chemical oxygen demand: total nitrogen in influent) were investigated via 7-month experiments. Nitrifier was immobilized on a carrier pellet containing 10% polyvinyl alcohol (PVA), 2.0% sodium alginate (SA) and 2.0% calcium chloride (CaCl2). A batch experiment demonstrated that 73% COD and 85% ammonia nitrogen (NH4-N) were degraded using the pellets with immobilized nitrifier cells. In addition, different carbon source supplement strategies were applied to remove the nitrate (NO3-N) transformed from NH4-N. An increase in COD/N ratio led to increasing reduction in NO3-N. Efficient nitrification and denitrification promoted total nitrogen (TN) removal in immobilized nitrifier biofortified constructed wetlands (INB-CWs). The results suggested that immobilized nitrifier pellets combined with high influent COD/N ratios could effectively improve the nitrogen removal performance in CWs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Occurrence of nitrifying bacteria and nitrification in Finnish drinking water distribution systems.

    PubMed

    Lipponen, Mari T T; Suutari, Merja H; Martikainen, Pertti J

    2002-10-01

    Microbiological nitrification process may lead to chemical, microbiological and technical problems in drinking water distribution systems. Nitrification activity is regulated by several physical, and chemical, and operational factors. However, the factors affecting nitrification in the distribution systems in boreal region, having its specific environmental characteristics, are poorly known. We studied the occurrence and activity of nitrifying bacteria in 15 drinking water networks distributing water with very different origin and treatment practices. The waters included chloraminated surface water, chlorinated surface water, and non-disinfected groundwater. The networks were located in eight towns in different parts of Finland. Our results showed that nitrifying bacteria are common in boreal drinking water distribution systems despite their low temperature. Surprisingly high numbers and activities of nitrifiers were detected in pipeline sediment samples. The numbers of ammonia-oxidizing bacteria and their oxidation potentials were highest in chloraminated drinking water delivering networks, whereas the nitrite-oxidizing bacteria were present in the greatest numbers in those networks that used non-disinfected groundwater. The occurrence of nitrifying bacteria in drinking water samples correlated positively with the numbers of heterotrophic bacteria and turbidity, and negatively with the content of total chlorine. Although nitrifying bacteria grew well in drinking water distribution systems, the problems with nitrite accumulation are rare in Finland.

  5. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants.

    PubMed

    Siripong, Slil; Rittmann, Bruce E

    2007-03-01

    We hypothesize that activated-sludge processes having stable and complete nitrification have significant and similar diversity and functional redundancy among its ammonia- and nitrite-oxidizing bacteria, despite differences in temperature, solids retention time (SRT), and other operating conditions. To evaluate this hypothesis, we examined the diversity of nitrifying bacterial communities in all seven water-reclamation plants (WRPs) operated by Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). These plants vary in types of influent waste stream, plant size, water temperature, and SRT. We used terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene and group-specific ammonia-monooxygenase functional gene (amoA) to investigate these hard-to-culture nitrifying bacteria in the full-scale WRPs. We demonstrate that nitrifying bacteria carrying out the same metabolism coexist in all WRPs studied. We found ammonia-oxidizing bacteria (AOB) belonging to the Nitrosomonas europaea/eutropha, Nitrosomonas oligotropha, Nitrosomonas communis, and Nitrosospira lineages in all plants. We also observed coexisting Nitrobacter and Nitrospira genera for nitrite-oxidizing bacteria (NOB). Among the factors that varied among the WRPs, only the seasonal temperature variation seemed to change the nitrifying community, especially the balance between Nitrosospira and Nitrosomonas, although both coexisted in winter and summer samples. The coexistence of various nitrifiers in all WRPs is evidence of functional redundancy, a feature that may help maintain the stability of the system for nitrification.

  6. Influence of water quality on nitrifier regrowth in two full-scale drinking water distribution systems.

    PubMed

    Scott, Daniel B; Van Dyke, Michele I; Anderson, William B; Huck, Peter M

    2015-12-01

    The potential for regrowth of nitrifying microorganisms was monitored in 2 full-scale chloraminated drinking water distribution systems in Ontario, Canada, over a 9-month period. Quantitative PCR was used to measure amoA genes from ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and these values were compared with water quality parameters that can influence nitrifier survival and growth, including total chlorine, ammonia, temperature, pH, and organic carbon. Although there were no severe nitrification episodes, AOB and AOA were frequently detected at low concentrations in samples collected from both distribution systems. A culture-based presence-absence test confirmed the presence of viable nitrifiers. AOB were usually present in similar or greater numbers than AOA in both systems. As well, AOB showed higher regrowth potential compared with AOA in both systems. Statistically significant correlations were measured between several water quality parameters of relevance to nitrification. Total chlorine was negatively correlated with both nitrifiers and heterotrophic plate count (HPC) bacteria, and ammonia levels were positively correlated with nitrifiers. Of particular importance was the strong correlation between HPC and AOB, which reinforced the usefulness of HPC as an operational parameter to measure general microbiological conditions in distribution systems.

  7. Autotrophic ammonia oxidation in a deep-sea hydrothermal plume.

    PubMed

    Lam, Phyllis; Cowen, James P; Jones, Ronald D

    2004-02-01

    Direct evidence for autotrophic ammonia oxidation is documented for the first time in a deep-sea hydrothermal plume. Elevated NH(4) (+) concentrations of up to 341+/-136 nM were recorded in the plume core at Main Endeavour Field, Juan de Fuca Ridge. This fueled autotrophic ammonia oxidation rates as high as 91 nM day(-1), or 92% of the total net NH(4) (+) removal. High abundance of ammonia-oxidizing bacteria was detected using fluorescence in situ hybridization. Ammonia-oxidizing bacteria within the plume core (1.0-1.4x10(4) cells ml(-1)) accounted for 7.0-7.5% of the total microbial community, and were at least as abundant as methanotrophs. Ammonia-oxidizing bacteria were a substantial component of the particle-associated communities (up to 51%), with a predominance of the r-strategist Nitrosomonas-like cells. In situ chemolithoautotrophic organic carbon production via ammonia oxidation may yield 3.9-18 mg C m(-2) day(-1) within the plume directly over Main Endeavour Field. This rate was comparable to that determined for methane oxidation in a previous study, or at least four-fold greater than the flux of photosynthetic carbon reaching plume depths measured in another study. Hence, autotrophic ammonia oxidation in the neutrally buoyant hydrothermal plume is significant to both carbon and nitrogen cycling in the deep-sea water column at Endeavour, and represents another important link between seafloor hydrothermal systems and deep-sea biogeochemistry.

  8. Implications of CO2 Geological Storage on Aquifers Autotrophic Communities

    NASA Astrophysics Data System (ADS)

    Dupraz, Sébastien; Fabbri, Antonin; Joulian, Catherine; Menez, Bénédicte; Gerard, Emanuelle; Henry, Benoit; Crouzet, Catherine; Guyot, François; Garrido, Francis

    2010-05-01

    In a global strategy of carbon emission reduction, a study about CCS (Carbon Capture and Storage) feasibility in the case of a French beet sugar factory and distillery in the Parisian basin was undertaken by regional and state authorities. Besides, economical, geological and engineering questions, microbial interactions were also studied since the potential contribution of the deep biosphere on the storage zones appears to be an essential factor in terms of injectivity and CO2 mobilization. Biological processes like biofilm formation, biomineralization and carbon assimilation may hinder the injections or, to the contrary, improve the stability of the sequestration by shifting CO2 into more stable forms like carbonates and organic matter. Regarding those possibilities, it is thus mandatory to establish how the subsurface biosphere will react by determining which metabolisms will be able to sustain the stress due to high concentrations of CO2 and the resulting acidification. In that case, the study of autotrophic communities reactivity is essential because they are the only entrance for CO2 assimilation in the SLiMEs (Subsurface Litho autotrophic Microbial Ecosystems) and thus are accountable for the general biomass and biofilm production in the deep subsurface. Nevertheless, a simple assessment of the toxical effect induced on these strains cannot be representative of the possible interactions at the scale of a long term storage where adaptations should play a major role. For that reason, we decided to choose different strains, namely autotrophic methanogens (Methanothermococcus thermolithotrophicus and Archeoglobus fulgidus) and sulfate reducing bacteria strains (Desulfotomaculum geothermicum and Desulfotomaculum kuznetsovii), that best characterize the autotrophic communities of our injection site (aquifer of the Triassic Keuper sandstones) and to make them undergo a test of selection/adaptation toward a sequential increase of CO2 partial pressure from 0.05 to 5

  9. Granulation techniques and technologies: recent progresses

    PubMed Central

    Shanmugam, Srinivasan

    2015-01-01

    Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations. PMID:25901297

  10. [Study of shear rate in modified airlift nitrifying bioreactor].

    PubMed

    Jin, Ren-cun; Zheng, Ping

    2006-06-01

    The characteristics of shear rate in an airlift nitrifying bioreactor and its influencing factors were studied. The results showed that the shear rate was different in different sections of the bioreactor. With inlet gas flowrate at 430 approximately 2700 L x h(-1), the overall shear rate was (0.702 approximately 3.13) x 10(5) s(-1), shear rate in riser was (1.07 approximately 31.3) x 10(5) s(-1) and in gas-liquid separator was (1.12 approximately 25.0) x 10(5) s(-1), respectively. It indicates that the highest shear rates prevailed in the riser part of bioreactor. The operational variables and the bioreactor configurations exerted a significant influence on the shear level of the bioreactor. When inlet gas flowrate was raised from 1300 to 2700 L x h(-1), shear rate in riser and separator ascended first and then descended subsequently. The diameter of draft tube (d) was negatively correlated with shear rate. When the draft tube with diameter of 5.5 cm was installed, the shear rates in riser, separator and overall shear rate were 85.5%, 82.3% and 80.6%, respectively less as compared with that with diameter of 4.0 cm. The number of static mixers (N) was positively correlated with the shear rate. When d was set at 4.0 cm, with N of 10 and 39, the shear rates in riser were 6.14 and 7.97 times higher respectively, than that of conventional bioreactor. The ratio of maximum local shear rate to overall shear rate was 3.68 approximately 7.66, and the homogeneity of the shear field in airlift bioreactors could be improved if d and N were set at 5.5 cm and 10 approximately 13, respectively.

  11. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  12. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  13. Perchlorate reduction by hydrogen autotrophic bacteria in a bioelectrochemical reactor.

    PubMed

    Wang, Zichao; Gao, Mengchun; Zhang, You; She, Zonglian; Ren, Yun; Wang, Zhe; Zhao, Congcong

    2014-09-01

    The autotrophic hydrogen reduction of perchlorate was investigated in batch modes in a proton-exchange membrane bioelectrochemical reactor. The phylogenic characterization of hydrogen-autotrophic perchlorate-reducing cultures in the cathode cell mainly included the genera Aureibacter tunicatorum, Fulvivirga kasyanovii, Thermotalea metallivorans (T), bacterium WHC2-6, and Thauera sp. Q20-C. The suitable H2SO4 supplement concentration was identified to be between 0.04 and 0.05 mol L(-1) in the anode cell. The perchlorate reduction was affected by the sludge concentration in the cathode cell, current intensity, and initial perchlorate concentration. The removal efficiency of perchlorate positively correlated with the current intensity, and the current intensity of 20, 40, 50, and 60 mA corresponded to removal efficiencies of 95.03, 96.29, 97.56 and 98.99%, respectively. When the current intensity was sufficient for hydrogen production, the kinetics of the perchlorate reduction conformed to a zero-order kinetics model, and the maximum specific substrate utilization rates for perchlorate (Vmax) ranged from 5.52 to 14.34 mg ClO4(-) g(-1) volatile suspended solid (VSS) h(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Nitrification and Nitrifiers in Two Contrasting Agricultural Soils

    PubMed Central

    Shi, Xiuzhen; Müller, Christoph; He, Ji-Zheng; Chen, Deli; Suter, Helen Charlotte

    2016-01-01

    ABSTRACT The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is a powerful tool that can be used to promote nitrogen (N) use efficiency and reduce N losses from agricultural systems by slowing nitrification. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in nitrification and N2O production; however, their responses to DMPP amendment and the microbial mechanisms underlying the variable efficiencies of DMPP across different soils remain largely unknown. Here we compared the impacts of DMPP on nitrification and the dynamics of ammonia oxidizers between an acidic pasture soil and an alkaline vegetable soil using a 15N tracing and 13CO2-DNA–stable-isotope probing (SIP) technique. The results showed that DMPP significantly inhibited nitrification and N2O production in the vegetable soil only, and the transient inhibition was coupled with a significant decrease in AOB abundance. No significant effects on the community structure of ammonia oxidizers or the abundances of total bacteria and denitrifiers were observed in either soil. The 15N tracing experiment revealed that autotrophic nitrification was the predominant form of nitrification in both soils. The 13CO2-DNA–SIP results indicated the involvement of AOB in active nitrification in both soils, but DMPP inhibited the assimilation of 13CO2 into AOB only in the vegetable soil. Our findings provide evidence that DMPP could effectively inhibit nitrification through impeding the abundance and metabolic activity of AOB in the alkaline vegetable soil but not in the acidic pasture soil, possibly due to the low AOB abundance or the adsorption of DMPP by organic matter. IMPORTANCE The combination of the 15N tracing model and 13CO2-DNA–SIP technique provides important evidence that the nitrification inhibitor DMPP could effectively inhibit nitrification and nitrous oxide emission in an alkaline soil through influencing the

  15. Effects of the Nitrification Inhibitor 3,4-Dimethylpyrazole Phosphate on Nitrification and Nitrifiers in Two Contrasting Agricultural Soils.

    PubMed

    Shi, Xiuzhen; Hu, Hang-Wei; Müller, Christoph; He, Ji-Zheng; Chen, Deli; Suter, Helen Charlotte

    2016-09-01

    The nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) is a powerful tool that can be used to promote nitrogen (N) use efficiency and reduce N losses from agricultural systems by slowing nitrification. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in nitrification and N2O production; however, their responses to DMPP amendment and the microbial mechanisms underlying the variable efficiencies of DMPP across different soils remain largely unknown. Here we compared the impacts of DMPP on nitrification and the dynamics of ammonia oxidizers between an acidic pasture soil and an alkaline vegetable soil using a (15)N tracing and (13)CO2-DNA-stable-isotope probing (SIP) technique. The results showed that DMPP significantly inhibited nitrification and N2O production in the vegetable soil only, and the transient inhibition was coupled with a significant decrease in AOB abundance. No significant effects on the community structure of ammonia oxidizers or the abundances of total bacteria and denitrifiers were observed in either soil. The (15)N tracing experiment revealed that autotrophic nitrification was the predominant form of nitrification in both soils. The (13)CO2-DNA-SIP results indicated the involvement of AOB in active nitrification in both soils, but DMPP inhibited the assimilation of (13)CO2 into AOB only in the vegetable soil. Our findings provide evidence that DMPP could effectively inhibit nitrification through impeding the abundance and metabolic activity of AOB in the alkaline vegetable soil but not in the acidic pasture soil, possibly due to the low AOB abundance or the adsorption of DMPP by organic matter. The combination of the (15)N tracing model and (13)CO2-DNA-SIP technique provides important evidence that the nitrification inhibitor DMPP could effectively inhibit nitrification and nitrous oxide emission in an alkaline soil through influencing the abundance and

  16. Identification of the autotrophic denitrifying community in nitrate removal reactors by DNA-stable isotope probing.

    PubMed

    Xing, Wei; Li, Jinlong; Cong, Yuan; Gao, Wei; Jia, Zhongjun; Li, Desheng

    2017-04-01

    Autotrophic denitrification has attracted increasing attention for wastewater with insufficient organic carbon sources. Nevertheless, in situ identification of autotrophic denitrifying communities in reactors remains challenging. Here, a process combining micro-electrolysis and autotrophic denitrification with high nitrate removal efficiency was presented. Two batch reactors were fed organic-free nitrate influent, with H(13)CO3(-) and H(12)CO3(-) as inorganic carbon sources. DNA-based stable-isotope probing (DNA-SIP) was used to obtain molecular evidence for autotrophic denitrifying communities. The results showed that the nirS gene was strongly labeled by H(13)CO3(-), demonstrating that the inorganic carbon source was assimilated by autotrophic denitrifiers. High-throughput sequencing and clone library analysis identified Thiobacillus-like bacteria as the most dominant autotrophic denitrifiers. However, 88% of nirS genes cloned from the (13)C-labeled "heavy" DNA fraction showed low similarity with all culturable denitrifiers. These findings provided functional and taxonomical identification of autotrophic denitrifying communities, facilitating application of autotrophic denitrification process for wastewater treatment.

  17. Cytoplasmic RNA Granules and Viral Infection.

    PubMed

    Tsai, Wei-Chih; Lloyd, Richard E

    2014-11-01

    RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principal types of cytoplasmic RNA granules are stress granules, which contain stalled translation initiation complexes, and processing bodies (P bodies), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts; thus, viruses repress RNA granule functions to favor replication. This article discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently, mechanisms for virus manipulation of RNA granules can be loosely grouped into three nonexclusive categories: (a) cleavage of key RNA granule factors, (b) regulation of PKR activation, and (c) co-opting of RNA granule factors for new roles in viral replication. Viral modulation of RNA granules supports productive infection by inhibiting their gene-silencing functions and counteracting their role in linking stress sensing with innate immune activation.

  18. Autotrophic nitrogen removal in one lab-scale vertical submerged biofilm reactor

    NASA Astrophysics Data System (ADS)

    Liang, Zhiwei; Chen, Yingxu; Li, Wenhong; Yang, Shangyuan; Du, Ping

    In this study, the process performance of a new vertical submerged biofilm reactor for complete autotrophic ammonia removal was investigated using synthetic wastewater. The main objectives of this study were to evaluate the flexibility of the reactor, achieve partial autotrophic nitrification with influent ammonium nitrogen ranging from 40 to 280 mg L -1, and achieve a stable half partial autotrophic nitrification by controlling hydraulic retention time (HRT) and alkalinity. A very low concentration of nitrate was observed in the effluent during nitrification. Then autotrophic denitrification revealed Anammox bacteria were present and active in the central anaerobic parts of the bioreactor which was inoculated with a mixed microbial consortium from activated sludge. The results of this study demonstrated that autotrophic denitrification processes can coexist with heterotrophic denitrifying processes in the same environment even if Anammox bacteria were less competitive than heterotrophic denitrifying bacteria.

  19. Mesostructure of the Solar Granulation

    NASA Astrophysics Data System (ADS)

    Abdussamatov, H. I.

    2000-03-01

    Quasi-periodic variations in the thermodynamic and hydrodynamic fine-structure properties of the granulation field along the photospheric surface are estimated quantitatively. The darkest vast intergranular lanes, called the intergranular knots, are the most important indicator of their physical properties. The formulated new definitions of "granule" and "intergranular lane" require a revision of the previous results. The definition of mesogranulation is given, and the method of its detection in the granulation field is described. The following important quantitative results, which established the extent and nature of the physical relationship between the granulation and mesogranulation fields, have been obtained for the first time: (1) the intensity amplitude of granules in mesogranules (Delta I(gr)/I_0)_msgr = +10.3% is a factor of 1.4 larger than that of granules in intermesogranular regions [(Delta I(gr)/I_0)_imsgr = +7.3%], whereas the intensity amplitude of intergranular lanes in mesogranules [(Delta I(igr)/I_0)_msgr = -6.0%] is a factor of 1.4 smaller than that of intergranular lanes in intermesogranular regions [(Delta I(igr)/I_0)_imsgr = -8.4%]; (2) the mean intensities of photospheric granules and intergranular lanes are (Delta I(gr)/I_0)_phot = +9.2% and (Delta I(igr)/I_0)_phot = -7.5%, respectively; (3) granules cover 59% of the area of mesogranules, 45% of the area of the photosphere, and 31% of the area of intermesogranular regions, while intergranular lanes cover 41, 55, and 69% of these areas, respectively; (4) intergranular knots and bright granules virtually never formed and do not exist in mesogranules and intermesogranular regions, respectively; (5) the amplitudes of intensity fluctuations in mesogranules and intermesogranular regions, as well as the areas occupied by them (49.4 and 50.6%, respectively), essentially level off, Delta I(msgr)/I_0 = +3.6% and Delta I(imsgr)/I_0 = -3.5%, respectively.

  20. Selective inhibition of nitrite oxidation by chlorate dosing in aerobic granules.

    PubMed

    Xu, Guangjing; Xu, Xiaochen; Yang, Fenglin; Liu, Sitong

    2011-01-15

    Partial nitrification was successfully achieved with addition of 5mM KClO(3) in the aerobic granules system. Batch tests demonstrated that KClO(3) selectively inhibited nitrite-oxidizing bacteria (NOB) but not ammonia-oxidizing bacteria (AOB). During stable partial nitrification, the influent pH was kept at 7.8-8.2, while the DO and temperature were not controlled in the SBR. When the NH(4)-N and COD levels were kept at 100mg/l and 400mg/l in the influent, the NH(4)-N and COD removal efficiencies reached 98.93% and 78.65%, respectively. The NO(2)-N accounted for 92.95% of the NO(χ)-N (NO(2)-N+NO(3)-N) in the effluent. Furthermore, about 90% of the chlorate was reduced to nontoxic chloride, thus it would not cause environmental problem. SEM showed that the main composition of the aerobic granules was bacilli and coccus bacteria. FISH analysis revealed that AOB became the dominant nitrifying bacteria, whereas NOB were detected only in low abundance. Chlorate could be used to control the development and maintenance of aerobic granules sludge for partial nitrification.

  1. Use of limestone for pH control in autotrophic denitrification: continuous flow experiments in pilot-scale packed bed reactors.

    PubMed

    Koenig, A; Liu, L H

    2002-10-23

    The sulfur-utilizing autotrophic denitrification process consumes about 4 g alkalinity (as CaCO(3)) per g NO(3)-N reduced resulting in a decrease of pH. Using limestone as an alkalinity source to control the pH, autotrophic denitrification of synthetic wastewater with varying alkalinity to NO(3)-N ratios was evaluated in pilot-scale packed bed reactors operating in the upflow mode, which contained limestone and sulfur granules in different volumetric ratios. The results demonstrated that limestone supplies effective buffering capacity, if the initial alkalinity of the wastewater is insufficient for complete denitrification. The alkalinity supplied by limestone is a function of hydraulic retention time and the pH, which in turn depends on the extent of biological denitrification and the initial alkalinity to NO(3)-N ratio in the wastewater. The dissolution rate of limestone is inversely proportional to pH for pH values lower than 7.1. It was found that the ratio of influent alkalinity to theoretically required alkalinity in the wastewater should not be lower than 0.5 in order to prevent a decrease in nitrate removal performance. Based on the established chemical-biological interactive relationships, a multilayer approach was proposed to determine the optimum sulfur:limestone ratio for nitrate removal under steady state conditions, taking into account the characteristics of the influent wastewater.

  2. Calcium precipitate induced aerobic granulation.

    PubMed

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules.

  3. Sensitivity analysis of autotrophic N removal by a granule based bioreactor: Influence of mass transfer versus microbial kinetics.

    PubMed

    Vangsgaard, Anna Katrine; Mauricio-Iglesias, Miguel; Gernaey, Krist V; Smets, Barth F; Sin, Gürkan

    2012-11-01

    A comprehensive and global sensitivity analysis was conducted under a range of operating conditions. The relative importance of mass transfer resistance versus kinetic parameters was studied and found to depend on the operating regime as follows: Operating under the optimal loading ratio of 1.90(gO(2)/m(3)/d)/(gN/m(3)/d), the system was influenced by mass transfer (10% impact on nitrogen removal) and performance was limited by AOB activity (75% impact on nitrogen removal), while operating above, AnAOB activity was limiting (68% impact on nitrogen removal). The negative effect of oxygen mass transfer had an impact of 15% on nitrogen removal. Summarizing such quantitative analyses led to formulation of an optimal operation window, which serves a valuable tool for diagnosis of performance problems and identification of optimal solutions in nitritation/anammox applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures.

    PubMed

    Ouyang, Fan; Ji, Min; Zhai, Hongyan; Dong, Zhao; Ye, Lin

    2016-08-01

    Diversity and composition of the microbial community, especially the nitrifiers, are essential to the treatment efficiency of wastewater in activated sludge systems. Heavy metals commonly present in the wastewater influent such as Cu can alter the community structure of nitrifiers and lower their activity. However, the dynamics of microbial community along a gradient of metal exposure have largely been unexplored, partially due to the limitations in traditional molecular methods. This study explored the dynamics regarding the diversity and community structures of overall and nitrifying microbial communities in activated sludge under intermittent Cu gradient loadings using Illumina sequencing. We created a new local nitrifying bacterial database for sequence BLAST searches. High Cu loadings (>10.9 mg/L) impoverished microbial diversity and altered the microbial community. Overall, Proteobacteria was the predominant phylum in the activated sludge system, in which Zoogloea, Thauera, and Dechloromonas (genera within the Rhodocyclaceae family of the Beta-proteobacteria class) were the dominant genera in the presence of Cu. The abundance of unclassified bacteria at the phylum level increased substantially with increasing Cu loadings. Nitrosomonas and Nitrospira were the predominant nitrifiers. The nitrifying bacterial community changed through increasing abundance and shifting to Cu-tolerant species to reduce the toxic effects of Cu. Our local nitrifying bacterial database helped to improve the resolution of bacterial identification. Our results provide insights into the dynamics of microbial community in response to various metal concentrations in activated sludge systems and improve our understanding regarding the effect of metals on wastewater treatment efficiency.

  5. 454 pyrosequencing-based characterization of the bacterial consortia in a well established nitrifying reactor.

    PubMed

    Ramirez-Vargas, Rocio; Serrano-Silva, Nancy; Navarro-Noya, Yendi E; Alcántara-Hernández, Rocio J; Luna-Guido, Marco; Thalasso, Frederic; Dendooven, Luc

    2015-01-01

    This present study aimed to characterize the bacterial community in a well-established nitrifying reactor by high-throughput sequencing of 16S rRNA amplicons. The laboratory-scale continuous stirred tank reactor has been supplied with ammonium (NH(4)(+)) as sole energy source for over 5 years, while no organic carbon has been added, assembling thus a unique planktonic community with a mean NH(4)(+) removal rate of 86 ± 1.4 mg NH(4)(+)-N/(L d). Results showed a nitrifying community composed of bacteria belonging to Nitrosomonas (relative abundance 11.0%) as the sole ammonia oxidizers (AOB) and Nitrobacter (9.3%) as the sole nitrite oxidizers (NOB). The Alphaproteobacteria (42.3% including Nitrobacter) were the most abundant class within the Proteobacteria (62.8%) followed by the Gammaproteobacteria (9.4%). However, the Betaproteobacteria (excluding AOB) contributed only 0.08%, confirming that Alpha- and Gammaproteobacteria thrived in low-organic-load environments while heterotrophic Betaproteobacteria are not well adapted to these conditions. Bacteroidetes, known to metabolize extracellular polymeric substances produced by nitrifying bacteria and secondary metabolites of the decayed biomass, was the second most abundant phylum (30.8%). It was found that Nitrosomonas and Nitrobacter sustained a broad population of heterotrophs in the reactor dominated by Alpha- and Gammaproteobacteria and Bacteroidetes, in a 1:4 ratio of total nitrifiers to all heterotrophs.

  6. Effect of two broad-spectrum antibiotics on activity and stability of continuous nitrifying system.

    PubMed

    Campos, J L; Garrido, J M; Méndez, R; Lema, J M

    2001-07-01

    The effects of two broad-spectrum antibiotics, chloramphenicol and oxytetracycline hydrochloride, on the microbial activity and biofilm stability of a mixed nitrifying culture were studied. These antibiotics are present in some wastewaters generated in cattle farms or pharmaceutical industries. A 1-L fermentor, in which nitrifiers grew both in suspension and in a biofilm, was used during the experiments. Chloramphenicol (10-250 mg/L) barely had any effect on biofilm stability and nitrification. Ammonia was fully oxidized to nitrate. However, oxytetracycline caused biofilm sloughing at concentrations of 10 mg/L, but nitrification was not inhibited at antibiotic concentrations up to 100 mg/L. When the concentration of oxytetracycline chlorohydrate was increased stepwise from 100 to 250 mg/L, nitrification was inhibited by 50%. The dissolved organic carbon measurements in both the influent and effluent showed that the antibiotics were neither mineralized by the mixed nitrifying culture nor accumulated in the system. Furthermore, the microbial tests did not reveal the presence of active antibiotics in the effluent. This fact indicates that both cloramphenicol and oxytetracycline were degraded by the nitrifying sludge but not mineralized.

  7. Transcriptional and physiological responses of nitrifying bacteria to heavy metal inhibition

    EPA Science Inventory

    Heavy metals have been shown to inhibit nitrification, a key process in the removal of nitrogen in wastewater treatment plants. In the present study, the effects of nickel, zinc, lead and cadmium on nitrifying enrichment cultures were studied in batch reactors. The transcriptiona...

  8. Transcriptional and physiological responses of nitrifying bacteria to heavy metal inhibition

    EPA Science Inventory

    Heavy metals have been shown to inhibit nitrification, a key process in the removal of nitrogen in wastewater treatment plants. In the present study, the effects of nickel, zinc, lead and cadmium on nitrifying enrichment cultures were studied in batch reactors. The transcriptiona...

  9. p-Cresol mineralization and bacterial population dynamics in a nitrifying sequential batch reactor.

    PubMed

    Silva, Carlos David; Beristain-Montiel, Lizeth; de Maria Cuervo-López, Flor; Texier, Anne-Claire

    2014-09-01

    The ability of a nitrifying sludge to oxidize p-cresol was evaluated in a sequential batch reactor (SBR). p-Cresol was first transformed to p-hydroxybenzaldehyde and p-hydroxybenzoate, which were later mineralized. The specific rates of p-cresol consumption increased throughout the cycles. The bacterial population dynamics were monitored by using denaturing gradient gel electrophoresis (DGGE) and sequencing of DGGE fragments. The ability of the sludge to consume p-cresol and intermediates might be related to the presence of species such as Variovorax paradoxus and Thauera mechernichensis. p-Cresol (25 to 200mgC/L) did not affect the nitrifying SBR performance (ammonium consumption efficiency and nitrate production yield were close to 100% and 1, respectively). This may be related to the high stability observed in the nitrifying communities. It was shown that a nitrifying SBR may be a good alternative to eliminate simultaneously ammonium and p-cresol, maintaining stable the respiratory process as the bacterial community.

  10. Process optimization for continuous extrusion wet granulation.

    PubMed

    Tan, Li; Carella, Anthony J; Ren, Yukun; Lo, Julian B

    2011-08-01

    Three granulating binders in high drug-load acetaminophen blends were evaluated using high shear granulation and extrusion granulation. A polymethacrylate binder enhanced tablet tensile strength with rapid disintegration in simulated gastric fluid, whereas polyvinylpyrrolidone and hydroxypropyl cellulose binders produced less desirable tablets. Using the polymethacrylate binder, the extrusion granulation process was studied regarding the effects of granulating liquid, injection rate and screw speed on granule properties. A full factorial experimental design was conducted to allow the statistical analysis of interactions between extrusion process parameters. Response variables considered in the study included extruder power consumption (screw loading), granule bulk/tapped density, particle size distribution, tablet hardness, friability, disintegration time and dissolution.

  11. Granulopoiesis and granules of human neutrophils.

    PubMed

    Cowland, Jack B; Borregaard, Niels

    2016-09-01

    Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules and how degranulation of granule subsets is regulated. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. N2O and NO emissions during autotrophic nitrogen removal in a granular sludge reactor--a simulation study.

    PubMed

    Van Hulle, S W H; Callens, J; Mampaey, K E; van Loosdrecht, M C M; Volcke, E I P

    2012-01-01

    This contribution deals with NO and N2O emissions during autotrophic nitrogen removal in a granular sludge reactor. Two possible model scenarios describing this emission by ammonium- oxidizing biomass have been compared in a simulation study of a granular sludge reactor for one-stage partial nitritation--Anammox. No significant difference between these two scenarios was noticed. The influence of the bulk oxygen concentration, granule size, reactor temperature and ammonium load on the NO and N2O emissions has been assessed. The simulation results indicate that emission maxima of NO and N2O coincide with the region for optimal Anammox conversion. Also, most of the NO and N2O are present in the off-gas, owing to the limited solubility of both gases. The size of granules needs to be large enough not to limit optimal Anammox activity, but not too large as this implies an elevated production of N2O. Temperature has a significant influence on N2O emission, as a higher temperature results in a better N-removal efficiency and a lowered N2O production. Statistical analysis of the results showed that there is a strong correlation between nitrite accumulation and N2O production. Further, three regions of operation can be distinguished: a region with high N2O, NO and nitrite concentration; a region with high N2 concentrations and, as such, high removal percentages; and a region with high oxygen and nitrate concentrations. There is some overlap between the first two regions, which is in line with the fact that maximum emission of NO and N2O coincides with the region for optimal Anammox conversion.

  13. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation.

    PubMed

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie; Toiviainen, Maunu; De Leersnyder, Fien; Vercruysse, Jurgen; Juuti, Mikko; Ketolainen, Jarkko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2016-07-30

    Twin-screw granulation is a promising wet granulation technique for the continuous manufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate arrangement of transport and kneading elements in the granulator screw allowing the production of granules with a size distribution appropriate for tableting. The distribution of residence time and granulation liquid is governed by the field conditions (such as location and length of mixing zones) in the twin-screw granulator, thus contain interesting information on granulation time, mixing and resulting sub-processes such as wetting, aggregation and breakage. In this study, the impact of process (feed rate, screw speed and liquid-to-solid ratio) and equipment parameters (number of kneading discs and stagger angle) on the residence time (distribution), the granulation liquid-powder mixing and the resulting granule size distributions during twin-screw granulation were investigated. Residence time and axial mixing data was extracted from tracer maps and the solid-liquid mixing was quantified from moisture maps, obtained by monitoring the granules at the granulator outlet using near infra-red chemical imaging (NIR-CI). The granule size distribution was measured using the sieving method. An increasing screw speed dominantly reduced the mean residence time. Interaction of material throughput with the screw speed and with the number of kneading discs led to most variation in the studied responses including residence time and mixing capacity. At a high screw speed, granulation yield improved due to high axial mixing. However, increasing material throughput quickly lowers the yield due to insufficient mixing of liquid and powder. Moreover, increasing liquid-to-solid ratio resulted in more oversized granules, and the fraction of oversized granules further increased at higher throughput. Although an increasing number

  14. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Continuously Percolated Soil Columns

    PubMed Central

    Verhagen, Frank J. M.; Duyts, Hendrik; Laanbroek, Hendrikus J.

    1992-01-01

    Although the absence of nitrate formation in grassland soils rich in organic matter has often been reported, low numbers of nitrifying bacteria are still found in these soils. To obtain more insight into these observations, we studied the competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis in the presence of Nitrobacter winogradskyi with soil columns containing calcareous sandy soil. The soil columns were percolated continuously at a dilution rate of 0.007 h-1, based on liquid volumes, with medium containing 5 mM ammonium and different amounts of glucose ranging from 0 to 12 mM.A. globiformis was the most competitive organism for limiting amounts of ammonium. The numbers of N. europaea and N. winogradskyi cells were lower at higher glucose concentrations, and the potential ammonium-oxidizing activities in the uppermost 3 cm of the soil columns were nonexistent when at least 10 mM glucose was present in the reservoir, although 107 nitrifying cells per g of dry soil were still present. This result demonstrated that there was no correlation between the numbers of nitrifying bacteria and their activities. The numbers and activities of N. winogradskyi cells decreased less than those of N. europaea cells in all layers of the soil columns, probably because of heterotrophic growth of the nitrite-oxidizing bacteria on organic substrates excreted by the heterotrophic bacteria or because of nitrate reduction at reduced oxygen concentrations by the nitrite-oxidizing bacteria. Our conclusion was that the nitrifying bacteria were less competitive than the heterotrophic bacteria for ammonium in soil columns but that they survived as viable inactive cells. Inactive nitrifying bacteria may also be found in the rhizosphere of grassland plants, which is rich in organic carbon. They are possibly reactivated during periods of net mineralization. PMID:16348787

  15. Glyphosate applications,glyphosate resistant corn, and tillage on nitrification rates and distribution of nitrifying microbial communities

    USDA-ARS?s Scientific Manuscript database

    Conservation tillage practices have combined genetically modified glyphosate resistant corn crops along with applications of the herbicide glyphosate. We tested the null hypothesis that the soil process of nitrification and the distribution of archaeal and bacterial nitrifying communities would not ...

  16. [Element Sulfur Autotrophic Denitrification Combined Anaerobic Ammonia Oxidation].

    PubMed

    Zhou, Jian; Huang, Yong; Liu, Xin; Yuan, Yi; Li Xiang; Wangyan, De-qing; Ding, Liang; Shao, Jing-wei; Zhao, Rong

    2016-03-15

    A novel element sulfur autotrophic denitrification combined anaerobic ammonia oxidation process, reacted in CSTR, was used to investigate the sulfate production and alkalinity consumption during the whole process. The element sulfur dosage was 50 g · L⁻¹. The inoculation volume of ANAMMOX granular sludge was 100 g · L⁻¹. The agitation rate and environment reaction temperature of the CSTR were set to 120 r · min⁻¹ and 35°C ± 0.5°C, respectively. The pH of influent was maintained in range of 8. 0-8. 4. During the start-up stage of sulfur based autotrophic denitrification, the nitrogen removal loading rate could reach 0.56-0.71 kg · (m³ · d) ⁻¹ in the condition of 5.3 h hydrogen retention time and 200 mg · L⁻¹ nitrate nitrogen. After the addition of 60 mg · L⁻¹ ammonia nitrogen, Δn(SO₄²⁻):Δn(NO₃⁻) decreased from 1.21 ± 0.06 to 1.01 ± 0.10, Δ(IC): Δ(NO₃⁻-N) decreased from 0.72 ± 0.1 to 0.51 ± 0.11, and the effluent pH increased from 6.5 to 7.2. During the combined stage, the ammonia concentration of effluent was 10.1-19.2 mg · L⁻¹, and the nitrate-nitrogen removal loading rate could be maintained in range of 0.66-0.88 kg · (m³ · d)⁻¹. The Δn (NH₄⁺): Δn (NO₃⁻) ratio reached 0.43, and the NO₃⁻ removal rate was increased by 60% in the simultaneous ammonia and nitrate removal reaction under the condition of G(T) = 22-64 s⁻¹ and pH = 8.08, while improper conditions reduced the efficiency of simultaneous reaction.

  17. Nitrification and Nitrifying Bacteria in the Lower Seine River and Estuary (France)

    PubMed Central

    Cébron, Aurélie; Berthe, Thierry; Garnier, Josette

    2003-01-01

    The Achères wastewater treatment plant, located just downstream of Paris, discharges its effluents into the lower Seine River. The effluents contain large numbers of heterotrophic bacteria, organic matter, and ammonium and are a source of nitrifying bacteria. As a result, degradation of organic matter by heterotrophic bacteria and subsequent oxygen depletion occur immediately downstream of the effluent outlet, whereas nitrifying bacteria apparently need to build up a significant biomass before ammonium oxidation significantly depletes the oxygen. We quantified the potential total nitrifying activity and the potential activities of the ammonia- and nitrite-oxidizing communities along the Seine River. In the summer, the maximum nitrifying activity occurs in the upper freshwater estuary, ∼200 km downstream of Achères. The quantities of nitrifying bacteria, based on amoA gene copy numbers, and of Nitrobacter organisms, based on 16S rRNA gene copy numbers, were correlated with the potential nitrifying activities. The species composition of ammonia-oxidizing bacteria was investigated at two sites: the Triel station just downstream from Achères (km 84) and the Seine freshwater estuary at the Duclair station (km 278). By means of PCR primers targeting the amoA gene, a gene library was created. Phylogenetic analysis revealed that the majority of the analyzed clones at both sites were affiliated with the genus Nitrosomonas. The Nitrosomonas oligotropha- and Nitrosomonas urea-related clones represented nearly 81% of the community of ammonia-oxidizing bacteria at Triel and 60% at Duclair. Two other ammonia-oxidizing clusters of the β subclass of the Proteobacteria, i.e., Nitrosomonas europaea- and Nitrosospira-like bacteria, were found in smaller numbers. The major change in the ammonia-oxidizing community between the two stations along the Seine River-upper estuary continuum was the replacement of the N. oligotropha- and N. urea-related bacteria by the Nitrosospira

  18. Differential responses of nitrifying archaea and bacteria to methylene blue toxicity.

    PubMed

    Sipos, A J; Urakawa, H

    2016-02-01

    Methylene blue, a heterocyclic aromatic chemical compound used to treat fish diseases in the ornamental fish aquaculture industry, is believed to impair nitrification as a side effect. However, very little is known about the toxicity of methylene blue to nitrifying micro-organisms. Here, we report the susceptibility of six bacterial and one archaeal ammonia-oxidizing micro-organisms to methylene blue within the range of 10 ppb to 10 ppm. Remarkably high susceptibility was observed in the archaeal species Nitrosopumilus maritimus compared to the bacterial species. Ammonia oxidation by Nitrosopumilus maritimus was inhibited 65% by 10 ppb of methylene blue. Of the bacterial species examined, Nitrosococcus oceani was the most resistant to methylene blue toxicity. For similar inhibition of Nitrosococcus oceani (75% inhibition), one thousand times more methylene blue (10 ppm) was needed. The examination of single cell viability on Nitrosomonas marina demonstrated that methylene blue is lethal to the cells rather than reducing their single cell ammonia oxidation activity. The level of susceptibility to methylene blue was related to the cell volume, intracytoplasmic membrane arrangement and the evolutionary lineage of nitrifying micro-organisms. Our findings are relevant for effectively using methylene blue in various aquaculture settings by helping minimize its impact on nitrifiers during the treatment of fish diseases. In the future, resistant nitrifiers such as Nitrosococcus oceani may be purposely added to aquaculture systems to maintain nitrification activity during treatments with methylene blue. The susceptibility of six bacterial and one archaeal nitrifying micro-organisms to methylene blue was tested. Remarkably high susceptibility was observed in the archaeal species compared to the bacterial species. The level of resistance to methylene blue was related to the cell volume, cytomembrane system and the taxonomic position of the nitrifying micro

  19. The biosynthesis of starch granules.

    PubMed

    Smith, A M

    2001-01-01

    Although composed simply of glucose polymers, the starch granule is a complex, semicrystalline structure. Much of this complexity arises from the fact that the two primary enzymes of synthesis-starch synthase and starch-branching enzyme-exist as multiple isoforms. Each form has distinct properties and plays a unique role in the synthesis of the two starch polymers, amylose and amylopectin. The debranching enzyme isoamylase also has a profound influence on the synthesis of amylopectin. Despite much speculation, no acceptable model to explain the interactions of all of these enzymes to produce amylose and amylopectin has thus far emerged. The organization of newly synthesized amylopectin to form the semicrystalline matrix of the granule appears to be a physical process, implying the existence of complex interactions between biological and physical processes at the surface of the growing granule. The synthesis of the amylose component occurs within the amylopectin matrix.

  20. Extrusion granulation and high shear granulation of different grades of lactose and highly dosed drugs: a comparative study.

    PubMed

    Keleb, E I; Vermeire, A; Vervaet, C; Remon, Jean Paul

    2004-07-01

    Formulations containing different lactose grades, paracetamol, and cimetidine were granulated by extrusion granulation and high shear granulation. Granules were evaluated for yield, friability, and compressibility. Tablets were prepared from those granules and evaluated for tensile strength, friability, disintegration time, and dissolution. The different lactose grades had an important effect on the extrusion granulation process. Particle size and morphology affected powder feeding and power consumption, but had only a minor influence on the granule and tablet properties obtained by extrusion granulation. In contrast, the lactose grades had a major influence on the granule properties obtained by high shear granulation. Addition of polyvinylpyrrolidone (PVP) was required to process pure paracetamol and cimetidine by high shear granulation, whereas it was feasible to granulate these drugs without PVP by extrusion granulation. Granules prepared by extrusion granulation exhibited a higher yield and a lower friability than those produced by high shear granulation. Paracetamol and cimetidine tablets compressed from granules prepared by extrusion granulation showed a higher tensile strength, lower friability, and lower disintegration time than those prepared from granules produced by high shear granulation. Paracetamol tablets obtained via extrusion granulation exhibited faster dissolution than those obtained via high shear granulation. For all lactose grades studied, extrusion granulation resulted in superior granule and tablet properties in comparison with those obtained by high shear granulation. These results indicate that extrusion granulation is more efficient than high shear granulation.

  1. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium.

