Nano-multiplication region avalanche photodiodes and arrays
NASA Technical Reports Server (NTRS)
Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)
2011-01-01
An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.
Development of Fuses for Protection of Geiger-Mode Avalanche Photodiode Arrays
NASA Astrophysics Data System (ADS)
Grzesik, Michael; Bailey, Robert; Mahan, Joe; Ampe, Jim
2015-11-01
Current-limiting fuses composed of Ti/Al/Ni were developed for use in Geiger-mode avalanche photodiode arrays for each individual pixel in the array. The fuses were designed to burn out at ˜4.5 × 10-3 A and maintain post-burnout leakage currents less than 10-7 A at 70 V sustained for several minutes. Experimental fuse data are presented and successful incorporation of the fuses into a 256 × 64 pixel InP-based Geiger-mode avalanche photodiode array is reported.
Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits.
Aull, Brian
2016-04-08
This article reviews MIT Lincoln Laboratory's work over the past 20 years to develop photon-sensitive image sensors based on arrays of silicon Geiger-mode avalanche photodiodes. Integration of these detectors to all-digital CMOS readout circuits enable exquisitely sensitive solid-state imagers for lidar, wavefront sensing, and passive imaging.
Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia
2015-12-01
Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.
HgCdTe avalanche photodiodes: A review
NASA Astrophysics Data System (ADS)
Singh, Anand; Srivastav, Vanya; Pal, Ravinder
2011-10-01
This paper presents a comprehensive review of fundamental issues, device architectures, technology development and applications of HgCdTe based avalanche photodiodes (APD). High gain, above 5×10 3, a low excess noise factor close to unity, THz gain-bandwidth product, and fast response in the range of pico-seconds has been achieved by electron-initiated avalanche multiplication for SWIR, MWIR, and LWIR detector applications involving low optical signals. Detector arrays with good element-to-element uniformity have been fabricated paving the way for fabrication of HgCdTe-APD FPAs.
NASA Astrophysics Data System (ADS)
Tsuji, Hidenobu; Imaki, Masaharu; Kotake, Nobuki; Hirai, Akihito; Nakaji, Masaharu; Kameyama, Shumpei
2017-03-01
We demonstrate a range imaging pulsed laser sensor with two-dimensional scanning of a transmitted beam and a scanless receiver using a high-aspect avalanche photodiode (APD) array for the eye-safe wavelength. The system achieves a high frame rate and long-range imaging with a relatively simple sensor configuration. We developed a high-aspect APD array for the wavelength of 1.5 μm, a receiver integrated circuit, and a range and intensity detector. By combining these devices, we realized 160×120 pixels range imaging with a frame rate of 8 Hz at a distance of about 50 m.
Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR
NASA Astrophysics Data System (ADS)
Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph
2010-09-01
We report on the development of focal plane arrays (FPAs) employing two-dimensional arrays of InGaAsP-based Geiger-mode avalanche photodiodes (GmAPDs). These FPAs incorporate InP/InGaAs(P) Geiger-mode avalanche photodiodes (GmAPDs) to create pixels that detect single photons at shortwave infrared wavelengths with high efficiency and low dark count rates. GmAPD arrays are hybridized to CMOS read-out integrated circuits (ROICs) that enable independent laser radar (LADAR) time-of-flight measurements for each pixel, providing three-dimensional image data at frame rates approaching 200 kHz. Microlens arrays are used to maintain high fill factor of greater than 70%. We present full-array performance maps for two different types of sensors optimized for operation at 1.06 μm and 1.55 μm, respectively. For the 1.06 μm FPAs, overall photon detection efficiency of >40% is achieved at <20 kHz dark count rates with modest cooling to ~250 K using integrated thermoelectric coolers. We also describe the first evalution of these FPAs when multi-photon pulses are incident on single pixels. The effective detection efficiency for multi-photon pulses shows excellent agreement with predictions based on Poisson statistics. We also characterize the crosstalk as a function of pulse mean photon number. Relative to the intrinsic crosstalk contribution from hot carrier luminescence that occurs during avalanche current flows resulting from single incident photons, we find a modest rise in crosstalk for multi-photon incident pulses that can be accurately explained by direct optical scattering.
InP-based Geiger-mode avalanche photodiode arrays for three-dimensional imaging at 1.06 μm
NASA Astrophysics Data System (ADS)
Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Jiang, Xudong; Patel, Ketan; Slomkowski, Krystyna; Koch, Tim; Rangwala, Sabbir; Zalud, Peter F.; Yu, Young; Tower, John; Ferraro, Joseph
2009-05-01
We report on the development of 32 x 32 focal plane arrays (FPAs) based on InGaAsP/InP Geiger-mode avalanche photodiodes (GmAPDs) designed for use in three-dimensional (3-D) laser radar imaging systems at 1064 nm. To our knowledge, this is the first realization of FPAs for 3-D imaging that employ a planar-passivated buried-junction InP-based GmAPD device platform. This development also included the design and fabrication of custom readout integrate circuits (ROICs) to perform avalanche detection and time-of-flight measurements on a per-pixel basis. We demonstrate photodiode arrays (PDAs) with a very narrow breakdown voltage distribution width of 0.34 V, corresponding to a breakdown voltage total variation of less than +/- 0.2%. At an excess bias voltage of 3.3 V, which provides 40% pixel-level single photon detection efficiency, we achieve average dark count rates of 2 kHz at an operating temperature of 248 K. We present the characterization of optical crosstalk induced by hot carrier luminescence during avalanche events, where we show that the worst-case crosstalk probability per pixel, which occurs for nearest neighbors, has a value of less than 1.6% and exhibits anisotropy due to isolation trench etch geometry. To demonstrate the FPA response to optical density variations, we show a simple image of a broadened optical beam.
Hybrid AlGaN-SiC Avalanche Photodiode for Deep-UV Photon Detection
NASA Technical Reports Server (NTRS)
Aslam, Shahid; Herrero, Federico A.; Sigwarth, John; Goldsman, Neil; Akturk, Akin
2010-01-01
The proposed device is capable of counting ultraviolet (UV) photons, is compatible for inclusion into space instruments, and has applications as deep- UV detectors for calibration systems, curing systems, and crack detection. The device is based on a Separate Absorption and Charge Multiplication (SACM) structure. It is based on aluminum gallium nitride (AlGaN) absorber on a silicon carbide APD (avalanche photodiode). The AlGaN layer absorbs incident UV photons and injects photogenerated carriers into an underlying SiC APD that is operated in Geiger mode and provides current multiplication via avalanche breakdown. The solid-state detector is capable of sensing 100-to-365-nanometer wavelength radiation at a flux level as low as 6 photons/pixel/s. Advantages include, visible-light blindness, operation in harsh environments (e.g., high temperatures), deep-UV detection response, high gain, and Geiger mode operation at low voltage. Furthermore, the device can also be designed in array formats, e.g., linear arrays or 2D arrays (micropixels inside a superpixel).
Low-noise AlInAsSb avalanche photodiode
NASA Astrophysics Data System (ADS)
Woodson, Madison E.; Ren, Min; Maddox, Scott J.; Chen, Yaojia; Bank, Scott R.; Campbell, Joe C.
2016-02-01
We report low-noise avalanche gain from photodiodes composed of a previously uncharacterized alloy, Al0.7In0.3As0.3Sb0.7, grown on GaSb. The bandgap energy and thus the cutoff wavelength are similar to silicon; however, since the bandgap of Al0.7In0.3As0.3Sb0.7 is direct, its absorption depth is 5 to 10 times shorter than indirect-bandgap silicon, potentially enabling significantly higher operating bandwidths. In addition, unlike other III-V avalanche photodiodes that operate in the visible or near infrared, the excess noise factor is comparable to or below that of silicon, with a k-value of approximately 0.015. Furthermore, the wide array of absorber regions compatible with GaSb substrates enable cutoff wavelengths ranging from 1 μm to 12 μm.
Integrated Avalanche Photodiode arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, Eric S.
2017-04-18
The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.
Integrated avalanche photodiode arrays
Harmon, Eric S.
2015-07-07
The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed.
InAlAs/InGaAs avalanche photodiode arrays for free space optical communication.
Ferraro, Mike S; Clark, William R; Rabinovich, William S; Mahon, Rita; Murphy, James L; Goetz, Peter G; Thomas, Linda M; Burris, Harris R; Moore, Christopher I; Waters, William D; Vaccaro, Kenneth; Krejca, Brian D
2015-11-01
In free space optical communication, photodetectors serve not only as communications receivers but also as position sensitive detectors (PSDs) for pointing, tracking, and stabilization. Typically, two separate detectors are utilized to perform these tasks, but recent advances in the fabrication and development of large-area, low-noise avalanche photodiode (APD) arrays have enabled these devices to be used both as PSDs and as communications receivers. This combined functionality allows for more flexibility and simplicity in optical system design without sacrificing the sensitivity and bandwidth performance of smaller, single-element data receivers. This work presents the development of APD arrays rated for bandwidths beyond 1 GHz with measured carrier ionization ratios of approximately 0.2 at moderate APD gains. We discuss the fabrication and characterization of three types of APD arrays along with their performance as high-speed photodetectors.
Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M
2014-11-01
We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.
Novel Photon-Counting Detectors for Free-Space Communication
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff
2016-01-01
We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.
Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging
NASA Astrophysics Data System (ADS)
Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph
2010-08-01
×We describe the design, fabrication, and performance of focal plane arrays (FPAs) for use in 3-D LADAR imaging applications requiring single photon sensitivity. These 32 × 32 FPAs provide high-efficiency single photon sensitivity for three-dimensional LADAR imaging applications at 1064 nm. Our GmAPD arrays are designed using a planarpassivated avalanche photodiode device platform with buried p-n junctions that has demonstrated excellent performance uniformity, operational stability, and long-term reliability. The core of the FPA is a chip stack formed by hybridizing the GmAPD photodiode array to a custom CMOS read-out integrated circuit (ROIC) and attaching a precision-aligned GaP microlens array (MLA) to the back-illuminated detector array. Each ROIC pixel includes an active quenching circuit governing Geiger-mode operation of the corresponding avalanche photodiode pixel as well as a pseudo-random counter to capture per-pixel time-of-flight timestamps in each frame. The FPA has been designed to operate at frame rates as high as 186 kHz for 2 μs range gates. Effective single photon detection efficiencies as high as 40% (including all optical transmission and MLA losses) are achieved for dark count rates below 20 kHz. For these planar-geometry diffused-junction GmAPDs, isolation trenches are used to reduce crosstalk due to hot carrier luminescence effects during avalanche events, and we present details of the crosstalk performance for different operating conditions. Direct measurement of temporal probability distribution functions due to cumulative timing uncertainties of the GmAPDs and ROIC circuitry has demonstrated a FWHM timing jitter as low as 265 ps (standard deviation is ~100 ps).
HIGH-SPEED IMAGING AND WAVEFRONT SENSING WITH AN INFRARED AVALANCHE PHOTODIODE ARRAY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranec, Christoph; Atkinson, Dani; Hall, Donald
2015-08-10
Infrared avalanche photodiode (APD) arrays represent a panacea for many branches of astronomy by enabling extremely low-noise, high-speed, and even photon-counting measurements at near-infrared wavelengths. We recently demonstrated the use of an early engineering-grade infrared APD array that achieves a correlated double sampling read noise of 0.73 e{sup −} in the lab, and a total noise of 2.52 e{sup −} on sky, and supports simultaneous high-speed imaging and tip-tilt wavefront sensing with the Robo-AO visible-light laser adaptive optics (AO) system at the Palomar Observatory 1.5 m telescope. Here we report on the improved image quality simultaneously achieved at visible andmore » infrared wavelengths by using the array as part of an image stabilization control loop with AO-sharpened guide stars. We also discuss a newly enabled survey of nearby late M-dwarf multiplicity, as well as future uses of this technology in other AO and high-contrast imaging applications.« less
ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays
NASA Technical Reports Server (NTRS)
Vasile, Stefan; Lipson, Jerold
2012-01-01
The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.
High intensity click statistics from a 10 × 10 avalanche photodiode array
NASA Astrophysics Data System (ADS)
Kröger, Johannes; Ahrens, Thomas; Sperling, Jan; Vogel, Werner; Stolz, Heinrich; Hage, Boris
2017-11-01
Photon-number measurements are a fundamental technique for the discrimination and characterization of quantum states of light. Beyond the abilities of state-of-the-art devices, we present measurements with an array of 100 avalanche photodiodes exposed to photon-numbers ranging from well below to significantly above one photon per diode. Despite each single diode only discriminating between zero and non-zero photon-numbers we were able to extract a second order moment, which acts as a nonclassicality indicator. We demonstrate a vast enhancement of the applicable intensity range by two orders of magnitude relative to the standard application of such devices. It turns out that the probabilistic mapping of arbitrary photon-numbers on a finite number of registered clicks is not per se a disadvantage compared with true photon counters. Such detector arrays can bridge the gap between single-photon and linear detection, by investigation of the click statistics, without the necessity of photon statistics reconstruction.
NASA Astrophysics Data System (ADS)
Ferraro, Mike S.; Mahon, Rita; Rabinovich, William S.; Murphy, James L.; Dexter, James L.; Clark, William R.; Waters, William D.; Vaccaro, Kenneth; Krejca, Brian D.
2017-02-01
Photodetectors in free space optical communication systems perform two functions: reception of data communication signals and position sensing for pointing, tracking, and stabilization. Traditionally, the optical receive path in an FSO system is split into separate paths for data detection and position sensing. The need for separate paths is a consequence of conflicting performance criteria between position sensitive detectors (PSD) and data detectors. Combining the functionality of both detector types requires that the combinational sensor not only have the bandwidth to support high data rate communication but the active area and spatial discrimination to accommodate position sensing. In this paper we present a large area, concentric five element impact ionization engineered avalanche photodiode array rated for bandwidths beyond 1GHz with a measured carrier ionization ratio of less than 0.1 at moderate APD gains. The integration of this array as a combinational sensor in an FSO system is discussed along with the development of a pointing and stabilization algorithm.
Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs
NASA Astrophysics Data System (ADS)
Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna
2015-05-01
Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.
Recent advances in very large area avalanche photodiodes
NASA Astrophysics Data System (ADS)
Squillante, Michael R.; Christian, James; Entine, Gerald; Farrell, Richard; Karger, Arieh M.; McClish, Mickel; Myers, Richard; Shah, Kanai S.; Taylor, David; Vanderpuye, Kofi; Waer, Peter; Woodring, Mitchell
2003-09-01
The Avalanche Photodiode (APD) is a unique device that combines the advantages of solid state photodetectors with those of high gain devices such as photomultiplier tubes (PMTs). APDs have internal gain that provides a high signal-to-noise ratio. APDs have high quantum efficiency, are fast, compact, and rugged. These properties make them suitable detectors for important applications such as LADAR, detection and identification toxic chemicals and bio-warfare agents, LIDAR fluorescence detection, stand-off laser induced breakdown spectroscopy (LIBS), and nuclear detectors and imagers. Recently there have been significant technical breakthroughs in fabricating very large APDs, APD arrays, and position sensitive APD arrays (PSAPD). Signal gain of over 10,000 has been achieved, single element APDs have been fabricated with active area greater than 40 cm2, monolithic pixelated arrays with up to 28 x 28 elements have been fabricated, and position sensitive APDs have been developed and tested. Additionally, significant progress has been made in improving the fabrication process to provide better uniformity and high yield, permitting cost effective manufacturing of APDs for reduced cost.
NASA Astrophysics Data System (ADS)
Bulmer, John J.
Ultraviolet (UV) radiation detectors are being heavily researched for applications in non-line-of-sight (NLOS) communication systems, flame monitoring, biological detection, and astronomical studies. These applications are currently being met by the use of Si-based photomultiplier tubes (PMTs), which are bulky, fragile, expensive and require the use of external filters to achieve true visible-blind and solar-blind operation. GaN and AlxGa1-xN avalanche photodiodes have been of great interest as a replacement for PMT technology. III-Nitride materials are radiation hard and have a wide, tunable bandgap that allows devices to operate in both visible and solar-blind regimes without the use of external filters. The high price and relative unavailability of bulk substrates demands heteroepitaxy of III-Nitride films on lattice-mismatched substrates, which leads to large dark current and premature breakdown in GaN and AlGaN avalanche photodiodes. While significant advances have been made towards the development of III-Nitride UV photodetectors using a variety of device designs, GaN-based avalanche photodiodes typically demonstrate poor device performance, low yield, and breakdown that results in permanent device damage. To address these challenges, a novel implantation technique was used to achieve edge termination and electric field redistribution at the contact edges in GaN and AlGaN p-i-n photodiode structures to enhance reliability. This process was successful at significantly reducing the levels of dark current over two orders of magnitude and resulted in improved device reliability. Further improvement in reliability of III-Nitride devices was also proposed and explored by a technique for isolation of electrically conductive structural defects. The large number of dislocations induced by the lattice and thermal mismatch with the substrate are known to be leakage current pathways and non-radiative recombination centers in III-Nitride films. This process selectively isolates conductive pathways in III-Nitrides using an electrochemical etch and novel foam passivation technique. Establishing improved photodiode performance and device reliability, 4x4 and 8x8 arrays of GaN p-i-n photodiodes were demonstrated and integrated with external circuitry to generate image patterns using 360nm illumination. This work represents significant progress towards the realization of reliable III-Nitride UV detectors arrays and future directions are proposed in order to demonstrate large-scale arrays for high-resolution ultraviolet imaging.
The performance of Geiger mode avalanche photo-diodes in free space laser communication links
NASA Astrophysics Data System (ADS)
Farrell, Thomas C.
2018-05-01
Geiger mode avalanche photo-diode (APD) arrays, when used as detectors in laser communication (lasercom) receivers, promise better performance at lower signal levels than APDs operated in the linear mode. In this paper, we describe the basic operation of the Geiger mode APD array as a lasercom detector, concentrating on aspects relevant to the link design engineer (rather than, for example, describing the details of the physics of the basic device operation itself). Equations are developed that describe the effects of defocus and hold-off time on the relation between the number of photons detected by the array and the output of photo-electron counts. We show how to incorporate these equations into a link budget. The resulting predictions are validated by comparison against simulation results. Finally, we compare the performance of linear mode APD based receivers and Geiger mode APD array based receivers. Results show the Geiger mode receivers yield better performance, in terms of probability of bit error, at lower signal levels, except on links where there is an exceptionally large amount of background noise. Under those conditions, not surprisingly, the hold-off time degrades performance.
Silicon avalanche photodiodes developed at the Institute of Electron Technology
NASA Astrophysics Data System (ADS)
Wegrzecka, Iwona; Wegrzecki, Maciej; Bar, Jan; Grynglas, Maria; Uszynski, Andrzej; Grodecki, Remigiusz; Grabiec, Piotr B.; Krzeminski, Sylwester; Budzynski, Tadeusz
2004-07-01
Silicon avalanche photodiodes (APDs) -- due to the effect of avalanche multiplication of carriers in their structure -- are most sensitive and fastest detectors of visible and near infrared radiation. Also the value of noise equivalent power NEP of these detectors is the smallest. In the paper, the design, technology and properties of the silicon avalanche photodiodes with a n+ - p - π - p+ epiplanar structure developed at the Institute of Electron Technology (ITE) are presented. The diameters of photosensitive area range from 0.3 mm to 5 mm. The ITE photodiodes are optimized for the detection of the 800 nm - 850 nm radiation, but the detailed research on spectral dependencies of the gain and noise parameters has revealed that the spectral operating range of the ITE photodiodes is considerable wider and achieves 550 - 1000 nm. These photodiodes can be used in detection of very weak and very fast optical signals. Presently in the world, the studies are carried out on applying the avalanche photodiodes in detection of X radiation and in the scintillation detection of nuclear radiation.
Crabtree, H J; Bay, S J; Lewis, D F; Zhang, J; Coulson, L D; Fitzpatrick, G A; Delinger, S L; Harrison, D J; Dovichi, N J
2000-04-01
A capillary array electrophoresis DNA sequencer is reported based on a micromachined sheath-flow cuvette as the detection chamber. This cuvette is equipped with a set of micromachined features that hold the capillaries in precise registration to ensure uniform spacing between the capillaries, in order to generate uniform hydrodynamic flow in the cuvette. A laser beam excites all of the samples simultaneously, and a microscope objective images fluorescence onto a set of avalanche photodiodes, which operate in the analog mode. A high-gain transimpedance amplifier is used for each photodiode, providing high duty-cycle detection of fluorescence.
Design and Development of 256x256 Linear Mode Low-Noise Avalanche Photodiode Arrays
NASA Technical Reports Server (NTRS)
Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Boisvert, Joseph; McDonald, Paul; Chang, James
2011-01-01
A larger format photodiode array is always desirable for many LADAR imaging applications. However, as the array format increases, the laser power or the lens aperture has to increase to maintain the same flux per pixel thus increasing the size, weight and power of the imaging system. In order to avoid this negative impact, it is essential to improve the pixel sensitivity. The sensitivity of a short wavelength infrared linear-mode avalanche photodiode (APD) is a delicate balance of quantum efficiency, usable gain, excess noise factor, capacitance, and dark current of APD as well as the input equivalent noise of the amplifier. By using InA1As as a multiplication layer in an InP-based APD, the ionization coefficient ratio, k, is reduced from 0.40 (lnP) to 0.22, and the excess noise is reduced by about 50%. An additional improvement in excess noise of 25% was achieved by employing an impact-ionization-engineering structure with a k value of 0.15. Compared with the traditional InP structure, about 30% reduction in the noise-equivalent power with the following amplifier can be achieved. Spectrolab demonstrated 30-um mesa APD pixels with a dark current less than 10 nA and a capacitance of 60 fF at gain of 10. APD gain uninformity determines the usable gain of most pixels in an array, which is critical to focal plane array sensitivity. By fine tuning the material growth and device process, a break-down-voltage standard deviation of 0.1 V and gain of 30 on individual pixels were demonstrated in our 256x256 linear-mode APD arrays.
Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits
2016-01-20
Figure 7 4×4 GMAPD array wire bonded to CMOS timing circuits Figure 8 Low‐fill‐factor APD design used in lidar sensors The APD doping...epitaxial growth and the pixels are isolated by mesa etch. 128×32 lidar image sensors were built by bump bonding the APD arrays to a CMOS timing...passive image sensor with this large a format based on hybridization of a GMAPD array to a CMOS readout. Fig. 14 shows one of the first images taken
Evaluation of Space Radiation Effects on HgCdTe Avalanche Photodiode Arrays for Lidar Applications
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.; Lauenstein, Jean-Marie; Sullivan, William III; Beck, Jeff; Hubbs, John E.
2018-01-01
We report the results from proton and gamma ray radiation testing of HgCdTe avalanche photodiode (APD) arrays developed by Leonardo DRS for space lidar detectors. We tested these devices with both approximately 60 MeV protons and gamma rays, with and without the read out integrated circuit (ROIC). We also measured the transient responses with the device fully powered and with the APD gain from unity to greater than 1000. The detectors produced a large current impulse in response to each proton hit but the response completely recovered within 1 microsecond. The devices started to have persistent damage at a proton fluence of 7e10 protons/cm2, equivalent to 10 krad(Si) total ionization dose. The dark current became much higher after the device was warmed to room temperature and cooled to 80K again, but it completely annealed after baking at 85 C for several hours. These results showed the HgCdTe APD arrays are suitable for use in space lidar for typical Earth orbiting and planetary missions provided that provisions are made to heat the detector chip to 85 C for several hours after radiation damage becomes evident that system performance is impacted.
Reliable InP-based Geiger-mode avalanche photodiode arrays
NASA Astrophysics Data System (ADS)
Smith, Gary M.; McIntosh, K. Alex; Donnelly, Joseph P.; Funk, Joseph E.; Mahoney, Leonard J.; Verghese, Simon
2009-05-01
Arrays as large as 256 x 64 of single-photon counting avalanche photodiodes have been developed for defense applications in free-space communication and laser radar. Focal plane arrays (FPAs) sensitive to both 1.06 and 1.55 μm wavelength have been fabricated for these applications. At 240 K and 4 V overbias, the dark count rate (DCR) of 15 μm diameter devices is typically 250 Hz for 1.06 μm sensitive APDs and 1 kHz for 1.55 μm APDs. Photon detection efficiencies (PDE) at 4 V overbias are about 45% for both types of APDs. Accounting for microlens losses, the full FPA has a PDE of 30%. The reset time needed for a pixel to avoid afterpulsing at 240 K is about 3-4 μsec. These devices have been used by system groups at Lincoln Laboratory and other defense contractors for building operational systems. For these fielded systems the device reliability is a strong concern. Individual APDs as well as full arrays have been run for over 1000 hrs of accelerated testing to verify their stability. The reliability of these GM-APDs is shown to be under 10 FITs at operating temperatures of 250 K, which also corresponds to an MTTF of 17,100 yrs.
NASA Technical Reports Server (NTRS)
Vasile, Stefan; Shera, Suzanne; Shamo, Denis
1998-01-01
New gamma ray and charged particle telescope designs based on scintillating fiber arrays could provide low cost, high resolution, lightweight, very large area and multi radiation length instrumentation for planned NASA space exploration. The scintillating fibers low visible light output requires readout sensors with single photon detection sensitivity and low noise. The sensitivity of silicon Avalanche Photodiodes (APDS) matches well the spectral output of the scintillating fibers. Moreover, APDs have demonstrated single photon capability. The global aim of our work is to make available to NASA a novel optical detector concept to be used as scintillating fiber readouts and meeting the requirements of the new generations of space-borne gamma ray telescopes. We proposed to evaluate the feasibility of using RMD's small area APDs ((mu)APD) as scintillating fiber readouts and to study possible alternative (mu)APD array configurations for space borne readout scintillating fiber systems, requiring several hundred thousand to one million channels. The evaluation has been conducted in accordance with the task description and technical specifications detailed in the NASA solicitation "Studies of Avalanche Photodiodes (APD as readout devices for scintillating fibers for High Energy Gamma-Ray Astronomy Telescopes" (#8-W-7-ES-13672NAIS) posted on October 23, 1997. The feasibility study we propose builds on recent developments of silicon APD arrays and light concentrators advances at RMD, Inc. and on more than 5 years of expertise in scintillating fiber detectors. In a previous program we carried out the initial research to develop a high resolution, small pixel, solid-state, silicon APD array which exhibited very high sensitivity in the UV-VIS spectrum. This (mu)APD array is operated in Geiger mode and results in high gain (greater than 10(exp 8)), extremely low noise, single photon detection capability, low quiescent power (less than 10 (mu)W/pixel for 30 micrometers sensitive area diameter) and output in the 1-5 volt range. If successful, this feasibility study will make possible the development of a scintillating fiber detector with unsurpassed sensitivity, extremely low power usage, a crucial factor of merit for space based sensors and telescopes.
High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.
Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S
2016-08-22
We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.
Impulse response measurement in the HgCdTe avalanche photodiode
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2018-04-01
HgCdTe based mid-wave infrared focal plane arrays (MWIR FPAs) are being developed for high resolution imaging and range determination of distant camouflaged targets. Effect of bandgap grading on the response time in the n+/ν/p+ HgCdTe electron avalanche photodiode (e-APD) is evaluated using impulse response measurement. Gain normalized dark current density of 2 × 10-9 A/cm2 at low reverse bias for passive mode and 2 × 10-4 A/cm2 at -8 V for active mode is measured in the fabricated APD device, yielding high gain bandwidth product of 2.4 THZ at the maximum gain. Diffusion of carriers is minimized to achieve transit time limited impulse response by introducing composition grading in the HgCdTe epilayer. The noise equivalent photon performance less than one is achievable in the FPA that is suitable for active cum passive imaging applications.
Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications
NASA Technical Reports Server (NTRS)
Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry
2015-01-01
An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.
High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes
Martinez, Nicholas J. D.; Derose, Christopher T.; Brock, Reinhard W.; ...
2016-08-09
Here, we present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10 –12, in the range from –18.3 dBm to –12 dBm received optical powermore » into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.« less
Infrared sensors for Earth observation missions
NASA Astrophysics Data System (ADS)
Ashcroft, P.; Thorne, P.; Weller, H.; Baker, I.
2007-10-01
SELEX S&AS is developing a family of infrared sensors for earth observation missions. The spectral bands cover shortwave infrared (SWIR) channels from around 1μm to long-wave infrared (LWIR) channels up to 15μm. Our mercury cadmium telluride (MCT) technology has enabled a sensor array design that can satisfy the requirements of all of the SWIR and medium-wave infrared (MWIR) bands with near-identical arrays. This is made possible by the combination of a set of existing technologies that together enable a high degree of flexibility in the pixel geometry, sensitivity, and photocurrent integration capacity. The solution employs a photodiode array under the control of a readout integrated circuit (ROIC). The ROIC allows flexible geometries and in-pixel redundancy to maximise operability and reliability, by combining the photocurrent from a number of photodiodes into a single pixel. Defective or inoperable diodes (or "sub-pixels") can be deselected with tolerable impact on the overall pixel performance. The arrays will be fabricated using the "loophole" process in MCT grown by liquid-phase epitaxy (LPE). These arrays are inherently robust, offer high quantum efficiencies and have been used in previous space programs. The use of loophole arrays also offers access to SELEX's avalanche photodiode (APD) technology, allowing low-noise, highly uniform gain at the pixel level where photon flux is very low.
Tsujino, Kenji; Akiba, Makoto; Sasaki, Masahide
2007-03-01
The charge-integration readout circuit was fabricated to achieve an ultralow-noise preamplifier for photoelectrons generated in an avalanche photodiode with linear mode operation at 77 K. To reduce the various kinds of noise, the capacitive transimpedance amplifier was used and consisted of low-capacitance circuit elements that were cooled with liquid nitrogen. As a result, the readout noise is equal to 3.0 electrons averaged for a period of 40 ms. We discuss the requirements for avalanche photodiodes to achieve photon-number-resolving detectors below this noise level.
Relative degradation of near infrared avalanche photodiodes from proton irradiation
NASA Technical Reports Server (NTRS)
Becker, Heidi; Johnston, Allan H.
2004-01-01
InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.
Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes
NASA Technical Reports Server (NTRS)
Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)
2017-01-01
The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.
NASA Astrophysics Data System (ADS)
Hall, Donald
Under a current award, NASA NNX 13AC13G "EXTENDING THE ASTRONOMICAL APPLICATION OF PHOTON COUNTING HgCdTe LINEAR AVALANCHE PHOTODIODE ARRAYS TO LOW BACKGROUND SPACE OBSERVATIONS" UH has used Selex SAPHIRA 320 x 256 MOVPE L-APD HgCdTe arrays developed for Adaptive Optics (AO) wavefront (WF) sensing to investigate the potential of this technology for low background space astronomy applications. After suppressing readout integrated circuit (ROIC) glow, we have placed upper limits on gain normalized dark current of 0.01 e-/sec at up to 8 volts avalanche bias, corresponding to avalanche gain of 5, and have operated with avalanche gains of up to several hundred at higher bias. We have also demonstrated detection of individual photon events. The proposed investigation would scale the format to 1536 x 1536 at 12um (the largest achievable in a standard reticule without requiring stitching) while incorporating reference pixels required at these low dark current levels. The primary objective is to develop, produce and characterize a 1.5k x 1.5k at 12um pitch MOVPE HgCdTe L-APD array, with nearly 30 times the pixel count of the 320 x 256 SAPHIRA, optimized for low background space astronomy. This will involve: 1) Selex design of a 1.5k x 1.5k at 12um pitch ROIC optimized for low background operation, silicon wafer fabrication at the German XFab foundry in 0.35 um 3V3 process and dicing/test at Selex, 2) provision by GL Scientific of a 3-side close-buttable carrier building from the heritage of the HAWAII xRG family, 3) Selex development and fabrication of 1.5k x 1.5k at 12 um pitch MOVPE HgCdTe L-APD detector arrays optimized for low background applications, 4) hybridization, packaging into a sensor chip assembly (SCA) with initial characterization by Selex and, 5) comprehensive characterization of low background performance, both in the laboratory and at ground based telescopes, by UH. The ultimate goal is to produce and eventually market a large format array, the L-APD equivalent of the Teledyne H1RG and H2RG, able to achieve sub-electron read noise and count 1 - 5 um photons with high quantum efficiency and low dark count rate while preserving their Poisson statistics and noise.
Theory of single-photon detectors employing smart strategies of detection
NASA Astrophysics Data System (ADS)
Silva, João Batista Rosa; Ramos, Rubens Viana
2005-11-01
Single-photon detectors have become more important with the advent of set-ups for optical communication using single-photon pulses, mainly quantum key distribution. The performance of quantum key distribution systems depends strongly on the performance of single-photon detectors. In this paper, aiming to overcome the afterpulsing that limits strongly the maximal transmission rate of quantum key distribution systems, three smart strategies for single-photon detection are discussed using analytical and numerical procedures. The three strategies are: hold-off time conditioned to avalanche presence, termed the Norwegian strategy, using one avalanche photodiode, using two raffled avalanche photodiodes and using two switched avalanche photodiodes. Finally we give examples using these strategies in a quantum key distribution set-up.
Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer.
Yoshimatsu, Toshihide; Nada, Masahiro; Oguma, Manabu; Yokoyama, Haruki; Ohno, Tetsuichiro; Doi, Yoshiyuki; Ogawa, Ikuo; Takahashi, Hiroshi; Yoshida, Eiji
2012-12-10
We demonstrate an integrated 100 GbE receiver optical sub-assembly (ROSA) that incorporates a monolithic four-channel avalanche photodiode (APD) array and a planer lightwave circuit (PLC) based LAN-WDM demultiplexer. A record minimum receiver sensitivity of -20 dBm and 50-km error-free SMF transmission without an optical amplifier have been achieved.
1997-08-15
superconducting resonators that have been demonstrated use microstrip circuits of YBCO at 77 K and niobium at 4 K coupled to polycrystalline magnetic garnet... demagnetizing factor in plane along the direction of propagation, and Ny is the effective demagnetizing factor of the rf magnetization component normal to...Geiger-Mode Avalanche Photodiode Arrays for Imaging Laser Radar 31 6. ANALOG DEVICE TECHNOLOGY 35 6.1 Tunable Superconducting Resonators Using Ferrite
Radiation Response of Emerging High Gain, Low Noise Detectors
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Farr, William H; Zhu, David Q.
2007-01-01
Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.
NASA Technical Reports Server (NTRS)
Krainak, Michael A.
2005-01-01
We reduced the afterpulsing probability by a factor of five in a Geiger-mode photon-counting InGaAs avalanche photodiode by using sub-band-gap (lambda = 1.95 micron) laser diode illumination, which we believe photoionizes the trapped carriers.
NASA Astrophysics Data System (ADS)
Wegrzecka, Iwona; Wegrzecki, Maciej
1999-04-01
The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.
NASA Astrophysics Data System (ADS)
Maddox, S. J.; Sun, W.; Lu, Z.; Nair, H. P.; Campbell, J. C.; Bank, S. R.
2012-10-01
We reduced the room temperature dark current in an InAs avalanche photodiode by increasing the p-type contact doping, resulting in an increased energetic barrier to minority electron injection into the p-region, which is a significant source of dark current at room temperature. In addition, by improving the molecular beam epitaxy growth conditions, we reduced the background doping concentration and realized depletion widths as wide as 5 μm at reverse biases as low as 1.5 V. These improvements culminated in low-noise InAs avalanche photodiodes exhibiting a room temperature multiplication gain of ˜80, at a record low reverse bias of 12 V.
AlInAsSb separate absorption, charge, and multiplication avalanche photodiodes
NASA Astrophysics Data System (ADS)
Ren, Min; Maddox, Scott J.; Woodson, Madison E.; Chen, Yaojia; Bank, Seth R.; Campbell, Joe C.
2016-05-01
We report AlxIn1-xAsySb1-y separate absorption, charge, and multiplication avalanche photodiodes (APDs) that operate in the short-wavelength infrared spectrum. They exhibit excess noise factor less or equal to that of Si and the low dark currents typical of III-V compound APDs.
The blocking probability of Geiger-mode avalanche photo-diodes
NASA Technical Reports Server (NTRS)
Moision, Bruce; Srinivasan, Meera; Hamkins, Jon
2005-01-01
When a photo is detected by a Geiger-mode avalanche photo-diode (GMAPD), the detector is rendered inactive, or blocked, for a certain period of time. In this paper we derive the blocking probability for a GMAPD whose input is either an unmodulated, Benoulli modulated or pulse-position-modulated Poisson process.
32 bit digital optical computer - A hardware update
NASA Technical Reports Server (NTRS)
Guilfoyle, Peter S.; Carter, James A., III; Stone, Richard V.; Pape, Dennis R.
1990-01-01
Such state-of-the-art devices as multielement linear laser diode arrays, multichannel acoustooptic modulators, optical relays, and avalanche photodiode arrays, are presently applied to the implementation of a 32-bit supercomputer's general-purpose optical central processing architecture. Shannon's theorem, Morozov's control operator method (in conjunction with combinatorial arithmetic), and DeMorgan's law have been used to design an architecture whose 100 MHz clock renders it fully competitive with emerging planar-semiconductor technology. Attention is given to the architecture's multichannel Bragg cells, thermal design and RF crosstalk considerations, and the first and second anamorphic relay legs.
NASA Astrophysics Data System (ADS)
Williams, George M.
2017-03-01
Newly emerging accident-reducing, driver-assistance, and autonomous-navigation technology for automobiles is based on real-time three-dimensional mapping and object detection, tracking, and classification using lidar sensors. Yet, the lack of lidar sensors suitable for meeting application requirements appreciably limits practical widespread use of lidar in trucking, public livery, consumer cars, and fleet automobiles. To address this need, a system-engineering perspective to eyesafe lidar-system design for high-level advanced driver-assistance sensor systems and a design trade study including 1.5-μm spot-scanned, line-scanned, and flash-lidar systems are presented. A cost-effective lidar instrument design is then proposed based on high-repetition-rate diode-pumped solid-state lasers and high-gain, low-excess-noise InGaAs avalanche photodiode receivers and focal plane arrays. Using probabilistic receiver-operating-characteristic analysis, derived from measured component performance, a compact lidar system is proposed that is capable of 220 m ranging with 5-cm accuracy, which can be readily scaled to a 360-deg field of regard.
Geiger mode avalanche photodiodes for microarray systems
NASA Astrophysics Data System (ADS)
Phelan, Don; Jackson, Carl; Redfern, R. Michael; Morrison, Alan P.; Mathewson, Alan
2002-06-01
New Geiger Mode Avalanche Photodiodes (GM-APD) have been designed and characterized specifically for use in microarray systems. Critical parameters such as excess reverse bias voltage, hold-off time and optimum operating temperature have been experimentally determined for these photon-counting devices. The photon detection probability, dark count rate and afterpulsing probability have been measured under different operating conditions. An active- quench circuit (AQC) is presented for operating these GM- APDs. This circuit is relatively simple, robust and has such benefits as reducing average power dissipation and afterpulsing. Arrays of these GM-APDs have already been designed and together with AQCs open up the possibility of having a solid-state microarray detector that enables parallel analysis on a single chip. Another advantage of these GM-APDs over current technology is their low voltage CMOS compatibility which could allow for the fabrication of an AQC on the same device. Small are detectors have already been employed in the time-resolved detection of fluorescence from labeled proteins. It is envisaged that operating these new GM-APDs with this active-quench circuit will have numerous applications for the detection of fluorescence in microarray systems.
Vacuum ultraviolet instrumentation for solar irradiance and thermospheric airglow
NASA Technical Reports Server (NTRS)
Woods, Thomas N.; Rottman, Gary J.; Bailey, Scott M.; Solomon, Stanley C.
1993-01-01
A NASA sounding rocket experiment was developed to study the solar extreme ultraviolet (EUV) spectral irradiance and its effect on the upper atmosphere. Both the solar flux and the terrestrial molecular nitrogen via the Lyman-Birge-Hopfield bands in the far ultraviolet (FUV) were measured remotely from a sounding rocket on October 27, 1992. The rocket experiment also includes EUV instruments from Boston University (Supriya Chakrabarti), but only the National Center for Atmospheric Research (NCAR)/University of Colorado (CU) four solar instruments and one airglow instrument are discussed here. The primary solar EUV instrument is a 1/4 meter Rowland circle EUV spectrograph which has flown on three rockets since 1988 measuring the solar spectral irradiance from 30 to 110 nm with 0.2 nm resolution. Another solar irradiance instrument is an array of six silicon XUV photodiodes, each having different metallic filters coated directly on the photodiodes. This photodiode system provides a spectral coverage from 0.1 to 80 nm with about 15 nm resolution. The other solar irradiance instrument is a silicon avalanche photodiode coupled with pulse height analyzer electronics. This avalanche photodiode package measures the XUV photon energy providing a solar spectrum from 50 to 12,400 eV (25 to 0.1 nm) with an energy resolution of about 50 eV. The fourth solar instrument is an XUV imager that images the sun at 17.5 nm with a spatial resolution of 20 arc-seconds. The airglow spectrograph measures the terrestrial FUV airglow emissions along the horizon from 125 to 160 nm with 0.2 nm spectral resolution. The photon-counting CODACON detectors are used for three of these instruments and consist of coded arrays of anodes behind microchannel plates. The one-dimensional and two-dimensional CODACON detectors were developed at CU by Dr. George Lawrence. The pre-flight and post-flight photometric calibrations were performed at our calibration laboratory and at the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.
Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging
NASA Technical Reports Server (NTRS)
Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott
2016-01-01
We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies ((is) greater than 50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.
Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging
NASA Technical Reports Server (NTRS)
Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott
2016-01-01
We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.
Determination of the excess noise of avalanche photodiodes integrated in 0.35-μm CMOS technologies
NASA Astrophysics Data System (ADS)
Jukić, Tomislav; Brandl, Paul; Zimmermann, Horst
2018-04-01
The excess noise of avalanche photodiodes (APDs) integrated in a high-voltage (HV) CMOS process and in a pin-photodiode CMOS process, both with 0.35-μm structure sizes, is described. A precise excess noise measurement technique is applied using a laser source, a spectrum analyzer, a voltage source, a current meter, a cheap transimpedance amplifier, and a personal computer with a MATLAB program. In addition, usage for on-wafer measurements is demonstrated. The measurement technique is verified with a low excess noise APD as a reference device with known ratio k = 0.01 of the impact ionization coefficients. The k-factor of an APD developed in HV CMOS is determined more accurately than known before. In addition, it is shown that the excess noise of the pin-photodiode CMOS APD depends on the optical power for avalanche gains above 35 and that modulation doping can suppress this power dependence. Modulation doping, however, increases the excess noise.
Charge Gain, Voltage Gain, and Node Capacitance of the SAPHIRA Detector Pixel by Pixel
NASA Astrophysics Data System (ADS)
Pastrana, Izabella M.; Hall, Donald N. B.; Baker, Ian M.; Jacobson, Shane M.; Goebel, Sean B.
2018-01-01
The University of Hawai`i Institute for Astronomy has partnered with Leonardo (formerly Selex) in the development of HgCdTe linear mode avalanche photodiode (L-APD) SAPHIRA detectors. The SAPHIRA (Selex Avalanche Photodiode High-speed Infra-Red Array) is ideally suited for photon-starved astronomical observations, particularly near infrared (NIR) adaptive optics (AO) wave-front sensing. I have measured the stability, and linearity with current, of a 1.7-um (10% spectral bandpass) infrared light emitting diode (IR LED) used to illuminate the SAPHIRA and have then utilized this source to determine the charge gain (in e-/ADU), voltage gain (in uV/ADU), and node capacitance (in fF) for each pixel of the 320x256@24um SAPHIRA. These have previously only been averages over some sub-array. Determined from the ratio of the temporal averaged signal level to variance under constant 1.7-um LED illumination, I present the charge gain pixel-by-pixel in a 64x64 sub-array at the center of the active area of the SAPHIRA (analyzed separately as four 32x32 sub-arrays) to be about 1.6 e-/ADU (σ=0.5 e-/ADU). Additionally, the standard technique of varying the pixel reset voltage (PRV) in 10 mV increments and recording output frames for the same 64x64 subarray found the voltage gain per pixel to be about 11.7 uV/ADU (σ=0.2 uV/ADU). Finally, node capacitance was found to be approximately 23 fF (σ=6 fF) utilizing the aforementioned charge and voltage gain measurements. I further discuss the linearity measurements of the 1.7-um LED used in the charge gain characterization procedure.
Nada, Masahiro; Nakamura, Makoto; Matsuzaki, Hideaki
2014-01-13
25-Gbit/s error-free operation of an optical receiver is successfully demonstrated against burst-mode optical input signals without preambles. The receiver, with a high-sensitivity avalanche photodiode and burst-mode transimpedance amplifier, exhibits sufficient receiver sensitivity and an extremely quick response suitable for burst-mode operation in 100-Gbit/s optical packet switching.
Recent progress in high gain InAs avalanche photodiodes (Presentation Recording)
NASA Astrophysics Data System (ADS)
Bank, Seth; Maddox, Scott J.; Sun, Wenlu; Nair, Hari P.; Campbell, Joe C.
2015-08-01
InAs possesses nearly ideal material properties for the fabrication of near- and mid-infrared avalanche photodiodes (APDs), which result in strong electron-initiated impact ionization and negligible hole-initiated impact ionization [1]. Consequently, InAs multiplication regions exhibit several appealing characteristics, including extremely low excess noise factors and bandwidth independent of gain [2], [3]. These properties make InAs APDs attractive for a number of near- and mid-infrared sensing applications including remote gas sensing, light detection and ranging (LIDAR), and both active and passive imaging. Here, we discuss our recent advances in the growth and fabrication of high gain, low noise InAs APDs. Devices yielded room temperature multiplication gains >300, with much reduced (~10x) lower dark current densities. We will also discuss a likely key contributor to our current performance limitations: silicon diffusion into the intrinsic (multiplication) region from the underlying n-type layer during growth. Future work will focus on increasing the intrinsic region thickness, targeting gains >1000. This work was supported by the Army Research Office (W911NF-10-1-0391). [1] A. R. J. Marshall, C. H. Tan, M. J. Steer, and J. P. R. David, "Electron dominated impact ionization and avalanche gain characteristics in InAs photodiodes," Applied Physics Letters, vol. 93, p. 111107, 2008. [2] A. R. J. Marshall, A. Krysa, S. Zhang, A. S. Idris, S. Xie, J. P. R. David, and C. H. Tan, "High gain InAs avalanche photodiodes," in 6th EMRS DTC Technical Conference, Edinburgh, Scotland, UK, 2009. [3] S. J. Maddox, W. Sun, Z. Lu, H. P. Nair, J. C. Campbell, and S. R. Bank, "Enhanced low-noise gain from InAs avalanche photodiodes with reduced dark current and background doping," Applied Physics Letters, vol. 101, no. 15, pp. 151124-151124-3, Oct. 2012.
Temperature characteristics of silicon avalanche photodiodes
NASA Astrophysics Data System (ADS)
Wegrzecka, Iwona; Grynglas, Maria; Wegrzecki, Maciej; Bar, Jan; Grodecki, Remigiusz
2001-08-01
The paper presents the results of studies on temperature dependence of such parameters as a dark current, noise current, gain, noise equivalent power and detectivity of silicon epiplanar avalanche photodiodes at the ITE. The photodiode reach-through structure is of an nPLU-p-(pi) - p+ type with an under-contact ring and a channel stopper. The temperature range was stretching from -40 C to +40 C. Specially developed for this purpose an automatic system for low noise measurements was used. A two- stage micro-cooler with a Peltier's element was applied to control and stabilize the temperature of measured structures.
Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications
NASA Astrophysics Data System (ADS)
Britvitch, I.; Johnson, I.; Renker, D.; Stoykov, A.; Lorenz, E.
2007-02-01
Recently developed multipixel Geiger-mode avalanche photodiodes (G-APDs) are very promising candidates for the detection of light in medical imaging instruments (e.g. positron emission tomography) as well as in high-energy physics experiments and astrophysical applications. G-APDs are especially well suited for morpho-functional imaging (multimodality PET/CT, SPECT/CT, PET/MRI, SPECT/MRI). G-APDs have many advantages compared to conventional photosensors such as photomultiplier tubes because of their compact size, low-power consumption, high quantum efficiency and insensitivity to magnetic fields. Compared to avalanche photodiodes and PIN diodes, they are advantageous because of their high gain, reduced sensitivity to pick up and the so-called nuclear counter effect and lower noise. We present measurements of the basic G-APD characteristics: photon detection efficiency, gain, inter-cell crosstalk, dynamic range, recovery time and dark count rate.
2007-03-01
the system is treated in a gray-box manner, with limited known parameters. The analytical approach which follows was used to identify the deviations be...effect spherical aberration, coma and astigmatism is to blur the image by introducing light from outside each pixel’s IFOV. Petzval field curvature and...difference between the two records is not the linear difference of the incident light levels. Even dark current subtraction must be treated with caution
Wilman, Edward S; Gardiner, Sara H; Nomerotski, Andrei; Turchetta, Renato; Brouard, Mark; Vallance, Claire
2012-01-01
A new type of ion detector for mass spectrometry and general detection of low energy ions is presented. The detector consists of a scintillator optically coupled to a single-photon avalanche photodiode (SPAD) array. A prototype sensor has been constructed from a LYSO (Lu(1.8)Y(0.2)SiO(5)(Ce)) scintillator crystal coupled to a commercial SPAD array detector. As proof of concept, the detector is used to record the time-of-flight mass spectra of butanone and carbon disulphide, and the dependence of detection sensitivity on the ion kinetic energy is characterised.
Negative feedback avalanche diode
NASA Technical Reports Server (NTRS)
Itzler, Mark Allen (Inventor)
2010-01-01
A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.
SWIR HgCdTe avalanche photiode focal plane array performances evaluation
NASA Astrophysics Data System (ADS)
de Borniol, E.; Rothman, J.; Salveti, F.; Feautrier, P.
2017-11-01
One of the main challenges of modern astronomical instruments like adaptive optics (AO) systems or fringe trackers is to deal with the very low photons flux detection scenarios. The typical timescale of atmospheric turbulences being in the range of some tens of milliseconds, infrared wavefront sensors for AO systems needs frame rates higher than 1 KHz leading to integration times lower than 1 ms. This integration time associated with a low irradiance results in a few number of integrated photons per frame per pixel. To preserve the information coming from this weak signal, the focal plane array (FPA) has to present a low read out noise, a high quantum efficiency and a low dark current. Up to now, the output noise of high speed near infrared sensors is limited by the silicon read out circuit noise. The use of HgCdTe avalanche photodiodes with high gain at moderate reverse bias and low excess noise seems then a logical way to reduce the impact of the read noise on images signal to noise ratio. These low irradiance passive imaging applications with integration times in the millisecond range needs low photodiode dark current and low background current. These requirements lead to the choice of the photodiode cut off wavelength. The short wave infrared (SWIR) around 3 μm is a good compromise between the gain that can be obtain for a given APD bias and the background and dark current. The CEA LETI HgCdTe APD technology, and a fine analysis of the gain curve characteristic are presented in [1] and won't be detailed here. The response time of the APD is also a key factor for a high frame rate FPA. This parameter has been evaluated in [2] and the results shows cut off frequencies in the GHz range. In this communication we report the performances of a SWIR APD FPA designed and fabricated by CEA LETI and SOFRADIR for astrophysical applications. This development was made in the frame of RAPID, a 4 years R&D project funded by the French FUI (Fond Unique Interministériel). This project involves industrial and academic partners from the field of advanced infrared focal plane arrays fabrication (SOFRADIR and CEA LETI) and of astronomical/defense institutes (IPAG, LAM, ONERA). The goal of this program is to develop a fast and low noise SWIR camera for astronomical fast applications like adaptive optics wavefront sensing and fringe tracking for astronomical interferometers [3]. The first batch of FPA's was based on liquid-phase epitaxy (LPE) grown photodiode arrays with 3 μm cut off wavelength. In order to get higher avalanche gain for a given photodiode reverse bias voltage, we have made a second batch with a cadmium composition leading to 3.3 μm cut off wavelength (λc). This paper described the read out circuit in the next section. The aim section III is to find the critical parameter that has to be measured to evaluate the signal to noise ratio (SNR) of an APD FPA. The main electro optical characteristics of an FPA based on 3.3μm cut off wavelength APDs are reported in "Rapid FPAs characterisation" section. The dark current evolution with temperature of a 3 μm FPA high and low APD bias is also detailed in this section.
Short-Wave Infrared HgCdTe Electron Avalanche Photodiodes for Gated Viewing
NASA Astrophysics Data System (ADS)
Sieck, A.; Benecke, M.; Eich, D.; Oelmaier, R.; Wendler, J.; Figgemeier, H.
2018-06-01
Short-wave infrared (SWIR) HgCdTe electron avalanche photodiodes (eAPDs) with different doping profiles have been characterized for use in SWIR gated viewing systems. Gated viewing offers enhanced image contrast in scenes with clutter from the foreground or background. HgCdTe-based eAPDs show exponential gain-voltage characteristics and low excess noise and are, therefore, well suited for active imaging applications. The gain achievable at a fixed reverse voltage varies with the bandgap of the Hg1-xCdxTe detector material. We analyze current-voltage and gain-voltage plots measured on SWIR Hg1-xCdxTe eAPDs with x = 0.45, corresponding to a cutoff wavelength of 2.55 μm at 150 K. The cutoff has been chosen as a trade-off between achievable APD gain and operating temperature for SWIR gated-viewing systems with target distances of about 1000 m. Focal plane arrays with a readout-integrated circuit featuring a fast internal clock have been built and their performance with respect to gated viewing applications has been evaluated on a laboratory demonstrator for short distances. Future plans for a field demonstrator for distances up to 1000 m are described briefly at the end.
Nano-Multiplication-Region Avalanche Photodiodes and Arrays
NASA Technical Reports Server (NTRS)
Zheng, Xinyu; Pain, Bedabrata; Cunningham, Thomas
2008-01-01
Nano-multiplication-region avalanche photodiodes (NAPDs), and imaging arrays of NAPDs integrated with complementary metal oxide/semiconductor (CMOS) active-pixel-sensor integrated circuitry, are being developed for applications in which there are requirements for high-sensitivity (including photoncounting) detection and imaging at wavelengths from about 250 to 950 nm. With respect to sensitivity and to such other characteristics as speed, geometric array format, radiation hardness, power demand of associated circuitry, size, weight, and robustness, NAPDs and arrays thereof are expected to be superior to prior photodetectors and arrays including CMOS active-pixel sensors (APSs), charge-coupled devices (CCDs), traditional APDs, and microchannelplate/ CCD combinations. Figure 1 depicts a conceptual NAPD array, integrated with APS circuitry, fabricated on a thick silicon-on-insulator wafer (SOI). Figure 2 presents selected aspects of the structure of a typical single pixel, which would include a metal oxide/semiconductor field-effect transistor (MOSFET) integrated with the NAPD. The NAPDs would reside in silicon islands formed on the buried oxide (BOX) layer of the SOI wafer. The silicon islands would be surrounded by oxide-filled insulation trenches, which, together with the BOX layer, would constitute an oxide embedding structure. There would be two kinds of silicon islands: NAPD islands for the NAPDs and MOSFET islands for in-pixel and global CMOS circuits. Typically, the silicon islands would be made between 5 and 10 m thick, but, if necessary, the thickness could be chosen outside this range. The side walls of the silicon islands would be heavily doped with electron-acceptor impurities (p+-doped) to form anodes for the photodiodes and guard layers for the MOSFETs. A nanoscale reach-through structure at the front (top in the figures) central position of each NAPD island would contain the APD multiplication region. Typically, the reach-through structure would be about 0.1 microns in diameter and between 0.3 and 0.4 nm high. The top layer in the reach-through structure would be heavily doped with electron-donor impurities (n+-doped) to make it act as a cathode. A layer beneath the cathode, between 0.1 and 0.2 nm thick, would be p-doped to a concentration .10(exp 17)cu cm. A thin n+-doped polysilicon pad would be formed on the top of the cathode to protect the cathode against erosion during a metal-silicon alloying step that would be part of the process of fabricating the array.
Characterization of Geiger mode avalanche photodiodes for fluorescence decay measurements
NASA Astrophysics Data System (ADS)
Jackson, John C.; Phelan, Don; Morrison, Alan P.; Redfern, R. Michael; Mathewson, Alan
2002-05-01
Geiger mode avalanche photodiodes (APD) can be biased above the breakdown voltage to allow detection of single photons. Because of the increase in quantum efficiency, magnetic field immunity, robustness, longer operating lifetime and reduction in costs, solid-state detectors capable of operating at non-cryogenic temperatures and providing single photon detection capabilities provide attractive alternatives to the photomultiplier tube (PMT). Shallow junction Geiger mode APD detectors provide the ability to manufacture photon detectors and detector arrays with CMOS compatible processing steps and allows the use of novel Silicon-on-Insulator(SoI) technology to provide future integrated sensing solutions. Previous work on Geiger mode APD detectors has focused on increasing the active area of the detector to make it more PMT like, easing the integration of discrete reaction, detection and signal processing into laboratory experimental systems. This discrete model for single photon detection works well for laboratory sized test and measurement equipment, however the move towards microfluidics and systems on a chip requires integrated sensing solutions. As we move towards providing integrated functionality of increasingly nanoscopic sized emissions, small area detectors and detector arrays that can be easily integrated into marketable systems, with sensitive small area single photon counting detectors will be needed. This paper will demonstrate the 2-dimensional and 3-dimensional simulation of optical coupling that occurs in Geiger mode APDs. Fabricated Geiger mode APD detectors optimized for fluorescence decay measurements were characterized and preliminary results show excellent results for their integration into fluorescence decay measurement systems.
Novel Photon-Counting Detectors for Free-Space Communication
NASA Technical Reports Server (NTRS)
Krainak, M. A.; Yang, G.; Sun, X.; Lu, W.; Merritt, S.; Beck, J.
2016-01-01
We present performance data for novel photon-counting detectors for free space optical communication. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We present and compare dark count, photon-detection efficiency, wavelength response and communication performance data for these detectors. We successfully measured real-time communication performance using both the 2 detected-photon threshold and AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects. The HgCdTe APD array routinely demonstrated photon detection efficiencies of greater than 50% across 5 arrays, with one array reaching a maximum PDE of 70%. We performed high-resolution pixel-surface spot scans and measured the junction diameters of its diodes. We found that decreasing the junction diameter from 31 micrometers to 25 micrometers doubled the e- APD gain from 470 for an array produced in the year 2010 to a gain of 1100 on an array delivered to NASA GSFC recently. The mean single-photon SNR was over 12 and the excess noise factors measurements were 1.2-1.3. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output.
Study on avalanche photodiode influence on heterodyne laser interferometer linearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzyn, Grzegorz, E-mail: grzegorz.budzyn@pwr.wroc.pl; Podzorny, Tomasz
2016-06-28
In the paper we analyze factors reducing the possible accuracy of the heterodyne laser interferometers. The analysis is performed for the avalanche-photodiode input stages but is in main points valid also for stages with other type of photodetectors. Instrumental error originating from optical, electronic and digital signal processing factors is taken into consideration. We stress factors which are critical and those which can be neglected at certain accuracy requirements. In the work we prove that it is possible to reduce errors of the laser instrument below 1 nm point for multiaxial APD based interferometers by precise control of incident optical powermore » and the temperature of the photodiode.« less
Reliability assessment of multiple quantum well avalanche photodiodes
NASA Technical Reports Server (NTRS)
Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.
1995-01-01
The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.
The 1.06 micrometer avalanche photodiode detectors with integrated circuit preamplifiers
NASA Technical Reports Server (NTRS)
Eden, R. C.
1975-01-01
The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short-pulse detection, is reported. This work entailed both the development of a new type of heterojunction 3-5 semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low-noise preamp design making use of GaAs Schottky barrier-gate field effect transistors.
Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Johnston, Allan H.
2004-01-01
InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.
Type-II Superlattice Avalanche Photodiodes
NASA Astrophysics Data System (ADS)
Huang, Jun
Type-II superlattice avalanche photodiodes have shown advantages compared to conventional mercury cadmium telluride photodiodes for infrared wavelength detection. However, surface or interface leakage current has been a major issue for superlattice avalanche photodiodes, especially in infrared wavelength region. First, passivation of the superlattice device with ammonium sulfide and thioacetamide was carried out, and its surface quality was studied by X-ray Photoelectron Spectroscopy. The study showed that both ammonium sulfide and thiacetamide passivation can actively remove the native oxide at the surface. Thiacetamide passivation combine more sulfur bonds with III-V elements than that of ammonium sulfide. Another X-ray photoelectron spectra of thiacetamide-treated atomic layer deposited zinc sulfide capped InAs/GaSb superlattice was performed to investigate the interface sulfur bond conditions. Sb--S and As--S bonds disappear while In-S bond gets enhanced, indicating that Indium Sulfide should be the major components at the interface after ZnS deposition. Second, the simulation of electrical characteristics for zinc sulfide, silicon nitride and silicon dioxide passivated superlattice devices was performed by SILVACO software to fit the experimental results and to discover the surface current mechanism. Different surface current mechanism strengths were found. Third, several novel dual-carrier avalanche photodiode structures were designed and simulated. The structures had alternate carrier multiplication regions, placed next to a wider electron multiplication region, creating dual-carrier multiplication feedback systems. Gain and excess noise factor of these structures were simulated and compared based on the dead space multiplication theory under uniform electric field. From the simulation, the applied bias can be greatly lowered or the thickness can be shrunk to achieve the same gain from the conventional device. The width of the thin region was the most critical parameter determining the device performance.
Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging
NASA Astrophysics Data System (ADS)
Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph
2011-05-01
We present results obtained from 3D imaging focal plane arrays (FPAs) employing planar-geometry InGaAsP/InP Geiger-mode avalanche photodiodes (GmAPDs) with high-efficiency single photon sensitivity at 1.06 μm. We report results obtained for new 32 x 128 format FPAs with 50 μm pitch and compare these results to those obtained for 32 x 32 format FPAs with 100 μm pitch. We show excellent pixel-level yield-including 100% pixel operability-for both formats. The dark count rate (DCR) and photon detection efficiency (PDE) performance is found to be similar for both types of arrays, including the fundamental DCR vs. PDE tradeoff. The optical crosstalk due to photon emission induced by pixel-level avalanche detection events is found to be qualitatively similar for both formats, with some crosstalk metrics for the 32 x 128 format found to be moderately elevated relative to the 32 x 32 FPA results. Timing jitter measurements are also reported for the 32 x 128 FPAs.
Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong
2010-12-01
As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.
Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes
NASA Astrophysics Data System (ADS)
Shi, Yicheng; Lim, Janet Zheng Jie; Poh, Hou Shun; Tan, Peng Kian; Tan, Peiyu Amelia; Ling, Alexander; Kurtsiefer, Christian
2017-11-01
Quantum key distribution (QKD) at telecom wavelengths (1260-1625nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, indium gallium arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000nm and 1600nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.
Breakdown flash at telecom wavelengths in InGaAs avalanche photodiodes.
Shi, Yicheng; Lim, Janet Zheng Jie; Poh, Hou Shun; Tan, Peng Kian; Tan, Peiyu Amelia; Ling, Alexander; Kurtsiefer, Christian
2017-11-27
Quantum key distribution (QKD) at telecom wavelengths (1260 - 1625 nm) has the potential for fast deployment due to existing optical fibre infrastructure and mature telecom technologies. At these wavelengths, Indium Gallium Arsenide (InGaAs) avalanche photodiode (APD) based detectors are the preferred choice for photon detection. Similar to their Silicon counterparts used at shorter wavelengths, they exhibit fluorescence from recombination of electron-hole pairs generated in the avalanche breakdown process. This fluorescence may open side channels for attacks on QKD systems. Here, we characterize the breakdown fluorescence from two commercial InGaAs single photon counting modules, and find a spectral distribution between 1000 nm and 1600 nm. We also show that by spectral filtering, this side channel can be efficiently suppressed.
Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode
NASA Technical Reports Server (NTRS)
Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli
2014-01-01
The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.
Detectors for optical communications: A review
NASA Technical Reports Server (NTRS)
Katz, J.
1983-01-01
Detectors for optical communications in the visible and near infrared regions of the spectrum are reviewed. The three generic types of detectors described are: photomultipliers, photodiodes and avalanche photodiodes. Most of the information is applicable to other optical communications systems.
Effective amplifier noise for an optical receiver based on linear mode avalanche photodiodes
NASA Technical Reports Server (NTRS)
Chen, C.-C.
1989-01-01
The rms noise charge induced by the amplifier for an optical receiver based on the linear-mode avalanche photodiode (APD) was analyzed. It is shown that for an amplifier with a 1-pF capacitor and a noise temperature of 100 K, the rms noise charge due to the amplifier is about 300. Since the noise charge must be small compared to the signal gain, APD gains on the order of 1000 will be required to operate the receiver in the linear mode.
Spectral dependence of the main parameters of ITE silicon avalanche photodiodes
NASA Astrophysics Data System (ADS)
Wegrzecka, Iwona; Grynglas, Maria; Wegrzecki, Maciej
2001-08-01
New applications for avalanche photodiodes (APDs) as in systems using visible radiation, have prompted the need for the evaluation of detection properties of ITE APDs in the 400 divided by 700 nm spectral range. The paper presents the method and result of studies on the spectral dependence of the gain, dark and noise currents, sensitivity and excess noise factor of ITE APDs. The studies have shown that ITE APDs optimized for the near IR radiation can be effectively applied in the detection of radiation above the 500 nm wavelength.
A 1.06 micrometer avalanche photodiode receiver
NASA Technical Reports Server (NTRS)
Eden, R. C.
1975-01-01
The development of a complete solid state 1.06 micron optical receiver which can be used in optical communications at data rates approaching 1.5 Gb/s, or in other applications requiring sensitive, short pulse detection, is reported. This work entailed both the development of a new type of heterojunction III-V semiconductor alloy avalanche photodiode and an extremely charge-sensitive wideband low noise preamp design making use of GaAs Schottky barrier-gate field effect transistors (GAASFET's) operating in in the negative-feedback transimpedance mode. The electrical characteristics of the device are described.
Detection technique of targets for missile defense system
NASA Astrophysics Data System (ADS)
Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong
2009-11-01
Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.
Performance of InGaAs short wave infrared avalanche photodetector for low flux imaging
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2017-11-01
Opto-electronic performance of the InGaAs/i-InGaAs/InP short wavelength infrared focal plane array suitable for high resolution imaging under low flux conditions and ranging is presented. More than 85% quantum efficiency is achieved in the optimized detector structure. Isotropic nature of the wet etching process poses a challenge in maintaining the required control in the small pitch high density detector array. Etching process is developed to achieve low dark current density of 1 nA/cm2 in the detector array with 25 µm pitch at 298 K. Noise equivalent photon performance less than one is achievable showing single photon detection capability. The reported photodiode with low photon flux is suitable for active cum passive imaging, optical information processing and quantum computing applications.
A dispersed fringe sensor prototype for the Giant Magellan Telescope
NASA Astrophysics Data System (ADS)
Frostig, Danielle; McLeod, Brian A.; Kopon, Derek
2017-01-01
The Giant Magellan Telescope (GMT) will employ seven 8.4m primary mirror segments and seven 1m secondary mirror segments to achieve the diffraction limit of a 25.4m aperture. One challenge of the GMT is keeping the seven pairs of mirror segments in phase. We present a conceptual opto mechanical design for a prototype dispersed fringe sensor. The prototype, which operates at J-band and incorporates an infrared avalanche photodiode array, will be deployed on the Magellan Clay Telescope to verify the sensitivity and accuracy of the planned GMT phasing sensor.
Infrared Detector Activities at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.
2008-01-01
Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.
Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures
NASA Technical Reports Server (NTRS)
Menkara, H. M.; Wagner, B. K.; Summers, C. J.
1995-01-01
A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.
NASA Astrophysics Data System (ADS)
Koehler-Sidki, A.; Dynes, J. F.; Lucamarini, M.; Roberts, G. L.; Sharpe, A. W.; Yuan, Z. L.; Shields, A. J.
2018-04-01
Fast-gated avalanche photodiodes (APDs) are the most commonly used single photon detectors for high-bit-rate quantum key distribution (QKD). Their robustness against external attacks is crucial to the overall security of a QKD system, or even an entire QKD network. We investigate the behavior of a gigahertz-gated, self-differencing (In,Ga)As APD under strong illumination, a tactic Eve often uses to bring detectors under her control. Our experiment and modeling reveal that the negative feedback by the photocurrent safeguards the detector from being blinded through reducing its avalanche probability and/or strengthening the capacitive response. Based on this finding, we propose a set of best-practice criteria for designing and operating fast-gated APD detectors to ensure their practical security in QKD.
Single photon detection using Geiger mode CMOS avalanche photodiodes
NASA Astrophysics Data System (ADS)
Lawrence, William G.; Stapels, Christopher; Augustine, Frank L.; Christian, James F.
2005-10-01
Geiger mode Avalanche Photodiodes fabricated using complementary metal-oxide-semiconductor (CMOS) fabrication technology combine high sensitivity detectors with pixel-level auxiliary circuitry. Radiation Monitoring Devices has successfully implemented CMOS manufacturing techniques to develop prototype detectors with active diameters ranging from 5 to 60 microns and measured detection efficiencies of up to 60%. CMOS active quenching circuits are included in the pixel layout. The actively quenched pixels have a quenching time less than 30 ns and a maximum count rate greater than 10 MHz. The actively quenched Geiger mode avalanche photodiode (GPD) has linear response at room temperature over six orders of magnitude. When operating in Geiger mode, these GPDs act as single photon-counting detectors that produce a digital output pulse for each photon with no associated read noise. Thermoelectrically cooled detectors have less than 1 Hz dark counts. The detection efficiency, dark count rate, and after-pulsing of two different pixel designs are measured and demonstrate the differences in the device operation. Additional applications for these devices include nuclear imaging and replacement of photomultiplier tubes in dosimeters.
Performance of a junction termination extension avalanche photodiode for use with scintillators
NASA Astrophysics Data System (ADS)
Gramsch, E.; Pcheliakov, O.; Chistokhin, Igor B.
2008-11-01
An avalanche photodiode with a ring structure called junction termination extension (JTE) was built and tested. It has three diffused rings around the main junction to avoid early breakdown at the surface. The ITE rings have less doping than the main junction and can be built by well controlled single ion-implantation through a single mask. Avalanche photodiodes with two mm diameter active area have been have been built by implantation of boron with a dose of 2, 3, 4 and 5 × 1012 cm-2, followed by deep diffusion of the junction up to 14 μm. The dark current is strongly dependent on the implantation dose, decreasing with decreasing charge. For the APDs with implanted dose of 5 × 1012 cm-2 a gain of 8 is obtained at 1120 V. The energy resolution from a 137Cs source was measured to be 24.4% FWHM with a 2 × 2 × 2 mm3 BGO scintillator. We have also performed simulations of the gain and breakdown voltage that correlate well with the results.
2010-09-10
photodiode with internal resistor followed by a high-gain RF amplifier , and c) a p-i-n photodiode followed by a transimpedance amplifier (TIA). We...gain, RF electrical amplifier ; and 3) a p-i-n photodiode followed by a transimpedance amplifier . Finally, we perform calculations to predict the...common photoreceiver is a p-i-n or avalanche photodiode with a built-in transimpedance amplifier (TIA) and often incorporating automatic gain control
X-ray spectroscopy with silicon pin and avalanche photo diodes
NASA Technical Reports Server (NTRS)
Desai, U. D.
1992-01-01
Results of an evaluation of silicon P-Intrinsic-N (PIN) photodiodes and Avalanche Photodiodes (APD) for the direct detection of soft x rays from 1 to 20 keV and for the detection of scintillation light output from CsI(TI) for higher x ray energies (30 to 1000 keV) are presented. About one keV resolution was achieved at room temperature for both the PIN and APD detectors for soft x rays (1 to 20 keV). Commercially available, low power (18 mV), low noise, hybrid preamplifiers, were used. These photodiodes were also coupled to CsI(TI) scintillator and obtained about 6 resolution at 662 keV. The photodiode frequency response matches well with the emission spectrum of the CsI(TI) scintillator providing good spectral resolution and a higher signal than NaI(TI) when viewed by conventional photomultipliers. A PIN-CsI(TI) combination provides a low energy threshold of around 60 keV while for the APD-CsI(TI) it is 15 keV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diepold, Marc, E-mail: marc.diepold@mpq.mpg.de; Franke, Beatrice; Götzfried, Johannes
Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work, we report on a fitting technique used to account for different detector responses resulting from photoabsorption in the various avalanche photodiode layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2 and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g., to distinguish between x-rays and MeV electrons in our experiment.
Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.
2015-01-01
Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure. PMID:26627932
NASA Astrophysics Data System (ADS)
Abe, Tomoki; Uchida, Shigeto; Tanaka, Keita; Fujisawa, Takanobu; Kasada, Hirofumi; Ando, Koshi; Akaiwa, Kazuaki; Ichino, Kunio
2018-05-01
We investigated device degradation in PEDOT:PSS/ZnSSe organic-inorganic hybrid ultraviolet avalanche photodiodes (UV-APDs). ZnSSe/n-GaAs wafers were grown by molecular beam epitaxy, and PEDOT:PSS window layers were formed by inkjet technique. We observed rapid degradation with APD-mode stress (˜ 30 V) in the N2 (4 N) atmosphere, while we observed no marked change in forward bias current stress and photocurrent stress. In the case of a vacuum condition, we observed no detectable degradation in the dark avalanche current with APD-mode stress. Therefore, the degradation in the PEDOT:PSS/ZnSSe interface under the APD-mode stress was caused by the residual water vapor or oxygen in the N2 atmosphere and could be controlled by vacuum packaging.
Hybrid photodetector for single-molecule spectroscopy and microscopy
Michalet, X.; Cheng, Adrian; Antelman, Joshua; Suyama, Motohiro; Arisaka, Katsushi; Weiss, Shimon
2011-01-01
We report benchmark tests of a new single-photon counting detector based on a GaAsP photocathode and an electron-bombarded avalanche photodiode developed by Hamamatsu Photonics. We compare its performance with those of standard Geiger-mode avalanche photodiodes. We show its advantages for FCS due to the absence of after-pulsing and for fluorescence lifetime measurements due to its excellent time resolution. Its large sensitive area also greatly simplifies setup alignment. Its spectral sensitivity being similar to that of recently introduced CMOS SPADs, this new detector could become a valuable tool for single-molecule fluorescence measurements, as well as for many other applications. PMID:21822361
Mu, Ying; Valim, Niksa; Niedre, Mark
2013-06-15
We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.
NASA Technical Reports Server (NTRS)
Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi
2006-01-01
Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.
Whitmore, Colin D.; Essaka, David; Dovichi, Norman J.
2009-01-01
An ultrasensitive laser-induced fluorescence detector was used with capillary electrophoresis for the study of 5-carboxy-tetramethylrhodamine. The raw signal from the detector provided roughly three orders of magnitude dynamic range. The signal saturated at high analyte concentrations due to the dead time associated with the single-photon counting avalanche photodiode employed in the detector. The signal can be corrected for the detector dead time, providing an additional order of magnitude dynamic range. To further increase dynamic range, two fiber-optic beam-splitters were cascaded to generate a primary signal and two attenuated signals, each monitored by a single-photon counting avalanche photodiode. The combined signals from the three photodiodes are reasonably linear from the concentration detection limit of 3 pM to 10 μM, the maximum concentration investigated, a range of 3,000,000. Mass detection limits were 150 yoctomoles injected onto the capillary. PMID:19836546
HgCdTe Avalanche Photodiode Detectors for Airborne and Spaceborne Lidar at Infrared Wavelengths
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.; Mitra, Pradip; Reiff, Kirk; Yang, Guangning
2017-01-01
We report results from characterizing the HgCdTe avalanche photodiode (APD) sensorchip assemblies (SCA) developed for lidar at infrared wavelength using the high density vertically integrated photodiodes (HDVIP) technique. These devices demonstrated high quantum efficiency, typically greater than 90 between 0.8 micrometers and the cut-off wavelength, greater than 600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and less than 0.5 fW/Hz(exp.1/2) noise equivalent power (NEP). The detectors provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD and preamplifier gain settings. They have been successfully used in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as a precursor for space lidar applications.
Impact ionisation in Al0.9Ga0.1As0.08Sb0.92 for Sb-based avalanche photodiodes
NASA Astrophysics Data System (ADS)
Collins, X.; Craig, A. P.; Roblin, T.; Marshall, A. R. J.
2018-01-01
We report the impact ionisation coefficients of the quaternary alloy Al0.9Ga0.1As0.08Sb0.92 lattice matched to GaSb substrates within the field range of 150 to 550 kV cm-1 using p-i-n and n-i-p diodes of various intrinsic thicknesses. The coefficients were found with an evolutionary fitting algorithm using a non-local recurrence based multiplication model and a variable electric field profile. These coefficients indicate that an avalanche photodiode not only can be designed to be a function in the mid-wave infrared but also can be operated at lower voltages. This is due to the high magnitude of the impact ionisation coefficients at relatively low fields compared to other III-V materials typically used in avalanche multiplication regions.
Practical photon number detection with electric field-modulated silicon avalanche photodiodes.
Thomas, O; Yuan, Z L; Shields, A J
2012-01-24
Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.
Theoretical Studies on InGaAs/InAlAs SAGCM Avalanche Photodiodes
NASA Astrophysics Data System (ADS)
Cao, Siyu; Zhao, Yue; ur Rehman, Sajid; Feng, Shuai; Zuo, Yuhua; Li, Chuanbo; Zhang, Lichun; Cheng, Buwen; Wang, Qiming
2018-05-01
In this paper, we provide a detailed insight on InGaAs/InAlAs separate absorption, grading, charge, and multiplication avalanche photodiodes (SAGCM APDs) and a theoretical model of APDs is built. Through theoretical analysis and two-dimensional (2D) simulation, the influence of charge layer and tunneling effect on the APDs is fully understood. The design of charge layer (including doping level and thickness) can be calculated by our predictive model for different multiplication thickness. We find that as the thickness of charge layer increases, the suitable doping level range in charge layer decreases. Compared to thinner charge layer, performance of APD varies significantly via several percent deviations of doping concentrations in thicker charge layer. Moreover, the generation rate ( G btt ) of band-to-band tunnel is calculated, and the influence of tunneling effect on avalanche field was analyzed. We confirm that avalanche field and multiplication factor ( M n ) in multiplication will decrease by the tunneling effect. The theoretical model and analysis are based on InGaAs/InAlAs APD; however, they are applicable to other APD material systems as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, S., E-mail: syunji.kishimoto@kek.jp; Haruki, R.; Mitsui, T.
We developed a silicon avalanche photodiode (Si-APD) linear-array detector to be used for time-resolved X-ray scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and a depletion depth of 10 μm. The multichannel scaler counted X-ray pulses over continuous 2046 time bins for every 0.5 ns and recorded a time spectrum at each pixel with a time resolution of 0.5 ns (FWHM) for 8.0 keV X-rays. Using the detector system, we were able to observe X-ray peaks clearly separated with 2 nsmore » interval in the multibunch-mode operation of the Photon Factory ring. The small-angle X-ray scattering for polyvinylidene fluoride film was also observed with the detector.« less
Origin of large dark current increase in InGaAs/InP avalanche photodiode
NASA Astrophysics Data System (ADS)
Wen, J.; Wang, W. J.; Chen, X. R.; Li, N.; Chen, X. S.; Lu, W.
2018-04-01
The large dark current increase near the breakdown voltage of an InGaAs/InP avalanche photodiode is observed and analyzed from the aspect of bulk defects in the device materials. The trap level information is extracted from the temperature-dependent electrical characteristics of the device and the low temperature photoluminescence spectrum of the materials. Simulation results with the extracted trap level taken into consideration show that the trap is in the InP multiplication layer and the trap assisted tunneling current induced by the trap is the main cause of the large dark current increase with the bias from the punch-through voltage to 95% breakdown voltage.
Performance enhancement of GaN ultraviolet avalanche photodiodes with p-type δ-doping
NASA Astrophysics Data System (ADS)
Bayram, C.; Pau, J. L.; McClintock, R.; Razeghi, M.
2008-06-01
High quality δ-doped p-GaN is used as a means of improving the performance of back-illuminated GaN avalanche photodiodes (APDs). Devices with δ-doped p-GaN show consistently lower leakage current and lower breakdown voltage than those with bulk p-GaN. APDs with δ-doped p-GaN also achieve a maximum multiplication gain of 5.1×104, more than 50 times higher than that obtained in devices with bulk p-GaN. The better device performance of APDs with δ-doped p-GaN is attributed to the higher structural quality of the p-GaN layer achieved via δ-doping.
Response of CMS avalanche photo-diodes to low energy neutrons
NASA Astrophysics Data System (ADS)
Brown, R. M.; Deiters, K.; Ingram, Q.; Renker, D.
2012-12-01
The response of the Avalanche Photo-diodes (APDs) installed in the CMS detector at the LHC to neutrons from 241AmBe and 252Cf sources is reported. Signals in size equivalent to those of up to 106 photo-electrons with the nominal APD gain are observed. Measurements with an APD with the protective epoxy coating removed and with the source placed behind the APD show that there is an important response due to recoil protons from neutron interactions with the hydrogen in the epoxy, in addition to signals from neutron interactions with the silicon of the diode. The effective gain of these signals is much smaller than the diode's nominal gain.
NASA Technical Reports Server (NTRS)
Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.
2016-01-01
Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).
NASA Astrophysics Data System (ADS)
Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan
2017-10-01
A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.
Avalanche multiplication in AlGaN-based heterostructures for the ultraviolet spectral range
NASA Astrophysics Data System (ADS)
Hahn, L.; Fuchs, F.; Kirste, L.; Driad, R.; Rutz, F.; Passow, T.; Köhler, K.; Rehm, R.; Ambacher, O.
2018-04-01
AlxGa1-xN based avalanche photodiodes grown on sapphire substrate with Al-contents of x = 0.65 and x = 0.60 have been examined under back- and frontside illumination with respect to their avalanche gain properties. The photodetectors suitable for the solar-blind ultraviolet spectral regime show avalanche gain for voltages in excess of 30 V reverse bias in the linear gain mode. Devices with a mesa diameter of 100 μm exhibit stable avalanche gain below the break through threshold voltage, exceeding a multiplication gain of 5500 at 84 V reverse bias. A dark current below 1 pA can be found for reverse voltages up to 60 V.
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: WRATS Integrated Data Acquisition System; Breadboard Signal Processor for Arraying DSN Antennas; Digital Receiver Phase Meter; Split-Block Waveguide Polarization Twist for 220 to 325 GHz; Nano-Multiplication-Region Avalanche Photodiodes and Arrays; Tailored Asymmetry for Enhanced Coupling to WGM Resonators; Disabling CNT Electronic Devices by Use of Electron Beams; Conical Bearingless Motor/Generators; Integrated Force Method for Indeterminate Structures; Carbon-Nanotube-Based Electrodes for Biomedical Applications; Compact Directional Microwave Antenna for Localized Heating; Using Hyperspectral Imagery to Identify Turfgrass Stresses; Shaping Diffraction-Grating Grooves to Optimize Efficiency; Low-Light-Shift Cesium Fountain without Mechanical Shutters; Magnetic Compensation for Second-Order Doppler Shift in LITS; Nanostructures Exploit Hybrid-Polariton Resonances; Microfluidics, Chromatography, and Atomic-Force Microscopy; Model of Image Artifacts from Dust Particles; Pattern-Recognition System for Approaching a Known Target; Orchestrator Telemetry Processing Pipeline; Scheme for Quantum Computing Immune to Decoherence; Spin-Stabilized Microsatellites with Solar Concentrators; Phase Calibration of Antenna Arrays Aimed at Spacecraft; Ring Bus Architecture for a Solid-State Recorder; and Image Compression Algorithm Altered to Improve Stereo Ranging.
Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.
Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S
2017-07-10
We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.
NASA Astrophysics Data System (ADS)
Inoue, Keisuke; Kobayashi, Yasuhiro; Yoda, Yoshitaka; Koshimizu, Masanori; Nishikido, Fumihiko; Haruki, Rie; Kishimoto, Shunji
2018-02-01
We developed a new scintillation timing detector using a proportional-mode silicon avalanche photodiode (Si-APD) for synchrotron radiation nuclear resonant scattering. We report on the nuclear forward scattering measurement on 61Ni with a prototype detector using a lead-loaded plastic scintillator (EJ-256, 3 mm in diameter and 2 mm in thickness), mounted on a proportional-mode Si-APD. Using synchrotron X-rays of 67.41 keV, we successfully measured the time spectra of nuclear forward scattering on 61Ni enriched metal foil and 61Ni86V14 alloy. The prototype detector confirmed the expected dynamical beat structure with a time resolution of 0.53 ns (FWHM).
Equivalent circuit model of Ge/Si separate absorption charge multiplication avalanche photodiode
NASA Astrophysics Data System (ADS)
Wang, Wei; Chen, Ting; Yan, Linshu; Bao, Xiaoyuan; Xu, Yuanyuan; Wang, Guang; Wang, Guanyu; Yuan, Jun; Li, Junfeng
2018-03-01
The equivalent circuit model of Ge/Si Separate Absorption Charge Multiplication Avalanche Photodiode (SACM-APD) is proposed. Starting from the carrier rate equations in different regions of device and considering the influences of non-uniform electric field, noise, parasitic effect and some other factors, the equivalent circuit model of SACM-APD device is established, in which the steady-state and transient current voltage characteristics can be described exactly. In addition, the proposed Ge/Si SACM APD equivalent circuit model is embedded in PSpice simulator. The important characteristics of Ge/Si SACM APD such as dark current, frequency response, shot noise are simulated, the simulation results show that the simulation with the proposed model are in good agreement with the experimental results.
Advanced MCT technologies at LETI for space applications
NASA Astrophysics Data System (ADS)
Durand, A.; Destefanis, G.; Gravrand, O.; Rothmann, J.
This document is a recap of an oral presentation made at Nice during the INSU Astrophysics Detector Workshop 2008. It aims at giving an overview of the achievements and ongoing developments presently carried out at CEA-LETI in the field of Infrared focal plane array. Although most of the research actually performed at LETI is not driven by space oriented application, the excellence and the cutting edge of the outcome is or can be applied to space-dedicated components. This paper focus on features and developments from which astrophysics observation would benefit in the near future on the European market. This encompassed “traditionnal” developments such as format enlargement, low dark current technology such as p/n structure but it also shade light on promising and thrilling development such as avalanche photodiode array. It eventually gives some hints of none MCT technologies processed at LETI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, S., E-mail: syunji.kishimoto@kek.jp; Haruki, R.; Mitsui, T.
We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm{sup 2}) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10{sup 7} cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrummore » of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on {sup 57}Fe.« less
NASA Astrophysics Data System (ADS)
Suvarna, Puneet Harischandra
Solar-blind ultraviolet avalanche photodiodes are an enabling technology for applications in the fields of astronomy, communication, missile warning systems, biological agent detection and particle physics research. Avalanche photodiodes (APDs) are capable of detecting low-intensity light with high quantum efficiency and signal-to-noise ratio without the need for external amplification. The properties of III-N materials (GaN and AlGaN) are promising for UV photodetectors that are highly efficient, radiation-hard and capable of visible-blind or solar-blind operation without the need for external filters. However, the realization of reliable and high performance III-N APDs and imaging arrays has several technological challenges. The high price and lack of availability of bulk III-N substrates necessitates the growth of III-Ns on lattice mismatched substrates leading to a high density of dislocations in the material that can cause high leakage currents, noise and premature breakdown in APDs. The etched sidewalls of III-N APDs and high electric fields at contact edges are also detrimental to APD performance and reliability. In this work, novel technologies have been developed and implemented that address the issues of performance and reliability in III-Nitride based APDs. To address the issue of extended defects in the bulk of the material, a novel pulsed MOCVD process was developed for the growth of AlGaN. This process enables growth of high crystal quality AlxGa1-xN with excellent control over composition, doping and thickness. The process has also been adapted for the growth of high quality III-N materials on silicon substrate for devices such as high electron mobility transistors (HEMTs). A novel post-growth defect isolation technique is also discussed that can isolate the impact of conductive defects from devices. A new sidewall passivation technique using atomic layer deposition (ALD) of dielectric materials was developed for III-N APDs that is effective in reducing the dark-current and trap states at sidewalls by close to an order of magnitude, leading to improved APD performance. Development and implementation of an ion implantation based contact edge termination technique for III-N APDs that helps prevent premature breakdown from the contact edge of the devices, has further lead to improved reliability. Finally novel improved III-N APD device designs are proposed using preliminary experiments and numerical simulations for future implementations.
Current isolating epitaxial buffer layers for high voltage photodiode array
Morse, Jeffrey D.; Cooper, Gregory A.
2002-01-01
An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.
The Use of Self-scanned Silicon Photodiode Arrays for Astronomical Spectrophotometry
NASA Technical Reports Server (NTRS)
Cochran, A. L.
1984-01-01
The use of a Reticon self scanned silicon photodiode array for precision spectrophotometry is discussed. It is shown that internal errors are + or - 0.003 mag. Observations obtained with a photodiode array are compared with observations obtained with other types of detectors with agreement, from 3500 A to 10500 A, of 1%. The photometric properties of self scanned photodiode arrays are discussed. Potential pitfalls are given.
NASA Astrophysics Data System (ADS)
Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu
2018-06-01
One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.
An excess noise measurement system for weak responsivity avalanche photodiodes
NASA Astrophysics Data System (ADS)
Qiao, Liang; Dimler, Simon J.; Baharuddin, Aina N. A. P.; Green, James E.; David, John P. R.
2018-06-01
A system for measuring, with reduced photocurrent, the excess noise associated with the gain in avalanche photodiodes (APDs), using a transimpedance amplifier front-end and based on phase-sensitive detection is described. The system can reliably measure the excess noise power of devices, even when the un-multiplied photocurrent is low (~10 nA). This is more than one order of magnitude better than previously reported systems and represents a significantly better noise signal to noise ratio. This improvement in performance has been achieved by increasing the value of the feedback resistor and reducing the op-amp bandwidth. The ability to characterise APD performance with such low photocurrents enables the use of low power light sources such as light emitting diode rather than lasers to investigate the APD noise performance.
Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems.
Wang, Liang; Han, Shaokun; Xia, Wenze; Lei, Jieyu
2018-02-01
Although the Geiger-mode avalanche photodiode (GM-APD) flash ladar system offers the advantages of high sensitivity and simple construction, its detection performance is influenced not only by the incoming signal-to-noise ratio but also by the absolute number of noise photons. In this paper, we deduce a hyperbolic approximation to estimate the noise-photon number from the false-firing percentage in a GM-APD flash ladar system under dark conditions. By using this hyperbolic approximation function, we introduce a method to adapt the aperture to reduce the number of incoming background-noise photons. Finally, the simulation results show that the adaptive-aperture method decreases the false probability in all cases, increases the detection probability provided that the signal exceeds the noise, and decreases the average ranging error per frame.
Adaptive aperture for Geiger mode avalanche photodiode flash ladar systems
NASA Astrophysics Data System (ADS)
Wang, Liang; Han, Shaokun; Xia, Wenze; Lei, Jieyu
2018-02-01
Although the Geiger-mode avalanche photodiode (GM-APD) flash ladar system offers the advantages of high sensitivity and simple construction, its detection performance is influenced not only by the incoming signal-to-noise ratio but also by the absolute number of noise photons. In this paper, we deduce a hyperbolic approximation to estimate the noise-photon number from the false-firing percentage in a GM-APD flash ladar system under dark conditions. By using this hyperbolic approximation function, we introduce a method to adapt the aperture to reduce the number of incoming background-noise photons. Finally, the simulation results show that the adaptive-aperture method decreases the false probability in all cases, increases the detection probability provided that the signal exceeds the noise, and decreases the average ranging error per frame.
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.
2015-11-01
Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.
Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R
2006-12-01
PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.
Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.
2015-07-01
Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used tomore » form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)« less
Yun, Ruida; Sthalekar, Chirag; Joyner, Valencia M
2011-01-01
This paper presents the design and measurement results of two avalanche photodiode structures (APDs) and a novel frequency-mixing transimpedance amplifier (TIA), which are key building blocks towards a monolithically integrated optical sensor front end for near-infrared (NIR) spectroscopy applications. Two different APD structures are fabricated in an unmodified 0.18 \\im CMOS process, one with a shallow trench isolation (STI) guard ring and the other with a P-well guard ring. The APDs are characterized in linear mode. The STI bounded APD demonstrates better performance and exhibits 3.78 A/W responsivity at a wavelength of 690 nm and bias voltage of 10.55 V. The frequency-mixing TIA (FM-TIA) employs a T-feedback network incorporating gate-controlled transistors for resistance modulation, enabling the simultaneous down-conversion and amplification of the high frequency modulated photodiode (PD) current. The TIA achieves 92 dS Ω conversion gain with 0.5 V modulating voltage. The measured IIP(3) is 10.6/M. The amplifier together with the 50 Ω output buffer draws 23 mA from a1.8 V power supply.
1300 nm wavelength InAs quantum dot photodetector grown on silicon.
Sandall, Ian; Ng, Jo Shien; David, John P R; Tan, Chee Hing; Wang, Ting; Liu, Huiyun
2012-05-07
The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.
NASA Astrophysics Data System (ADS)
Jenke, P. A.; Briggs, M. S.; Bhat, P. N.; Reardon, P.; Connaughton, V.; Wilson-Hodge, C.
2013-09-01
In support of improved gamma-ray detectors for astrophysics and observations of Terrestrial Gamma-ray Flashes (TGFs), we have designed a new approach for the collection and detection of optical photons from scintillators such as Sodium Iodide and Lanthanum Bromide using a light concentrator coupled to an Avalanche photodiode (APD). The APD has many advantages over traditional photomultiplier tubes such as their low power consumption, their compact size, their durability, and their very high quantum efficiency. The difficulty in using these devices in gamma-ray astronomy has been coupling their relatively small active area to the large scintillators necessary for gamma-ray science. Our solution is to use an acrylic Compound Parabolic Concentrator (CPC) to match the large output area of the scintillation crystal to the smaller photodiode. These non-imaging light concentrators exceed the light concentration of focused optics and are light and inexpensive to produce. We present our results from the analysis and testing of such a system including gains in light collecting efficiency, energy resolution of nuclear decay lines, as well as our design for a new, fast TGF detector.
Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications
NASA Technical Reports Server (NTRS)
Farr, William H.
2009-01-01
Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.
Temperature Control of Avalanche Photodiode Using Thermoelectric Cooler
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Luck, William S., Jr.; DeYoung, Russell J.