    PubMed

    Mohammad Mirzaie, M A; Kalbasi, M; Mousavi, S M; Ghobadian, B

    2016-01-01

    Growth of Chlorella vulgaris and its lipid production were investigated under autotrophic, heterotrophic, and mixotrophic conditions. Cheap agricultural waste molasses and corn steep liquor from industries were used as carbon and nitrogen sources, respectively. Chlorella vulgaris grew remarkably under this agricultural waste medium, which resulted in a reduction in the final cost of the biodiesel production. Maximum dry weight of 2.62 g L(-1) was obtained in mixotrophic growth with the highest lipid concentration of 0.86 g L(-1). These biomass and lipid concentrations were, respectively, 140% and 170% higher than autotrophic growth and 300% and 1200% higher than heterotrophic growth. In mixotrophic growth, independent or simultaneous occurrence of autotrophic and heterotrophic metabolisms was investigated. The growth of the microalgae was observed to take place first heterotrophically to a minimum substrate concentration with a little fraction in growth under autotrophic metabolism, and then the cells grew more autotrophically. It was found that mixotrophic growth was not a simple combination of heterotrophic and autotrophic growth.

  2. Substrate preference, uptake kinetics and bioenergetics in a facultatively autotrophic, thermoacidophilic crenarchaeote.

    PubMed

    Urschel, Matthew R; Hamilton, Trinity L; Roden, Eric E; Boyd, Eric S

    2016-05-01

    Facultative autotrophs are abundant components of communities inhabiting geothermal springs. However, the influence of uptake kinetics and energetics on preference for substrates is not well understood in this group of organisms. Here, we report the isolation of a facultatively autotrophic crenarchaeote, strain CP80, from Cinder Pool (CP, 88.7°C, pH 4.0), Yellowstone National Park. The 16S rRNA gene sequence from CP80 is 98.8% identical to that from Thermoproteus uzonensis and is identical to the most abundant sequence identified in CP sediments. Strain CP80 reduces elemental sulfur (S8°) and demonstrates hydrogen (H2)-dependent autotrophic growth. H2-dependent autotrophic activity is suppressed by amendment with formate at a concentration in the range of 20-40 μM, similar to the affinity constant determined for formate utilization. Synthesis of a cell during growth with low concentrations of formate required 0.5 μJ compared to 2.5 μJ during autotrophic growth with H2 These results, coupled to data indicating greater C assimilation efficiency when grown with formate as compared to carbon dioxide, are consistent with preferential use of formate for energetic reasons. Collectively, these results provide new insights into the kinetic and energetic factors that influence the physiology and ecology of facultative autotrophs in high-temperature acidic environments.

  3. Photosynthetic biomaterials: a pathway towards autotrophic tissue engineering.

    PubMed

    Schenck, Thilo Ludwig; Hopfner, Ursula; Chávez, Myra Noemi; Machens, Hans-Günther; Somlai-Schweiger, Ian; Giunta, Riccardo Enzo; Bohne, Alexandra Viola; Nickelsen, Jörg; Allende, Miguel L; Egaña, José Tomás

    2015-03-01

    Engineered tissues are highly limited by poor vascularization in vivo, leading to hypoxia. In order to overcome this challenge, we propose the use of photosynthetic biomaterials to provide oxygen. Since photosynthesis is the original source of oxygen for living organisms, we suggest that this could be a novel approach to provide a constant source of oxygen supply independently of blood perfusion. In this study we demonstrate that bioartificial scaffolds can be loaded with a solution containing the photosynthetic microalgae Chlamydomonas reinhardtii, showing high biocompatibility and photosynthetic activity in vitro. Furthermore, when photosynthetic biomaterials were engrafted in a mouse full skin defect, we observed that the presence of the microalgae did not trigger a native immune response in the host. Moreover, the analyses showed that the algae survived for at least 5 days in vivo, generating chimeric tissues comprised of algae and murine cells. The results of this study represent a crucial step towards the establishment of autotrophic tissue engineering approaches and suggest the use of photosynthetic cells to treat a broad spectrum of hypoxic conditions. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Microbial diversity and autotrophic activity in Kamchatka hot springs.

    PubMed

    Merkel, Alexander Yu; Pimenov, Nikolay V; Rusanov, Igor I; Slobodkin, Alexander I; Slobodkina, Galina B; Tarnovetckii, Ivan Yu; Frolov, Evgeny N; Dubin, Arseny V; Perevalova, Anna A; Bonch-Osmolovskaya, Elizaveta A

    2017-03-01

    Microbial communities of Kamchatka Peninsula terrestrial hot springs were studied using molecular, radioisotopic and cultural approaches. Analysis of 16S rRNA gene fragments performed by means of high-throughput sequencing revealed that aerobic autotrophic sulfur-oxidizing bacteria of the genus Sulfurihydrogenibium (phylum Aquificae) dominated in a majority of streamers. Another widely distributed and abundant group was that of anaerobic bacteria of the genus Caldimicrobium (phylum Thermodesulfobacteria). Archaea of the genus Vulcanisaeta were abundant in a high-temperature, slightly acidic hot spring, where they were accompanied by numerous Nanoarchaeota, while the domination of uncultured Thermoplasmataceae A10 was characteristic for moderately thermophilic acidic habitats. The highest rates of inorganic carbon assimilation determined by the in situ incubation of samples in the presence of (14)C-labeled bicarbonate were found in oxygen-dependent streamers; in two sediment samples taken from the hottest springs this process, though much weaker, was found to be not dependent on oxygen. The isolation of anaerobic lithoautotrophic prokaryotes from Kamchatka hot springs revealed a wide distribution of the ability for sulfur disproportionation, a new lithoautotrophic process capable to fuel autonomous anaerobic ecosystems.

  5. Autotrophic and Heterotrophic Picoplankton in Wetlands: Differences with Lake Patterns

    NASA Astrophysics Data System (ADS)

    Rodrigo, María A.; Rojo, Carmen; Álvarez-Cobelas, Miguel

    2003-09-01

    This study describes the occurrence, importance and seasonal patterns of picoplankton in two wetlands (TDNP and La Safor), and compares them to a system of fifteen interconnected lakes (Ruidera). In TDNP we performed a six-year monthly study in three sites of the wetland. Bacterial abundance increased throughout time and the autotrophic picoplankton (APP) range was wide (up to 33 × 106 cells/ml). The annual averaged APP contribution to total picoplankton and phytoplankton biovolumes was 0.5-22% and 0.03-6% respectively. There were large differences among sites in terms of APP absolute and relative abundance and seasonal patterns. In La Safor, the APP relative contribution to picoplankton and phytoplankton biovolumes was 0-25% and 0-40%, respectively, while in the Ruidera lakes was 0-47% and 0-5%, respectively. In the three systems there was a significant correlation between bacterial abundance and chlorophyll a but the slopes of the linear regressions were different. No significant relationships were found of APP abundance and trophic status in the wetlands, but were noted in the lake system. There was no clear relationship of APP contribution to total phytoplankton biomass to the trophic gradient in wetlands. In the lakes, the higher contribution of APP was found in those with higher trophic levels.

  6. Autotrophic, sulfur-oxidizing actinobacteria in acidic environments.

    PubMed

    Norris, Paul R; Davis-Belmar, Carol S; Brown, Carly F; Calvo-Bado, Leonides A

    2011-03-01

    Some novel actinobacteria from geothermal environments were shown to grow autotrophically with sulfur as an energy source. These bacteria have not been formally named and are referred to here as "Acidithiomicrobium" species, as the first of the acidophilic actinobacteria observed to grow on sulfur. They are related to Acidimicrobium ferrooxidans with which they share a capacity for ferrous iron oxidation. Ribulose bisphosphate carboxylase/oxygenase (RuBisCO) is active in CO(2) fixation by Acidimicrobium ferrooxidans, which appears to have acquired its RuBisCO-encoding genes from the proteobacterium Acidithiobacillus ferrooxidans or its ancestor. This lateral transfer of RuBisCO genes between a proteobacterium and an actinobacterium would add to those noted previously among proteobacteria, between proteobacteria and cyanobacteria and between proteobacteria and plastids. "Acidithiomicrobium" has RuBisCO-encoding genes which are most closely related to those of Acidimicrobium ferrooxidans and Acidithiobacillus ferrooxidans, and has additional RuBisCO genes of a different lineage. 16S rRNA gene sequences from "Acidithiomicrobium" species dominated clone banks of the genes extracted from mixed cultures of moderate thermophiles growing on copper sulfide and polymetallic sulfide ores in ore leaching columns.

  7. Differentiation in nitrogen-converting activity and microbial community structure between granular size fractions in a continuous autotrophic nitrogen removal reactor.

    PubMed

    Qian, Feiyue; Chen, Xi; Wang, Jianfang; Shen, Yaoliang; Gao, Junjun; Mei, Juan

    2017-08-03

    The differentiation in nitrogen-converting activity and microbial community structure between granular size fractions in a continuous completely autotrophic nitrogen removal over nitrite (CANON) reactor, having a superior specific nitrogen removal rate of 0.24 g/(g VSS•d), were investigated by batch tests and high-throughput pyrosequencing analysis, respectively. Results revealed a high dissolved oxygen concentration (>1.8 mg/L) could result in efficient nitrite accumulation with small granules (0.2-0.6 mm in diameter), because aerobic ammonium-oxidizing bacteria (genus Nitrosomonas) predominated therein. Meanwhile, intermediate size granules (1.4-2.0 mm in diameter) showed the highest nitrogen removal activity of 40.4 mg/(g VSS•h) under sufficient oxygen supply, corresponding to the relative abundance ratio of aerobic to anaerobic ammonium-oxidizing bacteria (genus Candidatus Kuenenia) of 5.7. Additionally, a dual substrate competition for oxygen and nitrite would be considered as the main mechanism for repression of nitrite-oxidizing bacteria, and few Nitriospira spp. did not remarkably affect the overall performance of the reactor. Because all the granular size fractions could accomplish CANON process independently under oxygen limiting conditions, keeping a diversity of granular size would facilitate the stability of suspended growth CANON system.

  8. Co-cultivation of microalgae and nitrifiers for higher biomass production and better carbon capture.

    PubMed

    Bilanovic, Dragoljub; Holland, Mark; Starosvetsky, Jeanna; Armon, Robert

    2016-11-01

    The aim of this work was to study co-cultivation of nitrifiers with microalgae as a non-intrusive technique for selective removal of oxygen generated by microalgae. Biomass concentration was, at least, 23% higher in mixed-cultures where nitrifiers kept the dissolved oxygen concentration below 9.0μLL(-1) than in control Chlorella vulgaris axenic-cultures where the concentration of dissolved oxygen was higher than 10.0μLL(-1). This approach to eliminating oxygen inhibition of microalgal growth could become the basis for the development of advanced microalgae reactors for removal of CO2 from the atmosphere, and concentrated CO2 streams. CO2 sequestration would become a chemically and geologically safer and environmentally more sound technology provided it uses microalgal, or other biomass, instead of CO2, for carbon storage.

  9. Nitrifying microorganisms in fixed-bed biofilm reactors fed with different nitrite and ammonia concentrations.

    PubMed

    ter Haseborg, Eike; Zamora, Talia Mateu; Fröhlich, Jörn; Frimmel, Fritz H

    2010-03-01

    Nitrifying bacteria and archaea were fed in fixed-bed biofilm reactors with different nitrite and ammonia concentrations in synthetic and real wastewater. During high nitrite concentrations (rho(NO(2)(-))=5-10mg/L), an increase in the abundance of Nitrobacter species was detected with fluorescence in situ hybridization (FISH), while Nitrospira species disappeared to a large extent. During high ammonia concentrations (rho(NH(4)(+))=60-80 mg/L), a slight increase in ammonia-oxidizing bacteria was obtained, while the abundance of archaebacteria remained unchanged. Lab-scale reactors showed a similar nitrifying microbial population as reactors fed with real wastewater. However, increased abundances of Nitrospira species as observed in wastewater reactors and in the wastewater trickling filters could not be found in the laboratory reactors. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  10. Chronic impact of tetracycline on nitrification kinetics and the activity of enriched nitrifying microbial culture.

    PubMed

    Katipoglu-Yazan, Tugce; Merlin, Christophe; Pons, Marie-Noëlle; Ubay-Cokgor, Emine; Orhon, Derin

    2015-04-01

    This study evaluated the chronic impact of tetracycline on biomass with enriched nitrifying community sustained in a lab-scale activated sludge system. For this purpose, a fill and draw reactor fed with 100 mg COD/L of peptone mixture and 50 mg N/L of ammonia was sustained at a sludge age of 15 days. At steady-state, the reactor operation was continued with a daily tetracycline dosing of 50 mg/L for more than 40 days, with periodic monitoring of the microbial composition, the nitrifying bacteria abundance, as well as the amoA and 16S rRNA gene activity, using molecular techniques. Changes in the kinetics of nitrification were quantified by modelling concentration profiles of major nitrogen fractions and oxygen uptake rate profiles derived from parallel batch experiments. Activated sludge modeling results indicated inhibitory impact of tetracycline on the growth of nitrifiers with a significant increase of the half saturation coefficients in corresponding rate equations. Tetracycline also inactivated biomass components of the enriched culture at a gradually increasing rate with time of exposure, leading to total collapse of nitrification. Molecular analyses revealed significant changes in the composition of the microbial community throughout the observation period. They also showed that continuous exposure to tetracycline inflicted significant reduction in amoA mRNA and 16S rRNA levels directly affecting nitrification. The chronic impact was much more pronounced on the ammonia oxidizing bacteria (AOB) community. These observations explained the basis of numerical changes identified in the growth kinetics of nitrifiers under stress conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Culture-independent detection of "TM7" bacteria in a streptomycin-resistant acidophilic nitrifying process

    NASA Astrophysics Data System (ADS)

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-01

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum "TM7" as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L-1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  12. Clinoptilolite: a possible support material for nitrifying biofilms for effective control of ammonium effluent quality?

    PubMed

    Inan, H; Beler Baykal, B

    2005-01-01

    Ammonium selective natural zeolite clinoptilolite is suggested as a possible support material for nitrifying biofilms to help improve effluent ammonium quality through its high capacity of ammonium removal in the process of ion exchange. This will especially be helpful in cases where the biofilter receives peak or variable loads routinely or occasionally. At the time of peak loads or shocks of ammonium, ion exchange capacity will provide a buffer for the effluent ammonium quality. Data to support this suggestion is presented.

  13. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    SciTech Connect

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T.; Hiraishi, A.

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  14. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.

    PubMed

    Kocamemi, B Alpaslan; Ceçen, F

    2010-01-01

    In the present study, cometabolic TCE degradation was evaluated using NH(4)-N as the growth-substrate. At initial TCE concentrations up to 845 microg/L, TCE degradation followed first-order kinetics. The increase in ammonium utilization rate favored the degradation of TCE. This ensured that biological transformation of TCE in nitrifying systems is accomplished through a cometabolic pathway by the catalysis of non-specific ammonia oxygenase enzyme of nitrifiers. The transformation yield (T(y)) of TCE, the amount of TCE degraded per unit mass of NH(4)-N, strongly depended on the initial NH(4)-N and TCE concentrations. In order to allow a rough estimation of TCE removal and nitrification at different influent TCE and NH(4)-N concentrations, a linear relationship was developed between 1/T(y) and the initial NH(4)-N/TCE ratio. The estimated T(y) values lead to the conclusion that nitrifying systems are promising candidates for biological removal of TCE through cometabolism.

  15. Bacteria of the Candidate Phylum TM7 are Prevalent in Acidophilic Nitrifying Sequencing-Batch Reactors

    PubMed Central

    Hanada, Akiko; Kurogi, Takashi; Giang, Nguyen Minh; Yamada, Takeshi; Kamimoto, Yuki; Kiso, Yoshiaki; Hiraishi, Akira

    2014-01-01

    Laboratory-scale acidophilic nitrifying sequencing-batch reactors (ANSBRs) were constructed by seeding with sewage-activated sludge and cultivating with ammonium-containing acidic mineral medium (pH 4.0) with or without a trace amount of yeast extract. In every batch cycle, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate. Attempts to detect nitrifying functional genes in the fully acclimated ANSBRs by PCR with previously designed primers mostly gave negative results. 16S rRNA gene-targeted PCR and a subsequent denaturating gradient gel electrophoresis analysis revealed that a marked change occurred in the bacterial community during the overall period of operation, in which members of the candidate phylum TM7 and the class Gammaproteobacteria became predominant at the fully acclimated stage. This result was fully supported by a 16S rRNA gene clone library analysis, as the major phylogenetic groups of clones detected (>5% of the total) were TM7 (33%), Gammaproteobacteria (37%), Actinobacteria (10%), and Alphaproteobacteria (8%). Fluorescence in situ hybridization with specific probes also demonstrated the prevalence of TM7 bacteria and Gammaproteobacteria. These results suggest that previously unknown nitrifying microorganisms may play a major role in ANSBRs; however, the ecophysiological significance of the TM7 bacteria predominating in this process remains unclear. PMID:25241805

  16. Hydroxylamine diffusion can enhance N₂O emissions in nitrifying biofilms: a modeling study.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Pérez, Julio; Nerenberg, Robert

    2015-02-03

    Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. However, little is known about N2O emissions from biofilm processes. We adapted an existing suspended-growth mathematical model to explore N2O emissions from nitrifying biofilms. The model included N2O formation by ammonia-oxidizing bacteria (AOB) via the hydroxylamine and the nitrifier denitrification pathways. Our model suggested that N2O emissions from nitrifying biofilms could be significantly greater than from suspended growth systems under similar conditions. The main cause was the formation and diffusion of hydroxylamine, an AOB nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. In the anoxic regions, hydroxylamine oxidation by AOB provided reducing equivalents used solely for nitrite reduction to N2O, since there was no competition with oxygen. For a continuous system, very high and very low dissolved oxygen (DO) concentrations resulted in lower emissions, while intermediate values led to higher emissions. Higher bulk ammonia concentrations and greater biofilm thicknesses increased emissions. The model effectively predicted N2O emissions from an actual pilot-scale granular sludge reactor for sidestream nitritation, but significantly underestimated the emissions when the NH2OH diffusion coefficient was assumed to be minimal. This numerical study suggests an unexpected and important role of hydroxylamine in N2O emission in biofilms.

  17. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Naproxen granules. 520.1468 Section 520.1468 Food... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a) Specifications. Naproxen granules contain 50 percent naproxen. (b) Sponsor. No. 000856 in § 510.600(c) of this...

  18. Statistical analysis and comparison of a continuous high shear granulator with a twin screw granulator: Effect of process parameters on critical granule attributes and granulation mechanisms.

    PubMed

    Meng, Wei; Kotamarthy, Lalith; Panikar, Savitha; Sen, Maitraye; Pradhan, Shankali; Marc, Michaelis; Litster, James D; Muzzio, Fernando J; Ramachandran, Rohit

    2016-11-20

    This study is concerned with identifying the design space of two different continuous granulators and their respective granulation mechanisms. Performance of a continuous high shear granulator and a twin screw granulator with paracetamol formulations were examined by face-centered cubic design, which focused on investigating key performance metrics, namely, granule size, porosity, flowability and particle morphology of granules as a function of essential input process parameters (liquid content, throughput and rotation speed). Liquid and residence time distribution tests were also performed to gain insights into the liquid-powder mixing and flow behavior. The results indicated that continuous high shear granulation was more sensitive to process variation and produced spherical granules with monomodal size distribution and distinct internal structure and strength variation. Twin screw granulation with such a particular screw configuration showed narrower design space and granules were featured with multimodal size distribution, irregular shape, less detectible porosity difference and tighter range of strength. Granulation mechanisms explored on the basis of nucleation and growth regime maps revealed that for most cases liquid binder was uniformly distributed with fast droplet penetration into the powder bed and that granule consolidation and coalescence mainly took place in the nucleation, steady growth and rapid growth regimes.

  19. Expanding leaves of mature deciduous forest trees rapidly become autotrophic.

    PubMed

    Keel, Sonja G; Schädel, Christina

    2010-10-01

    Emerging leaves in evergreen tree species are supplied with carbon (C) from the previous year's foliage. In deciduous trees, no older leaves are present, and the early phase of leaf development must rely on C reserves from other tissues. How soon developing leaves become autotrophic and switch from being C sinks to sources has rarely been studied in mature forest trees, and simultaneous comparisons of species are scarce. Using a canopy crane and a simple (13)CO(2)-pulse-labelling technique, we demonstrate that young leaves of mature trees in three European deciduous species (Fagus sylvatica L., Quercus petraea (Matt.) Liebl., Tilia platyphyllos Scop.) start assimilating CO(2) at a very early stage of development (10-50% expanded). One month after labelling, all leaves were still strongly (13)C enriched, suggesting that recent photosynthates had been incorporated into slow turnover pools such as cellulose or lignin and thus had contributed to leaf growth. In line with previous studies performed at the same site, we found stronger incorporation of recent photosynthates into growing tissues of T. platyphyllos compared with F. sylvatica and Q. petraea. Non-structural carbohydrate (NSC) concentrations analysed for one of the three study species (F. sylvatica) showed that sugar and starch pools rapidly increased during leaf development, suggesting that newly developed leaves soon produce more NSC than can be used for growth. In conclusion, our findings indicate that expanding leaves of mature deciduous trees become C autonomous at an early stage of development despite the presence of vast amounts of mobile carbohydrate reserves.

  20. Development of Denitrifying and Nitrifying Bacteria and Their Co-occurrence in Newly Created Biofilms in Urban Streams

    NASA Astrophysics Data System (ADS)

    Vaessen, T. N.; Martí Roca, E.; Pinay, G.; Merbt, S. N.

    2015-12-01

    Biofilms play a pivotal role on nutrient cycling in streams, which ultimately dictates the export of nutrients to downstream ecosystems. The extent to which biofilms influence the concentration of dissolved nutrients, oxygen and pH in the water column may be determined by the composition of the microbial assemblages and their activity. Evidence of biological interactions among bacteria and algae are well documented. However, the development, succession and co-occurence of nitrifying and denitrifying bacteria remain poorly understood. These bacteria play a relevant role on the biogeochemical process associated to N cycling, and their relative abundance can dictate the fate of dissolved inorganic nitrogen in streams. In particular, previous studies indicated that nitrifiers are enhanced in streams receiving inputs from wastewater treatment plant (WWTP) effluents due to both increases in ammonium concentration and inputs of nitrifiers. However, less is known about the development of denitrifiers in receiving streams, although environmental conditions seem to favor it. We conducted an in situ colonization experiment in a stream receiving effluent from a WWTP to examine how this input influences the development and co-occurrence of nitrifying and denitrifying bacteria. We placed artificial substrata at different locations relative to the effluent and sampled them over time to characterize the developed biofilm in terms of bulk measurements (organic matter content and algae) as well as in terms of abundance of nitrifiers and denitrifiers (using qPCR). The results of this study contribute to a better understanding of the temporal dynamics of denitrifiers and nitrifiers in relation to the developed organic matter, dissolved oxygen and pH and the biomass accrual in stream biofilms under the influence of nutrients inputs from WWTP effluent. Ultimately, the results provide insights on the potential role of nitrifiers and denitrifiers on N cycling in WWTP effluent receiving

  1. Cytoplasmic RNA Granules and Viral Infection

    PubMed Central

    Tsai, Wei-Chih; Lloyd, Richard E.

    2016-01-01

    RNA granules are dynamic cellular structures essential for proper gene expression and homeostasis. The two principle types of cytoplasmic RNA granules are stress granules (SGs), which contain stalled translation initiation complexes, and processing bodies (P-bodies, PBs), which concentrate factors involved in mRNA degradation. RNA granules are associated with gene silencing of transcripts, thus, viruses repress RNA granule functions to favor replication. This review discusses the breadth of viral interactions with cytoplasmic RNA granules, focusing on mechanisms that modulate the functions of RNA granules and that typically promote viral replication. Currently mechanisms for virus manipulation of RNA granules can be loosely grouped into three non-exclusive categories; i) cleavage of key RNA granule factors, ii) regulation of PKR activation and iii) co-opting RNA granule factors for new roles in viral replication. Viral repression of RNA granules supports productive infection by inhibiting their gene silencing functions and counteracting their role in linking stress sensing with innate immune activation. PMID:26958719

  2. Regulation of secretory granule size by the precise generation and fusion of unit granules.

    PubMed

    Hammel, Ilan; Lagunoff, David; Galli, Stephen J

    2010-07-01

    Morphometric evidence derived from studies of mast cells, pancreatic acinar cells and other cell types supports a model in which the post-Golgi processes that generate mature secretory granules can be resolved into three steps: (1) fusion of small, Golgi-derived progranules to produce immature secretory granules which have a highly constrained volume; (2) transformation of such immature granules into mature secretory granules, a process often associated with a reduction in the maturing granule's volume, as well as changes in the appearance of its content and (3) fusion of secretory granules of the smallest size, termed 'unit granules', forming granules whose volumes are multiples of the unit granule's volume. Mutations which perturb this process can cause significant pathology. For example, Chediak-Higashi syndrome / lysosomal trafficking regulator (CHS)/(Lyst) mutations result in giant secretory granules in a number of cell types in human beings with the Chediak-Higashi syndrome and in 'beige' (Lyst(bg)/Lyst(bg)) mice. Analysis of the secretory granules of mast cells and pancreatic acinar cells in Lyst-deficient beige mice suggests that beige mouse secretory granules retain the ability to fuse randomly with other secretory granules no matter what the size of the fusion partners. By contrast, in normal mice, the pattern of granule-granule fusion occurs exclusively by the addition of unit granules, either to each other or to larger granules. The normal pattern of fusion is termed unit addition and the fusion evident in cells with CHS/Lyst mutations is called random addition. The proposed model of secretory granule formation has several implications. For example, in neurosecretory cells, the secretion of small amounts of cargo in granules constrained to a very narrow size increases the precision of the information conveyed by secretion. By contrast, in pancreatic acinar cells and mast cells, large granules composed of multiple unit granules permit the cells to store

  3. Partitioning Soil Respiration Between Autotrophic and Heterotrophic Components in a Mature Boreal Black Spruce Stand

    NASA Astrophysics Data System (ADS)

    Gaumont-Guay, D.; Black, T. A.; Barr, A. G.; Jassal, R. S.; Morgenstern, K.; Nesic, Z.

    2005-12-01

    A root-exclusion experiment conducted in mature boreal black spruce stand (125 year-old) in Saskatchewan, Canada, from September 2003 to December 2004 allowed the partitioning of soil respiration between autotrophic (roots, mycorrhizae and decomposers associated with the rhizosphere) and heterotrophic (free-living organisms) components using continuous automated chamber measurements of soil CO2 efflux. The exclusion of live roots caused a 25% reduction in soil respiration three weeks after the application of the treatment in September 2003, which suggested a strong link between tree photosynthesis and belowground respiration processes. Annual estimates of autotrophic and heterotrophic respiration were 324 and 230 g C m-2 y-1 in 2004, accounting for 53 and 38% of soil respiration, respectively, after correcting for the decomposition of roots killed by trenching (78 g C m-2 y-1). The remainder (57 g C m-2 y-1) originated from live-moss respiration. Over the course of the year, there was a gradual transition from heterotrophic to autotrophic-dominated respiration with three distinctive phases: (1) autotrophic respiration was negligible during winter when the trees were dormant; (2) heterotrophic respiration dominated soil respiration during the shoulder periods of April-May and October-November when soil temperature was low; (3) autotrophic respiration exceeded heterotrophic respiration from mid-July to mid-September when soil temperature was high and trees were active. Both components of respiration increased exponentially with soil temperature during the growing season but autotrophic respiration showed greater temperature sensitivity than heterotrophic respiration. The replenishment of soil water following spring snowmelt induced a sustained increase in heterotrophic respiration. Pulses in autotrophic respiration were observed during summer following large rainfalls that were attributed to rhizosphere priming effects. After normalizing autotrophic respiration for

  4. Selective sorting of alpha-granule proteins

    PubMed Central

    Italiano, J.E.; Battinelli, E. M.

    2010-01-01

    Summary One of the main functions of blood platelets is to secrete a variety of substances that can modify a developing thrombus, regulate the growth of the vasculature, promote wound repair, and contribute to cell-adhesive events. The majority of this vast array of secreted proteins is stored in alpha-granules. Until recently, it was assumed that platelets contained one homogeneous population of alpha-granules that undergo complete de-granulation during platelet activation. This review focuses on the mechanisms of alpha-granule biogenesis and secretion, with a particular emphasis on recent findings that clearly demonstrate that platelets contain distinct subpopulations of alpha-granules that undergo differential release during activation. We consider the implications of this new paradigm of platelet secretion, discuss mechanisms of alpha-granule biogenesis, and review the molecular basis of transport and delivery of alpha-granules to assembling platelets. PMID:19630794

  5. Principles and Properties of Stress granules

    PubMed Central

    Protter, David S. W.; Parker, Roy

    2016-01-01

    Stress granules are assemblies of untranslating mRNPs that form from mRNAs stalled in translation initiation. Stress granules form through interactions between mRNA binding proteins that link together populations of mRNPs. Interactions promoting stress granule formation include conventional protein-protein interactions, as well as interactions involving intrinsically disordered regions of proteins. Assembly and disassembly of stress granules are modulated by a variety of post-translational modifications as well as a number of ATP dependent RNP or protein remodeling complexes, illustrating that stress granules represent an active liquid wherein energy input maintains their dynamic state. Stress granule formation modulates the stress response, viral infection, and signaling pathways. Persistent or aberrant stress granule formation contributes to neurodegenerative disease and some cancers. PMID:27289443

  6. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Principles and Properties of Stress Granules.

    PubMed

    Protter, David S W; Parker, Roy

    2016-09-01

    Stress granules are assemblies of untranslating messenger ribonucleoproteins (mRNPs) that form from mRNAs stalled in translation initiation. Stress granules form through interactions between mRNA-binding proteins that link together populations of mRNPs. Interactions promoting stress granule formation include conventional protein-protein interactions as well as interactions involving intrinsically disordered regions (IDRs) of proteins. Assembly and disassembly of stress granules are modulated by various post-translational modifications as well as numerous ATP-dependent RNP or protein remodeling complexes, illustrating that stress granules represent an active liquid wherein energy input maintains their dynamic state. Stress granule formation modulates the stress response, viral infection, and signaling pathways. Persistent or aberrant stress granule formation contributes to neurodegenerative disease and some cancers.

  8. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.

    PubMed

    Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang

    2016-02-01

    Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Diversity and succession of autotrophic microbial community in high-elevation soils along deglaciation chronosequence

    NASA Astrophysics Data System (ADS)

    Kong, W.; Liu, J.

    2016-12-01

    Global warming has resulted in substantial glacier retreats in high-elevation areas, exposing deglaciated soils to harsh environmental conditions. Autotrophic microbes are pioneering colonizers in the deglaciated soils and provide nutrients to the extreme ecosystem devoid of vegetation. However, autotrophic communities remain less studied in deglaciated soils. We explored the diversity and succession of the cbbL gene encoding the large subunit of form I RubisCO, a key CO2-fixing enzyme, using molecular methods in deglaciated soils along a 10-year deglaciation chronosequence on the Tibetan Plateau. Our results demonstrated that the abundance of all types of form I cbbL (IA/B, IC and ID) rapidly increased in young soils (0-2.5 years old) and kept stable in old soils. Soil total organic carbon (TOC) and total nitrogen (TN) gradually increased along the chronosequence and both demonstrated positive correlations with the abundance of bacteria and autotrophs, indicating that soil TOC and TN originated from autotrophs. Form IA/B autotrophs, affiliated with cyanobacteria, exhibited a substantially higher abundance than IC and ID. Cyanobacterial diversity and evenness increased in young soils (<6 years old) and then remained stable. Our findings suggest that cyabobacteria play an important role in accumulating TOC and TN in the deglaciated soils.

  10. A review of the global relationship among freshwater fish, autotrophic activity, and regional climate

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Beard, T. Douglas; Taylor, William W.

    2015-01-01

    The relationship between autotrophic activity and freshwater fish populations is an important consideration for ecologists describing trophic structure in aquatic communities, fisheries managers tasked with increasing sustainable fisheries development, and fish farmers seeking to maximize production. Previous studies of the empirical relationships of autotrophic activity and freshwater fish yield have found positive relationships but were limited by small sample sizes, small geographic scopes, and the inability to compare patterns among many types of measurement techniques. Individual studies and reviews have also lacked consistent consideration of regional climate factors which may inform relationships between fisheries and autotrophic activity. We compiled data from over 700 freshwater systems worldwide and used meta-analysis and linear models to develop a comprehensive global synthesis between multiple metrics of autotrophic activity, fisheries, and climate indicators. Our results demonstrate that multiple metrics of fish (i.e., catch per unit effort, yield, and production) increase with autotrophic activity across a variety of fisheries. At the global scale additional variation in this positive relationship can be ascribed to regional climate differences (i.e., temperature and precipitation) across systems. Our results provide a method and proof-of-concept for assessing inland fisheries production at the global scale, where current estimates are highly uncertain, and may therefore inform the continued sustainable use of global inland fishery resources.

  11. CYTOPLASMIC GRANULE FORMATION IN MYELOCYTES

    PubMed Central

    Fedorko, Martha E.; Hirsch, James G.

    1966-01-01

    The intracellular flow of tritiated lysine as revealed by electron microscope radioautography was studied in heterophilic myelocytes of rabbit marrow. Label over the Golgi complex rose to a maximum of 37% of total cytoplasmic grains 30 min after initial exposure to the tracer and fell to 11% after 3 to 4 hr of incubation. Coincident with decrease in label over the Golgi complex, grain counts over granules rose to 32% after 3 to 4 hr. The time sequence of incorporation and flow of tritiated lysine and the per cent distribution of label was similar in bone marrow myelocytes under in vivo and in vitro conditions. The results demonstrate a function of the Golgi complex in incorporating or packaging certain basic amino acids or proteins into cytoplasmic granules of heterophilic myelocytes. PMID:5961343

  12. Variability of nitrifying communities in surface coastal waters of the Eastern South Pacific (∼36° S).

    PubMed

    Levipan, Héctor A; Molina, Verónica; Anguita, Cristóbal; Rain-Franco, Angel; Belmar, Lucy; Fernandez, Camila

    2016-08-03

    We report the seasonal and single-diurnal variability of potentially active members of the prokaryote community in coastal surface waters off central Chile and the relationship between nitrifiers and solar radiation by combining 16S cDNA-based pyrosequencing, RT-qPCR of specific gene markers for nitrifiers (amoA, for general AOA, AOA-A, AOA-B, Nitrosopumilus maritimus and beta-AOB; and 16S rRNA gene for Nitrospina-like NOB), and solar irradiance measurements. We also evaluated the effects of artificial UVA-PAR and PAR spectra on nitrifiers by RT-qPCR. All nitrifiers (except AOA-B ecotype) were detected via RT-qPCR but AOA was the only group detected by pyrosequencing. Results showed high variability in their transcriptional levels during the day which could be associated to sunlight intensity thresholds in winter although AOA and Nitrospina-like NOB transcript number were also potentially related with environmental substrate availability. Only N. maritimus amoA transcripts showed a significant negative correlation with solar irradiances in both periods. During spring-summer, Nitrospina transcripts decreased at higher sunlight intensities, whereas the opposite was found during winter under natural (in situ) and artificial light experiments. In summary, a nitrifying community with variable tolerance to solar radiation is responsible for daily nitrification, and was particularly diverse during winter in the study area.

  13. Growth performances and changes of macronutrient ion concentrations in the culture medium when Euglena gracilis was cultured with nitrified digestate.

    PubMed

    Takemura, Kenji; Endo, Ryosuke; Shibuya, Toshio; Kitaya, Yoshiaki

    2017-09-01

    We investigated the possibility of using Euglena gracilis to convert digestate from methane fermentation of organic wastes into a medium for soilless crop culture. The growth of E. gracilis cultured with aqueous solutions containing filtrate of raw digestate at 1-30% (v/v) and nitrified digestate at 10-100% (v/v) was examined. Concentrations of plant macronutrient ions in nitrified digestate before and after culturing E. gracilis were also examined. Specific growth rates in aqueous solutions containing filtrate of raw digestate at 1-10% and nitrified digestate at 10-100% showed no significant differences, respectively (0.781 ± 0.031 d(-1) and 0.925 ± 0.033 d(-1), mean ± standard error). The rates in the filtrate of nitrified digestate were significantly higher than those in the filtrate of raw digestate. Moreover, there were no significant differences between the concentrations of plant macronutrient ions other than [Formula: see text] in the filtrate of nitrified digestate before and after culturing E. gracilis. The concentration of [Formula: see text] decreased significantly by 10.5% of the initial concentration. As a result, the constituent ratio of plant macronutrient ions other than magnesium in the solution after culturing E. gracilis was similar to that in a standard nutrient solution for soilless culture.

  14. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    PubMed Central

    Linchangco, Richard

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed. PMID:25580463

  15. Iron oxidation kinetics and autotrophic bacteria in acidified environments

    SciTech Connect

    Barry, R.C.

    1993-01-01

    Iron oxidation in the presence of lake sediment collected from an acidic alpine lake was three orders of magnitude faster than in filtered lakewater without sediment. When kinetic rates in the presence of sediment were normalized on a surface area basis, they fell within a narrow range, and the assumption of a first order dependence of rate on surface area was supported. The relative influence on heterogeneous rate of ferrous iron oxidation of the five metal oxides studied can be ranked SiO[sub 2] [approx] Al[sub 2]O[sub 3] [much lt] Fe[sub 2] O[sub 3] [approx] MnO[sub 2] [approx] TiO[sub 2], with a difference of three orders of magnitude separating the aluminum and iron oxides. The rate constants on a surface area basis were, respectively, 1.8 [times] 10[sup 10], 4.6 [times] 10[sup 10], 1.4 [times] 10[sup 13], 2.3 [times] 10[sup 13] and 5.3 [times] 10[sup 13]M[sup [minus]2] atm[sup [minus]1] sec[sup [minus]1]m[sup [minus]2]. Studies at low oxygen concentrations suggested that at low pO[sub 2] oxygenation may not be first order with respect to oxygen concentration. Biological processes were found to enhance oxidation kinetics by two orders of magnitude on a surface area basis in comparison with a gamma irradiated control. Oxidation rate in the presence of irradiated sediment was in turn approximately 130 times greater than for oxidation in deionized water. The importance of biological activity in environments exhibiting photoreduction of iron was further studied by development of a polyclonal antibody test for the detection of the iron oxidizing autotroph Thiobacillus ferrooxidans. T. ferrooxidans was found in the Snake River and its tributaries in the Colorado Rocky mountains. Tests for T. ferrooxidans in samples collected at Lake Cristallina, Canton Ticino, Switzerland and McDonalds Branch, Lebanon State Forest, New Jersey were negative.

  16. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau.

    PubMed

    Guo, Guangxia; Kong, Weidong; Liu, Jinbo; Zhao, Jingxue; Du, Haodong; Zhang, Xianzhou; Xia, Pinhua

    2015-10-01

    Soil microbial autotrophs play a significant role in CO2 fixation in terrestrial ecosystem, particularly in vegetation-constrained ecosystems with environmental stresses, such as the Tibetan Plateau characterized by low temperature and high UV. However, soil microbial autotrophic communities and their driving factors remain less appreciated. We investigated the structure and shift of microbial autotrophic communities and their driving factors along an elevation gradient (4400-5100 m above sea level) in alpine grassland soils on the Tibetan Plateau. The autotrophic microbial communities were characterized by quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning/sequencing of cbbL genes, encoding the large subunit for the CO2 fixation protein ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). High cbbL gene abundance and high RubisCO enzyme activity were observed and both significantly increased with increasing elevations. Path analysis identified that soil RubisCO enzyme causally originated from microbial autotrophs, and its activity was indirectly driven by soil water content, temperature, and NH4 (+) content. Soil autotrophic microbial community structure dramatically shifted along the elevation and was jointly driven by soil temperature, water content, nutrients, and plant types. The autotrophic microbial communities were dominated by bacterial autotrophs, which were affiliated with Rhizobiales, Burkholderiales, and Actinomycetales. These autotrophs have been well documented to degrade organic matters; thus, metabolic versatility could be a key strategy for microbial autotrophs to survive in the harsh environments. Our results demonstrated high abundance of microbial autotrophs and high CO2 fixation potential in alpine grassland soils and provided a novel model to identify dominant drivers of soil microbial communities and their ecological functions.

  17. Phosphorus removal in a sulfur-limestone autotrophic denitrification (SLAD) biofilter.

    PubMed

    Li, Ruihua; Yuan, Yulin; Zhan, Xinmin; Liu, Bo

    2014-01-01

    The sulfur-limestone autotrophic denitrification (SLAD) biofilter was able to remove phosphorous from wastewater during autotrophic denitrification. Parameters influencing autotrophic denitrification in the SLAD biofilter, such as hydraulic retention time (HRT), influent nitrate (NO3(-)), and influent PO4(3-) concentrations, had significant effects on P removal. P removal was well correlated with total oxidized nitrogen (TON) removed in the SLAD biofilter; the more TON removed, the more efficient P removal was achieved. When treating the synthetic wastewater containing NO3(-)-N of 30 mg L(-1) and PO4(3-)-P of 15 mg L(-1), the SLAD biofilter removed phosphorus of 45% when the HRT was 6 h, in addition with TN removal of nearly 100%. The optimal phosphorus removal in the SLAD biofilter was around 60%. For the synthetic wastewater containing a PO4(3-)-P concentration of 15 mg L(-1), the main mechanism of phosphorus removal was the formation of calcium phosphate precipitates.

  18. Protein Mobility within Secretory Granules

    PubMed Central

    Weiss, Annita Ngatchou; Bittner, Mary A.; Holz, Ronald W.; Axelrod, Daniel

    2014-01-01

    We investigated the basis for previous observations that fluorescent-labeled neuropeptide Y (NPY) is usually released within 200 ms after fusion, whereas labeled tissue plasminogen activator (tPA) is often discharged over many seconds. We found that tPA and NPY are endogenously expressed in small and different subpopulations of bovine chromaffin cells in culture. We measured the mobility of these proteins (tagged with fluorophore) within the lumen of individual secretory granules in living chromaffin cells, and related their mobilities to postfusion release kinetics. A method was developed that is not limited by standard optical resolution, in which a bright flash of strongly decaying evanescent field (∼64 nm exponential decay constant) produced by total internal reflection (TIR) selectively bleaches cerulean-labeled protein proximal to the glass coverslip within individual granules. Fluorescence recovery occurred as unbleached protein from distal regions within the 300 nm granule diffused into the bleached proximal regions. The fractional bleaching of tPA-cerulean (tPA-cer) was greater when subsequently probed with TIR excitation than with epifluorescence, indicating that tPA-cer mobility was low. The almost equal NPY-cer bleaching when probed with TIR and epifluorescence indicated that NPY-cer equilibrated within the 300 ms bleach pulse, and therefore had a greater mobility than tPA-cer. TIR-fluorescence recovery after photobleaching revealed a significant recovery of tPA-cer (but not NPY-cer) fluorescence within several hundred milliseconds after bleaching. Numerical simulations, which take into account bleach duration, granule diameter, and the limited number of fluorophores in a granule, are consistent with tPA-cer being 100% mobile, with a diffusion coefficient of 2 × 10−10 cm2/s (∼1/3000 of that for a protein of similar size in aqueous solution). However, the low diffusive mobility of tPA cannot alone explain its slow postfusion release. In the

  19. Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.

    PubMed

    Hu, Yajing; Holden, James F

    2006-06-01

    The hyperthermophilic archaeon Pyrobaculum islandicum uses the citric acid cycle in the oxidative and reductive directions for heterotrophic and autotrophic growth, respectively, but the control of carbon flow is poorly understood. P. islandicum was grown at 95 degrees C autotrophically, heterotrophically, and mixotrophically with acetate, H2, and small amounts of yeast extract and with thiosulfate as the terminal electron acceptor. The autotrophic growth rates and maximum concentrations of cells were significantly lower than those in other media. The growth rates on H2 and 0.001% yeast extract with and without 0.05% acetate were the same, but the maximum concentration of cells was fourfold higher with acetate. There was no growth with acetate if 0.001% yeast extract was not present, and addition of H2 to acetate-containing medium greatly increased the growth rates and maximum concentrations of cells. P. islandicum cultures assimilated 14C-labeled acetate in the presence of H2 and yeast extract with an efficiency of 55%. The activities of 11 of 19 enzymes involved in the central metabolism of P. islandicum were regulated under the three different growth conditions. Pyruvate synthase and acetate:coenzyme A (CoA) ligase (ADP-forming) activities were detected only in heterotrophically grown cultures. Citrate synthase activity decreased in autotrophic and acetate-containing cultures compared to the activity in heterotrophic cultures. Acetylated citrate lyase, acetate:CoA ligase (AMP forming), and phosphoenolpyruvate carboxylase activities increased in autotrophic and acetate-containing cultures. Citrate lyase activity was higher than ATP citrate synthase activity in autotrophic cultures. These data suggest that citrate lyase and AMP-forming acetate:CoA ligase, but not ATP citrate synthase, work opposite citrate synthase to control the direction of carbon flow in the citric acid cycle.