1999-01-01
Avalanche photodiodes (APDS) are quantum optical detectors that are used for visible and near infrared optical detection applications. Although APDs are compact, rugged, and have an internal gain mechanism that is suitable for low light intensity; their responsivity, and therefore their output, is strongly dependent on the device temperature. Thermoelectric coolers (TEC) offers a suitable solution to this problem. A TEC is a solid state cooling device, which can be controlled by changing its current. TECs are compact and rugged, and they can precisely control the temperature to within 0.1 C with more than a 150 C temperature gradient between its surfaces. In this Memorandum, a proportional integral (PI) temperature controller for APDs using a TEC is discussed. The controller is compact and can successfully cool the APD to almost 0 C in an ambient temperature environment of up to 27 C.
Deng, Shijie; Morrison, Alan P
2012-09-15
This Letter presents an active quench-and-reset circuit for Geiger-mode avalanche photodiodes (GM-APDs). The integrated circuit was fabricated using a conventional 0.35 μm complementary metal oxide semiconductor process. Experimental results show that the circuit is capable of linearly setting the hold-off time from several nanoseconds to microseconds with a resolution of 6.5 ns. This allows the selection of the optimal afterpulse-free hold-off time for the GM-APD via external digital inputs or additional signal processing circuitry. Moreover, this circuit resets the APD automatically following the end of the hold-off period, thus simplifying the control for the end user. Results also show that a minimum dead time of 28.4 ns is achieved, demonstrating a saturated photon-counting rate of 35.2 Mcounts/s.
NASA Astrophysics Data System (ADS)
Kholodnov, Viacheslav; Drugova, Albina; Nikitin, Mikhail; Chekanova, Galina
2012-10-01
Technology of infrared (IR) avalanche photodiodes (APDs) gradually moves from simple single element APD to 2D focal plane arrays (FPA). Spectral covering of APDs is expanded continuously from classic 1.3 μm to longer wavelengths due to using of narrow-gap semiconductor materials like Hg1-xCdxTe. APDs are of great interest to developers and manufacturers of different optical communication, measuring and 3D reconstruction thermal imaging systems. Major IR detector materials for manufacturing of high-performance APDs became heteroepitaxial structures InxGa1-xAsyP1-y and Hg1-xCdxTe. Progress in IR APD technology was achieved through serious improvement in material growing techniques enabling forming of multilayer heterostuctures with separate absorption and multiplication regions (SAM). Today SAM-APD design can be implemented both on InxGa1-xAsyP1-y and Hg1-xCdxTe multilayer heteroepitaxial structures. To create the best performance optimal design avalanche heterophotodiode (AHPD) it is necessary to carry out a detailed theoretical analysis of basic features of generation, avalanche breakdown and multiplication of charge carriers in proper heterostructure. Optimization of AHPD properties requires comprehensive estimation of AHPD's pixel performance depending on pixel's multi-layer structure design, layers doping, distribution of electric field in the structure and operating temperature. Objective of the present article is to compare some features of 1.55 μm SAM-AHPDs based on InxGa1-xAsyP1-y and Hg1-xCdxTe.
Solid state tritium detector for biomedical applications
NASA Astrophysics Data System (ADS)
Gordon, J. S.; Farrell, R.; Daley, K.; Oakes, C. E.
1994-08-01
Radioactive labeling of proteins is a very important technique used in biomedical research to identify, isolate, and investigate the expression and properties of proteins in biological systems. In such procedures, the preferred radiolabel is often tritium. Presently, binding assays involving tritium are carried out using inconvenient and expensive techniques which rely on the use of scintillation fluid counting systems. This traditional method involves both time-consuming laboratory protocols and the generation of substantial quantities of radioactive and chemical waste. We have developed a novel technology to measure the tritium content of biological specimens that does not rely on scintillation fluids. The tritiated samples can be positioned directly under a large area, monolithic array of specially prepared avalanche photodiodes (APDs) which record the tritium activity distribution at each point within the field of view of the array. The 1 mm(sup 2) sensing elements exhibit an intrinsic tritium beta detection efficiency of 27% with high gain uniformity and very low cross talk.
III-V strain layer superlattice based band engineered avalanche photodiodes (Presentation Recording)
NASA Astrophysics Data System (ADS)
Ghosh, Sid
2015-08-01
Laser detection and ranging (LADAR)-based systems operating in the Near Infrared (NIR) and Short Wave Infrared (SWIR) have become popular optical sensors for remote sensing, medical, and environmental applications. Sophisticated laser-based radar and weapon systems used for long-range military and astronomical applications need to detect, recognize, and track a variety of targets under a wide spectrum of atmospheric conditions. Infrared APDs play an important role in LADAR systems by integrating the detection and gain stages in a single device. Robust silicon-APDs are limited to visible and very near infrared region (< 1 um), while InGaAs works well up to wavelengths of about 1.5um. Si APDs have low multiplication or excess noise but are limited to below 1um due very poor quantum efficiency above 0.8um. InGaAs and Ge APDs operate up to wavelengths of 1.5um but have poor multiplication or excess noise due to a low impact ionization coefficient ratio between electrons and holes. For the past several decades HgCdTe has been traditionally used in longer wavelength (> 3um) infrared photon detection applications. Recently, various research groups (including Ghosh et. al.) have reported SWIR and MWIR HgCdTe APDs on CdZnTe and Si substrates. However, HgCdTe APDs suffer from low breakdown fields due to material defects, and excess noise increases significantly at high electric fields. During the past decade, InAs/GaSb Strain Layer Superlattice (SLS) material system has emerged as a potential material for the entire infrared spectrum because of relatively easier growth, comparable absorption coefficients, lower tunneling currents and longer Auger lifetimes resulting in enhanced detectivities (D*). Band engineering in type II SLS allows us to engineer avalanche properties of electrons and holes. This is a great advantage over bulk InGaAs and HgCdTe APDs where engineering avalanche properties is not possible. The talk will discuss the evolution of superlattice based avalanche photodiodes and some of the recent results on the work being done at Raytheon on SWIR avalanche photodiodes.
2014-03-01
electromagnetic radiation across the spectrum from the ultraviolet ( UV ) to terahertz, heterogeneous integration of these materials with others having different...weak absorption that limit the QE of homogenous SiC-based photodetectors in the deep UV and near UV regions, respectively. Furthermore, we have...Polarization-Enhanced III-Nitride-SiC Avalanche Photodiodes Semiconductor-based ultraviolet ( UV ) avalanche photodetectors (APDs) have significant promise
Optical design of infrared pyramid wavefront sensor for the MMT
NASA Astrophysics Data System (ADS)
Chen, Shaojie; Sivanandam, Suresh; Liu, Siqi; Veran, Jean-Pierre; Hinz, Phil; Mieda, Etsuko; Hardy, Tim; Lardiere, Olivier
2017-09-01
We report the optical design of an infrared (0.85-1.8 μm) pyramid wavefront sensor (IRPWFS) that is designed for the 6.5m MMT on telescope adaptive optics system using the latest developments in low-noise infrared avalanche photodiode arrays. The comparison between the pyramid and the double-roof prism based wavefront sensors and the evaluation of their micro pupils' quality are presented. According to our analysis, the use of two double-roof prisms with achromatic materials produces the competitive performance when compared to the traditional pyramid prism, which is difficult to manufacture. The final micro pupils on the image plane have the residual errors of pupil position, chromatism, and distortion within 1/10 pixel over the 2×2 arcsecond field of view, which meet the original design goals.
Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector
NASA Technical Reports Server (NTRS)
Huntington, Andrew
2013-01-01
The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.
Effect of electron irradiation dose on the performance of avalanche photodiode electron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawauchi, Taizo; Wilde, Markus; Fukutani, Katsuyuki
2009-01-01
Avalanche photodiodes (APDs) are efficient detectors for electrons with energies below 100 keV. The damaging effects of 8 keV electron beam irradiation on the dark current and the output signal of the APD detector were investigated in this study. The APD dark current increases after electron doses exceeding 1.4x10{sup 13} cm{sup -2}. Preirradiation by high doses of 8 keV electrons further causes a deformation of the pulse height distribution of the APD output in the subsequent detection of low-flux electrons. This effect is particularly prominent when the energy of the detected electrons is lower than that of the damaging electrons.more » By comparing the experimental data with results of a simulation based on an electron trapping model, we conclude that the degradation of the APD performance is attributable to an enhancement of secondary-electron trapping at irradiation induced defects.« less
Avalanche photodiode based time-of-flight mass spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogasawara, Keiichi, E-mail: kogasawara@swri.edu; Livi, Stefano A.; Desai, Mihir I.
2015-08-15
This study reports on the performance of Avalanche Photodiodes (APDs) as a timing detector for ion Time-of-Flight (TOF) mass spectroscopy. We found that the fast signal carrier speed in a reach-through type APD enables an extremely short timescale response with a mass or energy independent <2 ns rise time for <200 keV ions (1−40 AMU) under proper bias voltage operations. When combined with a microchannel plate to detect start electron signals from an ultra-thin carbon foil, the APD comprises a novel TOF system that successfully operates with a <0.8 ns intrinsic timing resolution even using commercial off-the-shelf constant-fraction discriminators. Bymore » replacing conventional total-energy detectors in the TOF-Energy system, APDs offer significant power and mass savings or an anti-coincidence background rejection capability in future space instrumentation.« less
NASA Astrophysics Data System (ADS)
Marchetti, Emanuele; van Herwijnen, Alec; Ripepe, Maurizio
2017-04-01
While flowing downhill a snow avalanche radiates seismic and infrasonic waves being coupled both with the ground and the atmosphere. Infrasound waves are mostly generated by the powder cloud of the avalanche, while seismic waves are mostly generated by the dense flowing snow mass on the ground, resulting in different energy partitioning between seismic and infrasound for different kinds of avalanches. This results into a general uncertainty on the efficiency of seismic and infrasound monitoring, in terms of the size and source-to-receiver distance of detectable events. Nevertheless, both seismic and infrasound have been used as monitoring systems for the remote detection of snow avalanches, being the reliable detection of snow avalanches of crucial importance to better understand triggering mechanisms, identify possible precursors, or improve avalanche forecasting. We present infrasonic and seismic array data collected during the winters of 2015- 2016 and 2016-2017 in the Dischma valley above Davos, Switzerland, where a five element infrasound array and a 7 element seismic array had been deployed at short distance from each other and with several avalanche paths nearby. Avalanche observation in the area is performed through automatic cameras providing additional information on the location, type (dry or wet), size and occurrence time of the avalanches released. The use of arrays instead of single sensors allows increasing the signal-to-noise ratio and identifying events in terms of back-azimuth and apparent velocity of the wave-field, thus providing indication on the source position of the recorded signal. For selected snow avalanches captured with automatic cameras, we therefore perform seismic and infrasound array processing to constrain the avalanche path and dynamics and investigate the partitioning of seismic and infrasound energy for the different portions of the avalanche path. Moreover we compare results of seismic and infrasound array processing for the whole 2015-2016 winter season in order to investigate the ability of the two monitoring systems to identify and characterize snow avalanches and the benefit of the combined seismo-acoustic analysis.
Pixelated Geiger-Mode Avalanche Photo-Diode Characterization Through Dark Current Measurement
NASA Astrophysics Data System (ADS)
Amaudruz, Pierre-Andre; Bishop, Daryl; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retiere, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D.; Thompson, Christopher J.
2014-06-01
PIXELATED geiger-mode avalanche photodiodes (PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that at room temperature, the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure cannot be used to probe temperature variations. On the other hand, the MPPC current can be used to monitor light source conditions in DC mode without requiring strong temperature stability, as long as the integrated source brightness is comparable to the dark noise rate.
A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology.
Padmanabhan, Preethi; Hancock, Bruce; Nikzad, Shouleh; Bell, L Douglas; Kroep, Kees; Charbon, Edoardo
2018-02-03
Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e - , obtaining avalanche gains up to 10³. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology.
How to squeeze high quantum efficiency and high time resolution out of a SPAD
NASA Technical Reports Server (NTRS)
Lacaita, A.; Zappa, F.; Cova, Sergio; Ripamonti, Giancarlo; Spinelli, A.
1993-01-01
We address the issue whether Single-Photon Avalanche Diodes (SPADs) can be suitably designed to achieve a trade-off between quantum efficiency and time resolution performance. We briefly recall the physical mechanisms setting the time resolution of avalanche photodiodes operated in single-photon counting, and we give some criteria for the design of SPADs with a quantum efficiency better than l0 percent at 1064 nm together with a time resolution below 50 ps rms.
Single Photon Counting Detectors for Low Light Level Imaging Applications
NASA Astrophysics Data System (ADS)
Kolb, Kimberly
2015-10-01
This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for moderate to high flux rates where dark noise and CIC are insignificant noise sources. Research into decreasing the dark count rate of GM-APDs will lead to development of imaging arrays that are competitive for low light level imaging and spectroscopy applications in the near future.
64-element photodiode array for scintillation detection of x-rays
NASA Astrophysics Data System (ADS)
Wegrzecki, Maciej; Wolski, Dariusz; Bar, Jan; Budzyński, Tadeusz; Chłopik, Arkadiusz; Grabiec, Piotr; Kłos, Helena; Panas, Andrzej; Piotrowski, Tadeusz; Słysz, Wojciech; Stolarski, Maciej; Szmigiel, Dariusz; Wegrzecka, Iwona; Zaborowski, Michał
2014-08-01
The paper presents the design, technology and parameters of a new, silicon 64-element linear photodiode array developed at the Institute of Electron Technology (ITE) for the detection of scintillations emitted by CsI scintillators (λ≈550 nm). The arrays are used in a device for examining the content of containers at border crossings under development at the National Centre for Nuclear Research. Two arrays connected with a scintillator block (128 CsI scintillators) form a 128-channel detection module. The array consists of 64 epiplanar photodiode structures (5.1 × 7.2 mm) and a 5.3 mm module. p+-ν-n+ photodiode structures are optimised for the detection of radiation of λ≈ 550 nm wavelength with no voltage applied (photovoltaic mode). The structures are mounted on an epoxy-glass laminate substrate, copper-clad on both sides, on which connections with a common anode and separate cathode leads are located. The photosensitive surface of photodiodes is covered with a special silicone gel, which protects photodiodes against the mechanical impact of scintillators
Photodiode arrays having minimized cross-talk between diodes
Guckel, Henry; McNamara, Shamus P.
2000-10-17
Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu
1994-01-01
Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.
Gated IR imaging with 128 × 128 HgCdTe electron avalanche photodiode FPA
NASA Astrophysics Data System (ADS)
Beck, Jeff; Woodall, Milton; Scritchfield, Richard; Ohlson, Martha; Wood, Lewis; Mitra, Pradip; Robinson, Jim
2007-04-01
The next generation of IR sensor systems will include active imaging capabilities. One example of such a system is a gated-active/passive system. The gated-active/passive system promises long-range target detection and identification. A detector that is capable of both active and passive modes of operation opens up the possibility of a self-aligned system that uses a single focal plane. The detector would need to be sensitive in the 3-5 μm band for passive mode operation. In the active mode, the detector would need to be sensitive in eye-safe range, e.g. 1.55 μm, and have internal gain to achieve the required system sensitivity. The MWIR HgCdTe electron injection avalanche photodiode (e-APD) not only provides state-of-the-art 3-5 μm spectral sensitivity, but also high avalanche photodiode gain without minimal excess noise. Gains of greater than 1000 have been measured in MWIR e-APDs with a gain independent excess noise factor of 1.3. This paper reports the application of the mid-wave HgCdTe e-APD for near-IR gated-active/passive imaging. Specifically a 128x128 FPA composed of 40 μm pitch, 4.2 μm to 5 μm cutoff, APD detectors with a custom readout integrated circuit was designed, fabricated, and tested. Median gains as high as 946 at 11 V bias with noise equivalent inputs as low as 0.4 photon were measured at 80 K. A gated imaging demonstration system was designed and built using commercially available parts. High resolution gated imagery out to 9 km was obtained with this system that demonstrated predicted MTF, precision gating, and sub 10 photon sensitivity.
An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization
NASA Astrophysics Data System (ADS)
Tang, Yin; Cai, Qing; Yang, Lian-Hong; Dong, Ke-Xiu; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou
2017-03-01
Not Available Project supported by the State Key Project of Research and Development Plan, China (Grant No. 2016YFB0400903), the National Natural Science Foundation of China (Grant Nos. 61634002, 61274075, and 61474060), the Key Project of Jiangsu Province, China (Grant No. BE2016174), the Anhui University Natural Science Research Project, China (Grant No. KJ2015A153), the Open Fund (KFS) of State Key Lab of Optical Technologieson Nanofabrication and Microengineering, Institute of Optics and Electronics, Chinese Academy of Science.
Deterministic filtering of breakdown flashing at telecom wavelengths
NASA Astrophysics Data System (ADS)
Marini, Loris; Camphausen, Robin; Eggleton, Benjamin J.; Palomba, Stefano
2017-11-01
Breakdown flashes are undesired photo-emissions from the active area of single-photon avalanche photo-diodes. They arise from radiative recombinations of hot carriers generated during an avalanche and can induce crosstalk, compromise the measurement of optical quantum states, and hinder the security of quantum communications. Although the spectrum of this emission extends over hundreds of nanometers, active quenching may lead to a smaller uncertainty in the time of emission, thus enabling deterministic filtering. Our results pave the way to broadband interference mitigation in time-correlated single-photon applications.
NASA Astrophysics Data System (ADS)
Ye, Han; Han, Qin; Lv, Qianqian; Pan, Pan; An, Junming; Yang, Xiaohong
2017-12-01
We demonstrate the monolithic integration of a uni-traveling carrier photodiode array with a 4 channel, O-band arrayed waveguide grating demultiplexer on the InP platform by the selective area growth technique. An extended coupling layer at the butt-joint is adopted to ensure both good fabrication compatibility and high photodiode quantum efficiency of 77%. The fabricated integrated chip exhibits a uniform bandwidth over 25 GHz for each channel and a crosstalk below -22 dB.
Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials
Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas
2016-01-01
Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399
NASA Astrophysics Data System (ADS)
Vasquez, Jaime; Saavedra, Arthur; Ramos, Roxana; Tavares, Pablo; Wade, Marcus; Fan, Sewan; Haag, Brooke
2013-04-01
Through the Research Scholars Institute, students of Hartnell Community College experimented with the application of avalanche photodiodes (APDs) as cosmic ray detectors during the summer of 2012. An APD detector was coupled with a 10 meter long wavelength shifting fiber (WSF) wrapped around a cylindrical plastic scintillator to maximize signal detection. A photomultiplier tube (PMT) was used in conjunction to detect the same scintillation light caused by incoming cosmic rays. Two APD detectors were evaluated to confirm the viability of the setup. In addition, a similar setup was recently utilized to implement multi-pixel photon counters (MPPCs) as readout detectors. Under this configuration, a high gain preamplifier was used to amplify the signals for both the MPPC and APD detectors. We report on our results characterizing the MPPC and discuss its overall performance. Compared to the APD, our findings suggest that the MPPC detector has greater sensitivity in detecting weak light signals, and can be used in place of the PMT for certain counting applications.
NASA Astrophysics Data System (ADS)
Ardanuy, Antoni; Comerón, Adolfo
2018-04-01
We analyze the practical limits of a lidar system based on the use of a laser diode, random binary continuous wave power modulation, and an avalanche photodiode (APD)-based photereceiver, combined with the control and computing power of the digital signal processors (DSP) currently available. The target is to design a compact portable lidar system made all in semiconductor technology, with a low-power demand and an easy configuration of the system, allowing change in some of its features through software. Unlike many prior works, we emphasize the use of APDs instead of photomultiplier tubes to detect the return signal and the application of the system to measure not only hard targets, but also medium-range aerosols and clouds. We have developed an experimental prototype to evaluate the behavior of the system under different environmental conditions. Experimental results provided by the prototype are presented and discussed.
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-07-15
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determinedmore » for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})« less
Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.
Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas
2016-06-21
Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.
A low-cost, ultra-fast and ultra-low noise preamplifier for silicon avalanche photodiodes
NASA Astrophysics Data System (ADS)
Gasmi, Khaled
2018-02-01
An ultra-fast and ultra-low noise preamplifier for amplifying the fast and weak electrical signals generated by silicon avalanche photodiodes has been designed and developed. It is characterized by its simplicity, compactness, reliability and low cost of construction. A very wide bandwidth of 300 MHz, a very good linearity from 1 kHz to 280 MHz, an ultra-low noise level at the input of only 1.7 nV Hz-1/2 and a very good stability are its key features. The compact size (70 mm × 90 mm) and light weight (45 g), as well as its excellent characteristics, make this preamplifier very competitive compared to any commercial preamplifier. The preamplifier, which is a main part of the detection system of a homemade laser remote sensing system, has been successfully tested. In addition, it is versatile and can be used in any optical detection system requiring high speed and very low noise electronics.
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
NASA Astrophysics Data System (ADS)
Molotkov, S. N.
2008-07-01
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability ( p dark ˜ 10-7).
A silicon avalanche photodiode detector circuit for Nd:YAG laser scattering
NASA Astrophysics Data System (ADS)
Hsieh, C.-L.; Haskovec, J.; Carlstrom, T. N.; Deboo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.
1990-06-01
A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge sensitive preamplifier was developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N = 1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low frequency background light component. The background signal is amplified with a computer controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Z sub eff measurements of the plasma. The signal processing was analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.
Silicon avalanche photodiode detector circuit for Nd:YAG laser scattering
NASA Astrophysics Data System (ADS)
Hsieh, C. L.; Haskovec, J.; Carlstrom, T. N.; DeBoo, J. C.; Greenfield, C. M.; Snider, R. T.; Trost, P.
1990-10-01
A silicon avalanche photodiode with an internal gain of about 50 to 100 is used in a temperature-controlled environment to measure the Nd:YAG laser Thomson scattered spectrum in the wavelength range from 700 to 1150 nm. A charge-sensitive preamplifier has been developed for minimizing the noise contribution from the detector electronics. Signal levels as low as 20 photoelectrons (S/N=1) can be detected. Measurements show that both the signal and the variance of the signal vary linearly with the input light level over the range of interest, indicating Poisson statistics. The signal is processed using a 100 ns delay line and a differential amplifier which subtracts the low-frequency background light component. The background signal is amplified with a computer-controlled variable gain amplifier and is used for an estimate of the measurement error, calibration, and Zeff measurements of the plasma. The signal processing has been analyzed using a theoretical model to aid the system design and establish the procedure for data error analysis.
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Zhang, Xuping; Shi, Yuanlei; Ying, Zhoufeng; Wang, Shun
2014-06-01
Capacitive gate transient noise has been problematic for the high-speed single photon avalanche photodiode (SPAD), especially when the operating frequency extends to the gigahertz level. We proposed an electro-optic modulator based gate transient noise suppression method for sine-wave gated InGaAs/InP SPAD. With the modulator, gate transient is up-converted to its higher-order harmonics that can be easily removed by low pass filtering. The proposed method enables online tuning of the operating rate without modification of the hardware setup. At 250 K, detection efficiency of 14.7% was obtained with 4.8×10-6 per gate dark count and 3.6% after-pulse probabilities for 1550-nm optical signal under 1-GHz gating frequency. Experimental results have shown that the performance of the detector can be maintained within a designated frequency range from 0.97 to 1.03 GHz, which is quite suitable for practical high-speed SPAD applications operated around the gigahertz level.
Superlinear threshold detectors in quantum cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydersen, Lars; Maroey, Oystein; Skaar, Johannes
2011-09-15
We introduce the concept of a superlinear threshold detector, a detector that has a higher probability to detect multiple photons if it receives them simultaneously rather than at separate times. Highly superlinear threshold detectors in quantum key distribution systems allow eavesdropping the full secret key without being revealed. Here, we generalize the detector control attack, and analyze how it performs against quantum key distribution systems with moderately superlinear detectors. We quantify the superlinearity in superconducting single-photon detectors based on earlier published data, and gated avalanche photodiode detectors based on our own measurements. The analysis shows that quantum key distribution systemsmore » using detector(s) of either type can be vulnerable to eavesdropping. The avalanche photodiode detector becomes superlinear toward the end of the gate. For systems expecting substantial loss, or for systems not monitoring loss, this would allow eavesdropping using trigger pulses containing less than 120 photons per pulse. Such an attack would be virtually impossible to catch with an optical power meter at the receiver entrance.« less
High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength
NASA Astrophysics Data System (ADS)
Joshi, Abhay; Datta, Shubhashish
2012-06-01
We present 16-element and 32-element lattice-mismatched InGaAs photodiode arrays having a cut-off wavelength of ~2.2 um. Each 100 um × 200 um large pixel of the 32-element array has a capacitance of 2.5 pF at 5 V reverse bias, thereby allowing a RC-limited bandwidth of ~1.3 GHz. At room temperature, each pixel demonstrates a dark current of 25 uA at 5 V reverse bias. Corresponding results for the 16-element array having 200 um × 200 um pixels are also reported. Cooling the photodiode array to 150K is expected to reduce its dark current to < 50 nA per pixel at 5 V reverse bias. Additionally, measurement results of 2-micron single photodiodes having 16 GHz bandwidth and corresponding PIN-TIA photoreceiver having 6 GHz bandwidth are also reported.
A Hybrid Readout Solution for GaN-Based Detectors Using CMOS Technology †
Hancock, Bruce; Nikzad, Shouleh; Bell, L. Douglas; Kroep, Kees; Charbon, Edoardo
2018-01-01
Gallium nitride (GaN) and its alloys are becoming preferred materials for ultraviolet (UV) detectors due to their wide bandgap and tailorable out-of-band cutoff from 3.4 eV to 6.2 eV. GaN based avalanche photodiodes (APDs) are particularly suitable for their high photon sensitivity and quantum efficiency in the UV region and for their inherent insensitivity to visible wavelengths. Challenges exist however for practical utilization. With growing interests in such photodetectors, hybrid readout solutions are becoming prevalent with CMOS technology being adopted for its maturity, scalability, and reliability. In this paper, we describe our approach to combine GaN APDs with a CMOS readout circuit, comprising of a linear array of 1 × 8 capacitive transimpedance amplifiers (CTIAs), implemented in a 0.35 µm high voltage CMOS technology. Further, we present a simple, yet sustainable circuit technique to allow operation of APDs under high reverse biases, up to ≈80 V with verified measurement results. The readout offers a conversion gain of 0.43 µV/e−, obtaining avalanche gains up to 103. Several parameters of the CTIA are discussed followed by a perspective on possible hybridization, exploiting the advantages of a 3D-stacked technology. PMID:29401655
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed
2017-09-01
An airborne 2-μm triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.
Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Nepomuk Otte, Adam
2009-05-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Taylor, Bryant D.; Bowen, Stephen C.; Welters, Angela M.; Remus, Ruben G.; Wong, Teh-Hwa;
2014-01-01
An airborne 2 micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed.
Haba, Tomonobu; Koyama, Shuji; Aoyama, Takahiko; Kinomura, Yutaka; Ida, Yoshihiro; Kobayashi, Masanao; Kameyama, Hiroshi; Tsutsumi, Yoshinori
2016-07-01
Patient dose estimation in X-ray computed tomography (CT) is generally performed by Monte Carlo simulation of photon interactions within anthropomorphic or cylindrical phantoms. An accurate Monte Carlo simulation requires an understanding of the effects of the bow-tie filter equipped in a CT scanner, i.e. the change of X-ray energy and air kerma along the fan-beam arc of the CT scanner. To measure the effective energy and air kerma distributions, we devised a pin-photodiode array utilizing eight channels of X-ray sensors arranged at regular intervals along the fan-beam arc of the CT scanner. Each X-ray sensor consisted of two plate type of pin silicon photodiodes in tandem - front and rear photodiodes - and of a lead collimator, which only allowed X-rays to impinge vertically to the silicon surface of the photodiodes. The effective energy of the X-rays was calculated from the ratio of the output voltages of the photodiodes and the dose was calculated from the output voltage of the front photodiode using the energy and dose calibration curves respectively. The pin-photodiode array allowed the calculation of X-ray effective energies and relative doses, at eight points simultaneously along the fan-beam arc of a CT scanner during a single rotation of the scanner. The fan-beam energy and air kerma distributions of CT scanners can be effectively measured using this pin-photodiode array. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bickman, S.; DeMille, D.
2005-11-01
Two large-area, low-noise, high-speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28mm×28mm and a low-noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3pW/√Hz , can recover from a large scattered light pulse within 10μs, and has a bandwidth of at least 900 kHz. The second detector consists of a 16-mm-diam avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08pW/√Hz , also can recover from a large scattered light pulse within 10μs, and has a bandwidth of 1 MHz.
Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays.
Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei
2016-02-15
Long-wavelength (especially >12 μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014 cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12 μm) HgCdTe infrared photodiode arrays.
Room temperature single-photon detectors for high bit rate quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comandar, L. C.; Patel, K. A.; Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA
We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.
Wu, Jing; Liu, Xianhu; Wang, Lili; Dong, Lijun; Pu, Qiaosheng
2012-01-21
An economical fluorescence detector was developed with an LED as the exciting source and a low-cost avalanche photodiode (APD) module as a photon sensor. The detector was arranged in an epifluorescence configuration using a microscope objective (20× or 40×) and a dichroic mirror. The low-cost APD was biased by a direct current (DC) high voltage power supply at 121 V, which is much lower than that normally used for a PMT. Both DC and square wave (SW) supplies were used to power the LED and different data treatment protocols, such as simple average for DC mode, software based lock-in amplification and time specific average for SW mode, were tested to maximize the signal-to-noise ratio. Using an LED at a DC mode with simple data averaging, a limit of detection of 0.2 nmol L(-1) for sodium fluorescein was attained, which is among the lowest ever achieved with an LED as an excitation source. The detector was successfully used in both capillary and chip electrophoresis. The most significant advantages of the detector are the compact size and low cost of its parts. The aim of the work is to prove that widely available, low-cost components for civilian use can be successfully used for miniaturized analytical devices.
Fast sub-electron detectors review for interferometry
NASA Astrophysics Data System (ADS)
Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe
2016-08-01
New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA interferometer (US) by the Lagrange laboratory from Observatoire de la Cote d'Azur. By operating the detector at gain 1000, the readout noise is as low as 0.1 e and data can be analyzed with a better contrast in photon counting mode.
High spectral resolution studies of gamma ray bursts on new missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, U. D.; Acuna, M. H.; Cline, T. L.
1996-08-01
Two new missions will be launched in 1996 and 1997, each carrying X-ray and gamma ray detectors capable of high spectral resolution at room temperature. The Argentine Satelite de Aplicaciones Cientificas (SAC-B) and the Small Spacecraft Technology Initiative (SSTI) Clark missions will each carry several arrays of X-ray detectors primarily intended for the study of solar flares and gamma-ray bursts. Arrays of small (1 cm{sup 2}) cadmium zinc telluride (CZT) units will provide x-ray measurements in the 10 to 80 keV range with an energy resolution of {approx_equal}6 keV. Arrays of both silicon avalanche photodiodes (APD) and P-intrinsic-N (PIN) photodiodesmore » (for the SAC-B mission only) will provide energy coverage from 2-25 keV with {approx_equal}1 keV resolution. For SAC-B, higher energy spectral data covering the 30-300 keV energy range will be provided by CsI(Tl) scintillators coupled to silicon APDs, resulting in similar resolution but greater simplicity relative to conventional CsI/PMT systems. Because of problems with the Pegasus launch vehicle, the launch of SAC-B has been delayed until 1997. The launch of the SSTI Clark mission is scheduled for June 1996.« less
Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA
NASA Astrophysics Data System (ADS)
Dziewiecki, M.; Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.
2015-02-01
ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans.
Comparison of SensL and Hamamatsu 4×4 channel SiPM arrays in gamma spectrometry with scintillators
NASA Astrophysics Data System (ADS)
Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.
2017-06-01
The market of Silicon Photomultipliers (SiPMs) consists of many manufacturers that produce their detectors in different technology. Hamamatsu (Japan) and SensL (Ireland) seems to be the most popular companies that produce large SiPM arrays. The aim of this work is characterization and comparison of 4×4 channel SiPM arrays produced by these two producers. Both of the tested SiPMs are made in through-silicon via (TSV) technology, consist of 16, 3×3 mm avalanche photodiode (APD) cells and have fill factor slightly above 60%. The largest difference is a single APD cell size and hence total number of APD cells (55,424 for Hamamatsu, 76,640 for SensL). In the case of SensL SiPM, its spectral response characteristics is shifted slightly toward shorter wavelengths with maximum at 420 nm (450 nm for Hamamatsu). The presented measurements cover selection of the SiPM optimum operating voltage (in respect to energy resolution), verification of the excess noise factor and check of the linearity characteristics. Moreover, the gamma spectrometry with LSO, BGO and CsI:Tl scintillators together with pulse characteristics for these crystals (rise time and fall time) is reported, as well as temperature dependence. The presented measurements show better performance of the SensL array comparing to the Hamamatsu detector.
Neumann, M; Herten, D P; Dietrich, A; Wolfrum, J; Sauer, M
2000-02-25
The first capillary array scanner for time-resolved fluorescence detection in parallel capillary electrophoresis based on semiconductor technology is described. The system consists essentially of a confocal fluorescence microscope and a x,y-microscope scanning stage. Fluorescence of the labelled probe molecules was excited using a short-pulse diode laser emitting at 640 nm with a repetition rate of 50 MHz. Using a single filter system the fluorescence decays of different labels were detected by an avalanche photodiode in combination with a PC plug-in card for time-correlated single-photon counting (TCSPC). The time-resolved fluorescence signals were analyzed and identified by a maximum likelihood estimator (MLE). The x,y-microscope scanning stage allows for discontinuous, bidirectional scanning of up to 16 capillaries in an array, resulting in longer fluorescence collection times per capillary compared to scanners working in a continuous mode. Synchronization of the alignment and measurement process were developed to allow for data acquisition without overhead. Detection limits in the subzeptomol range for different dye molecules separated in parallel capillaries have been achieved. In addition, we report on parallel time-resolved detection and separation of more than 400 bases of single base extension DNA fragments in capillary array electrophoresis. Using only semiconductor technology the presented technique represents a low-cost alternative for high throughput DNA sequencing in parallel capillaries.
Avalanche photodiode photon counting receivers for space-borne lidars
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Davidson, Frederic M.
1991-01-01
Avalanche photodiodes (APD) are studied for uses as photon counting detectors in spaceborne lidars. Non-breakdown APD photon counters, in which the APD's are biased below the breakdown point, are shown to outperform: (1) conventional APD photon counters biased above the breakdown point; (2) conventional APD photon counters biased above the breakdown point; and (3) APD's in analog mode when the received optical signal is extremely weak. Non-breakdown APD photon counters were shown experimentally to achieve an effective photon counting quantum efficiency of 5.0 percent at lambda = 820 nm with a dead time of 15 ns and a dark count rate of 7000/s which agreed with the theoretically predicted values. The interarrival times of the counts followed an exponential distribution and the counting statistics appeared to follow a Poisson distribution with no after pulsing. It is predicted that the effective photon counting quantum efficiency can be improved to 18.7 percent at lambda = 820 nm and 1.46 percent at lambda = 1060 nm with a dead time of a few nanoseconds by using more advanced commercially available electronic components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaodong; Pan, Ming; Hou, Liwei
2014-01-07
The gain and photoresponse characteristics have been numerically studied for back-illuminated separate absorption and multiplication (SAM) GaN avalanche photodiodes (APDs). The parameters of fundamental models are calibrated by simultaneously comparing the simulated dark and light current characteristics with the experimental results. Effects of environmental temperatures and device dimensions on gain characteristics have been investigated, and a method to achieve the optimum thickness of charge layer is obtained. The dependence of gain characteristics and breakdown voltage on the doping concentration of the charge layer is also studied in detail to get the optimal charge layer. The bias-dependent spectral responsivity and quantummore » efficiency are then presented to study the photoresponse mechanisms inside SAM GaN APDs. It is found the responsivity peak red-shifts at first due to the Franz-Keldysh effect and then blue-shifts due to the reach-through effect of the absorption layer. Finally, a new SAM GaN/AlGaN heterojunction APD structure is proposed for optimizing SAM GaN APDs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Keisuke; Kishimoto, Shunji, E-mail: syunji.kishimoto@kek.jp; Inst. of Materials Structure Science, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801
2016-07-27
We developed a scintillation X-ray detector using a proportional-mode silicon avalanche photodiode (Si-APD). We report a prototype detector using a lead-loaded plastic scintillator mounted on a proportional-mode Si-APD (active area size: 3 mm in diameter), which is operated at a low temperature. Using 67.41 keV X-rays, we could measure pulse-height spectra of scintillation light with a charge-sensitive preamplifier at 20, 0, and −35°C. Time spectra of the X-ray bunch structure were successfully recorded using a wideband and 60-dB-gain amplifier in hybrid-mode operation of the Photon Factory ring. We obtained a better time resolution of 0.51 ns (full width at half-maximum)more » for the single-bunch X-ray peak at −35°C. We were also able to observe a linear response of the scintillation pulses up to 8 Mcps for input photon rates up to 1.4 × 10{sup 8} photons/s.« less
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Davidson, Frederic M.
1990-01-01
A technique for word timing recovery in a direct-detection optical PPM communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an 833-nm AlGaAs laser diode transmitter and a silicon avalanche photodiode photodetector, and it used Q = 4 PPM signaling at source data rate 25 Mb/s. The mathematical model developed to describe system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock with a slot clock recovery system caused no measurable penalty in receiver sensitivity. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10 to the -6th at less than 60 average detected photons per information bit.
Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si
NASA Astrophysics Data System (ADS)
Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko
2016-04-01
A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.
NASA Technical Reports Server (NTRS)
Xiao, Yegao; Bhat, Ishwara; Abedin, M. Nurul
2005-01-01
InP/InGaAs avalanche photodiodes (APDs) are being widely utilized in optical receivers for modern long haul and high bit-rate optical fiber communication systems. The separate absorption, grading, charge, and multiplication (SAGCM) structure is an important design consideration for APDs with high performance characteristics. Time domain modeling techniques have been previously developed to provide better understanding and optimize design issues by saving time and cost for the APD research and development. In this work, performance dependences on multiplication layer thickness have been investigated by time domain modeling. These performance characteristics include breakdown field and breakdown voltage, multiplication gain, excess noise factor, frequency response and bandwidth etc. The simulations are performed versus various multiplication layer thicknesses with certain fixed values for the areal charge sheet density whereas the values for the other structure and material parameters are kept unchanged. The frequency response is obtained from the impulse response by fast Fourier transformation. The modeling results are presented and discussed, and design considerations, especially for high speed operation at 10 Gbit/s, are further analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bickman, S.; DeMille, D.
2005-11-15
Two large-area, low-noise, high-speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28 mmx28 mm and a low-noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3 pW/{radical}(Hz), can recover from a large scattered light pulse within 10 {mu}s, and has a bandwidth of at least 900 kHz. The second detector consists of a 16-mm-diam avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08 pW/{radical}(Hz), also can recover from a large scattered light pulse within 10 {mu}s, andmore » has a bandwidth of 1 MHz.« less
A photon-counting photodiode array detector for far ultraviolet (FUV) astronomy
NASA Technical Reports Server (NTRS)
Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.
1982-01-01
A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location.
Optical Demonstrations with a Scanning Photodiode Array.
ERIC Educational Resources Information Center
Turman, Bobby N.
1980-01-01
Describes the photodiode array and the electrical connections necessary for it. Also shows a few of the optical demonstration possibilities-shadowgraphs for measuring small objects, interference and diffraction effects, angular resolution of an optical system, and a simple spectrometer. (Author/DS)
NASA Astrophysics Data System (ADS)
Joshi, Abhay M.; Wang, Xinde; Mohr, Dan; Becker, Donald; Patil, Ravikiran
2004-08-01
We have developed 20 mA or higher photocurrent handling InGaAs photodiodes with 20 GHz bandwidth, and 10 mA or higher photocurrent handling InGaAs photodiodes with >40 GHz bandwidth. These photodiodes have been thoroughly tested for reliability including Bellcore GR 468 standard and are built to ISO 9001:2000 Quality Management System. These Dual-depletion InGaAs/InP photodiodes are surface illuminated and yet handle such large photocurrent due to advanced band-gap engineering. They have broad wavelength coverage from 800 nm to 1700 nm, and thus can be used at several wavelengths such as 850 nm, 1064 nm, 1310 nm, 1550 nm, and 1620 nm. Furthermore, they exhibit very low Polarization Dependence Loss of 0.05dB typical to 0.1dB maximum. Using above high current handling photodiodes, we have developed classical Push-Pull pair balanced photoreceivers for the 2 to 18 GHz EW system. These balanced photoreceivers boost the Spurious Free Dynamic Range (SFDR) by almost 3 dB by eliminating the laser RIN noise. Future research calls for designing an Avalanche Photodiode Balanced Pair to boost the SFDR even further by additional 3 dB. These devices are a key enabling technology in meeting the SFDR requirements for several DoD systems.
Robust snow avalanche detection using machine learning on infrasonic array data
NASA Astrophysics Data System (ADS)
Thüring, Thomas; Schoch, Marcel; van Herwijnen, Alec; Schweizer, Jürg
2014-05-01
Snow avalanches may threaten people and infrastructure in mountain areas. Automated detection of avalanche activity would be highly desirable, in particular during times of poor visibility, to improve hazard assessment, but also to monitor the effectiveness of avalanche control by explosives. In the past, a variety of remote sensing techniques and instruments for the automated detection of avalanche activity have been reported, which are based on radio waves (radar), seismic signals (geophone), optical signals (imaging sensor) or infrasonic signals (microphone). Optical imagery enables to assess avalanche activity with very high spatial resolution, however it is strongly weather dependent. Radar and geophone-based detection typically provide robust avalanche detection for all weather conditions, but are very limited in the size of the monitoring area. On the other hand, due to the long propagation distance of infrasound through air, the monitoring area of infrasonic sensors can cover a large territory using a single sensor (or an array). In addition, they are by far more cost effective than radars or optical imaging systems. Unfortunately, the reliability of infrasonic sensor systems has so far been rather low due to the strong variation of ambient noise (e.g. wind) causing a high false alarm rate. We analyzed the data collected by a low-cost infrasonic array system consisting of four sensors for the automated detection of avalanche activity at Lavin in the eastern Swiss Alps. A comparably large array aperture (~350m) allows highly accurate time delay estimations of signals which arrive at different times at the sensors, enabling precise source localization. An array of four sensors is sufficient for the time resolved source localization of signals in full 3D space, which is an excellent method to anticipate true avalanche activity. Robust avalanche detection is then achieved by using machine learning methods such as support vector machines. The system is initially trained by using characteristic data features from known avalanche and non-avalanche events. Data features are obtained from output signals of the source localization algorithm or from Fourier or time domain processing and support the learning phase of the system. A significantly improved detection rate as well as a reduction of the false alarm rate was achieved compared to previous approaches.
New silicon photodiodes for detection of the 1064nm wavelength radiation
NASA Astrophysics Data System (ADS)
Wegrzecki, Maciej; Piotrowski, Tadeusz; Puzewicz, Zbigniew; Bar, Jan; Czarnota, Ryszard; Dobrowolski, Rafal; Klimov, Andrii; Kulawik, Jan; Kłos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Synkiewicz, Beata; Szmigiel, Dariusz; Zaborowski, Michał
2016-12-01
In this paper a concept of a new bulk structure of p+-υ-n+ silicon photodiodes optimized for the detection of fast-changing radiation at the 1064 nm wavelength is presented. The design and technology for two types of quadrant photodiodes, the 8-segment photodiode and the 32-element linear photodiode array that were developed according to the concept are described. Electric and photoelectric parameters of the photodiodes mentioned above are presented.
SiC-based Photo-detectors for UV, VUV, EUV and Soft X-ray Detection
NASA Technical Reports Server (NTRS)
Yan, Feng
2006-01-01
A viewgraph presentation describing an ideal Silicon Carbide detector for ultraviolet, vacuum ultraviolet, extreme ultraviolet and soft x-ray detection is shown. The topics include: 1) An ideal photo-detector; 2) Dark current density of SiC photodiodes at room temperature; 3) Dark current in SiC detectors; 4) Resistive and capacitive feedback trans-impedance amplifier; 5) Avalanche gain; 6) Excess noise; 7) SNR in single photon counting mode; 8) Structure of SiC single photon counting APD and testing structure; 9) Single photon counting waveform and testing circuit; 10) Amplitude of SiC single photon counter; 11) Dark count of SiC APD photon counters; 12) Temperature-dependence of dark count rate; 13) Reduce the dark count rate by reducing the breakdown electric field; 14) Spectrum range for SiC detectors; 15) QE curves of Pt/4H-SiC photodiodes; 16) QE curve of SiC; 17) QE curves of SiC photodiode vs. penetration depth; 18) Visible rejection of SiC photodiodes; 19) Advantages of SiC photodiodes; 20) Competitors of SiC detectors; 21) Extraterrestrial solar spectra; 22) Visible-blind EUV detection; 23) Terrestrial solar spectra; and 24) Less than 1KeV soft x-ray detection.
NASA Astrophysics Data System (ADS)
Wegrzecki, Maciej; Piotrowski, Tadeusz; Bar, Jan; Dobrowolski, Rafał; Klimov, Andrii; Klos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Prokaryn, Piotr; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Szmigiel, Dariusz; Zaborowski, Michal
2016-12-01
In this paper, the design and technology of two types of 16-element photodiode arrays is described. The arrays were developed by the ITE and are to be used in detection of microdeflection of laser radiation at the Institute of Metrology and Biomedical Engineering in the Faculty of Mechatronics of Warsaw University of Technology. The electrical and photoelectrical parameters of the arrays are presented.
Photon counting photodiode array detector for far ultraviolet (FUV) astronomy
NASA Technical Reports Server (NTRS)
Hartig, G. F.; Moos, H. W.; Pembroke, R.; Bowers, C.
1982-01-01
A compact, stable, single-stage intensified photodiode array detector designed for photon-counting, far ultraviolet astronomy applications employs a saturable, 'C'-type MCP (Galileo S. MCP 25-25) to produce high gain pulses with a narrowly peaked pulse height distribution. The P-20 output phosphor exhibits a very short decay time, due to the high current density of the electron pulses. This intensifier is being coupled to a self-scanning linear photodiode array which has a fiber optic input window which allows direct, rigid mechanical coupling with minimal light loss. The array was scanned at a 250 KHz pixel rate. The detector exhibits more than adequate signal-to-noise ratio for pulse counting and event location. Previously announced in STAR as N82-19118
The Sensitive Infrared Signal Detection by Sum Frequency Generation
NASA Technical Reports Server (NTRS)
Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin
2013-01-01
An up-conversion device that converts 2.05-micron light to 700 nm signal by sum frequency generation using a periodically poled lithium niobate crystal is demonstrated. The achieved 92% up-conversion efficiency paves the path to detect extremely weak 2.05-micron signal with well established silicon avalanche photodiode detector for sensitive lidar applications.
Fast, Deep-Record-Length, Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas
2014-10-01
HyperV Technologies has been developing an imaging diagnostic comprised of an array of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers of 100 to 1000 pixels can be constructed. By interfacing analog photodiode systems directly to commercial analog-to-digital converters and modern memory chips, a prototype 100 pixel array with an extremely deep record length (128 k points at 20 Msamples/s) and 10 bit pixel resolution has already been achieved. HyperV now seeks to extend these techniques to construct a prototype 1000 Pixel framing camera with up to 100 Msamples/sec rate and 10 to 12 bit depth. Preliminary experimental results as well as Phase 2 plans will be discussed. Work supported by USDOE Phase 2 SBIR Grant DE-SC0009492.
Infrasonic monitoring of snow avalanches in the Alps
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.