  20. Pollen performance before and during the autotrophic-heterotrophic transition of pollen tube growth.

    PubMed Central

    Stephenson, Andrew G; Travers, Steven E; Mena-Ali, Jorge I; Winsor, James A

    2003-01-01

    For species with bicellular pollen, the attrition of pollen tubes is often greatest where the style narrows at the transition between stigmatic tissue and the transmitting tissue of the style. In this region, the tubes switch from predominantly autotrophic to predominantly heterotrophic growth, the generative cell divides, the first callose plugs are produced, and, in species with RNase-type self-incompatibility (SI), incompatible tubes are arrested. We review the literature and present new findings concerning the genetic, environmental and stylar influences on the performance of pollen before and during the autotrophic-heterotrophic transition of pollen tube growth. We found that the ability of the paternal sporophyte to provision its pollen during development significantly influences pollen performance during the autotrophic growth phase. Consequently, under conditions of pollen competition, pollen selection during the autotrophic phase is acting on the phenotype of the paternal sporophyte. In a field experiment, using Cucurbita pepo, we found broad-sense heritable variation for herbivore-pathogen resistance, and that the most resistant families produced larger and better performing pollen when the paternal sporophytes were not protected by insecticides, indicating that selection during the autotrophic phase can act on traits that are not expressed by the microgametophyte. In a study of a weedy SI species, Solanum carolinense, we found that the ability of the styles to arrest self-pollen tubes at the autotrophic-heterotrophic transition changes with floral age and the presence of developing fruits. These findings have important implications for selection at the level of the microgametophyte and the evolution of mating systems of plants. PMID:12831466

  1. Dynamics of autotrophic marine planktonic thaumarchaeota in the East China Sea.

    PubMed

    Hu, Anyi; Yang, Zao; Yu, Chang-Ping; Jiao, Nianzhi

    2013-01-01

    The ubiquitous and abundant distribution of ammonia-oxidizing Thaumarchaeota in marine environments is now well documented, and their crucial role in the global nitrogen cycle has been highlighted. However, the potential contribution of Thaumarchaeota in the carbon cycle remains poorly understood. Here we present for the first time a seasonal investigation on the shelf region (bathymetry≤200 m) of the East China Sea (ECS) involving analysis of both thaumarchaeal 16S rRNA and autotrophy-related genes (acetyl-CoA carboxylase gene, accA). Quantitative PCR results clearly showed a higher abundance of thaumarchaeal 16S and accA genes in late-autumn (November) than summer (August), whereas the diversity and community structure of autotrophic Thaumarchaeota showed no statistically significant difference between different seasons as revealed by thaumarchaeal accA gene clone libraries. Phylogenetic analysis indicated that shallow ecotypes dominated the autotrophic Thaumarchaeota in the ECS shelf (86.3% of total sequences), while a novel non-marine thaumarchaeal accA lineage was identified in the Changjiang estuary in summer (when freshwater plumes become larger) but not in autumn, implying that Changjiang freshwater discharge played a certain role in transporting terrestrial microorganisms to the ECS. Multivariate statistical analysis indicated that the biogeography of the autotrophic Thaumarchaeota in the shelf water of the ECS was influenced by complex hydrographic conditions. However, an in silico comparative analysis suggested that the diversity and abundance of the autotrophic Thaumarchaeota might be biased by the 'universal' thaumarchaeal accA gene primers Cren529F/Cren981R since this primer set is likely to miss some members within particular phylogenetic groups. Collectively, this study improved our understanding of the biogeographic patterns of the autotrophic Thaumarchaeota in temperate coastal waters, and suggested that new accA primers with improved coverage

  2. Seasonal variations in abundance of nitrifying bacteria in fish pond ecosystem.

    PubMed

    Kumari, Vibha; Rathore, Gaurav; Chauhan, U K; Pandey, A K; Lakra, W S

    2011-03-01

    Seasonal changes in abundance of nitrifiers (ammonia-oxidizing and nitrite-oxidizing bacteria) in surface and bottom water of freshwater ponds were examined with respect to temperature, DO, pH as well as concentration of ammonia and nitrite. The most probable number (MPN) of ammonia-oxidizers in different ponds varied from 1297 +/- 3.6 to 1673.23 +/- 0.36 ml(-1) in bottom and 720.5 +/- 8.1 to 955.3 +/- 10.8 ml(-1) in surface water during the rainy season while the MPN ranged from 1074 +/- 1.07 to 1372.17 +/- 4.6 ml(-1) in bottom and 515 +/- 10.1 to 678 +/- 11.8 ml(-1) in surface water in winter. However, the MPN were greatly reduced in summer and ranged from 435.05 +/- 15.7 to 547.54 +/- 2.12 ml(-1) in bottom and 218.7 +/- 7.3 to 368.4 +/- 9.32 ml(-1) in surface water. Similar seasonal trends were also observed in MPN of nitrite-oxidizers. Among all the physico-chemical parameters, abundance of nitrifiers was more positively correlated with ammonia and nitrite concentration in all the seasons. The abundance of nitrifiers in surface and bottom water was highest in rainy season followed by winter and modest in summer. The potential nitrification activities and oxidation rates were shown to be linear and activity of ammonia-oxidizing and nitrite-oxidizing bacteria was highest during rainy season.

  3. Occurrence of nitrifiers and diversity of ammonia-oxidizing bacteria in developing drinking water biofilms.

    PubMed

    Lipponen, Mari T T; Martikainen, Pertti J; Vasara, Ritva E; Servomaa, Kristina; Zacheus, Outi; Kontro, Merja H

    2004-12-01

    We studied the population dynamics of nitrifying bacteria during the development of biofilms up to 233 or 280 days on polyvinylchloride pipes connected to two full-scale drinking water distribution networks supplying processed and chloraminated surface water. The numbers of nitrifiers in biofilms were enumerated at intervals of 10-64 days by the most probable number (MPN) method at waterworks and at several study sites in distribution network areas. The numbers of nitrifiers increased towards the distal sites. The highest detected MPN counts of ammonia-oxidizing bacteria (AOB) for study areas 1 and 7 were 500 MPN cm(-2) and 1.0 x 10(6) MPN cm(-2), and those of nitrite-oxidizing bacteria (NOB) 96 MPN cm(-2) and 2.2 x 10(3) MPN cm(-2), respectively. The diversity of AOB was determined by PCR amplifying, cloning and sequencing the partial ammonia monooxygenase (amoA) gene of selected biofilm samples presenting different biofilm ages. The PCR primers used, A189 and A682, also amplified a fragment of particulate methane monooxygenase (pmoA) gene of methane-oxidizing bacteria. The majority of biofilm clones (24 out of 30 studied) contained Nitrosomonas amoA-like sequences. There were only two pmoA-like sequences of Type I methanotrophs, and four sequences positioned in amoA/pmoA sequence groups of uncultured bacteria. From both study area very similar or even completely identical Nitrosomonas amoA-like sequences were obtained despite of high difference in AOB numbers. The results show that the conditions in newly formed biofilms in drinking water distribution systems favor the growth of Nitrosomonas-type AOB.

  4. Estimating nitrifying biomass in drinking water filters for surface water treatment.

    PubMed

    Tränckner, Jens; Wricke, Burkhard; Krebs, Peter

    2008-05-01

    The objective of this work is to estimate active nitrifying biomass and its main influencing factors in low-loaded biofilters based on operational data. An analytical approach based on balancing growth, decay and biomass removed by backwashing is proposed. The method is developed and applied in pilot-scale rapid sand filters for drinking water treatment. Decay rate was measured directly in the filter for different temperatures. To assess the amount of active biomass in backwash water, a technique based on respiration measurements was used. Backwash losses increased overproportional with balanced biomass in the filter. The impact of both parameters on active biomass is quantified exemplarily for a given constant nitrification rate.

  5. Application of toxicity monitor using nitrifying bacteria biosensor to sewerage systems.

    PubMed

    Inui, T; Tanaka, Y; Okayas, Y; Tanaka, H

    2002-01-01

    Toxic substances may be included in wastewater influent and can damage biological processing of wastewater treatment, therefore continuous toxic-monitoring of wastewater influent is needed. This paper describes the potential toxic-monitoring applications of the toxicity monitor using a nitrifying bacteria biosensor to sewerage systems. The results of sensitivity tests show that aspects of wastewater do not affect the sensor sensitivity and confirm that the sensor can be applied to wastewater monitoring as it is. The monitor with a prototype of filtration system installed in a wastewater treatment plant is able to operate continuously for one month at least after the modification of filtration system and the optimization of operation conditions.

  6. Development of Novel Random Network Theory-Based Approaches to Identify Network Interactions among Nitrifying Bacteria

    SciTech Connect

    Shi, Cindy

    2015-07-17

    The interactions among different microbial populations in a community could play more important roles in determining ecosystem functioning than species numbers and their abundances, but very little is known about such network interactions at a community level. The goal of this project is to develop novel framework approaches and associated software tools to characterize the network interactions in microbial communities based on high throughput, large scale high-throughput metagenomics data and apply these approaches to understand the impacts of environmental changes (e.g., climate change, contamination) on network interactions among different nitrifying populations and associated microbial communities.

  7. Interactions of Nitrifying Bacteria and Heterotrophs: Identification of a Micavibrio-Like Putative Predator of Nitrospira spp.

    PubMed Central

    Dolinšek, Jan; Lagkouvardos, Ilias; Wanek, Wolfgang; Wagner, Michael

    2013-01-01

    Chemolithoautotrophic nitrifying bacteria release soluble organic compounds, which can be substrates for heterotrophic microorganisms. The identities of these heterotrophs and the specificities of their interactions with nitrifiers are largely unknown. In this study, we incubated nitrifying activated sludge with 13C-labeled bicarbonate and used stable isotope probing of 16S rRNA to monitor the flow of carbon from uncultured nitrifiers to heterotrophs. To facilitate the identification of heterotrophs, the abundant 16S rRNA molecules from nitrifiers were depleted by catalytic oligonucleotides containing locked nucleic acids (LNAzymes), which specifically cut the 16S rRNA of defined target organisms. Among the 13C-labeled heterotrophs were organisms remotely related to Micavibrio, a microbial predator of Gram-negative bacteria. Fluorescence in situ hybridization revealed a close spatial association of these organisms with microcolonies of nitrite-oxidizing sublineage I Nitrospira in sludge flocs. The high specificity of this interaction was confirmed by confocal microscopy and a novel image analysis method to quantify the localization patterns of biofilm microorganisms in three-dimensional (3-D) space. Other isotope-labeled bacteria, which were affiliated with Thermomonas, colocalized less frequently with nitrifiers and thus were commensals or saprophytes rather than specific symbionts or predators. These results suggest that Nitrospira spp. are subject to bacterial predation, which may influence the abundance and diversity of these nitrite oxidizers and the stability of nitrification in engineered and natural ecosystems. In silico screening of published next-generation sequencing data sets revealed a broad environmental distribution of the uncultured Micavibrio-like lineage. PMID:23335755

  8. A new approach to determine the kinetic parameters for nitrifying microorganisms in the activated sludge systems.

    PubMed

    Liwarska-Bizukojc, Ewa; Bizukojc, Marcin

    2012-04-01

    This work aims at establishing the methodology to determine kinetic parameters describing growth of autotrophs in the activated sludge systems. It is based upon the measurement of oxygen uptake rate (OUR) only. Two Monod kinetic parameters, namely maximum specific growth rate for autotrophic biomass (μ(max,A)) and half-saturation constant for ammonium ions (K(A)) were simply and rapidly determined within a single batch OUR test with the use of ammonified wastewater. The obtained mean values of the parameters are μ(max,A)=0.675 h(-1) and K(A)=0.912 mg NH(3)-Nl(-1) and they are close to the ones assumed in activated sludge models. It indicates that the methodology of the respiratory batch test elaborated in this study is reliable.

  9. mRNPs meet stress granules.

    PubMed

    Sheinberger, Jonathan; Shav-Tal, Yaron

    2017-09-01

    Stress granules are cytoplasmic structures that form in response to a variety of cellular stresses. They contain mRNAs and many proteins including numerous types of RNA-binding proteins, and have been studied in connection to major cellular events such as protein synthesis as well as disease. Despite the well-known fact that stress granules encapsulate mRNPs (mRNA-protein complexes), much of the research has naturally focused on the protein components of stress granules. The specific details of mRNP entry into and exit from stress granules and the functional reasons for these dynamics are not fully understood. Here, we review studies that have concentrated on the aspects of mRNP accumulation in stress granules and produced quantitative data concerning mRNP/stress granule interactions. © 2017 Federation of European Biochemical Societies.

  10. Twin screw granulation - review of current progress.

    PubMed

    Thompson, M R

    2015-01-01

    Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of research has evolved over the short time since this process was introduced but generally with little comparison of results. A certain degree of confidence has been developed through these studies related to how process variables and many attributes of machinery configuration will affect granulation but some major challenges still lay ahead related to scalability, variations in the processing regimes related to degree of channel fill and the impact of wetting and granulation of complex powder formulations. This review examines the current literature for wet granulation processes studied in twin screw extrusion machinery, summarizing the influences of operational and system parameters affecting granule properties as well as strives to provide some practical observations to newly interested users of the technique.

  11. Granulation In and Out of Magnetic Region

    DTIC Science & Technology

    1988-06-25

    Italy. 21-25 June 1988 / edited by Robert J. Rutten and Giuseppe Severino . p. cm. -- (NATO ASI series. Series C, Mathemati-cal and physical sciences...granulation--Congresses. 2. Stellar granulation- -Congresses. I. Rutten. Robert J. II. Severino . Giuseppe. III. North Atlantic Treaty Organization. IV. North...the seeing effects) to correctly 253 R. J. Rutten and G. Severino (eds.), Solar and Stellar Granulation, 253-271.1989 by Klawer Academic Publishers

  12. Numerical Experiments with Flows of Elongated Granules

    DTIC Science & Technology

    1992-01-01

    NASA AVSCOM Technical Memorandum 105567 Technical Report 91- C- 006 𔃼e- 0ok, Numerical Experiments With Flows of Elongated Granules AD-A251 853 DTIC...EXPERIMENTS WITH FLOWS OF ELONGATED GRANULES H.G. Elrod 14 Cromwell Court Old Saybrook, Connecticut 06475 and D.E. Brewe Propulsion Directorate U.S. Army...granular flows (1) between two infinite, counter-moving, parallel, roughened walls, and (2) for an infinitely-wide slider. Each granule is simulated by a

  13. Balloon-borne imagery of the solar granulation. II - The lifetime of solar granulation

    NASA Technical Reports Server (NTRS)

    Mehltretter, J. P.

    1978-01-01

    Phenomenological aspects of the temporal evolution of photospheric granulation are reported as derived from time series of granulation photographs obtained during a flight of a balloon-borne telescope. The distribution of granule lifetime probabilities is determined, and it is found that the data can be represented by an exponential decrease with a 'decay constant' of 5.9 min. The general properties of granular evolution are described along with the way individual granules evolve with time. The most common type of granule is shown to be a medium-sized or small fragment, and it is suggested that all granules are produced by fragmentation of preexisting granules. The relative frequencies of granule destruction by fragmentation, fading, and merging are determined to be 51%, 21%, and 28%, respectively. An average radial velocity of 0.8 km/s is computed for conglomerates with an average diameter of 2.25 arcsec.

  14. Regulation of secretory granule size by the precise generation and fusion of unit granules

    PubMed Central

    Hammel, Ilan; Lagunoff, David; Galli, Stephen J

    2010-01-01

    Abstract Morphometric evidence derived from studies of mast cells, pancreatic acinar cells and other cell types supports a model in which the post-Golgi processes that generate mature secretory granules can be resolved into three steps: (1) fusion of small, Golgi-derived progranules to produce immature secretory granules which have a highly constrained volume; (2) transformation of such immature granules into mature secretory granules, a process often associated with a reduction in the maturing granule’s volume, as well as changes in the appearance of its content and (3) fusion of secretory granules of the smallest size, termed ‘unit granules’, forming granules whose volumes are multiples of the unit granule’s volume. Mutations which perturb this process can cause significant pathology. For example, Chediak–Higashi syndrome / lysosomal trafficking regulator (CHS)/(Lyst) mutations result in giant secretory granules in a number of cell types in human beings with the Chediak–Higashi syndrome and in ‘beige’ (Lystbg/Lystbg) mice. Analysis of the secretory granules of mast cells and pancreatic acinar cells in Lyst-deficient beige mice suggests that beige mouse secretory granules retain the ability to fuse randomly with other secretory granules no matter what the size of the fusion partners. By contrast, in normal mice, the pattern of granule–granule fusion occurs exclusively by the addition of unit granules, either to each other or to larger granules. The normal pattern of fusion is termed unit addition and the fusion evident in cells with CHS/Lyst mutations is called random addition. The proposed model of secretory granule formation has several implications. For example, in neurosecretory cells, the secretion of small amounts of cargo in granules constrained to a very narrow size increases the precision of the information conveyed by secretion. By contrast, in pancreatic acinar cells and mast cells, large granules composed of multiple unit granules

  15. Granulation of coal fly ash by using different types of granule agents

    NASA Astrophysics Data System (ADS)

    Agusta, H.; Nisya, F. N.; Iman, R. N.; Bilad, D. B. C.

    2017-05-01

    The use of coal produces about 5% solid pollutant in the form of ash (fly ash and bottom ash). Of the total ash produced, about 10-20% is bottom ash and 80-90% is fly ash. This study was aimed at obtaining a type of adhesive which could be used as a fly granulation material for soil conditioner. The study was conducted at the pilot plant of Surfactant and Bioenergy Research Center (SBRC) LPPM IPB from April to August 2016. The fly ash used in this study was obtained from Kalimantan. A pan granulator was used in fly ash granule making process. Granule agent materials were diluted in the concentration of 5, 10, and 15%. Different types of granule agents, namely SBRC-M, SBRC-T, and SBRC-SC were used. The formed fly ash granules were then analyzed for their physical properties including particle density, fly ash granule pH, fly ash granule durability, and fly ash granule water holding capacity. Results showed that fly ash granules made from 15% of SBRC-M had the highest particle density (0.75 g/cm3). Fly ash granules made with SBRC-M had higher pH (10) than those made by using SBRC-SC adhesive (9.3) and SBRC-T (9). SBRC-T was found as the granule agent material which produced fly ash granules with the highest durability levels on average. In this study, the use of SBRC-M granule agent resulted in higher water holding capacity (WHC) (40.62%) than did SBRC-SC (38.79%) and SBRC-T (36.85%). As a granule agent, compared to SBRC-SC and SBRC-T, SBRC-M could produce fly ash granules with highest particle density, highest pH, good durability, and best water holding capacity.

  16. Simultaneous removal of organic carbon and nitrogen pollutants in the Yangtze estuarine sediment: The role of heterotrophic nitrifiers

    NASA Astrophysics Data System (ADS)

    Jin, Qiang; Lu, Jian; Wu, Jun; Luo, Yongming

    2017-05-01

    The Yangtze Estuary is one of the most eutrophic coastal areas in the world. The engagement of heterotrophic nitrification bacteria in the simultaneous removal of organic carbon and ammonium in the Yangtze estuarine sediment was investigated. The specific nitrification rate in the selective autotrophic nitrification inhibition treatment was about 25% of that in the control without autotrophic nitrification inhibition, suggesting that heterotrophic nitrification, in addition to autotrophic nitrification, was an important nitrification process in the sediment. The increase of heterotrophic nitrification can offset the decrease in autotrophic nitrification, which subsequently leads to the high tolerance of nitrification to the organic carbon. The number of heterotrophic nitrification bacteria was 7.1 × 107 MPN g-1 in sediment collected from Site 1 while that of autotrophic nitrification bacteria was 4.2 × 108 MPN g-1. The isolation of heterotrophic nitrification bacteria provides direct evidence of the engagement of heterotrophs in the nitrification of the Yangtze estuarine sediment. The results show that nitrification is catalyzed by both the autotrophs and the heterotrophs, indicating functional redundancy of nitrification in sediment. Since organic carbon usually coexists with ammonium, these findings indicate an alternative bioprocess for the simultaneous removal of organic carbon and ammonium in Yangtze estuarine sediment.

  17. Heterotrophic-autotrophic sequential system for reductive nitrate and perchlorate removal.

    PubMed

    Ucar, Deniz; Cokgor, Emine Ubay; Sahinkaya, Erkan

    2016-01-01

    Nitrate and perchlorate were identified as significant water contaminants all over the world. This study aims at evaluating the performances of the heterotrophic-autotrophic sequential denitrification process for reductive nitrate and perchlorate removal from drinking water. The reduced nitrate concentration in the heterotrophic reactor increased with increasing methanol concentrations and the remaining nitrate/nitrite was further removed in the following autotrophic denitrifying process. The performances of the sequential process were studied under varying nitrate loads of [Formula: see text] at a fixed hydraulic retention time of 2 h. The C/N ratio in the heterotrophic reactor varied between 1.24 and 2.77 throughout the study. Nitrate and perchlorate reduced completely with maximum initial concentrations of [Formula: see text] and 1000 µg/L, respectively. The maximum denitrification rate for the heterotrophic reactor was [Formula: see text] when the bioreactor was fed with [Formula: see text] and 277 mg/L methanol. For the autotrophic reactor, the highest denitrification rate was [Formula: see text] in the first period when the heterotrophic reactor performance was low. Perchlorate reduction was initiated in the heterotrophic reactor, but completed in the following autotrophic process. Effluent sulphate concentration was below the drinking water standard level of 250 mg/L and pH was in the neutral level.

  18. Experimental effects of grazers on autotrophic species assemblages across a nitrate gradient in Florida springs

    USDA-ARS?s Scientific Manuscript database

    Springs face accelerated degradation of ecosystem structure, namely in the form of autotrophic species assemblage shifts from submerged vascular macrophytes to benthic filamentous algae. Increasing nitrate concentrations have been cited as a primary driver of this shift and numeric nutrient criteria...

  19. Estimation of autotrophic soil respiration in a boreal forest using three different approaches

    NASA Astrophysics Data System (ADS)

    Kulmala, Liisa; Pumpanen, Jukka; Heinonsalo, Jussi

    2016-04-01

    It is generally challenging to separate autotrophic and heterotrophic soil respiration. The reason for these difficulties is connected with the intimate interaction of the key processes in soil. Root-associated microbes practically colonize the whole soil volume while decomposition processes occur in the same matrix. Therefore, autotrophic and heterotrophic processes cannot be separated in natural systems. However, there are several methods that can be used to better understand the dynamics of these two. A classical method is called 'trenching' where a trench is dug around a known volume of soil and the roots entering the soil are cut from the living trees thus blocking the C flow from them. The second way to separate autotrophic and heterotrophic respiration relies on the difference in the isotopic signature (13C) of plant-derived or decomposition-derived CO2. The third way to separate the sources is to study the differences in the short- and long-term temperature dependencies in CO2 soil emissions. This is possible especially in boreal forests where the biological activity has a strong seasonal cycle. We compared these three methods in an experiment conducted in a southern boreal middle-aged Scots pine stand in Finland. Our data provides a unique possibility to critically evaluate current methods for estimating autotrophic and heterotrophic soil respiration. The knowledge is needed to study further plant physiology and plant-microbe interactions in soil.

  20. Study of the distribution of autotrophic CO2 fixation cycles in Crenarchaeota.

    PubMed

    Berg, Ivan A; Ramos-Vera, W Hugo; Petri, Anna; Huber, Harald; Fuchs, Georg

    2010-01-01

    Two new autotrophic carbon fixation cycles have been recently described in Crenarchaeota. The 3-hydroxypropionate/4-hydroxybutyrate cycle using acetyl-coenzyme A (CoA)/propionyl-CoA carboxylase as the carboxylating enzyme has been identified for (micro)aerobic members of the Sulfolobales. The dicarboxylate/4-hydroxybutyrate cycle using oxygen-sensitive pyruvate synthase and phosphoenolpyruvate carboxylase as carboxylating enzymes has been found in members of the anaerobic Desulfurococcales and Thermoproteales. However, Sulfolobales include anaerobic and Desulfurococcales aerobic autotrophic representatives, raising the question of which of the two cycles they use. We studied the mechanisms of autotrophic CO(2) fixation in the strictly anaerobic Stygiolobus azoricus (Sulfolobales) and in the facultatively aerobic Pyrolobus fumarii (Desulfurococcales). The activities of all enzymes of the 3-hydroxypropionate/4-hydroxybutyrate cycle were found in the anaerobic S. azoricus. In contrast, the aerobic or denitrifying P. fumarii possesses all enzyme activities of the dicarboxylate/4-hydroxybutyrate cycle. We conclude that autotrophic Crenarchaeota use one of the two cycles, and that their distribution correlates with the 16S rRNA-based phylogeny of this group, rather than with the aerobic or anaerobic lifestyle.

  1. Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota.

    PubMed

    Ramos-Vera, W Hugo; Weiss, Michael; Strittmatter, Eric; Kockelkorn, Daniel; Fuchs, Georg

    2011-03-01

    Two autotrophic carbon fixation cycles have been identified in Crenarchaeota. The dicarboxylate/4-hydroxybutyrate cycle functions in anaerobic or microaerobic autotrophic members of the Thermoproteales and Desulfurococcales. The 3-hydroxypropionate/4-hydroxybutyrate cycle occurs in aerobic autotrophic Sulfolobales; a similar cycle may operate in autotrophic aerobic marine Crenarchaeota. Both cycles form succinyl-coenzyme A (CoA) from acetyl-CoA and two molecules of inorganic carbon, but they use different means. Both cycles have in common the (re)generation of acetyl-CoA from succinyl-CoA via identical intermediates. Here, we identified several missing enzymes/genes involved in the seven-step conversion of succinyl-CoA to two molecules of acetyl-CoA in Thermoproteus neutrophilus (Thermoproteales), Ignicoccus hospitalis (Desulfurococcales), and Metallosphaera sedula (Sulfolobales). The identified enzymes/genes include succinyl-CoA reductase, succinic semialdehyde reductase, 4-hydroxybutyrate-CoA ligase, bifunctional crotonyl-CoA hydratase/(S)-3-hydroxybutyryl-CoA dehydrogenase, and beta-ketothiolase. 4-Hydroxybutyryl-CoA dehydratase, which catalyzes a mechanistically intriguing elimination of water, is well conserved and rightly can be considered the key enzyme of these two cycles. In contrast, several of the other enzymes evolved from quite different sources, making functional predictions based solely on genome interpretation difficult, if not questionable.

  2. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review

    PubMed Central

    Tripathi, Durgesh K.; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K.; Mishra, Rohit K.; Upadhyay, R. G.; Dubey, Nawal K.; Lee, Yonghoon; Chauhan, Devendra K.

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today’s technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes. PMID:28184215

  3. Uptake, Accumulation and Toxicity of Silver Nanoparticle in Autotrophic Plants, and Heterotrophic Microbes: A Concentric Review.

    PubMed

    Tripathi, Durgesh K; Tripathi, Ashutosh; Shweta; Singh, Swati; Singh, Yashwant; Vishwakarma, Kanchan; Yadav, Gaurav; Sharma, Shivesh; Singh, Vivek K; Mishra, Rohit K; Upadhyay, R G; Dubey, Nawal K; Lee, Yonghoon; Chauhan, Devendra K

    2017-01-01

    Nanotechnology is a cutting-edge field of science with the potential to revolutionize today's technological advances including industrial applications. It is being utilized for the welfare of mankind; but at the same time, the unprecedented use and uncontrolled release of nanomaterials into the environment poses enormous threat to living organisms. Silver nanoparticles (AgNPs) are used in several industries and its continuous release may hamper many physiological and biochemical processes in the living organisms including autotrophs and heterotrophs. The present review gives a concentric know-how of the effects of AgNPs on the lower and higher autotrophic plants as well as on heterotrophic microbes so as to have better understanding of the differences in effects among these two groups. It also focuses on the mechanism of uptake, translocation, accumulation in the plants and microbes, and resulting toxicity as well as tolerance mechanisms by which these microorganisms are able to survive and reduce the effects of AgNPs. This review differentiates the impact of silver nanoparticles at various levels between autotrophs and heterotrophs and signifies the prevailing tolerance mechanisms. With this background, a comprehensive idea can be made with respect to the influence of AgNPs on lower and higher autotrophic plants together with heterotrophic microbes and new insights can be generated for the researchers to understand the toxicity and tolerance mechanisms of AgNPs in plants and microbes.

  4. Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters

    USDA-ARS?s Scientific Manuscript database

    There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...

  5. Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions.

    PubMed

    Maestre, Juan P; Wahman, David G; Speitel, Gerald E

    2016-06-21

    Chloramines are the second most used secondary disinfectant by United States water utilities. However, chloramination may promote nitrifying bacteria. Recently, monochloramine cometabolism by the pure culture ammonia-oxidizing bacteria, Nitrosomonas europaea, was shown to increase monochloramine demand. The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under more relevant drinking water conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Four types of batch kinetic experiments were conducted: (1) positive controls to estimate ammonia kinetic parameters, (2) negative controls to account for biomass reactivity, (3) utilization associated product (UAP) controls to account for UAP reactivity, and (4) cometabolism experiments to estimate cometabolism kinetic parameters. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to the experimental data. Cometabolism kinetics were best described by a first-order model. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism accounted for 30% of the observed monochloramine loss. These results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; therefore, monochloramine cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems.

  6. Comparative study of the nitrification characteristics of two different nitrifier immobilization methods.

    PubMed

    Li, Zhirong; Zhang, Zhi; Li, Jun; Zhang, Zhenjia

    2009-11-01

    The research investigated the nitrification characteristics of two different immobilization methods: nitrifier encapsulation in polyethylene glycol (PEG) gel pellets and nitrifier biofilm attachment on elastic plastic filler. The two carriers were placed in identical reactors. They reached a maximum nitrification rate of 39 and 25 mgN/L.h 30 days after start-up. The results showed that the nitrification efficiency in the PEG reactor was higher than in the biofilm reactor under the same conditions. Variations in temperature decreased the nitrification rate by approximately 55% in the PEG reactor from 28 to 8 degrees C, while 74.2% in the biofilm reactor. When the COD loading rate was increased to 0.8 kg/m(3) day, the nitrification efficiency in the biofilm reactor dropped sharply to 23%, and that of PEG reactor remained over 80%. PEG pellets with a high nitrification rate under all conditions showed promise as an immobilization medium, and are likely to be utilized in the nitrification of high-strength ammonia and COD wastewater during long-term operation.

  7. Nitrogen Redox Metabolism of a Heterotrophic, Nitrifying-Denitrifying Alcaligenes sp. from Soil

    PubMed Central

    Castignetti, Domenic; Hollocher, Thomas C.

    1982-01-01

    Metabolic characteristics of a heterotrophic, nitrifier-denitrifier Alcaligenes sp. isolated from soil were further characterized. Pyruvic oxime and hydroxylamine were oxidized to nitrite aerobically by nitrification-adapted cells with specific activities (Vmax) of 0.066 and 0.003 μmol of N × min−1 × mg of protein−1, respectively, at 22°C. Km values were 15 and 42 μM for pyruvic oxime and hydroxylamine, respectively. The greater pyruvic oxime oxidation activity relative to hydroxylamine oxidation activity indicates that pyruvic oxime was a specific substrate and was not oxidized appreciably via its hydrolysis product, hydroxylamine. When grown as a denitrifier on nitrate, the bacterium could not aerobically oxidize pyruvic oxime or hydroxylamine to nitrite. However, hydroxylamine was converted to nearly equimolar amounts of ammonium ion and nitrous oxide, and the nature of this reaction is discussed. Cells grown as heterotrophic nitrifiers on pyruvic oxime contained two enzymes of denitrification, nitrate reductase and nitric oxide reductase. The nitrate reductase was the dissimilatory type, as evidenced by its extreme sensitivity to inhibition by azide and by its ability to be reversibly inhibited by oxygen. Cells grown aerobically on organic carbon sources other than pyruvic oxime contained none of the denitrifying enzymes surveyed but were able to oxidize pyruvic oxime to nitrite and reduce hydroxylamine to ammonium ion. PMID:16346117

  8. Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples.

    PubMed

    Bal Krishna, K C; Sathasivan, Arumugam; Chandra Sarker, Dipok

    2012-09-01

    The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Congruence in the performance of model nitrifying activated sludge plants located in Germany, Scotland and Spain.

    PubMed

    Christofi, Nick; Aspichueta, Elena; Dalzell, David; De la Sota, Alejandro; Etxebarria, Javier; Fernandes, Teresa; Gutierrez, Monica; Morton, John; Obst, Ursula; Schmellenkamp, Peter

    2003-01-01

    A laboratory model nitrifying activated sludge plant treating OECD synthetic sewage was designed and constructed by each of three laboratories in Germany, Scotland and Spain in order to produce a sludge inoculum for 5 rapid toxicity bioassays. The plants were run for 3 years and produced sludge for the microbially based bioassays Vibrio fischeri bioluminescence, ATP luminescence and respiration, and, nitrification and enzyme inhibition. Although the initial sludge inoculum for the plants differed, as did some of the running conditions such as temperature regime, the sludge produced within the different countries had similar characteristics with respect to sludge age, total suspended solids and volatile suspended solids. Nitrification was generally maintained over the 3-year period although there were occasions when the process was inconsistent. Nitrification recovery was afforded by reseeding with a nitrifying sludge from a local wastewater treatment works (WWTW) or imposition of starvation conditions for a period of time. The sludge produced was used to carry out toxicity testing and results compared well with those using sludge from a WWTW. Overall, the use of sludge generated in the laboratory could be used for toxicity testing negating the need to resort to the use of natural WWTW sludge, which may contain a range of toxic substances due to uncontrolled industrial and domestic inputs and an unbalanced microbial consortium.

  10. Production of NO2/-/ and N2O by nitrifying bacteria at reduced concentrations of oxygen

    NASA Technical Reports Server (NTRS)

    Goreau, T. J.; Kaplan, W. A.; Wofsy, S. C.; Mcelroy, M. B.; Valois, F. W.; Watson, S. W.

    1980-01-01

    The influence of oxygen concentration on the production of NO2(-) and N2O by nitrifying marine bacteria of the genus Nitrosomonas is investigated. Pure cultures of the ammonium-oxiding bacteria isolated from the Western Tropical Atlantic Ocean were grown at oxygen partial pressures from 0.005 to 0.2 atm, and concentrations of N2O in the air above the growth medium and dissolved NO2(-) were determined. Decreasing oxygen concentrations are observed to induce a marked decrease in NO2(-) production rates and increase in N2O evolution, leading to an increase of the relative yield of N2O with respect to NO2(-) from 0.3% to nearly 10%. Similar yields of N2O at atmospheric oxygen levels are found for nitrifying bacteria of the genera Nitrosomonas, Nitrosolobus, Nitrosospira and Nitrosococcus, while nitrite-oxydizing bacteria and a dinoflagellate did not produce detectable quantities of N2O. Results support the view that nitrification is a major source of N2O in the environment.

  11. Monitoring structure and activity of nitrifying bacterial biofilm in an automatic biodetector of water toxicity.

    PubMed

    Woznica, Andrzej; Nowak, Agnieszka; Beimfohr, Claudia; Karczewski, Jerzy; Bernas, Tytus

    2010-02-01

    Automatic biodetector of water toxicity is a biosensor based on monitoring of catalytic activity of the nitrifying bacteria. To create a standardized biosensing system, development of the biofilm must be characterized to determine the prerequisites for its biological (biocatalytic) stability. In this paper, growth of biofilm comprising ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the open cellular polyurethane material polyurethane sponge bioreactor has been investigated. Dynamics of the biofilm formation was estimated using AOB and NOB metabolic activity and the volume occupied by these two types of bacteria in the biofilm. Spectrophotometry liquid ion chromatography and image cytometry were used, respectively, for these measurements. A mathematical model of the dynamics of biofilm formation was established. These data indicate that open cellular polyurethane material is a good basis for the immobilization of nitrifying bacteria. Moreover, growth of the biofilm leads to its stable structural form, whose biocatalytic activity (12.29 for AOB and 6.84 micromol min(-1) for NOB) is constant in the long term. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Effectiveness of breakpoint chlorination to reduce accelerated chemical chloramine decay in severely nitrified bulk waters.

    PubMed

    Bal Krishna, K C; Sathasivan, Arumugam; Kastl, George

    2014-12-01

    Rectifying the accelerated chloramine decay after the onset of nitrification is a major challenge for water utilities that employ chloramine as a disinfectant. Recently, the evidence of soluble microbial products (SMPs) accelerating chloramine decay beyond traditionally known means was reported. After the onset of nitrification, with an intention to inactivate nitrifying bacteria and thus maintaining disinfectant residuals, breakpoint chlorination followed by re-chloramination is usually practiced by water utilities. However, what actually breakpoint chlorination does beyond known effects is not known, especially in light of the new finding of SMPs. In this study, experiments were conducted using severely nitrified chloraminated water samples (chloramine residuals <0.5 mg Cl2 L−1, nitrite residuals >0.1 mg N L−1 and an order of magnitude higher chloramine decay rate compared to normal decay) obtained from two laboratory scale systems operated by feeding natural organic matter (NOM) containing and NOM free waters. Results showed that the accelerated decay of chloramine as a result of SMPs can be eliminated by spiking higher free chlorine residuals (about 0.92 ± 0.03 to 1.16 ± 0.12 mg Cl2 L−1) than the stoichiometric requirement for breakpoint chlorination and nitrite oxidation. Further, accelerated initial chlorine decay showed chlorine preferentially reacts with nitrite and ammonia before destroying SMPs. This study, clearly demonstrated there is an additional demand from SMPs that needs to be satisfied to effectively recover disinfection residuals in subsequent re-chloramination.

  13. Assessment of bacterial community structure in nitrifying biofilm under inorganic carbon-sufficient and -limited conditions.

    PubMed

    Bae, Hyokwan; Chung, Yun-Chul; Yang, Heejeong; Lee, Changsoo; Aryapratama, Rio; Yoo, Young J; Lee, Seockheon

    2015-01-01

    In this work, nitrification and changes in the composition of the total bacterial community under inorganic carbon (IC)-limited conditions, in a nitrifying moving bed biofilm reactor, was investigated. A culture-independent analysis of cloning and sequencing based on the 16S rRNA gene was applied to quantify the bacterial diversity and to determine bacterial taxonomic assignment. IC concentrations had significant effects on the stability of ammonia-oxidation as indicated by the reduction of the nitrogen conversion rate with high NH4(+)-N loadings. The predominance of Nitrosomonas europaea was maintained in spite of changes in the IC concentration. In contrast, heterotrophic bacterial species contributed to a high bacterial diversity, and to a dynamic shift in the bacterial community structure, under IC-limited conditions. In this study, individual functions of heterotrophic bacteria were estimated based on taxonomic information. Possible key roles of coexisting heterotrophic bacteria are the assimilation of organic compounds of extracellular polymeric substances produced by nitrifiers, and biofilm formation by providing a filamentous structure and aggregation properties.

  14. Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats

    PubMed Central

    Verhagen, Frank J. M.; Laanbroek, Hendrikus J.

    1991-01-01

    The absence of nitrification in soils rich in organic matter has often been reported. Therefore, competition for limiting amounts of ammonium between the chemolithotrophic ammonium-oxidizing species Nitrosomonas europaea and the heterotrophic species Arthrobacter globiformis was studied in the presence of Nitrobacter winogradskyi in continuous cultures at dilution rates of 0.004 and 0.01 h−1. Ammonium limitation of A. globiformis was achieved by increasing the glucose concentration in the reservoir stepwise from 0 to 5 mM while maintaining the ammonium concentration at 2 mM. The numbers of N. europaea and N. winogradskyi cells decreased as the numbers of heterotrophic bacteria rose with increasing glucose concentrations for both dilution rates. Critical carbon-to-nitrogen ratios of 11.6 and 9.6 were determined for the dilution rates of 0.004 and 0.01 h−1, respectively. Below these critical values, coexistence of the competing species was found in steady-state situations. Although the numbers were strongly reduced, the nitrifying bacteria were not fully outcompeted by the heterotrophic bacteria above the critical carbon-to-nitrogen ratios. Nitrifying bacteria could probably maintain themselves in the system above the critical carbon-to-nitrogen ratios because they are attached to the glass wall of the culture vessels. The numbers of N. europaea decreased more than did those of N. winogradskyi. This was assumed to be due to heterotrophic growth of the latter species on organic substrates excreted by the heterotrophic bacteria. PMID:16348588

  15. Properties of some reductase enzymes in the nitrifying bacteria and their relationship to the oxidase systems

    PubMed Central

    Wallace, W.; Nicholas, D. J. D.

    1968-01-01

    The reductase enzymes in Nitrosomonas and Nitrobacter were studied under anaerobic conditions when the oxidase enzymes were inactive. The most effective electron-donor systems for nitrate reductase in Nitrobacter were reduced benzyl viologen alone, phenazine methosulphate with either NADH or NADPH, and FMN or FAD with NADH. Nitrite and hydroxylamine reductases were found in both nitrifying bacteria, and optimum activity for each enzyme was obtained with NADH or NADPH with either FMN or FAD. The product of both these enzymes was identified as ammonia. In extracts of Nitrosomonas the ammonia was further utilized by an NADPH-specific glutamate dehydrogenase. 15N-labelled nitrite, hydroxylamine and ammonia were rapidly incorporated into cell protein by Nitrosomonas, and Nitrobacter in addition incorporated [15N]nitrate. Relatively gentle methods of cell disruption were compared with ultrasonic treatment, to enable a more exact study to be undertaken of the intracellular distribution of the oxidase and reductase enzymes. The functional relationship of these opposing enzyme systems in the nitrifying bacteria is considered. PMID:4386932

  16. Impact of prehybridization PCR amplification on microarray detection of nitrifying bacteria in wastewater treatment plant samples.

    PubMed

    Siripong, Slil; Kelly, John J; Stahl, David A; Rittmann, Bruce E

    2006-09-01

    A gel-based microarray that included a set of 26 oligonucleotide probes targeting all nitrifying bacteria at varying levels of specificity suggested the presence of targeted microorganisms when hybridized to RNA isolated from a wastewater treatment plant, but could not discriminate between perfectly matched and mismatched sequences due in part to low signal intensity. To enhance sensitivity and improve discrimination, polymerase chain reaction was used to selectively amplify the 16S rRNA genes of specific nitrifier groups. RNA transcribed from these DNA templates was hybridized to the microarray and thermal dissociation analysis was used to characterize the specificity of hybridization. Amplification with Nitrospira-specific primers resulted in the selective amplification of this target group, confirmed by both a significant increase in signal intensity and a melting profile identical to the reference RNA. In contrast, Nitrobacter was not detected in the environmental samples with probe Nbac1000 despite pre-amplification with Nitrobacter-specific primers, indicating the absence of strains containing this Nitrobacter-specific sequence. Pre-amplification using primers specific for beta-Proteobacterial ammonia-oxidizing bacteria resulted in a significant increase in signal intensity for probe Nso190, but melting profiles for probe Nso190 showed a slight deviation between amplified RNA and the reference microorganism, suggesting that the amplification products contained some sequences that varied by a single nucleotide difference in the probe target region.

  17. Production of NO2/-/ and N2O by nitrifying bacteria at reduced concentrations of oxygen

    NASA Technical Reports Server (NTRS)

    Goreau, T. J.; Kaplan, W. A.; Wofsy, S. C.; Mcelroy, M. B.; Valois, F. W.; Watson, S. W.

    1980-01-01

    The influence of oxygen concentration on the production of NO2(-) and N2O by nitrifying marine bacteria of the genus Nitrosomonas is investigated. Pure cultures of the ammonium-oxiding bacteria isolated from the Western Tropical Atlantic Ocean were grown at oxygen partial pressures from 0.005 to 0.2 atm, and concentrations of N2O in the air above the growth medium and dissolved NO2(-) were determined. Decreasing oxygen concentrations are observed to induce a marked decrease in NO2(-) production rates and increase in N2O evolution, leading to an increase of the relative yield of N2O with respect to NO2(-) from 0.3% to nearly 10%. Similar yields of N2O at atmospheric oxygen levels are found for nitrifying bacteria of the genera Nitrosomonas, Nitrosolobus, Nitrosospira and Nitrosococcus, while nitrite-oxydizing bacteria and a dinoflagellate did not produce detectable quantities of N2O. Results support the view that nitrification is a major source of N2O in the environment.

  18. [Properties of anaerobic granules developed by bioflocculant].

    PubMed

    Wang, Jing-Song

    2009-11-01

    Three identical UASB reactors (labeled R1, R2, R3) were applied to treat synthetic wastewater of COD concentration 5 500-6 500 mg x L(-1). Under the same process conditions, R1 was operated with addition of 7.5 g CaCl2 and 400 mL bioflocculant MBF21 weekly, R2 was operated with addition of 140 mg cationic PAM weekly, R3 was operated without any addition of flocculants served as control. The objectives of this study were to investigate the effect of bioflocculant MBF21 on development of anaerobic granules and compare it to cationic PAM. The results showed that after 67 days of operation, anaerobic granules developed in these three UASB reactors. The average diameters of granules in R1, R2 and R3 were 1.18, 1.21 and 0.76 mm, respectively, the granulation rates in R1, R2, R3 were 15.37, 15.82 and 9.10 microm x d(-1), respectively, the values of SMA (COD-CH4/VSS x t) of granules were 0.740, 0.657 and 0.558 g x (g x d)(-1), respectively, the VSS/SS of granules were 0.667, 0.629 and 0.607, respectively, the SVI of granules were 14.7, 13.1 and 20.4 mL x g(-1), respectively, the densities of granules were 1.061, 1.064 and 1.054 g x cm(-3), respectively, the integrity coefficients of granules were 92.1, 93.5 and 84.7, respectively. From the photos of SEM, granules developed in R1 and R2 were tighter than those in R3. In the formation of mature granules, all the three reactors showed similar laws, i.e. filamentous microorganisms were predominant on the surface of the seed sludge while bacillus and cocci bacteria were predominant on the surface of the mature granules. This study demonstrated that in the development of anaerobic granules, the effect of bioflocculant MBF21 on enhancement the physical properties of granules was similar to cationic PAM, but the effect of bioflocculant MBF21 on improvement of biochemical and physiological properties of granules was better than cationic PAM.