2012-04-01
Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.
Development of solid-state avalanche amorphous selenium for medical imaging.
Scheuermann, James R; Goldan, Amir H; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei
2015-03-01
Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layer (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel.
Ultrasonic imaging using optoelectronic transmitters.
Emery, C D; Casey, H C; Smith, S W
1998-04-01
Conventional ultrasound scanners utilize electronic transmitters and receivers at the scanner with a separate coaxial cable connected to each transducer element in the handle. The number of transducer elements determines the size and weight of the transducer cable assembly that connects the imaging array to the scanner. 2-D arrays that allow new imaging modalities to be introduced significantly increase the channel count making the transducer cable assembly more difficult to handle. Therefore, reducing the size and increasing the flexibility of the transducer cable assembly is a concern. Fiber optics can be used to transmit signals optically and has distinct advantages over standard coaxial cable to increase flexibility and decrease the weight of the transducer cable for larger channel numbers. The use of fiber optics to connect the array and the scanner entails the use of optoelectronics such as detectors and laser diodes to send and receive signals. In transmit, optoelectronics would have to be designed to produce high-voltage wide-bandwidth pulses across the transducer element. In this paper, we describe a 48 channel ultrasound system having 16 optoelectronic transmitters and 32 conventional electronic receivers. We investigated both silicon avalanche photodiodes (APD's) and GaAs lateral photoconductive semiconductor switches (PCSS's) for producing the transmit pulses. A Siemens SI-1200 scanner and a 2.25 MHz linear array were used to compare the optoelectronic system to a conventional electronic transmit system. Transmit signal results and images in tissue mimicking of cysts and tumors are provided for comparison.
500-MHz x-ray counting with a Si-APD and a fast-pulse processing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, Shunji; Taniguchi, Takashi; Tanaka, Manobu
2010-06-23
We introduce a counting system of up to 500 MHz for synchrotron x-ray high-rate measurements. A silicon avalanche photodiode detector was used in the counting system. The fast-pulse circuit of the amplifier was designed with hybrid ICs to prepare an ASIC system for a large-scale pixel array detector in near future. The fast amplifier consists of two cascading emitter-followers using 10-GHz band transistors. A count-rate of 3.25x10{sup 8} s{sup -1} was then achieved using the system for 8-keV x-rays. However, a baseline shift by adopting AC-coupling in the amplifier disturbed us to observe the maximum count of 4.49x10{sup 8} s{supmore » -1}, determined by electron-bunch filling into a ring accelerator. We also report that an amplifier with a baseline restorer was tested in order to keep the baseline level to be 0 V even at high input rates.« less
Concept of a photon-counting camera based on a diffraction-addressed Gray-code mask
NASA Astrophysics Data System (ADS)
Morel, Sébastien
2004-09-01
A new concept of photon counting camera for fast and low-light-level imaging applications is introduced. The possible spectrum covered by this camera ranges from visible light to gamma rays, depending on the device used to transform an incoming photon into a burst of visible photons (photo-event spot) localized in an (x,y) image plane. It is actually an evolution of the existing "PAPA" (Precision Analog Photon Address) Camera that was designed for visible photons. This improvement comes from a simplified optics. The new camera transforms, by diffraction, each photo-event spot from an image intensifier or a scintillator into a cross-shaped pattern, which is projected onto a specific Gray code mask. The photo-event position is then extracted from the signal given by an array of avalanche photodiodes (or photomultiplier tubes, alternatively) downstream of the mask. After a detailed explanation of this camera concept that we have called "DIAMICON" (DIffraction Addressed Mask ICONographer), we briefly discuss about technical solutions to build such a camera.
An acoustic charge transport imager for high definition television applications
NASA Technical Reports Server (NTRS)
Hunt, William D.; Brennan, Kevin F.; Summers, Chris J.
1992-01-01
In this report we present the progress during the second six month period of the project. This includes both experimental and theoretical work on the acoustic charge transport (ACT) portion of the chip, the theoretical program modelling of both the avalanche photodiode (APD) and the charge transfer and overflow transistor and the materials growth and fabrication part of the program.
NASA Technical Reports Server (NTRS)
Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.
1994-01-01
Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.
Recent progress in avalanche photodiodes for sensing in the IR spectrum
NASA Astrophysics Data System (ADS)
Maddox, S. J.; Ren, M.; Woodson, M. E.; Bank, S. R.; Campbell, J. C.
2016-05-01
Abstract—We report low-noise avalanche gain from photodiodes composed of a previously uncharacterized alloy, AlxIn1-xAsySb1-y, grown lattice-matched on GaSb substrates. By varying the aluminum content the direct bandgap can be tuned from 0.25 eV (0% aluminum) to 1.24 eV (75% aluminum), corresponding to photon wavelengths from 5000 nm to 1000 nm, with the transition from direct-gap to indirect-gap occurring at ~1.18 eV (~72% aluminum), or 1050 nm. This has been used to fabricate separate absorption, charge, and multiplication (SACM) APDs using Al0.7In0.3As0.3Sb0.7 for the multiplication region and Al0.4In0.6As0.3Sb0.7 for the absorber. Gain values as high as 100 have been achieved and the excess noise factor is characterized by a k value of 0.01, which is comparable to or below that of Si. In addition, since the bandgap of the absorption region is direct, its absorption depth is 5 to 10 times shorter than indirect-bandgap silicon, potentially enabling significantly higher operating bandwidths.
NASA Astrophysics Data System (ADS)
Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu
2006-01-01
We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.
NASA Technical Reports Server (NTRS)
Safren, H. G.
1987-01-01
The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.
Optical Communication with Semiconductor Laser Diode. Interim Progress Report. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Davidson, Frederic; Sun, Xiaoli
1989-01-01
Theoretical and experimental performance limits of a free-space direct detection optical communication system were studied using a semiconductor laser diode as the optical transmitter and a silicon avalanche photodiode (APD) as the receiver photodetector. Optical systems using these components are under consideration as replacements for microwave satellite communication links. Optical pulse position modulation (PPM) was chosen as the signal format. An experimental system was constructed that used an aluminum gallium arsenide semiconductor laser diode as the transmitter and a silicon avalanche photodiode photodetector. The system used Q=4 PPM signaling at a source data rate of 25 megabits per second. The PPM signal format requires regeneration of PPM slot clock and word clock waveforms in the receiver. A nearly exact computational procedure was developed to compute receiver bit error rate without using the Gaussion approximation. A transition detector slot clock recovery system using a phase lock loop was developed and implemented. A novel word clock recovery system was also developed. It was found that the results of the nearly exact computational procedure agreed well with actual measurements of receiver performance. The receiver sensitivity achieved was the closest to the quantum limit yet reported for an optical communication system of this type.
Radiation detection measurements with a new ``Buried Junction'' silicon avalanche photodiode
NASA Astrophysics Data System (ADS)
Lecomte, R.; Pepin, C.; Rouleau, D.; Dautet, H.; McIntyre, R. J.; McSween, D.; Webb, P.
1999-02-01
An improved version of a recently developed "Buried Junction" avalanche photodiode (APD), designed for use with scintillators, is described and characterized. This device, also called the "Reverse APD", is designed to have a wide depletion layer and thus low capacitance, but to have high gain only for e-h pairs generated within the first few microns of the depletion layer. Thus it has high gain for light from scintillators emitting in the 400-600 nm range, with relatively low dark current noise and it is relatively insensitive to minimum ionizing particles (MIPs). An additional feature is that the metallurgical junction is at the back of the wafer, leaving the front surface free to be coupled to a scintillator without fear of junction contamination. The modifications made in this device, as compared with the earlier diode, have resulted in a lower excess noise factor, lower dark current, and much-reduced trapping. The electrical and optical characteristics of this device are described and measurements of energy and timing resolution of this device with several scintillators (BGO, LSO and GSO) of potential interest in high-energy physics and PET imaging systems are presented.
NASA Astrophysics Data System (ADS)
Ripamonti, Giancarlo; Lacaita, Andrea L.
1993-03-01
The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Fan; Wang, Yuanqing, E-mail: yqwang@nju.edu.cn; Li, Fenfang
The avalanche-photodiode-array (APD-array) laser detection and ranging (LADAR) system has been continually developed owing to its superiority of nonscanning, large field of view, high sensitivity, and high precision. However, how to achieve higher-efficient detection and better integration of the LADAR system for real-time three-dimensional (3D) imaging continues to be a problem. In this study, a novel LADAR system using four linear mode APDs (LmAPDs) is developed for high-efficient detection by adopting a modulation and multiplexing technique. Furthermore, an automatic control system for the array LADAR system is proposed and designed by applying the virtual instrumentation technique. The control system aimsmore » to achieve four functions: synchronization of laser emission and rotating platform, multi-channel synchronous data acquisition, real-time Ethernet upper monitoring, and real-time signal processing and 3D visualization. The structure and principle of the complete system are described in the paper. The experimental results demonstrate that the LADAR system is capable of achieving real-time 3D imaging on an omnidirectional rotating platform under the control of the virtual instrumentation system. The automatic imaging LADAR system utilized only 4 LmAPDs to achieve 256-pixel-per-frame detection with by employing 64-bit demodulator. Moreover, the lateral resolution is ∼15 cm and range accuracy is ∼4 cm root-mean-square error at a distance of ∼40 m.« less
Solid state optical microscope
Young, I.T.
1983-08-09
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal. 2 figs.
Solid-state optical microscope
Young, I.T.
1981-01-07
A solid state optical microscope is described wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. Means for scanning in one of two orthogonal directions are provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
Solid state optical microscope
Young, Ian T.
1983-01-01
A solid state optical microscope wherein wide-field and high-resolution images of an object are produced at a rapid rate by utilizing conventional optics with a charge-coupled photodiode array. A galvanometer scanning mirror, for scanning in one of two orthogonal directions is provided, while the charge-coupled photodiode array scans in the other orthogonal direction. Illumination light from the object is incident upon the photodiodes, creating packets of electrons (signals) which are representative of the illuminated object. The signals are then processed, stored in a memory, and finally displayed as a video signal.
1975-04-17
1-3. CO2 laser raster scan sensitivity profile of HgCdTe quadrantal array with two of the four elements connected to 50-ohm load. Fig. 1-4...Response of HgCdTe quadrantal array to CO2 laser beam scanned across center with (a) two opposite photodiodes connected, and (b) all four photodiodes...RESEARCH 1 A. Planar HgCdTe Quadrantal Arrays for Gigahertz Heterodyne Operation at 10.6 (im 1 B. Electrical Properties of Silicon Ion-Implanted
A method for the detection of trace levels of N,N-diethyl-m-toluamide (DEET) in water is discussed. The method utilizes an on-line preconcentration column in series with high performance liquid chromatography (HPLC) and UV photodiode array detection. DEET, a common insect repel...
GeSn/Si Avalanche Photodetectors on Si substrates
2016-09-16
of processes for different photo detectors. In-depth of study has been conducted for GeSn photo conductors and photodiodes. A summary of the...The material growth mechanism was in-depth studied; secondly, the material and optical characterizations have been conducted , including SEM, TEM, XRD...investigated. The material growth mechanism was in-depth studied; secondly, the material and optical characterizations have been conducted , including
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuermann, James R., E-mail: James.Scheuermann@stonybrook.edu; Goldan, Amir H.; Zhao, Wei
Purpose: Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. Methods: The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layermore » (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. Results: An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. Conclusions: We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel.« less
The Design of Optical Sensor for the Pinhole/Occulter Facility
NASA Technical Reports Server (NTRS)
Greene, Michael E.
1990-01-01
Three optical sight sensor systems were designed, built and tested. Two optical lines of sight sensor system are capable of measuring the absolute pointing angle to the sun. The system is for use with the Pinhole/Occulter Facility (P/OF), a solar hard x ray experiment to be flown from Space Shuttle or Space Station. The sensor consists of a pinhole camera with two pairs of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the pinhole, track and hold circuitry for data reduction, an analog to digital converter, and a microcomputer. The deflection of the image center is calculated from these data using an approximation for the solar image. A second system consists of a pinhole camera with a pair of perpendicularly mounted linear photodiode arrays, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed. A third optical sensor system is capable of measuring the internal vibration of the P/OF between the mask and base. The system consists of a white light source, a mirror and a pair of perpendicularly mounted linear photodiode arrays to detect the intensity distribution of the solar image produced by the mirror, amplification circuitry, threshold detection circuitry, and a microcomputer board. The deflection of the image and hence the vibration of the structure is calculated by knowing the position of each pixel of the photodiode array and merely counting the pixel numbers until threshold is surpassed.
Design and characterization of single photon avalanche diodes arrays
NASA Astrophysics Data System (ADS)
Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.
2010-05-01
During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2
Preliminary studies of a simultaneous PET/MRI scanner based on the RatCAP small animal tomograph
NASA Astrophysics Data System (ADS)
Woody, C.; Schlyer, D.; Vaska, P.; Tomasi, D.; Solis-Najera, S.; Rooney, W.; Pratte, J.-F.; Junnarkar, S.; Stoll, S.; Master, Z.; Purschke, M.; Park, S.-J.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; O'Connor, P.; Radeka, V.
2007-02-01
We are developing a scanner that will allow simultaneous acquisition of high resolution anatomical data using magnetic resonance imaging (MRI) and quantitative physiological data using positron emission tomography (PET). The approach is based on the technology used for the RatCAP conscious small animal PET tomograph which utilizes block detectors consisting of pixelated arrays of LSO crystals read out with matching arrays of avalanche photodiodes and a custom-designed ASIC. The version of this detector used for simultaneous PET/MRI imaging will be constructed out of all nonmagnetic materials and will be situated inside the MRI field. We have demonstrated that the PET detector and its electronics can be operated inside the MRI, and have obtained MRI images with various detector components located inside the MRI field. The MRI images show minimal distortion in this configuration even where some components still contain traces of certain magnetic materials. We plan to improve on the image quality in the future using completely non-magnetic components and by tuning the MRI pulse sequences. The combined result will be a highly compact, low mass PET scanner that can operate inside an MRI magnet without distorting the MRI image, and can be retrofitted into existing MRI instruments.
Large format geiger-mode avalanche photodiode LADAR camera
NASA Astrophysics Data System (ADS)
Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Labios, Eduardo; Morris, Bryan; Nicholson, John P.; Stuart, Gary M.; Danny, Harrison
2013-05-01
Recently Spectrolab has successfully demonstrated a compact 32x32 Laser Detection and Range (LADAR) camera with single photo-level sensitivity with small size, weight, and power (SWAP) budget for threedimensional (3D) topographic imaging at 1064 nm on various platforms. With 20-kHz frame rate and 500- ps timing uncertainty, this LADAR system provides coverage down to inch-level fidelity and allows for effective wide-area terrain mapping. At a 10 mph forward speed and 1000 feet above ground level (AGL), it covers 0.5 square-mile per hour with a resolution of 25 in2/pixel after data averaging. In order to increase the forward speed to fit for more platforms and survey a large area more effectively, Spectrolab is developing 32x128 Geiger-mode LADAR camera with 43 frame rate. With the increase in both frame rate and array size, the data collection rate is improved by 10 times. With a programmable bin size from 0.3 ps to 0.5 ns and 14-bit timing dynamic range, LADAR developers will have more freedom in system integration for various applications. Most of the special features of Spectrolab 32x32 LADAR camera, such as non-uniform bias correction, variable range gate width, windowing for smaller arrays, and short pixel protection, are implemented in this camera.
NASA Astrophysics Data System (ADS)
Haemisch, York; Frach, Thomas; Degenhardt, Carsten; Thon, Andreas
Silicon Photomultipliers (SiPMs) have emerged as promising alternative to fast vacuum photomultiplier tubes (PMT). A fully digital implementation of the Silicon Photomultiplier (dSiPM) has been developed in order to overcome the deficiencies and limitations of the so far only analog SiPMs (aSiPMs). Our sensor is based on arrays of single photon avalanche photodiodes (SPADs) integrated in a standard CMOS process. Photons are detected directly by sensing the voltage at the SPAD anode using a dedicated cell electronics block next to each diode. This block also contains active quenching and recharge circuits as well as a one bit memory for the selective inhibit of detector cells. A balanced trigger network is used to propagate the trigger signal from all cells to the integrated time-to-digital converter. In consequence, photons are detected and counted as digital signals, thus making the sensor less susceptible to temperature variations and electronic noise. The integration with CMOS logic provides the added benefit of low power consumption and possible integration of data post-processing directly in the sensor. In this overview paper, we discuss the sensor architecture together with its characteristics with a focus on scalability and practicability aspects for applications in medical imaging, high energy- and astrophysics.
High-performance silicon nanowire bipolar phototransistors
NASA Astrophysics Data System (ADS)
Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping
2016-07-01
Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.
NASA Astrophysics Data System (ADS)
Corbeil Therrien, Audrey
La tomographie d'emission par positrons (TEP) est un outil precieux en recherche preclinique et pour le diagnostic medical. Cette technique permet d'obtenir une image quantitative de fonctions metaboliques specifiques par la detection de photons d'annihilation. La detection des ces photons se fait a l'aide de deux composantes. D'abord, un scintillateur convertit l'energie du photon 511 keV en photons du spectre visible. Ensuite, un photodetecteur convertit l'energie lumineuse en signal electrique. Recemment, les photodiodes avalanche monophotoniques (PAMP) disposees en matrice suscitent beaucoup d'interet pour la TEP. Ces matrices forment des detecteurs sensibles, robustes, compacts et avec une resolution en temps hors pair. Ces qualites en font un photodetecteur prometteur pour la TEP, mais il faut optimiser les parametres de la matrice et de l'electronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une operation difficile, car les differents parametres interagissent de maniere complexe avec les processus d'avalanche et de generation de bruit. Enfin, l'electronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser differentes strategies de lecture. Pour repondre a cette question, la solution la plus economique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce memoire presentent le developpement d'un tel simulateur. Celui-ci modelise le comportement d'une matrice de PAMP en se basant sur les equations de physique des semiconducteurs et des modeles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les declenchements intempestifs correles et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'electronique de lecture plus adaptees a ce type de detecteur. Au final, le simulateur vise a quantifier l'impact des parametres du photodetecteur sur la resolution en energie et la resolution en temps et ainsi optimiser les performances de la matrice de PAMP. Par exemple, l'augmentation du ratio de surface active ameliore les performances, mais seulement jusqu'a un certain point. D'autres phenomenes lies a la surface active, comme le bruit thermique, provoquent une degradation du resultat. Le simulateur nous permet de trouver un compromis entre ces deux extremes. Les simulations avec les parametres initiaux demontrent une efficacite de detection de 16,7 %, une resolution en energie de 14,2 % LMH et une resolution en temps de 0.478 ns LMH. Enfin, le simulateur propose, bien qu'il vise une application en TEP, peut etre adapte pour d'autres applications en modifiant la source de photons et en adaptant les objectifs de performances. Mots-cles : Photodetecteurs, photodiodes avalanche monophotoniques, semiconducteurs, tomographie d'emission par positrons, simulations, modelisation, detection monophotonique, scintillateurs, circuit d'etouffement, SPAD, SiPM, Photodiodes avalanche operees en mode Geiger
A fast and compact electromagnetic calorimeter for the PANDA detector at FAIR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilms, Andrea
2005-10-26
In this presentation we report on the electromagnetic calorimeter of the 4{pi} detector PANDA to be installed at the antiproton storage ring of the proposed Facility for Antiproton and Ion Research (FAIR). We present details of the R and D work with two scintillator materials, PbWO4 (PWO) and BGO, and the new developed large area avalanche photodiodes (LAAPDs) as detector readout.
The beam test of muon detector parameters for the SHiP experiment at CERN
NASA Astrophysics Data System (ADS)
Likhacheva, V. L.; Kudenko, Yu. G.; Mefodiev, A. V.; Mineev, O. V.; Khotyantsev, A. N.
2018-01-01
Scintillation detectors based on extruded plastics have been tested in a 10 GeV/c beam at CERN. The scintillation signal readout was provided using optical wavelength shifting fibers Y11 Kuraray and Hamamatsu MPPC micropixel avalanche photodiodes. The light yield was scanned along and across the detectors. Time resolution was found by fitting the MPPC digitized pulse rise and other methods.
Channel Modelling and Performance of Non-Line-of-Sight Ultraviolet Scattering Communications
2012-01-01
Avalanche photodiode (APD) detectors are also rapidly being developed [6, 7]. These device advances have inspired recent research in LED-based short...response and path loss results for outdoor NLOS UV communication channels in Section 3. The impulse response modelling describes UV pulse broadening via...Both the impulse response and path loss are critical to communication system design and performance assessment. Although pulse broadening creates inter
Single photon counting linear mode avalanche photodiode technologies
NASA Astrophysics Data System (ADS)
Williams, George M.; Huntington, Andrew S.
2011-10-01
The false count rate of a single-photon-sensitive photoreceiver consisting of a high-gain, low-excess-noise linear-mode InGaAs avalanche photodiode (APD) and a high-bandwidth transimpedance amplifier (TIA) is fit to a statistical model. The peak height distribution of the APD's multiplied dark current is approximated by the weighted sum of McIntyre distributions, each characterizing dark current generated at a different location within the APD's junction. The peak height distribution approximated in this way is convolved with a Gaussian distribution representing the input-referred noise of the TIA to generate the statistical distribution of the uncorrelated sum. The cumulative distribution function (CDF) representing count probability as a function of detection threshold is computed, and the CDF model fit to empirical false count data. It is found that only k=0 McIntyre distributions fit the empirically measured CDF at high detection threshold, and that false count rate drops faster than photon count rate as detection threshold is raised. Once fit to empirical false count data, the model predicts the improvement of the false count rate to be expected from reductions in TIA noise and APD dark current. Improvement by at least three orders of magnitude is thought feasible with further manufacturing development and a capacitive-feedback TIA (CTIA).
NASA Astrophysics Data System (ADS)
Lyu, Yuexi; Han, Xi; Sun, Yaoyao; Jiang, Zhi; Guo, Chunyan; Xiang, Wei; Dong, Yinan; Cui, Jie; Yao, Yuan; Jiang, Dongwei; Wang, Guowei; Xu, Yingqiang; Niu, Zhichuan
2018-01-01
We report on the growth of high quality GaSb-based AlInAsSb quaternary alloy by molecular beam epitaxy (MBE) to fabricate avalanche photodiodes (APDs). By means of high resolution X-ray diffraction (HRXRD) and scanning transmission electron microscope (STEM), phase separation phenomenon of AlInAsSb random alloy with naturally occurring vertical superlattice configuration was demonstrated. To overcome the tendency for phase segregation while maintaining a highly crystalline film, a digital alloy technique with migration-enhanced epitaxy growth method was employed, using a shutter sequence of AlSb, AlAs, AlSb, Sb, In, InAs, In, Sb. AlInAsSb digital alloy has proved to be reproducible and consistent with single phase, showing sharp satellite peaks on HRXRD rocking curve and smooth surface morphology under atomic force microscopy (AFM). Using optimized digital alloy, AlInAsSb separate absorption, grading, charge, and multiplication (SAGCM) APD was grown and fabricated. At room temperature, the device showed high performance with low dark current density of ∼14.1 mA/cm2 at 95% breakdown and maximum stable gain before breakdown as high as ∼200, showing the potential for further applications in optoelectronic devices.
Characterization of Advanced Avalanche Photodiodes for Water Vapor Lidar Receivers
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Halama, Gary E.; DeYoung, Russell J.
2000-01-01
Development of advanced differential absorption lidar (DIAL) receivers is very important to increase the accuracy of atmospheric water vapor measurements. A major component of such receivers is the optical detector. In the near-infrared wavelength range avalanche photodiodes (APD's) are the best choice for higher signal-to-noise ratio, where there are many water vapor absorption lines. In this study, characterization experiments were performed to evaluate a group of silicon-based APD's. The APD's have different structures representative of different manufacturers. The experiments include setups to calibrate these devices, as well as characterization of the effects of voltage bias and temperature on the responsivity, surface scans, noise measurements, and frequency response measurements. For each experiment, the setup, procedure, data analysis, and results are given and discussed. This research was done to choose a suitable APD detector for the development of an advanced atmospheric water vapor differential absorption lidar detection system operating either at 720, 820, or 940 nm. The results point out the benefits of using the super low ionization ratio (SLIK) structure APD for its lower noise-equivalent power, which was found to be on the order of 2 to 4 fW/Hz(sup (1/2)), with an appropriate optical system and electronics. The water vapor detection systems signal-to-noise ratio will increase by a factor of 10.
Multiple-Event, Single-Photon Counting Imaging Sensor
NASA Technical Reports Server (NTRS)
Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.
2011-01-01
The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.
Position sensitive solid-state photomultipliers, systems and methods
Shah, Kanai S; Christian, James; Stapels, Christopher; Dokhale, Purushottam; McClish, Mickel
2014-11-11
An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2.times.2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.
Cordis, G A; Das, D K; Riedel, W
1998-03-06
Malonaldehyde (MDA), a product of lipid peroxidation, is a presumptive marker for the development of oxidative stress in tissues and plasmas. In this study we report the photodiode array detection of the 2,4-dinitrophenylhydrazine (DNPH) derivatives of MDA using HPLC. Oxidative stress was produced by injecting (i.p.) bacterial lipopolysaccharide (LPS) into rats at a dose of 100 micrograms/kg, or i.v. into rabbits (1 microgram/kg), or added to freshly drawn human blood (200 ng/ml). Blood was collected at several time points up to 5 h, centrifuged, and equal volumes of 20% TCA were used to precipitate proteins from the plasma. The supernatants were derivatized with DNPH, and the aldehyde-DNPHs were extracted with pentane. After evaporation, aliquots of 10 microliters in acetonitrile were injected onto a Beckman Ultrasphere C18 (3 microns) column, chromatographed with an acetonitrile-water-acetic acid gradient mobile phase and scanned using Waters 996 photodiode array detector. Peak identification and homogeneity was determined by comparing the experimental peaks and UV scans with those of authentic standards. A significant increase in the DNPH derivative of malonaldehyde (MDA-DNPH), but not of the other aldehyde-DNPH derivatives of formaldehyde (FDA), acetaldehyde (ADA), acetone and propionaldehyde (PDA) was seen over the first hour after LPS administration in anesthetized rats, while in conscious rabbits this trend lasted up to 3 h. The retention times as well as the UV scans of the derivatized aldehydes matched the authentic standards. Thus, photodiode array detection has proved valuable in establishing this HPLC method for estimating oxidative stress. This technique could accurately measure pmol amounts of MDA-DNPH indicating the usefulness of photodiode array detection method for estimating small changes in the oxidative stress.
Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander
2012-10-15
In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36 Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14 C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. 'Jigsaw-puzzle structure' of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits.
NASA Technical Reports Server (NTRS)
Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.
1985-01-01
The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.
InGaAs Avalanche Photodetectors
NASA Astrophysics Data System (ADS)
Stillman, G. E.; Cook, L. W.; Tashima, M. M.; Tabatabaie, N.
1981-07-01
The development of optical fibers with extremely low loss and near zero pulse dispersion in the 1.30-1.55 pm spectral range has generated considerable interest in emitters and detectors for use in optical fiber communication systems utilizing these wavelengths. The InGaAsP quaternary alloy, lattice matched to InP, is one of at least three different semi-conductor alloys being evaluated for detector applications in these systems. In this paper we will review some of the previous results obtained in InGaAsP/InP photodetectors, and discuss the possible mechanisms responsible for the large dark current observed in some of these devices. The material properties and device structures which minimize the dark current are described, and the possibilities of achieving efficient avalanche photodiodes using these materials are evaluated.
Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S
2015-12-28
Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.
1994-01-01
This interim report consists of two reports: 'Space Radiation Effects on Si APDs for GLAS' and 'Computer Simulation of Avalanche Photodiode and Preamplifier Output for Laser Altimeters.' The former contains a detailed description of our proton radiation test of Si APD's performed at the Brookhaven National Laboratory. The latter documents the computer program subroutines which were written for the upgrade of NASA's GLAS simulator.
1.06 Micrometer Avalanche Photodiode Detector
1977-04-01
for Gigabit Nd-YAG Laser Communication ............. 30 2.1.6 Influence of Modulator Extinction Ration on Communication Performance with Different...GAASFET Preamps ............ 157 4.2.1.1 Circuit Description for GAASFET Preamps #4 and #5 157 4.2.1.2 Performance Results for GAASFET Preamp #5...163 4.2.1.3 Performance Results for GAASFET Preamp #4 ...... 169 4.2.2 Results for Mark II GAASFET Preamp ............. 173 4.2.2.1 Circuit Description
Low-SWAP Lidar Instrument for Arctic Ice Sheet Mass Balance Monitoring Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, George; Barsic, David
To meet the need to obtain statistically significant data in the North Slope of Alaska (NSA) in support of climate models, Voxtel is developing an nmanned-aircraft-system (UAS)-optimized lidar focal plane array (FPA) and lidar instrument design that integrates the most recent developments in optics, electronics, and computing. Bound by the size, weight, and power (SWAP) budget of low altitude/long endurance (LALE) small UAS (SUAS) platforms—a design tradeoff study was conducted. The class of SUAS considered typically: operates at altitudes between 150 meters and 2,000 meters; accommodates payloads weighing less than 5 kg; encompasses no more than 4,000 cm3 of space;more » and consumes no more than 50 watts of power. To address the SWAP constraints, a lowpower standalone strap-down (gimbal-less) lidar was developed based on single-photon-counting silicon avalanche photodiodes. To reduce SWAP, a lidar FPA design capable of simultaneous imaging and lidar was developed. The 532-nm-optimized FPA modular design was developed for easy integration, as a lidar payload, in any of a variety of SUAS platforms.« less
Integrated fiber optical receiver reducing the gap to the quantum limit.
Zimmermann, Horst; Steindl, Bernhard; Hofbauer, Michael; Enne, Reinhard
2017-06-01
Experimental results of a single-photon avalanche diode (SPAD) based optical fiber receiver integrated in 0.35 µm PIN-photodiode CMOS technology are presented. To cope with the parasitic effects of SPADs an array of four receivers is implemented. The SPADs consist of a multiplication zone and a separate thick absorption zone to achieve a high photon detection probability (PDP). In addition cascoded quenchers allow to use a quenching voltage of twice the usual supply voltage, i.e. 6.6 V instead of 3.3 V, in order to increase the PDP further. Measurements result in sensitivities of -55.7 dBm at a data rate of 50 Mbit/s and -51.6 dBm at 100 Mbit/s for a wavelength of 635 nm and a bit-error ratio of 2 × 10 -3 , which is sufficient to perform error correction. These sensitivities are better than those of linear-mode APD receivers integrated in the same CMOS technology. These results are a major advance towards direct detection optical receivers working close to the quantum limit.
High-performance MCT and QWIP IR detectors at Sofradir
NASA Astrophysics Data System (ADS)
Reibel, Yann; Rubaldo, Laurent; Manissadjian, Alain; Billon-Lanfrey, David; Rothman, Johan; de Borniol, Eric; Destéfanis, Gérard; Costard, E.
2012-11-01
Cooled IR technologies are challenged for answering new system needs like compactness and reduction of cryo-power which is key feature for the SWaP (Size, Weight and Power) requirements. This paper describes the status of MCT IR technology in France at Leti and Sofradir. A focus will be made on hot detector technology for SWAP applications. Sofradir has improved its HgCdTe technology to open the way for High Operating Temperature systems that release the Stirling cooler engine power consumption. Solutions for high performance detectors such as dual bands, much smaller pixel pitch or megapixels will also be discussed. In the meantime, the development of avalanche photodiodes or TV format with digital interface is key to bringing customers cutting-edge functionalities. Since 1997, Sofradir has been working with Thales and Research Technologies (TRT) to develop and produce Quantum Well Infrared Photodetectors (QWIP) as a complementary offer with MCT, to provide large LW staring arrays. A dualband MW-LW QWIP detector (25μm pitch 384×288 IDDCA) is currently under development. We will present in this paper its latest results.
NASA Astrophysics Data System (ADS)
O'Sullivan, Thomas D.; No, Keunsik; Matlock, Alex; Warren, Robert V.; Hill, Brian; Cerussi, Albert E.; Tromberg, Bruce J.
2017-10-01
Frequency-domain photon migration (FDPM) uses modulated laser light to measure the bulk optical properties of turbid media and is increasingly applied for noninvasive functional medical imaging in the near-infrared. Although semiconductor edge-emitting laser diodes have been traditionally used as miniature light sources for this application, we show that vertical-cavity surface-emitting lasers (VCSELs) exhibit output power and modulation performance characteristics suitable for FDPM measurements of tissue optical properties at modulation frequencies exceeding 1 GHz. We also show that an array of multiple VCSEL devices can be coherently modulated at frequencies suitable for FDPM and can improve optical power. In addition, their small size and simple packaging make them an attractive choice as components in wearable sensors and clinical FDPM-based optical spectroscopy systems. We demonstrate the benefits of VCSEL technology by fabricating and testing a unique, compact VCSEL-based optical probe with an integrated avalanche photodiode. We demonstrate sensitivity of the VCSEL-based probe to subcutaneous tissue hemodynamics that was induced during an arterial cuff occlusion of the upper arm in a human subject.
WIYN tip-tilt module performance
NASA Astrophysics Data System (ADS)
Claver, Charles F.; Corson, Charles; Gomez, R. Richard, Jr.; Daly, Philip N.; Dryden, David M.; Abareshi, Behzod
2003-02-01
The WIYN Tip-Tilt Module (WTTM) is an addition to the existing Instrument Adapter System (IAS) providing a high performance optical-NIR image stabilized port on the WIYN 3.5m telescope. The WTTM optical system uses a 3-mirror off-axis design along with a high bandwidth tilt mirror. The WTTM is a reimaging system with 15% magnification producing a 4x4 arcminute field of view and near diffraction limited imagery from 400-2000nm. The optics are diamond turned in electroless Nickel over an Aluminum substrate. The WTTM opto-mechanical assembly was designed and built using the principals of the "build-to-print" technique, where the entire system is fabricated and assembled to tolerance with no adjustments. A unique high performance error sensor, using an internal mirrorlette array that feeds 4 fiber coupled avalanche photodiode photon counters, provides the tilt signal. The system runs under the Real-Time Linux operating system providing a maximum closed loop rate of 3khz. In this paper we report on the successful lab testing, verification of the "build-to-print" technique and on telescope performance of the WTTM.
Temporal intensity interferometry: photon bunching in three bright stars
NASA Astrophysics Data System (ADS)
Guerin, W.; Dussaux, A.; Fouché, M.; Labeyrie, G.; Rivet, J.-P.; Vernet, D.; Vakili, F.; Kaiser, R.
2017-12-01
We report the first intensity correlation measured with starlight since the historical experiments of Hanbury Brown and Twiss. The photon bunching g(2)(τ, r = 0), obtained in the photon-counting regime, was measured for three bright stars: α Boo, α CMi and β Gem. The light was collected at the focal plane of a 1-m optical telescope, transported by a multi-mode optical fibre, split into two avalanche photodiodes and correlated digitally in real time. For total exposure times of a few hours, we obtained contrast values around 2 × 10-3, in agreement with the expectation for chaotic sources, given the optical and electronic bandwidths of our set-up. Comparing our results with the measurement of Hanbury Brown et al. for α CMi, we argue for the timely opportunity to extend our experiments to measuring the spatial correlation function over existing and/or foreseen arrays of optical telescopes diluted over several kilometres. This would enable microarcsec long-baseline interferometry in the optical, especially in the visible wavelengths, with a limiting magnitude of 10.
A 10MHz Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas
2013-10-01
HyperV Technologies has been developing an imaging diagnostic comprised of arrays of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers of 100 to 10,000 pixels can be constructed. By interfacing analog photodiode systems directly to commercial analog to digital convertors and modern memory chips, a prototype pixel with an extremely deep record length (128 k points at 40 Msamples/s) has been achieved for a 10 bit resolution system with signal bandwidths of at least 10 MHz. Progress on a prototype 100 Pixel streak camera employing this technique is discussed along with preliminary experimental results and plans for a 10,000 pixel imager. Work supported by USDOE Phase 1 SBIR Grant DE-SC0009492.
Fast, Deep-Record-Length, Fiber-Coupled Photodiode Imaging Array for Plasma Diagnostics
NASA Astrophysics Data System (ADS)
Brockington, Samuel; Case, Andrew; Witherspoon, F. Douglas
2015-11-01
HyperV Technologies has been developing an imaging diagnostic comprised of an array of fast, low-cost, long-record-length, fiber-optically-coupled photodiode channels to investigate plasma dynamics and other fast, bright events. By coupling an imaging fiber bundle to a bank of amplified photodiode channels, imagers and streak imagers can be constructed. By interfacing analog photodiode systems directly to commercial analog-to-digital converters and modern memory chips, a scalable solution for 100 to 1000 pixel systems with 14 bit resolution and record-lengths of 128k frames has been developed. HyperV is applying these techniques to construct a prototype 1000 Pixel framing camera with up to 100 Msamples/sec rate and 10 to 14 bit depth. Preliminary experimental results as well as future plans will be discussed. Work supported by USDOE Phase 2 SBIR Grant DE-SC0009492.
Direction-Sensitive Hand-Held Gamma-Ray Spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, S.
2012-10-04
A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response ismore » highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.« less
Photodiode design study. Final report, May--December 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamorte, M.F.
1977-12-01
The purpose of this work was to apply the analytical method developed for single junction and multijunction solar cells, Contract No. F33615-76-C-1283, to photodiodes and avalanche photodiodes. It was anticipated that this analytical method will advance the state-of-the-art because of the following: (1) the analysis considers the total photodetector multilayer structure rather than just the depleted region; (2) a model of the complete band structure is analyzed; (3) application of the integral form of the continuity equation is used; (4) structures that reduce dark current and/or increase the ratio of photocurrent to dark current are obtained; and (5) structures thatmore » increase spectral response in the depleted region and reduce response in other regions of the diode are obtained. The integral form of the continuity equation developed for solar cells is the steady-state or time-independent form. The contract specified that the time-independent equation would only be employed to determine applicability to photodetectors. The GaAsSb photodiode under development at Rockwell International, Thousand Oaks, California was used to determine the applicability to photodetectors. The diode structure is composed of four layers grown on a substrate. The analysis presents calculations of spectral response. This parameter is used in this study to optimize the structure.« less
Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander
2012-01-01
In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. ‘Jigsaw-puzzle structure’ of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits. PMID:24966447
Optical Reflectance Measurements for Commonly Used Reflectors
NASA Astrophysics Data System (ADS)
Janecek, Martin; Moses, William W.
2008-08-01
When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.
A new CMOS SiGeC avalanche photo-diode pixel for IR sensing
NASA Astrophysics Data System (ADS)
Augusto, Carlos; Forester, Lynn; Diniz, Pedro C.
2009-05-01
Near-infra-red sensing with silicon is limited by the bandgap of silicon, corresponding to a maximum wavelength of absorption of 1.1 μm. A new type of CMOS sensor is presented, which uses a SiGeC epitaxial film in conjunction with novel device architecture to extend absorption into the infra-red. The SiGeC film composition and thickness determine the spectrum of absorption; in particular for SiGeC superlattices, the layer ordering to create pseudo direct bandgaps is the critical parameter. In this new device architecture, the p-type SiGeC film is grown on an active region surrounded by STI, linked to the S/D region of an adjacent NMOS, under the STI by a floating N-Well. On a n-type active, a P-I-N device is formed, and on a p-type active, a P-I-P device is formed, each sensing different regions of the spectrum. The SiGeC films can be biased for avalanche operation, as the required vertical electric field is confined to the region near the heterojunction interface, thereby not affecting the gate oxide of the adjacent NMOS. With suitable heterojunction and doping profiles, the avalanche region can also be bandgap engineered, allowing for avalanche breakdown voltages that are compatible with CMOS devices.
Monolithic optical link in silicon-on-insulator CMOS technology.
Dutta, Satadal; Agarwal, Vishal; Hueting, Raymond J E; Schmitz, Jurriaan; Annema, Anne-Johan
2017-03-06
This work presents a monolithic laterally-coupled wide-spectrum (350 nm < λ < 1270 nm) optical link in a silicon-on-insulator CMOS technology. The link consists of a silicon (Si) light-emitting diode (LED) as the optical source and a Si photodiode (PD) as the detector; both realized by vertical abrupt n+p junctions, separated by a shallow trench isolation composed of silicon dioxide. Medium trench isolation around the devices along with the buried oxide layer provides galvanic isolation. Optical coupling in both avalanche-mode and forward-mode operation of the LED are analyzed for various designs and bias conditions. From both DC and pulsed transient measurements, it is further shown that heating in the avalanche-mode LED leads to a slow thermal coupling to the PD with time constants in the ms range. An integrated heat sink in the same technology leads to a ∼ 6 times reduction in the change in PD junction temperature per unit electrical power dissipated in the avalanche-mode LED. The analysis paves way for wide-spectrum optical links integrated in smart power technologies.
The 1.06 optical receiver. [avalanche photodiodes for laser range finders
NASA Technical Reports Server (NTRS)
Tomasetta, L. R.; Law, H. D.; Nakano, K.; Scholl, F. W.; Harris, J. S., Jr.
1978-01-01
High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiba, M., E-mail: akiba@nict.go.jp; Tsujino, K.
This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and itsmore » temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p–n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.« less
Avalanche photodiode for measurement of low-energy electrons
NASA Astrophysics Data System (ADS)
Ogasawara, K.; Asamura, K.; Mukai, T.; Saito, Y.
2005-06-01
We report on the performance of an Avalanche Photodiode (APD) produced by Hamamatsu Photonics Co. Ltd. (Type Z7966-20) for measurements of low energy electrons. We have set up an electron gun, which can generate a 1-20 keV electron beam impinging onto the APD in a vacuum chamber. The result shows that the pulse height distribution (PHD) of the APD signal exhibits a significant peak for electrons with energies above 8 keV, and the variation of the PHD peak shows a good linearity with the energy of incident electrons. The energy resolution is quite good, though it slightly depends on the electron energy. In the case of low-energies (lower than 10 keV), the pulse height distribution has a characteristic tail on the low energy side, and the energy resolution becomes a little worse. The position of the peak appears on a slightly lower channel than is expected from data at higher energies (near 20 keV). Qualitatively, the low-energy tail is caused by the dead-layer on the surface of the device. The nonlinearity and the worse resolution of the peaks for higher energy electrons may have resulted from a space-charge effect due to created e-h pairs. For a quantitative understanding, we have made a Monte Carlo particle simulation of charge transport and collection inside the APD.
Ultra-violet avalanche photodiode based on AlN/GaN periodically-stacked-structure
NASA Astrophysics Data System (ADS)
Wu, Xingzhao; Zheng, Jiyuan; Wang, Lai; Brault, Julien; Matta, Samuel; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yianjun; Wang, Jian; Li, Hongtao; Khalfioui, Mohamed A.; Li, Mo; Kang, Jianbin; Li, Qian
2018-02-01
The high-gain photomultiplier tube (PMT) is the most popular method to detect weak ultra-violet signals which attenuate quickly in atmosphere, although the vacuum tube makes it fragile and difficult to integrate. To overcome the disadvantage of PMT, an AlN/GaN periodically-stacked-structure (PSS) avalanche photodiode (APD) has been proposed, finally achieving good quality of high gain and low excessive noise. As there is a deep g valley only in the conduction band of both GaN and AlN, the electron transfers suffering less scattering and thus becomes easier to obtain the threshold of ionization impact. Because of unipolar ionization in the PSS APD, it works in linear mode. Four prototype devices of 5-period, 10-period, 15-period, and 20-period were fabricated to verify that the gain of APD increases exponentially with period number. And in 20-period device, a recorded high and stable gain of 104 was achieved under constant bias. In addition, it is proved both experimentally and theoretically, that temperature stability on gain is significantly improved in PSS APD. And it is found that the resonant enhancement in interfacial ionization may bring significant enhancement of electron ionization performance. To make further progress in PSS APD, the device structure is investigated by simulation. Both the gain and temperature stability are optimized alternatively by a proper design of periodical thickness and AlN layer occupancy.
Thematic mapper critical elements breadboard program
NASA Technical Reports Server (NTRS)
Dale, C. H., Jr.; Engel, J. L.; Harney, E. D.
1976-01-01
A 40.6 cm bidirectional scan mirror assembly, a scan line corrector and a silicon photodiode array with integral preamplifier input stages were designed, fabricated, and tested to demonstrate performance consistent with requirements of the Hughes thematic mapper system. The measured performance met or exceeded the original design goals in all cases with the qualification that well defined and well understood deficiencies in the design of the photodiode array package will require the prescribed corrections before flight use.
An acoustic charge transport imager for high definition television applications
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, K. F.; Summers, C. J.
1994-01-01
The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.
NASA Astrophysics Data System (ADS)
Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.; ASTRO-H HXI/SGD Team
2016-09-01
The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.
Low dose digital X-ray imaging with avalanche amorphous selenium
NASA Astrophysics Data System (ADS)
Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei
2015-03-01
Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.
Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy
NASA Technical Reports Server (NTRS)
Myers, Richard A.
2008-01-01
An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.
2007-01-01
Metrology; (270.5290) Photon statistics. References and links 1. W. H. Louisell, A. Yariv, and A. E. Siegman , “Quantum Fluctuations and Noise in...939–941 (1981). 7. S. R. Bowman, Y. H. Shih, and C. O. Alley, “The use of Geiger mode avalanche photodiodes for precise laser ranging at very low...light levels: An experimental evaluation”, in Laser Radar Technology and Applications I, James M. Cruickshank, Robert C. Harney eds., Proc. SPIE 663
Recent improvements of the JET lithium beam diagnostica)
NASA Astrophysics Data System (ADS)
Brix, M.; Dodt, D.; Dunai, D.; Lupelli, I.; Marsen, S.; Melson, T. F.; Meszaros, B.; Morgan, P.; Petravich, G.; Refy, D. I.; Silva, C.; Stamp, M.; Szabolics, T.; Zastrow, K.-D.; Zoletnik, S.; JET-EFDA Contributors
2012-10-01
A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).
Evolution of Trace Gases and Particles Emitted by a Chaparral Fire in California
2012-02-07
length of 78 m and was then focused onto an MCT detector . The cell exchange time was about ten seconds when the flow con- trol valves were open and IR...through a 1064 nm Nd:YAG laser cavity where light scattered by the particles was measured by two avalanche photodiode detectors . Sufficiently light...collected with higher signal-to- noise . Smoke samples collected more than 1.8 km from the source showed signs of aging (O3 for- mation) and were not
Generation of High Purity Photon-Pair in a Short Highly Non-Linear Fiber
2013-01-01
Avalanche photodiode. A 10 m long HNLF fabricated by Sumitomo with a core diameter of 4 microns is fusion spliced to a single mode fiber for a...parametric down conversion (SPDC) was first observed in χ(2) nonlinear crystal [3]. However, the compatibility of a nonlinear crystal source with fiber and...PAIR IN A SHORT HIGHLY NON-LINEAR FIBER 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8750-12-1-0136 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S
High sensitivity 1.06 micron optical receiver for precision laser range finding. [YAG laser design
NASA Technical Reports Server (NTRS)
Scholl, F. W.; Harris, J. S., Jr.
1977-01-01
Aluminum gallium antimonide avalanche photodiodes with average gain of 10, internal quantum efficiency of greater than 60%, capacitance less than 0.2pf, and dark current of less than 1 micron were designed and fabricated for use in a low noise optical receiver suitable for 2 cm accuracy rangefinding. Topics covered include: (1) design of suitable photodetector structures; (2) epitaxial growth of AlGaSb devices; (3) fabrication of photodetectors; and (4) electro-optics characterization.
Decoding mobile-phone image sensor rolling shutter effect for visible light communications
NASA Astrophysics Data System (ADS)
Liu, Yang
2016-01-01
Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.
NASA Astrophysics Data System (ADS)
Mousavi, Monirehalsadat; Xie, Haiyan; Xie, Zhiyuan; Brydegaard, Mikkel; Axelsson, Johan; Andersson-Engels, Stefan
2013-11-01
Total resection of glioblastoma multiform (GBM), the most common and aggressive malignant brain tumor, is challenging among other things due to difficulty in intraoperative discrimination between normal and residual tumor cells. This project demonstrates the potential of a system based on a combination of autofluorescence and diffuse reflectance spectroscopy to be useful as an intraoperative guiding tool. In this context, a system based on 5 LEDs coupled to optical fibers was employed to deliver UV/visible light to the sample sequentially. Remitted light from the tissue; including diffuse reflected and fluorescence of endogenous and exogenous fluorophores, as well as its photobleaching product, is transmitted to one photodiode and four avalanche photodiodes. This instrument has been evaluated with very promising results by performing various tissue-equivalent phantom laboratory and clinical studies on skin lesions.
Xia, Zhenyang; Zang, Kai; Liu, Dong; ...
2017-08-21
Photo detection of ultraviolet (UV) light remains a challenge since the penetration depth of UV light is limited to the nanometer scale. Therefore, the doping profile and electric field in the top nanometer range of the photo detection devices become critical. Traditional UV photodetectors usually use a constant doping profile near the semiconductor surface, resulting in a negligible electric field, which limits the photo-generated carrier collection efficiency of the photodetector. Here, we demonstrate, via the use of an optimized gradient boron doping technique, that the carrier collection efficiency and photo responsivity under the UV wavelength region have been enhanced. Moreover,more » the ultrathin p+-i-n junction shows an avalanche gain of 2800 and an ultra-low junction capacitance (sub pico-farad), indicating potential applications in the low timing jitter single photon detection area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Zhenyang; Zang, Kai; Liu, Dong
Photo detection of ultraviolet (UV) light remains a challenge since the penetration depth of UV light is limited to the nanometer scale. Therefore, the doping profile and electric field in the top nanometer range of the photo detection devices become critical. Traditional UV photodetectors usually use a constant doping profile near the semiconductor surface, resulting in a negligible electric field, which limits the photo-generated carrier collection efficiency of the photodetector. Here, we demonstrate, via the use of an optimized gradient boron doping technique, that the carrier collection efficiency and photo responsivity under the UV wavelength region have been enhanced. Moreover,more » the ultrathin p+-i-n junction shows an avalanche gain of 2800 and an ultra-low junction capacitance (sub pico-farad), indicating potential applications in the low timing jitter single photon detection area.« less
Gates, Paul M.; Furlong, E.T.; Dorsey, T.F.; Burkhardt, M.R.
1996-01-01
Mass spectrometry and tandem mass spectrometry, coupled by a thermospray interface to a high-performance liguid chromatography system and equipped with a photodiode array detector, were used to determine the presence of nitroaromatic explosives and their degradation products in USA unsaturated-zone water samples. Using this approach, the lower limits of quantitation for explosives determined by mass spectrometry in this study typically ranged from 10 to 100 ng/l.
Large-Format AlGaN PIN Photodiode Arrays for UV Images
NASA Technical Reports Server (NTRS)
Aslam, Shahid; Franz, David
2010-01-01
A large-format hybridized AlGaN photodiode array with an adjustable bandwidth features stray-light control, ultralow dark-current noise to reduce cooling requirements, and much higher radiation tolerance than previous technologies. This technology reduces the size, mass, power, and cost of future ultraviolet (UV) detection instruments by using lightweight, low-voltage AlGaN detectors in a hybrid detector/multiplexer configuration. The solar-blind feature eliminates the need for additional visible light rejection and reduces the sensitivity of the system to stray light that can contaminate observations.
Baek, Taek Jin; Park, Pan Yun; Han, Kwi Nam; Kwon, Ho Taik; Seong, Gi Hun
2008-03-01
We describe a DNA microarray system using a bipolar integrated circuit photodiode array (PDA) chip as a new platform for DNA analysis. The PDA chip comprises an 8 x 6 array of photodiodes each with a diameter of 600 microm. Each photodiode element acts both as a support for an immobilizing probe DNA and as a two-dimensional photodetector. The usefulness of the PDA microarray platform is demonstrated by the detection of high-risk subtypes of human papilloma virus (HPV). The polymerase chain reaction (PCR)-amplified biotinylated HPV target DNA was hybridized with the immobilized probe DNA on the photodiode surface, and the chip was incubated in an anti-biotin antibody-conjugated gold nanoparticle solution. The silver enhancement by the gold nanoparticles bound to the biotin of the HPV target DNA precipitates silver metal particles at the chip surfaces, which block light irradiated from above. The resulting drop in output voltage depends on the amount of target DNA present in the sample solution, which allows the specific detection and the quantitative analysis of the complementary target DNA. The PDA chip showed high relative signal ratios of HPV probe DNA hybridized with complementary target DNA, indicating an excellent capability in discriminating HPV subtypes. The detection limit for the HPV target DNA analysis improved from 1.2 nM to 30 pM by changing the silver development time from 5 to 10 min. Moreover, the enhanced silver development promoted by the gold nanoparticles could be applied to a broader range of target DNA concentration by controlling the silver development time.
NASA Astrophysics Data System (ADS)
Daumer, V.; Gramich, V.; Müller, R.; Schmidt, J.; Rutz, F.; Stadelmann, T.; Wörl, A.; Rehm, R.
2017-02-01
Photodetectors in the non-visible region of the electromagnetic spectrum are essential for security, defense and space science as well as industrial and scientific applications. The research activities at Fraunhofer IAF cover a broad range in the infrared (IR) regime. Whereas short-wavelength IR (SWIR, <1.7 μm) detectors are realized by InGaAs/InP structures, InAs/GaSb type-II superlattice (T2SL) infrared detectors are developed for the spectral bands from mid- (MWIR, 3-5 μm) to long-wavelength IR (LWIR, 8-12 μm). We report on the extension of the superlattice empirical pseudopotential method (SEPM) to 300 K for the design of LWIR heterostructures for operation near room temperature. Recently, we have also adapted heterostructure concepts to our well established bi-spectral T2SL MWIR detector resulting in a dark current density below 2 × 10-9 A/cm2 for a cut-off wavelength close to 5 μm. Finally, we present first results obtained with a gated viewing system based on our InGaAs/InAlAs/InP avalanche photodiode arrays.
Development of brain PET using GAPD arrays.
Jung, Jin Ho; Choi, Yong; Hong, Key Jo; Kang, Jihoon; Hu, Wei; Lim, Hyun Keong; Huh, Yoonsuk; Kim, Sangsu; Jung, Jiwoong; Kim, Kyu Bom
2012-03-01
In recent times, there has been great interest in the use of Geiger-mode avalanche photodiodes (GAPDs) as scintillator readout in positron emission tomography (PET) detectors because of their advantages, such as high gain, compact size, low power consumption, and magnetic field insensitivity. The purpose of this study was to develop a novel PET system based on GAPD arrays for brain imaging. The PET consisted of 72 detector modules arranged in a ring of 330 mm diameter. Each PET module was composed of a 4 × 4 matrix of 3 × 3 × 20 mm(3) cerium-doped lutetium yttrium orthosilicate (LYSO) crystals coupled with a 4 × 4 array three-side tileable GAPD. The signals from each PET module were fed into preamplifiers using a 3 m long flat cable and then sent to a position decoder circuit (PDC), which output a digital address and an analog pulse of the interacted channel among 64 preamplifier signals transmitted from four PET detector modules. The PDC outputs were fed into field programmable gate array (FPGA)-embedded data acquisition (DAQ) boards. The analog signal was then digitized, and arrival time and energy of the signal were calculated and stored. The energy and coincidence timing resolutions measured for 511 keV gamma rays were 18.4 ± 3.1% and 2.6 ns, respectively. The transaxial spatial resolution and sensitivity in the center of field of view (FOV) were 3.1 mm and 0.32% cps/Bq, respectively. The rods down to a diameter of 2.5 mm were resolved in a hot-rod phantom image, and activity distribution patterns between the white and gray matters in the Hoffman brain phantom were well imaged. Experimental results indicate that a PET system can be developed using GAPD arrays and the GAPD-based PET system can provide high-quality PET imaging.
Progress in low light-level InAs detectors- towards Geiger-mode detection
NASA Astrophysics Data System (ADS)
Tan, Chee Hing; Ng, Jo Shien; Zhou, Xinxin; David, John; Zhang, Shiyong; Krysa, Andrey
2017-05-01
InAs avalanche photodiodes (APDs) can be designed such that only electrons are allowed to initiate impact ionization, leading to the lowest possible excess noise factor. Optimization of wet chemical etching and surface passivation produced mesa APDs with bulk dominated dark current and responsivity that are comparable and higher, respectively, than a commercial InAs detector. Our InAs electron-APDs also show high stability with fluctuation of 0.1% when operated at a gain of 11.2 over 60 s. These InAs APDs can detect very weak signal down to 35 photons per pulse. Fabrication of planar InAs by Be implantation produced planar APDs with bulk dominated dark current. Annealing at 550 °C was necessary to remove implantation damage and to activate Be dopants. Due to minimal diffusion of Be, thick depletion of 8 μm was achieved. Since the avalanche gain increases exponentially with the thickness of avalanche region, our planar APD achieved high gain > 300 at 200 K. Our work suggest that both mesa and planar InAs APDs can exhibit high gain. When combined with a suitable preamplifier, single photon detection using InAs electron-APDs could be achieved.
NASA Astrophysics Data System (ADS)
Fong, Bernicy S.; Davies, Murray; Deschamps, Pierre
2018-01-01
Timing resolution (or timing jitter) and time walk are separate parameters associated with a detector's response time. Studies have been done mostly on the time resolution of various single-photon detectors. As the designer and manufacturer of the ultra-low noise (ƙ-factor) silicon avalanche photodiode the super low K factor (SLiK) single-photon avalanche diode (SPAD), which is used in many single-photon counting applications, we often get inquiries from customers to better understand how this detector behaves under different operating conditions. Hence, here, we will be focusing on the study of these time-related parameters specifically for the SLiK SPAD, as a way to provide the most direct information for users of this detector to help with its use more efficiently and effectively. We will be providing the study data on how these parameters can be affected by temperature (both intrinsic to the detector chip and environmental input based on operating conditions), operating voltage, photon wavelength, as well as light spot size. How these parameters can be optimized and the trade-offs from optimization from the desired performance will be presented?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Silin; Yang, Yongfeng, E-mail: yfyang@ucdavis.edu; Cherry, Simon R.
Purpose: Depth encoding detectors are required to improve the spatial resolution and spatial resolution uniformity of small animal positron emission tomography (PET) scanners, as well as dedicated breast and brain scanners. Depth of interaction (DOI) can be measured by using dual-ended readout of lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiodes. Inter-crystal reflectors and crystal surface treatments play important roles in determining the performance of dual-ended detectors. In this paper, the authors evaluated five LSO arrays made with three different intercrystal reflectors and with either polished or unpolished crystal surfaces. Methods: The crystal size in all arrays was 1.5more » mm, which is typical of the detector size used in small animal and dedicated breast scanners. The LSO arrays were measured with dual-ended readout and were compared in terms of flood histogram, energy resolution, and DOI resolution performance. Results: The four arrays using enhanced specular reflector (ESR) and Toray reflector provided similar quality flood histograms and the array using Crystal Wrap reflector gave the worst flood histogram. The two arrays using ESR reflector provided the best energy resolution and the array using Crystal Wrap reflector yielded the worst energy resolution. All arrays except the polished ESR array provided good DOI resolution ranging from 1.9 mm to 2.9 mm. DOI resolution improved as the gradient in light collection efficiency with depth (GLCED) increased. The geometric mean energies were also calculated for these dual-ended readout detectors as an alternative to the conventional summed total energy. It was shown that the geometric mean energy is advantageous in that it provides more uniform photopeak amplitude at different depths for arrays with high GLCED, and is beneficial in event selection by allowing a fixed energy window independent of depth. A new method of DOI calculation that improved the linearity of DOI ratio vs depth and simplifies the DOI calibration procedure also was developed and tested. Conclusions: The results of these studies provide useful guidance in selecting the proper reflectors and crystal surface treatments when LSO arrays are used for high-resolution PET applications in small animal scanners or dedicated breast and brain scanners.« less
An acoustic charge transport imager for high definition television applications
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, Kevin F.
1994-01-01
The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.
Bérard, P; Bergeron, M; Pepin, C M; Cadorette, J; Tétrault, M-A; Viscogliosi, N; Fontaine, R; Dautet, H; Davies, M; Lecomte, R
2008-07-01
Visualization and quantification of biological processes in mice, the preferred animal model in most preclinical studies, require the best possible spatial resolution in positron emission tomography (PET). A new 64-channel avalanche photodiode (APD) detector module was developed to achieve submillimeter spatial resolution for this purpose. The module consists of dual 4 × 8 APD arrays mounted in a custom ceramic holder. Individual APD pixels having an active area of 1.1 × 1.1 mm2 at a 1.2 mm pitch can be fitted to an 8 × 8 LYSO scintillator block designed to accommodate one-to-one coupling. An analog test board with four 16-channel preamplifier ASICs was designed to be interfaced with the existing LabPET digital processing electronics. At a standard APD operating bias, a mean energy resolution of 27.5 ± 0.6% was typically obtained at 511 keV with a relative standard deviation of 13.8% in signal amplitude for the 64 individual pixels. Crosstalk between pixels was found to be well below the typical lower energy threshold used for PET imaging applications. With two modules in coincidence, a global timing resolution of 5.0 ns FWHM was measured. Finally, an intrinsic spatial resolution of 0.8 mm FWHM was measured by sweeping a 22Na point source between two detector arrays. The proposed detector module demonstrates promising characteristics for dedicated mouse PET imaging at submillimiter resolution. © 2008 American Association of Physicists in Medicine.
Strain effects in Hg/sub 1-//sub x/Cd/sub x/Te (xapprox. 0. 2) photovoltaic arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, E.; Mainzer, N.
1989-03-01
The effect of stress and strain on the performance of Hg/sub 1-//sub x/Cd/sub x/Te (xapprox.0.2) photovoltaic arrays was studied both in the dark and under illumination. Stress, external as well as internal, affects the current--voltage characteristic of the photodiode. The combined action of illumination and strain yields an anomalous response to light absorption in the device. A model is conceived wherein the photodiode and guard ring are treated as a metal-insulator semiconductor field effect transistor (MISFET). Stress developed in the vicinity of small contact windows causes n-type damage, which brings about a forward bias in the device. The effect ofmore » strain on the reverse current of the photodiode is explained by a change in the n-channel conductivity of the MISFET. This change is caused by charges which are due either to a piezoelectric effect or n-type damage. Using this model observed phenomena in Hg/sub 1-//sub x/Cd/sub x/Te photovoltaic arrays are explained, as due to internal stresses originating from wafer deformation.« less
Gamma-insensitive optical sensor
Kruger, Hans W.
1994-01-01
An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica
2013-12-15
We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.
NASA Technical Reports Server (NTRS)
Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)
2015-01-01
We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki
2007-01-15
A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.
1989-01-11
EFFECT OF BANK-TO-TURN VERSUS SKID-TO-TURN STEERING ON THE MANOEUVRABILITY OF AUTONOMOUS PRECISION GUIDED MUUNITION AGAINST GROUND TARGETS by B.J.Damen...space. Basic Relationships of an Interferometer Gyro The Sagnac effect in the fiber optic gyro causes a phase shift in the sensor col during rotation with... a read-out coupler and an.avalanche photodiode for optical detection. The opto module is rigidly connected with the sensor module via a fiber link
Direct measurement of fast transients by using boot-strapped waveform averaging
NASA Astrophysics Data System (ADS)
Olsson, Mattias; Edman, Fredrik; Karki, Khadga Jung
2018-03-01
An approximation to coherent sampling, also known as boot-strapped waveform averaging, is presented. The method uses digital cavities to determine the condition for coherent sampling. It can be used to increase the effective sampling rate of a repetitive signal and the signal to noise ratio simultaneously. The method is demonstrated by using it to directly measure the fluorescence lifetime from Rhodamine 6G by digitizing the signal from a fast avalanche photodiode. The obtained lifetime of 4.0 ns is in agreement with the known values.
Harder, G; Silberhorn, Ch; Rehacek, J; Hradil, Z; Motka, L; Stoklasa, B; Sánchez-Soto, L L
2016-04-01
We report the experimental point-by-point sampling of the Wigner function for nonclassical states created in an ultrafast pulsed type-II parametric down-conversion source. We use a loss-tolerant time-multiplexed detector based on a fiber-optical setup and a pair of photon-number-resolving avalanche photodiodes. By capitalizing on an expedient data-pattern tomography, we assess the properties of the light states with outstanding accuracy. The method allows us to reliably infer the squeezing of genuine two-mode states without any phase reference.
NASA Technical Reports Server (NTRS)
Odenthal, J. P.
1980-01-01
An opto-electronic receiver incorporating a multi-element linear photodiode array as a component of a laser-triangulation rangefinder was developed as an obstacle avoidance sensor for a Martian roving vehicle. The detector can resolve the angle of laser return in 1.5 deg increments within a field of view of 30 deg and a range of five meters. A second receiver with a 1024 elements over 60 deg and a 3 meter range is also documented. Design criteria, circuit operation, schematics, experimental results and calibration procedures are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riot, Vincent J.
The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing andmore » storage.« less
Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Du, Hong; Wang, Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William
2009-01-01
Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and∕or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous photodiode arrays was observed to result in no degradation in MTF due to charge sharing between pixels. While the continuous designs exhibited relatively high levels of charge trapping and release, as well as shorter ranges of linearity, it is possible that these behaviors can be addressed through further refinements to pixel design. Both the continuous and the most recent discrete photodiode designs accommodate more sophisticated pixel circuitry than is present on conventional AMFPIs – such as a pixel clamp circuit, which is demonstrated to limit signal saturation under conditions corresponding to high exposures. It is anticipated that photodiode structures such as the ones reported in this study will enable the development of even more complex pixel circuitry, such as pixel-level amplifiers, that will lead to further significant improvements in imager performance. PMID:19673228
Quantitative color measurement of pH indicator paper using trichromatic LEDs and TCS230 color sensor
NASA Astrophysics Data System (ADS)
Ghorude, T. N.; Chaudhari, A. L.; Shaligram, A. D.
2008-11-01
Quantitative analysis of pH indicator paper color is needed in the various fields. An indigenously developed Tristimulus colorimeter is used in this work for pH Indicator paper color measurement. The colorimeter uses Trichromatic RGB LEDs and a programmable color light to frequency converter (TCS230), combining configurable silicon photodiodes and a current to frequency converter on a single monolithic CMOS integrated circuit. The output is a square wave (50% duty cycle) with frequency directly proportional to light intensity. Digital input and digital output allow directly to a microcontroller. The light to frequency converter reads an 8*8 array of photodiodes. Sixteen photodiodes have red filters, 16 photodiodes have green filters, 16 photodiodes have blue filters, and 16 photodiodes are clear with no filters. All 16 photodiodes of the same colors are connected in parallel and type of photodiode the device uses during operation is pin selectable. Solutions having different standard pH were prepared and indicator paper was dipped in solution, it shows change in color. Using the developed RGB colorimeter chromaticity coordinates were measured and compared with the chromaticity coordinates measured using Ocean Optics HR-4000 high resolution spectrophotometer.
Solid-state flat panel imager with avalanche amorphous selenium
NASA Astrophysics Data System (ADS)
Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei
2016-03-01
Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.
NASA Astrophysics Data System (ADS)
Yan, Lujiang; Yu, Yugang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Raihan Miah, Mohammad Abu; Liu, Yu-Hsin; Lo, Yu-Hwa
2017-09-01
Since impact ionization was observed in semiconductors over half a century ago, avalanche photodiodes (APDs) using impact ionization in a fashion of chain reaction have been the most sensitive semiconductor photodetectors. However, APDs have relatively high excess noise, a limited gain-bandwidth product, and high operation voltage, presenting a need for alternative signal amplification mechanisms of superior properties. As an amplification mechanism, the cycling excitation process (CEP) was recently reported in a silicon p-n junction with subtle control and balance of the impurity levels and profiles. Realizing that CEP effect depends on Auger excitation involving localized states, we made the counter intuitive hypothesis that disordered materials, such as amorphous silicon, with their abundant localized states, can produce strong CEP effects with high gain and speed at low noise, despite their extremely low mobility and large number of defects. Here, we demonstrate an amorphous silicon low noise photodiode with gain-bandwidth product of over 2 THz, based on a very simple structure. This work will impact a wide range of applications involving optical detection because amorphous silicon, as the primary gain medium, is a low-cost, easy-to-process material that can be formed on many kinds of rigid or flexible substrates.
Measurement of the Circular Dichroism of Electronic Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, J.C.
2010-08-11
This chapter describes the measurement of circular dichroism (CD) for absorption due to transitions between two distinct electronic states. This is distinguished from absorption of lower energy photons, which are associated with changes of only the vibrational modes of the absorber and from the absorption of higher energy photons, which may result in ionizations. From the instrumental viewpoint, the chapter describes the measurement of CD that can be recorded using a photomultiplier or avalanche photodiode to quantify the intensity of a light beam, a photoelastic modulator to periodically alter the beam's polarization, and a monochromator located between the light sourcemore » and the modulator. Using either criterion, the focus is on the spectral domain spanning about a decade in wavelength (photon energy) from roughly 1.2 {micro}m (1 eV {approx} 160 zJ) in the near infrared to 120 nm (10 eV {approx} 1.6 aJ) in the vacuum ultraviolet (VUV). In the near infrared, there is overlap between the domain of electronic and purely vibrational transitions, the use of photomultipliers or avalanche photodiodes versus solid state detectors and dispersive versus Fourier-transform spectrometers. There is also some overlap in the VUV with synchrotron beamlines that use arrays of magnets called 'insertion devices' to cause the emitted synchrotron radiation to be elliptically polarized. To my knowledge, no single spectrometer spans this entire spectral domain discussed here, and the vast majority of laboratory instruments come nowhere close to either the upper or lower limit. However, similar analytical approaches and types of instrumentation are employed throughout this spectral domain and thus are logically treated together. The focus in this chapter is on the measurement of CD resulting from the inherent chirality of the absorbing system. Several spectroscopic methods that are closely related in terms of science or instrumentation are treated in other chapters. These include magnetic circular dichroism (MCD), linear dichroism (LD), optical rotary dispersion (ORD), fluorescence detected circular dichroism (FDCD), and circularly polarized luminescence (CPL). A basic CD instrument of the type described here can be configured by temporary alterations of the sample compartment, an additional or repositioned detector and modified electronics to perform many of the important experiments in the visible and UV regions. These include unpolarized absorption and total fluorescence in addition to most of the experiments mentioned above. Except for absorption, such extensions of the basic technology will not be discussed here. Other reviews of instrumentation related to CD have appeared, some containing information complementary to that included here.« less
Rad-hard Dual-threshold High-count-rate Silicon Pixel-array Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Adam
In this program, a Voxtel-led team demonstrates a full-format (192 x 192, 100-µm pitch, VX-810) high-dynamic-range x-ray photon-counting sensor—the Dual Photon Resolved Energy Acquisition (DUPREA) sensor. Within the Phase II program the following tasks were completed: 1) system analysis and definition of the DUPREA sensor requirements; 2) design, simulation, and fabrication of the full-format VX-810 ROIC design; 3) design, optimization, and fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of the optically sensitive focal-plane array; 5) development of an evaluation camera; and 6)more » electrical and optical characterization of the sensor.« less
NASA Astrophysics Data System (ADS)
Kraker, E.; Lamprecht, B.; Haase, A.; Jakopic, G.; Abel, T.; Konrad, C.; Köstler, S.; Tscherner, M.; Stadlober, B.; Mayr, T.
2010-08-01
A compact, integrated photoluminescence based oxygen sensor, utilizing an organic light emitting device (OLED) as the light source and an organic photodiode (OPD) as the detection unit, is described. The detection system of the sensor array consists of an array of circular screen-printed fluorescent sensor spots surrounded by organic photodiodes as integrated fluorescence detectors. The OPD originates from the well-known Tang photodiode, consisting of a stacked layer of copper phthalocyanine (CuPc, p-type material) and perylene tetracarboxylic bisbenzimidazole (PTCBi, n-type material). An additional layer of tris-8-hydroxyquinolinatoaluminium (Alq3, n-type material) was inserted between the PTCBi layer and cathode. An ORMOCERR layer was used as encapsulation layer. For excitation an organic light emitting diode is used. The sensor spot and the detector are processed on the same flexible substrate. This approach not only simplifies the detection system by minimizing the numbers of required optical components - no optical filters have to be used for separating the excitation light and the luminescent emission-, but also has a large potential for low-cost sensor applications. The feasibility of the concept is demonstrated by an integrated oxygen sensor, indicating good performance. Sensor schemes for other chemical parameters are proposed.
A Comprehensive Analysis of the Physical Properties of Advanced GaAs/AlGaAs Junctions
NASA Technical Reports Server (NTRS)
Menkara, Hicham M.
1996-01-01
Extensive studies have been performed on MQW junctions and structures because of their potential applications as avalanche photodetectors in optical communications and imaging systems. The role of the avalanche photodiode is to provide for the conversion of an optical signal into charge. Knowledge of junction physics, and the various carrier generation/recombination mechanisms, is crucial for effectively optimizing the conversion process and increasing the structure's quantum efficiency. In addition, the recent interest in the use of APDs in imaging systems has necessitated the development of semiconductor junctions with low dark currents and high gains for low light applications. Because of the high frame rate and high pixel density requirements in new imaging applications, it is necessary to provide some front-end gain in the imager to allow operation under reasonable light conditions. Understanding the electron/hole impact ionization process, as well as diffusion and surface leakage effects, is needed to help maintain low dark currents and high gains for such applications. In addition, the APD must be capable of operating with low power, and low noise. Knowledge of the effects of various doping configurations and electric field profiles, as well as the excess noise resulting from the avalanche process, are needed to help maintain low operating bias and minimize the noise output.
System and method for measuring fluorescence of a sample
Riot, Vincent J
2015-03-24
The present disclosure provides a system and a method for measuring fluorescence of a sample. The sample may be a polymerase-chain-reaction (PCR) array, a loop-mediated-isothermal amplification array, etc. LEDs are used to excite the sample, and a photodiode is used to collect the sample's fluorescence. An electronic offset signal is used to reduce the effects of background fluorescence and the noises from the measurement system. An integrator integrates the difference between the output of the photodiode and the electronic offset signal over a given period of time. The resulting integral is then converted into digital domain for further processing and storage.
Evaluation of the electro-optic direction sensor
NASA Technical Reports Server (NTRS)
Johnson, A. R.; Salomon, P. M.
1973-01-01
Evaluation of a no-moving-parts single-axis star tracker called an electro-optic direction sensor (EODS) concept is described and the results are given in detail. The work involved experimental evaluation of a breadboard sensor yielding results which would permit design of a prototype sensor for a specific application. The laboratory work included evaluation of the noise equivalent input angle of the sensor, demonstration of a technique for producing an acquisition signal, constraints on the useful field-of-view, and a qualitative evaluation of the effects of stray light. In addition, the potential of the silicon avalanche-type photodiode for this application was investigated. No benefit in noise figure was found, but the easily adjustable gain of the avalanche device was useful. The use of mechanical tuning of the modulating element to reduce voltage requirements was also explored. The predicted performance of EODS in both photomultiplier and solid state detector configurations was compared to an existing state-of-the-art star tracker.
Cosmic Ray Measurements by Scintillators with Metal Resistor Semiconductor Avalanche Photo Diodes
ERIC Educational Resources Information Center
Blanco, Francesco; La Rocca, Paola; Riggi, Francesco; Akindinov, Alexandre; Mal'kevich, Dmitry
2008-01-01
An educational set-up for cosmic ray physics experiments is described. The detector is based on scintillator tiles with a readout through metal resistor semiconductor (MRS) avalanche photo diode (APD) arrays. Typical measurements of the cosmic angular distribution at sea level and a study of the East-West asymmetry obtained by such a device are…
Advances in SELEX ES infrared detectors for space and astronomy
NASA Astrophysics Data System (ADS)
Knowles, P.; Hipwood, L.; Baker, I.; Weller, H.
2017-11-01
Selex ES produces a wide range of infrared detectors from mercury cadmium telluride (MCT) and triglycine sulfate (TGS), and has supplied both materials into space programmes spanning a period of over 40 years. Current development activities that underpin potential future space missions include large format arrays for near- and short-wave infrared (NIR and SWIR) incorporating radiation-hard designs and suppression of glow. Improved heterostructures are aimed at the reduction of dark currents and avalanche photodiodes (APDs), and parallel studies have been undertaken for low-stress MCT array mounts. Much of this development work has been supported by ESA, UK Space, and ESO, and some has been performed in collaboration with the UK Astronomy Technology Centre and E2V. This paper focuses on MCT heterostructure developments and novel design elements in silicon read-out chips (ROICs). The 2048 x 2048 element, 17um pitch ROIC for ESA's SWIR array development forms the basis for the largest cooled infrared detector manufactured in Europe. Selex ES MCT is grown by metal organic vapour phase epitaxy (MOVPE), currently on 75mm diameter GaAs substrates. The MCT die size of the SWIR array is 35mm square and only a single array can be printed on the 75mm diameter wafer, utilising only 28% of the wafer area. The situation for 100mm substrates is little better, allowing only 2 arrays and 31% utilisation. However, low cost GaAs substrates are readily available in 150mm diameter and the MCT growth is scalable to this size, offering the real possibility of 6 arrays per wafer with 42% utilisation. A similar 2k x 2k ROIC is the goal of ESA's NIR programme, which is currently in phase 2 with a 1k x 1k demonstrator, and a smaller 320 x 256 ROIC (SAPHIRA) has been designed for ESO for the adaptive optics application in the VLT Gravity instrument. All 3 chips have low noise source-follower architecture and are enabled for MCT APD arrays, which have been demonstrated by ESO to be capable of single photon detection. The possibility therefore exists in the near future of demonstrating a photon counting, 2k x 2k SWIR MCT detector manufactured on an affordable wafer scale of 6 arrays per wafer.
Organic non-volatile resistive photo-switches for flexible image detector arrays.
Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J W
2015-02-01
A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Petros, Mulugeta; Refaat, Tamer F.; Singh, Upendra N.; Yu, Jirong; Antill, Charles; Remus, Ruben; Taylor, Bryant D.; Wong, Teh-Hwa; Reithmaier, Karl; Lee, Jane; Ismail, Syed; Davis, Kenneth J.
2018-04-01
An advanced airborne triple-pulse 2-μm integrated path differential absorption (IPDA) lidar is under development at NASA Langley Research Center that targets both carbon dioxide (CO2) and water vapor (H2O) measurements simultaneously and independently. This lidar is an upgrade to the successfully demonstrated CO2 2-μm double-pulse IPDA. Upgrades include high-energy, highrepetition rate 2-μm triple-pulse laser transmitter, innovative wavelength control and advanced HgCdTe (MCT) electron-initiated avalanche photodiode detection system. Ground testing and airborne validation plans are presented.
Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egner, Joanna C.; Groza, Michael; Burger, Arnold
This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.
Integration of a 6LilnSe 2 thermal neutron detector into a CubeSat instrument
Egner, Joanna C.; Groza, Michael; Burger, Arnold; ...
2016-11-08
This paper describes the development of a preliminary compact and lightweight neutron detection system that uses the low power consuming CubeSat platform and will be especially effective for space-based applications. This is made possible using the novel 6LiInSe 2 scintillator crystal and a silicon avalanche photodiode (Si-APD). The schematics of this instrument are presented as well as the response of the instrument to initial testing under alpha radiation. The entire system weighs 670 grams and requires 5 volts direct current at 3 watts.
Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, D.; Donaldson, W.; Sobolewski, R.
2007-07-31
We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.
SAPHIRA detector for infrared wavefront sensing
NASA Astrophysics Data System (ADS)
Finger, Gert; Baker, Ian; Alvarez, Domingo; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg; Weller, Harald J.
2014-08-01
The only way to overcome the CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. In 2007 ESO started a program at Selex to develop near infrared electron avalanche photodiode arrays (eAPD) for wavefront sensing and fringe tracking. In a first step the cutoff wavelength was reduced from 4.5 micron to 2.5 micron in order to verify that the dark current scales with the bandgap and can be reduced to less than one electron/ms, the value required for wavefront sensing. The growth technology was liquid phase epitaxy (LPE) with annular diodes based on the loophole interconnect technology. The arrays required deep cooling to 40K to achieve acceptable cosmetic performance at high APD gain. The second step was to develop a multiplexer tailored to the specific application of the GRAVITY instrument wavefront sensors and the fringe tracker. The pixel format is 320x256 pixels. The array has 32 parallel video outputs which are arranged in such a way that the full multiplex advantage is available also for small subwindows. Nondestructive readout schemes with subpixel sampling are possible. This reduces the readout noise at high APD gain well below the subelectron level at frame rates of 1 KHz. The third step was the change of the growth technology from liquid phase epitaxy to metal organic vapour phase epitaxy (MOVPE). This growth technology allows the band structure and doping to be controlled on a 0.1μm scale and provides more flexibility for the design of diode structures. The bandgap can be varied for different layers of Hg(1-x)CdxTe. It is possible to make heterojunctions and apply solid state engineering techniques. The change to MOVPE resulted in a dramatic improvement in the cosmetic quality with 99.97 % operable pixels at an operating temperature of 85K. Currently this sensor is deployed in the 4 wavefront sensors and in the fringe tracker of the VLT instrument GRAVITY. Initial results will be presented. An outlook will be given on the potential of APD technology to be employed in large format near infrared science detectors. Several of the results presented here have also been shown to a different audience at the Scientific Detector Workshop in October 2013 in Florence but this paper has been updated with new results [1].
Schneider, Florian R; Mann, Alexander B; Konorov, Igor; Delso, Gaspar; Paul, Stephan; Ziegler, Sibylle I
2012-06-01
A one-day laboratory course on positron emission tomography (PET) for the education of physics students and PhD students in medical physics has been set up. In the course, the physical background and the principles of a PET scanner are introduced. Course attendees set the system in operation, calibrate it using a (22)Na point source and reconstruct different source geometries filled with (18)F. The PET scanner features an individual channel read-out of 96 lutetium oxyorthosilicate (LSO) scintillator crystals coupled to avalanche photodiodes (APD). The analog data of each APD are digitized by fast sampling analog to digital converters (SADC) and processed within field programmable gate arrays (FPGA) to extract amplitudes and time stamps. All SADCs are continuously sampling with a precise rate of 80MHz, which is synchronous for the whole system. The data is transmitted via USB to a Linux PC, where further processing and the image reconstruction are performed. The course attendees get an insight into detector techniques, modern read-out electronics, data acquisition and PET image reconstruction. In addition, a short introduction to some common software applications used in particle and high energy physics is part of the course. Copyright © 2011. Published by Elsevier GmbH.
Development of a PET Scanner for Simultaneously Imaging Small Animals with MRI and PET
Thompson, Christopher J; Goertzen, Andrew L; Thiessen, Jonathan D; Bishop, Daryl; Stortz, Greg; Kozlowski, Piotr; Retière, Fabrice; Zhang, Xuezhu; Sossi, Vesna
2014-01-01
Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution. PMID:25120157
X-ray and gamma ray detector readout system
Tumer, Tumay O; Clajus, Martin; Visser, Gerard
2010-10-19
A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.
High-sensitivity, high-speed continuous imaging system
Watson, Scott A; Bender, III, Howard A
2014-11-18
A continuous imaging system for recording low levels of light typically extending over small distances with high-frame rates and with a large number of frames is described. Photodiode pixels disposed in an array having a chosen geometry, each pixel having a dedicated amplifier, analog-to-digital convertor, and memory, provide parallel operation of the system. When combined with a plurality of scintillators responsive to a selected source of radiation, in a scintillator array, the light from each scintillator being directed to a single corresponding photodiode in close proximity or lens-coupled thereto, embodiments of the present imaging system may provide images of x-ray, gamma ray, proton, and neutron sources with high efficiency.
Broadband Electric-Field Sensor Array Technology
2012-08-05
output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into
A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array
NASA Astrophysics Data System (ADS)
Kahle, Duncan; Aslam, Shahid; Herrero, Federico A.; Waczynski, Augustyn
2016-09-01
A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.
A Discrete Component Low-Noise Preamplifier Readout for a Linear (1x16) SiC Photodiode Array
NASA Technical Reports Server (NTRS)
Kahle, Duncan; Aslam, Shahid; Herrero, Frederico A.; Waczynski, Augustyn
2016-01-01
A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1x16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analogue signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.
Avalanches and plasticity for colloids in a time dependent optical trap
Olson Reichhardt, Cynthia Jane; McDermott, Danielle Marie; Reichhardt, Charles
2015-08-25
Here, with the use of optical traps it is possible to confine assemblies of colloidal particles in two-dimensional and quasi-one-dimensional arrays. Here we examine how colloidal particles rearrange in a quasi-one-dimensional trap with a time dependent confining potential. The particle motion occurs both through slow elastic uniaxial distortions as well as through abrupt large-scale two-dimensional avalanches associated with plastic rearrangements. During the avalanches the particle velocity distributions extend over a broad range and can be fit to a power law consistent with other studies of plastic events mediated by dislocations.
Integrated photodiodes complement the VCSEL platform
NASA Astrophysics Data System (ADS)
Grabherr, Martin; Gerlach, Philipp; King, Roger; Jäger, Roland
2009-02-01
Many VCSEL based applications require optical feedback of the emitted light. E.g. light output monitor functions in transceivers are used to compensate for thermally induced power variation, power degradation, or even breakdown of pixels if logic for redundancy is available. In this case integrated photodiodes offer less complex assembly compared to widely used hybrid solutions, e.g. known in LC-TOSA assemblies. Especially for chip-on-board (COB) assembly and array configurations, integrated monitor diodes offer a simple and compact power monitoring possibility. For 850 nm VCSELs the integrated photodiodes can be placed between substrate and bottom-DBR, on top of the top-DBR, or inbetween the layer sequence of one DBR. Integrated intra-cavity photodiodes offer superior characteristics in terms of reduced sensitivity for spontaneously emitted light [1] and thus are very well suited for power monitoring or even endof- life (EOL) detection. We present an advanced device design for an intra-cavity photodiode and according performance data in comparison with competing approaches.
Truong, D. D.; Fonck, R. J.; McKee, G. R.
2016-09-23
The Ultra Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic is a highly specialized spectroscopic instrument with 2 spatial channels consisting of 8 spectral channels each and a resolution of ~0.25 nm deployed at DIII-D to measure turbulent ion temperature fluctuations. Charge exchange emissions are obtained between 528-530 nm with 1 μs time resolution to study plasma instabilities. A primary challenge of extracting fluctuation measurements from raw UF-CHERS signals is photon and electronic noise. In order to reduce dark current, the Avalanche Photodiode (APD) detectors are thermoelectrically cooled. State-of-the-art components are used for the signal amplifiers and conditioners to minimize electronicmore » noise. Due to the low incident photon power (≤ 1 nW), APDs with a gain of up to 300 are used to optimize the signal to noise ratio. Maximizing the APDs’ gain while minimizing the excess noise factor (ENF) is essential since the total noise of the diagnostic sets a floor for the minimum level of detectable broadband fluctuations. The APDs’ gain should be high enough that photon noise dominates electronic noise, but not excessive so that the ENF overwhelms plasma fluctuations. A new generation of cooled APDs and optimized preamplifiers exhibits significantly enhanced signal-to-noise compared to a previous generation. Experiments at DIII-D have allowed for characterization and optimization of the ENF vs. gain. Here, a gain of ~100 at 1700 V is found to be near optimal for most plasma conditions. Ion temperature and toroidal velocity fluctuations due to the Edge Harmonic Oscillation (EHO) in Quiescent H-mode (QH) plasmas are presented to demonstrate UF-CHERS’ capabilities.« less
NASA Technical Reports Server (NTRS)
Sun, X.; Jester, P. L.; Palm, S. P.; Abshire, J. B.; Spinhime, J. D.; Krainak, M. A.
2006-01-01
Si avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, anti land Elevation Satellite (ICESat), currently in orbit measuring Earth surface elevation and atmosphere backscattering. These SPCMs are used to measure cloud and aerosol backscatterings to the GLAS laser light at 532-nm wavelength with 60-70% quantum efficiencies and up to 15 millions/s maximum count rates. The performance of the SPCMs has been closely monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, as indicated by the average photon count rates in response to the background light from the sunlit earth. The linearity and the afterpulsing seen from the cloud and surface backscatterings profiles have been the same as those during ground testing. The detector dark count rates monitored while the spacecraft was in the dark side of the globe have increased almost linearly at about 60 counts/s per day due to space radiation damage. The radiation damage appeared to be independent of the device temperature and power states. There was also an abrupt increase in radiation damage during the solar storm in 28-30 October 2003. The observed radiation damage is a factor of two to three lower than the expected and sufficiently low to provide useful atmosphere backscattering measurements through the end of the ICESat mission. To date, these SPCMs have been in orbit for more than three years. The accumulated operating time to date has reached 290 days (7000 hours). These SPCMs have provided unprecedented receiver sensitivity and dynamic range in ICESat atmosphere backscattering measurements.
HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements
NASA Astrophysics Data System (ADS)
Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J. P.; Boulade, O.; Moreau, V.; Fieque, B.
2016-09-01
HgCdTe (MCT) is a very versatile material system for infrared (IR) detection, suitable for high performance detection in a wide range of applications and spectral ranges. Indeed, the ability to tailor the cutoff frequency as close as possible to the needs makes it a perfect candidate for high performance detection. Moreover, the high quality material available today, grown either by molecular beam epitaxy or liquid phase epitaxy, allows for very low dark currents at low temperatures, suitable for low flux detection applications such as science imaging. MCT has also demonstrated robustness to the aggressive environment of space and faces, therefore, a large demand for space applications. A satellite may stare at the earth, in which case detection usually involves a lot of photons, called a high flux scenario. Alternatively, a satellite may stare at outer space for science purposes, in which case the detected photon number is very low, leading to low flux scenarios. This latter case induces very strong constraints onto the detector: low dark current, low noise, (very) large focal plane arrays. The classical structure used to fulfill those requirements are usually p/ n MCT photodiodes. This type of structure has been deeply investigated in our laboratory for different spectral bands, in collaboration with the CEA Astrophysics lab. However, another alternative may also be investigated with low excess noise: MCT n/ p avalanche photodiodes (APD). This paper reviews the latest achievements obtained on this matter at DEFIR (LETI and Sofradir common laboratory) from the short wave infrared (SWIR) band detection for classical astronomical needs, to long wave infrared (LWIR) band for exoplanet transit spectroscopy, up to very long wave infrared (VLWIR) bands. The different available diode architectures ( n/ p VHg or p/ n, or even APDs) are reviewed, including different available ROIC architectures for low flux detection.
Digital solar edge tracker for the Halogen Occultation Experiment
NASA Technical Reports Server (NTRS)
Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.
1987-01-01
The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.
Downsampling Photodetector Array with Windowing
NASA Technical Reports Server (NTRS)
Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit
2012-01-01
In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated for processing, is used to further reduce the computational requirements. The grouping of the designated pixel frame as the photon count information is sent one word at a time to the GA, the aggregation of the pixels in a window can be achieved by selecting only the designated pixel counts from the serial stream of photon counts, thereby obviating the need to store the entire frame of pixel count in the gate array. The pixel count se quence from each window can then be processed, forming lower-rate pixel statistics for each window. By having this processing occur in the GA rather than in the ASIC, future changes to the processing algorithm can be readily implemented. The high-bandwidth requirements of a photon counting array combined with the properties of the optical modulation being detected by the array present a unique problem that has not been addressed by current CCD or CMOS sensor array solutions.
Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda
2016-09-01
Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Linear array of photodiodes to track a human speaker for video recording
NASA Astrophysics Data System (ADS)
DeTone, D.; Neal, H.; Lougheed, R.
2012-12-01
Communication and collaboration using stored digital media has garnered more interest by many areas of business, government and education in recent years. This is due primarily to improvements in the quality of cameras and speed of computers. An advantage of digital media is that it can serve as an effective alternative when physical interaction is not possible. Video recordings that allow for viewers to discern a presenter's facial features, lips and hand motions are more effective than videos that do not. To attain this, one must maintain a video capture in which the speaker occupies a significant portion of the captured pixels. However, camera operators are costly, and often do an imperfect job of tracking presenters in unrehearsed situations. This creates motivation for a robust, automated system that directs a video camera to follow a presenter as he or she walks anywhere in the front of a lecture hall or large conference room. Such a system is presented. The system consists of a commercial, off-the-shelf pan/tilt/zoom (PTZ) color video camera, a necklace of infrared LEDs and a linear photodiode array detector. Electronic output from the photodiode array is processed to generate the location of the LED necklace, which is worn by a human speaker. The computer controls the video camera movements to record video of the speaker. The speaker's vertical position and depth are assumed to remain relatively constant- the video camera is sent only panning (horizontal) movement commands. The LED necklace is flashed at 70Hz at a 50% duty cycle to provide noise-filtering capability. The benefit to using a photodiode array versus a standard video camera is its higher frame rate (4kHz vs. 60Hz). The higher frame rate allows for the filtering of infrared noise such as sunlight and indoor lighting-a capability absent from other tracking technologies. The system has been tested in a large lecture hall and is shown to be effective.
Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality
NASA Astrophysics Data System (ADS)
Ullrich, A.; Pfennigbauer, M.
2016-05-01
LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.
Detector with internal gain for short-wave infrared ranging applications
NASA Astrophysics Data System (ADS)
Fathipour, Vala; Mohseni, Hooman
2017-09-01
Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future
NASA Astrophysics Data System (ADS)
Baker, Ian; Maxey, Chris; Hipwood, Les; Barnes, Keith
2016-07-01
Many branches of science require infrared detectors sensitive to individual photons. Applications range from low background astronomy to high speed imaging. Leonardo in Southampton, UK, has been developing HgCdTe avalanche photodiode (APD) sensors for astronomy in collaboration with European Southern Observatory (ESO) since 2008 and more recently the University of Hawaii. The devices utilise Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates and in combination with a mesa device structure achieve very low dark current and near-ideal MTF. MOVPE provides the ability to grow complex HgCdTe heterostructures and these have proved crucial to suppress breakdown currents and allow high avalanche gain in low background situations. A custom device called Saphira (320x256/24μm) has been developed for wavefront sensors, interferometry and transient event imaging. This device has achieved read noise as low as 0.26 electrons rms and single photon imaging with avalanche gain up to x450. It is used in the ESO Gravity program for adaptive optics and fringe tracking and has been successfully trialled on the 3m NASA IRTF, 8.2m Subaru and 60 inch Mt Palomar for lucky imaging and wavefront sensing. In future the technology offers much shorter observation times for read-noise limited instruments, particularly spectroscopy. The paper will describe the MOVPE APD technology and current performance status.
Solid state image sensing arrays
NASA Technical Reports Server (NTRS)
Sadasiv, G.