  19. Regulated protein aggregation: stress granules and neurodegeneration

    PubMed Central

    2012-01-01

    The protein aggregation that occurs in neurodegenerative diseases is classically thought to occur as an undesirable, nonfunctional byproduct of protein misfolding. This model contrasts with the biology of RNA binding proteins, many of which are linked to neurodegenerative diseases. RNA binding proteins use protein aggregation as part of a normal regulated, physiological mechanism controlling protein synthesis. The process of regulated protein aggregation is most evident in formation of stress granules. Stress granules assemble when RNA binding proteins aggregate through their glycine rich domains. Stress granules function to sequester, silence and/or degrade RNA transcripts as part of a mechanism that adapts patterns of local RNA translation to facilitate the stress response. Aggregation of RNA binding proteins is reversible and is tightly regulated through pathways, such as phosphorylation of elongation initiation factor 2α. Microtubule associated protein tau also appears to regulate stress granule formation. Conversely, stress granule formation stimulates pathological changes associated with tau. In this review, I propose that the aggregation of many pathological, intracellular proteins, including TDP-43, FUS or tau, proceeds through the stress granule pathway. Mutations in genes coding for stress granule associated proteins or prolonged physiological stress, lead to enhanced stress granule formation, which accelerates the pathophysiology of protein aggregation in neurodegenerative diseases. Over-active stress granule formation could act to sequester functional RNA binding proteins and/or interfere with mRNA transport and translation, each of which might potentiate neurodegeneration. The reversibility of the stress granule pathway also offers novel opportunities to stimulate endogenous biochemical pathways to disaggregate these pathological stress granules, and perhaps delay the progression of disease. PMID:23164372

  20. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing.

    PubMed

    Sharp, Christine E; Stott, Matthew B; Dunfield, Peter F

    2012-01-01

    Genomic analysis of the methanotrophic verrucomicrobium "Methylacidiphilum infernorum" strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), "universal" pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, "Methylacidiphilum" fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as (13)CH(4)-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with (13)CO(2) and (13)CH(4), individually and in combination. Testing the protocol in "M. infernorum" strain V4 resulted in assimilation of (13)CO(2) but not (13)CH(4), verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via (13)CO(2)-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with (13)CH(4) + (12)CO(2) caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with (13)CO(2) in combination with (12)CH(4) or (13)CH(4) induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs

  1. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing

    PubMed Central

    Sharp, Christine E.; Stott, Matthew B.; Dunfield, Peter F.

    2012-01-01

    Genomic analysis of the methanotrophic verrucomicrobium “Methylacidiphilum infernorum” strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), “universal” pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, “Methylacidiphilum” fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as 13CH4-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with 13CO2 and 13CH4, individually and in combination. Testing the protocol in “M. infernorum” strain V4 resulted in assimilation of 13CO2 but not 13CH4, verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via 13CO2-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with 13CH4 + 12CO2 caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with 13CO2 in combination with 12CH4 or 13CH4 induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs in other ecosystems. PMID

  2. ATPase modulated stress granules contain a diverse proteome and substructure

    PubMed Central

    Jain, Saumya; Wheeler, Joshua R.; Walters, Robert W.; Agrawal, Anurag; Barsic, Anthony; Parker, Roy

    2015-01-01

    SUMMARY Stress granules are mRNA-protein granules that form when translation initiation is limited and are related to pathological granules in various neurodegenerative diseases. Super-resolution microscopy reveals stable substructures referred to as cores within stress granules that can be purified. Proteomic analysis of stress granule cores reveals a dense network of protein-protein interactions, links between stress granules and human diseases, and identifies ATP-dependent helicases and protein remodelers as conserved stress granule components. ATP is required for stress granule assembly and dynamics. Moreover, multiple ATP-driven machines affect stress granules differently; with the CCT complex inhibiting stress granule assembly, while the MCM and RVB complexes promote stress granule persistence. Our observations suggest that stress granules contain a stable core structure surrounded by a dynamic shell with assembly, disassembly and transitions between the core and shell modulated by numerous protein and RNA remodeling complexes. PMID:26777405

  3. Development of biological platform for the autotrophic production of biofuels

    NASA Astrophysics Data System (ADS)

    Khan, Nymul

    of the current status of metabolic engineering of chemolithoautotrophs is carried out in order to identify the challenges and likely routes to overcome them. This is presented in Chapter 3 of this dissertation. The initial metabolic engineering and bioreactor studies was carried out using a number of gene-constructs on R. capsulatus and R. eutropha. The gene-constructs consisted of Plac promoter followed by the triterpene synthase genes (SS or BS) and other upstream genes. A comparison of the production of triterpenes were done in the different growth modes that R. capsulatus was capable of growing---aerobic heterotrophic, anaerobic photoheterotrophic and aerobic chemoautotrophic. Autotrophic productivity could likely be improved much further by increasing the available mass-transfer of the reactor. These efforts are presented in Chapter 4 of this dissertation. (Abstract shortened by UMI.).

  4. Curtain-granulation process. Circular Z-129

    SciTech Connect

    Not Available

    1982-01-01

    A curtain granulation process is described for production of urea fertilizer pellets from a melt by spray coating onto seed granules. The process provides a product that is smooth, hard, and almost dust-free. A picture of the pilot plant and a flow sheet of the process are given.

  5. Ceramic granule strength variability and compaction behavior

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Readey, M.J.

    1995-08-01

    Diametral compression strength distributions and the compaction behavior and of irregular shape 150--200 {mu}m ceramic granules and uniform-size 210 {mu}m glass spheres were measured to determine how granule strength variability relates to compaction behavior of granular assemblies. High variability in strength, represented by low Weibull modulus values (m<3) was observed for ceramic granules having a distribution of sizes and shapes, and for uniform-size glass spheres. Compaction pressure data were also analyzed using a Weibull distribution function, and the results were very similar to those obtained from the diametral compression strength tests for the same material. This similarity suggests that it may be possible to model granule compaction using a weakest link theory, whereby an assemblage of granules is viewed as the links of a chain, and failure of the weakest granule (i.e., the weakest link) leads to rearrangement and compaction. Additionally, with the use of Weibull statistics, it appears to be possible to infer the variability in strength of individual granules from a simple pressure compaction test, circumventing the tedious task of testing individual granules.

  6. Twin screw wet granulation: Binder delivery.

    PubMed

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration.

  7. Nitrifying moving bed biofilm reactor (MBBR) biofilm and biomass response to long term exposure to 1 °C.

    PubMed

    Hoang, V; Delatolla, R; Abujamel, T; Mottawea, W; Gadbois, A; Laflamme, E; Stintzi, A

    2014-02-01

    This study aims to investigate moving bed biofilm reactor (MBBR) nitrification rates, nitrifying biofilm morphology, biomass viability as well as bacterial community shifts during long-term exposure to 1 °C. Long-term exposure to 1 °C is the key operational condition for potential ammonia removal upgrade units to numerous northern region treatment systems. The average laboratory MBBR ammonia removal rate after long-term exposure to 1 °C was measured to be 18 ± 5.1% as compared to the average removal rate at 20 °C. Biofilm morphology and specifically the thickness along with biomass viability at various depths in the biofilm were investigated using variable pressure electron scanning microscope (VPSEM) imaging and confocal laser scanning microscope (CLSM) imaging in combination with viability live/dead staining. The biofilm thickness along with the number of viable cells showed significant increases after long-term exposure to 1 °C. Hence, this study observed nitrifying bacteria with higher activities at warm temperatures and a slightly greater quantity of nitrifying bacteria with lower activities at cold temperatures in nitrifying MBBR biofilms. Using DNA sequencing analysis, Nitrosomonas and Nitrosospira (ammonia oxidizers) as well as Nitrospira (nitrite oxidizer) were identified and no population shift was observed between 20 °C and after long-term exposure to 1 °C.

  8. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed.

  9. Continuous twin screw granulation: influence of process variables on granule and tablet quality.

    PubMed

    Vercruysse, J; Córdoba Díaz, D; Peeters, E; Fonteyne, M; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2012-09-01

    The aim of the current study was to screen theophylline (125 mg) tablets manufactured via twin screw granulation in order to improve process understanding and knowledge of process variables that determine granule and tablet quality. A premix of theophylline anhydrate, α-lactose monohydrate and PVP (ratio: 30/67.5/2.5,w/w) was granulated with demineralized water. Experiments were done using the high-shear wet granulation module (based on twin screw granulation) of the ConsiGma™-25 unit (a continuous tablet manufacturing system) for particle size enlargement. After drying, granules were compressed using a MODUL™ P tablet press (compression force: 10 kN, tablet diameter: 12 mm). Using a D-optimal experimental design, the effect of several process variables (throughput (10-25 kg/h), screw speed (600-950 rpm), screw configuration (number (2, 4, 6 and 12) and angle (30°, 60° and 90°) of kneading elements), barrel temperature (25-40°C) and method of binder addition (dry versus wet)) on the granulation process (torque and temperature increase in barrel wall), granule (particle size distribution, friability and flowability) and tablet (tensile strength, porosity, friability, disintegration time and dissolution) quality was evaluated. The results showed that the quality of granules and tablets can be optimized by adjusting specific process variables (number of kneading elements, barrel temperature and binder addition method) during a granulation process using a continuous twin screw granulator.

  10. [Correlation of dry granulation process parameters and granule quality based on multiple regression analysis].

    PubMed

    Cao, Han-Han; Du, Ruo-Fei; Yang, Jia-Ning; Feng, Yi

    2014-03-01

    In this paper, microcrystalline cellulose WJ101 was used as a model material to investigate the effect of various process parameters on granule yield and friability after dry granulation with a single factor and the effect of comprehensive inspection process parameters on the effect of granule yield and friability, then the correlation between process parameters and granule quality was established. The regress equation was established between process parameters and granule yield and friability by multiple regression analysis, the affecting the order of the size of the order of the process parameters on granule yield and friability was: rollers speed > rollers pressure > speed of horizontal feed. Granule yield was positively correlated with pressure and speed of horizontal feed and negatively correlated rollers speed, while friability was on the contrary. By comparison, fitted value and real value, fitted and real value are basically the same of no significant differences (P > 0.05) and with high precision and reliability.

  11. A unique SNARE machinery for exocytosis of cytotoxic granules and platelets granules.

    PubMed

    Tang, Bor Luen

    2015-01-01

    Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells target infected or transformed cells with perforin-containing cytotoxic granules through immune synapses, while platelets secrete several types of granules which contents are essential for thrombosis and hemostasis. Recent work has culminated in the notion that an exocytic SNARE complex, based on a very similar set of components, is primarily responsible for exocytosis of the diverse granules in these different cell types. Granule exocytosis is, in particular, uniquely dependent on the atypical Q-SNARE syntaxin 11, its interacting partners of the Sec/Munc (SM) family, and is regulated by Rab27a. Mutations in these exocytic components underlie disease manifestations of familial hemophagocytic lymphohistiocytosis (FHL) subtypes, characterized by hyperactivation of the immune system, as well as platelet granule secretion defects. Here we discuss the key discoveries that led to the converging notion of the syntaxin 11-based exocytosis machinery for cytotoxic granules and platelet-derived granules.

  12. Granulation effects on the radon emanation rate.

    PubMed

    Bikit, I; Mrda, D; Grujic, S; Kozmidis-Luburic, U

    2011-05-01

    The radon emanation and the granulation effect on the emanation rate of several building materials (ceramic plates, sand, red brick and siporex brick) with different (226)Ra concentrations were investigated. A ball mill was used to achieve different granulations of the materials. The particle size distributions were determined by a particle size analyser (Mastersizer 2000). The increase in the (222)Rn concentration inside a closed chamber (volume ≈5.4 × 10(-3) m(3)) due to emanation from each material with different granulations was measured by an alpha spectrometer (RAD7). Thus, time-dependent curves for radon concentrations were obtained. The highest radon emanation coefficient (27 %) was obtained for the siporex sample with the smallest grain size (0.34 µm). For the ceramic pads, the granulation effect was negligible and the emanation coefficient was very low (∼0.4 %). The strongest influence of granulation on the radon emanation rate was found for the siporex brick sample.

  13. Electrochemical performance of granulated titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Wilhelm, O.; Pratsinis, S. E.; de Chambrier, E.; Crouzet, M.; Exnar, I.

    The electrochemical performance of Li-ion insertion into electrodes made of various sizes of anatase titania nanoparticles embedded in larger granulated entities (1-10 μm) is investigated. The granules are formed by spray drying of a suspension containing titania nanoparticles made by hydrolyzing titanium tetraisopropoxide (TTIP). Depending on the three process steps, i.e. hydrolysis-condensation, hydrothermal processing and spray drying, different properties for the electrode made from these granules can be achieved in terms of phase composition, specific surface area (SSA) and specific charge capacity. Hydrothermally processed (HP) particles are more resistant to calcination than sol-gel precipitated (SGP) ones and have a higher SSA which leads to a better performance with respect to specific charge capacity. Electrodes made from granulated nanoparticles have superior specific charge capacity than from non-granulated ones as the former have more inter-particle contacts.

  14. Magnesium carbonate precipitate strengthened aerobic granules.

    PubMed

    Lee, Duu-Jong; Chen, Yu-You

    2015-05-01

    Aerobic granules were precipitated internally with magnesium carbonate to enhance their structural stability under shear. The strengthened granules were tested in continuous-flow reactors for 220 days at organic loadings of 6-39 kg/m(3)/day, hydraulic retention times of 0.44-19 h, and temperatures of 10 or 28°C. The carbonate salt had markedly improved the granule strength without significant changes in granule morphology or microbial communities (with persistent strains Streptomyces sp., Rhizobium sp., Brevundimonas sp., and Nitratireductor sp.), or sacrifice in biological activity for organic degradation. MgCO3 precipitated granules could be used in continuous-flow reactor for wastewater treatment at low cost and with easy processing efforts.

  15. Preparation and evaluation of granules with pH-dependent release by melt granulation.

    PubMed

    Shiino, Kai; Iwao, Yasunori; Fujinami, Yukari; Itai, Shigeru

    2012-07-15

    This study had two objectives: (1) to prepare, by melt granulation in a high-shear mixer, granules containing acetaminophen (APAP) as a model drug and aminoalkyl methacrylate copolymer E (AMCE) as a pH-sensitive polymer that readily dissolves at pH values lower than 5, and (2) to investigate the effects of AMCE loading (5-15%) on granule properties and the in vitro release profile of drug from the granules. Compared with polymer-free granules, the granules containing 5% and 10% AMCE were found to have higher median diameters and wider particle size distributions. For the formulation containing 15% AMCE, on the other hand, the diameters and distribution were similar to those for polymer-free granules. From compression testing, load-displacement curves revealed that AMCE enhanced particle strength at ambient temperature and induced plastic strain, while suppressing fragmentation of the granules. In addition, from dissolution testing using media with pH 4.0 and pH 6.5, granules containing AMCE, except 15% AMCE loading, exhibited drug release with significant pH dependence. When the pH 4.0 and pH 6.5 dissolution profiles were further compared by calculating the difference factor (f(1)), the 5% AMCE granules showed the strongest pH dependence of drug release among all formulations in this study. Large cracks and breakage were observed on the surface of 10% AMCE granules after they were used in dissolution testing. The obtained results are attributed to the plastic strain properties of AMCE above its glass transition temperature, and to the irregular distribution of AMCE within granules. Hence, this study has demonstrated for the first time that the combination of melt granulation and AMCE incorporation enables the formulation of novel functional granules that exhibit pH-dependent release of the active ingredient. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Influence of growth manner on nitrifying bacterial communities and nitrification kinetics in three lab-scale bioreactors.

    PubMed

    Wang, Feng; Liu, Yi; Wang, Jinghan; Zhang, Yalei; Yang, Haizhen

    2012-04-01

    The effects of growth type, including attached growth, suspended growth, and combined growth, on the characteristics of communities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were studied in three lab-scale Anaerobic/Anoxic(m)-Oxic(n) (AmOn) systems. These systems amplified activated sludge, biofilms, and a mixture of activated sludge and biofilm (AS-BF). Identical inocula were adopted to analyze the selective effects of mixed growth patterns on nitrifying bacteria. Fluctuations in the concentration of nitrifying bacteria over the 120 days of system operation were analyzed, as was the composition of nitrifying bacterial community in the stabilized stage. Analysis was conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. According to the DGGE patterns, the primary AOB lineages were Nitrosomonas europaea (six sequences), Nitrosomonas oligotropha (two sequences), and Nitrosospira (one sequence). The primary subclass of NOB community was Nitrospira, in which all identified sequences belonged to Nitrospira moscoviensis (14 sequences). Nitrobacter consisted of two lineages, namely Nitrobacter vulgaris (three sequences) and Nitrobacter alkalicus (two sequences). Under identical operating conditions, the composition of nitrifying bacterial communities in the AS-BF system demonstrated significant differences from those in the activated sludge system and those in the biofilm system. Major varieties included several new, dominant bacterial sequences in the AS-BF system, such as N. europaea and Nitrosospira and a higher concentration of AOB relative to the activated sludge system. However, no similar differences were discovered for the concentration of the NOB population. A kinetic study of nitrification demonstrated a higher maximum specific growth rate of mixed sludge and a lower half-saturation constant of mixed biofilm, indicating that the AS-BF system maintained relatively good

  17. Correlative microscopy of detergent granules.

    PubMed

    van Dalen, G; Nootenboom, P; Heussen, P C M

    2011-03-01

    The microstructure of detergent products for textile cleaning determines to a large extent the physical properties of these products. Correlative microscopy was used to reveal the microstructure by reconciling images obtained by scanning electron microscopy with energy dispersive X-ray analysis, X-ray microtomography and Fourier transform infrared microscopy. These techniques were applied on the same location of a subsample of a spray-dried detergent base powder embedded in polyacrylate. In this way, the three-dimensional internal and external structure of detergent granules could be investigated from milli to nano scale with detailed spatial information about the components present. This will generate knowledge how to design optimal microstructures for laundry products to obtain product properties demanded by the market. This method is also very useful for other powder systems used in a large variety of industries (e.g. for pharmaceutical, food, ceramic and metal industries). © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  18. Starch granules: structure and biosynthesis.

    PubMed

    Buléon, A; Colonna, P; Planchot, V; Ball, S

    1998-08-01

    The emphasis of this review is on starch structure and its biosynthesis. Improvements in understanding have been brought about during the last decade through the development of new physicochemical and biological techniques, leading to real scientific progress. All this literature needs to be kept inside the general literature about biopolymers, despite some confusing results or discrepancies arising from the biological variability of starch. However, a coherent picture of starch over all the different structural levels can be presented, in order to obtain some generalizations about its structure. In this review we will focus first on our present understanding of the structures of amylose and amylopectin and their organization within the granule, and we will then give insights on the biosynthetic mechanisms explaining the biogenesis of starch in plants.

  19. NEDDylation promotes stress granule assembly

    PubMed Central

    Jayabalan, Aravinth Kumar; Sanchez, Anthony; Park, Ra Young; Yoon, Sang Pil; Kang, Gum-Yong; Baek, Je-Hyun; Anderson, Paul; Kee, Younghoon; Ohn, Takbum

    2016-01-01

    Stress granules (SGs) harbour translationally stalled messenger ribonucleoproteins and play important roles in regulating gene expression and cell fate. Here we show that neddylation promotes SG assembly in response to arsenite-induced oxidative stress. Inhibition or depletion of key components of the neddylation machinery concomitantly inhibits stress-induced polysome disassembly and SG assembly. Affinity purification and subsequent mass-spectrometric analysis of Nedd8-conjugated proteins from translationally stalled ribosomal fractions identified ribosomal proteins, translation factors and RNA-binding proteins (RBPs), including SRSF3, a previously known SG regulator. We show that SRSF3 is selectively neddylated at Lys85 in response to arsenite. A non-neddylatable SRSF3 (K85R) mutant do not prevent arsenite-induced polysome disassembly, but fails to support the SG assembly, suggesting that the neddylation pathway plays an important role in SG assembly. PMID:27381497

  20. Modelling the fate of nitrite in an urbanized river using experimentally obtained nitrifier growth parameters.

    PubMed

    Raimonet, Mélanie; Vilmin, Lauriane; Flipo, Nicolas; Rocher, Vincent; Laverman, Anniet M

    2015-04-15

    Maintaining low nitrite concentrations in aquatic systems is a major issue for stakeholders due to nitrite's high toxicity for living species. This study reports on a cost-effective and realistic approach to study nitrite dynamics and improve its modelling in human-impacted river systems. The implementation of different nitrifying biomasses to model riverine communities and waste water treatment plant (WWTP)-related communities enabled us to assess the impact of a major WWTP effluent on in-river nitrification dynamics. The optimal kinetic parameters and biomasses of the different nitrifying communities were determined and validated by coupling laboratory experiments and modelling. This approach was carried out in the Seine River, as an example of a large human-impacted river with high nitrite concentrations. The simulation of nitrite fate was performed at a high spatial and temporal resolution (Δt = 10 min, dx¯ = 500 m) including water and sediment layers along a 220 km stretch of the Seine River for a 6-year period (2007-2012). The model outputs were in good agreement with the peak of nitrite downstream the WWTP as well as its slow decrease towards the estuary. Nitrite persistence between the WWTP and the estuary was mostly explained by similar production and consumption rates of nitrite in both water and sediment layers. The sediment layer constituted a significant source of nitrite, especially during high river discharges (0.1-0.4 mgN h(-1) m(-2)). This points out how essential it is to represent the benthic layer in river water quality models, since it can constitute a source of nitrite to the water-column. As a consequence of anthropogenic emissions and in-river processes, nitrite fluxes to the estuary were significant and varied from 4.1 to 5.5 TN d(-1) in low and high water discharge conditions, respectively, over the 2007-2012 period. This study provides a methodology that can be applied to any anthropized river to realistically parametrize autochthonous

  1. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation.

    PubMed

    Vercruysse, J; Burggraeve, A; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-02-01

    Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting.

  2. Granular Data Description: Designing Ellipsoidal Information Granules.

    PubMed

    Zhu, Xiubin; Pedrycz, Witold; Li, Zhiwu

    2016-10-12

    Granular computing (GrC) has emerged as a unified conceptual and processing framework. Information granules are fundamental constructs that permeate concepts and models of GrC. This paper is concerned with a design of a collection of meaningful, easily interpretable ellipsoidal information granules with the use of the principle of justifiable granularity by taking into consideration reconstruction abilities of the designed information granules. The principle of justifiable granularity supports designing of information granules based on numeric or granular evidence, and aims to achieve a compromise between justifiability and specificity of the information granules to be constructed. A two-stage development strategy behind the construction of justifiable information granules is considered. First, a collection of numeric prototypes is determined with the use of fuzzy clustering. Second, the lengths of the semi-axes of ellipsoidal information granules to be formed around such prototypes are optimized. Two optimization criteria are introduced and studied. Experimental studies involving synthetic data set and data sets coming from the machine learning repository are reported.

  3. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    PubMed Central

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  4. Asymmetric distribution in twin screw granulation.

    PubMed

    Chan Seem, Tim; Rowson, Neil A; Gabbott, Ian; de Matas, Marcel; Reynolds, Gavin K; Ingram, Andy

    2016-09-01

    Positron Emission Particle Tracking (PEPT) was successfully employed to validate measured transverse asymmetry in material distribution in the conveying zones of a Twin Screw Granulator (TSG). Flow asymmetry was established to be a property of the granulator geometry and dependent on fill level. The liquid distribution of granules as a function of fill level was determined. High flow asymmetry at low fill level negatively affects granule nucleation leading to high variance in final uniformity. Wetting of material during nucleation was identified as a critical parameter in determining final granule uniformity and fill level is highlighted as a crucial control factor in achieving this. Flow asymmetry of dry material in conveying zones upstream of binder fluid injection leads to poor non-uniform wetting at nucleation and results in heterogeneous final product. The granule formation mechanism of 60°F kneading blocks is suggested to be primarily breakage of agglomerates formed during nucleation. Optimisation of screw configuration would be required to provide secondary growth. This work shows how fill dependent flow regimes affect granulation mechanisms.

  5. Diversity in the Ammonia-Oxidizing Nitrifier Population of a Soil †

    PubMed Central

    Belser, L. W.; Schmidt, E. L.

    1978-01-01

    Multiple genera of ammonia-oxidizing chemoautotrophic nitrifiers in a soil were detected, isolated, and studied by means of modified most-probable-number (MPN) techniques. The soil examined was a Waukegon silt loam treated with ammonium nitrate or sewage effluent. The genera Nitrosomonas and Nitrosospira were found to occur more commonly than the genus Nitrosolobus. Three different MPN media gave approximately the same overall ammonia oxidizer counts within statistical error after prolonged incubation but differed markedly in ratios of Nitrosomonas to Nitrosospira. Selectivity and counting efficiency of MPN media were studied by observing the growth response of representative pure cultures isolated from the soil. Selectivity was evident in each medium with respect to all strains tested, and the media differed greatly in incubation times required to obtain maximum counts. PMID:16345319

  6. Detachment of solids and nitrifiers in integrated, fixed-film activated sludge systems.

    PubMed

    Maas, Carol L A; Parker, Wayne J; Legge, Raymond L

    2008-12-01

    Despite the importance of detachment to biofilm processes, detachment phenomena are not well understood. In this study, researchers investigated biofilm detachment from free-floating biofilm carriers that were established in an integrated, fixed-film activated sludge (IFAS) installation in Mississauga, Ontario. A method for assessing detachment from biofilm carrier systems was devised, evaluated, and refined during this study. In the absence of substrate, superficial air velocity significantly affected the 24-hour detachment rates of total suspended solids from the carriers. Short-term growth conditions did not appear to significantly affect the rate of detachment of solids and nitrifiers. The measured solids-detachment rates were found to be described by a second order function of biofilm attached growth total solids with a detachment coefficient of 0.006 +/- 0.0008 (g/m x d)(-1).

  7. Stimulatory Effect of Xenobiotics on Oxidative Electron Transport of Chemolithotrophic Nitrifying Bacteria Used as Biosensing Element

    PubMed Central

    Woznica, Andrzej; Nowak, Agnieszka; Ziemski, Przemyslaw; Kwasniewski, Mirosław; Bernas, Tytus

    2013-01-01

    Electron transport chain (ETCh) of ammonium (AOB) and nitrite oxidizing bacteria (NOB) participates in oxidation of ammonium to nitrate (nitrification). Operation of ETCh may be perturbed by a range of water-soluble xenobiotics. Therefore, consortia of nitrifying bacteria may be used as a biosensor to detect water contamination. A surprising feature of this system is an increase of oxygen consumption, detected in the presence of certain inhibitors of ETCh. Thus, to shed light on the mechanism of this effect (and other differences between inhibitors) we monitored separately respiration of the bacteria of the first (AOB - Nitrosomonas) and second (NOB -Nitrobacter) stages of nitrification. Furthermore, we measured plasma membrane potential and the level of reduction of NAD(P)H. We propose a novel model of ETCh in NOB to explain the role of reverse electron transport in the stimulation of oxygen consumption (previously attributed to hormesis). PMID:23326438

  8. Pseudomonas aeruginosa and Achromobacter sp.: nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes.

    PubMed

    Kathiravan, V; Krishnani, K K

    2014-04-01

    In the present work, novel heterotrophic nitrifying and aerobic denitrifying bacteria have been isolated from greenwater system of coastal aquaculture. Based on the 16S rRNA gene, FAME analysis and biochemical test, the isolates have been identified as Pseudomonas aeruginosa and Achromobacter sp. These have been named as P. aeruginosa strain DBT1BNH3 and Achromobacter sp. strain DBTN3. Denitrifying functional genes such as nitrite reductase (nirS), nitric oxide reductase (qnorB) and nitrous oxide reductase (nosZ) genes have been identified. These strains found to have a 27 kb plasmid coding for nirS and nosZ. The possibility of horizontal transfer of plasmid among Pseudomonadaceae and Alcaligenaceae families in coastal aquaculture has been explored. Further, we have studied combined nitrification and oxygen tolerant denitrification potential in the same isolates.

  9. Stimulatory effect of xenobiotics on oxidative electron transport of chemolithotrophic nitrifying bacteria used as biosensing element.

    PubMed

    Woznica, Andrzej; Nowak, Agnieszka; Ziemski, Przemyslaw; Kwasniewski, Mirosław; Bernas, Tytus

    2013-01-01

    Electron transport chain (ETCh) of ammonium (AOB) and nitrite oxidizing bacteria (NOB) participates in oxidation of ammonium to nitrate (nitrification). Operation of ETCh may be perturbed by a range of water-soluble xenobiotics. Therefore, consortia of nitrifying bacteria may be used as a biosensor to detect water contamination. A surprising feature of this system is an increase of oxygen consumption, detected in the presence of certain inhibitors of ETCh. Thus, to shed light on the mechanism of this effect (and other differences between inhibitors) we monitored separately respiration of the bacteria of the first (AOB - Nitrosomonas) and second (NOB -Nitrobacter) stages of nitrification. Furthermore, we measured plasma membrane potential and the level of reduction of NAD(P)H. We propose a novel model of ETCh in NOB to explain the role of reverse electron transport in the stimulation of oxygen consumption (previously attributed to hormesis).

  10. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    PubMed

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies.

  11. A paradigm shift towards low-nitrifying production systems: the role of biological nitrification inhibition (BNI)

    PubMed Central

    Subbarao, G. V.; Sahrawat, K. L.; Nakahara, K.; Rao, I. M.; Ishitani, M.; Hash, C. T.; Kishii, M.; Bonnett, D. G.; Berry, W. L.; Lata, J. C.

    2013-01-01

    Background Agriculture is the single largest geo-engineering initiative that humans have initiated on planet Earth, largely through the introduction of unprecedented amounts of reactive nitrogen (N) into ecosystems. A major portion of this reactive N applied as fertilizer leaks into the environment in massive amounts, with cascading negative effects on ecosystem health and function. Natural ecosystems utilize many of the multiple pathways in the N cycle to regulate N flow. In contrast, the massive amounts of N currently applied to agricultural systems cycle primarily through the nitrification pathway, a single inefficient route that channels much of this reactive N into the environment. This is largely due to the rapid nitrifying soil environment of present-day agricultural systems. Scope In this Viewpoint paper, the importance of regulating nitrification as a strategy to minimize N leakage and to improve N-use efficiency (NUE) in agricultural systems is highlighted. The ability to suppress soil nitrification by the release of nitrification inhibitors from plant roots is termed ‘biological nitrification inhibition’ (BNI), an active plant-mediated natural function that can limit the amount of N cycling via the nitrification pathway. The development of a bioassay using luminescent Nitrosomonas to quantify nitrification inhibitory activity from roots has facilitated the characterization of BNI function. Release of BNIs from roots is a tightly regulated physiological process, with extensive genetic variability found in selected crops and pasture grasses. Here, the current status of understanding of the BNI function is reviewed using Brachiaria forage grasses, wheat and sorghum to illustrate how BNI function can be utilized for achieving low-nitrifying agricultural systems. A fundamental shift towards ammonium (NH4+)-dominated agricultural systems could be achieved by using crops and pastures with high BNI capacities. When viewed from an agricultural and

  12. Low-Dissolved-Oxygen Nitrifying Systems Exploit Ammonia-Oxidizing Bacteria with Unusually High Yields▿

    PubMed Central

    Bellucci, Micol; Ofiţeru, Irina D.; Graham, David W.; Head, Ian M.; Curtis, Thomas P.

    2011-01-01

    In wastewater treatment plants, nitrifying systems are usually operated with elevated levels of aeration to avoid nitrification failures. This approach contributes significantly to operational costs and the carbon footprint of nitrifying wastewater treatment processes. In this study, we tested the effect of aeration rate on nitrification by correlating ammonia oxidation rates with the structure of the ammonia-oxidizing bacterial (AOB) community and AOB abundance in four parallel continuous-flow reactors operated for 43 days. Two of the reactors were supplied with a constant airflow rate of 0.1 liter/min, while in the other two units the airflow rate was fixed at 4 liters/min. Complete nitrification was achieved in all configurations, though the dissolved oxygen (DO) concentration was only 0.5 ± 0.3 mg/liter in the low-aeration units. The data suggest that efficient performance in the low-DO units resulted from elevated AOB levels in the reactors and/or putative development of a mixotrophic AOB community. Denaturing gel electrophoresis and cloning of AOB 16S rRNA gene fragments followed by sequencing revealed that the AOB community in the low-DO systems was a subset of the community in the high-DO systems. However, in both configurations the dominant species belonged to the Nitrosomonas oligotropha lineage. Overall, the results demonstrated that complete nitrification can be achieved at low aeration in lab-scale reactors. If these findings could be extended to full-scale plants, it would be possible to minimize the operational costs and greenhouse gas emissions without risk of nitrification failure. PMID:21926211

  13. Soil nitrifying and denitrifying capacities are altered by global change factors in a California annual grassland

    NASA Astrophysics Data System (ADS)

    Niboyet, A.; Le Roux, X.; Barthes, L.; Hungate, B.; Dijkstra, P.; Blankinship, J. C.; Brown, J. R.; Field, C. B.; Leadley, P. W.

    2009-12-01

    Nitrification and denitrification are key mediators of nitrogen (N) cycling, especially N losses, in terrestrial ecosystems, yet little is known about the long-term, in situ responses of these two microbial processes to the simultaneous and interacting global changes likely to occur this century. We investigated the responses of the two steps of nitrification - ammonia oxidation and nitrite oxidation - and of denitrification to the interactive effects of elevated CO2, warming, increased precipitation and N deposition as part of the Jasper Ridge Global Change Experiment. We followed these responses over two growing seasons of the experiment using measures of potential rates of ammonia oxidation, nitrite oxidation, and denitrification, along with key correlates of these activities (gross N mineralization, gross nitrification, soil moisture, soil NH4+ and NO3- concentrations, soil pH, soil temperature, soil CO2 and N2O effluxes, and root and shoot biomass). Across all dates, soil ammonia and nitrite oxidizing capacities responded very differently to global change treatments: soil ammonia oxidizing capacities were increased by 59% in the high N deposition treatment (likely as a result of higher substrate availability for ammonia-oxidizers), while soil nitrite oxidizing capacities did not respond to the N deposition treatment but were reduced by 10% in the increased precipitation treatment. Soil denitrifying capacities were increased by 26% in the high N deposition treatment (likely as a result of higher substrate availability for denitrifiers) and by 15% in the increased precipitation treatment (likely as a result of higher soil water content). Overall, elevated CO2 and warming were found to have little effects on soil nitrifying and denitrifying capacities, and interactive effects between global change components were rare when analyzed across multiple sampling dates. Thus, our results suggest that increased atmospheric N deposition and changes in precipitation

  14. Removal of micropollutants during tertiary wastewater treatment by biofiltration: Role of nitrifiers and removal mechanisms.

    PubMed

    Rattier, M; Reungoat, J; Keller, J; Gernjak, W

    2014-05-01

    The objective of this study was to determine the extent to which a suite of organic micropollutants (MPs) can be removed by biological filtration and the role of bioavailability and ammonia oxidizing microorganisms (AOMs) in the biodegradation process. During approximately one year, laboratory-scale columns with 8 min empty bed contact time (EBCT) and packed with anthracite as filter media were used for treating a tertiary effluent spiked with a broad range of MPs at a target concentration of 2 μg L(-1). In parallel columns, aerobic biomass growth was inhibited by using either the biocide sodium azide (500 mg L(-1) NaN3) or allylthiourea (5 mg L(-1) ATU), specifically inhibiting nitrifying bacteria. Once the biomass had colonized the media, around 15% of the dissolved organic carbon (DOC) contained in the untreated tertiary effluent was removed by non-inhibited columns. The removal of several MPs increased over time indicating the relevance of biological activity for the removal of MPs, while the negative control, the NaN3 inhibited column, showed no significant removal. Out of 33 MPs, 19 were recalcitrant (<25%) to biodegradation under aerobic conditions with the others exhibiting a diverse range of removal efficiency up to 95%. Through inhibition by ATU it was shown that nitrifying bacteria were clearly having a role in the degradation of several MPs, whereas the removal of other MPs was not affected by the presence of the nitrification inhibitor. A relationship between the qualitative assessment of sorption of MPs on granular activated carbon (GAC) and their removal efficiency by biodegradation on anthracite was observed. This result suggested that the affinity of the MPs for GAC media could be a useful indicator of the bioavailability of compounds during biofiltration on anthracite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Granulation of zeolite-containing aluminosilicate hydrogel

    SciTech Connect

    Galimov, Z.F.; Vinkel'man, A.P.

    1987-09-01

    The granulation of aluminosilicate hydrogel as an intermediate for the synthesis of cracking catalysts was investigated from the standpoint of eliminating the splitting cone from the granulator and eliminating coagulation directly on the cone surface. A method for forming the gel without a cone was developed by dispersion of jets of sol issuing directly from the mixer. Gel quality was considerably higher in dispersions of time-constant jets of the sol. The experimental mixer can be used as a design basis for a multijet granulator with a capacity equivalent to one or several splitting cones in commercial units.

  16. COMPLEX INTERACTIONS BETWEEN AUTOTROPHS IN SHALLOW MARINE AND FRESHWATER ECOSYSTEMS: IMPLICATIONS FOR COMMUNITY RESPONSES TO NUTRIENT STRESS. (U915532)

    EPA Science Inventory

    The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in m...

  17. COMPLEX INTERACTIONS BETWEEN AUTOTROPHS IN SHALLOW MARINE AND FRESHWATER ECOSYSTEMS: IMPLICATIONS FOR COMMUNITY RESPONSES TO NUTRIENT STRESS. (U915532)

    EPA Science Inventory

    The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in m...

  18. [Oxygen-limited autotrophic nitrification and denitrification--a novel technology for biological nitrogen removal].

    PubMed

    Zhang, Dan; Xu, Hui; Li, Xiangli; Zhang, Ying; Chen, Guanxiong

    2003-12-01

    Oxygen-limited autotrophic nitrification and denitrification (OLAND) is a biological nitrogen removal process coupled with partial nitrification and anaerobic ammonium oxidation. In our study, the nitrification was blocked at nitrite stage by controlling the dissolved oxygen concentration at 0.1-0.3 mg.L-1, and then, the denitrification proceeded, with the residual ammonium at the partial nitrification stage as electron donor. As a completely autotrophic nitrification-denitrification process, the OLAND was of many advantages (e.g., low energy consumption, high nitrogen removal rate and small footprint of system), and suitable in particular for treating low COD/NH4(+)-N ratio wastewater. It has become one of the most prosperous and practicable biological nitrogen removal technologies. The recent research of OLAND was reviewed, and its microbial mechanism as well as its applicable prospect was remarked in this paper.

  19. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment.

    PubMed

    Smetana, Sergiy; Sandmann, Michael; Rohn, Sascha; Pleissner, Daniel; Heinz, Volker

    2017-08-20

    The lack of protein sources in Europe could be reduced with onsite production of microalgae with autotrophic and heterotrophic systems, owing the confirmation of economic and environmental benefits. This study aimed at the life cycle assessment (LCA) of microalgae and cyanobacteria cultivation (Chlorella vulgaris and Arthrospira platensis) in autotrophic and heterotrophic conditions on a pilot industrial scale (in model conditions of Berlin, Germany) with further biomass processing for food and feed products. The comparison of analysis results with traditional benchmarks (protein concentrates) indicated higher environmental impact of microalgae protein powders. However high-moisture extrusion of heterotrophic cultivated C. vulgaris resulted in more environmentally sustainable product than pork and beef. Further optimization of production with Chlorella pyrenoidosa on hydrolyzed food waste could reduce environmental impact in 4.5 times and create one of the most sustainable sources of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Nitrate and bromate removal by autotrophic and heterotrophic denitrification processes: batch experiments

    PubMed Central

    2013-01-01

    The effects of various parameters on bromate reduction were tested using lab-scale batch reactors with sulfur based autotrophic and methanol based heterotrophic denitrification processes. The initial bromate (BrO3–) concentration of 100 and 500 μg/L was completely reduced and bromide (Br-) was produced stoichiometrically from bromate in all batch reactors. In all experiments, nitrate was completely reduced to below detection limit. Kinetic studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration. At stoichiometrically sufficient methanol concentration as an external carbon source, nitrate and bromate were reduced to below US EPA drinking water limits in heterotrophic denitrification conditions. The methanol was completely depleted at the end of the heterotrophic operation conditions. PMID:24354945

  1. Gases generated from simulated thermal degradation of autotrophic and heterotrophic chlorella

    SciTech Connect

    Qingyu Wu )

    1992-01-01

    The content of crude lipid in the cells of heterotrophic Chlorella protothecoides is 4.4 times as high as in the autotrophic algal cells. The gases thermally degraded from autotrophic cells at 200-300[degrees]C contain mainly CO[sub 2], while the heterotrophic algal cells produce hydrocarbon gas at a much higher rate than autotraophic algal cells. With the rise in temperature, both kinds of cells display a rapid drop in the acid/alkane ratio of the gas components and the ratio of ethane to ethylene increases regularly. Their ratio of normal and isomeric alkanes are all above 1. The study reveals that the actual potential of microplanktonic algae in producing oil and natural gas should be much greater than what people have recognized before.

  2. Autotrophic Microbe Metagenomes and Metabolic Pathways Differentiate Adjacent Red Sea Brine Pools

    PubMed Central

    Wang, Yong; Cao, Huiluo; Zhang, Guishan; Bougouffa, Salim; Lee, On On; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2013-01-01

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens. PMID:23624511

  3. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools.

    PubMed

    Wang, Yong; Cao, Huiluo; Zhang, Guishan; Bougouffa, Salim; Lee, On On; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2013-01-01

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  4. A soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment.

    PubMed

    Kong, Zhe; Feng, Chuanping; Chen, Nan; Tong, Shuang; Zhang, Baogang; Hao, Chunbo; Chen, Kun

    2014-05-01

    To enhance the denitrification performance of soil infiltration, a soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment was developed, and the SISSAD performance was evaluated using synthetic domestic wastewater in this study. The aerobic respiration and nitrification were mainly taken place in the upper aerobic stage (AES), removed 88.44% COD and 89.99% NH4(+)-N. Moreover, autotrophic denitrification occurred in the bottom anaerobic stage (ANS), using the CO2 produced from AES as inorganic carbon source. Results demonstrated that the SISSAD showed a remarkable performance on COD removal efficiency of 95.09%, 84.86% for NO3(-)-N, 95.25% for NH4(+)-N and 93.15% for TP. This research revealed the developed system exhibits a promising application prospect for domestic wastewater in the future.

  5. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems.

    PubMed

    Hicks Pries, Caitlin E; van Logtestijn, Richard S P; Schuur, Edward A G; Natali, Susan M; Cornelissen, Johannes H C; Aerts, Rien; Dorrepaal, Ellen

    2015-12-01

    Soil carbon in permafrost ecosystems has the potential to become a major positive feedback to climate change if permafrost thaw increases heterotrophic decomposition. However, warming can also stimulate autotrophic production leading to increased ecosystem carbon storage-a negative climate change feedback. Few studies partitioning ecosystem respiration examine decadal warming effects or compare responses among ecosystems. Here, we first examined how 11 years of warming during different seasons affected autotrophic and heterotrophic respiration in a bryophyte-dominated peatland in Abisko, Sweden. We used natural abundance radiocarbon to partition ecosystem respiration into autotrophic respiration, associated with production, and heterotrophic decomposition. Summertime warming decreased the age of carbon respired by the ecosystem due to increased proportional contributions from autotrophic and young soil respiration and decreased proportional contributions from old soil. Summertime warming's large effect was due to not only warmer air temperatures during the growing season, but also to warmer deep soils year-round. Second, we compared ecosystem respiration responses between two contrasting ecosystems, the Abisko peatland and a tussock-dominated tundra in Healy, Alaska. Each ecosystem had two different timescales of warming (<5 years and over a decade). Despite the Abisko peatland having greater ecosystem respiration and larger contributions from heterotrophic respiration than the Healy tundra, both systems responded consistently to short- and long-term warming with increased respiration, increased autotrophic contributions to ecosystem respiration, and increased ratios of autotrophic to heterotrophic respiration. We did not detect an increase in old soil carbon losses with warming at either site. If increased autotrophic respiration is balanced by increased primary production, as is the case in the Healy tundra, warming will not cause these ecosystems to become

  6. Application of tumbling melt granulation (TMG) method to prepare controlled-release fine granules.

    PubMed

    Maejima, T; Kubo, M; Osawa, T; Nakajima, K; Kobayashi, M

    1998-03-01

    The tumbling melt granulation (TMG) method was applied to prepare controlled-release fine granules of diltiazem hydrochloride (DH). The entire process, from the preparation of the cores by the adherence of DH to the sucrose crystal to the subsequent coating of the controlled-release layer, was performed without using any solvent. A mixture of meltable material, talc, and ethylcellulose was used for the controlled-release layer and controlled-release fine granules approximately 400 microns in diameter were obtained with excellent producibility. The dissolution rate of DH from these fine granules was similar to that of a once-a-day dosage form obtained in the market; further, the dependency of the dissolution profile on pH of the media was less. Thus, it was concluded that this TMG method was very useful for preparing not only controlled-release beads of granule size (usually 500 to 1400 microns) but also fine granules.

  7. Distribution of binder in granules produced by means of twin screw granulation.

    PubMed

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen; Vervaet, Chris; Remon, Jean Paul; Strachan, Clare; Rades, Thomas; De Beer, Thomas

    2014-02-28

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding of binder distribution within granules produced via twin screw granulation in order to investigate if an inhomogeneous spread of binder is causing this bimodal size distribution. Theophylline-lactose-polyvinylpyrrolidone K30 (PVP) (30-67.5-2.5%, w/w) was used as a model formulation. The intra-granular distribution of PVP was evaluated by means of hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy. For the evaluated formulation, no PVP rich zones were detected when applying a lateral spatial resolution of 0.5 μm, indicating that PVP is homogenously distributed within the granules.

  8. Chloraminated Drinking Water Distribution System Nitrification: Batch and Biofilm Inactivation Studies, Model Nitrifying Biofilm Investigations, and Evaluation of Operational Responses to Nitrification Episodes

    EPA Science Inventory

    Studies are currently underway to help fill knowledge gaps that exist in the general understanding of nitrification episodes. One of these gaps includes the need for growth and inactivation kinetic parameters for nitrifiers representative of those inhabiting distribution systems ...

  9. Chloraminated Drinking Water Distribution System Nitrification: Batch and Biofilm Inactivation Studies, Model Nitrifying Biofilm Investigations, and Evaluation of Operational Responses to Nitrification Episodes

    EPA Science Inventory

    Studies are currently underway to help fill knowledge gaps that exist in the general understanding of nitrification episodes. One of these gaps includes the need for growth and inactivation kinetic parameters for nitrifiers representative of those inhabiting distribution systems ...

  10. First flowering hybrid between autotrophic and mycoheterotrophic plant species: breakthrough in molecular biology of mycoheterotrophy.

    PubMed

    Ogura-Tsujita, Yuki; Miyoshi, Kazumitsu; Tsutsumi, Chie; Yukawa, Tomohisa

    2014-03-01

    Among land plants, which generally exhibit autotrophy through photosynthesis, about 880 species are mycoheterotrophs, dependent on mycorrhizal fungi for their carbon supply. Shifts in nutritional mode from autotrophy to mycoheterotrophy are usually accompanied by evolution of various combinations of characters related to structure and physiology, e.g., loss of foliage leaves and roots, reduction in seed size, degradation of plastid genome, and changes in mycorrhizal association and pollination strategy. However, the patterns and processes involved in such alterations are generally unknown. Hybrids between autotrophic and mycoheterotrophic plants may provide a breakthrough in molecular studies on the evolution of mycoheterotrophy. We have produced the first hybrid between autotrophic and mycoheterotrophic plant species using the orchid group Cymbidium. The autotrophic Cymbidium ensifolium subsp. haematodes and mycoheterotrophic C. macrorhizon were artificially pollinated, and aseptic germination of the hybrid seeds obtained was promoted by sonication. In vitro flowering was observed five years after seed sowing. Development of foliage leaves, an important character for photosynthesis, segregated in the first generation; that is, some individuals only developed scale leaves on the rhizome and flowering stems. However, all of the flowering plants formed roots, which is identical to the maternal parent.

  11. Characteristics of heterotrophic/biofilm-electrode autotrophic denitrification for nitrate removal from groundwater.

    PubMed

    Tong, Shuang; Zhang, Baogang; Feng, Chuanping; Zhao, Yingxin; Chen, Nan; Hao, Chunbo; Pu, Jiaoyang; Zhao, Liwei

    2013-11-01

    A heterotrophic/biofilm-electrode autotrophic denitrification reactor (HAD-BER) was developed to improve denitrification efficiency and reduce the consumption of organic carbon source. Maximum nitrate removal efficiency of 99.9% was gained under the optimum current density of 200 mA/m(2). The number of heterotrophic denitrification bacteria (HDB) 2.0 × 10(5) and hydrogen autotrophic denitrification bacteria (ADB) 2.0 × 10(3) in per milliliter biofilm solution were observed by the most probable number (MPN) culture, demonstrating that HDB and ADB coexist in the HAD-BER. The inorganic carbon source for autotrophic denitrification was supplied by the dissolved carbon dioxide (CO2) evolved from the heterotrophic denitrification process, indicating that there was synergistic interaction between the HDB and ADB, i.e., the organic carbon source used for denitrification could be decreased in the HAD-BER. Therefore, the developed HAD-BER would be a promising approach for nitrate removal from groundwater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration.

    PubMed

    Wang, Xin; Liu, Lingli; Piao, Shilong; Janssens, Ivan A; Tang, Jianwu; Liu, Weixing; Chi, Yonggang; Wang, Jing; Xu, Shan

    2014-10-01

    Despite decades of research, how climate warming alters the global flux of soil respiration is still poorly characterized. Here, we use meta-analysis to synthesize 202 soil respiration datasets from 50 ecosystem warming experiments across multiple terrestrial ecosystems. We found that, on average, warming by 2 °C increased soil respiration by 12% during the early warming years, but warming-induced drought partially offset this effect. More significantly, the two components of soil respiration, heterotrophic respiration and autotrophic respiration showed distinct responses. The warming effect on autotrophic respiration was not statistically detectable during the early warming years, but nonetheless decreased with treatment duration. In contrast, warming by 2 °C increased heterotrophic respiration by an average of 21%, and this stimulation remained stable over the warming duration. This result challenged the assumption that microbial activity would acclimate to the rising temperature. Together, our findings demonstrate that distinguishing heterotrophic respiration and autotrophic respiration would allow us better understand and predict the long-term response of soil respiration to warming. The dependence of soil respiration on soil moisture condition also underscores the importance of incorporating warming-induced soil hydrological changes when modeling soil respiration under climate change. © 2014 John Wiley & Sons Ltd.

  13. Impact of Sulfur Starvation in Autotrophic and Heterotrophic Cultures of the Extremophilic Microalga Galdieria phlegrea (Cyanidiophyceae).

    PubMed

    Carfagna, Simona; Bottone, Claudia; Cataletto, Pia Rosa; Petriccione, Milena; Pinto, Gabriele; Salbitani, Giovanna; Vona, Vincenza; Pollio, Antonino; Ciniglia, Claudia

    2016-09-01

    In plants and algae, sulfate assimilation and cysteine synthesis are regulated by sulfur (S) accessibility from the environment. This study reports the effects of S deprivation in autotrophic and heterotrophic cultures of Galdieria phlegrea (Cyanidiophyceae), a unicellular red alga isolated in the Solfatara crater located in Campi Flegrei (Naples, Italy), where H2S is the prevalent form of gaseous S in the fumarolic fluids and S is widespread in the soils near the fumaroles. This is the first report on the effects of S deprivation on a sulfurous microalga that is also able to grow heterotrophically in the dark. The removal of S from the culture medium of illuminated cells caused a decrease in the soluble protein content and a significant decrease in the intracellular levels of glutathione. Cells from heterotrophic cultures of G. phlegrea exhibited high levels of internal proteins and high glutathione content, which did not diminish during S starvation, but rather glutathione significantly increased. The activity of O-acetylserine(thiol)lyase (OASTL), the enzyme synthesizing cysteine, was enhanced under S deprivation in a time-dependent manner in autotrophic but not in heterotrophic cells. Analysis of the transcript abundance of the OASTL gene supports the OASTL activity increase in autotrophic cultures under S deprivation.

  14. Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water.

    PubMed

    Wang, Zheng; Fei, Xiang; He, Shengbing; Huang, Jungchen; Zhou, Weili

    2017-02-01

    The goal of this study was to compare the nitrogen removal rate, effluent algal growth potential (AGP), nitrous oxide (N2O) emissions and global warming potential (GWP) between two laboratory-scale bioreactors: the autotrophic denitrification biofilter (ADBF) and heterotrophic denitrification biofilter (HDBF) for treating nitrate-contaminated surface water. The comparative study of nitrogen removal rate between ADBF and HDBF was conducted by a long-term experiment, and the comparative study of the effluent AGP, N2O emissions and GWP between ADBF and HDBF were carried out by the corresponding batch tests. The results show that the heterotrophic and autotrophic denitrification rates were close to each other. Besides, the AGP of the ADBF effluent was 2.08 times lower than that of the HDBF effluent, while the N2O concentration in off-gas emitted from HDBF was 6-8 times higher than that from ADBF. The higher N2O-N emission rate of HDBF was mainly responsible for the higher GWP of HDBF than that of ADBF. Furthermore, with a novel light-weight filtration media (NLWFM) for filtration, the autotrophic denitrification (ADN) process combined with biofilter process would be the optimal denitrification process for nitrogen removal from nitrate-contaminated surface water. The study also provided a systematic method for evaluation of biological nitrogen removal (BNR) process. Copyright © 2016. Published by Elsevier B.V.

  15. Granulation Properties in DOT Images from Solar Maximum to Minimum

    NASA Astrophysics Data System (ADS)

    Pötzi, W.

    DOT granulation filtergrams in the G-Band from solar maximum to solar minimum (1999 to 2007) were investigated for changes of granulation properties like areas, perimeter, fractal dimension, cell sizes, and life times. Granules seem to become larger during solar minimum, whereas the distances between the granule centres stay constant. Nonetheless, the uncertainties are very high.

  16. Cohesive strength of iron ore granules

    NASA Astrophysics Data System (ADS)

    Contreras, Rafael Jaimes; Berger, Nicolas; Izard, Edouard; Douce, Jean-François; Koltsov, Alexey; Delenne, Jean-Yves; Azema, Emilien; Nezamabadi, Saeid; van Loo, Frédéric; Pellenq, Roland; Radjai, Farhang

    2017-06-01

    We present an experimental and numerical investigation of the mechanical strength of crude iron ore (Hematite) granules in which capillary bonds between primary particles are the source of internal cohesion. The strength is measured by subjecting the granules to vertical compression between two plates. We show that the behavior of the granules is ductile with a well-defined plastic threshold which increases with the amount of water. It is found that the compressive strength scales with capillary cohesion with a pre-factor that is nearly independent of size polydispersity for the investigated range of parameters but increases with friction coefficient between primary particles. This weak dependence may be attributed to the class of fine particles which, due to their large number, behaves as a cohesive matrix that controls the strength of the granule.

  17. Gastroretentive extended-release floating granules prepared using a novel fluidized hot melt granulation (FHMG) technique.

    PubMed

    Zhai, H; Jones, D S; McCoy, C P; Madi, A M; Tian, Y; Andrews, G P

    2014-10-06

    The objective of this work was to investigate the feasibility of using a novel granulation technique, namely, fluidized hot melt granulation (FHMG), to prepare gastroretentive extended-release floating granules. In this study we have utilized FHMG, a solvent free process in which granulation is achieved with the aid of low melting point materials, using Compritol 888 ATO and Gelucire 50/13 as meltable binders, in place of conventional liquid binders. The physicochemical properties, morphology, floating properties, and drug release of the manufactured granules were investigated. Granules prepared by this method were spherical in shape and showed good flowability. The floating granules exhibited sustained release exceeding 10 h. Granule buoyancy (floating time and strength) and drug release properties were significantly influenced by formulation variables such as excipient type and concentration, and the physical characteristics (particle size, hydrophilicity) of the excipients. Drug release rate was increased by increasing the concentration of hydroxypropyl cellulose (HPC) and Gelucire 50/13, or by decreasing the particle size of HPC. Floating strength was improved through the incorporation of sodium bicarbonate and citric acid. Furthermore, floating strength was influenced by the concentration of HPC within the formulation. Granules prepared in this way show good physical characteristics, floating ability, and drug release properties when placed in simulated gastric fluid. Moreover, the drug release and floating properties can be controlled by modification of the ratio or physical characteristics of the excipients used in the formulation.

  18. RNA Granules and Diseases: A Case Study of Stress Granules in ALS and FTLD.

    PubMed

    Fan, Alexander C; Leung, Anthony K L

    2016-01-01

    RNA granules are microscopically visible cellular structures that aggregate by protein-protein and protein-RNA interactions. Using stress granules as an example, we discuss the principles of RNA granule formation, which rely on the multivalency of RNA and multi-domain proteins as well as low-affinity interactions between proteins with prion-like/low-complexity domains (e.g. FUS and TDP-43). We then explore how dysregulation of RNA granule formation is linked to neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), and discuss possible strategies for therapeutic intervention.

  19. Effects of cinnamon granules on pharmacokinetics of berberine in Rhizoma Coptidis granules in healthy male volunteers.

    PubMed

    Huang, Zhaoyi; Lu, Fu'er; Dong, Hui; Xu, Lijun; Chen, Guang; Zou, Xin; Lei, Hongwei

    2011-06-01

    The effects of Cinnamon granules on pharmacokinetics of berberine in Rhizoma Coptidis granules in healthy male volunteers, and the compatibility mechanism of Jiao-Tai-Wan (JTW) composed of Rhizoma Coptidis granules and Cinnamon granules were investigated. The concentration of berberine in plasma of healthy male volunteers was determined directly by high performance liquid chromatography (HPLC) after an oral administration of Rhizoma Coptidis granules alone or combined with Cinnamon granules (JTW). The plasma concentration-time curves of berberine were plotted. The data were analyzed with Drug and Statistics (DAS) 2.0 pharmacokinetic program (Chinese Pharmacology Society) to obtain the main pharmacokinetic parameters. The results showed that the plasma concentration-time curve of berberine was described by a two-compartment model. The C(max), T(max), t(1/2) and CLz/F of berberine in Rhizoma Coptidis granules were 360.883 μg/L, 2.0 h, 3.882 h, 119.320 L·h(-1)·kg(-1) respectively, and those of berberine in JTW were 396.124 μg/L, 1.5 h, 4.727 h, 57.709 L·h(-1)·kg(-1) respectively. It was suggested that Rhizoma Coptidis granules combined with Cinnamon granules could increase the plasma concentration of berberine, promote berberine absorption and lengthen the detention time of berberine in healthy male volunteers.

  20. RNA Granules and Diseases — A Case Study of Stress Granules in ALS and FTLD

    PubMed Central

    Fan, Alexander C.; Leung, Anthony K. L.

    2017-01-01

    RNA granules are microscopically visible cellular structures that aggregate by protein–protein and protein-RNA interactions. Using stress granules as an example, we discuss the principles of RNA granule formation, which rely on the multivalency of RNA and multi-domain proteins as well as low-affinity interactions between proteins with prion-like/low-complexity domains (e.g. FUS and TDP-43). We then explore how dysregulation of RNA granule formation is linked to neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), and discuss possible strategies for therapeutic intervention. PMID:27256390

  1. Hippocampal granule cells opt for early retirement.

    PubMed

    Alme, C B; Buzzetti, R A; Marrone, D F; Leutgeb, J K; Chawla, M K; Schaner, M J; Bohanick, J D; Khoboko, T; Leutgeb, S; Moser, E I; Moser, M-B; McNaughton, B L; Barnes, C A

    2010-10-01

    Increased excitability and plasticity of adult-generated hippocampal granule cells during a critical period suggests that they may "orthogonalize" memories according to time. One version of this "temporal tag" hypothesis suggests that young granule cells are particularly responsive during a specific time period after their genesis, allowing them to play a significant role in sculpting CA3 representations, after which they become much less responsive to any input. An alternative possibility is that the granule cells active during their window of increased plasticity, and excitability become selectively tuned to events that occurred during that time and participate in later reinstatement of those experiences, to the exclusion of other cells. To discriminate between these possibilities, rats were exposed to different environments at different times over many weeks, and cell activation was subsequently assessed during a single session in which all environments were revisited. Dispersing the initial experiences in time did not lead to the increase in total recruitment at reinstatement time predicted by the selective tuning hypothesis. The data indicate that, during a given time frame, only a very small number of granule cells participate in many experiences, with most not participating significantly in any. Based on these and previous data, the small excitable population of granule cells probably correspond to the most recently generated cells. It appears that, rather than contributing to the recollection of long past events, most granule cells, possibly 90-95%, are effectively "retired." If granule cells indeed sculpt CA3 representations (which remains to be shown), then a possible consequence of having a new set of granule cells participate when old memories are reinstated is that new representations of these experiences might be generated in CA3. Whatever the case, the present data may be interpreted to undermine the standard "orthogonalizer" theory of the role of

  2. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins

    PubMed Central

    Mezzina, Mariela P.

    2016-01-01

    Phasins are the major polyhydroxyalkanoate (PHA) granule-associated proteins. They promote bacterial growth and PHA synthesis and affect the number, size, and distribution of the granules. These proteins can be classified in 4 families with distinctive characteristics. Low-resolution structural studies and in silico predictions were performed in order to elucidate the structure of different phasins. Most of these proteins share some common structural features, such as a preponderant α-helix composition, the presence of disordered regions that provide flexibility to the protein, and coiled-coil interacting regions that form oligomerization domains. Due to their amphiphilic nature, these proteins play an important structural function, forming an interphase between the hydrophobic content of PHA granules and the hydrophilic cytoplasm content. Phasins have been observed to affect both PHA accumulation and utilization. Apart from their role as granule structural proteins, phasins have a remarkable variety of additional functions. Different phasins have been determined to (i) activate PHA depolymerization, (ii) increase the expression and activity of PHA synthases, (iii) participate in PHA granule segregation, and (iv) have both in vivo and in vitro chaperone activities. These properties suggest that phasins might play an active role in PHA-related stress protection and fitness enhancement. Due to their granule binding capacity and structural flexibility, several biotechnological applications have been developed using different phasins, increasing the interest in the study of these remarkable proteins. PMID:27287326

  3. Ectopic Granule Cells of the Rat Dentate Gyrus

    PubMed Central

    Scharfman, Helen; Goodman, Jeffrey; McCloskey, Daniel

    2007-01-01

    Granule cells of the mammalian dentate gyrus normally form a discrete layer, and virtually all granule cells migrate to this location. Exceptional granule cells that are positioned incorrectly, in ‘ectopic’ locations, are rare. Although the characteristics of such ectopic granule cells appear similar in many respects to granule cells located in the granule cell layer, their rare occurrence has limited a full evaluation of their structure and function. More information about ectopic granule cells has been obtained by studying those that develop after experimental manipulations that increase their number. For example, after severe seizures, the number of ectopic granule cells located in the hilus increases dramatically. These experimentally induced ectopic granule cells may not be equivalent to normal ectopic granule cells necessarily, but the vastly increased numbers have allowed much more information to be obtained. Remarkably, the granule cells that are positioned ectopically develop intrinsic properties and an axonal projection that are similar to granule cells that are located normally, i.e., in the granule cell layer. However, dendritic structure and synaptic structure/function appear to differ. These studies have provided new insight into a rare type of granule cell in the dentate gyrus, and the plastic characteristics of dentate granule cells that appear to depend on the location of the cell body. PMID:17148946

  4. Processing and targeting of granule proteins in human neutrophils.

    PubMed

    Gullberg, U; Bengtsson, N; Bülow, E; Garwicz, D; Lindmark, A; Olsson, I

    1999-12-17

    Neutrophils contain an assembly of granules destined for regulated secretion, each granule type with distinct constituents formed before terminal differentiation. The earliest granules are designated azurophil (primary), followed in time by specific (secondary), and gelatinase granules as well as secretory vesicles. Transcription factors regulate the genes for the granule proteins to ensure that expression of the gene products to be stored in different organelles is separated in time. Similar to lysosomal enzymes, many granule proteins, in particular those of the heterogeneous azurophil granules, are trimmed by proteolytic processing into mature proteins. Rodent myeloid cell lines have been utilized for research on the processing and targeting of human granule proteins after transfection of cDNA. Results from extensive work on the hematopoietic serine proteases of azurophil granules, employing in vitro mutagenesis, indicate that both an immature and a mature conformation are compatible with targeting for storage in granules. On the other hand, the amino-terminal propeptide of myeloperoxidase facilitates both the export from the endoplasmic reticulum and targeting for storage in granules. Similarly, targeting of defensins rely on an intact propeptide. The proteolytic processing into mature granule protein is most commonly a post-sorting event. Mis-sorting of specific granule proteins into azurophil or lysosome-like granules can result in premature activation and degradation, but represents a potential for manipulating the composition and function of neutrophil granules.

  5. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability

    PubMed Central

    Zhu, Xia; Burger, Martin; Doane, Timothy A.; Horwath, William R.

    2013-01-01

    The continuous increase of nitrous oxide (N2O) abundance in the atmosphere is a global concern. Multiple pathways of N2O production occur in soil, but their significance and dependence on oxygen (O2) availability and nitrogen (N) fertilizer source are poorly understood. We examined N2O and nitric oxide (NO) production under 21%, 3%, 1%, 0.5%, and 0% (vol/vol) O2 concentrations following urea or ammonium sulfate [(NH4)2SO4] additions in loam, clay loam, and sandy loam soils that also contained ample nitrate. The contribution of the ammonia (NH3) oxidation pathways (nitrifier nitrification, nitrifier denitrification, and nitrification-coupled denitrification) and heterotrophic denitrification (HD) to N2O production was determined in 36-h incubations in microcosms by 15N-18O isotope and NH3 oxidation inhibition (by 0.01% acetylene) methods. Nitrous oxide and NO production via NH3 oxidation pathways increased as O2 concentrations decreased from 21% to 0.5%. At low (0.5% and 3%) O2 concentrations, nitrifier denitrification contributed between 34% and 66%, and HD between 34% and 50% of total N2O production. Heterotrophic denitrification was responsible for all N2O production at 0% O2. Nitrifier denitrification was the main source of N2O production from ammonical fertilizer under low O2 concentrations with urea producing more N2O than (NH4)2SO4 additions. These findings challenge established thought attributing N2O emissions from soils with high water content to HD due to presumably low O2 availability. Our results imply that management practices that increase soil aeration, e.g., reducing compaction and enhancing soil structure, together with careful selection of fertilizer sources and/or nitrification inhibitors, could decrease N2O production in agricultural soils. PMID:23576736

  6. Effects of pH and Oxygen and Ammonium Concentrations on the Community Structure of Nitrifying Bacteria from Wastewater

    PubMed Central

    Prinčič, Alenka; Mahne, Ivan; Megušar, France; Paul, Eldor A.; Tiedje, James M.

    1998-01-01

    Shifts in nitrifying community structure and function in response to different ammonium concentrations (50, 500, 1,000, and 3,000 mg of N liter−1), pH values (pH 6.0, 7.0, and 8.2), and oxygen concentrations (1, 7, and 21%) were studied in experimental reactors inoculated with nitrifying bacteria from a wastewater treatment plant. The abilities of the communities selected for these conditions to regain their original structures after conditions were returned to the original conditions were also determined. Changes in nitrifying community structure were determined by performing an amplified ribosomal DNA (rDNA) restriction analysis of PCR products obtained with ammonia oxidizer-specific rDNA primers, by phylogenetic probing, by small-subunit (SSU) rDNA sequencing, and by performing a cellular fatty acid analysis. Digestion of ammonia-oxidizer SSU rDNA with five restriction enzymes showed that a high ammonium level resulted in a great community structure change that was reversible once the ammonium concentration was returned to its original level. The smaller changes in community structure brought about by the two pH extremes, however, were irreversible. Sequence analysis revealed that the highest ammonium environment stimulated growth of a nitrifier strain that exhibited 92.6% similarity in a partial SSU rRNA sequence to its nearest relative, Nitrosomonas eutropha C-91, although the PCR product did not hybridize with a general phylogenetic probe for ammonia oxidizers belonging to the β subgroup of the class Proteobacteria. A principal-component analysis of fatty acid methyl ester data detected changes from the starter culture in all communities under the new selective conditions, but after the standard conditions were restored, all communities produced the original fatty acid profiles. PMID:9758771

  7. Novel application of nitrifying bacterial consortia to ease ammonia toxicity in ornamental fish transport units: trials with zebrafish.

    PubMed

    Dhanasiri, A K S; Kiron, V; Fernandes, J M O; Bergh, O; Powell, M D

    2011-08-01

    To evaluate whether two commercial nitrifying bacterial consortia can function as biocontrol agents in ornamental fish transporting systems. The consortia were applied in a simulated set-up using zebrafish as the model organism in three trials. The efficacy of the bacterial consortia in controlling the ammonia level was validated by measuring water quality parameters such as total ammonia, nitrate and pH of the transport water. The bacterial community structure in the transport unit was studied using denaturing gradient gel electrophoresis. The consortia tested improved the nitrifying activity that in turn facilitated the reduction of ammonia that had accumulated during the transport. Bacterial profiles revealed the presence of both ammonia-oxidizing and nitrite-oxidizing bacteria in the transport bags. The application of the consortia during the transportation of zebrafish could profoundly improve the water quality by curbing ammonia accumulation. The potential of applying nitrifying bacteria as a bioremediation practice during the transport of ornamental fish has been demonstrated and this innovative approach contributes to the amelioration of current fish welfare in ornamental fish trade. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  8. [Effect of Low-concentration Ciprofloxacin on the Nitrification and Nitrifying Microorganisms of Biofilms in Biological Aerated Filter].

    PubMed

    He, Shi; Gu, Chao-chao; Wei, Xin; Huang, Sheng-lin; Liu, Zhen-hong; Xue, Gang; Gao, Pin

    2016-04-15

    Effect of low-concentration ciprofloxacin (CIP) on nitrification and nitrifying microorganisms of biofilms was studied in biological aerated filters (BAF). Quantitative PCR (qPCR) was used to determine the abundance variance of four ciprofloxacin resistance genes (CIP-ARGs) during nitrification in biofilms. The correlations between the abundances of CIP-ARGs and nitrifying microorganisms were also discussed. The results showed that CIP had little influence on the ammonium oxidation process of biofilm microorganisms, whereas inhibition of the nitrite oxidation process was found. The quantitative results of ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) including Nitrobacter and Nitrospira indicated that the inhibition on the transformation of nitrite was resulted from the inhibition on Nitrobacter and Nitrospira. In addition, little influence of CIP on the relative abundance of aac and qepA in biofilms was found, but the influence on parC and oqxB was great. The abundance of Nitrotacter exhibited significant positive correlation with the abundance of parC. Similar significant correlation was also found between the abundances of Nitrospira and oqxB. It could be speculated that the genetic elements of different nitrifying microorganisms in biofilms possibly carried CIP-ARGs.

  9. Respirometric response and microbial succession of nitrifying sludge to m-cresol pulses in a sequencing batch reactor.

    PubMed

    Ordaz, Alberto; Sánchez, Mariana; Rivera, Rodrigo; Rojas, Rafael; Zepeda, Alejandro

    2017-02-01

    A nitrifying consortium was kinetically, stoichiometrically and molecularly characterized via the in situ pulse respirometric method and pyrosequencing analysis before and after the addition of m-cresol (25 mg C L(-1)) in a sequencing batch reactor (SBR). Five important kinetic and stoichiometric parameters were determined: the maximum oxygen uptake rate, the maximum nitrification rate, the oxidation yield, the biomass growth yield, and the substrate affinity constant. An inhibitory effect was observed in the nitrification process with a recovery of this by up to eight SBR cycles after m-cresol was added to the system. However, full recovery of the nitrification process was not observed, as the maximum oxygen uptake rate was 25% lower than that of the previous operation without m-cresol addition. Furthermore, the pyrosequencing analyses of the nitrifying consortium after the addition of only two pulses of 25 mg C L(-1) m-cresol showed an important microbial community change represented by a decrease in the nitrifying populations and an increase in the populations degrading phenolic compounds.

  10. Simultaneous ammonium-nitrogen and copper removal, and copper recovery using nitrifying biofilm from the ultra-compact biofilm reactor.

    PubMed

    Lee, L Y; Ong, S L; Ng, H Y; Hu, J Y; Koh, Y N

    2008-09-01

    Simultaneous ammonium-nitrogen (NH(4)(+)-N) and copper removal, and copper recovery in synthetic wastewater using nitrifying biofilm from an ultra-compact biofilm reactor (UCBR) was demonstrated in batch studies, which consisted of three phases: Phase 1 for NH(4)(+)-N and copper removals, Phase 2 for copper recovery, and Phase 3 for NH(4)(+)-N removal. The results showed that more than 96.3% of copper was removed within 60min, while 60.1% of the adsorbed copper was recovered through rinsing the biofilms with 0.1mM of ethylenediaminetetraacetic acid (EDTA). The nitrifying biofilm was able to adsorb 0.245mg of copper/g of biofilms. After recovery treatment, 29.4% of copper remained bound within the nitrifying biofilms. No significant inhibitory effects towards NH(4)(+)-N removal in the presence of 0.92mg copper/L was noted in Phase 1 compared with the control test. However, lower initial pH condition in the recovery process and the accumulation of copper on the biofilm led to 50% inhibition on NH(4)(+)-N removal efficiency in the subsequent phase.

  11. [Study on fluidized melt-granulation. I. Examination of the factors on the granulation].

    PubMed

    Haramiishi, Y; Kitazawa, Y; Sakai, M; Kataoka, K

    1991-09-01

    The purpose of this study is to develop a new granulation method by using a fluidized-bed granulator, which requires a nucleus with a low melting point as a binder. This method was named as fluidized melt-granulation. The technique is very simple and useful. In this paper, the granulation mechanism and the effect of the physico-chemical properties of raw materials on the growth of the granules were investigated. The results were as follows: (1) The mixture of the nucleus and the other powder particles was heated up to the melting point of the nucleus by hot inlet air, immediately resulting in the generation of the adhesion of the powders on the melted nucleus. The granules grew as the melted material immersed into the void space among the adhered particles. (2) The lower the viscosity of the melted nucleus was, the faster the granule grew. (3) The shape and the size of the nucleus affected those of the products. (4) The optimum mixing ratio between the nucleus and the granulated materials existed and it depended on the ratio between the surface areas of these materials.

  12. Granule size control and targeting in pulsed spray fluid bed granulation.

    PubMed

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  13. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    PubMed

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  14. Effects of paraquat on photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions.

    PubMed

    Zhang, Weiguo; Liu, Min; Zhang, Peiliang; Yu, Fugen; Lu, Shan; Li, Pengfu; Zhou, Junying

    2014-11-01

    Only limited information is available on herbicide toxicity to algae under mixotrophic conditions. In the present study, we studied the effects of the herbicide paraquat on growth, photosynthetic pigments, antioxidant enzymes, and gene expression in Chlorella pyrenoidosa under mixotrophic compared with autotrophic conditions. The mean measured exposure concentrations of paraquat under mixotrophic and autotrophic conditions were in the range of 0.3-3.4 and 0.6-3.6 μM, respectively. Exposure to paraquat for 72 h under both autotrophic and mixotrophic conditions induced decreased growth and chlorophyll (Chl) content, increased superoxide dismutase and peroxidase activities, and decreased transcript abundances of three photosynthesis-related genes (light-independent protochlorophyllide reductase subunit, photosystem II protein D1, and ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit [rbcL]). Compared with autotrophic conditions, the inhibition percentage of growth rate under mixotrophic conditions was lower at 0.8 μM paraquat, whereas it was greater at 1.8 and 3.4 μM paraquat. With exposure to 0.8-3.4 μM paraquat, the inhibition rates of Chl a and b content under mixotrophic conditions (43.1-52.4% and 54.6-59.7%, respectively) were greater compared with autotrophic conditions, whereas the inhibition rate of rbcL gene transcription under mixotrophic conditions (35.7-44.0%) was lower. These data showed that similar to autotrophic conditions, paraquat affected the activities of antioxidant enzymes and decreased Chl synthesis and transcription of photosynthesis-related genes in C. pyrenoidosa under mixotrophic conditions, but a differential susceptibility to paraquat toxicity occurred between autotrophically versus mixotrophically grown cells.

  15. Competition between autotrophic and heterotrophic microbial plankton for inorganic nutrients induced by variability in estuarine biophysicochemical conditions

    NASA Astrophysics Data System (ADS)

    Williams, A.; Quigg, A.

    2016-02-01

    Competition for inorganic nutrients between autotrophic and heterotrophic fractions of microbial plankton (0.2-20μm) was investigated at two stations in a sub-tropical estuary, Galveston Bay, Texas. Competition potential between these groups is enhanced because individuals are similar in size, reducing variability among their nutrient uptake efficiencies. Further, in estuaries, allochthonous supplements to autochthonous carbon may satisfy heterotrophic requirements, allowing alternative factors to limit abundance. The relative abundance of autotrophs and heterotrophs stained with SYBR Green I and enumerated on a Beckman Coulter Gallios flow cytometer were evaluated monthly during a year-long study. Shifts in the relative in situ abundance were significantly related to temperature, dissolved inorganic nitrogen (DIN), phosphorous (Pi), and total organic carbon (TOC) concentrations revealing opposing gradients of limitation by different abiotic factors. In corresponding in vitro nutrient enrichment bioassays the relative contribution of autotrophic or heterotrophic microbial plankton to significant enrichment responses varied. Only during macro- (>20μm) phytoplankton blooms do autotrophic microbial plankton respond to nutrient enrichment. Contrastingly, the heterotrophic microbial plankton responded to nutrient enrichment primarily when temperature limitation was alleviated. Therefore, the potential for autotrophic and heterotrophic microbial plankton competition for limiting nutrients is highest when autotrophic microbial plankton are also competing with larger phytoplankton during bloom events. Based on this evidence, we hypothesize that the autotrophic microbial fraction has a competitive advantage over the heterotrophs for inorganic nutrients in Galveston Bay. The observed microbial competition during estuarine phytoplankton blooms may have important consequences on biogeochemical processes including carbon and nutrient cycling.

  16. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment.

    PubMed

    Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker; Kappler, Andreas

    2016-10-15

    Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3(-)reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of (14)C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments.

  17. Application of temperature gradient gel electrophoresis to the characterization of a nitrifying bioaugmentation product.

    PubMed

    Fouratt, Melissa A; Rhodes, Jeremy S; Smithers, Charles M; Love, Nancy G; Stevens, Ann M

    2003-03-01

    The microbial population of a nitrifying bioaugmentation product (NBP) has been examined using a combination of conventional bacteriological methods and modern molecular techniques. Variable region 3 (V3) of the 16S rRNA genes of the bacteria in NBP was amplified via the polymerase chain reaction (PCR) with universal eubacterial primers and analyzed via temperature gradient gel electrophoresis (TGGE). Two of the predominant PCR products in NBP were purified from the TGGE gel matrix, reamplified via PCR and sequenced. Two nitrifying strains (NS500-9 and MPN2) that had been isolated from the NBP mixed consortium and grown in pure culture were found, via TGGE, to have identical 16S rRNA sequences to the PCR products under investigation. Nearly the full-length 16S rRNA genes from these two organisms were PCR-amplified, cloned, and sequenced in order to provide a basis for more accurate phylogenetic analysis. The two dominant organisms in the NBP, NS500-9 and MPN2, were thereby found to be most closely related to Nitrosomonas and Nitrobacter species, respectively, in the database. Samples from a laboratory-scale bioreactor, bioaugmented with NBP, were used in an attempt to correlate an increase in activity with a detectable shift in the population of NS500-9 and MPN2 via TGGE. No detectable shift in population was observed in these samples even though the system exhibited increased levels of nitrification. Therefore, the sensitivity of the TGGE system was also examined by determining the limits of detection when NBP was present in activated sludge. In biomass spiking experiments as well as in genomic DNA spiking experiments, it was found that NBP must be present at a level of at least 5% of the total population in order to be detected, whereas bioaugmentation at 1% of the total population was enough to yield significant improvements in nitrification efficiency. This study demonstrates how community profiling of an undefined microbial population via TGGE can be used to

  18. Monitoring high-shear granulation using sound and vibration measurements.

    PubMed

    Briens, L; Daniher, D; Tallevi, A

    2007-02-22

    Sound and vibration measurements were investigated as monitoring methods for high-shear granulation. Five microphones and one accelerometer were placed at different locations on a 10 and a 25 l granulator and compared to find the optimum location and the effect of scale. The granulation process could be monitored using the mean frequency and root mean square sound pressure levels from acoustic emissions measured using a microphone in the filtered air exhaust of the granulators. These acoustic monitoring methods were successful for both the 10 and the 25 l granulation scales. The granulation phases, however, were more clearly defined for the larger scale granulation. The root mean square acceleration level from vibration measurements was also able to monitor the granulation, but only for the larger 25 l granulator.

  19. Metal content of neutrophil granules is altered in chronic inflammation

    SciTech Connect

    Haellgren, R.F.; Feltelius, N.; Garcia, R.; Venge, P.; Lindh, U. )

    1989-08-01

    The mass fraction of certain elements was measured in isolated granulocytes and isolated granulocyte granule fractions from patients with active inflammatory arthritides (N = 6) and healthy controls (N = 6). The patients had significantly increased amounts of Ca in the granulocytes, in the specific and light azurophil granules, but normal Ca amounts in the dense azurophil granules. Sr was below the detection limit in the granulocytes and granule fraction from controls, but it appeared in high concentrations in the granulocytes and all granule fractions from the patients. The patients had considerably increased granulocyte amounts of Mn but only slightly increased Mn concentrations in the specific granules. Mn was not detectable in azurophil granules from patients and controls. A prominent accumulation of Fe was seen in the granulocytes from the patients, together with an Fe accumulation in the specific granules. Fe was below the detection limit in azurophil granules from patients and controls. The patients had reduced granulocyte Zn and reduced amounts of Zn in the dense and light azurophil granules but normal Zn amounts in the specific granules. The results obtained indicate that the granulocyte accumulation of Ca, Sr, and Fe observed during chronic inflammation is associated with corresponding granule accumulation of these metals; the considerable Mn accumulation in granulocytes during inflammation is not localized in their granules; and the granule subpopulations differ in their capacity to store certain metals.

  20. Granulostasis: Protein Quality Control of RNP Granules.

    PubMed

    Alberti, Simon; Mateju, Daniel; Mediani, Laura; Carra, Serena

    2017-01-01

    Ribonucleoprotein (RNP) granules transport, store, or degrade messenger RNAs, thereby indirectly regulating protein synthesis. Normally, RNP granules are highly dynamic compartments. However, because of aging or severe environmental stress, RNP granules, in particular stress granules (SGs), convert into solid, aggregate-like inclusions. There is increasing evidence that such RNA-protein inclusions are associated with several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), fronto-temporal dementia (FTD) and Alzheimer's disease (AD). Thus, understanding what triggers the conversion of RNP granules into aggregates and identifying the cellular players that control RNP granules will be critical to develop treatments for these diseases. In this review article, we discuss recent insight into RNP and SG formation. More specifically, we examine the evidence for liquid-liquid phase separation (LLPS) as an organizing principle of RNP granules and the role of aggregation-prone RNA-binding proteins (RBPs) in this process. We further discuss recent findings that liquid-like SGs can sequester misfolded proteins, which promote an aberrant conversion of liquid SGs into solid aggregates. Importantly, very recent studies show that a specific protein quality control (PQC) process prevents the accumulation of misfolding-prone proteins in SGs and, by doing so, maintains the dynamic state of SGs. This quality control process has been referred to as granulostasis and it relies on the specific action of the HSPB8-BAG3-HSP70 complex. Additional players such as p97/valosin containing protein (VCP) and other molecular chaperones (e.g., HSPB1) participate, directly or indirectly, in granulostasis, and ensure the timely elimination of defective ribosomal products and other misfolded proteins from SGs. Finally, we discuss recent findings that, in the stress recovery phase, SGs are preferentially disassembled with the assistance of chaperones, and we discuss

  1. Granulostasis: Protein Quality Control of RNP Granules

    PubMed Central

    Alberti, Simon; Mateju, Daniel; Mediani, Laura; Carra, Serena

    2017-01-01

    Ribonucleoprotein (RNP) granules transport, store, or degrade messenger RNAs, thereby indirectly regulating protein synthesis. Normally, RNP granules are highly dynamic compartments. However, because of aging or severe environmental stress, RNP granules, in particular stress granules (SGs), convert into solid, aggregate-like inclusions. There is increasing evidence that such RNA-protein inclusions are associated with several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), fronto-temporal dementia (FTD) and Alzheimer’s disease (AD). Thus, understanding what triggers the conversion of RNP granules into aggregates and identifying the cellular players that control RNP granules will be critical to develop treatments for these diseases. In this review article, we discuss recent insight into RNP and SG formation. More specifically, we examine the evidence for liquid-liquid phase separation (LLPS) as an organizing principle of RNP granules and the role of aggregation-prone RNA-binding proteins (RBPs) in this process. We further discuss recent findings that liquid-like SGs can sequester misfolded proteins, which promote an aberrant conversion of liquid SGs into solid aggregates. Importantly, very recent studies show that a specific protein quality control (PQC) process prevents the accumulation of misfolding-prone proteins in SGs and, by doing so, maintains the dynamic state of SGs. This quality control process has been referred to as granulostasis and it relies on the specific action of the HSPB8-BAG3-HSP70 complex. Additional players such as p97/valosin containing protein (VCP) and other molecular chaperones (e.g., HSPB1) participate, directly or indirectly, in granulostasis, and ensure the timely elimination of defective ribosomal products and other misfolded proteins from SGs. Finally, we discuss recent findings that, in the stress recovery phase, SGs are preferentially disassembled with the assistance of chaperones, and we discuss

  2. Amylase activity in substrate deficiency aerobic granules.

    PubMed

    Lee, Chuen-Chi; Lee, Duu-Jong; Lai, Juin-Yih

    2009-01-01

    Immunohistochemical staining was applied together with the multicolor fluorescent scheme to demonstrate the amylase activity for polysaccharide hydrolysis in stored or starved aerobic granules that are in substrate deficiency. If sufficient nutrients were present, alpha-amylase and beta-amylase were found close to the surface layer of the original granules. Following storage or starvation during which most external nutrients were depleted, the alpha-amylase and beta-amylase were distributed over the entire granule interior, suggesting endogenous respiration at the core of the granule. In particular, the fluorescent intensities of alpha-amylase and beta-amylase were enriched 5-20 microm from the edge of the internal cavity, suggesting the strong correlation between polysaccharide hydrolysis and the formation of interior cavities. The secreted amylase was located near the living cells, suggesting that the polysaccharide hydrolysis is restricted to local environment that occurs near the functional strains. Internal hydrolysis within the core, for the case of both proteins and polysaccharides should correspond in principle to the loss of granule stability.

  3. Denitrification in USB reactor with granulated biomass.

    PubMed

    Pagácová, P; Galbová, K; Drtil, M; Jonatová, I

    2010-01-01

    Denitrification of low concentrations of NO(3)-N (20 mg L(-1)), with methanol as an organic carbon source (COD:NO(3)-N=6) in laboratory upflow sludge bed reactor (USB), was tested as a possibility for wastewater post-treatment. By gradual increase of volumetric loading (Bv) and hydraulic loading (gamma), anoxic biomass spontaneously granulated out even from flocculate activated sludge and from anaerobic granulated sludge as well. Anaerobic granulated biomass derived from high-rate anaerobic IC reactor was a far better inoculum for anoxic granulation and for denitrification in the USB reactor. The maximum level of Bv and gamma was remarkably higher with the use of anaerobic granulated inoculum, (19-22 kg COD m(-3)d(-1); 3.2-3.7 kg NO(3)-Nm(-3)d(-1); 2.8-3.2m(3)m(-2)h(-1); SVI=15 mL g(-1)) in comparison to inoculum from flocculate activated sludge (4.2-8.1 kg CO Dm(-3)d(-1); 0.7-1.4 kg NO(3)-Nm(-3)d(-1); 0.7-1.15m(3)m(-2)h(-1); SVI=40-95 mL g(-1)).