1972-01-01
The fabrication of a photodiode transistor image sensor array in silicon, and tests on individual elements of the array are described along with design for a scanning system for an image sensor array. The spectral response of p-n junctions was used as a technique for studying the optical-absorption edge in silicon. Heterojunction structures of Sb2S3- Si were fabricated and a system for measuring C-V curves on MOS structures was built.
Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.
ERIC Educational Resources Information Center
Jones, Dianna G.
1985-01-01
A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…
A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy.
Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L
2008-11-21
We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps.
A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy
Schwartz, David Eric; Charbon, Edoardo; Shepard, Kenneth L.
2013-01-01
We describe the design, characterization, and demonstration of a fully integrated single-photon avalanche diode (SPAD) imager for use in time-resolved fluorescence imaging. The imager consists of a 64-by-64 array of active SPAD pixels and an on-chip time-to-digital converter (TDC) based on a delay-locked loop (DLL) and calibrated interpolators. The imager can perform both standard time-correlated single-photon counting (TCSPC) and an alternative gated-window detection useful for avoiding pulse pile-up when measuring bright signal levels. To illustrate the use of the imager, we present measurements of the decay lifetimes of fluorescent dyes of several types with a timing resolution of 350 ps. PMID:23976789
Compact multispectral photodiode arrays using micropatterned dichroic filters
NASA Astrophysics Data System (ADS)
Chandler, Eric V.; Fish, David E.
2014-05-01
The next generation of multispectral instruments requires significant improvements in both spectral band customization and portability to support the widespread deployment of application-specific optical sensors. The benefits of spectroscopy are well established for numerous applications including biomedical instrumentation, industrial sorting and sensing, chemical detection, and environmental monitoring. In this paper, spectroscopic (and by extension hyperspectral) and multispectral measurements are considered. The technology, tradeoffs, and application fits of each are evaluated. In the majority of applications, monitoring 4-8 targeted spectral bands of optimized wavelength and bandwidth provides the necessary spectral contrast and correlation. An innovative approach integrates precision spectral filters at the photodetector level to enable smaller sensors, simplify optical designs, and reduce device integration costs. This method supports user-defined spectral bands to create application-specific sensors in a small footprint with scalable cost efficiencies. A range of design configurations, filter options and combinations are presented together with typical applications ranging from basic multi-band detection to stringent multi-channel fluorescence measurement. An example implementation packages 8 narrowband silicon photodiodes into a 9x9mm ceramic LCC (leadless chip carrier) footprint. This package is designed for multispectral applications ranging from portable color monitors to purpose- built OEM industrial and scientific instruments. Use of an eight-channel multispectral photodiode array typically eliminates 10-20 components from a device bill-of-materials (BOM), streamlining the optical path and shrinking the footprint by 50% or more. A stepwise design approach for multispectral sensors is discussed - including spectral band definition, optical design tradeoffs and constraints, and device integration from prototype through scalable volume production. Additional customization options are explored for application-specific OEM sensors integrated into portable devices using multispectral photodiode arrays.
Effect of Detector Dead Time on the Performance of Optical Direct-Detection Communication Links
NASA Technical Reports Server (NTRS)
Chen, C.-C.
1988-01-01
Avalanche photodiodes (APDs) operating in the Geiger mode can provide a significantly improved single-photon detect ion sensitivity over conventional photodiodes. However, the quenching circuit required to remove the excess charge carriers after each photon event can introduce an undesirable dead time into the detection process. The effect of this detector dead time on the performance of a binary pulse-position-modulted (PPM) channel is studied by analyzing the error probability. It is shown that, when back- ground noise is negligible, the performance of the detector with dead time is similar to that o f a quantum-limited receiver. For systems with increasing background intensities, the error rate of the receiver starts to degrade rapidly with increasing dead time. The power penalty due to detector dead time is also evaluated and shown to depend critically on background intensity as well as dead time. Given the expected background strength in an optical channel, therefore, a constraint must be placed on the bandwidth of the receiver to limit the amount of power penalty due to detector dead time.
Effect of detector dead time on the performance of optical direct-detection communication links
NASA Astrophysics Data System (ADS)
Chen, C.-C.
1988-05-01
Avalanche photodiodes (APDs) operating in the Geiger mode can provide a significantly improved single-photon detection sensitivity over conventional photodiodes. However, the quenching circuit required to remove the excess charge carriers after each photon event can introduce an undesirable dead time into the detection process. The effect of this detector dead time on the performance of a binary pulse-position-modulated (PPM) channel is studied by analyzing the error probability. It is shown that, when background noise is negligible, the performance of the detector with dead time is similar to that of a quantum-limited receiver. For systems with increasing background intensities, the error rate of the receiver starts to degrade rapidly with increasing dead time. The power penalty due to detector dead time is also evaluated and shown to depend critically on badkground intensity as well as dead time. Given the expected background strength in an optical channel, therefore, a constraint must be placed on the bandwidth of the receiver to limit the amount of power penalty due to detector dead time.
Optical fiber dispersion characterization study
NASA Technical Reports Server (NTRS)
Geeslin, A.; Arriad, A.; Riad, S. M.; Padgett, M. E.
1979-01-01
The theory, design, and results of optical fiber pulse dispersion measurements are considered. Both the hardware and software required to perform this type of measurement are described. Hardware includes a thermoelectrically cooled injection laser diode source, an 800 GHz gain bandwidth produce avalanche photodiode and an input mode scrambler. Software for a HP 9825 computer includes fast Fourier transform, inverse Fourier transform, and optimal compensation deconvolution. Test set construction details are also included. Test results include data collected on a 1 Km fiber, a 4 Km fiber, a fused spliced, eight 600 meter length fibers concatenated to form 4.8 Km, and up to nine optical connectors.
NASA Astrophysics Data System (ADS)
Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Asamura, Kazushi; Hirahara, Masafumi; Shibano, Yasuko; Takashima, Takeshi
2018-05-01
The medium-energy particle experiments—electron analyzer onboard the exploration of energization and radiation in geospace spacecraft measures the energy and direction of each incoming electron in the energy range of 7-87 keV. The sensor covers a 2 π-radian disklike field of view with 16 detectors, and the full solid angle coverage is achieved through the spacecraft's spin motion. The electron energy is independently measured by both an electrostatic analyzer and avalanche photodiodes, enabling significant background reduction. We describe the technical approach, data output, and examples of initial observations.[Figure not available: see fulltext.
Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications
NASA Astrophysics Data System (ADS)
Dumas, A.; Rothman, J.; Gibert, F.; Lasfargues, G.; Zanatta, J.-P.; Edouart, D.
2016-06-01
In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD) detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm). This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA). A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli
1992-01-01
The performance of a 220 Mbps quaternary pulse position modulation (QPPM) optical communication receiver with a 'Slik' silicon avalanche photodiode (APD) and a wideband transimpedance preamplifier in a small hybrid circuit module was measured. The receiver performance had been poor due to the lack of a wideband and low noise transimpedance preamplifier. With the new APB preamplifier module, the receiver achieved a bit error rate (BER) of 10 exp -6 at an average received input optical signal power of 4.2 nW, which corresponds to an average of 80 received (incident) signal photons per information bit.
Laser damage helps the eavesdropper in quantum cryptography.
Bugge, Audun Nystad; Sauge, Sebastien; Ghazali, Aina Mardhiyah M; Skaar, Johannes; Lydersen, Lars; Makarov, Vadim
2014-02-21
We propose a class of attacks on quantum key distribution (QKD) systems where an eavesdropper actively engineers new loopholes by using damaging laser illumination to permanently change properties of system components. This can turn a perfect QKD system into a completely insecure system. A proof-of-principle experiment performed on an avalanche photodiode-based detector shows that laser damage can be used to create loopholes. After ∼1 W illumination, the detectors' dark count rate reduces 2-5 times, permanently improving single-photon counting performance. After ∼1.5 W, the detectors switch permanently into the linear photodetection mode and become completely insecure for QKD applications.
The Electromagnetic Calorimeter of the future PANDA Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novotny, Rainer
2006-10-27
Experiments with a cooled antiproton beam at the future accelerator facility FAIR at GSI, Darmstadt, will be performed with the 4{pi} detector PANDA comprising a high resolution, compact and fast homogeneous electromagnetic calorimeter to detect photons between 10MeV and 10GeV energy inside a superconducting solenoid (2T). The target calorimeter comprises more than 20,000 PbWO4 crystals of significantly enhanced quality read-out with large area avalanche photodiodes at an operating temperature of -25 degree sign C. The paper describes the quality of PWO-II and illustrates the future performance based on response measurements with high-energy photons.
In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.
2014-01-01
The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.
Neutron detector using sol-gel absorber
Hiller, John M.; Wallace, Steven A.; Dai, Sheng
1999-01-01
An neutron detector composed of fissionable material having ions of lithium, uranium, thorium, plutonium, or neptunium, contained within a glass film fabricated using a sol-gel method combined with a particle detector is disclosed. When the glass film is bombarded with neutrons, the fissionable material emits fission particles and electrons. Prompt emitting activated elements yielding a high energy electron contained within a sol-gel glass film in combination with a particle detector is also disclosed. The emissions resulting from neutron bombardment can then be detected using standard UV and particle detection methods well known in the art, such as microchannel plates, channeltrons, and silicon avalanche photodiodes.
Efficient entanglement distribution over 200 kilometers.
Dynes, J F; Takesue, H; Yuan, Z L; Sharpe, A W; Harada, K; Honjo, T; Kamada, H; Tadanaga, O; Nishida, Y; Asobe, M; Shields, A J
2009-07-06
Here we report the first demonstration of entanglement distribution over a record distance of 200 km which is of sufficient fidelity to realize secure communication. In contrast to previous entanglement distribution schemes, we use detection elements based on practical avalanche photodiodes (APDs) operating in a self-differencing mode. These APDs are low-cost, compact and easy to operate requiring only electrical cooling to achieve high single photon detection efficiency. The self-differencing APDs in combination with a reliable parametric down-conversion source demonstrate that entanglement distribution over ultra-long distances has become both possible and practical. Consequently the outlook is extremely promising for real world entanglement-based communication between distantly separated parties.
Quantum key distribution with 1.25 Gbps clock synchronization.
Bienfang, J; Gross, A; Mink, A; Hershman, B; Nakassis, A; Tang, X; Lu, R; Su, D; Clark, Charles; Williams, Carl; Hagley, E; Wen, Jesse
2004-05-03
We have demonstrated the exchange of sifted quantum cryptographic key over a 730 meter free-space link at rates of up to 1.0 Mbps, two orders of magnitude faster than previously reported results. A classical channel at 1550 nm operates in parallel with a quantum channel at 845 nm. Clock recovery techniques on the classical channel at 1.25 Gbps enable quantum transmission at up to the clock rate. System performance is currently limited by the timing resolution of our silicon avalanche photodiode detectors. With improved detector resolution, our technique will yield another order of magnitude increase in performance, with existing technology.
AlInAsSb/GaSb staircase avalanche photodiode
NASA Astrophysics Data System (ADS)
Ren, Min; Maddox, Scott; Chen, Yaojia; Woodson, Madison; Campbell, Joe C.; Bank, Seth
2016-02-01
Over 30 years ago, Capasso and co-workers [IEEE Trans. Electron Devices 30, 381 (1982)] proposed the staircase avalanche photodetector (APD) as a solid-state analog of the photomultiplier tube. In this structure, electron multiplication occurs deterministically at steps in the conduction band profile, which function as the dynodes of a photomultiplier tube, leading to low excess multiplication noise. Unlike traditional APDs, the origin of staircase gain is band engineering rather than large applied electric fields. Unfortunately, the materials available at the time, principally AlxGa1-xAs/GaAs, did not offer sufficiently large conduction band offsets and energy separations between the direct and indirect valleys to realize the full potential of the staircase gain mechanism. Here, we report a true staircase APD operation using alloys of a rather underexplored material, AlxIn1-xAsySb1-y, lattice-matched to GaSb. Single step "staircase" devices exhibited a constant gain of ˜2×, over a broad range of applied bias, operating temperature, and excitation wavelengths/intensities, consistent with Monte Carlo calculations.
Photovoltaic retinal prosthesis for restoring sight to the blind: implant design and fabrication
NASA Astrophysics Data System (ADS)
Wang, Lele; Mathieson, Keith; Kamins, Theodore I.; Loudin, James; Galambos, Ludwig; Harris, James S.; Palanker, Daniel
2012-03-01
We have designed and fabricated a silicon photodiode array for use as a subretinal prosthesis aimed at restoring sight to patients who lost photoreceptors due to retinal degeneration. The device operates in photovoltaic mode. Each pixel in the two-dimensional array independently converts pulsed infrared light into biphasic electric current to stimulate remaining retinal neurons without a wired power connection. To enhance the maximum voltage and charge injection levels, each pixel contains three photodiodes connected in series. An active and return electrode in each pixel ensure localized current flow and are sputter coated with iridium oxide to provide high charge injection. The fabrication process consists of eight mask layers and includes deep reactive ion etching, oxidation, and a polysilicon trench refill for in-pixel photodiode separation and isolation of adjacent pixels. Simulation of design parameters included TSUPREM4 computation of doping profiles for n+ and p+ doped regions and MATLAB computation of the anti-reflection coating layers thicknesses. The main process steps are illustrated in detail, and problems encountered are discussed. The IV characterization of the device shows that the dark reverse current is on the order of 10-100 pA-negligible compared to the stimulation current; the reverse breakdown voltage is higher than 20 V. The measured photo-responsivity per photodiode is about 0.33A/W at 880 nm.
Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays
NASA Astrophysics Data System (ADS)
Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.
1994-07-01
Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.
Hewala, Ismail; El-Fatatry, Hamed; Emam, Ehab; Mabrouk, Mokhtar
2011-01-01
A simple, rapid, and sensitive RP-HPLC method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron), sodium benzoate, methylparaben, propylparaben, and 4-hydroxybenzoic acid (the main degradation product of parabens) in granisetron oral drops and solutions. The separation of the compounds was achieved within 8 min on a SymmetryShield RP18 column (100 x 4.6 mm id, 3.5 microm particle size) using the mobile phase acetonitrile--0.05 M KH2PO4 buffered to pH 3 using H3PO4 (3+7, v/v). The photodiode array detector was used to test the purity of the peaks, and the chromatograms were extracted at 240 nm. The method was validated, and validation acceptance criteria were met in all cases. The robust method was successfully applied to the determination of granisetron and preservatives, as well as their degradation products in different batches of granisetron oral drops and solutions. The method proved to be sensitive for determination down to 0.04% (w/w) of granisetron degradation product relative to granisetron and 0.03% (w/w) 4-hydroxybenzoic acid relative to total parabens.
Luo, Zuliang; Kong, Weijun; Qiu, Feng; Yang, Meihua; Li, Qian; Wei, Riwei; Yang, Xiaoli; Qin, Jieping
2013-02-01
A simple and sensitive HPLC coupled with photodiode array (HPLC-PDA) method was developed for simultaneous determination of seven lignans in Justicia procumbens using relative response factors (RRFs). The chromatographic separation was performed on a Shiseido Capcell Pak C(18) column (250 × 4.6 mm id, 5 μm), a gradient elution of acetonitrile/water, and a photodiode array detector. The column temperature was maintained at 35°C and the detection wavelength was set at 256 nm. Chinensinaphthol methyl ether was selected as the reference compound for calculating the relative response factors of the lignans. It has shown that the RRFs for lignans are quite similar at 256 nm of detection under different analytical conditions (different columns and HPLC instruments). Using RRFs, not every lignan is needed as a reference standard, making the method ideal for rapid, routine analysis, especially for those laboratories where lignans standards are not readily available. An economic and practicable HPLC method using RRFs was established for the determination of seven lignans in J. procumbens. This method not only can determine multiple indexes in traditional Chinese medicines (TCMs) simultaneously, but also resolve the problem of lacking of chemical standards. It will be a good quality evaluation method and pattern for TCMs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Near Infrared Spectrometry of Clinically Significant Fatty Acids Using Multicomponent Regression
NASA Astrophysics Data System (ADS)
Kalinin, A. V.; Krasheninnikov, V. N.; Sviridov, A. P.; Titov, V. N.
2016-11-01
We have developed methods for determining the content of clinically important fatty acids (FAs), primarily saturated palmitic acid, monounsaturated oleic acid, and the sum of polyenoic fatty acids (eicosapentaenoic + docosahexaenoic), in oily media (food products and supplements, fish oils) using different types of near infrared (NIR) spectrometers: Fourier-transform, linear photodiode array, and Raman. Based on a calibration method (regression) by means of projections to latent structures, using standard samples of oil and fat mixtures, we have confirmed the feasibility of reliable and selective quantitative analysis of the above-indicated fatty acids. As a result of comparing the calibration models for Fourier-transform spectrometers in different parts of the NIR range (based on different overtones and combinations of fatty acid absorption), we have provided a basis for selection of the spectral range for a portable linear InGaAs-photodiode array spectrometer. In testing the calibrations of a linear InGaAs-photodiode array spectrometer which is a prototype for a portable instrument, for palmitic and oleic acids and also the sum of the polyenoic fatty acids we have achieved a multiple correlation coefficient of 0.89, 0.85, and 0.96 and a standard error of 0.53%, 1.43%, and 0.39% respectively. We have confirmed the feasibility of using Raman spectra to determine the content of the above-indicated fatty acids in media where water is present.
A fast high-precision six-degree-of-freedom relative position sensor
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan
2016-03-01
Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.
NASA Astrophysics Data System (ADS)
Ahn, Chang-Geun; Ah, Chil Seong; Kim, Tae-Youb; Park, Chan Woo; Yang, Jong-Heon; Kim, Ansoon; Sung, Gun Yong
2010-09-01
This paper introduces a photosensitive biosensor array system with a simple photodiode array that detects photocurrent changes caused by reactions between probe and target molecules. Using optical addressing, the addressing circuit on the array chip is removed for low-cost application, and real cell addressing is achieved using an externally located computer-controllable light-emitting diode array module. The fabricated biosensor array chip shows a good dynamic range of 1-100 ng/mL under prostate-specific antigen detection, with an on-chip resolution of roughly 1 ng/mL.
Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI
NASA Astrophysics Data System (ADS)
Harsha Maramraju, Sri; Smith, S. David; Junnarkar, Sachin S.; Schulz, Daniela; Stoll, Sean; Ravindranath, Bosky; Purschke, Martin L.; Rescia, Sergio; Southekal, Sudeepti; Pratte, Jean-François; Vaska, Paul; Woody, Craig L.; Schlyer, David J.
2011-04-01
We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.22 × 5 mm3) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [11C]raclopride and 2-deoxy-2-[18F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.
A Highly Sensitive Multi-Element HgCdTe E-APD Detector for IPDA Lidar Applications
NASA Technical Reports Server (NTRS)
Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James
2014-01-01
An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 lm cutoff HgCdTe 4 9 4 APD detector array with 80 micrometer pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 9 4 detector system was characterized at 77 K with a 1.55 micrometer wavelength, 1 microsecond wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with sigma/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz(exp 1/2) with a sigma/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 microsecond pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz(exp 1/2) at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.
Improved LabPET Detectors Using Lu1.8Gd0.2SiO5:Ce (LGSO) Scintillator Blocks
NASA Astrophysics Data System (ADS)
Bergeron, Mélanie; Pepin, Catherine M.; Cadorette, Jules; Loignon-Houle, Francis; Fontaine, Réjean; Lecomte, Roger
2015-02-01
The scintillator is one of the key building blocks that critically determine the physical performance of PET detectors. The quest for scintillation crystals with improved characteristics has been crucial in designing scanners with superior imaging performance. Recently, it was shown that the decay time constant of high lutetium content Lu1.8Gd0.2SiO5: Ce (LGSO) scintillators can be adjusted by varying the cerium concentration from 0.025 mol% to 0.75 mol%, thus providing interesting characteristics for phoswich detectors. The high light output (90%-120% NaI) and the improved spectral match of these scintillators with avalanche photodiode (APD) readout promise superior energy and timing resolutions. Moreover, their improved mechanical properties, as compared to conventional LGSO ( Lu0.4Gd1.6SiO5: Ce), make block array manufacturing readily feasible. To verify these assumptions, new phoswich block arrays made of LGSO-90%Lu with low and high mol% Ce concentrations were fabricated and assembled into modules dedicated to the LabPET scanner. Typical crystal decay time constants were 31 ns and 47 ns, respectively. Phoswich crystal identification performed using a digital pulse shape discrimination algorithm yielded an average 8% error. At 511 keV, an energy resolution of 17-21% was obtained, while coincidence timing resolution between 4.6 ns and 5.2 ns was achieved. The characteristics of this new LGSO-based phoswich detector module are expected to improve the LabPET scanner performance. The higher stopping power would increase the detection efficiency. The better timing resolution would also allow the use of a narrower coincidence window, thus minimizing the random event rate. Altogether, these two improvements will significantly enhance the noise equivalent count rate performance of an all LGSO-based LabPET scanner.
NASA Astrophysics Data System (ADS)
Johnson, J. B.; Marcillo, O. E.; Arechiga, R. O.; Johnson, R.; Edens, H. E.; Marshall, H.; Havens, S.; Waite, G. P.
2010-12-01
Volcanoes, lightning, and mass wasting events generate substantial infrasonic energy that propagates for long distances through the atmosphere with generally low intrinsic attenuation. Although such sources are often studied with regional infrasound arrays that provide important records of their occurrence, position, and relative magnitudes these signals recorded at tens to hundreds of kilometers are often significantly affected by propagation effects. Complex atmospheric structure, due to heterogeneous winds and temperatures, and intervening topography can be responsible for multi-pathing, signal attenuation, and focusing or, alternatively, information loss (i.e., a shadow zone). At far offsets, geometric spreading diminishes signal amplitude requiring low noise recording sites and high fidelity microphones. In contrast recorded excess pressures at local distances are much higher in amplitude and waveforms are more representative of source phenomena. We report on recent studies of volcanoes, thunder, and avalanches made with networks and arrays of infrasound sensors deployed local (within a few km) to the source. At Kilauea Volcano (Hawaii) we deployed a network of ~50 infrasound sensitive sensors (flat from 50 s to 50 Hz) to track the coherence of persistent infrasonic tremor signals in the near-field (out to a few tens of kilometers). During periods of high winds (> 5-10 m/s) we found significant atmospheric influence for signals recorded at stations only a few kilometers from the source. Such observations have encouraged us to conduct a range of volcano, thunder, and snow avalanche studies with networks of small infrasound arrays (~30 m aperture) deployed close to the source region. We present results from local microphone deployments (12 sensors) at Santiaguito Volcano (Guatemala) where we are able to precisely (~10 m resolution) locate acoustic sources from explosions and rock falls. We also present results from our thunder mapping acoustic arrays (15 sensors) in the Magdalena Mountains of New Mexico capable of mapping lightning channels more than 10 km in extent whose positions are corroborated by the radio wave detecting lightning mapping array. We also discuss the recent implementation of a network of snow avalanche detection arrays (12 sensors) in Idaho that are used to monitor and track and map infrasound produced by moving sources. We contend that local infrasound deployment is analogous to local seismic monitoring in that it enables precision localization and interpretation of source phenomena.
PET Performance Evaluation of an MR-Compatible PET Insert
Wu, Yibao; Catana, Ciprian; Farrell, Richard; Dokhale, Purushottam A.; Shah, Kanai S.; Qi, Jinyi; Cherry, Simon R.
2010-01-01
A magnetic resonance (MR) compatible positron emission tomography (PET) insert has been developed in our laboratory for simultaneous small animal PET/MR imaging. This system is based on lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiode (PSAPD) photodetectors. The PET performance of this insert has been measured. The average reconstructed image spatial resolution was 1.51 mm. The sensitivity at the center of the field of view (CFOV) was 0.35%, which is comparable to the simulation predictions of 0.40%. The average photopeak energy resolution was 25%. The scatter fraction inside the MRI scanner with a line source was 12% (with a mouse-sized phantom and standard 35 mm Bruker 1H RF coil), 7% (with RF coil only) and 5% (without phantom or RF coil) for an energy window of 350–650 keV. The front-end electronics had a dead time of 390 ns, and a trigger extension dead time of 7.32 μs that degraded counting rate performance for injected doses above ~0.75 mCi (28 MBq). The peak noise-equivalent count rate (NECR) of 1.27 kcps was achieved at 290 μCi (10.7 MBq). The system showed good imaging performance inside a 7-T animal MRI system; however improvements in data acquisition electronics and reduction of the coincidence timing window are needed to realize improved NECR performance. PMID:21072320
Iterative color-multiplexed, electro-optical processor.
Psaltis, D; Casasent, D; Carlotto, M
1979-11-01
A noncoherent optical vector-matrix multiplier using a linear LED source array and a linear P-I-N photodiode detector array has been combined with a 1-D adder in a feedback loop. The resultant iterative optical processor and its use in solving simultaneous linear equations are described. Operation on complex data is provided by a novel color-multiplexing system.
NASA Astrophysics Data System (ADS)
Isaak, S.; Bull, S.; Pitter, M. C.; Harrison, Ian.
2011-05-01
This paper reports on the development of a SPAD device and its subsequent use in an actively quenched single photon counting imaging system, and was fabricated in a UMC 0.18 μm CMOS process. A low-doped p- guard ring (t-well layer) encircling the active area to prevent the premature reverse breakdown. The array is a 16×1 parallel output SPAD array, which comprises of an active quenched SPAD circuit in each pixel with the current value being set by an external resistor RRef = 300 kΩ. The SPAD I-V response, ID was found to slowly increase until VBD was reached at excess bias voltage, Ve = 11.03 V, and then rapidly increase due to avalanche multiplication. Digital circuitry to control the SPAD array and perform the necessary data processing was designed in VHDL and implemented on a FPGA chip. At room temperature, the dark count was found to be approximately 13 KHz for most of the 16 SPAD pixels and the dead time was estimated to be 40 ns.
Hand-held optical fuel pin scanner
Kirchner, T.L.; Powers, H.G.
1980-12-07
An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.
Hand-held optical fuel pin scanner
Kirchner, Tommy L.; Powers, Hurshal G.
1987-01-01
An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.
Automatic detection of snow avalanches in continuous seismic data using hidden Markov models
NASA Astrophysics Data System (ADS)
Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat
2018-01-01
Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.
Evaluation of a satellite laser ranging technique using pseudonoise code modulated laser diodes
NASA Technical Reports Server (NTRS)
Ball, Carolyn Kay
1987-01-01
Several types of Satellite Laser Ranging systems exist, operating with pulsed, high-energy lasers. The distance between a ground point and an orbiting satellite can be determined to within a few centimeters. A new technique substitutes pseudonoise code modulated laser diodes, which are much more compact, reliable and less costly, for the lasers now used. Since laser diode technology is only now achieving sufficiently powerful lasers, the capabilities of the new technique are investigated. Also examined are the effects of using an avalanche photodiode detector instead of a photomultiplier tube. The influence of noise terms (including background radiation, detector dark and thermal noise and speckle) that limit the system range and performance is evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, Shunji; Zhang Xiaowei; Yoda, Yoshitaka
2007-01-19
A timing detector with silicon avalanche photodiodes (Si-APDs) has been developed for nuclear resonant scattering using synchrotron x-rays. The detector had four pairs of a germanium plate 0.1mm thick and a Si-APD (3 mm in dia., a depletion layer of 30-{mu}m thickness). Using synchrotron x-rays of 67.4 keV, the efficiency increased to 1.5% for the incident beam, while the efficiency was 0.76 % without the germanium converters. A measurement of SR-PAC on Ni-61 was executed by using the detector. Some other types of timing detectors are planned for x-rays of E>20 keV.
High-speed wavelength-division multiplexing quantum key distribution system.
Yoshino, Ken-ichiro; Fujiwara, Mikio; Tanaka, Akihiro; Takahashi, Seigo; Nambu, Yoshihiro; Tomita, Akihisa; Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Sasaki, Masahide; Tajima, Akio
2012-01-15
A high-speed quantum key distribution system was developed with the wavelength-division multiplexing (WDM) technique and dedicated key distillation hardware engines. Two interferometers for encoding and decoding are shared over eight wavelengths to reduce the system's size, cost, and control complexity. The key distillation engines can process a huge amount of data from the WDM channels by using a 1 Mbit block in real time. We demonstrated a three-channel WDM system that simultaneously uses avalanche photodiodes and superconducting single-photon detectors. We achieved 12 h continuous key generation with a secure key rate of 208 kilobits per second through a 45 km field fiber with 14.5 dB loss.
Improved Fake-State Attack to the Quantum Key Distribution Systems
NASA Astrophysics Data System (ADS)
Zhang, Sheng; Wang, Jian; Tang, Chao-jing
2012-09-01
It has been showed that most commercial quantum cryptosystems are vulnerable to the fake-state attacks, which employ the loophole that the avalanche photodiodes as single photon detectors still produce detection events in the linear mode. However, previous fake-state attacks may be easily prevented by either installing a watch dog or reconfiguring the dead-time assigning component. In this paper, we present a new technique to counteract the after-pulse effect ever enhanced by the fake-state attacks, in order to lower the quantum bit error rate. Obviously, it is more difficult to detect the presented attack scheme. Indeed, it contributes to promoting of implementing a secure quantum cryptosystem in real life.
Solar Power Satellite (SPS) fiber optic link assessment
NASA Technical Reports Server (NTRS)
1980-01-01
A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.
NASA Technical Reports Server (NTRS)
2006-01-01
A model of the optical properties of Al(x)Ga(1-x)As(y)Sb(1-y) and In(x)Ga(1-x)As(y)Sb(1-y) is presented, including the refractive, extinction, absorption and reflection coefficients in terms of the optical dielectric function of the materials. Energy levels and model parameters for each binary compound are interpolated to obtain the needed ternaries and quaternaries for various compositions. Bowing parameters are considered in the interpolation scheme to take into account the deviation of the calculated ternary and quaternary values from experimental data due to lattice disorders. The inclusion of temperature effects is currently being considered.
Measuring power loss due to radiation and charge exchange in MST
NASA Astrophysics Data System (ADS)
Waksman, Jeff; Chapman, Brett; Fiksel, Gennady; Nonn, Paul
2008-11-01
An array of photodiode-pyrobolometer pairs will be placed on MST to measure the spatial structure of the radiated power and charge exchange. Photodiodes (XUV detectors) measure photonic radiated power from about 10eV to 10keV, while pyrobolometers (thermal detectors) measure both photonic radiated power and power carried by charge-exchange neutrals. Compared to other thermal detectors, pyrobolometers have very good time resolution. To accurately calibrate the individual detectors, an electron gun producing a modulated square wave output has been set up to carefully calibrate each new pyrobolometer to be placed on MST. When viewing the MST plasma, subtraction of the data from the photodiode-pyrobolometer pairs allows one to determine the net power loss due to charge-exchange neutrals. These measurements are important in the calculation of ion energy balance, and it is potentially important in understanding the difference in the temperatures reached by majority and impurity ions during magnetic-reconnection ion-heating events. Since toroidal and poloidal asymmetries in charge exchange are possible, a distributed array of detector pairs will facilitate a better estimate of global power loss. Work supported by the U.S.D.O.E. .
NASA Astrophysics Data System (ADS)
Aldouri, Muthana; Aljunid, S. A.; Ahmad, R. Badlishah; Fadhil, Hilal A.
2011-06-01
In order to comprise between PIN photo detector and avalanche photodiodes in a system used double weight (DW) code to be a performance of the optical spectrum CDMA in FTTH network with point-to-multi-point (P2MP) application. The performance of PIN against APD is compared through simulation by using opt system software version 7. In this paper we used two networks designed as follows one used PIN photo detector and the second using APD photo diode, both two system using with and without erbium doped fiber amplifier (EDFA). It is found that APD photo diode in this system is better than PIN photo detector for all simulation results. The conversion used a Mach-Zehnder interferometer (MZI) wavelength converter. Also we are study, the proposing a detection scheme known as AND subtraction detection technique implemented with fiber Bragg Grating (FBG) act as encoder and decoder. This FBG is used to encode and decode the spectral amplitude coding namely double weight (DW) code in Optical Code Division Multiple Access (OCDMA). The performances are characterized through bit error rate (BER) and bit rate (BR) also the received power at various bit rate.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.
2011-01-01
This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or transmitted to a receiving station on Earth. By comparison of the short-circuit currents from the fluence-measuring photodiode and the reference photodiode, one can compute the accumulated atomic oxygen fluence arriving in the direction that the fluence monitor is pointing. The device produces a signal that is linear with atomic oxygen fluence using a material whose atomic oxygen erosion yield has been measured over a period of several years in low-Earth orbit.
Sub-electron read noise and millisecond full-frame readout with the near infrared eAPD array SAPHIRA
NASA Astrophysics Data System (ADS)
Finger, Gert; Baker, Ian; Alvarez, Domingo; Dupuy, Christophe; Ives, Derek; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Jörg; Weller, Harald J.
2016-07-01
In 2007 ESO started a program at SELEX (now LEONARDO) to develop noiseless near infrared HgCdTe electron avalanche photodiode arrays (eAPD)[1][2][3]. This eAPD technology is only way to overcome the limiting CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking. After several development cycles of solid state engineering techniques which can be easily applied to the chosen growth technology of metal organic vapour phase epitaxy (MOVPE), the eAPD arrays have matured and resulted in the SAPHIRA arrays. They have a format of 320x256 pixels with a pitch of 24 μm. They now offer an unmatched combination of sub-electron read noise at millisecond frame readout rates. The first generation of SAPHIRA arrays were only sensitive in H and K-band. With the removal of a wide bandgap buffer layer the arrays are now sensitive from λ=0.8 μm to 2.5 μm with high quantum efficiency over the entire wavelength range. The high temperature anneal applied during the growth process produces material with superb cosmetic quality at an APD gain of over 600. The design of the SAPHIRA ROIC has also been revised and the new ME1000 ROIC has an optimized analogue chain and more flexible readout modes. The clock for the vertical shift register is now under external control. The advantage of this is that correlated-double-sampling and uncorrelated readout in the rolling shutter mode now have a duty cycle of 100% at the maximum frame rate. Furthermore, to reduce the readout noise rows can be read several times before and after row reset. Since the APD gain is sufficiently high that one photon produces many more electrons than the square root of kTC which is the charge uncertainty after reset, signals of one photon per exposure can be easily detected without the need for double correlated sampling. First results obtained with the fringe tracker in GRAVITY and the four SAPHIRA wavefront sensors installed in the CIAO adaptive optics systems of the four 8 meter telescopes of the VLTI have proven the unrivaled performance of the SAPHIRA eAPD technology. A future program is being assembled to develop eAPD arrays having a larger format of 1Kx1K capable of frame rates of 1.2 KHz. There are also good prospects to offer low dark current eAPD technology for large format science focal planes as well.
Kang, Jihoon; Choi, Yong
2016-07-01
Light sharing PET detector configuration coupled with thick light guide and Geiger-mode avalanche photodiode (GAPD) with large-area microcells was proposed to overcome the energy non-linearity problem and to obtain high light collection efficiency (LCE). A Monte-Carlo simulation was conducted for the three types of LSO block, 4 × 4 array of 3 × 3 × 20 mm(3) discrete crystals, 6 × 6 array of 2 × 2 × 20 mm(3) discrete crystals, and 12 × 12 array of 1 × 1 × 20 mm(3) discrete crystals, to investigate the scintillation light distribution after conversion of the γ-rays in LSO. The incident photons were read out by three types of 4 × 4 array photosensors, which were PSPMT of 25% quantum efficiency (QE), GAPD1 with 50 × 50 µm(2) microcells of 30% photon detection efficiency (PDE) and GAPD2 with 100 × 100 µm(2) of 45% PDE. The number of counted photons in each photosensor was analytically calculated. The LCE, linearity and flood histogram were examined for each PET detector module having 99 different configurations as a function of light guide thickness ranging from 0 to 10 mm. The performance of PET detector modules based on GAPDs was considerably improved by using the thick light guide. The LCE was increased from 24 to 30% and from 14 to 41%, and the linearity was also improved from 0.97 to 0.99 and from 0.75 to 0.99, for GAPD1 and GAPD2, respectively. As expected, the performance of PSPMT based detector did not change. The flood histogram of 12 × 12 array PET detector modules using 3 mm light guide coupled with GAPDs was obtained by simulation, and all crystals of 1 × 1 × 20 mm(3) size were clearly identified. PET detector module coupled with thick light guide and GAPD array with large-area microcells was proposed to obtain high QE and high spatial resolution, and its feasibility was verified. This study demonstrated that the overall PET performance of the proposed design was considerably improved, and this approach will provide opportunities to develop GAPD based PET detector with a high LCE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Why did we elaborate an entangled photons experiment in our engineering school?
NASA Astrophysics Data System (ADS)
Jacubowiez, Lionel; Avignon, Thierry
2005-10-01
We will describe a simple setup experiment that allows students to create polarization-entangled photons pairs. These photon pairs are in an entangled state first described in the famous 1935 article in Phys.Rev by Einstein-Podolsky-Rosen, often called E.P.R. state. Photons pairs at 810 nm are produced in two nonlinear crystals by spontaneous parametric downconversion of photons at 405 nm emitted by a violet laser diode. The polarization state of the photons pairs is easily tunable with a half-wave plate and a Babinet compensator on the laser diode beam. After having adjusted the polarization-entangled state of the photon pairs, our students can perform a test of Bell's inequalities. They will find the amazing value for the Bell parameter between 2.3 and 2.6, depending on the quality of the adjustments of the state of polarization. The experiments described can be done in 4 or 5 hours. What is the importance of creating an entangled photons experiment for our engineering students? First of all, entanglement concept is clearly one of the most strikingly nonclassical features of quantum theory and it is playing an increasing role in present-day physics. But in this paper, we will emphasise the experimental point of view. We will try to explain why we believe that for our students this lab experiment is a unique opportunity to deal with established concepts and experimental techniques on polarization, non linear effects, phase matching, photon counting avalanche photodiodes, counting statistics, coincidences detectors. Let us recall that the first convincing experimental violations of Bell's inequalities were performed by Alain Aspect and Philippe Grangier with pairs of entangled photons at the Institut d'Optique between 1976 and 1982. Twenty five years later, due to recent advances in laser diode technology, new techniques for generation of photon pairs and avalanche photodiodes, this experiment is now part of the experimental lab courses for our students.
Hybrid UV Imager Containing Face-Up AlGaN/GaN Photodiodes
NASA Technical Reports Server (NTRS)
Zheng, Xinyu; Pain, Bedabrata
2005-01-01
A proposed hybrid ultraviolet (UV) image sensor would comprise a planar membrane array of face-up AlGaN/GaN photodiodes integrated with a complementary metal oxide/semiconductor (CMOS) readout-circuit chip. Each pixel in the hybrid image sensor would contain a UV photodiode on the AlGaN/GaN membrane, metal oxide/semiconductor field-effect transistor (MOSFET) readout circuitry on the CMOS chip underneath the photodiode, and a metal via connection between the photodiode and the readout circuitry (see figure). The proposed sensor design would offer all the advantages of comparable prior CMOS active-pixel sensors and AlGaN UV detectors while overcoming some of the limitations of prior (AlGaN/sapphire)/CMOS hybrid image sensors that have been designed and fabricated according to the methodology of flip-chip integration. AlGaN is a nearly ideal UV-detector material because its bandgap is wide and adjustable and it offers the potential to attain extremely low dark current. Integration of AlGaN with CMOS is necessary because at present there are no practical means of realizing readout circuitry in the AlGaN/GaN material system, whereas the means of realizing readout circuitry in CMOS are well established. In one variant of the flip-chip approach to integration, an AlGaN chip on a sapphire substrate is inverted (flipped) and then bump-bonded to a CMOS readout circuit chip; this variant results in poor quantum efficiency. In another variant of the flip-chip approach, an AlGaN chip on a crystalline AlN substrate would be bonded to a CMOS readout circuit chip; this variant is expected to result in narrow spectral response, which would be undesirable in many applications. Two other major disadvantages of flip-chip integration are large pixel size (a consequence of the need to devote sufficient area to each bump bond) and severe restriction on the photodetector structure. The membrane array of AlGaN/GaN photodiodes and the CMOS readout circuit for the proposed image sensor would be fabricated separately.
Investigating a Drop-on-Demand Microdispenser for Standardized Sample Preparation
2011-09-01
including the printing of photodiodes , polymer and protein arrays , and in electronics manufacturing (4–7). These applications benefit from the wide...photograph of an array of microdroplets demonstrates a more even sample dispersion when sample is dispensed with a DOD microdispenser... threats encountered. A variety of techniques that offer temporary alternatives have been employed, including drop-and-dry (dropcasting) and spray
Ionizing radiation effects on CMOS imagers manufactured in deep submicron process
NASA Astrophysics Data System (ADS)
Goiffon, Vincent; Magnan, Pierre; Bernard, Frédéric; Rolland, Guy; Saint-Pé, Olivier; Huger, Nicolas; Corbière, Franck
2008-02-01
We present here a study on both CMOS sensors and elementary structures (photodiodes and in-pixel MOSFETs) manufactured in a deep submicron process dedicated to imaging. We designed a test chip made of one 128×128-3T-pixel array with 10 μm pitch and more than 120 isolated test structures including photodiodes and MOSFETs with various implants and different sizes. All these devices were exposed to ionizing radiation up to 100 krad and their responses were correlated to identify the CMOS sensor weaknesses. Characterizations in darkness and under illumination demonstrated that dark current increase is the major sensor degradation. Shallow trench isolation was identified to be responsible for this degradation as it increases the number of generation centers in photodiode depletion regions. Consequences on hardness assurance and hardening-by-design are discussed.
Atomic line emission analyzer for hydrogen isotopes
Kronberg, J.W.
1993-03-30
Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.
Atomic line emission analyzer for hydrogen isotopes
Kronberg, J.W.
1991-05-08
Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using, a metal hydride.
Atomic line emission analyzer for hydrogen isotopes
Kronberg, James W.
1993-01-01
Apparatus for isotopic analysis of hydrogen comprises a low pressure chamber into which a sample of hydrogen is introduced and then exposed to an electrical discharge to excite the electrons of the hydrogen atoms to higher energy states and thereby cause the emission of light on the return to lower energy states, a Fresnel prism made at least in part of a material anomalously dispersive to the wavelengths of interest for dispersing the emitted light, and a photodiode array for receiving the dispersed light. The light emitted by the sample is filtered to pass only the desired wavelengths, such as one of the lines of the Balmer series for hydrogen, the wavelengths of which differ slightly from one isotope to another. The output of the photodiode array is processed to determine the relative amounts of each isotope present in the sample. Additionally, the sample itself may be recovered using a metal hydride.
NASA Astrophysics Data System (ADS)
Yusoff, M. M.; Mamat, M. H.; Malek, M. F.; Abdullah, M. A. R.; Ismail, A. S.; Saidi, S. A.; Mohamed, R.; Suriani, A. B.; Khusaimi, Z.; Rusop, M.
2018-05-01
Titanium dioxide (TiO2) nanorod arrays (TNAs) were synthesized and deposited on fluorine tin oxide (FTO)-coated glass substrate using a novel and facile immersion method in a glass container. The synthesis and deposition of p-type nickel oxide (NiO) nanosheets (NS) on the n-type TNAs was investigated in the p-n heterojunction photodiode (PD) for the application of ultraviolet (UV) photosensor. The fabricated TNAs/NiO NS based UV photosensor exhibited a highly increased photocurrent of 4.3 µA under UV radiation (365 nm, 750 µW/cm2) at 1.0 V reverse bias. In this study, the fabricated TNAs/NiO NS p-n heterojunction based photodiode showed potential applications for UV photosensor based on the stable photo-generated current attained under UV radiation.
Zhang, Hongmin; Chen, Shiwei; Qin, Feng; Huang, Xi; Ren, Ping; Gu, Xinqi
2008-12-15
An HPLC-photodiode array (PDA) detection method was established for the simultaneous determination of 12 components in Xiao-Yao-San-Jia-Wei (XYSJW): geniposide, puerarin, paeoniflorin, ferulic acid, liquiritin, hesperidin, naringin, paeonol, daidzein, glycyrrhizic acid, honokiol, and magnolol. These were separated in less than 70 min using a Waters Symmetry Shield RP 18 column with gradient elution using (A) acetonitrile, (B) water, and (C) acetic acid at a flow rate of 1 ml/min, and with a PDA detector. All calibration curves showed good linear regression (r(2)>0.9992) within the test ranges. The method was validated for specificity, accuracy, precision, and limits of detection. The proposed method enables in a single run the simultaneous identification and determination for quality control of 12 multi-structural components of XYSJW forming the basis of its therapeutic effect.
NASA Astrophysics Data System (ADS)
Gordon, Jared
Optical pyrometry is the sensing of thermal radiation emitted from an object using a photoconductive device to convert photons into electrons, and is an important diagnostic tool in shock physics experiments. Data obtained from an optical pyrometer can be used to generate a blackbody curve of the material prior to and after being shocked by a high speed projectile. The sensing element consists of an InGaAs photodiode array, biasing circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from the noisy dark current into a signal that can eventually be digitized. Once the circuit elements have been defined, more often than not commercial-off-the-shelf (COTS) components are inadequate to satisfy every requirement for the diagnostic, and therefore a custom application specific design has to be considered. This thesis outlines the initial challenges with integrating the photodiode array block with multiple COTS transimpedance amplifiers onto a single chip, and offers a solution to a comparable optical pyrometer that uses the same type of photodiodes in conjunction with a re-designed transimpedance amplifier integrated onto a single chip. The final design includes a thorough analysis of the transimpedance amplifier along with modeling the circuit behavior which entails schematics, simulations, and layout. An alternative circuit is also investigated that incorporates an approach to multiplex the signals from each photodiode onto one data line and not only increases the viable real estate on the chip, but also improves the behavior of the photodiodes as they are subjected to less thermal load. The optical pyrometer application specific integrated circuit (ASIC) for shock physic experiments includes a transimpedance amplifier (TIA) with a 100 kΩ gain operating at bandwidth of 30 MHz, and an input-referred noise RMS current of 50 nA that is capable of driving a 50 Ω load.
Positron Emission Tomography: Principles, Technology, and Recent Developments
NASA Astrophysics Data System (ADS)
Ziegler, Sibylle I.
2005-04-01
Positron emission tomography (PET) is a nuclear medical imaging technique for quantitative measurement of physiologic parameters in vivo (an overview of principles and applications can be found in [P.E. Valk, et al., eds. Positron Emission Tomography. Basic Science and Clinical Practice. 2003, Springer: Heidelberg]), based on the detection of small amounts of posi-tron-emitter-labelled biologic molecules. Various radiotracers are available for neuro-logical, cardiological, and oncological applications in the clinic and in research proto-cols. This overview describes the basic principles, technology, and recent develop-ments in PET, followed by a section on the development of a tomograph with ava-lanche photodiodes dedicated for small animal imaging as an example of efforts in the domain of high resolution tomographs.
Implementation and validation of a CubeSat laser transmitter
NASA Astrophysics Data System (ADS)
Kingsbury, R. W.; Caplan, D. O.; Cahoy, K. L.
2016-03-01
The paper presents implementation and validation results for a CubeSat-scale laser transmitter. The master oscillator power amplifier (MOPA) design produces a 1550 nm, 200mW average power optical signal through the use of a directly modulated laser diode and a commercial fiber amplifier. The prototype design produces high-fidelity M-ary pulse position modulated (PPM) waveforms (M=8 to 128), targeting data rates > 10 Mbit/s while meeting a constraining 8W power allocation. We also present the implementation of an avalanche photodiode (APD) receiver with measured transmitter-to-receiver performance within 3 dB of theory. Via loopback, the compact receiver design can provide built-in self-test and calibration capabilities, and supports incremental on-orbit testing of the design.
Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency
NASA Astrophysics Data System (ADS)
Korzh, B.; Walenta, N.; Lunghi, T.; Gisin, N.; Zbinden, H.
2014-02-01
We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of -110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.
Wang, Hao; Yu, Can; Wei, Xu; Gao, Zhenhua; Xu, Guang Lei; Sun, Da Rui; Li, Zhenjie; Zhou, Yangfan; Li, Qiu Ju; Zhang, Bing Bing; Xu, Jin Qiang; Wang, Lin; Zhang, Yan; Tan, Ying Lei; Tao, Ye
2017-05-01
A new setup and commissioning of transient X-ray absorption spectroscopy are described, based on the high-repetition-rate laser pump/X-ray probe method, at the 1W2B wiggler beamline at the Beijing Synchrotron Radiation Facility. A high-repetition-rate and high-power laser is incorporated into the setup with in-house-built avalanche photodiodes as detectors. A simple acquisition scheme was applied to obtain laser-on and laser-off signals simultaneously. The capability of picosecond transient X-ray absorption spectroscopy measurement was demonstrated for a photo-induced spin-crossover iron complex in 6 mM solution with 155 kHz repetition rate.
NASA Astrophysics Data System (ADS)
Diamanti, Eleni; Takesue, Hiroki; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa
2006-12-01
We present a quantum key distribution experiment in which keys that were secure against all individual eavesdropping attacks allowed by quantum mechanics were distributed over 100 km of optical fiber. We implemented the differential phase shift quantum key distribution protocol and used low timing jitter 1.55 µm single-photon detectors based on frequency up-conversion in periodically poled lithium niobate waveguides and silicon avalanche photodiodes. Based on the security analysis of the protocol against general individual attacks, we generated secure keys at a practical rate of 166 bit/s over 100 km of fiber. The use of the low jitter detectors also increased the sifted key generation rate to 2 Mbit/s over 10 km of fiber.
Extracting functionally feedforward networks from a population of spiking neurons
Vincent, Kathleen; Tauskela, Joseph S.; Thivierge, Jean-Philippe
2012-01-01
Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABAA receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits. PMID:23091458
Extracting functionally feedforward networks from a population of spiking neurons.
Vincent, Kathleen; Tauskela, Joseph S; Thivierge, Jean-Philippe
2012-01-01
Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABA(A) receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits.
Semiconductor radiation detector with internal gain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwanczyk, Jan; Patt, Bradley E.; Vilkelis, Gintas
An avalanche drift photodetector (ADP) incorporates extremely low capacitance of a silicon drift photodetector (SDP) and internal gain that mitigates the surface leakage current noise of an avalanche photodetector (APD). The ADP can be coupled with scintillators such as CsI(Tl), NaI(Tl), LSO or others to form large volume scintillation type gamma ray detectors for gamma ray spectroscopy, photon counting, gamma ray counting, etc. Arrays of the ADPs can be used to replace the photomultiplier tubes (PMTs) used in conjunction with scintillation crystals in conventional gamma cameras for nuclear medical imaging.
El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A.; Lu, Jeng-Ping
2009-01-01
Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and∕or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of ∼10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of ∼560 e (rms) for PSI-3. PMID:19673229
El-Mohri, Youcef; Antonuk, Larry E; Koniczek, Martin; Zhao, Qihua; Li, Yixin; Street, Robert A; Lu, Jeng-Ping
2009-07-01
Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of approximately 10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of approximately 560 e (rms) for PSI-3.
Scheuermann, James R; Howansky, Adrian; Hansroul, Marc; Léveillé, Sébastien; Tanioka, Kenkichi; Zhao, Wei
2018-02-01
We present the first prototype Scintillator High-Gain Avalanche Rushing Photoconductor Active Matrix Flat Panel Imager (SHARP-AMFPI). This detector includes a layer of avalanche amorphous Selenium (a-Se) (HARP) as the photoconductor in an indirect detector to amplify the signal and reduce the effects of electronic noise to obtain quantum noise-limited images for low-dose applications. It is the first time avalanche a-Se has been used in a solid-state imaging device and poses as a possible solution to eliminate the effects of electronic noise, which is crucial for low-dose imaging performance of AMFPI. We successfully deposited a solid-state HARP structure onto a 24 × 30 cm 2 array of thin-film transistors (TFT array) with a pixel pitch of 85 μm. The HARP layer consists of 16 μm of a-Se with a hole-blocking and electron-blocking layer to prevent charge injection from the high-voltage bias and pixel electrodes, respectively. An electric field (E S e ) up to 105 V μm -1 was applied across the a-Se layer without breakdown. A 150 μm thick-structured CsI:Tl scintillator was used to form SHARP-AMFPI. The x-ray imaging performance is characterized using a 30 kVp Mo/Mo beam. We evaluate the spatial resolution, noise power, and detective quantum efficiency at zero frequency of the system with and without avalanche gain. The results are analyzed using cascaded linear system model (CLSM). An avalanche gain of 76 ± 5 was measured at E S e = 105 V μm -1 . We demonstrate that avalanche gain can amplify the signal to overcome electronic noise. As avalanche gain is increased, image quality improves for a constant (0.76 mR) exposure until electronic noise is overcome. Our system is currently limited by poor optical transparency of our high-voltage electrode and long integrating time which results in dark current noise. These two effects cause high-spatial frequency noise to dominate imaging performance. We demonstrate the feasibility of a solid-state HARP x-ray imager and have fabricated the largest active area HARP sensor to date. Procedures to reduce secondary quantum and dark noise are outlined. Future work will improve optical coupling and charge transport which will allow for frequency DQE and temporal metrics to be obtained. © 2017 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Yang, Guang; Ortiz, Monico; Wrigley, Christopher; Hancock, Bruce; Cunningham, Thomas
2000-01-01
Noise in photodiode-type CMOS active pixel sensors (APS) is primarily due to the reset (kTC) noise at the sense node, since it is difficult to implement in-pixel correlated double sampling for a 2-D array. Signal integrated on the photodiode sense node (SENSE) is calculated by measuring difference between the voltage on the column bus (COL) - before and after the reset (RST) is pulsed. Lower than kTC noise can be achieved with photodiode-type pixels by employing "softreset" technique. Soft-reset refers to resetting with both drain and gate of the n-channel reset transistor kept at the same potential, causing the sense node to be reset using sub-threshold MOSFET current. However, lowering of noise is achieved only at the expense higher image lag and low-light-level non-linearity. In this paper, we present an analysis to explain the noise behavior, show evidence of degraded performance under low-light levels, and describe new pixels that eliminate non-linearity and lag without compromising noise.
Nishi, Hidetaka; Tsuchizawa, Tai; Kou, Rai; Shinojima, Hiroyuki; Yamada, Takashi; Kimura, Hideaki; Ishikawa, Yasuhiko; Wada, Kazumi; Yamada, Koji
2012-04-09
On the silicon (Si) photonic platform, we monolithically integrated a silica-based arrayed-waveguide grating (AWG) and germanium (Ge) photodiodes (PDs) using low-temperature fabrication technology. We confirmed demultiplexing by the AWG, optical-electrical signal conversion by Ge PDs, and high-speed signal detection at all channels. In addition, we mounted a multichannel transimpedance amplifier/limiting amplifier (TIA/LA) circuit on the fabricated AWG-PD device using flip-chip bonding technology. The results show the promising potential of our Si photonic platform as a photonics-electronics convergence.
Synchronous OEIC Integrating Receiver for Optically Reconfigurable Gate Arrays.
Sánchez-Azqueta, Carlos; Goll, Bernhard; Celma, Santiago; Zimmermann, Horst
2016-05-25
A monolithically integrated optoelectronic receiver with a low-capacitance on-chip pin photodiode is presented. The receiver is fabricated in a 0.35 μm opto-CMOS process fed at 3.3 V and due to the highly effective integrated pin photodiode it operates at μW. A regenerative latch acting as a sense amplifier leads in addition to a low electrical power consumption. At 400 Mbit/s, sensitivities of -26.0 dBm and -25.5 dBm are achieved, respectively, for λ = 635 nm and λ = 675 nm (BER = 10(-9) ) with an energy efficiency of 2 pJ/bit.
Design of Low Power CMOS Read-Out with TDI Function for Infrared Linear Photodiode Array Detectors
NASA Technical Reports Server (NTRS)
Vizcaino, Paul; Ramirez-Angulo, Jaime; Patel, Umesh D.
2007-01-01
A new low voltage CMOS infrared readout circuit using the buffer-direct injection method is presented. It uses a single supply voltage of 1.8 volts and a bias current of 1uA. The time-delay integration technique is used to increase the signal to noise ratio. A current memory circuit with faulty diode detection is used to remove dark current for background compensation and to disable a photodiode in a cell if detected as faulty. Simulations are shown that verify the circuit that is currently in fabrication in 0.5ym CMOS technology.
NASA Astrophysics Data System (ADS)
Girish, B. S.; Pandey, Deepak; Ramachandran, Hema
2017-08-01
We present a compact, inexpensive multichannel module, APODAS (Avalanche Photodiode Output Data Acquisition System), capable of detecting 0.8 billion photons per second and providing real-time recording on a computer hard-disk, of channel- and time-tagged information of the arrival of upto 0.4 billion photons per second. Built around a Virtex-5 Field Programmable Gate Array (FPGA) unit, APODAS offers a temporal resolution of 5 nanoseconds with zero deadtime in data acquisition, utilising an efficient scheme for time and channel tagging and employing Gigabit ethernet for the transfer of data. Analysis tools have been developed on a Linux platform for multi-fold coincidence studies and time-delayed intensity interferometry. As illustrative examples, the second-order intensity correlation function ( g 2) of light from two commonly used sources in quantum optics —a coherent laser source and a dilute atomic vapour emitting spontaneously, constituting a thermal source— are presented. With easy reconfigurability and with no restriction on the total record length, APODAS can be readily used for studies over various time scales. This is demonstrated by using APODAS to reveal Rabi oscillations on nanosecond time scales in the emission of ultracold atoms, on the one hand, and, on the other hand, to measure the second-order correlation function on the millisecond time scales from tailored light sources. The efficient and versatile performance of APODAS promises its utility in diverse fields, like quantum optics, quantum communication, nuclear physics, astrophysics and biology.
Research on APD-based non-line-of-sight UV communication system
NASA Astrophysics Data System (ADS)
Wang, Rongyang; Wang, Ling; Li, Chao; Zhang, Wenjing; Yuan, Yonggang; Xu, Jintong; Zhang, Yan; Li, Xiangyang
2010-10-01
In this paper, specific issues in designing an avalanche photodiode (APD)-based non-line-of-sight (NLOS) ultraviolet (UV) communication system are investigated. A proper wavelength of the UV LEDs and a system configuration should be considered carefully to assure the feasibility of this system. Using the single scattering model, the received optical power at the sensitive area of the APD can be calculated. According to the calculation, it revealed that the scattered ultraviolet signal level was very low; therefore, a post signal processing circuit was necessary. The authors put forward the key components of the circuit based on the compromise between signal bandwidth and gain. The performance of this circuit was evaluated by means of software simulation, and continued work was involved to improve its signal noise ratio (SNR). The transmitter used in this system was 365 nm UV LED array. Strictly speaking, this was not the practical outdoor UV communication system. Since the scattering coefficient of 365 nm UV only drops a little compared with solar blind UV, the research-grade UV communication could be carried out in a darkroom without a great influence. By combining an APD with a compound parabolic concentrator (CPC) optical system, the effective collection area and field of view (FOV) of the detector could be adjusted. Several issues were also raised to improve the performance of UV communication system, including using more powerful UV LEDs and choosing suitable modulation schemes.
Cross delay line sensor characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, Israel J; Remelius, Dennis K; Tiee, Joe J
There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recordingmore » space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.« less
Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems
NASA Astrophysics Data System (ADS)
Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste
2014-07-01
We report in this paper decisive advance on the detector development for the astronomical applications that require very fast operation. Since the CCD220 and OCAM2 major success, new detector developments started in Europe either for visible and IR wavelengths. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is ongoing. Another major AO wavefront sensing detector development concerns IR detectors based on Avalanche Photodiode (e- APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 320x255 8 outputs 30 microns IR array, sensitive from 0.4 to 3 microns, with less than 2 e readout noise at 1600 fps. A rectangular window can also be programmed to speed up even more the frame rate when the full frame readout is not required. The high QE response, in the range of 70%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed in the frame of this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 1600 fps has been measured with a 3 microns wavelength cut-off chip and a multiplication gain of 14 obtained with a limited photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations investigations using centroiding and FFT measurements were performed proving that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this cooled device without liquid nitrogen in very demanding environmental conditions. A successful test of this device was performed on sky on the PIONIER 4 telescopes beam combiner on the VLTi at ESOParanal in June 2014. First Light Imaging, which will commercialize a camera system using also APD infrared arrays in its proprietary wavefront sensor camera platform. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC, First Light Imaging). Funding is: Opticon FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI the French FUI (DGCIS), the FOCUS Labex and OSEO.
Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J; Rossman, George R
2016-02-01
We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.
Kirchner, Tommy L.; Powers, Hurshal G.
1983-01-01
An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.
Measuring Light Reflectance of BGO Crystal Surfaces
NASA Astrophysics Data System (ADS)
Janecek, Martin; Moses, William W.
2008-10-01
A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal's light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air-coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2pi of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 105:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.
Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology
NASA Astrophysics Data System (ADS)
Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael
2015-05-01
In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Wei; Li Dan; Reznik, Alla
2005-09-15
An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less
A new measuring machine in Paris
NASA Technical Reports Server (NTRS)
Guibert, J.; Charvin, P.
1984-01-01
A new photographic measuring machine is under construction at the Paris Observatory. The amount of transmitted light is measured by a linear array of 1024 photodiodes. Carriage control, data acquisition and on line processing are performed by microprocessors, a S.E.L. 32/27 computer, and an AP 120-B Array Processor. It is expected that a Schmidt telescope plate of size 360 mm square will be scanned in one hour with pixel size of ten microns.
SEM contour based metrology for microlens process studies in CMOS image sensor technologies
NASA Astrophysics Data System (ADS)
Lakcher, Amine; Ostrovsky, Alain; Le-Gratiet, Bertrand; Berthier, Ludovic; Bidault, Laurent; Ducoté, Julien; Jamin-Mornet, Clémence; Mortini, Etienne; Besacier, Maxime
2018-03-01
From the first digital cameras which appeared during the 70s to cameras of current smartphones, image sensors have undergone significant technological development in the last decades. The development of CMOS image sensor technologies in the 90s has been the main driver of the recent progresses. The main component of an image sensor is the pixel. A pixel contains a photodiode connected to transistors but only the photodiode area is light sensitive. This results in a significant loss of efficiency. To solve this issue, microlenses are used to focus the incident light on the photodiode. A microlens array is made out of a transparent material and has a spherical cap shape. To obtain this spherical shape, a lithography process is performed to generate resist blocks which are then annealed above their glass transition temperature (reflow). Even if the dimensions to consider are higher than in advanced IC nodes, microlenses are sensitive to process variability during lithography and reflow. A good control of the microlens dimensions is key to optimize the process and thus the performance of the final product. The purpose of this paper is to apply SEM contour metrology [1, 2, 3, 4] to microlenses in order to develop a relevant monitoring methodology and to propose new metrics to engineers to evaluate their process or optimize the design of the microlens arrays.
Synchronous OEIC Integrating Receiver for Optically Reconfigurable Gate Arrays
Sánchez-Azqueta, Carlos; Goll, Bernhard; Celma, Santiago; Zimmermann, Horst
2016-01-01
A monolithically integrated optoelectronic receiver with a low-capacitance on-chip pin photodiode is presented. The receiver is fabricated in a 0.35 μm opto-CMOS process fed at 3.3 V and due to the highly effective integrated pin photodiode it operates at μW. A regenerative latch acting as a sense amplifier leads in addition to a low electrical power consumption. At 400 Mbit/s, sensitivities of −26.0 dBm and −25.5 dBm are achieved, respectively, for λ = 635 nm and λ = 675 nm (BER = 10−9 ) with an energy efficiency of 2 pJ/bit. PMID:27231915
Optical radiation measurements II; Proceedings of the Meeting, Orlando, FL, Mar. 27, 28, 1989
NASA Astrophysics Data System (ADS)
Palmer, James M.
1989-09-01
The present conference discusses topics in the characterization of imaging radiometers, laboratory instrumentation, field and spacecraft instrumentation, and quantum and thermal standard detectors. Attention is given to UV radiometric imaging, dual-color radiometer imagery, a novel diode-array radiometer, a novel reference spectrophotometer, radiance calibration of spherical integrators, instrumentation for measurement of spectral goniometric reflectance, and a real-time IR background discrimination radiometer. Also discussed are a multichannel radiometer for atmosphere optical property measurements, the UV spectroradiometric output of a turbojet, characterizations of the Earth Radiation Budget Experiment scanning radiometers, total-radiation thermometry, future directions in Si photodiode self-calibration, and radiometric quality Ge photodiodes.
Advanced Atmospheric Water Vapor DIAL Detection System
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)
2000-01-01
Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.
NASA Technical Reports Server (NTRS)
Natarajan, Suresh; Gardner, C. S.
1987-01-01
Receiver timing synchronization of an optical Pulse-Position Modulation (PPM) communication system can be achieved using a phased-locked loop (PLL), provided the photodetector output is suitably processed. The magnitude of the PLL phase error is a good indicator of the timing error at the receiver decoder. The statistics of the phase error are investigated while varying several key system parameters such as PPM order, signal and background strengths, and PPL bandwidth. A practical optical communication system utilizing a laser diode transmitter and an avalanche photodiode in the receiver is described, and the sampled phase error data are presented. A linear regression analysis is applied to the data to obtain estimates of the relational constants involving the phase error variance and incident signal power.
Enhanced autocompensating quantum cryptography system.
Bethune, Donald S; Navarro, Martha; Risk, William P
2002-03-20
We have improved the hardware and software of our autocompensating system for quantum key distribution by replacing bulk optical components at the end stations with fiber-optic equivalents and implementing software that synchronizes end-station activities, communicates basis choices, corrects errors, and performs privacy amplification over a local area network. The all-fiber-optic arrangement provides stable, efficient, and high-contrast routing of the photons. The low-bit error rate leads to high error-correction efficiency and minimizes data sacrifice during privacy amplification. Characterization measurements made on a number of commercial avalanche photodiodes are presented that highlight the need for improved devices tailored specifically for quantum information applications. A scheme for frequency shifting the photons returning from Alice's station to allow them to be distinguished from backscattered noise photons is also described.
Long-distance entanglement-based quantum key distribution experiment using practical detectors.
Takesue, Hiroki; Harada, Ken-Ichi; Tamaki, Kiyoshi; Fukuda, Hiroshi; Tsuchizawa, Tai; Watanabe, Toshifumi; Yamada, Koji; Itabashi, Sei-Ichi
2010-08-02
We report an entanglement-based quantum key distribution experiment that we performed over 100 km of optical fiber using a practical source and detectors. We used a silicon-based photon-pair source that generated high-purity time-bin entangled photons, and high-speed single photon detectors based on InGaAs/InP avalanche photodiodes with the sinusoidal gating technique. To calculate the secure key rate, we employed a security proof that validated the use of practical detectors. As a result, we confirmed the successful generation of sifted keys over 100 km of optical fiber with a key rate of 4.8 bit/s and an error rate of 9.1%, with which we can distill secure keys with a key rate of 0.15 bit/s.
Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korzh, B., E-mail: Boris.Korzh@unige.ch; Walenta, N.; Lunghi, T.
We present a free-running single photon detector for telecom wavelengths based on a negative feedback avalanche photodiode (NFAD). A dark count rate as low as 1 cps was obtained at a detection efficiency of 10%, with an afterpulse probability of 2.2% for 20 μs of deadtime. This was achieved by using an active hold-off circuit and cooling the NFAD with a free-piston stirling cooler down to temperatures of −110 °C. We integrated two detectors into a practical, 625 MHz clocked quantum key distribution system. Stable, real-time key distribution in the presence of 30 dB channel loss was possible, yielding a secret key rate of 350 bps.
Scalability analysis methodology for passive optical interconnects in data center networks using PAM
NASA Astrophysics Data System (ADS)
Lin, R.; Szczerba, Krzysztof; Agrell, Erik; Wosinska, Lena; Tang, M.; Liu, D.; Chen, J.
2017-11-01
A framework is developed for modeling the fundamental impairments in optical datacenter interconnects, i.e., the power loss and the receiver noises. This framework makes it possible, to analyze the trade-offs between data rates, modulation order, and number of ports that can be supported in optical interconnect architectures, while guaranteeing that the required signal-to-noise ratios are satisfied. To the best of our knowledge, this important assessment methodology is not yet available. As a case study, the trade-offs are investigated for three coupler-based top-of-rack interconnect architectures, which suffer from serious insertion loss. The results show that using single-port transceivers with 10 GHz bandwidth, avalanche photodiode detectors, and quadratical pulse amplitude modulation, more than 500 ports can be supported.
Digital filter polychromator for Thomson scattering applications
NASA Astrophysics Data System (ADS)
Solokha, V.; Kurskiev, G.; Mukhin, E.; Tolstyakov, S.; Babinov, N.; Bazhenov, A.; Bukreev, I.; Dmitriev, A.; Kochergin, M.; Koval, A.; Litvinov, A.; Masyukevich, S.; Razdobarin, A.; Samsonov, D.; Semenov, V.; Solovey, V.; Chernakov, P.; Chernakov, Al; Chernakov, An
2018-02-01
Incoherent Thomson scattering diagnostics (TS) is a proven technique capable of reliable and robust instantaneous measurement of electron temperature (T e) and density (n e) local values in wide area of plasma physics experiments: from hall-effect thrusters to tokamaks and stellarators. The TS cross section is very low (˜ 6.7 × 10-30 m2), and the corresponding TS signals, measured in fusion experiments, are usually of ˜10-15 of incident power. This paper represents 6 (7) channel filter polychromator equipped with avalanche photodiodes and low-noise preamplifiers. The incorporated ADC system (5 GS/s, 12 bit) provides digital optical output preventing acquisition system from electromagnetic interferences. The calibration techniques and T e, n e with corresponding errors measured in Globus-M plasma are given for the digital polychromator test-bench.
Design of Thomson scattering diagnostic system on J-TEXT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yinan; Gao, Li, E-mail: gaoli@hust.edu.cn; Huang, Jiefeng
2016-11-15
An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT atmore » present and in the near future. A detailed description of the system design is presented in this paper.« less
NASA Astrophysics Data System (ADS)
Schroeder, Edward; Mauskopf, Philip; Pilyavsky, Genady; Sinclair, Adrian; Smith, Nathan; Bryan, Sean; Mani, Hamdi; Morozov, Dmitry; Berggren, Karl; Zhu, Di; Smirnov, Konstantin; Vakhtomin, Yuriy
2016-08-01
We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.
Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.
Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio
2016-01-01
The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.
Instrument for measuring dispersional distortions in optical fibers and cables
NASA Astrophysics Data System (ADS)
Alishev, Y. V.; Maryenko, A. A.; Smirnov, Y. V.; Uryadov, V. N.; Sinkevich, V. I.
1985-03-01
An instrument was developed and built for measuring the dispersional distortions in optical fibers and cables on the basis of pulse widening. The instrument consists of a laser as a light source, a master oscillator, an optical transmitter, an optical shunt with mode mixer, an optical receiver, a fiber length measuring device, a smoothly adjustable delay line, and a stroboscopic oscillograph. The optical transmitter contains a semiconductor laser with GaAs-GaAlAs diheterostructure and modulator with pulse generating avalanche-breakdown transistors. The optical receiver contains a germanium photodiode with internal amplification and photoreceiver amplifier with microwave bipolar germanium transistors. Matching of the instrument to the tested fiber line is done by passing radiation into the latter from an auxiliary small He-Ne laser through a directional coupler.
Hacking commercial quantum cryptography systems by tailored bright illumination
NASA Astrophysics Data System (ADS)
Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
2010-10-01
The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.
Test of the HAPD light sensor for the Belle II Aerogel RICH
NASA Astrophysics Data System (ADS)
Yusa, Y.; Adachi, I.; Dolenec, R.; Hayata, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Krizan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Pestotnik, R.; Santelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.
2017-12-01
The Aerogel Ring-Imaging Cherenkov detector (ARICH) is being installed in the endcap region of Belle II spectrometer to identify particles from B meson decays by detecting the Cherenkov ring image from aerogel radiators. To detect single photons, high-sensitive photon detector which has wide effective area (∼70 mm × 70 mm), a Hybrid Avalanche Photo Detector (HAPD), has been developed in a collaboration with Hamamatsu K.K. The HAPD consists of hybrid structure of a vacuum tube and an avalanche photodiode (APD). It can be operated in 1.5 T magnetic field of the spectrometer and withstands the radiation levels expected in the Belle II experiment. There are two steps of electric pulse amplification: acceleration of photo-electron in electric field in the vacuum tube part and electron avalanche in the APD part resulting in total gain of order 105. For the ARICH, we use 420 HAPDs in total. Before installing them, we performed quality assessment studies such as measurements of dark current, noise level, signal-to-noise ratio and two-dimensional scan with laser illumination. We also measured quantum efficiency of the photocathode. During the HAPD performance tests in the magnetic field, we observed very large signal pulses which cause long dead time of the readout electronics in some of the HAPDs. We have carried out a number of studies to understand this phenomenon, and have found a way to mitigate it and suppress the degradation of the ARICH performance. In this report, we will show a summary of the HAPD performance and quality assessment measurements including validation in the magnetic field for all of the HAPDs manufactured for the ARICH in the Belle II.
2D dark-count-rate modeling of PureB single-photon avalanche diodes in a TCAD environment
NASA Astrophysics Data System (ADS)
Knežević, Tihomir; Nanver, Lis K.; Suligoj, Tomislav
2018-02-01
PureB silicon photodiodes have nm-shallow p+n junctions with which photons/electrons with penetration-depths of a few nanometer can be detected. PureB Single-Photon Avalanche Diodes (SPADs) were fabricated and analysed by 2D numerical modeling as an extension to TCAD software. The very shallow p+ -anode has high perimeter curvature that enhances the electric field. In SPADs, noise is quantified by the dark count rate (DCR) that is a measure for the number of false counts triggered by unwanted processes in the non-illuminated device. Just like for desired events, the probability a dark count increases with increasing electric field and the perimeter conditions are critical. In this work, the DCR was studied by two 2D methods of analysis: the "quasi-2D" (Q-2D) method where vertical 1D cross-sections were assumed for calculating the electron/hole avalanche-probabilities, and the "ionization-integral 2D" (II-2D) method where crosssections were placed where the maximum ionization-integrals were calculated. The Q-2D method gave satisfactory results in structures where the peripheral regions had a small contribution to the DCR, such as in devices with conventional deepjunction guard rings (GRs). Otherwise, the II-2D method proved to be much more precise. The results show that the DCR simulation methods are useful for optimizing the compromise between fill-factor and p-/n-doping profile design in SPAD devices. For the experimentally investigated PureB SPADs, excellent agreement of the measured and simulated DCR was achieved. This shows that although an implicit GR is attractively compact, the very shallow pn-junction gives a risk of having such a low breakdown voltage at the perimeter that the DCR of the device may be negatively impacted.
NASA Astrophysics Data System (ADS)
Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.
1984-09-01
Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.
Gu, Min-Jung; Jeon, Ji-Hyun; Oh, Myung Sook; Hong, Seon-Pyo
2016-01-01
We developed a method to detect biogenic amines and their metabolites in rat brain tissue using simultaneous high-performance liquid chromatography and a photodiode array detection. Measurements were made using a Hypersil Gold C-18 column (250 × 2.1 mm, 5 µm). The mobile phase was 5 mM perchloric acid containing 5 % acetonitrile. The correlation coefficient was 0.9995-0.9999. LODs (S/N = 3) and LOQs (S/N = 10) were as follows: dopamine 0.4 and 1.3 pg, 3, 4-dihydroxyphenylacetic acid 8.4 and 28.0 pg, serotonin 0.4 and 1.3 pg, 5-hydroxyindolacetic acid 3.4 and 11.3 pg, and homovanillic acid 8.4 and 28.0 pg. This method does not require derivatization steps, and is more sensitive than the widely used HPLC-UV method.
Ferrone, Vincenzo; Genovese, Salvatore; Carlucci, Maura; Tiecco, Matteo; Germani, Raimondo; Preziuso, Francesca; Epifano, Francesco; Carlucci, Giuseppe; Taddeo, Vito Alessandro
2018-04-15
A green dispersive liquid-liquid microextraction (DLLME) using deep eutectic solvent (DES) as the extracting solvent has been developed and applied for the simultaneous quantification of ferulic acid, umbelliferone, boropinic acid, 7-isopentenyloxycoumarin, 4'-geranyloxyferulic acid (GOFA), and auraptene in some vegetable oils using ultra high performance liquid chromatography (UHPLC) with photodiode array detection (PDA). All parameters in the extraction step, including selection and loading of both extracting and dispersing solvents, amount of both extractant and disperser solvent were investigated and optimized. PhAA/TMG DES achieved higher recovery and enrichment factor compared to other DESs. The validated method showed good linearity with correlation coefficients, r 2 >0.9990 for all the analytes. Furthermore, this is the first time that eco-friendly solvents are used for the extraction of oxyprenylated phenylpropanoids and the corresponding extract analyzed with ultra high performance liquid chromatography with photodiode array detection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Siciliano, Tiziana; De Tommasi, Nunziatina; Morelli, Ivano; Braca, Alessandra
2004-10-20
A liquid chromatography-mass spectrometry (LC-MS)-based method was developed for the characterization of flavonoids from Sechium edule (Jacq) Swartz (Cucurbitaceae) edible organs, a plant cultivated since pre-Colombian times in Mexico where the fruit is called chayote. Chayote is used for human consumption in many countries; in addition to the fruits, stems, leaves and the tuberous part of the roots are also eaten. Eight flavonoids, including three C-glycosyl and five O-glycosyl flavones, were detected, characterized by nuclear magnetic resonance spectroscopic data, and quantified in roots, leaves, stems, and fruits of the plant by LC-photodiode array-MS. The aglycone moieties are represented by apigenin and luteolin, while the sugar units are glucose, apiose, and rhamnose. The results indicated that the highest total amount of flavonoids was in the leaves (35.0 mg/10 g of dried part), followed by roots (30.5 mg/10 g), and finally by stems (19.3 mg/10 g). Copyright 2004 American Chemical Society
Dehghani, Nima; Hatsopoulos, Nicholas G.; Haga, Zach D.; Parker, Rebecca A.; Greger, Bradley; Halgren, Eric; Cash, Sydney S.; Destexhe, Alain
2012-01-01
Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey, and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man. PMID:22934053
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Zhao Wei
2008-07-15
An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less
NASA Technical Reports Server (NTRS)
Erdmann, R. K.; Walton, B. D.
1988-01-01
Design and fabrication tradeoffs of wavelength division multiplexers are discussed and performance parameters are given. The same multiplexer construction based on prism gratings has been used in spectroscopic applications, in the wavelength region from 450 to 1600 nm. For shorter wavelengths down to 200 nm, a similar instrument based on longer fibers (500 to 1000 micrometer) has been constructed and tested with both a fiber array and a photodiode detector array at the output.
A comparison of imaging methods for use in an array biosensor
NASA Technical Reports Server (NTRS)
Golden, Joel P.; Ligler, Frances S.
2002-01-01
An array biosensor has been developed which uses an actively-cooled, charge-coupled device (CCD) imager. In an effort to save money and space, a complementary metal-oxide semiconductor (CMOS) camera and photodiode were tested as replacements for the cooled CCD imager. Different concentrations of CY5 fluorescent dye in glycerol were imaged using the three different detection systems with the same imaging optics. Signal discrimination above noise was compared for each of the three systems.
High-speed on-chip windowed centroiding using photodiode-based CMOS imager
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)
2003-01-01
A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.
High-speed on-chip windowed centroiding using photodiode-based CMOS imager
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Sun, Chao (Inventor); Yang, Guang (Inventor); Cunningham, Thomas J. (Inventor); Hancock, Bruce (Inventor)
2004-01-01
A centroid computation system is disclosed. The system has an imager array, a switching network, computation elements, and a divider circuit. The imager array has columns and rows of pixels. The switching network is adapted to receive pixel signals from the image array. The plurality of computation elements operates to compute inner products for at least x and y centroids. The plurality of computation elements has only passive elements to provide inner products of pixel signals the switching network. The divider circuit is adapted to receive the inner products and compute the x and y centroids.
USDA-ARS?s Scientific Manuscript database
Flavonoids in different spinach genotypes were separated, identified, and quantified by a high-performance liquid chromatographic method with photodiode array and mass spectrometric detection. The antioxidant capacities of the genotypes were also measured using two antioxidant assays - oxygen radica...
Multichannel Detection in High-Performance Liquid Chromatography.
ERIC Educational Resources Information Center
Miller, James C.; And Others
1982-01-01
A linear photodiode array is used as the photodetector element in a new ultraviolet-visible detection system for high-performance liquid chromatography (HPLC). Using a computer network, the system processes eight different chromatographic signals simultaneously in real-time and acquires spectra manually/automatically. Applications in fast HPLC…
Kuang, Zhonghua; Sang, Ziru; Wang, Xiaohui; Fu, Xin; Ren, Ning; Zhang, Xianming; Zheng, Yunfei; Yang, Qian; Hu, Zhanli; Du, Junwei; Liang, Dong; Liu, Xin; Zheng, Hairong; Yang, Yongfeng
2018-02-01
The performance of current small animal PET scanners is mainly limited by the detector performance and depth encoding detectors are required to develop PET scanner to simultaneously achieve high spatial resolution and high sensitivity. Among all depth encoding PET detector approaches, dual-ended readout detector has the advantage to achieve the highest depth of interaction (DOI) resolution and spatial resolution. Silicon photomultiplier (SiPM) is believed to be the photodetector of the future for PET detector due to its excellent properties as compared to the traditional photodetectors such as photomultiplier tube (PMT) and avalanche photodiode (APD). The purpose of this work is to develop high resolution depth encoding small animal PET detector using dual-ended readout of finely pixelated scintillator arrays with SiPMs. Four lutetium-yttrium oxyorthosilicate (LYSO) arrays with 11 × 11 crystals and 11.6 × 11.6 × 20 mm 3 outside dimension were made using ESR, Toray and BaSO 4 reflectors. The LYSO arrays were read out with Hamamatsu 4 × 4 SiPM arrays from both ends. The SiPM array has a pixel size of 3 × 3 mm 2 , 0.2 mm gap in between the pixels and a total active area of 12.6 × 12.6 mm 2 . The flood histograms, DOI resolution, energy resolution and timing resolution of the four detector modules were measured and compared. All crystals can be clearly resolved from the measured flood histograms of all four arrays. The BaSO 4 arrays provide the best and the ESR array provides the worst flood histograms. The DOI resolution obtained from the DOI profiles of the individual crystals of the four array is from 2.1 to 2.35 mm for events with E > 350 keV. The DOI ratio variation among crystals is bigger for the BaSO 4 arrays as compared to both the ESR and Toray arrays. The BaSO 4 arrays provide worse detector based DOI resolution. The photopeak amplitude of the Toray array had the maximum change with depth, it provides the worst energy resolution of 21.3%. The photopeak amplitude of the BaSO 4 array with 80 μm reflector almost doesn't change with depth, it provides the best energy resolution of 12.9%. A maximum timing shift of 1.37 ns to 1.61 ns among the corner and the center crystals in the four arrays was obtained due to the use of resistor network readout. A crystal based timing resolution of 0.68 ns to 0.83 ns and a detector based timing resolution of 1.26 ns to 1.45 ns were obtained for the four detector modules. Four high resolution depth encoding small animal PET detectors were developed using dual-ended readout of pixelated scintillator arrays with SiPMs. The performance results show that those detectors can be used to build a small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity. © 2017 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Menkara, H. M.; Wagner, B. K.; Summers, C. J.
1996-01-01
The purpose of this study is to use both theoretical and experimental evidence to determine the impact of doping imbalance and symmetry on the physical and electrical characteristics of doped multiple quantum well avalanche photodiodes (APD). Theoretical models have been developed to calculate the electric field valence and conduction bands, capacitance-voltage (CV), and carrier concentration versus depletion depth profiles. The models showed a strong correlation between the p- and n-doping balance inside the GaAs wells and the number of depleted stages and breakdown voltage of the APD. A periodic doping imbalance in the wells has been shown to result in a gradual increase (or decrease) in the electric field profile throughout the device which gave rise to partially depleted devices at low bias. The MQW APD structures that we modeled consisted of a 1 micron top p(+)-doped (3 x 10(exp 18) cm(exp -3)) GaAs layer followed by a 1 micron region of alternating layers of GaAs (500 A) and Al(0.42)Ga(0.58)As (500 A), and a 1 micron n(+) back layer (3 x 10(exp 18) cm(exp -3)). The GaAs wells were doped with p-i-n layers placed at the center of each well. The simulation results showed that in an APD with nine doped wells, and where the 50 A p-doped layer is off by 10% (p = 1.65 x 10(exp 18) cm(exp -3), n = 1.5 x 10(exp 18) cm(exp -3)), almost half of the MQW stages were shown to be undepleted at low bias which was a result of a reduction in the electric field near the p(+) cap layer by over 50% from its value in the balanced structure. Experimental CV and IV data on similar MBE grown MQW structures have shown very similar depletion and breakdown characteristics. The models have enabled us to better interpret our experimental data and to determine both the extent of the doping imbalances in the devices as well as the overall p- or n-type doping characteristics of the structures.
NASA Astrophysics Data System (ADS)
Kahraman, Gokalp
We examine the performance of optical communication systems using erbium-doped fiber amplifiers (OFAs) and avalanche photodiodes (APDs) including nonlinear and transient effects in the former and transient effects in the latter. Transient effects become important as these amplifiers are operated at very high data rates. Nonlinear effects are important for high gain amplifiers. In most studies of noise in these devices, the temporal and nonlinear effects have been ignored. We present a quantum theory of noise in OFAs including the saturation of the atomic population inversion and the pump depletion. We study the quantum-statistical properties of pulse amplification. The generating function of the output photon number distribution (PND) is determined as a function of time during the course of the pulse with an arbitrary input PND assumed. Under stationary conditions, we determine the Kolmogorov equation obeyed by the PND. The PND at the output is determined for arbitrary input distributions. The effect of the counting time and the filter bandwidth used by the detection circuit is determined. We determine the gain, the noise figure, and the sensitivity of receivers using OFAs as preamplifiers, including the effect of backward amplified spontaneous emission (ASE). Backward ASE degrades the noise figure and the sensitivity by depleting the population inversion at the input side of the fiber and thus increasing the noise during signal amplification. We show that the sensitivity improves with the bit rate at low rates but degrades at high rates. We provide a stochastic model that describes the time dynamics in a double-carrier multiplication (DCM) APD. A discrete stochastic model for the electron/hole motion and multiplication is defined on a spatio-temporal lattice and used to derive recursive equations for the mean, the variance, and the autocorrelation of the impulse response as functions of time. The power spectral density of the photocurrent produced in response to a Poisson-distributed stream of photons of uniform rate is evaluated. A method is also developed for solving the coupled transport equations that describe the electron and hole currents in a DCM-APD of arbitrary structure.
Low bandgap mid-infrared thermophotovoltaic arrays based on InAs
NASA Astrophysics Data System (ADS)
Krier, A.; Yin, M.; Marshall, A. R. J.; Kesaria, M.; Krier, S. E.; McDougall, S.; Meredith, W.; Johnson, A. D.; Inskip, J.; Scholes, A.
2015-11-01
We demonstrate the first low bandgap thermophotovoltaic (TPV) arrays capable of operating with heat sources at temperatures as low as 345 °C, which is the lowest ever reported. The individual array elements are based on narrow band gap InAs/InAs0.61Sb0.13P0.26 photodiode structures. External power conversion efficiency was measured to be ∼3% from a single element at room temperature, using a black body at 950 °C. Both 25-element and 65-element arrays were fabricated and exhibited a TPV response at different source temperatures in the range 345-950 °C suitable for electricity generation from waste heat and other applications.
High Quantum Efficiency Nanopillar Photodiodes Overcoming the Diffraction Limit of Light.
Lee, Wook-Jae; Senanayake, Pradeep; Farrell, Alan C; Lin, Andrew; Hung, Chung-Hong; Huffaker, Diana L
2016-01-13
InAs1-xSbx nanowires have recently attracted interest for infrared sensing applications due to the small bandgap and high thermal conductivity. However, previous reports on nanowire-based infrared sensors required low operating temperatures in order to mitigate the high dark current and have shown poor sensitivities resulting from reduced light coupling efficiency beyond the diffraction limit. Here, InAsSb nanopillar photodiodes with high quantum efficiency are achieved by partially coating the nanopillar with metal that excites localized surface plasmon resonances, leading to quantum efficiencies of ∼29% at 2390 nm. These high quantum efficiency nanopillar photodiodes, with 180 nm diameters and 1000 nm heights, allow operation at temperatures as high as 220 K and exhibit a detection wavelength up to 3000 nm, well beyond the diffraction limit. The InAsSb nanopillars are grown on low cost GaAs (111)B substrates using an InAs buffer layer, making our device architecture a promising path toward low-cost infrared focal plane arrays with high operating temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solodar, A., E-mail: asisolodar@gmail.com; Arun Kumar, T.; Sarusi, G.
2016-01-11
Combination of InGaAs/InP heterojunction photodetector with nematic liquid crystal (LC) as the electro-optic modulating material for optically addressed spatial light modulator for short wavelength infra-red (SWIR) to visible light image conversion was designed, fabricated, and tested. The photodetector layer is composed of 640 × 512 photodiodes array based on heterojunction InP/InGaAs having 15 μm pitch on InP substrate and with backside illumination architecture. The photodiodes exhibit extremely low, dark current at room temperature, with optimum photo-response in the SWIR region. The photocurrent generated in the heterojunction, due to the SWIR photons absorption, is drifted to the surface of the InP,more » thus modulating the electric field distribution which modifies the orientation of the LC molecules. This device can be attractive for SWIR to visible image upconversion, such as for uncooled night vision goggles under low ambient light conditions.« less
Photodiode Camera Measurement of Surface Strains on Tendons during Multiple Cyclic Tests
NASA Astrophysics Data System (ADS)
Chun, Keyoung Jin; Hubbard, Robert Philip
The objectives of this study are to introduce the use of a photodiode camera for measuring surface strain on soft tissue and to present some representative responses of the tendon. Tendon specimens were obtained from the hindlimbs of canines and frozen to -70°C. After thawing, specimens were mounted in the immersion bath at a room temperature (22°C), preloaded to 0.13N and then subjected to 3% of the initial length at a strain rate of 2%/sec. In tendons which were tested in two blocks of seven repeated extensions to 3% strain with a 120 seconds wait period between, the surface strains were measured with a photodiode camera and near the gripped ends generally were greater than the surface strains in the middle segment of the tendon specimens. The recovery for peak load after the rest period was consistent but the changes in patterns of surface strains after the rest period were not consistent. The advantages of a photodiode measurement of surface strains include the followings: 1) it is a noncontacting method which eliminates errors and distortions caused by clip gauges or mechanical/electronic transducers; 2) it is more accurate than previous noncontact methods, e.g. the VDA and the high speed photographic method; 3) it is a fully automatic, thus reducing labor for replaying video tapes or films and potential errors from human judgement which can occur during digitizing data from photographs. Because the photodiode camera, employs a solid state photodiode array to sense black and white images, scan targets (black image) on the surface of the tendon specimen and back lighting system (white image), and stored automatically image data for surface strains of the tendon specimen on the computer during cyclic extensions.
Mattioli Della Rocca, Francescopaolo
2018-01-01
This paper examines methods to best exploit the High Dynamic Range (HDR) of the single photon avalanche diode (SPAD) in a high fill-factor HDR photon counting pixel that is scalable to megapixel arrays. The proposed method combines multi-exposure HDR with temporal oversampling in-pixel. We present a silicon demonstration IC with 96 × 40 array of 8.25 µm pitch 66% fill-factor SPAD-based pixels achieving >100 dB dynamic range with 3 back-to-back exposures (short, mid, long). Each pixel sums 15 bit-planes or binary field images internally to constitute one frame providing 3.75× data compression, hence the 1k frames per second (FPS) output off-chip represents 45,000 individual field images per second on chip. Two future projections of this work are described: scaling SPAD-based image sensors to HDR 1 MPixel formats and shrinking the pixel pitch to 1–3 µm. PMID:29641479
Magnesium Chemistry in the Upper Atmosphere
2010-12-20
17,20 Unlike the other prominent meteoric metals (Fe, Na, K and Ca), neither Mg nor Mg+ can be observed by ground-based lidar (laser radar ) as...with a 1200 groove mm-1 grating (resolution 0.12 nm FWHM). Absorption spectra were recorded with a photodiode array (EG&G, PARC 1412) and converted
Future sensor system needs for staring arrays
NASA Astrophysics Data System (ADS)
Miller, John Lester
2011-05-01
This is a systems application paper regarding how sensor systems may use future technology FPAs. A historical perspective is discussed along with lessons learned from previous technologies. Future system requirements for strained super-lattice (SLS), quantum dots (QDOT) and traditional quantum well infrared photo-diodes (QWIP) arrays will be presented from both a commercial and military perspective. New potential markets will open up in the future if certain FPA technologies can reduce cost and provide higher sensitivities at higher operating temperatures.
Breadboard linear array scan imager using LSI solid-state technology
NASA Technical Reports Server (NTRS)
Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.
1976-01-01
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.
Simulations of a micro-PET system based on liquid xenon
NASA Astrophysics Data System (ADS)
Miceli, A.; Glister, J.; Andreyev, A.; Bryman, D.; Kurchaninov, L.; Lu, P.; Muennich, A.; Retiere, F.; Sossi, V.
2012-03-01
The imaging performance of a high-resolution preclinical micro-positron emission tomography (micro-PET) system employing liquid xenon (LXe) as the gamma-ray detection medium was simulated. The arrangement comprises a ring of detectors consisting of trapezoidal LXe time projection ionization chambers and two arrays of large area avalanche photodiodes for the measurement of ionization charge and scintillation light. A key feature of the LXePET system is the ability to identify individual photon interactions with high energy resolution and high spatial resolution in three dimensions and determine the correct interaction sequence using Compton reconstruction algorithms. The simulated LXePET imaging performance was evaluated by computing the noise equivalent count rate, the sensitivity and point spread function for a point source according to the NEMA-NU4 standard. The image quality was studied with a micro-Derenzo phantom. Results of these simulation studies included noise equivalent count rate peaking at 1326 kcps at 188 MBq (705 kcps at 184 MBq) for an energy window of 450-600 keV and a coincidence window of 1 ns for mouse (rat) phantoms. The absolute sensitivity at the center of the field of view was 12.6%. Radial, tangential and axial resolutions of 22Na point sources reconstructed with a list-mode maximum likelihood expectation maximization algorithm were ⩽0.8 mm (full-width at half-maximum) throughout the field of view. Hot-rod inserts of <0.8 mm diameter were resolvable in the transaxial image of a micro-Derenzo phantom. The simulations show that a LXe system would provide new capabilities for significantly enhancing PET images.
Recent Developments in PET Instrumentation
Peng, Hao; Levin, Craig S.