  4. Granulation in saturnian rings and atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G. G.

    2008-09-01

    The third theorem of the wave planetary tectonics [1-3 & others] states: "Celestial bodies are granular". It means that inertia-gravity waves appearing in bodies due to their movements in non-circular keplerian orbits and propagating in them in four interfering orthogonal and diagonal directions produce tectonic granules. They are of three kinds: uprising (+), subsiding (-) and neutral (0). Their sizes are inversely proportional to bodies orbital frequencies. Higher frequency - smaller granule, lower frequency - larger granule. The inertia-gravity waves warp all spheres of celestial bodies: solid, liquid, gaseous, and act in stars, planets, asteroids, comets and satellites. The Cassini data provide numerous excellent images of saturnian rings and show that wave processes are ordinary also in them - in disperse solid environment. To illustrate dependence between orbital frequencies and granule sizes we provide the following geometrical representation of the planetary row starting from the solar photosphere also having a certain orbital frequency about the center of the Solar system (Fig. 1). This row can be extended in domain of the outer planets by the same algorithm: Jupiter 3πR, Saturn 7.5πR, Uranus 21πR, Neptune 41πR, Pluto 62πR. One cannot directly observe these huge waves in the planets but they are needed for wave modulation procedures very important for satellites and rings having two orbital frequencies: around the star and planets. A recent support for the wave structurization in the Solar system came from Saturn where 22 year long ground-based temperature observations discovered a wave-like oscillation: hotcold pattern switches every Saturn half-year = 15 Earth's years [4]. Like in the radio-wave physics the lower orbiting frequency of the Saturn's system around Sun modulates the higher orbiting frequencies of the system satellites, rings and the planet's upper atmosphere about the Saturn `s system center. . The higher frequency is multiplied and

  5. Identification of surfactants emerged in aerobic granulation.

    PubMed

    Wang, Zhiping; Li, Bing; Zhang, Tong

    2011-01-01

    In this study, aerobic granules were cultivated in sequencing batch reactors with activated sludge as the seed. The reactors were operated for 12 h per cycle with the organic loading rate (OLR) increasing in double stepwise from 0.5 to 4.0 g COD L⁻¹d⁻¹. Within the 40 d running, black granules with regular and smooth morphology were cultivated, which had high wet density and high settling velocity. During the granulation process, foams emerged and disappeared in the reactor, coinciding with the proliferation of filamentous microorganisms in the granules, implying that surfactants might exist and play an important role in the granulation. Using ultra performance liquid chromatography-tandem mass spectrometry, the surfactants were identified as homologous compounds of polyethylene glycol (PEG) with molecular weights ranging mainly from 100 to 500 Da. Their general formulas were proposed as HO-[CH₂-CH₂-O](n)-H. The source of PEG still needs further investigation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Coupling autotrophic sulfide mineral weathering with dolomite dissolution in a subglacial ecosystem

    NASA Astrophysics Data System (ADS)

    Boyd, E. S.; Hamilton, T. L.; Havig, J. R.; Lange, R.; Murter, E.; Skidmore, M. L.; Peters, J.; Shock, E.

    2013-12-01

    Evidence in the rock record suggests that glaciers have been present and covered a significant portion of the Earth's surface since the putative Mozaan Glaciation (circa 2.9 Ga) and were demonstrated recently to host active microbial communities that impact local and global biogeochemical cycles. In the present study, we applied a microcosm-based radioisotopic biocarbonate tracer approach to quantify rates of inorganic carbon assimilation in sediments sampled from beneath Robertson Glacier (RG), Alberta, Canada at 4°C. Rates of inorganic carbon assimilation were stimulated by the addition of ammonium and phosphate, suggesting that these nutrients might be of limited supply in the subglacial environment or, in the case of ammonia, might be serving as a source of reductant fueling inorganic carbon fixation. Geochemical analyses were used to assess the potential redox couples that might be fueling autotrophic activity. The difference in the concentration of sulfate (2.4 mM) in unamended microcosm fluids when compared to fluids sampled from killed controls following 180 days incubation suggests that inorganic carbon assimilation in microcosms is driven by microbial populations involved in the oxidation of mineral sulfides, most likely pyrite. Amendment of microcosms with 1 mM ammonia led to near stoichiometric production of nitrate (~890 μM) and lower production of sulfate (~1.5 mM), indicating that the enhanced activity observed in ammonia treated microcosms is likely due to the stimulation of autotrophic ammonia oxidizing populations. The isotopic composition of dissolved organic carbon in subglacial meltwaters ranged was -24.40 ‰ versus VPDB, which is consistent with a source for this organic carbon via the activity of autotrophs that use the Calvin cycle of inorganic carbon fixation. Quantification and sequencing of transcripts of Calvin cycle biomarker genes (ribulose-1,5 bisphosphate carboxylase/oxygenase, encoded by cbbL) suggest the presence of a ubiquitous

  7. Microbial selection pressure is not a prerequisite for granulation: dynamic granulation and microbial community study in a complete mixing bioreactor.

    PubMed

    Zhou, Dandan; Niu, Shu; Xiong, Yongjiao; Yang, Yang; Dong, Shuangshi

    2014-06-01

    Microbial selection pressure is traditionally supposed as a prerequisite for aerobic granulation. This work gives a different insight on this issue. Fluorescent microspheres were used to label the flocculent biomass granulation for a period of 47days in a continuous-flow bioreactor. Analysis of the distribution of fluorescent microspheres in granules revealed that the terminal phase of granulation is in a dynamic steady state, where bioflocs detach, collide and aggregate randomly. This revealed that the un-granulated biomass was the result of the dynamic aggregation and breakage, rather than the microbial species unable to be granulated. Furthermore, denaturing gradient gel electrophoresis (DGGE) profile and UPGMA dendrogram results showed similar microbial communities during the granulation. To sum up, microbial selection pressure was not a prerequisite for aerobic granulation from both of the dynamic granulation steps and molecular biology aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control.

    PubMed

    Wei, Yangyang; Dai, Ji; Mackey, Hamish R; Chen, Guang-Hao

    2017-10-01

    Ferric iron is widely dosed in wastewater treatment plants dealing with sulfide for septicity control, which generates a great amount of iron-rich chemical sludge that is challenging and costly to dispose. This study investigates the feasibility of using this iron sludge as the electron donor for autotrophic denitrification, not only realizing high nitrogen removal efficiency without additional carbon source requirement, but also partially mitigating iron-rich chemical sludge disposal and reduce sludge production by enriching low-yield autotrophic denitrifiers in the system. Both batch tests and performance monitoring of a lab-scale up-flow anaerobic sludge blanket reactor with a more than 300 days of operation were conducted. All the results confirmed the feasibility of using iron sludge as electron donor for autotrophic denitrification. The nitrate reduction rate with iron sludge was highly influenced by the type of ferrous electron donor and the electron donor/acceptor ratio. Ferrous hydroxide had significantly higher nitrate reduction rate than ferrous sulfide at the same electron donor/acceptor ratio. The nitrate reduction rate also accelerated with the increase of the electron donor/acceptor ratio. However, if the total surface area of the iron sludge is considered for comparison, it was shown that ferrous hydroxide and ferrous sulfide provided similar nitrate reduction rates of around 0.02 mmol N/m(2)/d in this study, indicating total surface area would be the key parameter for denitrification efficiency for the solid phase electron donor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effects of hydrogen partial pressure on autotrophic growth and product formation of Acetobacterium woodii.

    PubMed

    Kantzow, Christina; Weuster-Botz, Dirk

    2016-08-01

    Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.

  10. Autotrophic and heterotrophic denitrification for simultaneous removal of nitrogen, sulfur and organic matter.

    PubMed

    Guerrero, Lorna; Aguirre, Juan P; Muñoz, Maria A; Barahona, Andrea; Huiliñir, Cesar; Montalvo, Silvio; Borja, Rafael

    2016-07-02

    The aim of this investigation was to assess the startup and operation of a laboratory-scale hybrid UASB-Anaerobic Filter Reactor (UASFB) of 1 L volume, kept at 30°C, in order to carry out a simultaneous autotrophic and heterotrophic denitrification process. First, the heterotrophic and autotrophic populations were separately enriched, with specific cultures and subsequently the UASFB was inoculated with 2 g L(-1) of volatile suspended solids (VSS), with a ratio of 1.5:1 (autotrophs: heterotrophs). The influent or synthetic wastewater used was composed of: Na2S2O3·5H2O, CH3COOK, NaNO3, NaHCO3, K2HPO4, NH4Cl and saline solution. The concentrations varied depending on the organic loading rate (OLR), nitrogen loading rate (NLR) and sulfur loading rate (SLR) applied. In the UASFB reactor, two experimental conditions were tested and assessed: (i) COD/N ratio of 3.6 and SLR of 0.75 kg S m(-3) d(-1); and (ii) COD/N ratio of 5.8 and SLR of 0.25 kg S m(-3) d(-1). The results obtained demonstrated that an inoculum coming from an anaerobic reactor was able to carry out the process, obtaining a maximum nitrate removal of 85.3% in the first stage of operation and 99.5% in the second stage. The recovery of sulfur in form of sulfate in the effluent did not present a tendency to stabilize during the measured time, with a maximum thiosulfate removal of 32.5%, when the SLR was lowered to 0.25 kg S m(-3) d(-1). The maximum organic matter elimination, measured as COD, was 75.8%, which indicates the relatively good performance and behavior of the heterotrophic microorganisms.

  11. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.

    PubMed

    Lu, Lu; Jia, Zhongjun

    2013-06-01

    The metabolic traits of ammonia-oxidizing archaea (AOA) and bacteria (AOB) interacting with their environment determine the nitrogen cycle at the global scale. Ureolytic metabolism has long been proposed as a mechanism for AOB to cope with substrate paucity in acid soil, but it remains unclear whether urea hydrolysis could afford AOA greater ecological advantages. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, here we show that autotrophic ammonia oxidation in two acid soils was predominately driven by AOA that contain ureC genes encoding the alpha subunit of a putative archaeal urease. In urea-amended SIP microcosms of forest soil (pH 5.40) and tea orchard soil (pH 3.75), nitrification activity was stimulated significantly by urea fertilization when compared with water-amended soils in which nitrification resulted solely from the oxidation of ammonia generated through mineralization of soil organic nitrogen. The stimulated activity was paralleled by changes in abundance and composition of archaeal amoA genes. Time-course incubations indicated that archaeal amoA genes were increasingly labelled by (13) CO2 in both microcosms amended with water and urea. Pyrosequencing revealed that archaeal populations were labelled to a much greater extent in soils amended with urea than water. Furthermore, archaeal ureC genes were successfully amplified in the (13) C-DNA, and acetylene inhibition suggests that autotrophic growth of urease-containing AOA depended on energy generation through ammonia oxidation. The sequences of AOB were not detected, and active AOA were affiliated with the marine Group 1.1a-associated lineage. The results suggest that ureolytic N metabolism could afford AOA greater advantages for autotrophic ammonia oxidation in acid soil, but the mechanism of how urea activates AOA cells remains unclear. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Autotrophic Ammonia Oxidation at Low pH through Urea Hydrolysis

    PubMed Central

    Burton, Simon A. Q.; Prosser, Jim I.

    2001-01-01

    Ammonia oxidation in laboratory liquid batch cultures of autotrophic ammonia oxidizers rarely occurs at pH values less than 7, due to ionization of ammonia and the requirement for ammonium transport rather than diffusion of ammonia. Nevertheless, there is strong evidence for autotrophic nitrification in acid soils, which may be carried out by ammonia oxidizers capable of using urea as a source of ammonia. To determine the mechanism of urea-linked ammonia oxidation, a ureolytic autotrophic ammonia oxidizer, Nitrosospira sp. strain NPAV, was grown in liquid batch culture at a range of pH values with either ammonium or urea as the sole nitrogen source. Growth and nitrite production from ammonium did not occur at pH values below 7. Growth on urea occurred at pH values in the range 4 to 7.5 but ceased when urea hydrolysis was complete, even though ammonia, released during urea hydrolysis, remained in the medium. The results support a mechanism whereby urea enters the cells by diffusion and intracellular urea hydrolysis and ammonia oxidation occur independently of extracellular pH in the range 4 to 7.5. A proportion of the ammonia produced during this process diffuses from the cell and is not subsequently available for growth if the extracellular pH is less than 7. Ureolysis therefore provides a mechanism for nitrification in acid soils, but a proportion of the ammonium produced is likely to be released from the cell and may be used by other soil organisms. PMID:11425707

  13. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification.

    PubMed

    Kleerebezem, R; Mendez, R

    2002-01-01

    In this paper we describe an alternative flow-chart for full treatment of wastewaters rich in organic substrates, ammonia (or organic nitrogen), and sulfate, such as those generated in fish cannery industries. Biogas generated during anaerobic pretreatment of these wastewaters is rich in hydrogen sulfide that needs to be removed to enable application of the biogas. Nitrogen elimination is traditionally achieved by subsequent nitrification and denitrification of the effluent of the anaerobic reactor. Alternatively, the hydrogen sulfide in the biogas can be applied as an electron donor in an autotrophic post-denitrification step. In order to study whether sufficient hydrogen sulfide containing biogas for denitrification was produced in the anaerobic reactor, the biogas composition as a function of the anaerobic reactor-pH was estimated based on a typical wastewater composition and chemical equilibrium equations. It is demonstrated that typical sulfate and nitrogen concentrations in fish cannery wastewater are highly appropriate for application of autotrophic post-denitrification. A literature review furthermore suggested that the kinetic parameters for autotrophic denitrification by Thiobacillus denitrificans represent no bottleneck for its application. Initial experimental studies in fixed-film reactors were conducted with sodium sulfide and nitrate as an electron donor-acceptor couple. The results revealed that only moderate volumetric treatment capacities (< 1 g-NO3- N l(-1) day(-1)) could be achieved. Mass balances suggested that incomplete sulfide oxidation to elemental sulfur occurred, limiting biomass retention and the treatment capacity of the reactor. Future research should clarify the questions concerning product formation from sulfide oxidation.

  14. Effects of forest age on soil autotrophic and heterotrophic respiration differ between evergreen and deciduous forests.

    PubMed

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Yang, Yuanhe; Zeng, Hui

    2013-01-01

    We examined the effects of forest stand age on soil respiration (SR) including the heterotrophic respiration (HR) and autotrophic respiration (AR) of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ~15, ~25, and ~35-year-old Pinus sylvestris var. mongolica (Mongolia pine) and Larix principis-rupprechtii (larch) in a forest-steppe ecotone, northern China (June 2006 to October 2009). We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST), soil water content (SWC) and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator). Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ~15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ~35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required.

  15. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products.

    PubMed

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-11-04

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism.

  16. Analysis of nitrification in agricultural soil and improvement of nitrogen circulation with autotrophic ammonia-oxidizing bacteria.

    PubMed

    Matsuno, Toshihide; Horii, Sachie; Sato, Takanobu; Matsumiya, Yoshiki; Kubo, Motoki

    2013-02-01

    Accumulations of inorganic nitrogen (NH₄⁺, NO₂⁻, and NO₃⁻) were analyzed to evaluate the nitrogen circulation activity in 76 agricultural soils. Accumulation of NH₄⁺ was observed, and the reaction of NH₄⁺→ NO₂⁻ appeared to be slower than that of NO₂⁻ → NO₃⁻ in agricultural soil. Two autotrophic and five heterotrophic ammonia-oxidizing bacteria (AOB) were isolated and identified from the soils, and the ammonia-oxidizing activities of the autotrophic AOB were 1.0 × 10³-1.0 × 10⁶ times higher than those of heterotrophic AOB. The relationship between AOB number, soil bacterial number, and ammonia-oxidizing activity was investigated with 30 agricultural soils. The ratio of autotrophic AOB number was 0.00032-0.26% of the total soil bacterial number. The soil samples rich in autotrophic AOB (>1.0 × 10⁴ cells/g soil) had a high nitrogen circulation activity, and additionally, the nitrogen circulation in the agricultural soil was improved by controlling the autotrophic AOBs.

  17. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    PubMed Central

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna; Bonde, Ida; Zhang, Tian

    2015-01-01

    Acetogens are efficient microbial catalysts for bioprocesses converting C1 compounds into organic products. Here, an adaptive laboratory evolution approach was implemented to adapt Sporomusa ovata for faster autotrophic metabolism and CO2 conversion to organic chemicals. S. ovata was first adapted to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol was increased 5-fold. Furthermore, acetate production rate from CO2 with an electrode serving as the electron donor was increased 6.5-fold confirming that the acceleration of the autotrophic metabolism of the adapted strain is independent of the electron donor provided. Whole-genome sequencing, transcriptomic, and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results demonstrate that an efficient strategy to increase rates of CO2 conversion in bioprocesses like microbial electrosynthesis is to evolve the microbial catalyst by adaptive laboratory evolution to optimize its autotrophic metabolism. PMID:26530351

  18. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    PubMed

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling.

  19. Removal of triclosan in nitrifying activated sludge: effects of ammonia amendment and bioaugmentation.

    PubMed

    Lee, Do Gyun; Cho, Kun-Ching; Chu, Kung-Hui

    2015-04-01

    This study investigated two possible strategies, increasing ammonia oxidation activity and bioaugmenting with triclosan-degrader Sphingopyxis strain KCY1, to enhance triclosan removal in nitrifying activated sludge (NAS). Triclosan (2 mg L(-1)) was removed within 96-h in NAS bioreactors amended with 5, 25 and 75 mg L(-1) of ammonium (NH4-N). The fastest triclosan removal was observed in 25 mg NH4-NL(-1) amended-bioreactors where high ammonia oxidation occurred. Inhibition of ammonia oxidation and slower triclosan removal were observed in 75 mg NH4-NL(-1) amended-bioreactors. Triclosan removal was correlated to the molar ratio of the amount of nitrate produced to the amount of ammonium removed. Bioaugmentation with strain KCY1 did not enhance triclosan removal in the bioreactors with active ammonia oxidation. Approximately 36-42% and 59% of triclosan added were removed within 24-h by ammonia-oxidizing bacteria and unknown triclosan-degrading heterotrophs, respectively. The results suggested that increasing ammonia oxidation activity can be an effective strategy to enhance triclosan removal in NAS.

  20. Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms.

    PubMed

    Matos, Maria; Pereira, Maria A; Parpot, Pier; Brito, António G; Nogueira, Regina

    2014-12-01

    The present work aims to evaluate the bacterial composition and activity (carbon and nitrogen removal) of nitrifying biofilms exposed to 50 μg L(-1) of tetracycline. The tetracycline removal efficiency and the occurrence of tetracycline resistance (tet) genes were also studied. Two sequencing batch biofilm reactors (SBBRs) fed with synthetic wastewater were operated without (SBBR1) and with (SBBR2) the antibiotic. Both SBBRs showed similar organic matter biodegradation and nitrification activity. Tetracycline removal was about 28% and biodegradation was probably the principal removal mechanism of the antibiotic. Polymerase chain reaction-denaturing gradient gel electrophoresis analysis of the bacterial community showed shifts leading to not only the fading of some ribotypes, but also the emergence of new ones in the biofilm with tetracycline. The study of the tet genes showed that tet(S) was only detected in the biofilm with tetracycline, suggesting a relationship between its occurrence and the presence of the antibiotic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of sodium chloride on the two-step kinetics of the nitrifying process.

    PubMed

    Sánchez, Omar; Aspé, Estrella; Martí, María C; Roeckel, Marlene

    2004-01-01

    Sodium chloride affects the transformation rate of several compounds in bioreactors. Most authors report a decrease in microorganism activity at increasing salt concentrations. In this work, a kinetic model that relates sodium chloride concentration with the rates of each step of the nitrification process is proposed; thus, the effect of sodium chloride concentration (0 to 60 g/L) on the nitritation and nitratation rates was separately studied. To carry out the independent study of each step, a combination of the respirometric method with sodium azide, an inhibitor of the nitratation step, was performed. The dot-blot hybridization technique with 16S rRNA-targeted probes was used to determine the ammonia-oxidizing and nitrite-oxidizing bacterial fraction, then it was possible to relate the culture's function with its biological composition. Rates of both steps were linearly reduced at increasing salt concentrations: the nitratation rate was more affected than the nitritation rate. Simulations carried out in a nitrifying sequencing batch reactor indicate that nitrite might accumulate at high salt concentrations. Sodium chloride exerts a reversible inhibition on ammonia oxidation and nitrite oxidation.

  2. Overall bacterial community composition and abundance of nitrifiers and denitrifiers in a typical macrotidal estuary.

    PubMed

    Zhu, Weijing; Wang, Cheng; Sun, Faqian; Zhao, Liancheng; Dou, Wenjie; Mao, Zhihua; Wu, Weixiang

    2017-10-01

    Coupled nitrogen cycling processes can alleviate the negative effects of eutrophication caused by excessive nitrogen load in estuarine ecosystems. The abundance and diversity of nitrifiers and denitrifiers across different environmental gradients were examined in the sediment of Hangzhou Bay. Quantitative PCR and Pearson's correlation analyses suggested that the bacterial ammonia-oxidizers (AOB) were the dominant phylotypes capable of ammonia oxidation, while the nirS-encoding denitrifiers predominated in the denitrification process. Simultaneously, nitrite and pH were found to be the two major factors influencing amoA and nir gene abundances, and the distribution of bacterial communities. Moreover, the ratio of nirS/AOB amoA gene abundance showed negative correlation with nitrite concentration. Fluorescence in situ hybridization further demonstrated that AOB and acetate-denitrifying cells were closely connected and formed obvious aggregates in the sediment. Together, all these results provided us a preliminary insight for coupled nitrification-denitrification processes in the sediment of Hangzhou Bay. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Initial and hourly headloss modelling on a tertiary nitrifying wastewater biofiltration plant.

    PubMed

    Bernier, Jean; Rocher, Vincent; Lessard, Paul

    2016-01-01

    The headloss prediction capability of a wastewater biofiltration model is evaluated on data from a full-scale tertiary nitrifying biofilter unit located in the Paris conurbation (Achères, France; 6,000,000 population equivalent). The model has been previously calibrated on nutrient conversion and TSS filtration observations. In this paper the mass of extracted biofilm during biofilter backwash and the headloss value at the start of an operation cycle are first calibrated on sludge production estimations and relative pressure measurements over the year 2009. The calibrated model is then used on two one-month periods in 2012 for which hourly headloss measurements were acquired. The observed trends are correctly predicted for 2009 but the model exhibits some heavy daily variation that is not found in measurements. Hourly predictions stay close to observations, although the model error rises slightly when the headloss does not vary much. The global model shows that both nutrient conversion and headloss build-up can be reasonably well predicted at the same time on a full-scale plant.

  4. Application of high rate nitrifying trickling filters for potable water treatment.

    PubMed

    van den Akker, Ben; Holmes, Mike; Cromar, Nancy; Fallowfield, Howard

    2008-11-01

    The interference of ammonia with chlorination is a prevalent problem encountered by water treatment plants located throughout South East Asia. The efficacy of high rate, plastic-packed trickling filters as a pre-treatment process to remove low concentrations of ammonia from polluted surface water was investigated. This paper presents the findings from a series of pilot experiments, which were designed to investigate the effect of specific conditions-namely low ammonia feed concentrations (0.5-5.0 mg NH(4)-NL(-1)), variations in hydraulic surface load (72.5-145 m(3)m(-2)d(-1)) and high suspended solid loads (51+/-25 mgL(-1))-on filter nitrifying capacity. The distribution of nitrification activity throughout a trickling filter bed was also characterised. Results confirmed that high hydraulic rate trickling filters were able to operate successfully, under ammonia-N concentrations some 10- to 50-fold lower and at hydraulic loading rates 30-100 times greater than those of conventional wastewater applications. Mass transport limitations posed by low ammonia-N concentrations on overall filter performance were insignificant, where apparent nitrification rates (0.4-1.6 g NH(4)-Nm(-2)d(-1)), equivalent to that of wastewater filters were recorded. High inert suspended solid loadings had no adverse effect on nitrification. Results imply that implementation of high rate trickling filters at the front-end of a water treatment train would reduce the ammonia-related chlorine demand, thereby offering significant cost savings.

  5. Predicting N2O emissions from nitrifying and denitrifying biofilms: a modeling study.

    PubMed

    Sabba, Fabrizio; Picioreanu, Cristian; Boltz, Joshua P; Nerenberg, Robert

    2017-02-01

    Wastewater treatment plants can be significant sources of nitrous oxide (N2O), a potent greenhouse gas. While our understanding of N2O emissions from suspended-growth processes has advanced significantly, less is known about emissions from biofilm processes. Biofilms may behave differently due to their substrate gradients and microbial stratification. In this study, we used mathematical modeling to explore the mechanisms of N2O emissions from nitrifying and denitrifying biofilms. Our ammonia-oxidizing bacteria biofilm model suggests that N2O emissions from biofilm can be significantly greater than from suspended-growth systems. The driving factor is the diffusion of hydroxylamine, a nitrification intermediate, from the aerobic to the anoxic regions of the biofilm. The presence of nitrite-oxidizing bacteria further increased emissions. For denitrifying biofilms, our results suggest that emissions are generally greater than for suspended-growth systems. However, the magnitude of the difference depends on the bulk dissolved oxygen, chemical oxygen demand, and nitrate concentrations, as well as the biofilm thickness. Overall, the accumulation and diffusion of key intermediates, i.e. hydroxylamine and nitrite, distinguish biofilms from suspended-growth systems. Our research suggests that the mechanisms of N2O emissions from biofilms are much more complex than suspended-growth systems, and that emissions may be higher in many cases.

  6. Free chlorine and monochloramine application to nitrifying biofilm: comparison of biofilm penetration, activity, and viability.

    PubMed

    Lee, Woo Hyoung; Wahman, David G; Bishop, Paul L; Pressman, Jonathan G

    2011-02-15

    Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct biofilm monochloramine measurement. This study compared free chlorine and monochloramine biofilm penetration into an undefined mixed-culture nitrifying biofilm by use of microelectrodes and assessed the subsequent effect on biofilm activity and viability by use of dissolved oxygen (DO) microelectrodes and confocal laser scanning microscopy (CLSM) with LIVE/DEAD BacLight. For equivalent chlorine concentrations, monochloramine initially penetrated biofilm 170 times faster than free chlorine, and even after subsequent application to a monochloramine penetrated biofilm, free chlorine penetration was limited. DO profiles paralleled monochloramine profiles, providing evidence that either the biofilm was inactivated with monochloramine's penetration or its persistence reduced available substrate (free ammonia). While this research clearly demonstrated monochloramine's greater penetration, this penetration did not necessarily translate to immediate viability loss. Even though free chlorine's penetration was limited compared to that of monochloramine, it more effectively (on a cell membrane integrity basis) inactivated microorganisms near the biofilm surface. Limited free chlorine penetration has implications when converting to free chlorine in full-scale chloraminated systems in response to nitrification episodes.

  7. Measuring and modeling the oxygen profile in a nitrifying Moving Bed Biofilm Reactor.

    PubMed

    Masić, Alma; Bengtsson, Jessica; Christensson, Magnus

    2010-09-01

    In this paper we determine the oxygen profile in a biofilm on suspended carriers in two ways: firstly by microelectrode measurements and secondly by a simple mathematical model. The Moving Bed Biofilm Reactor is well-established for wastewater treatment where bacteria grow as a biofilm on the protective surfaces of suspended carriers. The flat shaped BiofilmChip P was developed to allow good conditions for transport of substrates into the biofilm. The oxygen profile was measured in situ the nitrifying biofilm with a microelectrode and it was simulated with a one-dimensional mathematical model. We extended the model by adding a CSTR equation, to connect the reactor to the biofilm through the boundary conditions. We showed the dependence of the thickness of the mass transfer boundary layer on the bulk flow rate. Finally, we estimated the erosion parameter lambda to increase the concordance between the measured and simulated profiles. This lead to a simple empirical relationship between lambda and the flow rate. The data gathered by in situ microelectrode measurements can, together with the mathematical model, be used in predictive modeling and give more insight in the design of new carriers, with the ambition of making process operation more energy efficient. Copyright 2010 Elsevier Inc. All rights reserved.

  8. A new process for enriching nitrifiers in activated sludge through separate heterotrophic wasting from biofilm carriers.

    PubMed

    Parker, Denny S; Rusten, Bjørn; Wien, Asgeir; Siljudalen, Jon G

    2002-01-01

    A new process, the biofilm-activated sludge innovative nitrification (BASIN) process, consisting of a moving-bed biofilm reactor (MBBR) with separate heterotrophic wasting, followed by an activated-sludge process, has been proposed to reduce the volumetric requirements of the activated-sludge process for nitrification. The basic principle is to remove chemical oxygen demand on the biofilm carriers by heterotrophic organisms and then to waste a portion of the heterotrophic biomass before it can be released into the activated-sludge reactor. By this means, the amount of heterotrophic organisms grown in the activated-sludge reactor is reduced, thereby reducing the volume of that tank needed for nitrification. For nitrification applications, the simplest method for stripping biomass was to use an in-tank technique using high shearing rates with aeration. Bench-scale testing showed sludge yields in the BASIN process were one-half of that in a control activated-sludge process and twice that of a process line with intermediate settling between the MBBR and activated-sludge stage. Critical washout solids retention times for nitrifiers were the same for all three lines, so activated-sludge volumes for the BASIN process could be reduced by 50% compared with the control. Originally conceived process concepts for the BASIN process were confirmed by the experimental work.

  9. Performance of a pilot-scale nitrifying trickling filter treating municipal aerated lagoon effluent.

    PubMed

    Coats, Erik R; Watson, Ben; Lee, Kiersten; Hammer, Matt

    2015-01-01

    Colfax, WA, operates an aerated lagoon to achieve compliance with its National Pollutant Discharge Elimination System (NPDES) permit, which currently requires biochemical oxygen demand (BOD) and total suspended solids (TSS) removal. However, ammonia removal may soon be required, and Colfax is considering a nitrifying trickling filter (NTF) that would allow them to also maintain the lagoons. To obtain data from which to ultimately design a full-scale system, a four-year NTF pilot study was performed. Results demonstrated that an NTF would be an effective, reliable NH3 removal method and could produce effluent NH3 concentrations < 1.0 mg/L. NTF performance was characterized by zero- and first-order kinetics; zero-order rates correlated with influent NH3 concentrations and mass load. Utilizing data from these investigations it was determined that the pilot NTF could be reduced by 19%, which demonstrates the value of pilot testing. Finally, pilot data was evaluated to provide a data set that will be useful to engineers designing full-scale NTFs.

  10. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN < 0.5 mg/L, NO2(-) < 0.1 mg/L), which demonstrated that both the NA and FG could provide non-toxic water environment for fish culture. Nitrous oxide conversion ratio of the control, NA, and FG were 0.8, 1.2, and 1.7%, respectively, indicating that media-based aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics.

  11. Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge.

    PubMed

    Ouyang, Fan; Zhai, Hongyan; Ji, Min; Zhang, Hongyang; Dong, Zhao

    2016-01-15

    Cu inhibition of gene transcription in ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were rarely studied simultaneously in activated sludge. In this study, the transcription of amoA (for AOB) and nxrB (for NOB), nitrification efficiencies, AOB and NOB respiratory rates, and Cu distribution were simultaneously investigated. Modeling the relationships among the aforementioned parameters revealed that in complex activated sludge systems, nitrification efficiency was an insensitive parameter for showing Cu inhibition. Respiration activities and gene transcription were sensitive to Cu and positively correlated with each other. The transcription of amoA and nxrB genes indicated that the Cu had different inhibitory effects on AOB and NOB. AOB were more susceptible to Cu toxicity than NOB. Moreover, the degree of Cu inhibition on ammonia oxidation was greater than on nitrite oxidation. The analysis and related modeling results indicate that the inhibitory actions of Cu on nitrifying bacteria could mainly be attributed to intracellular Cu. The findings from this study provide insight into the mechanism of Cu inhibition on nitrification in complex activated sludge systems.

  12. Microalgae as part of the autotrophic component of life support systems for future planetary bases

    NASA Astrophysics Data System (ADS)

    Sychev, Vladimir; Levinskikh, Margarita

    Research and development of human life support systems incorporating biospheric components performed in the USSR and Russia for over 50 years resulted in a well- structured and rational step-by-step approach to this area of activities. The development of biological life support systems (BLSS) was based on the theory of biocenology advanced by V.N. Sukachev, according to which organic matter turnover is a result of combined activities of plants, animals and microorganisms. Hence, a BLSS with its semi-closed matter turnover needs to incorporate all the components of natural ecosystems, i.e., plants (photoautotrophic organisms), animals, including humans, and microorganisms (heterotrophic organisms). The photoautotrophic component of the BLSS designed to support humans should meet a number of specific requirements, the most important of which are: - high productivity - stability of functional parameters within their normal fluctuation ranges - compatibility with other system components to preclude additional load on them - minimum of un-utilizable compounds in the material balance of the component. The photosynthetic component may consist of lower and higher plants, which may function separately or jointly. In either case, microalgae will play a key role, as they do on Earth, in the production of organic compounds and oxygen as well as in the support of BLSS reliability. The construction of a planetary base begins with the assembly of major engineering facilities whereas the construction of a BLSS starts after the assembly is complete and the base interior is fully separated from the outside environment. At early stages of base operation the autotrophic component of the system will consist of algae alone, which will provide photosynthetic regeneration of air and water. At later stages the autotrophic component will progress from lower to higher plants; when the greenhouses reach adequate sizes, higher plants will occupy the major portion of the autotrophic component

  13. Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules.

    PubMed

    Wang, Jianfang; Qian, Feiyue; Liu, Xiaopeng; Liu, Wenru; Wang, Shuyong; Shen, Yaoliang

    2016-11-01

    The aim of this study was to develop a simple operation strategy for the cultivation of partial nitrification granules (PNGs) treating an autotrophic medium. For this strategy, aerobic granular sludge adapted to high concentration organics removal was seeded in a sequencing batch reactor (SBR) with a height/diameter ratio of 3.8, and the ratio of organics to the ammonia nitrogen-loading rate (C/N ratio) in the influent was employed as the main control parameter to start up the partial nitrification process. After 86 days of operation, the nitrite accumulation rate reached 1.44 kg/(m(3) day) in the SBR, and the removal efficiency of ammonia nitrogen (NH4(+)-N) was over 95 %. The PNGs showed a dense and compact structure, with an excellent settling ability, a typical extracellular polymeric substance (EPS) composition, and a high ammonia oxidation activity. The high-throughput pyrosequencing results indicated that the microbial community structure in the granules was significantly influenced by the C/N ratio, and ammonia-oxidizing bacteria (AOB), including the r-strategist Nitrosomonas and k-strategist Nitrosospira genre, which accounted for approximately 40 % of the total biomass at the end of operation. The effective suppression of nitrite-oxidizing bacteria (NOB) growth was attributed to oxygen competition on the granular surface among functional bacteria, as well as the high free ammonia or free nitrous acid concentrations during the aeration period.

  14. Antimicrobial-Coated Granules for Disinfecting Water

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  15. Measuring stellar granulation during planet transits

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Caldas, A.; Selsis, F.; Leconte, J.; Von Paris, P.; Bordé, P.; Magic, Z.; Collet, R.; Asplund, M.

    2017-01-01

    Context. Stellar activity and convection-related surface structures might cause bias in planet detection and characterization that use these transits. Surface convection simulations help to quantify the granulation signal. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger grid and synthetic images computed with the radiative transfer code Optim3D to model the transits of three prototype planets: a hot Jupiter, a hot Neptune, and a terrestrial planet. Methods: We computed intensity maps from RHD simulations of the Sun and a K-dwarf star at different wavelength bands from optical to far-infrared that cover the range of several ground- and space-based telescopes which observe exoplanet transits. We modeled the transit using synthetic stellar-disk images obtained with a spherical-tile imaging method and emulated the temporal variation of the granulation intensity generating random images covering a granulation time-series of 13.3 h. We measured the contribution of the stellar granulation on the light curves during the planet transit. Results: We identified two types of granulation noise that act simultaneously during the planet transit: (i) the intrinsic change in the granulation pattern with timescale (e.g., 10 min for solar-type stars assumed in this work) is smaller than the usual planet transit ( hours as in our prototype cases); and (ii) the fact that the transiting planet occults isolated regions of the photosphere that differ in local surface brightness as a result of convective-related surface structures. First, we showed that our modeling approach returns granulation timescale fluctuations that are comparable with what has been observed for the Sun. Then, our statistical approach shows that the granulation pattern of solar and K-dwarf-type stars have a non-negligible effect of the light curve depth during the transit, and, consequentially on the determination of the planet transit parameters such as the

  16. Chromospheric impact of an exploding solar granule

    NASA Astrophysics Data System (ADS)

    Fischer, C. E.; Bello González, N.; Rezaei, R.

    2017-06-01

    Context. Observations of multi-wavelength and therefore height-dependent information following events throughout the solar atmosphere and unambiguously assigning a relation between these rapidly evolving layers are rare and difficult to obtain. Yet, they are crucial for our understanding of the physical processes that couple the different regimes in the solar atmosphere. Aims: We characterize the exploding granule event with simultaneous observations of Hinode spectroplarimetric data in the solar photosphere and Hinode broadband Ca II H images combined with Interface Region Imaging Spectrograph (IRIS) slit spectra. We follow the evolution of an exploding granule and its connectivity throughout the atmosphere and analyze the dynamics of a magnetic element that has been affected by the abnormal granule. Methods: In addition to magnetic flux maps we use a local correlation tracking method to infer the horizontal velocity flows in the photosphere and apply a wavelet analysis on several IRIS chromospheric emission features such as Mg II k2v and Mg II k3 to detect oscillatory phenomena indicating wave propagation. Results: During the vigorous expansion of the abnormal granule we detect radially outward horizontal flows, causing, together with the horizontal flows from the surrounding granules, the magnetic elements in the bordering intergranular lanes to be squeezed and elongated. In reaction to the squeezing, we detect a chromospheric intensity and velocity oscillation pulse which we identify as an upward traveling hot shock front propagating clearly through the IRIS spectral line diagnostics of Mg II h&k. Conclusions: Exploding granules can trigger upward-propagating shock fronts that dissipate in the chromosphere. Movies associated to Figs. A.1 and A.2 are available in electronic form at http://www.aanda.org

  17. The granulation of binary mixtures: the effects of the properties of the component powders on granules.

    PubMed

    Opakunle, W O; Spring, M S

    1976-12-01

    Sulphanilamide and citric acid individually and in various proportions with lactose, have been granulated by massing and screening. There was an optimum blend, that produced granules of maximum mean size and strength, for each binary system examined. The proportion of the components of this optimal blend was dependent on the physical properties of the second component in a mixture with lactose. Results from three systems, lactose:boric acid, lactose:sulphanilamide and lactose:citric acid indicate that although part dissolution of powder during granulation is a factor affecting granule properties, in some systems other physical properties of the second component may become dominant. It is suggested that the combined effect of cohesiveness and wettability of the powders may make the major contribution to granule strength with the sulphanilamide systems. The ultimate mean granule size produced is determined by the wettability or solubiluty of the powders, or both, in all cases examined. The great affinity of citric acid for aqueous binder solution was the dominant factor determining the properties of granules prepared from lactose:citric acid mixtures.

  18. Process for producing zirconium based granules

    SciTech Connect

    Jade, S.S.

    1990-05-22

    This patent describes a process for the production f amorphous zirconium based granules. It comprises: adding about 2--15 wt % of a suitable phase stabilizer to an aqueous solutio, based upon the total weight of ZrO{sub 2} in solution, to produce an aqueous solution having a pH in the range of about 4 to 7 comprising a zirconium based complex and phase stabilizer and thereafter; drying the aqueous solution comprising the zirconium based complex and the phase stabilizer at a temperature below about 180{degrees} C. for a time sufficient to evaporate the aqueous solution thereby forming amorphous zirconium based granules containing the phase stabilizer.

  19. Stratospheric aerosols - Undissolved granules and physical state

    NASA Technical Reports Server (NTRS)

    Farlow, N. H.; Hayes, D. M.; Lem, H. Y.

    1977-01-01

    The physical state of stratospheric aerosol particles was studied along with the nature of included undissolved granules. It was found that: (1) undissolved granules are present in only a third of the aerosol particles and are not always associated with a slurry matrix, (2) those undissolved particles usually contain only sulfur and sodium or undetectable light elements, (3) all stratospheric aerosols have a similar appearance: a volatile slurry mixture of crystalline-like material in a liquid matrix, and (4) variations in the relative amounts of liquid and crystalline materials at different times cause variations in particle spreading.

  20. Formulation of custom sized LX-15 granules

    SciTech Connect

    Stull, T.W.

    1980-04-01

    LX-15 is a booster explosive formulation consisting of 95% HNS I and 5% Kel F-800 developed by Lawrence Livermore Laboratory. The purpose of this effort was to develop formulation techniques for the production of custom size granules that are amenable for processing in automatic weighing equipment. This report details processes whereby 0.4 and 1.5 kg size batches are produced, meeting those requirements. Efforts to date have found that granule size is dependent on batch/vessel size, water-to-solvent ratio and the degree of vessel agitation.

  1. Continuous melt granulation: Influence of process and formulation parameters upon granule and tablet properties.

    PubMed

    Monteyne, Tinne; Vancoillie, Jochem; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-01

    The pharmaceutical industry has a growing interest in alternative manufacturing models allowing automation and continuous production in order to improve process efficiency and reduce costs. Implementing a switch from batch to continuous processing requires fundamental process understanding and the implementation of quality-by-design (QbD) principles. The aim of this study was to examine the relationship between formulation-parameters (type binder, binder concentration, drug-binder miscibility), process-parameters (screw speed, powder feed rate and granulation temperature), granule properties (size, size distribution, shape, friability, true density, flowability) and tablet properties (tensile strength, friability, dissolution rate) of four different drug-binder formulations using Design of experiments (DOE). Two binders (polyethylene glycol (PEG) and Soluplus®) with a different solid state, semi-crystalline vs amorphous respectively, were combined with two model-drugs, metoprolol tartrate (MPT) and caffeine anhydrous (CAF), both having a contrasting miscibility with the binders. This research revealed that the granule properties of miscible drug-binder systems depended on the powder feed rate and barrel filling degree of the granulator whereas the granule properties of immiscible systems were mainly influenced by binder concentration. Using an amorphous binder, the tablet tensile strength depended on the granule size. In contrast, granule friability was more important for tablet quality using a brittle binder. However, this was not the case for caffeine-containing blends, since these phenomena were dominated by the enhanced compression properties of caffeine Form I, which was formed during granulation. Hence, it is important to gain knowledge about formulation behavior during processing since this influences the effect of process parameters onto the granule and tablet properties.

  2. Granule size distributions after twin-screw granulation - Do not forget the feeding systems.

    PubMed

    Meier, R; Thommes, M; Rasenack, N; Moll, K-P; Krumme, M; Kleinebudde, P

    2016-09-01

    The aim of this study was to investigate the influence of qualitatively different powder feeder performances on resulting granule size distributions after twin-screw granulation of a highly drug loaded, hydrophobic mixture and a mannitol powder. It was shown that powder feeder related problems usually cannot be identified by trusting in the values given by the feeder. Therefore, a newly developed model for the evaluation of the performance of powder feeders was introduced and it was tried to connect this model to residence time distributions in twin-screw granulation processes. The influence of feeder performances on resulting granule size distributions varied, depending on the applied screw configuration and the used powder. Regarding the hydrophobic and highly drug loaded formulation, which was granulated at an L/S-ratio of 0.5, a pure conveying screw and a medium kneading configuration, consisting of 60° kneading blocks were negatively influenced by poor feeder settings. For optimal settings more narrow distributions could be obtained. For an extensive kneading configuration good and poor settings resulted in mono-modal granule size distributions but were differing in the overall size. Mannitol, a model substance for a liquid sensitive formulation was granulated at an L/S-ratio of 0.075. It was even more important to maintain optimal feeding as mannitol was highly affected by poor feeder performances. Even an extensive kneading configuration could not level the errors in powder feeder performance, resulting in qualitatively different granule size distributions. The results of this study demonstrate the importance of detailed knowledge about applied feeding systems to gain optimal performance in twin-screw granulation.

  3. Vaccine adjuvants: Tailor-made mast-cell granules

    NASA Astrophysics Data System (ADS)

    Gunzer, Matthias

    2012-03-01

    Mast cells induce protective immune responses through secretion of stimulatory granules. Microparticles modelled after mast-cell granules are now shown to replicate and enhance the functions of their natural counterparts and to direct the character of the resulting immunity.

  4. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions

    NASA Astrophysics Data System (ADS)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ15NNO3), carbon in dissolved inorganic carbon (δ13CDIC), and sulfur in sulfate (δ34SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ13CDIC (from - 7.7‰ to - 12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was - 4.7‰), suggesting the contribution of C of trisodium citrate (δ13C = - 12.4‰). No SO42 - and δ34SSO4 changes were observed. In the AD experiment, clear fractionation of δ13CDIC during DIC consumption (εC = - 7.8‰) and δ34SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN = - 12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  5. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ(15)NNO3), carbon in dissolved inorganic carbon (δ(13)CDIC), and sulfur in sulfate (δ(34)SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ(13)CDIC (from -7.7‰ to -12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was -4.7‰), suggesting the contribution of C of trisodium citrate (δ(13)C=-12.4‰). No SO4(2-) and δ(34)SSO4 changes were observed. In the AD experiment, clear fractionation of δ(13)CDIC during DIC consumption (εC=-7.8‰) and δ(34)SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN=-12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  6. Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode.

    PubMed

    Teng, Wenkai; Liu, Guangli; Luo, Haiping; Zhang, Renduo; Xiang, Yinbo

    2016-03-05

    The aim of this study was to develop microbial electrolysis cell (MEC) with a novel acidophilic and autotrophic biocathode for treatment of acid wastewater. A biocathode was developed using acidophilic sulfate-reducing bacteria as the catalyst. Artificial wastewater with 200mgL(-1) sulfate and different Zn concentrations (0, 15, 25, and 40 mg L(-1)) was used as the MEC catholyte. The acidophilic biocathode dominated by Desulfovibrio sp. with an abundance of 66% (with 82% of Desulfovibrio sequences similar to Desulfovibrio simplex) and achieved a considerable sulfate reductive rate of 32 gm(-3)d(-1). With 15 mg L(-1) Zn added, the sulfate reductive rate of MEC improved by 16%. The formation of ZnS alleviated the inhibition from sulfide and sped the sulfate reduction. With 15 and 25 mgL(-1) Zn added, more than 99% of Zn was removed from the wastewater. Dissolved Zn ions in the catholyte were converted into insoluble Zn compounds, such as zinc sulfide and zinc hydroxide, due to the sulfide and elevated pH produced by sulfate reduction. The MEC with acidophilic and autotrophic biocathode can be used as an alternative to simultaneously remove sulfate and metals from acid wastewaters, such as acid mine drainage. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    PubMed

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  8. The sulfocyanic theory on the origin of life: towards a critical reappraisal of an autotrophic theory

    NASA Astrophysics Data System (ADS)

    Perezgasga, L.; Silva, E.; Lazcano, A.; Negrin-Mendoza, A.

    2003-10-01

    In the early 1930s, Alfonso L. Herrera proposed his so-called sulfocyanic theory on the origin of life, an autotrophic proposal on the first living beings according to which NH4SCN and H2CO acted as raw materials for the synthesis of bio-organic compounds inside primordial photosynthetic protoplasmic structures. Although the work of Herrera is frequently cited in historical analysis of the development of the origin of life studies, very little attention has been given to the chemical significance of the reactions he published. In this paper we report the results of our search for amino acids obtained from a reactive mixture used by Herrera from 1933 onwards. Chromatograms using the high-pressure liquid chromatography (HPLC) technique suggest the presence of several amino acids, the total yield being 2% of the initial thiocyanate used. Preliminary identification based on HPLC retention times suggests the presence of glycine, alanine, cysteine and methionine. Alanine was the most abundant amino acid in all samples of fractionated material analysed. Although the starting materials used by Herrera were determined by his autotrophic hypothesis on the origin of cells, our results show that his experiments may provide insights into the abiotic synthesis of sulfur-containing amino acids within the framework of a heterotrophic emergence of life.

  9. The feasibility of using a two-stage autotrophic nitrogen removal process to treat sewage.

    PubMed

    Ma, Bin; Zhang, Shujun; Zhang, Liang; Yi, Peng; Wang, Junmin; Wang, Shuying; Peng, Yongzhen

    2011-09-01

    The feasibility of using a two-stage autotrophic nitrogen removal process to treat sewage was examined in this study. The obtained results showed that total nitrogen (TN) could be efficiently removed by 88.38% when influent TN and chemical oxygen demand (COD) were 45.87 and 44.40 mg/L, respectively. In the first stage, nitritation was instantly achieved by the bioaugmentation strategy, and can be maintained under limited oxygen condition (below 0.2mg/L). The ratio of nitrite to ammonium in the effluent of the nitritation reactor can be controlled at approximate 1.0 by adjusting aeration rate. In the second stage, anammox was realized in the upflow anaerobic sludge blanket (UASB) reactor, where the total nitrogen removal rate was 0.40 kg Nm(-3)d(-1) under limited-substrate condition. Therefore, the organic matter in sewage can be firstly concentrated in biomass which could generate biogas (energy). Then, nitrogen in sewage could be removed in a two-stage autotrophic nitrogen removal process.

  10. Heterotrophic and autotrophic microbial populations in cold perennial springs of the high arctic.

    PubMed

    Perreault, Nancy N; Greer, Charles W; Andersen, Dale T; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G

    2008-11-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO(2) uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH(4)) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy.

  11. Novel autotrophic arsenite-oxidizing bacteria isolated from soil and sediments.

    PubMed

    Garcia-Dominguez, Elizabeth; Mumford, Adam; Rhine, Elizabeth Danielle; Paschal, Amber; Young, Lily Y

    2008-11-01

    Arsenic oxidation is recognized as being mediated by both heterotrophic and chemoautotrophic microorganisms. Enrichment cultures were established to determine whether chemoautotrophic microorganisms capable of oxidizing arsenite As(III) to arsenate As(V) are present in selected contaminated but nonextreme environments. Three new organisms, designated as strains OL-1, S-1 and CL-3, were isolated and found to oxidize 10 mM arsenite to arsenate under aerobic conditions using CO2-bicarbonate (CO2/HCO3-) as a carbon source. Based on 16S rRNA gene sequence analyses, strain OL-1 was 99% most closely related to the genus Ancylobacter, strain S-1 was 99% related to Thiobacillus and strain CL-3 was 98% related to the genus Hydrogenophaga. The isolates are facultative autotrophs and growth of isolated strains on different inorganic electron donors other than arsenite showed that all three had a strong preference for several sulfur species, while CL-3 was also able to grow on ammonium and nitrite. The RuBisCO Type I (cbbL) gene was positively amplified and sequenced in strain CL-3, and the Type II (cbbM) gene was detected in strains OL-1 and S-1, supporting the autotrophic nature of the organisms.

  12. miR172b controls the transition to autotrophic development inhibited by ABA in Arabidopsis.

    PubMed

    Zou, Yanmin; Wang, Youning; Wang, Lixiang; Yang, Lei; Wang, Rui; Li, Xia

    2013-01-01

    Seedling establishment is a critical phase in the life of plants when they are the most vulnerable to environment. Growth arrest at post-germinative stage under stress is the major adaptive strategy to help germinating seedlings to survive a spectrum of stressful conditions. ABA signaling is the key pathway to control stress-induced developmental arrest. However, mechanisms controlling the phase transition under abiotic stress are not fully understood. Here, we described miR172b as a new key regulator controlling transition of germinating seedlings from heterotrophic to autotrophic growth under osmotic stress in Arabidopsis. We showed that miR172b and its target SNZ were co-expressed during early seedling development. Expression of miR172b and SNZ was low after radicle emergence and sharply increased at the checkpoint to autotrophic development under normal conditions. Interestingly, activation of miR172b and SNZ was completely abolished by ABA and osmotic stress. miR172b overexpression and snz-1 exhibited increased sensitivity to ABA and osmotic stress during specific post-germinative stage, and resulted in higher expression of ABI3, ABI5 and downstream genes, such as Em6 and RAB18, than wild type under ABA treatment. Our results revealed that miR172b is a critical regulator specifically controlling cotyledon greening during post-germinative growth by directly targeting SNZ under ABA treatment and osmotic stress.

  13. Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation.

    PubMed

    Jabeen, Gugan; Farooq, Robina

    2016-09-01

    Bio-electrochemical synthesis (BES) is a technique in which electro-autotrophic bacteria such as Clostridium ljungdahlii utilize electric currents as an electron source from the cathode to reduce CO2 to extracellular, multicarbon, exquisite products through autotrophic conversion. The BES of volatile fatty acids and alcohols directly from CO2 is a sustainable alternative for non-renewable, petroleum-based polymer production. This conversion of CO2 implies reduction of greenhouse gas emissions. The synthesis of heptanoic acid, heptanol, hexanoic acid and hexanol, for the first time, by Clostridium ljungdahlii was a remarkable achievement of BES. In our study, these microorganisms were cultivated on the cathode of a bio-electrochemical cell at -400 mV by a DC power supply at 37 degree Centrigrade, pH 6.8, and was studied for both batch and continuous systems. Pre-enrichment of bio-cathode enhanced the electroactivity of cells and resulted in maximizing extracellular products in less time. The main aim of the research was to investigate the impact of low-cost substrate CO2, and the longer cathode recovery range was due to bacterial reduction of CO2 to multicarbon chemical commodities with electrons driven from the cathode. Reactor design was simplified for cost-effectiveness and to enhance energy efficiencies. The Columbic recovery of ethanoic acid, ethanol, ethyl butyrate, hexanoic acid, heptanoic acid and hexanol being in excess of 80 percent proved that BES was a remarkable technology.

  14. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    PubMed

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  15. Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge.

    PubMed

    Xie, Wen-Ming; Ni, Bing-Jie; Seviour, Thomas; Sheng, Guo-Ping; Yu, Han-Qing

    2012-12-01

    Soluble microbial products (SMP) generated by microbial populations can adversely affect the efficiency of biological wastewater treatment systems and secondary effluent quality. In this work, both experimental and modeling approaches were used to investigate the formation of SMP by both heterotrophic and autotrophic bacteria. Strategies to control and reduce SMP in activated sludge systems were thus evaluated. SMP produced by heterotrophs were found to account for more than 92% of total SMP. The SMP produced by autotrophs contributed to less than 8% of the total SMP, with 5% attributable to the ammonia-oxidizing bacteria (AOB) and 3% to the nitrite-oxidizing bacteria (NOB). When external organic substrate was present, the utilization-associated products (UAP) were the main component of SMP. When external organic substrate was completely consumed, biomass-associated products (BAP) from the hydrolysis of extracellular polymeric substances (EPS) dominated the SMP. The model developed in this study described the fractions and dynamics of UAP and BAP produced by heterotrophs, AOB and NOB. Solids retention time of the reactor had a significant effect on SMP production, while the effect of the hydraulic retention time was only minor. Decreasing the solids retention time from 15 to 0.5 d reduced SMP production in the reactor by 62%.

  16. High CO2 subsurface environment enriches for novel microbial lineages capable of autotrophic carbon fixation

    NASA Astrophysics Data System (ADS)

    Probst, A. J.; Jerett, J.; Castelle, C. J.; Thomas, B. C.; Sharon, I.; Brown, C. T.; Anantharaman, K.; Emerson, J. B.; Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Tringe, S. G.; Woyke, T.; Banfield, J. F.

    2015-12-01

    Subsurface environments span the planet but remain little understood from the perspective of the capacity of the resident organisms to fix CO2. Here we investigated the autotrophic capacity of microbial communities in range of a high-CO2 subsurface environments via analysis of 250 near-complete microbial genomes (151 of them from distinct species) that represent the most abundant organisms over a subsurface depth transect. More than one third of the genomes belonged to the so-called candidate phyla radiation (CPR), which have limited metabolic capabilities. Approximately 30% of the community members are autotrophs that comprise 70% of the microbiome with metabolism likely supported by sulfur and nitrogen respiration. Of the carbon fixation pathways, the Calvin Benson Basham Cycle was most common, but the Wood-Ljungdhal pathway was present in the greatest phylogenetic diversity of organisms. Unexpectedly, one organism from a novel phylum sibling to the CPR is predicted to fix carbon by the reverse TCA cycle. The genome of the most abundant organism, an archaeon designated "Candidatus Altiarchaeum hamiconexum", was also found in subsurface samples from other continents including Europe and Asia. The archaeon was proven to be a carbon fixer using a novel reductive acetyl-CoA pathway. These results provide evidence that carbon dioxide is the major carbon source in these environments and suggest that autotrophy in the subsurface represents a substantial carbon dioxide sink affecting the global carbon cycle.

  17. Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic ▿ †

    PubMed Central

    Perreault, Nancy N.; Greer, Charles W.; Andersen, Dale T.; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G.

    2008-01-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO2 uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH4) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy. PMID:18805995

  18. Community structure and nutrient level control the tolerance of autotrophic biofilm to silver contamination.

    PubMed

    Leflaive, J; Felten, V; Ferriol, J; Lamy, A; Ten-Hage, L; Bec, A; Danger, M

    2015-09-01

    Autotrophic biofilms are complex and fundamental biological compartments of many aquatic ecosystems. Since microbial species differ in their sensitivity to stressors, biofilms have long been proposed for assessing the quality of aquatic ecosystems. Among the many stressors impacting aquatic ecosystems, eutrophication and metal pollution are certainly the most common. Despite that these stressors often occur together, their effects on biofilms have been far much studied separately than interactively. In this study, we evaluated the interactive effects of silver (Ag), a reemerging contaminant, and phosphorus (P), a nutrient often associated with freshwater eutrophication, on the structure and functioning of two types of autotrophic biofilms, one dominated by diatoms and another one dominated by cyanobacteria. We hypothesized that P would alleviate the toxic effects of Ag, either directly, through the contribution of P in metal detoxification processes, or indirectly, through P-mediated shifts in biofilm community compositions and associated divergences in metal tolerance. Results showed that Ag impacted biofilm community structure and functioning but only at unrealistic concentrations (50 μg/L). P availability led to significant shifts in biofilm community composition, these changes being more pronounced in diatom- than those in cyanobacteria-dominated biofilm. In addition, P tended to reduce the impact of Ag but only for the cyanobacteria-dominated biofilm. More generally, our results highlight the preponderant role of the initial community structure and nutrient level on biofilm response to metallic pollutants.

  19. Flow rates and repose angles of wet-processed granulations.

    PubMed

    Carstensen, J T; Chan, P C

    1977-09-01

    The equation of McDougall and Evans was found not to apply to granulations. The functional relationships among volumetric powder flow rates, angles of repose, and particle size were demonstrated to exhibit maxima (rather than minima) in five common pharmaceutical granulations produced by wet processing. The angular behavior of granules (such as the experienced range of angles) is explained via supported stacking geometries, and the shallow maxima in the angle of repose versus granule diameter was derived from this model.

  20. THE NUMBER OF CATECHOLAMINE STORAGE GRANULES IN ADRENAL MEDULLA

    DTIC Science & Technology

    A method is described for counting the catecholamine-containing heavy granules of adrenal glands. There are 5.0 ! 0.8 (S. E.) x 10 to the 12th power... granules /gram wet weight of fowl adrenal gland. Individual heavy granules contain about 8 million molecules of catecholamines (1.4 x 10 to the 17th...power mole). Reference to published electron microphotographs of adrenal medulla cells allows estimation of the average volume of heavy granules and

  1. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of...

  2. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of...

  3. 21 CFR 520.1468 - Naproxen granules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... pain and lameness exhibited with arthritis, as well as myositis and other soft tissue diseases of...

  4. Starch Granule Variability in Wild Solanum Species

    USDA-ARS?s Scientific Manuscript database

    Because most of the dry matter of potato tubers is starch, an understanding of starch properties is important in potato improvement programs. Starch granule size is considered to influence tuber processing quality parameters such as gelatinization temperature, viscosity, and water holding capacity. ...

  5. Microbial degradation of polyacrylamide by aerobic granules.

    PubMed

    Liu, Lili; Wang, Zhiping; Lin, Kuangfei; Cai, Weimin

    2012-01-01

    To deal with polyacrylamide (PAM) wastewater, granular sludge formed in glucose-fed sequencing batch reactors (SBR) was employed to cultivate PAM-degrading granules. Three replicated SBRs were operated with increasing PAM concentration in the influent from 67 to 670 mg L(-1), and the hydraulic retention time was increased at the same time from 1 d to 6 d during the six-phase of the 43 d acclimation period. The well-acclimated PAM-degrading granules were different from the seeding granules in colour, mean diameter, biomass density and settle ability, and could use PAM as the sole carbon and nitrogen source. In the batch experiments, PAM degradation rate by granules was determined as 2.23 mg PAM g(-1) MLSS h(-1). According to the analysis of the intermediates of PAM biodegradation, PAM was degraded initially through hydrolysis of the amide group, and no acrylamide monomer was detected. With the help of LC/MS, the main intermediate was identified as polyacrylic acid with a low molecular weight. Therefore, the PAM-degrading granular sludge may be employed for removing PAM in the wastewater produced from tertiary oil recovery that uses polymeric flooding technology.

  6. Secretory granule biogenesis: rafting to the SNARE.

    PubMed

    Tooze, S A; Martens, G J; Huttner, W B

    2001-03-01

    Regulated secretion of hormones occurs when a cell receives an external stimulus, triggering the secretory granules to undergo fusion with the plasma membrane and release their content into the extracellular milieu. The formation of a mature secretory granule (MSG) involves a series of discrete and unique events such as protein sorting, formation of immature secretory granules (ISGs), prohormone processing and vesicle fusion. Regulated secretory proteins (RSPs), the proteins stored and secreted from MSGs, contain signals or domains to direct them into the regulated secretory pathway. Recent data on the role of specific domains in RSPs involved in sorting and aggregation suggest that the cell-type-specific composition of RSPs in the trans-Golgi network (TGN) has an important role in determining how the RSPs get into ISGs. The realization that lipid rafts are implicated in sorting RSPs in the TGN and the identification of SNARE molecules represent further major advances in our understanding of how MSGs are formed. At the heart of these findings is the elucidation of molecular mechanisms driving protein--lipid and protein--protein interactions specific for secretory granule biogenesis.

  7. Effects of Cr(III) and CR(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments

    EPA Science Inventory

    The effect of Cr(III) and Cr(VI) on ammonia oxidation, the transcriptional responses of functional genes involved in nitrification and changes in 16S rRNA level sequences were examined in nitrifying enrichment cultures. The nitrifying bioreactor was operated as a continuous react...

  8. Effects of Cr(III) and CR(VI) on nitrification inhibition as determined by SOUR, function-specific gene expression and 16S rRNA sequence analysis of wastewater nitrifying enrichments

    EPA Science Inventory

    The effect of Cr(III) and Cr(VI) on ammonia oxidation, the transcriptional responses of functional genes involved in nitrification and changes in 16S rRNA level sequences were examined in nitrifying enrichment cultures. The nitrifying bioreactor was operated as a continuous react...

  9. 21 CFR 520.2473a - Tioxidazole granules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Tioxidazole granules. 520.2473a Section 520.2473a... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2473a Tioxidazole granules. (a) Specifications. Each gram of granules contains 200 milligrams of tioxidazole. (b) Sponsor. See No...

  10. 21 CFR 520.2473a - Tioxidazole granules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Tioxidazole granules. 520.2473a Section 520.2473a... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2473a Tioxidazole granules. (a) Specifications. Each gram of granules contains 200 milligrams of tioxidazole. (b) Sponsor. See No...

  11. 21 CFR 520.2473a - Tioxidazole granules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Tioxidazole granules. 520.2473a Section 520.2473a... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2473a Tioxidazole granules. (a) Specifications. Each gram of granules contains 200 milligrams of tioxidazole. (b) Sponsor. See No...

  12. 21 CFR 520.2473a - Tioxidazole granules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Tioxidazole granules. 520.2473a Section 520.2473a... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2473a Tioxidazole granules. (a) Specifications. Each gram of granules contains 200 milligrams of tioxidazole. (b) Sponsor. See No...

  13. 21 CFR 520.2473a - Tioxidazole granules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Tioxidazole granules. 520.2473a Section 520.2473a... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.2473a Tioxidazole granules. (a) Specifications. Each gram of granules contains 200 milligrams of tioxidazole. (b) Sponsor. See No...

  14. [Study on fingerprint of xiaochaihu granules sold in the market].

    PubMed

    Yan, Lei; Lin, Long-Fei; Zhang, Hui; Dang, Xiao-Fang; Ni, Jian

    2013-10-01

    To establish a fingerprint of Xiaochaihu granules sold in the market with HPLC method, and study fingerprints of Xiaochaihu granules produced by different manufacturers and in different batches of the same manufacturer. Seven major index components were identified for the first time. The established method provided an all-around analysis on the quality assessment of Xiaochaihu granules.

  15. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils

    PubMed Central

    Pajares, Silvia; Bohannan, Brendan J. M.

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research. PMID:27468277

  16. Biofilm Thickness Influences Biodiversity in Nitrifying MBBRs-Implications on Micropollutant Removal.

    PubMed

    Torresi, Elena; Fowler, S Jane; Polesel, Fabio; Bester, Kai; Andersen, Henrik R; Smets, Barth F; Plósz, Benedek Gy; Christensson, Magnus

    2016-09-06

    In biofilm systems for wastewater treatment (e.g., moving bed biofilms reactors-MBBRs) biofilm thickness is typically not under direct control. Nevertheless, biofilm thickness is likely to have a profound effect on the microbial diversity and activity, as a result of diffusion limitation and thus substrate penetration in the biofilm. In this study, we investigated the impact of biofilm thickness on nitrification and on the removal of more than 20 organic micropollutants in laboratory-scale nitrifying MBBRs. We used novel carriers (Z-carriers, AnoxKaldnes) that allowed controlling biofilm thickness at 50, 200, 300, 400, and 500 μm. The impact of biofilm thickness on microbial community was assessed via 16S rRNA gene amplicon sequencing and ammonia monooxygenase (amoA) abundance quantification through quantitative PCR (qPCR). Results from batch experiments and microbial analysis showed that (i) the thickest biofilm (500 μm) presented the highest specific biotransformation rate constants (kbio, L g(-1) d(-1)) for 14 out of 22 micropollutants; (ii) biofilm thickness positively associated with biodiversity, which was suggested as the main factor for the observed enhancement of kbio; (iii) the thinnest biofilm (50 μm) exhibited the highest nitrification rate (gN d(-1) g(-1)), amoA gene abundance and kbio values for some of the most recalcitrant micropollutants (i.e., diclofenac and targeted sulfonamides). Although thin biofilms favored nitrification activity and the removal of some micropollutants, treatment systems based on thicker biofilms should be considered to enhance the elimination of a broad spectrum of micropollutants.

  17. Effects of Aeration Cycles on Nitrifying Bacterial Populations and Nitrogen Removal in Intermittently Aerated Reactors

    PubMed Central

    Mota, Cesar; Head, Melanie A.; Ridenoure, Jennifer A.; Cheng, Jay J.; de los Reyes, Francis L.

    2005-01-01

    The effects of the lengths of aeration and nonaeration periods on nitrogen removal and the nitrifying bacterial community structure were assessed in intermittently aerated (IA) reactors treating digested swine wastewater. Five IA reactors were operated in parallel with different aeration-to-nonaeration time ratios (ANA). Populations of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were monitored using 16S rRNA slot blot hybridizations. AOB species diversity was assessed using amoA gene denaturant gradient gel electrophoresis. Nitrosomonas and Nitrosococcus mobilis were the dominant AOB and Nitrospira spp. were the dominant NOB in all reactors, although Nitrosospira and Nitrobacter were also detected at lower levels. Reactors operated with the shortest aeration time (30 min) showed the highest Nitrosospira rRNA levels, and reactors operated with the longest anoxic periods (3 and 4 h) showed the lowest levels of Nitrobacter, compared to the other reactors. Nitrosomonas sp. strain Nm107 was detected in all reactors, regardless of the reactor's performance. Close relatives of Nitrosomonas europaea, Nitrosomonas sp. strain ENI-11, and Nitrosospira multiformis were occasionally detected in all reactors. Biomass fractions of AOB and effluent ammonia concentrations were not significantly different among the reactors. NOB were more sensitive than AOB to long nonaeration periods, as nitrite accumulation and lower total NOB rRNA levels were observed for an ANA of 1 h:4 h. The reactor with the longest nonaeration time of 4 h performed partial nitrification, followed by denitrification via nitrite, whereas the other reactors removed nitrogen through traditional nitrification and denitrification via nitrate. Superior ammonia removal efficiencies were not associated with levels of specific AOB species or with higher AOB species diversity. PMID:16332848

  18. Community structure and in situ activity of nitrifying bacteria in Phragmites root-associated biofilms.

    PubMed

    Okabe, Satoshi; Nakamura, Yoshiyuki; Satoh, Hisashi

    2012-01-01

    The amount of oxygen released by Phragmites roots and the community structure and in situ activity of nitrifying bacteria in the root biofilms were analyzed by the combined use of 16S rRNA gene-cloning analysis, quantitative PCR (qPCR) assay and microelectrodes. Axial and radial O₂ microprofiles were obtained for individual roots of Phragmites in a horizontal flow reactor fed with artificial medium continuously. Axial O₂ profiles revealed that O₂ was released at a rate of 0.21 μmol O₂ cm⁻² (root surface area) h⁻¹ only in the apical region (up to ca. 40 mm from the root apex), where there was a high abundance (10⁷ to 10⁸ copies g⁻¹ biomass) of Nitrosomonas-like AOB and Nitrospira-like NOB. This abundance, however, sharply declined to the detection limit at positions more basal than 80 mm. Phylogenetic analysis based on 16S rRNA gene identified strains related to Nitrosomonas oligotropha and Nitrosomonas cryotolerans as the predominant AOB and strains related to Nitrospira marina and Nitrospira moscoviensis as the predominant NOB in the root biofilms. Based on radial O₂ microprofiles, the oxic region only extended about 0.5 mm into the surrounding sediment due to a high rate of O₂ consumption in the rhizosphere. The net NH₄⁺ and O₂ consumption rates in the apical region were higher than those determined at the oxic sediment surface in which the abundance of AOB and NOB was one order of magnitude lower than in the rhizosphere. These results clearly indicated that Phragmites root biofilms played an important role in nitrification in the waterlogged anoxic sediment.

  19. Ecology of Nitrogen Fixing, Nitrifying, and Denitrifying Microorganisms in Tropical Forest Soils.

    PubMed

    Pajares, Silvia; Bohannan, Brendan J M

    2016-01-01

    Soil microorganisms play important roles in nitrogen cycling within forest ecosystems. Current research has revealed that a wider variety of microorganisms, with unexpected diversity in their functions and phylogenies, are involved in the nitrogen cycle than previously thought, including nitrogen-fixing bacteria, ammonia-oxidizing bacteria and archaea, heterotrophic nitrifying microorganisms, and anammox bacteria, as well as denitrifying bacteria, archaea, and fungi. However, the vast majority of this research has been focused in temperate regions, and relatively little is known regarding the ecology of nitrogen-cycling microorganisms within tropical and subtropical ecosystems. Tropical forests are characterized by relatively high precipitation, low annual temperature fluctuation, high heterogeneity in plant diversity, large amounts of plant litter, and unique soil chemistry. For these reasons, regulation of the nitrogen cycle in tropical forests may be very different from that of temperate ecosystems. This is of great importance because of growing concerns regarding the effect of land use change and chronic-elevated nitrogen deposition on nitrogen-cycling processes in tropical forests. In the context of global change, it is crucial to understand how environmental factors and land use changes in tropical ecosystems influence the composition, abundance and activity of key players in the nitrogen cycle. In this review, we synthesize the limited currently available information regarding the microbial communities involved in nitrogen fixation, nitrification and denitrification, to provide deeper insight into the mechanisms regulating nitrogen cycling in tropical forest ecosystems. We also highlight the large gaps in our understanding of microbially mediated nitrogen processes in tropical forest soils and identify important areas for future research.

  20. Dynamics of viable nitrifier community, N-mineralization and nitrification in seasonally dry tropical forests and savanna.

    PubMed

    Singh, J S; Kashyap, A K

    2006-01-01

    The study was conducted in Vindhyan region, to assess the N-mineralization, nitrification and size of viable community of ammonium- and nitrite-oxidizing bacteria as affected by different sites and seasons. Six different ecosystems (four forests and two savannas), which differ in terms of topography, vegetation and moisture status, were selected for the present study. The soils of the study sites differ significantly in its physico-chemical properties. The savanna site had significantly higher pH (7.2), bulk density (1.37 g cm(-3)) and silt content (67.80%) but lower water holding capacity (1.37%), total-C (16,356 microg g(-1) dry soil), N (1090 microg g(-1) dry soil) and P (213 microg g(-1) dry soil) than forest sites. The soil moisture content, N-mineralization, nitrification rates and numbers of ammonium- and nitrite-oxidizing bacteria were highest in the wet season and lowest in dry season, while the size of mineral-N (NH4(+)-N and NO3(-)-N) showed a reverse trend at the sites. The N-mineralization, nitrification and nitrifier population size differ significantly across the site and season. The numbers of free-living cells of ammonium- and nitrite-oxidizing bacteria were significantly related to each other and to N-mineralization, nitrification, soil moisture and mineral-N components. The N-mineralization, nitrification and the viable number of nitrifying cells were consistently higher for forest soils compared to savanna sites. It was concluded that soil microbial process (N-mineralization and nitrification) and nitrifier population size were dependent on site topography, vegetation cover and soil moisture status.

  1. Evidence for the Existence of Autotrophic Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Marine Coastal Sediment

    PubMed Central

    Laufer, Katja; Røy, Hans; Jørgensen, Bo Barker

    2016-01-01

    ABSTRACT Nitrate-reducing Fe(II)-oxidizing microorganisms were described for the first time ca. 20 years ago. Most pure cultures of nitrate-reducing Fe(II) oxidizers can oxidize Fe(II) only under mixotrophic conditions, i.e., when an organic cosubstrate is provided. A small number of nitrate-reducing Fe(II)-oxidizing cultures have been proposed to grow autotrophically, but unambiguous evidence for autotrophy has not always been provided. Thus, it is still unclear whether or to what extent Fe(II) oxidation coupled to nitrate reduction is an enzymatically catalyzed and energy-yielding autotrophic process or whether Fe(II) is abiotically oxidized by nitrite from heterotrophic nitrate reduction. The aim of the present study was to find evidence for the existence of autotrophic nitrate-reducing Fe(II) oxidizers in coastal marine sediments. Microcosm incubations showed that with increasing incubation times, the stoichiometric ratio of reduced nitrate/oxidized Fe(II) [NO3−reduced/Fe(II)oxidized] decreased, indicating a decreasing contribution of heterotrophic denitrification and/or an increasing contribution of autotrophic nitrate-reducing Fe(II) oxidation over time. After incubations of sediment slurries for >10 weeks, nitrate-reducing activity ceased, although nitrate was still present. This suggests that heterotrophic nitrate reduction had ceased due to the depletion of readily available organic carbon. However, after the addition of Fe(II) to these batch incubation mixtures, the nitrate-reducing activity resumed, and Fe(II) was oxidized, indicating the activity of autotrophic nitrate-reducing Fe(II) oxidizers. The concurrent reduction of 14C-labeled bicarbonate concentrations unambiguously proved that autotrophic C fixation occurred during Fe(II) oxidation and nitrate reduction. Our results clearly demonstrated that autotrophic nitrate-reducing Fe(II)-oxidizing bacteria were present in the investigated coastal marine sediments. IMPORTANCE Twenty years after the

  2. Transformation of anaerobic granules into aerobic granules and the succession of bacterial community.

    PubMed

    Sun, Haohao; Yu, Ping; Li, Qiaoling; Ren, Hongqiang; Liu, Bo; Ye, Lin; Zhang, Xu-Xiang

    2017-09-15

    In this study, we demonstrated that anaerobic granular sludge could be successfully transformed into aerobic granular sludge in a continuous up-flow reactor in 45 days. An aerobic microbial community successfully developed in the granules and high organic matter and nitrogen removal performance was achieved. Under an ammonia nitrogen loading rate of 0.8 kg N/(m(3) day), ammonia nitrogen and the total nitrogen removal efficiency of the reactor reached up to 100 and 93%, respectively. An obvious bacterial community shift in granular sludge was observed during the transformation process. By comparing with the bacterial community in aerobic granules cultivated from floccular activated sludge, some bacteria (affiliated with Comamonadaceae, Xanthomonadaceae, Rhodocyclaceae, Moraxellaceae, and Nitrosomonadaceae) playing significant roles in maintaining the structures and functions of aerobic granules were identified. After the transformation, the granules could be clearly separated into the inner core and outer shell. 16S rRNA gene sequencing results indicated many bacterial species present in both the inner core and outer shell; however, their abundance differed significantly. Overall, this study confirms the feasibility of transforming anaerobic granules into aerobic granules and provides novel approaches and insights to understand the microbial ecology in granular sludge.

  3. Aerobic granulation of protein-rich granules from nitrogen-lean wastewaters.

    PubMed

    Chen, Yu-You; Ju, Sheau-Pyng; Lee, Duu-Jong

    2016-10-01

    Proteins (PN)-rich granules are stable in structure in long-term reactor operations. This study proposed to cultivate PN-rich granules with PN/polysaccharides (PS) >20 from nitrogen lean wastewater, with ammonia-nitrogen as sole nitrogen source at chemical oxygen demand (COD)/N of 153.8. The yielded granules can sustain their structural stability in sequencing batch reactor mode for sufficient treatment of wastewaters up to 7000mg/L COD and with COD/N<500 and in continuous-flow reactor for successful 216-d treatment of wastewaters up to organic loading rate (OLR) of 39kg/m(3)-d. The produced granules were enriched with Firmicutes and β-proteobacteria as dominating strains. More than 58% of the nitrogen fed in the nitrogen-lean wastewater is converted to the PN in the granules. The replacement of ammonia by nitrate as sole nitrogen source led to granules enriched with γ-proteobacteria which are easily deteriorated at low OLR.

  4. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    PubMed

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  5. Experimental investigation of granule size and shape dynamics in twin-screw granulation.

    PubMed

    Kumar, Ashish; Vercruysse, Jurgen; Bellandi, Giacomo; Gernaey, Krist V; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas; Nopens, Ingmar

    2014-11-20

    A twin-screw granulator (TSG), a promising equipment for continuous high shear wet granulation (HSWG), achieves the desired level of mixing by a combination of the appropriate screw configuration and a suitable set of process settings (e.g. feed rate, screw speed, etc.), thus producing a certain granule size and shape distribution (GSSD). However, the primary sizing and shaping mechanism behind the resulting distribution is not well understood due to the opacity of the multiphase system in the granulator. This study experimentally characterised the GSSD dynamics along the TSG barrel length in order to understand the function of individual screw modules and process settings, as well as their interaction. Particle size analysis of granules collected at the outlet of the TSG suggested significant interaction between the process and screw configuration parameters influencing the heterogeneity in the GSSD. By characterising the samples collected along the screw length, a variable influence of the screw modules at different process conditions was observed. At low liquid-to-solid ratio (L/S), the first kneading module seemed to play a significant role in mixing, whereas the second kneading module was found to be more involved in reshaping the granules. At high L/S and high throughput, aggregation mainly took place in the second kneading module changing the GSSD. The results obtained from this study will be further used for the calibration and validation of a mechanistic model and, hence, support future development of a more detailed understanding of the HSWG process in a TSG.

  6. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance π1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and

  7. Wave granulation in the Venus' atmosphere

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    2007-08-01

    In unique venusian planetary system the solid body rotates very slowly and the detached massive atmosphere very rapidly. However both together orbit Sun and their characteristic orbital frequency -1/ 0.62 year - places them in the regular row of planets assigning them characteristic only for Venus wave produced granulation with a granule size πR/6 [1& others]. Remind other bodies in the row with their granule sizes inversely proportional to their orbital frequencies: solar photosphere πR/60, Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1 (R-a body radius). Three planets have atmospheres with wave granulations having sizes equal to their lithospheric granules. But Venus, unlike Earth and Mars, has the detached atmosphere that can be considered as a separate body with its own orbital frequency around the center of the Venus' system. According to the correlation between an orbital frequency and a wave granule size the venusian wave granule will be πR/338 (a scale can be Earth: orbital frequency 1/ 1year, granule size πR/4 or Sun: frequency 1/1month, granule size πR/60). So, πR/338 = 57 km. This theoretical size is rather close to that observed by Galileo SC through a violet filter "the filamentary dark features. . . are here revealed to be composed of several dark nodules, like beads on a string, each about 60 miles across" (PIA00072). Actually all Venus' disc seen from a distance ~1.7mln.miles is peppered with these fine features seen on a limit of resolution. So, the Venus' atmosphere has two main frequencies in the solar system with corresponding wave granulations: around Sun 1/225 days (granule πR/6) and around Venus 1/ 4 days (granule πR/338). As was done for the Moon, Phobos, Titan and other icy satellites of Saturn [2, 3, 4 & others] one can apply the wave modulation technique also for the atmosphere of Venus. The lower frequency modulates the higher one by dividing and multiplying it thus getting two side frequencies and

  8. The response of nitrifying microbial assemblages to ammonium (NH4+) enrichment from salmon farm activities in a northern Chilean Fjord

    NASA Astrophysics Data System (ADS)

    Elizondo-Patrone, Claudia; Hernández, Klaudia; Yannicelli, Beatriz; Olsen, Lasse Mork; Molina, Verónica

    2015-12-01

    The consequences of aquaculture include alterations in nitrogen cycling in aquatic environments that may lead to ecosystem degradation. Herein salmon aquaculture release of ammonium (NH4+) to the water column and its effects on natural archaea and bacteria ammonia-oxidizers (AOA and AOB) and nitrite-oxidizing bacteria (NOB) community structure were studied in the Comau fjord using molecular approaches, such as: cloning (AOA and AOB richness), qPCR for C. Nitrosopumilus maritimus (AOA) and Nitrospina sp. (NOB) abundance (DNA) and RT-qPCR only for Nitrospina sp activity (RNA). Sampling was carried out in brackish (0.7-25 salinity, <5 m depth) and marine (>30 salinity, 25 m depth) waters during contrasting salmon production periods: rest (winter 2012), growth and harvest (summer and winter 2013). During the rest period, the highest NH4+ concentration was observed at Vodudahue River, whereas during productive periods NH4+ accumulated in the brackish layer inside salmon cages and in the vicinty (up to 700 m distance from the cages). The nitrifier community from the fjord reference station (Stn-C) was characterized by C. N. maritimus (AOA) and Nitrosomonas sp. (AOB) sequences affiliated with cosmopolitan ecotypes (e.g., marine, freshwater, hydrothermal), maxima abundances of C. N. maritimus (AOA) and Nitrospina sp. and extreme ranges of Nitrospina sp. activity occurred in the brackish layer. During productive periods, abundances of C. N. maritimus were co-varied with NH4+ concentrations inside salmon cages (summer) and the adjacent areas (winter). Productive periods were characterized by lower abundances but more homogeneity between brackish and marine areas than for the Stn-C nitrifiers. The physiological state of Nitrospina sp. estimated from cDNA:DNA ratios indicated higher growth during winter 2013 associated with NH4+ enrichment derived from production and river input. Our results suggest that in Comau Fjord, NH4+ enrichment events occur during salmon production and

  9. Hydrolysis of native poly(hydroxybutyrate) granules (PHB), crystalline PHB, and artificial amorphous PHB granules by intracellular and extracellular depolymerases.

    PubMed

    Merrick, J M; Steger, R; Dombroski, D

    1999-01-01

    Native poly(hydroxybutyrate) (PHB) granules, purified PHB and artificial amorphous PHB granules were examined as putative substrates for hydrolysis by the intracellular depolymerase system of Rhodospirillum rubrum and the extracellular depolymerase of Pseudomonas lemoignei. The R. rubrum depolymerizing system requires pretreatment of granules with a heat stable 'activator' fraction; the activator can be replaced by mild trypsin treatment. Artificial granules were prepared with a cationic detergent, cetyltrimethylammonium bromide (CTAB) and an anionic detergent, (sodium cholate). Cholate and CTAB PHB granules were hydrolyzed by both enzyme systems; however, some differences were noted. Cholate granules were hydrolyzed in the absence of the R. rubrum activator fraction. Activator was required for the hydrolysis of CTAB granules but could be replaced by heparin in the extracellular depolymerase system but not in the intracellular depolymerase system. A Triton X-114 extract of native PHB granules inhibited the hydrolysis of trypsin-activated granules by the intracellular depolymerase. The inhibition was reversed by the activator fraction. Detergent extracts of granules activated with the R. rubrum activator were unable to inhibit the hydrolysis of trypsin-activated granules. These data suggest that the activator acts to modify an inhibitor present on native granules.

  10. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.

    PubMed

    Lehtovirta-Morley, Laura E; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I; Nicol, Graeme W

    2011-09-20

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, "Candidatus Nitrosotalea devanaterra," from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH.

  11. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil

    PubMed Central

    Lehtovirta-Morley, Laura E.; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, “Candidatus Nitrosotalea devanaterra,” from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH. PMID:21896746

  12. Modelling autotrophic and heterotrophic components of soil respiration in wheat fields

    NASA Astrophysics Data System (ADS)

    Delogu, E.; LeDantec, V.; Buysse, P.; Mordelet, P.; Aubinet, M.

    2012-04-01

    Partitioning soil respiration into its heterotrophic and autotrophic components is a current key challenge to improve understanding of soil processes in croplands. For this purpose, we coupled a daily-time step soil organic carbon model derived from the CENTURY (Parton et al, 1987) calculating carbon turnover and carbon dioxide production in the soil with root sub-model from the plant process-based model CASTANEA (Dufrêne et al, 2005). In the Century model, soil organic carbon is divided into three major components including active, slow and passive soil carbon. Each pool has its own decomposition constant. Carbon flows between these pools are controlled by carbon inputs (crop residue), decomposition rate and microbial respiration loss parameters, both of which are a function of soil texture, soil temperature and soil water content. The model assumes that all C decompositions flows are associated with microbial activity and that microbial respiration occurs for each of these flows. Heterotrophic soil respiration is the sum of all these microbial respiration processes. To simulate autotrophic component, maintenance respiration is calculated from the nitrogen content and assuming an exponential relationship to account for temperature dependence. Growth respiration is calculated assuming that daily growth respiration depends on both growth rate and construction cost of the considered organ. To investigate model performances, simulations of soil CO2 efflux were compared with 3 datasets recorded in three different fields under different soil and climate conditions. Soil respiration measurements were performed on three winter wheat crops on Lamasquère (2007) and Auradé (2008), South-West France and in Lonzée (2007), Belgium. The French sites data come from manual measurement chambers, PP systems. The Belgium site is equipped with an automatic (half-hour resolution time) measurement system. The model was run on the three climatic years of data on bare soil and a first

  13. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.

    PubMed

    Whitham, Jason M; Schulte, Mark J; Bobay, Benjamin G; Bruno-Barcena, Jose M; Chinn, Mari S; Flickinger, Michael C; Pawlak, Joel J; Grunden, Amy M

    2017-02-01

    A Clostridium ljungdahlii lab-isolated spontaneous-mutant strain, OTA1, has been shown to produce twice as much ethanol as the C. ljungdahlii ATCC 55383 strain when cultured in a mixotrophic medium containing fructose and syngas. Whole-genome sequencing identified four unique single nucleotide polymorphisms (SNPs) in the C. ljungdahlii OTA1 genome. Among these, two SNPs were found in the gene coding for AcsA and HemL, enzymes involved in acetyl-CoA formation from CO/CO2. Homology models of the respective mutated enzymes revealed alterations in the size and hydrogen bonding of the amino acids in their active sites. Failed attempts to grow OTA1 autotrophically suggested that one or both of these mutated genes prevented acetyl-CoA synthesis from CO/CO2, demonstrating that its activity was required for autotrophic growth by C. ljungdahlii. An inoperable Wood-Ljungdahl pathway resulted in higher CO2 and ethanol yields and lower biomass and acetate yields compared to WT for multiple growth conditions including heterotrophic and mixotrophic conditions. The two other SNPs identified in the C. ljungdahlii OTA1 genome were in genes coding for transcriptional regulators (CLJU_c09320 and CLJU_c18110) and were found to be responsible for deregulated expression of co-localized arginine catabolism and 2-deoxy-D-ribose catabolism genes. Growth medium supplementation experiments suggested that increased arginine metabolism and 2-deoxy-D-ribose were likely to have minor effects on biomass and fermentation product yields. In addition, in silico flux balance analysis simulating mixotrophic and heterotrophic conditions showed no change in flux to ethanol when flux through HemL was changed whereas limited flux through AcsA increased the ethanol flux for both simulations. In characterizing the effects of the SNPs identified in the C. ljungdahlii OTA1 genome, a non-autotrophic hyper ethanol-producing strain of C. ljungdahlii was identified that has utility for further physiology and

  14. Effect of rotifers on the stability of aerobic granules.

    PubMed

    Li, Z H; Kuba, T; Kusuda, T; Wang, X C

    2007-02-01

    The current study evaluated the effect of rotifers on the stability of aerobic granules. Two sequence batch reactors (SBRs) with airflow rates of 4 (R1) and 6 (R2) 1 min(-1), respectively, were used to develop aerobic granules. Granules were well developed with excellent settleability in terms of SVI30 (sludge volume index,) of about 50 ml g(-1) in both reactors at the beginning. With the outgrowth of rotifers, granules completely disintegrated in R1 around cycle 500 (a cycle was 3 hours). However, after the rotifers disappeared, i.e. cycle 550, granules re-appeared with a slow settling rate in R1 (SVI30: 200-300 ml g(-1)). The rotifers mechanically damaged the structure of granules, resulting in disintegration. However, granules developed under high shear force seem to have strong resistance to rotifers. During re-granulation, a long time lag between the improvements of morphology and settleability suggested that re-granulation resulted from entanglement more than bio-attachment or bio-growth. Additionally, it was confirmed that the ratio of carbohydrate to protein extracellular polymeric substances (EPS) could well indicate the strength of granules. Protein EPS well correlated with the difference between SVI5 and SVI30 in R1, therefore, decreasing protein EPS would increase the compactness of granules.

  15. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    PubMed

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Coniochaeta ligniaria: antifungal activity of the cryptic endophytic fungus associated with autotrophic cultures of the medicinal plant Smallanthus sonchifolius (Asteraceae)

    USDA-ARS?s Scientific Manuscript database

    Few studies have addressed the presence and bioactivity of endophytic fungi living in plantlets growing under in vitro conditions. We isolated a fungus UM 109 from autotrophic cultures of the medicinal plant Smallanthus sonchifolius (yacon). The species was identified as Coniochaeta ligniaria using ...