2013-01-01
Positron emission tomography (PET) is used in the clinic and in vivo small animal research to study molecular processes associated with diseases such as cancer, heart disease, and neurological disorders, and to guide the discovery and development of new treatments. This paper reviews current challenges of advancing PET technology and some of newly developed PET detectors and systems. The paper focuses on four aspects of PET instrumentation: high photon detection sensitivity; improved spatial resolution; depth-of-interaction (DOI) resolution and time-of-flight (TOF). Improved system geometry, novel non-scintillator based detectors, and tapered scintillation crystal arrays are able to enhance the photon detection sensitivity of a PET system. Several challenges for achieving high resolution with standard scintillator-based PET detectors are discussed. Novel detectors with 3-D positioning capability have great potential to be deployed in PET for achieving spatial resolution better than 1 mm, such as cadmium-zinc-telluride (CZT) and position-sensitive avalanche photodiodes (PSAPDs). DOI capability enables a PET system to mitigate parallax error and achieve uniform spatial resolution across the field-of-view (FOV). Six common DOI designs, as well as advantages and limitations of each design, are discussed. The availability of fast scintillation crystals such as LaBr3, and the silicon photomultiplier (SiPM) greatly advances TOF-PET development. Recent instrumentation and initial results of clinical trials are briefly presented. If successful, these technology advances, together with new probe molecules, will substantially enhance the molecular sensitivity of PET and thus increase its role in preclinical and clinical research as well as evaluating and managing disease in the clinic. PMID:20497121
Junction-side illuminated silicon detector arrays
Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn
2004-03-30
A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.
da Silva, Thiago Ferreira; Xavier, Guilherme B; Temporão, Guilherme P; von der Weid, Jean Pierre
2012-08-13
By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.
Design Issues of GaAs and AlGaAs Delta-Doped p-i-n Quantum-Well APD's
NASA Technical Reports Server (NTRS)
Wang, Yang
1994-01-01
We examine the basic design issues in the optimization of GaAs delta-doped and AlGAs delta-doped quantum-well avalanche photodiode (APD) structures using a theoretical analysis based on an ensemble Monte Carlo simulation. The devices are variations of the p-i-n doped quantum-well structure previously described in the literature. They have the same low-noise, high-gain and high-bandwidth features as the p-i-n doped quantum-well device. However, the use of delta doping provides far greater control or the doping concentrations within each stage possibly enhancing the extent to which the device can be depleted. As a result, it is expected that the proposed devices will operate at higher gain levels (at very low noise) than devices previously developed.
Aqueye+: a new ultrafast single photon counter for optical high time resolution astrophysics
NASA Astrophysics Data System (ADS)
Zampieri, L.; Naletto, G.; Barbieri, C.; Verroi, E.; Barbieri, M.; Ceribella, G.; D'Alessandro, M.; Farisato, G.; Di Paola, A.; Zoccarato, P.
2015-05-01
Aqueye+ is a new ultrafast optical single photon counter, based on single photon avalanche photodiodes (SPAD) and a 4- fold split-pupil concept. It is a completely revisited version of its predecessor, Aqueye, successfully mounted at the 182 cm Copernicus telescope in Asiago. Here we will present the new technological features implemented on Aqueye+, namely a state of the art timing system, a dedicated and optimized optical train, a high sensitivity and high frame rate field camera and remote control, which will give Aqueye plus much superior performances with respect to its predecessor, unparalleled by any other existing fast photometer. The instrument will host also an optical vorticity module to achieve high performance astronomical coronography and a real time acquisition of atmospheric seeing unit. The present paper describes the instrument and its first performances.
The Vacuum Silicon Photomultiplier Tube (VSiPMT): A new version of a hybrid photon detector
NASA Astrophysics Data System (ADS)
Russo, Stefano; Barbarino, Giancarlo; de Asmundis, Riccardo; De Rosa, Gianfranca
2010-11-01
The future astroparticle experiments will study both energetic phenomena and extremely rare events from astrophysical sources. Since most of these families of experiments are carried out by using scintillation phenomena, Cherenkov or fluorescence radiation, the development of photosensitive detectors seems to be the right way to increase the experimental sensitivity. Therefore we propose an innovative design for a modern, high gain, silicon-based Vacuum Silicon Photomultiplier Tube (VSiPMT), which combines three fully established and well-understood technologies: the manufacture of hemispherical vacuum tubes with the possibility of very large active areas, the photocathode glass deposition and the novel Geiger-mode avalanche silicon photodiode (G-APD) for which a mass production is today available. This new design, based on G-APD as the electron multiplier, allows overcoming the limits of a classical PMT dynode chain.
NASA Astrophysics Data System (ADS)
Luchowski, R.; Kapusta, P.; Szabelski, M.; Sarkar, P.; Borejdo, J.; Gryczynski, Z.; Gryczynski, I.
2009-09-01
Förster resonance energy transfer (FRET) can be utilized to achieve ultrashort fluorescence responses in time-domain fluorometry. In a poly(vinyl) alcohol matrix, the presence of 60 mM Rhodamine 800 acceptor shortens the fluorescence lifetime of a pyridine 1 donor to about 20 ps. Such a fast fluorescence response is very similar to the instrument response function (IRF) obtained using scattered excitation light. A solid fluorescent sample (e.g a film) with picosecond lifetime is ideal for IRF measurements and particularly useful for time-resolved microscopy. Avalanche photodiode detectors, commonly used in this field, feature color- dependent-timing responses. We demonstrate that recording the fluorescence decay of the proposed FRET-based reference sample yields a better IRF approximation than the conventional light-scattering method and therefore avoids systematic errors in decay curve analysis.
Optimization of single photon detection model based on GM-APD
NASA Astrophysics Data System (ADS)
Chen, Yu; Yang, Yi; Hao, Peiyu
2017-11-01
One hundred kilometers high precision laser ranging hopes the detector has very strong detection ability for very weak light. At present, Geiger-Mode of Avalanche Photodiode has more use. It has high sensitivity and high photoelectric conversion efficiency. Selecting and designing the detector parameters according to the system index is of great importance to the improvement of photon detection efficiency. Design optimization requires a good model. In this paper, we research the existing Poisson distribution model, and consider the important detector parameters of dark count rate, dead time, quantum efficiency and so on. We improve the optimization of detection model, select the appropriate parameters to achieve optimal photon detection efficiency. The simulation is carried out by using Matlab and compared with the actual test results. The rationality of the model is verified. It has certain reference value in engineering applications.
Quantitative single-molecule imaging by confocal laser scanning microscopy.
Vukojevic, Vladana; Heidkamp, Marcus; Ming, Yu; Johansson, Björn; Terenius, Lars; Rigler, Rudolf
2008-11-25
A new approach to quantitative single-molecule imaging by confocal laser scanning microscopy (CLSM) is presented. It relies on fluorescence intensity distribution to analyze the molecular occurrence statistics captured by digital imaging and enables direct determination of the number of fluorescent molecules and their diffusion rates without resorting to temporal or spatial autocorrelation analyses. Digital images of fluorescent molecules were recorded by using fast scanning and avalanche photodiode detectors. In this way the signal-to-background ratio was significantly improved, enabling direct quantitative imaging by CLSM. The potential of the proposed approach is demonstrated by using standard solutions of fluorescent dyes, fluorescently labeled DNA molecules, quantum dots, and the Enhanced Green Fluorescent Protein in solution and in live cells. The method was verified by using fluorescence correlation spectroscopy. The relevance for biological applications, in particular, for live cell imaging, is discussed.
Comparison of 16-Channel Laser Photoreceivers for Topographic Mapping
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yang, Guangning; Sun, XiaoIi; Lu, Wei; Bai, Xiaogang; Yuan, Ping; McDonald, Paul; Boisvert, Joseph; Woo, Robyn; Wan, Kam;
2011-01-01
Topographic mapping lidar instruments must be able to detect extremely weak laser return signals from high altitudes including orbital distance. The signals have a wide dynamic range caused by the variability in atmospheric transmission and surface reflectance under a fast moving spacecraft. Ideally, lidar detectors should be able to detect laser signal return pulses at the single photon level and produce linear output for multiple photon events. Silicon avalanche photodiode (APO) detectors have been used in most space lidar receivers to date. Their sensitivity is typically hundreds of photons per pulse, and is limited by the quantum efficiency, APO gain noise, dark current, and preamplifier noise. NASA is pursuing three approaches for a 16-channel laser photoreceiver for use on the next generation direct-detection airborne and spacebome lidars. We present our measurement results and a comparison of their performance.
CRUQS: A Miniature Fine Sun Sensor for Nanosatellites
NASA Technical Reports Server (NTRS)
Heatwole, Scott; Snow, Carl; Santos, Luis
2013-01-01
A new miniature fine Sun sensor has been developed that uses a quadrant photodiode and housing to determine the Sun vector. Its size, mass, and power make it especially suited to small satellite applications, especially nanosatellites. Its accuracy is on the order of one arcminute, and it will enable new science in the area of nanosatellites. The motivation for this innovation was the need for high-performance Sun sensors in the nanosatellite category. The design idea comes out of the LISS (Lockheed Intermediate Sun Sensor) used by the sounding rocket program on their solar pointing ACS (Attitude Control System). This system uses photodiodes and a wall between them. The shadow cast by the Sun is used to determine the Sun angle. The new sensor takes this concept and miniaturizes it. A cruciform shaped housing and a surface-mount quadrant photodiode package allow for a two-axis fine Sun sensor to be packaged into a space approx.1.25xl x0.25 in. (approx.3.2x2.5x0.6 cm). The circuitry to read the photodiodes is a simple trans-impedance operational amplifier. This is much less complex than current small Sun sensors for nanosatellites that rely on photo-arrays and processing of images to determine the Sun center. The simplicity of the circuit allows for a low power draw as well. The sensor consists of housing with a cruciform machined in it. The cruciform walls are 0.5-mm thick and the center of the cruciform is situated over the center of the quadrant photodiode sensor. This allows for shadows to be cast on each of the four photodiodes based on the angle of the Sun. A simple operational amplifier circuit is used to read the output of the photodiodes as a voltage. The voltage output of each photodiode is summed based on rows and columns, and then the values of both rows or both columns are differenced and divided by the sum of the voltages for all four photodiodes. The value of both difference over sums for the rows and columns is compared to a table or a polynomial fit (depending on processor power and accuracy requirements) to determine the angle of the Sun in the sensor frame.
TU-E-BRA-05: Reverse Geometry Imaging with MV Detector for Improved Image Resolution.
Ganguly, A; Abel, E; Sun, M; Fahrig, R; Virshup, G; Star-Lack, J
2012-06-01
Thick pixilated scintillators can offer significant improvements in quantum efficiency over phosphor screen megavoltage (MV) detectors. However spatial resolution can be compromised due to the spreading of light across pixels within septa. Of particular interest are the lower energy x-ray photons and associated light photons that produce higher image contrast but are stopped near the scintillator entrance surface. They suffer the most scattering in the scintillator prior to detection in the photodiodes. Reversing the detector geometry, so that the incident x-ray beam passes through the photodiode array into the scintillator, allows the light to scatter less prior to detection. This also reduces the Swank noise since now higher and lower energy x-ray photons tend to produce similar electronic signals. In this work, we present simulations and measurements of detector MTF for the conventional/forward and reverse geometries to demonstrate this phenomenon. A tabletop system consisting of a Varian CX1 1MeV linear accelerator and a modified Varian Paxscan4030 with the readout electronics moved away from the incident the beam was used. A special holder was used to press a 2.5W×5.0L×2.0Hcm 3 pixellated Cesium Iodide (CsI:Tl) scintillator array on to the detector glass. The CsI array had a pitch of 0.784mm with plastic septa between pixels and the photodiode array pitch was 0.192 mm. The MTF in the forward and reverse geometries was measured using a 0.5mm thick Tantalum slanted edge. Geant4-based Monte Carlo simulations were performed for comparison. The measured and simulated MTFs matched to within 3.4(±3.7)% in the forward and 4.4(±1.5)% in reverse geometries. The reverse geometry MTF was higher than the forward geometry MTF at all spatial frequencies and doubled to .25 at 0.3lp/mm. A novel method of improving the image resolution at MV energies was demonstrated. The improvements should be more pronounced with increased scintillator thickness. Funding support provided by NIH (grant number NIH R01 CA138426). © 2012 American Association of Physicists in Medicine.
MCT (HgCdTe) IR detectors: latest developments in France
NASA Astrophysics Data System (ADS)
Reibel, Yann; Rubaldo, Laurent; Vaz, Cedric; Tribolet, Philippe; Baier, Nicolas; Destefanis, Gérard
2010-10-01
This paper presents an overview of the very recent developments of the MCT infrared detector technology developed by CEA-LETI and Sofradir in France. New applications require high sensitivity, higher operating temperature and dual band detectors. The standard n on p technology in production at Sofradir for 25 years is well mastered with an extremely robust and reliable process. Sofradir's interest in p on n technology opens the perspective of reducing dark current of diodes so detectors could operate in lower flux or higher operating temperature. In parallel, MCT Avalanche Photo Diodes (APD) have demonstrated ideal performances for low flux and high speed application like laser gated imaging during the last few years. This technology also opens new prospects on next generation of imaging detectors for compact, low flux and low power applications. Regarding 3rd Gen IR detectors, the development of dual-band infrared detectors has been the core of intense research and technological improvements for the last ten years. New TV (640 x 512 pixels) format MWIR/LWIR detectors on 20μm pixel pitch, made from Molecular Beam Epitaxy, has been developed with dedicated Read-Out Integrated Circuit (ROIC) for real simultaneous detection and maximum SNR. Technological and products achievements, as well as latest results and performances are presented outlining the availability of p/n, avalanche photodiodes and dual band technologies for new applications at system level.
Enhancement of the Si p-n diode NIR photoresponse by embedding β-FeSi2 nanocrystallites.
Shevlyagin, A V; Goroshko, D L; Chusovitin, E A; Galkin, K N; Galkin, N G; Gutakovskii, A K
2015-10-05
By using solid phase epitaxy of thin Fe films and molecular beam epitaxy of Si, a p(+)-Si/p-Si/β-FeSi2 nanocrystallites/n-Si(111) diode structure was fabricated. Transmission electron microscopy data confirmed a well-defined multilayered structure with embedded nanocrystallites of two typical sizes: 3-4 and 15-20 nm, and almost coherent epitaxy of the nanocrystallites with the Si matrix. The diode at zero bias conditions exhibited a current responsivity of 1.7 mA/W, an external quantum efficiency of about 0.2%, and a specific detectivity of 1.2 × 10(9) cm × Hz(1/2)/W at a wavelength of 1300 nm at room temperature. In the avalanche mode, the responsivity reached up to 20 mA/W (2% in terms of efficiency) with a value of avalanche gain equal to 5. The data obtained indicate that embedding of β-FeSi2 nanocrystallites into the depletion region of the Si p-n junction results in expansion of the spectral sensitivity up to 1600 nm and an increase of the photoresponse by more than two orders of magnitude in comparison with a conventional Si p-n junction. Thereby, fabricated structure combines advantage of the silicon photodiode functionality and simplicity with near infrared light detection capability of β-FeSi2.
USDA-ARS?s Scientific Manuscript database
Patulin is a mycotoxin commonly found in certain fruit and fruit products. For this reason many countries have established regulatory limits pertaining to, in particular, apple juice and apple products. Fruit leathers are produced by dehydrating fruit puree, leaving a sweet product that has a leathe...
NASA Astrophysics Data System (ADS)
Masuzawa, Tomoaki; Neo, Yoichiro; Mimura, Hidenori; Okamoto, Tamotsu; Nagao, Masayoshi; Akiyoshi, Masafumi; Sato, Nobuhiro; Takagi, Ikuji; Tsuji, Hiroshi; Gotoh, Yasuhito
2016-10-01
A growing demand on incident detection is recognized since the Great East Japan Earthquake and successive accidents in Fukushima nuclear power plant in 2011. Radiation tolerant image sensors are powerful tools to collect crucial information at initial stages of such incidents. However, semiconductor based image sensors such as CMOS and CCD have limited tolerance to radiation exposure. Image sensors used in nuclear facilities are conventional vacuum tubes using thermal cathodes, which have large size and high power consumption. In this study, we propose a compact image sensor composed of a CdTe-based photodiode and a matrix-driven Spindt-type electron beam source called field emitter array (FEA). A basic principle of FEA-based image sensors is similar to conventional Vidicon type camera tubes, but its electron source is replaced from a thermal cathode to FEA. The use of a field emitter as an electron source should enable significant size reduction while maintaining high radiation tolerance. Current researches on radiation tolerant FEAs and development of CdTe based photoconductive films will be presented.
Wang, Ming-Juan; Li, Ya-Ping; Wang, Yan; Li, Jin; Hu, Chang-Qin; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin
2013-10-01
Reversed-phase liquid chromatography coupled with photo-diode array (PDA) detection and electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to characterize the components of meleumycin, a 16-membered macrolide antibiotic produced by fermentation. In total 31 components were characterized in commercial samples, including 12 impurities that had never been reported before and 12 others that were partially characterized. The structures of these unknown compounds were deduced by comparison of their fragmentation patterns with those of known components. Their ultraviolet spectra and chromatographic behavior were used to confirm the proposed structures: e.g. λmax shift from 232 nm to 282 nm would indicate the presence of an α-, β-, γ-, δ-unsaturated ketone instead of a normal α-, β-, γ-, δ-unsaturated alcohol in the 16-membered ring of the examined components. Compared to other methods, this LC/MS(n) method is particularly advantageous to characterize minor components at trace levels in multi-components antibiotics, in terms of sensitivity and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Narayanan, Balaji; Hardie, Russell C; Muse, Robert A
2005-06-10
Spatial fixed-pattern noise is a common and major problem in modern infrared imagers owing to the nonuniform response of the photodiodes in the focal plane array of the imaging system. In addition, the nonuniform response of the readout and digitization electronics, which are involved in multiplexing the signals from the photodiodes, causes further nonuniformity. We describe a novel scene based on a nonuniformity correction algorithm that treats the aggregate nonuniformity in separate stages. First, the nonuniformity from the readout amplifiers is corrected by use of knowledge of the readout architecture of the imaging system. Second, the nonuniformity resulting from the individual detectors is corrected with a nonlinear filter-based method. We demonstrate the performance of the proposed algorithm by applying it to simulated imagery and real infrared data. Quantitative results in terms of the mean absolute error and the signal-to-noise ratio are also presented to demonstrate the efficacy of the proposed algorithm. One advantage of the proposed algorithm is that it requires only a few frames to obtain high-quality corrections.
Uchiyama, Kazuhisa; Kondo, Mari; Yokochi, Rika; Takeuchi, Yuri; Yamamoto, Atsushi; Inoue, Yoshinori
2011-07-01
A simple, selective and rapid analytical method for determination of trimethoprim (TMP) in honey samples was developed and validated. This method is based on a SPE technique followed by HPLC with photodiode array detection. After dilution and filtration, aliquots of 500 μL honey samples were directly injected to an on-line SPE HPLC system. TMP was extracted on an RP SPE column, and separated on a hydrophilic interaction chromatography column during HPLC analysis. At the first detection step, the noise level of the photodiode array data was reduced with two-dimensional equalizer filtering, and then the smoothed data were subjected to derivative spectrum chromatography. On the second-derivative chromatogram at 254 nm, the limit of detection and the limit of quantification of TMP in a honey sample were 5 and 10 ng/g, respectively. The proposed method showed high accuracy (60-103%) with adequate sensitivity for TMP monitoring in honey samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Scaduto, David A.; Lubinsky, Anthony R.; Rowlands, John A.; Kenmotsu, Hidenori; Nishimoto, Norihito; Nishino, Takeshi; Tanioka, Kenkichi; Zhao, Wei
2014-03-01
We have previously proposed SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout), a novel detector concept with potentially superior spatial resolution and low-dose performance compared with existing flat-panel imagers. The detector comprises a scintillator that is optically coupled to an amorphous selenium photoconductor operated with avalanche gain, known as high-gain avalanche rushing photoconductor (HARP). High resolution electron beam readout is achieved using a field emitter array (FEA). This combination of avalanche gain, allowing for very low-dose imaging, and electron emitter readout, providing high spatial resolution, offers potentially superior image quality compared with existing flat-panel imagers, with specific applications to fluoroscopy and breast imaging. Through the present collaboration, a prototype HARP sensor with integrated electrostatic focusing and nano- Spindt FEA readout technology has been fabricated. The integrated electron-optic focusing approach is more suitable for fabricating large-area detectors. We investigate the dependence of spatial resolution on sensor structure and operating conditions, and compare the performance of electrostatic focusing with previous technologies. Our results show a clear dependence of spatial resolution on electrostatic focusing potential, with performance approaching that of the previous design with external mesh-electrode. Further, temporal performance (lag) of the detector is evaluated and the results show that the integrated electrostatic focusing design exhibits comparable or better performance compared with the mesh-electrode design. This study represents the first technical evaluation and characterization of the SAPHIRE concept with integrated electrostatic focusing.
NASA Astrophysics Data System (ADS)
Acconcia, Giulia; Cominelli, Alessandro; Peronio, Pietro; Rech, Ivan; Ghioni, Massimo
2017-05-01
The analysis of optical signals by means of Single Photon Avalanche Diodes (SPADs) has been subject to a widespread interest in recent years. The development of multichannel high-performance Time Correlated Single Photon Counting (TCSPC) acquisition systems has undergone a fast trend. Concerning the detector performance, best in class results have been obtained resorting to custom technologies leading also to a strong dependence of the detector timing jitter from the threshold used to determine the onset of the photogenerated current flow. In this scenario, the avalanche current pick-up circuit plays a key role in determining the timing performance of the TCSPC acquisition system, especially with a large array of SPAD detectors because of electrical crosstalk issues. We developed a new current pick-up circuit based on a transimpedance amplifier structure able to extract the timing information from a 50-μm-diameter custom technology SPAD with a state-of-art timing jitter as low as 32ps and suitable to be exploited with SPAD arrays. In this paper we discuss the key features of this structure and we present a new version of the pick-up circuit that also provides quenching capabilities in order to minimize the number of interconnections required, an aspect that becomes more and more crucial in densely integrated systems.
Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José
2015-09-01
In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Y; Kim, T; Kang, S
2016-06-15
Purpose: To develop a real-time alignment monitoring system (RAMS) to compensate for the limitations of the conventional room laser based alignment system, and to verify the feasibility of the RAMS. Methods: The RAMS was composed of a room laser sensing array (RLSA), an analog-todigital converter, and a control PC. In the RLSA, seven photodiodes (each in 1 mm width) are arranged in a pattern that the RAMS provides alignment in 1 mm resolution. It works based on detecting laser light aligned on one of photodiodes. When misaligned, the laser would match with different photodiode(s) giving signal at unexpected location. Thus,more » how much displaced can be determined. To verify the reproducibility of the system with respect to time as well as repeated set-ups, temporal reproducibility and repeatability test was conducted. The accuracy of the system was tested by obtaining detection signals with varying laser-match positions. Results: The signal of the RAMS was found to be stable with respect to time. The repeatability test resulted in a maximum coefficient of variance of 1.14%, suggesting that the signal of the RAMS was stable over repeated set-ups. In the accuracy test, signals between when the laser was aligned and notaligned with any of sensors could be distinguished by signal intensity. The signals of not-aligned sensors were always below 75% of the signal of the aligned sensor. It was confirmed that the system could detect 1 mm of movement by monitoring the pattern of signals, and could observe the movement of the system in real-time. Conclusion: We developed a room laser based alignment monitoring system. The feasibility test verified that the system is capable of quantitative alignment monitoring in real time. The system is relatively simple, not expensive, and considered to be easily incorporated into conventional room laser systems for real-time alignment monitoring. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Enhanced radiation detectors using luminescent materials
Vardeny, Zeev V.; Jeglinski, Stefan A.; Lane, Paul A.
2001-01-01
A radiation detecting device comprising a radiation sensing element, and a layer of luminescent material to expand the range of wavelengths over which the sensing element can efficiently detect radiation. The luminescent material being selected to absorb radiation at selected wavelengths, causing the luminescent material to luminesce, and the luminescent radiation being detected by the sensing element. Radiation sensing elements include photodiodes (singly and in arrays), CCD arrays, IR detectors and photomultiplier tubes. Luminescent materials include polymers, oligomers, copolymers and porphyrines, Luminescent layers include thin films, thicker layers, and liquid polymers.
Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro
2013-02-01
In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.
Integrated electronics for time-resolved array of single-photon avalanche diodes
NASA Astrophysics Data System (ADS)
Acconcia, G.; Crotti, M.; Rech, I.; Ghioni, M.
2013-12-01
The Time Correlated Single Photon Counting (TCSPC) technique has reached a prominent position among analytical methods employed in a great variety of fields, from medicine and biology (fluorescence spectroscopy) to telemetry (laser ranging) and communication (quantum cryptography). Nevertheless the development of TCSPC acquisition systems featuring both a high number of parallel channels and very high performance is still an open challenge: to satisfy the tight requirements set by the applications, a fully parallel acquisition system requires not only high efficiency single photon detectors but also a read-out electronics specifically designed to obtain the highest performance in conjunction with these sensors. To this aim three main blocks have been designed: a gigahertz bandwidth front-end stage to directly read the custom technology SPAD array avalanche current, a reconfigurable logic to route the detectors output signals to the acquisition chain and an array of time measurement circuits capable of recording the photon arrival times with picoseconds time resolution and a very high linearity. An innovative architecture based on these three circuits will feature a very high number of detectors to perform a truly parallel spatial or spectral analysis and a smaller number of high performance time-to-amplitude converter offering very high performance and a very high conversion frequency while limiting the area occupation and power dissipation. The routing logic will make the dynamic connection between the two arrays possible in order to guarantee that no information gets lost.
Status of LWIR HgCdTe infrared detector technology
NASA Technical Reports Server (NTRS)
Reine, M. B.
1990-01-01
The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.
Plasmonic nanohole arrays on Si-Ge heterostructures: an approach for integrated biosensors
NASA Astrophysics Data System (ADS)
Augel, L.; Fischer, I. A.; Dunbar, L. A.; Bechler, S.; Berrier, A.; Etezadi, D.; Hornung, F.; Kostecki, K.; Ozdemir, C. I.; Soler, M.; Altug, H.; Schulze, J.
2016-03-01
Nanohole array surface plasmon resonance (SPR) sensors offer a promising platform for high-throughput label-free biosensing. Integrating nanohole arrays with group-IV semiconductor photodetectors could enable low-cost and disposable biosensors compatible to Si-based complementary metal oxide semiconductor (CMOS) technology that can be combined with integrated circuitry for continuous monitoring of biosamples and fast sensor data processing. Such an integrated biosensor could be realized by structuring a nanohole array in the contact metal layer of a photodetector. We used Fouriertransform infrared spectroscopy to investigate nanohole arrays in a 100 nm Al film deposited on top of a vertical Si-Ge photodiode structure grown by molecular beam epitaxy (MBE). We find that the presence of a protein bilayer, constitute of protein AG and Immunoglobulin G (IgG), leads to a wavelength-dependent absorptance enhancement of ~ 8 %.
A Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging.
Yang, Yongfeng; Bec, Julien; Zhou, Jian; Zhang, Mengxi; Judenhofer, Martin S; Bai, Xiaowei; Di, Kun; Wu, Yibao; Rodriguez, Mercedes; Dokhale, Purushottam; Shah, Kanai S; Farrell, Richard; Qi, Jinyi; Cherry, Simon R
2016-07-01
We developed a prototype small-animal PET scanner based on depth-encoding detectors using dual-ended readout of small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. The scanner consists of 16 tapered dual-ended-readout detectors arranged in a 61-mm-diameter ring. The axial field of view (FOV) is 7 mm, and the transaxial FOV is 30 mm. The scintillator arrays consist of 14 × 14 lutetium oxyorthosilicate elements, with a crystal size of 0.43 × 0.43 mm at the front end and 0.80 × 0.43 mm at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8 × 8 mm and 13 × 8 mm position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear-instrumentation-module electronics and a custom-designed multiplexer are used for signal processing. The detector performance was measured, and all but the crystals at the very edge could be clearly resolved. The average intrinsic spatial resolution in the axial direction was 0.61 mm. A depth-of-interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at the center of the FOV was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a FOV that can accommodate the entire mouse brain was approximately 0.6 mm using a 3-dimensional maximum-likelihood expectation maximization reconstruction. Images of a hot-rod microphantom showed that rods with a diameter of as low as 0.5 mm could be resolved. The first in vivo studies were performed using (18)F-fluoride and confirmed that a 0.6-mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with (18)F-FDG were also performed. We developed a prototype PET scanner that can achieve a spatial resolution approaching the physical limits of a small-bore PET scanner set by positron range and detector interaction. We plan to add more detector rings to extend the axial FOV of the scanner and increase sensitivity. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
A high resolution prototype small-animal PET scanner dedicated to mouse brain imaging
Yang, Yongfeng; Bec, Julien; Zhou, Jian; Zhang, Mengxi; Judenhofer, Martin S; Bai, Xiaowei; Di, Kun; Wu, Yibao; Rodriguez, Mercedes; Dokhale, Purushottam; Shah, Kanai S.; Farrell, Richard; Qi, Jinyi; Cherry, Simon R.
2017-01-01
A prototype small-animal PET scanner was developed based on depth-encoding detectors using dual-ended readout of very small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. Methods The scanner consists of 16 tapered dual-ended readout detectors arranged in a ring of diameter 61 mm. The axial field of view is 7 mm and the transaxial field of view is 30 mm. The scintillator arrays consist of 14×14 lutetium oxyorthosilicate (LSO) elements, with a crystal size of 0.43×0.43 mm2 at the front end and 0.80×0.43 mm2 at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8×8 mm2 and a 13×8 mm2 position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear instrumentation module (NIM) electronics and a custom designed multiplexer are used for signal processing. Results The detector performance was measured and all except the very edge crystals could be clearly resolved. The average detector intrinsic spatial resolution in the axial direction was 0.61 mm. A depth of interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at center of the field of view was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a field of view that can accommodate the entire mouse brain was ~0.6 mm using a 3D Maximum Likelihood-Expectation Maximization (ML-EM) reconstruction algorithm. Images of a micro hot-rod phantom showed that rods with diameter down to 0.5 mm could be resolved. First in vivo studies were obtained using 18F-fluoride and confirmed that 0.6 mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with 18F-fluorodeoxyglucose were also acquired. Conclusion A prototype PET scanner achieving a spatial resolution approaching the physical limits for a small-bore PET scanner set by positron range and acolinearity was developed. Future plans are to add more detector rings to extend the axial field of view of the scanner and increase sensitivity. PMID:27013696
Measurements of high energy photons in Z-pinch experiments on primary test stand
NASA Astrophysics Data System (ADS)
Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin
2015-08-01
High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 1010 cm-2 (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.
Measurements of high energy photons in Z-pinch experiments on primary test stand.
Si, Fenni; Zhang, Chuanfei; Xu, Rongkun; Yuan, Xi; Huang, Zhanchang; Xu, Zeping; Ye, Fan; Yang, Jianlun; Ning, Jiamin; Hu, Qingyuan; Zhu, Xuebin
2015-08-01
High energy photons are measured for the first time in wire-array Z-pinch experiments on the Primary Test Stand (PTS) which delivers a current up to 8 MA with a rise time of 70 ns. A special designed detecting system composed of three types of detectors is used to measure the average energy, intensity, and pulse waveform of high energy photons. Results from Pb-TLD (thermoluminescence dosimeter) detector indicate that the average energy is 480 keV (±15%). Pulse shape of high energy photons is measured by the photodiode detector consisted of scintillator coupled with a photodiode, and it is correlated with soft x-ray power by the same timing signal. Intensity is measured by both TLD and the photodiode detector, showing good accordance with each other, and it is 10(10) cm(-2) (±20%) at 2 m in the horizontal direction. Measurement results show that high energy photons are mainly produced in pinch regions due to accelerated electrons. PTS itself also produces high energy photons due to power flow electrons, which is one order smaller in amplitude than those from pinch region.
Development of PET/MRI with insertable PET for simultaneous PET and MR imaging of human brain.
Jung, Jin Ho; Choi, Yong; Jung, Jiwoong; Kim, Sangsu; Lim, Hyun Keong; Im, Ki Chun; Oh, Chang Hyun; Park, Hyun-wook; Kim, Kyung Min; Kim, Jong Guk
2015-05-01
The purpose of this study was to develop a dual-modality positron emission tomography (PET)/magnetic resonance imaging (MRI) with insertable PET for simultaneous PET and MR imaging of the human brain. The PET detector block was composed of a 4 × 4 matrix of detector modules, each consisting of a 4 × 4 array LYSO coupled to a 4 × 4 Geiger-mode avalanche photodiode (GAPD) array. The PET insert consisted of 18 detector blocks, circularly mounted on a custom-made plastic base to form a ring with an inner diameter of 390 mm and axial length of 60 mm. The PET gantry was shielded with gold-plated conductive fabric tapes with a thickness of 0.1 mm. The charge signals of PET detector transferred via 4 m long flat cables were fed into the position decoder circuit. The flat cables were shielded with a mesh-type aluminum sheet with a thickness of 0.24 mm. The position decoder circuit and field programmable gate array-embedded DAQ modules were enclosed in an aluminum box with a thickness of 10 mm and located at the rear of the MR bore inside the MRI room. A 3-T human MRI system with a Larmor frequency of 123.7 MHz and inner bore diameter of 60 cm was used as the PET/MRI hybrid system. A custom-made radio frequency (RF) coil with an inner diameter of 25 cm was fabricated. The PET was positioned between gradient and the RF coils. PET performance was measured outside and inside the MRI scanner using echo planar imaging, spin echo, turbo spin echo, and gradient echo sequences. MRI performance was also evaluated with and without the PET insert. The stability of the newly developed PET insert was evaluated and simultaneous PET and MR images of a brain phantom were acquired. No significant degradation of the PET performance caused by MR was observed when the PET was operated using various MR imaging sequences. The signal-to-noise ratio of MR images was slightly degraded due to the PET insert installed inside the MR bore while the homogeneity was maintained. The change of gain of the 256 GAPD/scintillator elements of a detector block was <3% for 60 min, and simultaneous PET and MR images of a brain phantom were successfully acquired. Experimental results indicate that a compact and lightweight PET insert for hybrid PET/MRI can be developed using GAPD arrays and charge signal transmission method proposed in this study without significant interference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.
Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, thesemore » small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90 ± 0.15 mm. Conclusions: The novel DoI PET detector, which is based on strip G-APD arrays, yielded a DoI resolution of 2.9 mm and excellent timing and energy resolution. Its high multiplexing factor reduces the number of electronic channels. Thus, this cross-strip approach enables low-cost, high-performance PET detectors for dedicated small animal PET and PET/MRI and potentially clinical PET/MRI systems.« less
Tritium power source for long-lived sensors
NASA Astrophysics Data System (ADS)
Litz, M. S.; Katsis, D. C.; Russo, J. A.; Carroll, J. J.
2014-06-01
A tritium-based indirect converting photovoltaic (PV) power source has been designed and prototyped as a long-lived (~15 years) power source for sensor networks. Tritium is a biologically benign beta emitter and low-cost isotope acquired from commercial vendors for this purpose. The power source combines tritium encapsulated with a radioluminescent phosphor coupled to a commercial PV cell. The tritium, phosphor, and PV components are packaged inside a BA5590-style military-model enclosure. The package has been approved by the nuclear regulatory commission (NRC) for use by DOD. The power source is designed to produce 100μW electrical power for an unattended radiation sensor (scintillator and avalanche photodiode) that can detect a 20 μCi source of 137Cs at three meters. This beta emitting indirect photon conversion design is presented as step towards the development of practical, logistically acceptable, lowcost long-lived compact power sources for unattended sensor applications in battlefield awareness and environmental detection.
NASA Astrophysics Data System (ADS)
Takahashi, Yukihiro; Sato, Mitsuteru; Imai, Masataka; Lorenz, Ralph; Yair, Yoav; Aplin, Karen; Fischer, Georg; Nakamura, Masato; Ishii, Nobuaki; Abe, Takumi; Satoh, Takehiko; Imamura, Takeshi; Hirose, Chikako; Suzuki, Makoto; Hashimoto, George L.; Hirata, Naru; Yamazaki, Atsushi; Sato, Takao M.; Yamada, Manabu; Murakami, Shin-ya; Yamamoto, Yukio; Fukuhara, Tetsuya; Ogohara, Kazunori; Ando, Hiroki; Sugiyama, Ko-ichiro; Kashimura, Hiroki; Ohtsuki, Shoko
2018-05-01
The existence of lightning discharges in the Venus atmosphere has been controversial for more than 30 years, with many positive and negative reports published. The lightning and airglow camera (LAC) onboard the Venus orbiter, Akatsuki, was designed to observe the light curve of possible flashes at a sufficiently high sampling rate to discriminate lightning from other sources and can thereby perform a more definitive search for optical emissions. Akatsuki arrived at Venus during December 2016, 5 years following its launch. The initial operations of LAC through November 2016 have included a progressive increase in the high voltage applied to the avalanche photodiode detector. LAC began lightning survey observations in December 2016. It was confirmed that the operational high voltage was achieved and that the triggering system functions correctly. LAC lightning search observations are planned to continue for several years.
Laser altimetry simulator. Version 3.0: User's guide
NASA Technical Reports Server (NTRS)
Abshire, James B.; Mcgarry, Jan F.; Pacini, Linda K.; Blair, J. Bryan; Elman, Gregory C.
1994-01-01
A numerical simulator of a pulsed, direct detection laser altimeter has been developed to investigate the performance of space-based laser altimeters operating over surfaces with various height profiles. The simulator calculates the laser's optical intensity waveform as it propagates to and is reflected from the terrain surface and is collected by the receiver telescope. It also calculates the signal and noise waveforms output from the receiver's optical detector and waveform digitizer. Both avalanche photodiode and photomultiplier detectors may be selected. Parameters of the detected signal, including energy, the 50 percent rise-time point, the mean timing point, and the centroid, can be collected into histograms and statistics calculated after a number of laser firings. The laser altimeter can be selected to be fixed over the terrain at any altitude. Alternatively, it can move between laser shots to simulate the terrain profile measured with the laser altimeter.
Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Andrew M.; Crawford, Mary H.; Jayawardena, Asanka
Solar-blind photodetection and photoconductive gain > 50 corresponding to a responsivity > 8 A/W was observed for β-Ga 2O 3 Schottky photodiodes. We investigated the origin of photoconductive gain. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. We conclude that self-trapped hole formation near the Schottky diode lowers the effective Schottky barriermore » in reverse bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga 2O 3 photodetectors.« less
Agishev, Ravil
2018-05-10
This paper demonstrates a renewed concept and applications of the generalized methodology for atmospheric light detection and ranging (LIDAR) capability prediction as a continuation of a series of our previous works, where the dimensionless parameterization appeared as a tool for comparing systems of a different scale, design, and applications. The modernized concept applied to microscale and milliscale LIDARs with relatively new silicon photomultiplier detectors and traditional photomultiplier tube and avalanche photodiode detectors allowed prediction of the remote sensing instruments' performance and limitations. Such a generalized, uniform, and objective concept is applied for evaluation of the increasingly popular class of limited-energy LIDARs using the best optical detectors, operating on different targets (back-scatter or topographic, static or dynamic) and under intense sky background conditions. It can be used in the LIDAR community to compare different instruments and select the most suitable and effective ones for specific applications.
Mid-infrared coincidence measurements on twin photons at room temperature
Mancinelli, M.; Trenti, A.; Piccione, S.; Fontana, G.; Dam, J. S.; Tidemand-Lichtenberg, P.; Pedersen, C.; Pavesi, L.
2017-01-01
Quantum measurements using single-photon detectors are opening interesting new perspectives in diverse fields such as remote sensing, quantum cryptography and quantum computing. A particularly demanding class of applications relies on the simultaneous detection of correlated single photons. In the visible and near infrared wavelength ranges suitable single-photon detectors do exist. However, low detector quantum efficiency or excessive noise has hampered their mid-infrared (MIR) counterpart. Fast and highly efficient single-photon detectors are thus highly sought after for MIR applications. Here we pave the way to quantum measurements in the MIR by the demonstration of a room temperature coincidence measurement with non-degenerate twin photons at about 3.1 μm. The experiment is based on the spectral translation of MIR radiation into the visible region, by means of efficient up-converter modules. The up-converted pairs are then detected with low-noise silicon avalanche photodiodes without the need for cryogenic cooling. PMID:28504244
The HPS electromagnetic calorimeter
NASA Astrophysics Data System (ADS)
Balossino, I.; Baltzell, N.; Battaglieri, M.; Bondì, M.; Buchanan, E.; Calvo, D.; Celentano, A.; Charles, G.; Colaneri, L.; D'Angelo, A.; Napoli, M. De; Vita, R. De; Dupré, R.; Egiyan, H.; Ehrhart, M.; Filippi, A.; Garçon, M.; Gevorgyan, N.; Girod, F.-X.; Guidal, M.; Holtrop, M.; Iurasov, V.; Kubarovsky, V.; Livingston, K.; McCarty, K.; McCormick, J.; McKinnon, B.; Osipenko, M.; Paremuzyan, R.; Randazzo, N.; Rauly, E.; Raydo, B.; Rindel, E.; Rizzo, A.; Rosier, P.; Sipala, V.; Stepanyan, S.; Szumila-Vance, H.; Weinstein, L. B.
2017-05-01
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon." Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier.
The HPS electromagnetic calorimeter
Balossino, I.; Baltzell, N.; Battaglieri, M.; ...
2017-02-22
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less
The HPS electromagnetic calorimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balossino, I.; Baltzell, N.; Battaglieri, M.
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called "heavy photon". Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015-2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. Finally, the detector is a homogeneous calorimeter, made of 442 lead-tungsten (PbWOmore » $$_4$$) scintillating crystals, each read-out by an avalanche photodiode coupled to a custom trans-impedance amplifier.« less
Temperature stability of transit time delay for a single-mode fibre in a loose tube cable
NASA Technical Reports Server (NTRS)
Bergman, L. A.; Eng, S. T.; Johnston, A. R.
1983-01-01
The effect of temperature on the transit-time delay of a loose-tube-type single-mode optical-fiber cable is investigated experimentally. A 1058-m length of cable was placed loosely coiled in an oven and used to connect a 820-nm single-mode laser diode to a high-speed avalanche-photodiode detector feeding a vector voltmeter; the signal was provided by a high-stability frequency-synthesized generator. Measurements were made every 2 C from -50 to 60 C and compared to those obtained with a 200-m lacquered bare fiber. The phase change of both fibers varied with temperature at a positive slope of 6-7 ppm/C. This value is significantly better than those reported for other cable types, suggesting the application of loose-fiber cables to long-haul gigabit digital transmissions or precision time-base distribution for VLBI.
Influence of δ p-doping on the behaviour of GaAs/AlGaAs SAM-APDs for synchrotron radiation
NASA Astrophysics Data System (ADS)
Steinhartova, T.; Nichetti, C.; Antonelli, M.; Cautero, G.; Menk, R. H.; Pilotto, A.; Driussi, F.; Palestri, P.; Selmi, L.; Koshmak, K.; Nannarone, S.; Arfelli, F.; Dal Zilio, S.; Biasiol, G.
2017-11-01
This work focuses on the development and the characterization of avalanche photodiodes with separated absorption and multiplication regions grown by molecular beam epitaxy. The i-GaAs absorption region is separated from the multiplication region by a δ p-doped layer of carbon atoms, which ensures that after applying a reverse bias, the vast majority of the potential drops in the multiplication region. Therein, thin layers of AlGaAs and GaAs alternate periodically in a so-called staircase structure to create a periodic modulation of the band gap, which under bias enables a well-defined charge multiplication and results in a low multiplication noise. The influence of the concentration of carbon atoms in the δ p-doped layer on the device characteristics was investigated and experimental data are presented together with simulation results.
NASA Technical Reports Server (NTRS)
Spinhirne, James D. (Inventor)
1993-01-01
An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.
NASA Technical Reports Server (NTRS)
Davidson, Frederic M.; Sun, Xiaoli
1993-01-01
One of the major sources of noise in a direct detection optical communication receiver is the shot noise due to the quantum nature of the photodetector. The shot noise is signal dependent and is neither Gaussian nor wide sense stationary. When a photomultiplier tube (PMT) or an avalanche photodiode (APD) is used, there is also a multiplicative excess noise due to the randomness of the internal photodetector gain. Generally speaking, the radio frequency (RF) communication theory cannot be applied to direct detection optical communication systems because noise in RF communication systems is usually additive and Gaussian. A receiver structure which is mathematically optimal for signal dependent shot noise is derived. Several suboptimal receiver structures are discussed and compared with the optimal receiver. The objective is to find a receiver structure which is easy to implement and gives close to optimal performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salmon, J.T.; Avicola, K.; Brase, J.M.
1994-04-11
We present the design and implementation of a very compact adaptive optic system that senses the return light from a sodium guide-star and controls a deformable mirror and a pointing mirror to compensate atmospheric perturbations in the wavefront. The deformable mirror has 19 electrostrictive actuators and triangular subapertures. The wavefront sensor is a Hartmann sensor with lenslets on triangular centers. The high-bandwidth steering mirror assembly incorporates an analog controller that samples the tilt with an avalanche photodiode quad cell. An {line_integral}/25 imaging leg focuses the light into a science camera that can either obtain long-exposure images or speckle data. Inmore » laboratory tests overall Strehl ratios were improved by a factor of 3 when a mylar sheet was used as an aberrator. The crossover frequency at unity gain is 30 Hz.« less
Improved scintillation detector performance via a method of enhanced layered coatings
Wakeford, Daniel Tyler; Tornga, Shawn Robert; Adams, Jillian Cathleen; ...
2016-11-16
Increasing demand for better detection performance with a simultaneous reduction in size, weight and power consumption has motivated the use of compact semiconductors as photo-converters for many gamma-ray and neutron scintillators. The spectral response of devices such as silicon avalanche photodiodes (APDs) is poorly matched to many common high-performance scintillators. We have developed a generalized analytical method that utilizes an optical reference database to match scintillator luminescence to the excitation spectrum of high quantum efficiency semiconductor detectors. This is accomplished by the fabrication and application of a series of high quantum yield, short fluorescence lifetime, wavelengthshifting coatings. Furthermore, we showmore » here a 22% increase in photoelectron collection and a 10% improvement in energy resolution when applying a layered coating to an APD-coupled, cerium-doped, yttrium oxyorthosilicate (YSO:Ce) scintillator. Wavelength-shifted radioluminescence emission and rise time analysis are also discussed.« less
DOC II 32-bit digital optical computer: optoelectronic hardware and software
NASA Astrophysics Data System (ADS)
Stone, Richard V.; Zeise, Frederick F.; Guilfoyle, Peter S.
1991-12-01
This paper describes current electronic hardware subsystems and software code which support OptiComp's 32-bit general purpose digital optical computer (DOC II). The reader is referred to earlier papers presented in this section for a thorough discussion of theory and application regarding DOC II. The primary optoelectronic subsystems include the drive electronics for the multichannel acousto-optic modulators, the avalanche photodiode amplifier, as well as threshold circuitry, and the memory subsystems. This device utilizes a single optical Boolean vector matrix multiplier and its VME based host controller interface in performing various higher level primitives. OptiComp Corporation wishes to acknowledge the financial support of the Office of Naval Research, the National Aeronautics and Space Administration, the Rome Air Development Center, and the Strategic Defense Initiative Office for the funding of this program under contracts N00014-87-C-0077, N00014-89-C-0266 and N00014-89-C- 0225.