  17. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin; Kilic, Adem; Demirel, Sevgi; Uyanik, Sinan; Cinar, Ozer

    2011-12-15

    A long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+). Sulfate production is the main disadvantage of the sulfur autotrophic denitrification process. The effluent sulfate concentration was reduced to values below drinking water guidelines by stimulating the simultaneous heterotrophic and autotrophic denitrification with methanol supplementation. Complete removal of 75 mg/L NO(3)-N with effluent sulfate concentration of around 225 mg/L was achieved when methanol was supplemented at methanol/NO(3)-N ratio of 1.67 (mg/mg), which was much lower than the theoretical value of 2.47 for heterotrophic denitrification. Batch studies showed that sulfur-based autotrophic NO(2)-N reduction rate was around three times lower than the reduction rate of NO(3)-N, which led to NO(2)-N accumulation at high loadings.

  18. Heterotrophic and elemental-sulfur-based autotrophic denitrification processes for simultaneous nitrate and Cr(VI) reduction.

    PubMed

    Sahinkaya, Erkan; Kilic, Adem

    2014-03-01

    Nitrate and chromate can be present together in water resources as nitrate is a common co-contaminant in surface and ground waters. This study aims at comparatively evaluating simultaneous chromate and nitrate reduction in heterotrophic and sulfur-based autotrophic denitrifying column bioreactors. In sulfur-based autotrophic denitrification process, elemental sulfur and nitrate act as an electron donor and an acceptor, respectively, without requirement of organic supplementation. Autotrophic denitrification was complete and not adversely affected by chromate up to 0.5 mg/L. Effluent chromate concentration was <50 μg/L provided that influent chromate concentration was ≤0.5 mg/L. Heterotrophic denitrification performance was not adversely affected even at 20 mg/L chromate and complete chromate reduction was attained up to 10 mg/L. Although autotrophic denitrification rate was much lower compared with heterotrophic one, it may be preferred in drinking water treatment due to the elimination of organic supplementation and the risk of treated effluent contamination.

  19. Process to manufacture effervescent tablets: air forced oven melt granulation.

    PubMed

    Yanze, F M; Duru, C; Jacob, M

    2000-12-01

    In the present study we apply melt granulation in an air forced oven, called "are forced oven melt granulation" to the single-stage manufacture of effervescent granules consisting of anhydrous citric acid (43.2%) and sodium bicarbonate (56.8%) in order to make tablets. This study established that process parameters such as concentration of PEG 6000, residence time in the air forced oven, fineness of PEG 6000, fineness of the initial effervescent mix and efficiency of two lubricants markedly influenced several granule and tablet characteristics. The granules ready to be compressed into tablets were stable for 7 days at 60% RH/18 degrees C. It is a dry, simple, rapid, effective, economical, reproducible process particularly well suited to the manufacture of effervescent granules which are easily compressed into effervescent tablets. Of all the formulations tested, only formulations B2 and E2 melt granulated for 30 minutes gave tablets which had optimum compression characteristics without processing problems during compression.

  20. Shigella flexneri modulates stress granule composition and inhibits stress granule aggregation.

    PubMed

    Vonaesch, Pascale; Campbell-Valois, François-Xavier; Dufour, Alexandre; Sansonetti, Philippe J; Schnupf, Pamela

    2016-07-01

    Invasion and multiplication of the facultative, cytosolic, enteropathogen Shigella flexneri within the colonic epithelial lining leads to an acute inflammatory response, fever and diarrhea. During the inflammatory process, infected cells are subjected to numerous stresses including heat, oxidative stress and genotoxic stress. The evolutionarily conserved pathway of cellular stress management is the formation of stress granules that store translationally inactive cellular mRNAs and interfere with cellular signalling pathways by sequestering signalling components. In this study, we investigated the ability of S. flexneri-infected cells to form stress granules in response to exogenous stresses. We found that S. flexneri infection inhibits movement of the stress granule markers eIF3 and eIF4B into stress granules and prevents the aggregation of G3BP1 and eIF4G-containing stress granules. This inhibition occurred only with invasive, but not with non-invasive bacteria and occurred in response to stresses that induce translational arrest through the phosphorylation of eIF2α and by treating cells with pateamine A, a drug that induces stress granules by inhibiting the eIF4A helicase. The S. flexneri-mediated stress granule inhibition could be largely phenocopied by the microtubule-destabilizing drug nocodazole and while S. flexneri infection did not lead to microtubule depolymerization, infection greatly enhanced acetylation of alpha-tubulin. Our data suggest that qualitative differences in the microtubule network or subversion of the microtubule-transport machinery by S. flexneri may be involved in preventing the full execution of this cellular stress response.

  1. Autotrophic denitrification in microbial fuel cells treating low ionic strength waters.

    PubMed

    Puig, Sebastià; Coma, Marta; Desloover, Joachim; Boon, Nico; Colprim, Jesús; Balaguer, M Dolors

    2012-02-21

    The presence of elevated concentrations of nitrates in drinking water has become a serious concern worldwide. The use of autotrophic denitrification in microbial fuel cells (MFCs) for waters with low ionic strengths (i.e., 1000 μS·cm(-1)) has not been considered previously. This study evaluated the feasibility of MFC technology for water denitification and also identified and quantified potential energy losses that result from their usage. The low conductivity (<1600 μS·cm(-1)) of water limited the nitrogen removal efficiency and power production of MFCs and led to the incomplete reduction of nitrate and the nitrous oxide (N(2)O) production (between 4 and 20% of nitrogen removed). Cathodic overpotential was identified as the main energy loss factors (83-90% of total losses). That high overpotential was influenced by denitrification intermediates (NO(2)(-) and N(2)O) and the potential used by microorganisms for growth, activation, and maintenance.

  2. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions.

    PubMed

    Adesanya, Victoria O; Davey, Matthew P; Scott, Stuart A; Smith, Alison G

    2014-04-01

    In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Biodegradation of tetramethylammonium hydroxide (TMAH) in completely autotrophic nitrogen removal over nitrite (CANON) process.

    PubMed

    Chen, Shen-Yi; Lu, Li-An; Lin, Jih-Gaw

    2016-06-01

    This study conducted a completely autotrophic nitrogen removal over nitrite (CANON) process in a continuous anoxic upflow bioreactor to treat synthetic wastewater with TMAH (tetramethylammonium hydroxide) ranging from 200 to 1000mg/L. The intermediates were analyzed for understanding the metabolic pathway of TMAH biodegradation in CANON process. In addition, (15)N-labeled TMAH was used as the substrate in a batch anoxic bioreactor to confirm that TMAH was converted to nitrogen gas in CANON process. The results indicated that TMAH was almost completely biodegraded in CANON system at different influent TMAH concentrations of 200, 500, and 1000mg/L. The average removal efficiencies of total nitrogen were higher than 90% during the experiments. Trimethylamine (TMA) and methylamine (MA) were found to be the main biodegradation intermediates of TMAH in CANON process. The production of nitrogen gas with (15)N-labeled during the batch anaerobic bioreactor indicated that CANON process successfully converted TMAH into nitrogen gas.

  4. Autotrophic perchlorate reduction kinetics of a microbial consortium using elemental sulfur as an electron donor.

    PubMed

    Gao, Mengchun; Wang, Sen; Jin, Chunji; She, Zonglian; Zhao, Congcong; Zhao, Yangguo; Zhang, Jian; Ren, Yun

    2015-07-01

    The perchlorate reduction kinetic parameters of a microbial consortium using elemental sulfur (S(0)) as an electron donor were investigated in batch experiments. Standard Monod substrate utilization and biomass accumulation models were employed to fit the experimental data for microbial perchlorate reduction. The maximum observed yield coefficient for the microbial consortium was 0.19 mg dry weight (DW) mg(-1) ClO4 (-), suggesting that the microbial consortium had a slow growth rate using S(0) as the electron donor. The maximum specific substrate utilization rate (q max) and half saturation constant (K s) for microbial perchlorate reduction were 0.14 mg ClO4 (-) mg(-1) DW day(-1) and 5.71 mg L(-1), respectively, which indicated that the microbial consortium could effectively utilize perchlorate as an electron acceptor. The variation of q max with pH was described well by using a Gaussian peak equation, and the maximal value of q max was obtained at pH 6.7. The presence of nitrate in perchlorate-contaminated water delayed the onset of sulfur autotrophic perchlorate reduction. The modified Gompertz equation could adequately describe the formation of Cl(-) and SO4(2-) during the process of sulfur autotrophic perchlorate reduction. The SO4(2-) production exceeded the theoretical SO4(2-) production due to S(0) disproportionation. The kinetic parameters for microbial perchlorate reduction are essential to design biological treatment systems, as well as to predict and evaluate their performance.

  5. Analysing structural error and parameter uncertainty of two Eucalyptus models differing in representation of autotrophic respiration

    NASA Astrophysics Data System (ADS)

    Minunno, F.; van Oijen, M.; Cameron, D. R.; Cerasoli, S.; Pereira, J. S.; Tomé, M.

    2012-04-01

    In the context of global climate change, the quantification of carbon fluxes in forest ecosystems and how they vary inter-annually are important issues. Process-based models are flexible tools that permit assessing ecosystem productivity at different spatial and temporal scales and for different management and environmental conditions. On the other hand, carbon and water fluxes at the ecosystem scale may be measured using eddy covariance techniques, thus providing useful data for testing and validation of models. The principal aim of the work was to calibrate and evaluate two versions of a process-based model that differ in the autotrophic respiration (RA) modelling. The original version (3PGN) is based on a constant ratio between the net primary production (PN) and the gross primary production (PG), while, in a new version (3PGN*), developed by the authors, RA was modelled as a function of temperature and biomass. The two model versions were calibrated and evaluated using a comprehensive dataset consisting of forest growth experimental data and eddy-covariance measurements. The two model versions were calibrated and evaluated under a Bayesian framework consisting in model calibration, model comparison and analysis of model-data mismatch. Sensitivity and uncertainty analyses of 3PGN and 3PGN* were also carried out. The BC showed that the data were informative for almost 70% of the parameters. BC also allowed identification of the parameters to which the models were most sensitive and to assess parameter correlations. Key parameters were those for carbon allocation, some of the parameters related to water stress and site fertility. Bayesian model comparison showed that the 3PGN*, with the new autotrophic respiration model based on maintenance and growth respiration, has higher conditional probability of being correct than the original 3PGN, based on the simple NPP vs. GPP ratio.

  6. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    PubMed Central

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-01-01

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars. PMID:27682103

  7. A dicarboxylate/4-hydroxybutyrate autotrophic carbon assimilation cycle in the hyperthermophilic Archaeum Ignicoccus hospitalis.

    PubMed

    Huber, Harald; Gallenberger, Martin; Jahn, Ulrike; Eylert, Eva; Berg, Ivan A; Kockelkorn, Daniel; Eisenreich, Wolfgang; Fuchs, Georg

    2008-06-03

    Ignicoccus hospitalis is an anaerobic, autotrophic, hyperthermophilic Archaeum that serves as a host for the symbiotic/parasitic Archaeum Nanoarchaeum equitans. It uses a yet unsolved autotrophic CO(2) fixation pathway that starts from acetyl-CoA (CoA), which is reductively carboxylated to pyruvate. Pyruvate is converted to phosphoenol-pyruvate (PEP), from which glucogenesis as well as oxaloacetate formation branch off. Here, we present the complete metabolic cycle by which the primary CO(2) acceptor molecule acetyl-CoA is regenerated. Oxaloacetate is reduced to succinyl-CoA by an incomplete reductive citric acid cycle lacking 2-oxoglutarate dehydrogenase or synthase. Succinyl-CoA is reduced to 4-hydroxybutyrate, which is then activated to the CoA thioester. By using the radical enzyme 4-hydroxybutyryl-CoA dehydratase, 4-hydroxybutyryl-CoA is dehydrated to crotonyl-CoA. Finally, beta-oxidation of crotonyl-CoA leads to two molecules of acetyl-CoA. Thus, the cyclic pathway forms an extra molecule of acetyl-CoA, with pyruvate synthase and PEP carboxylase as the carboxylating enzymes. The proposal is based on in vitro transformation of 4-hydroxybutyrate, detection of all enzyme activities, and in vivo-labeling experiments using [1-(14)C]4-hydroxybutyrate, [1,4-(13)C(2)], [U-(13)C(4)]succinate, or [1-(13)C]pyruvate as tracers. The pathway is termed the dicarboxylate/4-hydroxybutyrate cycle. It combines anaerobic metabolic modules to a straightforward and efficient CO(2) fixation mechanism.

  8. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    PubMed

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-09-09

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  9. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    PubMed

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles. Copyright © 2015 Elsevier Ltd. All

  10. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus.

    PubMed

    Zarzycki, Jan; Brecht, Volker; Müller, Michael; Fuchs, Georg

    2009-12-15

    The phototrophic bacterium Chloroflexus aurantiacus uses a yet unsolved 3-hydroxypropionate cycle for autotrophic CO(2) fixation. It starts from acetyl-CoA, with acetyl-CoA and propionyl-CoA carboxylases acting as carboxylating enzymes. In a first cycle, (S)-malyl-CoA is formed from acetyl-CoA and 2 molecules of bicarbonate. (S)-Malyl-CoA cleavage releases the CO(2) fixation product glyoxylate and regenerates the starting molecule acetyl-CoA. Here we complete the missing steps devoted to glyoxylate assimilation. In a second cycle, glyoxylate is combined with propionyl-CoA, an intermediate of the first cycle, to form beta-methylmalyl-CoA. This condensation is followed by dehydration to mesaconyl-C1-CoA. An unprecedented CoA transferase catalyzes the intramolecular transfer of the CoA moiety to the C4 carboxyl group of mesaconate. Mesaconyl-C4-CoA then is hydrated by an enoyl-CoA hydratase to (S)-citramalyl-CoA. (S)-Citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by a tri-functional lyase, which previously cleaved (S)-malyl-CoA and formed beta-methylmalyl-CoA. Thus, the enigmatic disproportionation of glyoxylate and propionyl-CoA into acetyl-CoA and pyruvate is solved in an elegant and economic way requiring only 3 additional enzymes. The whole bicyclic pathway results in pyruvate formation from 3 molecules of bicarbonate and involves 19 steps but only 13 enzymes. Elements of the 3-hydroxypropionate cycle may be used for the assimilation of small organic molecules. The 3-hydroxypropionate cycle is compared with the Calvin-Benson-Bassham cycle and other autotrophic pathways.

  11. Residence time of carbon substrate for autotrophic respiration of a grassland ecosystem correlates with the carbohydrate status of its vegetation

    NASA Astrophysics Data System (ADS)

    Ostler, Ulrike; Lehmeier, Christoph A.; Schleip, Inga; Schnyder, Hans

    2016-04-01

    Ecosystem respiration is composed of two component fluxes: (1) autotrophic respiration, which comprises respiratory activity of plants and plant-associated microbes that feed on products of recent photosynthetic activity and (2) heterotrophic respiration of microbes that decompose organic matter. The mechanistic link between the availability of carbon (C) substrate for ecosystem respiration and its respiratory activity is not well understood, particularly in grasslands. Here, we explore, how the kinetic features of the supply system feeding autotrophic ecosystem respiration in a temperate humid pasture are related to the content of water-soluble carbohydrates and remobilizable protein (as potential respiratory substrates) in vegetation biomass. During each September 2006, May 2007 and September 2007, we continuously labeled 0.8 m2 pasture plots with 13CO2/12CO2 and observed ecosystem respiration and its tracer content every night during the 14-16 day long labeling periods. We analyzed the tracer kinetics with a pool model, which allowed us to precisely partition ecosystem respiration into its autotrophic and heterotrophic flux components. At the end of a labeling campaign, we harvested aboveground and belowground plant biomass and analyzed its non-structural C contents. Approximately half of ecosystem respiration did not release any significant amount of tracer during the labeling period and was hence characterized as heterotrophic. The other half of ecosystem respiration was autotrophic, with a mean residence time of C in the respiratory substrate pool between 2 and 6 d. Both the rate of autotrophic respiration and the turnover of its substrate supply pool were correlated with plant carbohydrate content, but not with plant protein content. These findings are in agreement with studies in controlled environments that revealed water-soluble carbohydrates as the main substrate and proteins as a marginal substrate for plant respiration under favorable growth conditions

  12. Can we distinguish autotrophic respiration from heterotrophic respiration in a field site using high temporal resolution CO2 flux measurements?

    NASA Astrophysics Data System (ADS)

    Biro, Beatrice; Berger, Sina; Praetzel, Leandra; Blodau, Christian

    2016-04-01

    The processes behind C-cycling in peatlands are important to understand for assessing the vulnerability of peatlands as carbon sinks under changing climate conditions. Especially boreal peatlands are likely to underlie strong alterations in the future. It is expected that C-pools that are directly influenced by vegetation and water table fluctuations can be easily destabilized. The CO2 efflux through respiration underlies autotrophic and heterotrophic processes that show different feedbacks on changing environmental conditions. In order to understand the respiration fluxes better for more accurate modelling and prognoses, the determination of the relative importance of different respiration sources is necessary. Earlier studies used e.g. exfoliation experiments, incubation experiments or modelling approaches to estimate the different respiration sources for the total ecosystem respiration (Reco). To further the understanding in this topic, I want to distinguish autotrophic and heterotrophic respiration using high temporal resolution measurements. The study site was selected along a hydrological gradient in a peatland in southern Ontario (Canada) and measurements were conducted from May to September 2015 once per month. Environmental controls (water table, soil temperature and soil moisture) that effect the respiration sources were recorded. In my study I used a Li-COR 6400XT and a Los Gatos greenhouse gas analyzer (GGA). Reco was determined by chamber flux measurements with the GGA, while simultaneously CO2 respiration measurements on different vegetation compartments like roots, leaves and mosses were conducted using the Li-COR 6400XT. The difference between Reco and autotrophic respiration equals heterotrophic respiration. After the measurements, the vegetation plots were harvested and separated for all compartments (leaves, roots, mosses, soil organic matter), dried and weighed. The weighted respiration rates from all vegetation compartments sum up to

  13. Process for producing zirconium based granules

    SciTech Connect

    Jada, S.S.

    1991-10-01

    This patent describes a process for the production of amorphous zirconium based granules. It comprises forming a solution comprising Zr(R){sub 4} or zirconyl halide in an alcohol solvent, adding in either order an acid in an amount sufficient to acidify the solution comprising Zr(R){sub 4} or zirconyl halide to a pH in the range of about 2-5 and water in an amount sufficient to hydrolyze the Zr(R){sub 4} or zirconyl halide thereby forming a solution comprising a zirconium based complex; adding about 1-35 wt % of a suitable phase stabilizer to the resulting solution; and drying the solution comprising the zirconium based complex and phase stabilizer at a temperature below about 250{degrees} C. for a time sufficient to evaporate the solution thereby forming zirconium based granules containing the phase stabilizer.

  14. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-01-01

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30–85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations. PMID:27109617

  15. Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances.

    PubMed

    Cabrol, Léa; Poly, Franck; Malhautier, Luc; Pommier, Thomas; Lerondelle, Catherine; Verstraete, Willy; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis; Le Roux, Xavier

    2016-01-05

    Microbial communities have a key role for the performance of engineered ecosystems such as waste gas biofilters. Maintaining constant performance despite fluctuating environmental conditions is of prime interest, but it is highly challenging because the mechanisms that drive the response of microbial communities to disturbances still have to be disentangled. Here we demonstrate that the bioprocess performance and stability can be improved and reinforced in the face of disturbances, through a rationally predefined strategy of microbial resource management (MRM). This strategy was experimentally validated in replicated pilot-scale nitrifying gas-biofilters, for the two steps of nitrification. The associated biological mechanisms were unraveled through analysis of functions, abundances and community compositions for the major actors of nitrification in these biofilters, that is, ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nitrite-oxidizers (NOB). Our MRM strategy, based on the application of successive, transient perturbations of increasing intensity, enabled to steer the nitrifier community in a favorable way through the selection of more resistant AOB and NOB sharing functional gene sequences close to those of, respectively, Nitrosomonas eutropha and Nitrobacter hamburgensis that are well adapted to high N load. The induced community shifts resulted in significant enhancement of nitrification resilience capacity following the intense perturbation.

  16. Evaluation of natural zeolite as microorganism support medium in nitrifying batch reactors: influence of zeolite particle size.

    PubMed

    Mery, C; Guerrero, L; Alonso-Gutiérrez, J; Figueroa, M; Lema, J M; Montalvo, S; Borja, R

    2012-01-01

    An evaluation of natural zeolite as a microorganism carrier in nitrifying reactors operated in batch mode was carried out. Specifically, the influence of zeolite particle sizes of 0.5, 1.0 and 2.0 mm in diameter on microorganism adherence to zeolite, ammonium adsorption capacity and the identification of microbial populations were assessed. The greatest amount of total biomass adhered was observed for a zeolite particle size of 1 mm (0.289 g) which was achieved on the 12th day of operation. The highest ammonium adsorption capacity was observed for a zeolite particle size of 0.5 mm, which was 64% and 31% higher than that observed for particle sizes of 1.0 and 2.0 mm, respectively. The maximum de-sorption values were also found for a zeolite particle size of 0.5 mm, although when equilibrium was reached the ammonium concentrations were similar to those observed for a zeolite particle size of 1.0 mm. It was also found that the experimental data on ammonium adsorption fitted very well to the Freundlich isotherm for the three particle sizes studied. Finally, the nitrifying reactors showed similar microbial populations independently of the particle size used as microorganism carrier. The dominant bacterial community was Gammaproteobacteria making up 80% of the total population found. Betaproteobacteria were also identified and made up 12% approx. of the total population. Ammonium Oxidant Betaproteobacteria and Nitrobacter were also detected.

  17. Simultaneous removal of 2-chlorophenol, phenol, p-cresol and p-hydroxybenzaldehyde under nitrifying conditions: kinetic study.

    PubMed

    Silva, C D; Gómez, J; Beristain-Cardoso, R

    2011-06-01

    The kinetic behavior of a stable nitrifying consortium exposed to 2-chlorophenol (2-CP), phenol, p-cresol and p-hydroxybenzaldehyde (p-OHB) was evaluated in batch assays. Phenolic compounds were evaluated either individually or in mixture. In individual assays, 2-CP inhibited stronger the nitrification, diminishing the ammonium consumption efficiency (16%) and the nitrate production rate (at 91%). Nonetheless, the consumption efficiencies for all phenolics were of 100%. On the other hand, in mixture, the inhibitory effect of 2-CP diminished significantly, since ammonium consumption efficiency and nitrate production rate were improved. Consumption efficiencies for most of the phenolic compounds were high. Furthermore, the kinetic of 2-CP oxidation was 2.4-fold-faster than the individual assays. Finally, the experimental results showed the potential of nitrifying consortium for removing 2-CP, phenol, p-cresol and p-OHB. This is the first work showing the simultaneous removal of these pollutants and also this information might be useful for treating wastewaters of chemical complexity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Quantitative response of nitrifying and denitrifying communities to environmental variables in a full-scale membrane bioreactor.

    PubMed

    Gómez-Silván, C; Vílchez-Vargas, R; Arévalo, J; Gómez, M A; González-López, J; Pieper, D H; Rodelas, B

    2014-10-01

    The abundance and transcription levels of specific gene markers of total bacteria, ammonia-oxidizing Betaproteobacteria, nitrite-oxidizing bacteria (Nitrospira-like) and denitrifiers (N2O-reducers) were analyzed using quantitative PCR (qPCR) and reverse-transcription qPCR during 9 months in a full-scale membrane bioreactor treating urban wastewater. A stable community of N-removal key players was developed; however, the abundance of active populations experienced sharper shifts, demonstrating their fast adaptation to changing conditions. Despite constituting a small percentage of the total bacterial community, the larger abundances of active populations of nitrifiers explained the high N-removal accomplished by the MBR. Multivariate analyses revealed that temperature, accumulation of volatile suspended solids in the sludge, BOD5, NH4(+) concentration and C/N ratio of the wastewater contributed significantly (23-38%) to explain changes in the abundance of nitrifiers and denitrifiers. However, each targeted group showed different responses to shifts in these parameters, evidencing the complexity of the balance among them for successful biological N-removal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Concentrations of nitrifying bacteria in sewages, effluents, and a receiving stream and resistance of these organisms to chlorination.

    PubMed Central

    Strom, P F; Matulewich, V A; Finstein, M S

    1976-01-01

    Estimates of NH4+-and NO2-oxidizers in samples from four activated sludge plants treating mainly domestic sewage were obtained using a most-probable-number (MPN) technique. Ranges of concentrations per milliliter of each, respectively, were 1,010 to 3,880 and 79 to 145 in settled sewages, 32 to 7,420 and 2 to 1,010 in secondary effluents, and less than 0.1 to 622 and 0.1 to 70 in chlorinated secondary effluents. The results of this field study indicated that nitrifiers were more resistant to chlorination than fecal streptococci, which were also enumerated. In laboratory studies the survivals of these bacterial groups in secondary effluents were determined after exposure to chlorine residuals of up to 2 mg/liter for 0 to 60 min. The nitrifiers proved considerably more resistant than fecal streptococci, with NO2-oxidizers showing greater resistance than NH4+-oxidizers. Below the outfall of one of the plants that discharges heavily chlorinated unnitrified effluent, NH4+-oxidizers amounted to approximately 200 X 10(5) per g of slime scraped from stream-bed rocks. Upstream of the outfall this was approximatley 3 X 10(5)/G. PMID:818958

  20. Identification and Activities In Situ of Nitrosospira and Nitrospira spp. as Dominant Populations in a Nitrifying Fluidized Bed Reactor

    PubMed Central

    Schramm, Andreas; de Beer, Dirk; Wagner, Michael; Amann, Rudolf

    1998-01-01

    Bacterial aggregates from a chemolithoautotrophic, nitrifying fluidized bed reactor were investigated with microsensors and rRNA-based molecular techniques. The microprofiles of O2, NH4+, NO2−, and NO3− demonstrated the occurrence of complete nitrification in the outer 125 μm of the aggregates. The ammonia oxidizers were identified as members of the Nitrosospira group by fluorescence in situ hybridization (FISH). No ammonia- or nitrite-oxidizing bacteria of the genus Nitrosomonas or Nitrobacter, respectively, could be detected by FISH. To identify the nitrite oxidizers, a 16S ribosomal DNA clone library was constructed and screened by denaturing gradient gel electrophoresis and selected clones were sequenced. The organisms represented by these sequences formed two phylogenetically distinct clusters affiliated with the nitrite oxidizer Nitrospira moscoviensis. 16S rRNA-targeted oligonucleotide probes were designed for in situ detection of these organisms. FISH analysis showed that the dominant populations of Nitrospira spp. and Nitrosospira spp. formed separate, dense clusters which were in contact with each other and occurred throughout the aggregate. A second, smaller, morphologically and genetically different population of Nitrospira spp. was restricted to the outer nitrifying zones. PMID:9726900

  1. Linking nitrifying biofilm characteristics and nitrification performance in moving-bed biofilm reactors for polluted raw water pretreatment.

    PubMed

    Zhang, Shuangfu; Wang, Yayi; He, Weitao; Xing, Meiyan; Wu, Min; Yang, Jian; Gao, Naiyun; Sheng, Guangyao; Yin, Daqiang; Liu, Shanhu

    2013-10-01

    Biofilm physiology was characterized by four biofilm constituents, i.e., polysaccharides, proteins (PN), humic-like substances and phospholipids (PL), for the first time to explore the relationships between biofilm characteristics and nitrification performance in moving-bed biofilm reactors (MBBRs) designed for pretreatment of polluted raw surface water for potable supply. The biofilm compositions depended highly on the balance of microbial decay and nitrification processes. The increased ammonia loading greatly regulated the community structure, promoting the dominance of nitrifiers and their proportions in the nitrifying biofilm. Nitrification rate and activity correlated linearly with the fractions of volatile solids (VS), PN and PL, which were related to nitrification processes in the biofilm. The specific biofilm activity demonstrated an exponential-asymptotic relationship with ratios of PN/VS and PL/VS. Thus, analyzing biofilm characteristics can be valid for estimating nitrification performance in MBBRs, and may offer engineers with basis to optimize MBBR design and operation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Carrier effects on tertiary nitrifying moving bed biofilm reactor: An examination of performance, biofilm and biologically produced solids.

    PubMed

    Forrest, Daina; Delatolla, Robert; Kennedy, Kevin

    2016-01-01

    Increasingly stricter ammonia and nitrogen release regulations with respect to wastewater effluents are creating a need for tertiary treatment systems. The moving bed biofilm reactor (MBBR) is being considered as an upgrade option for an increasing number of wastewater treatment facilities due to its small footprint and ease of operation. Despite the MBBRs creation as a system to remove nitrogen, recent research on MBBR systems showing that the system's performance is directly related to carrier surface area and is irrespective of carrier shape and type has been performed exclusively on chemical oxygen demand (COD) removal systems. Furthermore, the influence of carrier type on the solids produced by MBBR systems has also been exclusively studied for COD removal systems. This work investigates the effects of three specific carrier types on ammonia removal rates, biofilm morphology, along with solids production and settleability of tertiary nitrifying MBBR systems. The study concludes that carrier type has no significant effect on tertiary nitrifying MBBR system performance under steady, moderate loading conditions. The research does however highlight the propensity of greater surface area to volume carriers to become clogged under high loading conditions and that the high surface area carriers investigated in this study required longer adjustment periods to changes in loading after becoming clogged.

  3. Removal of trace organic contaminants by nitrifying activated sludge and whole-cell and crude enzyme extract of Trametes versicolor.

    PubMed

    Yang, Shufan; Hai, Faisal I; Nghiem, Long D; Roddick, Felicity; Price, William E

    2013-01-01

    The resistance of certain anthropogenic trace organic contaminants (TrOCs) to conventional wastewater treatment and their potential adverse effects on human and ecological health raise significant concerns and have prompted research on their bioremediation by white-rot fungi. This study compared the removal efficiencies of four widespread TrOCs: carbamazepine (CBZ), sulfamethoxazole (SMX), bisphenol A (BPA) and diclofenac (DCF), by nitrifying activated sludge as well as whole-cell and extracellular enzyme (laccase) extract of the white-rot fungus Trametes versicolor. Fungal whole-cell culture removed only BPA and DCF but with high efficiencies (>90%) while the mixed nitrifying culture removed all compounds, although by levels of only 5-40%. Rapid initial sorption on fungal mycelium (44 ± 13% for DCF) was observed; however, biodegradation governed the overall removal. Performance comparison between fungal whole-cell and extracellular extract revealed that, unlike BPA, a catalytic pathway independent of extracellular laccase was responsible for DCF removal. Addition of mediator (1-hydroxybenzotriazole) to extracellular extract improved the removal of SMX which bears an electron donor group, but not that of the resistant compound CBZ.

  4. Assay for determination of alpha-glucosidase and peptidase activity and location in a nitrifying trickling filter.

    PubMed

    Mustafa, N; Sörensson, F

    2001-12-01

    Enzymatic alpha-glucosidase and peptidase activity in a nitrifying trickling filter (NTF) at the Rya wastewater treatment plant, Göteborg, Sweden, was investigated to evaluate whether these activities can be used as indicators of heterotrophic activity and polymer degradation. Samples of the biofilm were taken from the NTF and incubated in sterile filtered effluent water from the NTF with the addition of soluble starch, peptone, and ammonium chloride. In order to determine the distribution of enzyme activities, the alpha-glucosidase and peptidase activities were measured in the biofilm samples, in the filtered effluent water from the NTF and in the water phase in which the biofilm was incubated. Activities of both enzymes were found both in the effluent water from the NTF and in the biofilm. The enzyme activities were elevated in the samples when starch and peptone were present. In addition, there was a significant inhibition of ammonium oxidation in samples incubated with starch and peptone. Thus, the presence of starch, peptone and ammonium resulted in increased activity of heterotrophs, which lead to an inhibition of the nitrifiers, probably via competition for available oxygen.

  5. Spiperone: evidence for uptake into secretory granules.

    PubMed Central

    Dannies, P S; Rudnick, M S; Fishkes, H; Rudnick, G

    1984-01-01

    Spiperone, a dopamine antagonist widely used as a specific ligand for dopamine and serotonin receptors, is actively accumulated into the F4C1 strain of rat pituitary tumor cells. The accumulation of 10 nM [3H]spiperone was linear for 3 min and reached a steady state after 10 min. Spiperone accumulation was reduced 50% by preincubation with 5 microM reserpine, an inhibitor of biogenic amine transport into secretory granules, and was also blocked by monensin and ammonium chloride, both of which increase the pH of intracellular storage organelles. Uptake was not affected by replacing sodium in the buffer with lithium at equimolar concentrations. Spiperone at 1 microM inhibited by over 50% serotonin transport into membrane vesicles isolated from platelet dense granules; this concentration inhibited the Na+-dependent plasma membrane transport system less than 10%. The data indicate spiperone specifically interacts with the secretory granule amine transport system and suggest that this transport system is found in the F4C1 pituitary cell strain as well as in platelets and neurons. The data also suggest that experiments utilizing spiperone to measure dopamine and serotonin receptors be interpreted with caution. PMID:6584920

  6. Inhibition of granulation tissue growth by histamine.

    PubMed

    Saeki, K; Yokoyama, J; Wake, K

    1975-06-01

    Granulomas were induced in rats by subcutaneous implantation of formalin-soaked filter-paper disks. Daily subcutaneous injection of histamine at doses of two times 0.05 mg/kg and above inhibited the growth of granulation tissue as measured by a marked decrease in the dry-defatted granuloma weight and of the hydroxyproline and hexosamine content. Histological observations of granulation tissue indicated that histamine inhibited the proliferation of fibroblasts and the formation of capillaries. Inhibitory effects were also observed with the histamine releaser, sinomenine, and the histaminase inhibitor, aminoguanidine. These histamine effects seem not to be mediated by glucocorticoid release, since an effective dose level of histamine produced no change in growth or thymus weight. Prednisolone was less potent than histamine in inhibiting Prednisolone was ineffective at the dose tested. Subcutaneous injection of the H2-receptor antagonist, burimamide, blocked these histamine effects and also of sinomeinine and aminoguanidine. The H1-receptor antagonist, mepyramine, did not block these histamine effects. Burimamide alone enhanced the growth of granuloma. These results indicate that granulation-tissue growth in inflammation is affected by the inhibitory effect of endogenous histamine acting through H2-receptors.

  7. Emergent macrophytes select for nitrifying and denitrifying microorganisms in constructed wetlands

    NASA Astrophysics Data System (ADS)

    Trias, Rosalia; Ramió Pujol, Sara; Bañeras, Lluis

    2014-05-01

    The use of constructed wetlands for wastewater treatment is a reliable low-cost alternative that has been widely developed during the last years. Several processes involving plants, sediments, and microbial communities contribute to nitrogen removal in wetlands. Vegetation plays an important role in this process, not only by nutrient assimilation but also by the stimulation of the plant associated microbiota. Plants supply oxygen at the close proximity of the root surface that may favour ammonia oxidizers. At the same time, exudation of organic compounds potentially speeds-up denitrification in the anoxic environment. The aim of this work was to understand the plant-microbe interactions at the root level in the Empuriabrava free water surface constructed wetland (Spain). The roots of the macrophytes Typha latifolia, Typha angustifolia, Phragmites australis and Bolboschoenus maritimus were sampled at four dates from January to September 2012, covering all the stages of plant growth. Additionally, sediment surrounding vegetation and non-vegetated sediments were sampled. Microbial community structure was analysed by pyrosequencing of bacterial and archaeal 16S rDNA and functional genes (nirK, nirS, nosZ and amoA). Bacterial communities were significantly different in sediments of the vegetated areas compared to the root surface. Plant roots exhibited a higher proportion of proteobacteria whereas Actinobacteria were dominant in sediments. The nitrifiers Nitrosomonas sp. and Nitrosococcus sp. accounted for less than 1% of all sequences. Archaeal communities were dominated by the Miscellaneous Crenarchaeotic Groups C2 and C3 and Methanomicrobia. Higher relative abundances of MCG were found in roots of P. australis, B. maritimus and T. angustifolia. Ammonia oxidizing archaea accounted for less than 0.1% of all sequences but were consistently more abundant in sediment samples compared to roots. NirK and NirS-type bacterial communities showed clearly distinct distribution

  8. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    PubMed

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure

    PubMed Central

    LaSarge, Candi L.; Santos, Victor R; Danzer, Steve C.

    2015-01-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offset the reduction in boutons per axon length. These morphological changes predicts a net increase in granule cell >> CA3 innervation. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell >> CA3 communication. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. PMID:25600212

  10. Second Harmonic Generation Mediated by Aligned Water in Starch Granules.

    PubMed

    Cisek, Richard; Tokarz, Danielle; Krouglov, Serguei; Steup, Martin; Emes, Michael J; Tetlow, Ian J; Barzda, Virginijus

    2014-12-26

    The origin of second harmonic generation (SHG) in starch granules was investigated using ab initio quantum mechanical modeling and experimentally examined using polarization-in, polarization-out (PIPO) second harmonic generation microscopy. Ab initio calculations revealed that the largest contribution to the SHG signal from A- and B-type allomorphs of starch originates from the anisotropic organization of hydroxide and hydrogen bonds mediated by aligned water found in the polymers. The hypothesis was experimentally tested by imaging maize starch granules under various hydration and heat treatment conditions that alter the hydrogen bond network. The highest SHG intensity was found in fully hydrated starch granules, and heat treatment diminished the SHG intensity. The PIPO SHG imaging showed that dried starch granules have a much higher nonlinear optical susceptibility component ratio than fully hydrated granules. In contrast, deuterated starch granules showed a smaller susceptibility component ratio demonstrating that SHG is highly sensitive to the organization of the hydroxyl and hydrogen bond network. The polarization SHG imaging results of potato starch granules, representing starch allomorph B, were compared to those of maize starch granules representing allomorph A. The results showed that the amount of aligned water was higher in the maize granules. Nonlinear microscopy of starch granules provides evidence that varying hydration conditions leads to significant changes in the nonlinear susceptibility ratio as well as the SHG intensity, supporting the hypothesis from ab initio calculations that the dominant contribution to SHG is due to the ordered hydroxide and hydrogen bond network.

  11. The influence of granulation on super disintegrant performance.

    PubMed

    Zhao, Na; Augsburger, Larry L

    2006-02-01

    The purpose of this study is to identify the causes of efficiency loss of super disintegrants following granulation or reworking. Two processes, precompression and prewetting, were proposed to simulate the processes during dry and wet granulation, respectively. The disintegration efficiency of the resulting disintegrant granules was tested in model formulations composed of dicalcium phosphate and lactose with the unprocessed disintegrants as controls. No significant difference was shown in the intrinsic swelling and the water uptake abilities of all super disintegrants following dry granulation. However, a significant decrease was observed for both Primojel and Polyplasdone XL10 in the rate of water being absorbed into the tablet matrix following wet granulation, but not for Ac-Di-Sol. United States Pharmacopeia (USP) disintegration testing without disc revealed a significant increase in disintegration time for tablets formulated with dry granulated Primojel and Polyplasdone XL10 and all wet granulated disintegrants. The increase in particle size following granulation appears to be the cause of the loss in disintegration efficiency. In conclusion, Ac-Di-Sol is less affected by both precompression and prewetting. The efficiency of Primojel and Polyplasdone XL10 is highly dependent on their particle size. Descreasing the particle size tends to increase their efficiency. Due to the size increase following granulation, a higher addition level of super disintegrant is required to ensure fast and uniform disintegration of tablets prepared by granulation.

  12. Platelet α–granules: Basic biology and clinical correlates

    PubMed Central

    Blair, Price; Flaumenhaft, Robert

    2009-01-01

    Summary α–Granules are essential to normal platelet activity. These unusual secretory granules derive their cargo from both regulated secretory and endocytotic pathways in megakaryocytes. Rare, inheritable defects of α–granule formation in mice and man have enabled identification of proteins that mediate cargo trafficking and α–granule formation. In platelets, α–granules fuse with the plasma membrane upon activation, releasing their cargo and increasing platelet surface area. The mechanisms that control α–granule membrane fusion have begun to be elucidated at the molecular level. SNAREs and SNARE accessory proteins that control α–granule secretion have been identified. Proteomic studies demonstrate that hundreds of bioactive proteins are released from α–granules. This breadth of proteins implies a versatile functionality. While initially known primarily for their participation in thrombosis and hemostasis, the role of α–granules in inflammation, atherosclerosis, antimicrobial host defense, wound healing, angiogenesis, and malignancy has become increasingly appreciated as the function of platelets in the pathophysiology of these processes has been defined. This review will consider the formation, release, and physiologic roles of α–granules with special emphasis on work performed over the last decade. PMID:19450911

  13. Proteomic Analysis of Pancreatic Zymogen Granules: Identification of New Granule Proteins

    PubMed Central

    Rindler, Michael J.; Xu, Chong-feng; Gumper, Iwona; Smith, Nora N.; Neubert, Thomas A.

    2008-01-01

    The composition of zymogen granules from rat pancreas was determined by LC-MS/MS. Enriched intragranular content, peripheral membrane and integral membrane protein fractions were analyzed after one-dimensional SDS/PAGE and tryptic digestion of gel slices. A total of 371 proteins were identified with high confidence, including 84 previously identified granule proteins. The 287 remaining proteins included 37 GTP-binding proteins and effectors, 8 tetraspan membrane proteins, and 22 channels and transporters. Seven proteins – pantophysin, cyclic nucleotide phosphodiesterase, carboxypeptidase D, ecto-nucleotide phosphodiesterase 3, aminopeptidase N, ral, and the potassium channel TWIK-2 – were confirmed by immunofluorescence microscopy or by immunoblotting to be new zymogen granule membrane proteins. PMID:17583932

  14. In situ nitrification rates and activity of present nitrifiers in the bottom water layer of two Baltic coastal zones affected by different riverine nutrient loads

    NASA Astrophysics Data System (ADS)

    Bartl, I.; Münster Happel, E.; Riemann, L.; Voss, M.

    2016-02-01

    Baltic coastal zones are among the most eutrophied in the world receiving high loads of nitrogen from riverine inputs. However, not only the loads but also the internal dynamics in coastal zones might have positive feedback on eutrophication through efficient remineralisation of organic material in the bottom water. Therefore, we studied nitrification, which is a vital remineralisation process, near the seafloor along with the community of nitrifying microorganisms. We hypothesize that a high nutrient and organic matter load leads to elevated ammonium concentrations in coastal waters and thus stimulates nitrification rates and alters the nitrifying community. Here we present results from 3 cruises combining nitrification rate measurements by 15N-incubations with sequence-based analyses of present and active nitrifiers in the bottom water of two sites in the Baltic Sea receiving different nutrient loads. The first results from the Bonus projects COCOA and BLUEPRINT indicate an increase of nitrification rates with depth as well as distance from the river mouth. In situ rates in the bottom water of the nutrient rich Vistula plume range from 53 to 197 nmol L-1 d-1 and from 10 to 646 nmol L-1 d-1 during winter and summer, respectively. In the nutrient poor Öre estuary rates increased significantly by 11 nmol L-1 d-1 from the river mouth to the outermost station. The relationship between nitrification rates, nitrifiers and trophic state of the coastal zone shall be discussed.

  15. Nitrifier-induced denitrification is an important source of soil nitrous oxide and can be inhibited by a nitrification inhibitor 3,4-dimethylpyrazole phosphate.

    PubMed

    Shi, Xiuzhen; Hu, Hang-Wei; Zhu-Barker, Xia; Hayden, Helen; Wang, Juntao; Suter, Helen; Chen, Deli; He, Ji-Zheng

    2017-07-28

    Soil ecosystem represents the largest contributor to global nitrous oxide (N2 O) production, which is regulated by a wide variety of microbial communities in multiple biological pathways. A mechanistic understanding of these N2 O production biological pathways in complex soil environment is essential for improving model performance and developing innovative mitigation strategies. Here, combined approaches of the (15) N-(18) O labelling technique, transcriptome analysis, and Illumina MiSeq sequencing were used to identify the relative contributions of four N2 O pathways including nitrification, nitrifier-induced denitrification (nitrifier denitrification and nitrification-coupled denitrification) and heterotrophic denitrification in six soils (alkaline vs. acid soils). In alkaline soils, nitrification and nitrifier-induced denitrification were the dominant pathways of N2 O production, and application of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) significantly reduced the N2 O production from these pathways; this is probably due to the observed reduction in the expression of the amoA gene in ammonia-oxidizing bacteria (AOB) in the DMPP-amended treatments. In acid soils, however, heterotrophic denitrification was the main source for N2 O production, and was not impacted by the application of DMPP. Our results provide robust evidence that the nitrification inhibitor DMPP can inhibit the N2 O production from nitrifier-induced denitrification, a potential significant source of N2 O production in agricultural soils. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Nitrifying bacterial communities in an aquaculture wastewater treatment system using fluorescence in situ hybridization (FISH), 16S rRNA gene cloning, and phylogenetic analysis.

    PubMed

    Paungfoo, Chanyarat; Prasertsan, Poonsuk; Burrell, Paul C; Intrasungkha, Nugul; Blackall, Linda L

    2007-07-01

    Aquaculture, especially shrimp farming, has played a major role in the growth of Thailand's economy in recent years, as well as in many South East Asian countries. However, the nutrient discharges fro